General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

DOE/NASA CONTRACTOR REPORT

FINAL SYSTEM INSTRUMENTATION DESIGN PACKAGE FOR DECADE 80 SOLAR HOUSE

Prepared from documents furnished by

Copper Development Association, Inc. 405 Lexington Avenue New York, New York 10017

Under Contract NAS8-32244 with

National Aeronautics and Space Administration George C. Marshall Space Flight Center, Alabama 35812

For the U. S. Department of Energy

69 p HC A04/MF A01

(NASA-CR-150869)

FINAL SYSTEM INSTRUMENTATION DESIGN PACKAGE FOR DECADE 80 SOLAR HOUSE (Copper Development Association,

CSCL 10A

N79-19455

Unclas

G3/44 16643

TABLE OF CONTENTS

1.0	Site an	d System Description	1
2.0	Operat	ing and Control Modes	9
	Figure	1 - View of Decade 80 Solar House Showing Collector Orientation and Pyranometer	
		Location	18
	Figure	2 - Floor Plan Showing Location of Site	
		Instrumentation Instrument Hardware	19
3,0	Instrur	nentation Program Drawing IP 7933729 Rev H	20
Append	lix A	Drawing, Air Distribution Systems	A-1
Append	dix B	Drawings - Heat Transfer Fluid Flows for	
		Six Basic Operating Modes:	
		- Energy Collection	B-1
		- Heating from Storage	B-2
		- Heating from Auxiliary	B-3
		- Cooling from Storage	B-4
		- Cooling from Auxiliary	B-5
		- Domestic Water Heating	B-6
Append	lix C	Drawing, Heating and Cooling Water Piping Diagram	C-1

SECTION 1.0

SITE AND SYSTEM DESCRIPTION

1.0 Site and System Description

1.1 Site Contractor

Copper Development Association Inc. 405 Lexington Avenue
New York, New York 10017
(212) 953-7315

Field Office: 34 E. Madrid Place Tucson, Arizona 85704 (602) 297-7020

1.2 Site Address

7779 N. Via Piccolina Tucson, Arizona 85704

1.3 Purpose of Site

Single family residence.

- 1.5 System Descriptive Summary
- 1.5.1 Type:

Heating, absorption air-conditioning, and domestic water heating.

1.5.2 Collector area:

Gross area = 1923 sq ft

Clear aperture = 1766 sq ft

1.5.3 Collector description:

Laminated Panel Collector, integral with the building roof. The collector is glazed with two panes of 1/8-inch glass preassembled in a frame. The glass is PPG Herculite K tempered glass as the outer pane, and annealed glass as the inner pane.

Flow through the collector is 25 gpm; mass flow is about 6.5 lb/sq ft-hr. Flow is through a grid-sinuous pattern of 22 parallel tubes. Each tube is folded back-and-forth in a sinuous path of about 200 ft with a balancing cock in each flow path.

1.5.4 Storage:

The storage medium is tap water, treated with soda ash and sodium sulfite to inhibit rusting in the storage tank.

The storage container is a steel tank of 3000 gallon capacity. The tank contains about 2700 gallons of water, with the remaining space for expansion.

The tank is built of 1/4-inch steel plate formed into a cylinder; the ends of the tank are domed. The cylinder stands vertically, about 8 1/2 ft in diameter. It was delivered to the site assembled.

The tank has an epoxy lining.

1.5.5 Space heating method:

The zoned heating system is a forced-air type, with two units, one serving the east zone and one serving the west zone. Air is heated by fan coils containing solar-heated water. Water is delivered to the fan coils at 5 to 11 gpm directly from the storage tank.

In the event that there is not sufficient heat in the storage tank to satisfy the demand, heat is provided to the fan coils by an auxiliary natural-gas-fired boiler.

1.5.6 Hot water subsystem:

Domestic water is heated through a heat exchanger and stored in a 66-gallon electric water heater, Rheem model 666H-660. The water heater electric elements are wired so they are in-circuit only when the main storage tank is below a preset temperature.

Hot water is circulated continuously to faucets throughout the house.

1.5.7 Energy transport:

Fans - All are 120 V AC, Single phase, 60 Hz.

East zone uses one 3/4-HP blower.

West zone uses one 1/2-HP blower.

There is a duct booster-fan that controls air flow to the guest cabana. The fan is operated by the homeowner when he desires.

<u>Ducts</u> - All ducts are rigid fiberglass, in diameters from 6" to 16". The duct layout is shown in Drawings, enclosed as Appendix A.

Air flow through the east system is 1750 cfm; air flow through the west duct system is 1500 cfm.

Pumps - All pumps are 120 V AC, single phase, 60 HZ.

<u>Pipe details</u> - The Heating-Cooling
Water Piping Diagram (Appendix C) gives a detailed
description of each pipe size and identifies all
pumps, valves, heat exchangers, etc.

All tubes between the collector and HE-1 and HE-2 are 1-1/2 inch. All tubes into and out of the storage tank are 1-1/2 inch.

Tubes to and from the Arkla generators and condensers, and tubes to each heating fan coil, are 1 inch.

All tubing is Type L copper. Fittings are copper, brass, or bronze. All joints are brazed with "Sil-Fos" silver-phosphorous-copper brazing alloys.

Fluid type - All fluids are tap water.

The collector water has about 35% propylene glycol antifreeze added to it. It is inhibited with phosphate.

The storage tank water has sodium nitrite and sodium sulfite added to it as rust inhibitors. About 10 lbs of each were used. The sodium sulfite is periodically replenished. This water circulates through the heating fan coils and the Arkla generators.

The cooling tower water has a polyphosphate stabilizer metered into it at about 1 to 10 ppm. An algaecide is added to the water once a month. The algaecide is consumed in a few days. The cooling tower

water is bled off whenever the air conditioners are operating; bleed rate is 10.5 gal per hr for each of the two Arkla air-conditioners.

1.5.8 Space cooling method:

Air-conditioners are three-ton Arkla lithium bromide absorption units, model XWF-501. Two are used; each cools one zone, or about half the living space. They are direct expansion types.

1.5.9 Auxiliary energy source:

Auxiliary energy for the heating and cooling subsystems is provided by a natural-gas-fired boiler: Teledyne Laars model HK--250--CNOlA. The labelled input is 250,000 Btu per hr; output is 200,000 Btu per hr.

The boiler has been modified by the removal of its two-stage gas valve, and replacement of it by a modulating valve and a partial bypass. Maximum output is now expected to be about 150,000 Btu per hr, with minimum continuous output about 50,000 Btu per hr.

Auxiliary energy for domestic water heating is provided by the two electric heating elements within the domestic water storage tank. Each element is 4500 watts, wired to operate one at a time. Auxiliary electric power is allowed to come on only when the main storage tank temperature drops below a preset temperature.

1.5.10 Operational control sequence:

The operational control sequence is described in detail in Section 2.0 Operating and Control Modes

77

1.5.11 Energy conversion efficiency:

Collection efficiency - The collector efficiency has been measured continuously for over a year.

Typical summertime day-long efficiency, integrated over the total run-time of the collector (about 10:30 a.m. to 3:30 p.m.) is about 24 to 26%. Typically 650,000 to 850,000 Btu are delivered to storage on a normal clear day.

Typical wintertime day-long efficiency, integrated similarly, is 30 to 40%. Up to 1,100,000 Btu are collected on a clear December or January day. Recall also that the collector is sloped at 26° above the horizontal, to emphasize collection of heat during the summer.

Storage losses - Heat delivered from storage to the HVAC system has been measured. On a typical day the air conditioning system draws from storage about 200,000 Btu less than was delivered to storage by the 200

About half the 200,000 Btu appears to have been used for domestic water heating. The other half is attributed to losses through the storage tank insulation, plumbing insulation, and to measurement error.

Storage losses in the heating mode have not yet been analyzed.

Domestic water heating losses - The domestic water storage tank/heater is wired to its own watt-hour meter. Domestic water heating energy consumption can therefore be measured by forcing the heater to remain in the electric heating mode. (It is set to the same temperature, 135 F, that the solar water heating system.)

Typically the domestic water heating system will consume about 25 Kwh per day, with two occupants living in the house. Of this amount, about 8 Kwh per day is dissipated because of the continuous-circulation feature of the plumbing system. In addition, the circulator pump itself consumes about 2 Kwh per day.

Additional insulation was added to the domestic water storage tank during the past summer. Before it was added energy consumption by the subsystem was about 5 to 10 Kwh per day higher.

These measurements of electric energy consumption by the domestic water subsystem do not, of course, account for any losses that occur in the domestic water heat exchanger, HE-3 or its associated plumbing.

Arkla C.O.P. - Air-conditioner Coefficient of Performance has been measured approximately. Under steady-state operating conditions the COP of the Arklas has been measured at about 0.8 \pm 0.1.

Day-long COP varied, of course, with the amount of cooling required throughout the day. During the summer it was about 0.8. Early and late in the cooling

season it was lower, about 0.3 to 0.6. During the summer both air-conditioners ran continuously from early morning till late night, typically 16 to 20 hours per day. Early and late in the cooling season the machines cycled rather frequently, lowering their effective coefficients of performance.

SECTION 2.0

OPERATING AND CONTROL MODES

2.0 Operating and Control Modes

There are six basic operating modes in the Decade 80 Solar House energy system:

Energy collection
Space heating from storage
Space heating from auxiliary energy
Space cooling from storage
Space cooling from auxiliary energy
Domestic water heating

The heat transfer fluid flows for each of the six operating modes are shown schematically in the six drawings (Drawings 1 through 6) that make up Appendix B, and are described below.

2.1 Energy collection:

Energy collection is controlled by two differential thermostats (Rho Sigma Model 12 modified units). When the collector surface temperature exceeds the temperature at the bottom of the storage tank pump P-1 is turned on, circulating the water-antifreeze solution from the collector to heat exchangers HE-1 and HE-2, and back to the collector.

A second differential thermostat turns pump P-2 on when the temperature of the antifreeze solution, as measured near the inlet of HE-1, exceeds the temperature at the bottom of storage by about 3°F. Pump P-2 circulates water from the bottom of the storage tank through HE-2 and HE-1, and back to the top of the storage tank.

All energy that is collected is delivered directly to the storage tank; there is no provision for bypass from the collector directly to the heating and cooling equipment.

2.2 Space heating from storage:

Upon demand for heat by either of the two room thermostats, pump P-3 draws water from the solar storage tank. Warm water is provided to both fan coils, but admitted only to the one for which a demand was registered. Heat can be provided to either or both heating zones.

Water flow to each fan coil is set at 6 gpm.

Each fan coil has a water bypass, so that its status

(on or off) does not effect the rate of water flow
to the other fan coil.

2.3 Space heating from auxiliary energy

Auxiliary heat, when required, is provided by a natural gas boiler. Dur g the winter of 1975-1976 only 3% of the total heating Btu's were provided by the boiler. So far (January 1977) no auxiliary heat has been used during the current winter.

The heating system is controlled by a two-stage room thermostat in each zone. When the space temperature drops below the thermostat set-point, a stage-one demand is created. Heat is provided to the space

from the storage tank. If the storage tank is too cold to satisfy the demand for heat, the space temperature will continue to drop.

When the space temperature drops 1.5 F below the set-point of the thermostat a stage-two demand is created. If this demand continues for seven minutes the auxiliary boiler will operate. The boiler will continue to operate, and provide heat to both fan coils, until the stage-two demand for heat is satisfied.

It has been found that the boiler might be needed during the coldest part of a morning, but as the day begins to warm there is sufficient heat still in storage to satisfy the smaller demand. Therefore the auxiliary heat source is load-dependent rather than supply temperature-dependent.

The seven minute time delay on the boiler was added to assure that the boiler does not operate unnecessarily. The occupant of the house might over adjust a thermostat upward or open a door on a cold, windy morning. This might create a sudden false stage two demand for heat that could actually be savisfied by stored heat.

For economy, water heated by the boiler should not be returned to the storage tank after passing through the fan coil. Therefore, whenever the gas

boiler operates, proportioning valve V-2 moves to the full bypass position. In this position water travels from pump P-3 to the boiler, then to the heating coils, and finally through V-2 and back to the pump.

2.4 Space cooling from storage:

When the occupant of the house chocses to cool the house he sets a Summer/Winter switch to the Summer position. This causes valves V-3 and V-4 to deliver hot water to the Arklas instead of the fan coils.

For proper operation the Arkla air conditioners require hot water between 190 and 210 F. The storage tank may at times exceed 210 F; therefore the stored hot water must be tempered somewhat. This is done by valve V-2. If water from storage enters this valve too hot, cooler water returning from the air-conditioners is mixed with the hot water, until the proper temperature is achieved.

The Arklas also require a means to dissipate the heat extracted from the house. This is the purpose of the cooling tower. The tower delivers water to the Arklas between 70 and 85 F; the water is heated in the Arklas by 15 to 20 degrees and returned to the tower. At the tower some of the water is evaporated, causing the remaining water to be cooled. On a dry day the water may be cooled below 70 F; this is not desirable.

To maintain the cool water at no less than 70 F there is a proportioning valve, V-11, at the cooling tower. If the tower chills the water excessively, unchilled water is delivered to the bottom of the tower, instead of the top, from which it returns, unchilled, to the Arklas. Valve V-11 mixes chilled and unchilled water to achieve the proper temperature.

Upon demand by either room thermostat for cooling, pumps P-3 and P-6 start, delivering hot water from storage and cool water from the cooling tower to the Arklas. Each Arkla has three-way valves and bypasses, so that cycling of one machine does not effect the water flow rates to the operating machine. The machines can operate alone or simultaneously.

As mentioned previously, the hot and cool water into the Arklas must be within certain temperature limits. If the cool water is too warm, or the hot water too cool, there is a danger of solidification, or crystallization, of the lithium bromide solution. To prevent the possibility of solidification there is a safety thermostat on each Arkla. This thermostat is a differential type; it allows air-conditioner operation only when the hot water is at least 110 F hotter than the cool water.

2.5 Space cooling from auxiliary energy:

The cooling system, like the heating system, is controlled by two two-stage thermostats, one in

each of the two zones of the house. A first-stage demand for cooling from either thermostat will operate its air-conditioner, if certain conditions are met. The first condition, as described above, is that the hot water to the Arkla's generator must be at least 110 F hotter than the cool water to the machine's condenser. The second condition is that the hot water be at least 190 F. If the water in the storage tank is below this temperature, thermostat T-4, in the storage tank, signals valve V-2 to close to the recirculate position. This prevents the water in the storage tank from circulating uselessly and losing heat through pipe insulation.

A second stage demand from either room thermostat indicates that, that zone has warmed more than 1.5 degrees above the thermostat set-point. If the storage tank is above 197 F, the second stage demand has no effect. If the tank is below 197 F a second stage demand will first cause valve V-2 to close to the recirculate position. It then causes proportioning valve V-14 to respond to its temperature sensor T-16. As V-14 begins to operate to admit water to the boiler, the opening of an end-switch on the valve allows the boiler circulating pump, P-10, to start and sends a signal to the boiler gas valve. Flow through the boiler and P-10 trips a flow switch which then allows the boiler to begin operating.

There is a modulating gas valve in the boiler. The valve's regulator is set to raise the incoming water temperature by about 10 to 12 degrees. The boiler also has an over-temperature thermostat, set to 230 F, which shuts off the boiler if the water becomes too hot.

Modulating valve V-14 regulates the temperature of the water flowing from the boiler to the Arklas, holding the water to about 205 F.

The boiler will come on and operate both Arklas whenever there is a second-stage cooling demand from either thermostat. There is no time delay in the cooling mode, as there is in the heating mode.

If the storage tank temperature is between 190 and 197 F, the Arklas will operate from solar storage upon first-stage cooling demands and from the auxiliary boiler when either thermostat registers a second demand.

2.6 Domestic water heating:

The final mode of operation is domestic water heating. Water is received from the city supply between 50 and 90 F, and heated to 135. Domestic hot water is stored in a 66-gallon commercial electric water heater, whose electric heating elements are normally disabled.

The hot water is circulated continuously through the house past all faucets. The water temperature is sensed by thermostat T-7 as the water returns to the base of the storage tank.

When the water temperature drops below 135 F, T-7 causes pump P-4 to start. This pump draws hot water from the solar storage tank and sends it through the shell side of HE-3. After a 30-second delay (to allow the heat exchanger to warm up) pump P-5 starts sending domestic water from its storage tank to the tube side of HE-3. Both pumps run until T-7 is satisfied. During the summer, with the storage tank normally above 180 F, these pumps run for a one to two minute cycle every hour or two. During the winter the pumps run somewhat longer and more frequently.

Thermostat T-5 measures the storage tank temperature. If the main tank is below about 140 F pumps P-4 and P-5 would run excessively, or continuously. Thus T-5 disables the pumps below its 140 F set-point, and instead puts the domestic water heater's electric heating elements into circuit.

3.0 Architectural Rendering

An aerial photograph of the Decade 80 Solar House appears as Figure 1, page 18, showing pyranometer location and collector orientation. There are no interfering surrounding structures.

FIGURE 1. VIEW OF DECADE 80 SOLAR HOUSE SHOWING COLLECTOR ORIENTATION AND PYRANOMETER LOCATION

19

ORIGINAL PAGE IS OF POOR QUALITY SECTION 3.0

TNET DIMERNITATION PROCRAM

729	CHI		LTR	DESCRIPTION	DATE	APPROVED
72				\$	E PULL I	VELVOLED
933		66352HR	G	Replace page 1-See EN. Rev pages 23-29. Rev channel 14 changed T coefficient.	5/16/8	GMIYT
TP7	3	663521W	Ha	Rev page 17 schematic.	6/26/8	GAI

Original page is of poor quality

CONTR NO. NASS-32036 PREPARATION	INTERNATIONAL BUSINESS MACHINES CORP. FEDERAL SYSTEMS DIVISION HUNTSVILLE, ALA. 35807					
OSGN ENK	TITLE INSTRUMENTATION PROGRAM					
OWG CHE	DECADE 80 HOUSE	•				
DSGN. APPROVAL	SIZE CODE IDENT NO. DWG NO. 20234 IP7933729					
22	SCALE WT SHEET 1 0	29				

955-1685-0

IP 7933729

REV

INTRODUCTION

THIS DOCUMENT DEFINES AND CONTROLS THE MEASURING REQUIREMENTS AND INSTRUMENTATION SYSTEM APPLICATIONS FOR A SOLAR HEATING AND COOLING OPERATIONAL SITE.

THE SECTIONS OF THIS DOCUMENT ARE DESCRIBED AS FOLLOWS:

- 1. PREAMBLE SECTION CONTAINS DESCRIPTIONS, EXPLANATIONS, INSTRUCTIONS AND DIAGRAMS NECESSARY TO UNDERSTAND THIS DOCUMENT AND THE APPLICATION OF THE DATA COLLECTION SYSTEM TO A SPECIFIC SITE.
- 2. INSTRUMENTATION COMPONENTS SECTION LISTS ALL HARDWARE ELEMENTS OF THE DATA COLLECTION EQUIPMENT NOT SUBSEQUENTLY LISTED IN THE MEASUREMENTS SECTION.
- 3. MEASUREMENTS SECTION LISTS ALL MEASUREMENTS WHICH ORIGINATE IN A SOLAR HEATING AND COOLING OPERATIONAL SITE WITH APPROPRIATE INFORMATION FOR EACH MEASUREMENT.

INSTRUMENTATION PROGRAM	AND COMPONENTS	LIST DECADE 80 HOUSE	4/25/77
		IP 7933729	REV

TABLE OF CONTENTS

						PAGE
APPROVAL/REVISION SHEET						1
INTRODUCTION	:		•		·	2
TABLE OF CONTENTS						-3
PREAMBLE SECTION						4
INSTRUMENTATION COMPONEN	NTS SECTION			•		1.9
MEASUREMENTS SECTION		•			•	21

INSTRUMENTATION	PROGRAM AN	D COMPONENTS	LIST	DECADE 80 HOUSE	4/25/77
				TP: 7933729	REV

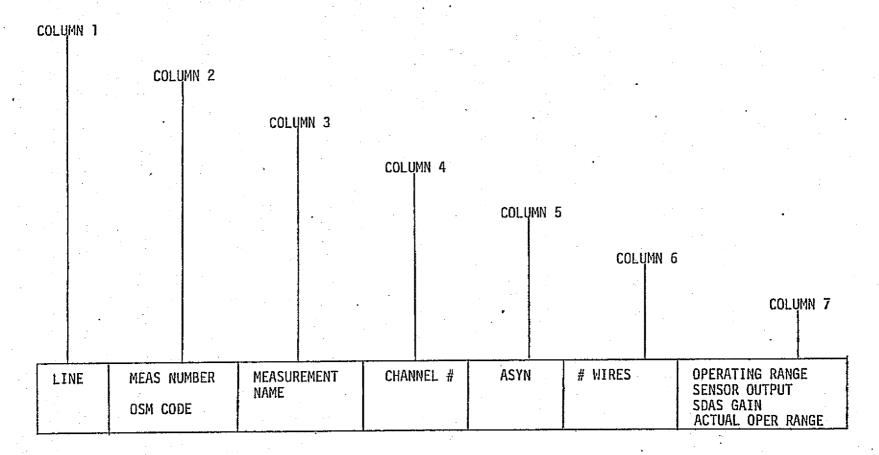
PREAMBLE SECTION

C	V
ι	Л

OF POOR	ORIGINAL
YTILIAUQ	PAGE IS

INSTRUMENTATION	PROGRAM AND	COMPONENTS	LIST:	DECADE 80 HOUSE	
•				IP 7933729	
		*	•)	-

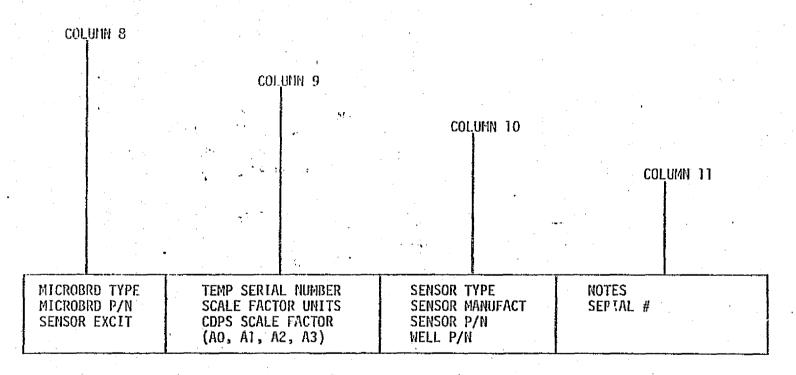
7/28/77 RE A


OPERATIONAL SITE IDENTIFICATION

1.	SITE NAME: DECADE 80 HOUSE
	PON:N/A
	SITE NUMBER: 0022
	SITE SDAS TELEPHONE NUMBER: 602-297-8092
	SITE SDAS COMPUTER ADDRESS: 013
	SITE ADDRESS. 7779 North Vie Piccolina
	LOCATION: Tucson, AZ 85704
	SYSTEM DESIGNER: Copper Development Association
•	SYSTEM TYPE: Solar Heating and Cooling
	FINIT MENTA. Water

- SOLAR HEATING AND COOLING INSTRUMENTATION INSTALLATION GUIDELINES, OCTOBER 1, 1977.
- 2. [X] SITE DATA ACQUISITION SUBSYSTEM PERFORMANCE SPECIFICATION, MAY 14, 1976, IBM NO. 7932905.
 - [] SITE DATA ACQUISITION SUBSYSTEM MODEL II, PERFORMANCE SPECIFICATION, 7934354.
 - [] SITE DATA ACQUISITION PERFORMANCE SPECIFICATION. ACUREX MODEL.
- 3. CENTRAL DATA PROCESSING SOFTWARE PERFORMANCE SPECIFICATION, JULY 28, 1976, IBM
 NO. 7933251.
- 4. THERMAL DATA REQUIREMENTS AND PERFORMANCE EVALUATION PROCEDURES FOR THE NATIONAL SOLAR HEATING AND COOLING DEMONSTRATION PROGRAM, AUGUST, 1976 (NBSIR 76-1137).
- 5. JUNCTION BOX PERFORMANCE SPECIFICATION, OCTOBER 26, 1976, IBM NO. 7933446.
- 6. OH SITE MONITOR (OSM) OPERATION MANUAL, OCTOBER 17, 1977, IBM NO. 7934365.

DECADE 80 HOUSE
IP7933729


THE LEGEND FOR THE DATA LISTED IN THE MEASUREMENTS SECTION OF THIS DOCUMENT IS AS FOLLOWS:

DECADE 80 HOUSE IP7933729

05/01/78 REV F

MEASUREMENTS LEGEND (CONTINUED)

THE COLUMN HEADINGS ARE DEFINED ON THE FOLLOWING SHEETS.

N

DECADE 80 HOUSE
IP7933729

02/08/78 REV D

COLUMN 1. LINE NUMBER

THIS COLUMN IS USED FOR AUTOMATIC PRINTOUT DATA CONTROL AND LINE IDENTIFICATION.

COLUMN 2. (MULTIPLE DATA SETS)

THIS COLUMN CONTAINS TWO DATA SETS AS DEFINED BELOW:

MEAS NUMBER. THE FIRST LINE OF THIS COLUMN LISTS EACH MEASUREMENT WHICH IS IDENTIFIED BY A UNIQUE ALPHANUMERIC CODE CONSISTING OF TEN CHARACTERS AS FOLLOWS:

FIELD NO.	1	2	3	4			
MEASUREMENT NO.	ХҮ	001		0001			
PARAMETER TYPE PARAMETER SEQUENCE							
	OR ——— TE IDENTI						

AN ASTERISK (*) FOLLOWING THE MEASUREMENT NUMBER DENOTES A CHANGE FROM THE PREVIOUS RELEASE.

OSM CODE. THE SECOND LINE OF THIS COLUMN LISTS THE ON SITE MONITOR SWITCH SETTING TO DISPLAY ENGINEERING UNIT DATA. THIS IS TO BE USED WITH ASSOCIATED DOCUMENT 6 AND THE GENERAL NOTES ON PAGE 16 OF THIS DOCUMENT.

Ŋ

IP 7933729

REV_A

FIELD NO. 1 - PARAMETER TYPE

CODE	PARAMETER	UNITS	ABB
D D	WIND DIRECTION SWITCH	DEGREES - AZIMUTH DEGREES - ON/OFF	DEG DEG
EP	ELECTRICAL POWER .	KILOWATTS	KW
F	FLOWRATE (NATURAL GAS) FLOWRATE (FUEL OIL)	FEET ³ /MINUTE GAL/MINUTE	SCFM GPM
I	-SOLAR FLUX	BTU PER FOOT ² X Hour	BTU/FT ² - HR
RH	HUMIDITY	PERCENT	PER
SP	SPARE	N/A	N/A
T	TEMPERATURE	DEGREES FAHRENHEIT	DEG F
TD	DIFFERENTIAL TEMPERATURE	DEGREES FAHRENHEIT	DEG F/DT
M	FLOWRATE (LIQUID) FLOWRATE (AIR)	GALLONS PER MINUTE, CUBIC FEET PER MINUTE	GPM CFM
V	WIND SPEED	MILES PER HOUR	мрн
PD	DIFFERENTIAL PRESSURE	POUNDS PER SQ. INCH	PSI .

REV

B. FIELD NO. 2 - PARAMETER SEQUENCE

A NUMERIC GROUPING WHICH DESIGNATES THE SEQUENTIAL NUMBER OF A MEASUREMENT WITHIN EACH SUBSYSTEM. THE SEQUENTIAL NUMBER OF EACH MEASUREMENT CONFORMS TO THE PATTERN ESTABLISHED IN FIGURE 3-1 OF SHC-1006. SEQUENTIAL NUMBER ALLOCATIONS ARE AS FOLLOWS:

NUMERIC	SEQUENCE		SUBSYSTEM
001-099		•	CLIMATOLOGICAL
100-199			COLLECTOR
200-299			THERMAL STORAGE
300-399			DOMESTIC HOT WATER
400-499			SPACE HEATING
500-599			SPACE COOLING
600-699		•	BUILDING/LOAD

c. FIELD NO. 3 — SEPARATOR

FOR NUMERIC CLARITY.

D. FIELD NO. 4 - SITE IDENTIFIER

A NUMERIC GROUPING WHICH DESIGNATES THE SITE IN WHICH THE MEASUREMENT IS LOCATED.

· REV

COLUMN 3. MEASUREMENT NAME

THIS COLUMN LISTS THE MEASUREMENT NAME USED TO DESCRIBE THE DATA SOURCE.

COLUMN 4. CHANNEL

THIS COLUMN DEFINES THE SDAS CHANNEL ASSIGNED TO EACH MEASUREMENT (2 -48). CHANNEL 1 IS RESERVED FOR AN SDAS INTERNAL CALIBRATION OFFSET MEASUREMENT.

COLUMN 5. ASYN

THIS COLUMN DEFINES EACH MEASUREMENT WHICH IS ASYNCHRONOUSLY SAMPLED AND IS INDICATED BY THE LETTER "A". THESE MEASUREMENTS ARE SAMPLED EACH 32 SECONDS WITH THE AVERAGED VALUE PER 5 MINUTES MAINTAINED FOR TRANSMISSION. SYNCHRONOUSLY SAMPLED MEASUREMENTS ARE READ ONCE PER 5 MINUTES AND ARE IDENTIFIED BY THE "-" SYMBOL.

COLUMN 6. # WIRES

THIS COLUMN DEFINES THE NUMBER OF WIRES PER CHANNEL USED IN THE SDAS. EITHER 3 WIRE OR 2 WIRE CHANNELS ARE AVAILABLE VIA A PRE-DEFINED CONFIGURATION.

THIS COLUMN CONTAINS FOUR DATA SETS AS DEFINED BELOW:

OPERATING RANGE - THE FIRST LINE OF THIS COLUMN DESCRIBES THE OPERATING RANGE OF THE PARAMETER IN ENGINEERING UNITS.

SENSOR OUTPUT RANGE - THE SECOND LINE OF THIS COLUMN DESCRIBES THE OUTPUT RANGE IN VOLTS
OF THE SENSOR.
SDAS GAIN - THE THIRD LINE OF THIS COLUMN DESCRIBES THE SDAS GAIN SELECTED FOR EACH CHANNEL.

ACTUAL OPER RANGE - THE FOURTH LINE OF THIS COLUMN IS APPLICABLE TO ABSOLUTE TEMPERATURES ONLY (AFTER CORRECTION COEFFICIENTS ARE APPLIED.)

COLUMN 8. (MULTIPLE DATA SETS)

THIS COLUMN CONTAINS THREE DATA SETS AS DEFINED BELOW:

MICROBRD TYPE - THE FIRST LINE OF THIS COLUMN DESCRIBES THE TYPE OF MICROBOARD USED FOR SIGNAL CONDITIONING OF THE EMPLOYED SDAS CHANNEL.

MICROBRD P/N - THE SECOND LINE OF THIS COLUMN DESCRIBES THE PART NUMBER OF THE MICROBOARD USED FOR SIGNAL CONDITIONING OF THE EMPLOYED SDAS CHANNEL. A NON-DEFINED MICROBOARD P/N INDICATES THAT THIS CHANNEL SHARES A MICROBOARD WITH ANOTHER CHANNEL WHICH WILL DEFINE THE P/N.

SENSOR EXCIT - THE THIRD LINE OF THIS COLUMN DESCRIBES THE EXCITATION REQUIREMENTS FOR EACH SENSOR, IF REQUIRED.

ŝ

IP7933729

THIS COLUMN CONTAINS THREE DATA SETS AS DEFINED BELOW:

TEMP SERIAL #- THE FIRST LINE OF THIS COLUMN DESCRIBES THE TEMPERATURE PROBE SERIAL NUMBER (IF AVAILABLE).

SCALE FACTOR UNITS - THE SECOND LINE OF THIS COLUMN DESCRIBES THE ENGINEERING UNITS MAINTAINED IN THE CDPS FOR EACH MEASUREMENT. ..

CDPS SCALE FACTOR -- THE THIRD AND FOURTH LINES OF THIS COLUMN DESCRIBE THE NUMERIC SCALE FACTOR(S) USED IN THE CENTRAL DATA PROCESSING SYSTEM (CDPS). TO CONVERT EACH MEASUREMENT TO ENGINEERING UNITS.

COLUMN 10. (MULTIPLE DATA SETS) ...

THIS COLUMN CONTAINS FOUR DATA SETS AS DEFINED BELOW:

SENSOR TYPE - THE FIRST LINE OF THIS COLUMN LISTS THE TYPE (NAME) OF THE EMPLOYED SENSOR.

SENSOR MANUFACT - THE SECOND LINE OF THIS COLUMN LISTS THE SENSOR MANUFACTURER.

SENSOR P/N - THE THIRD LINE OF THIS COLUMN LISTS THE PART NUMBER OF THE SENSOR.

WELL P/M - THE FOURTH LINE OF THIS COLUMN DESCRIBES THE PART NUMBER OF A THERMAL WELL IF REQUIRED FOR THE DEFINED SENSOR.

Ω A THE PROTESTATION PROGRAM AND COMPONENTS LIST:

DECADE 80 HOUSE IP7933729

05/01/78 REV F

COLUMN 11. (MULTIPLE DATA SETS)

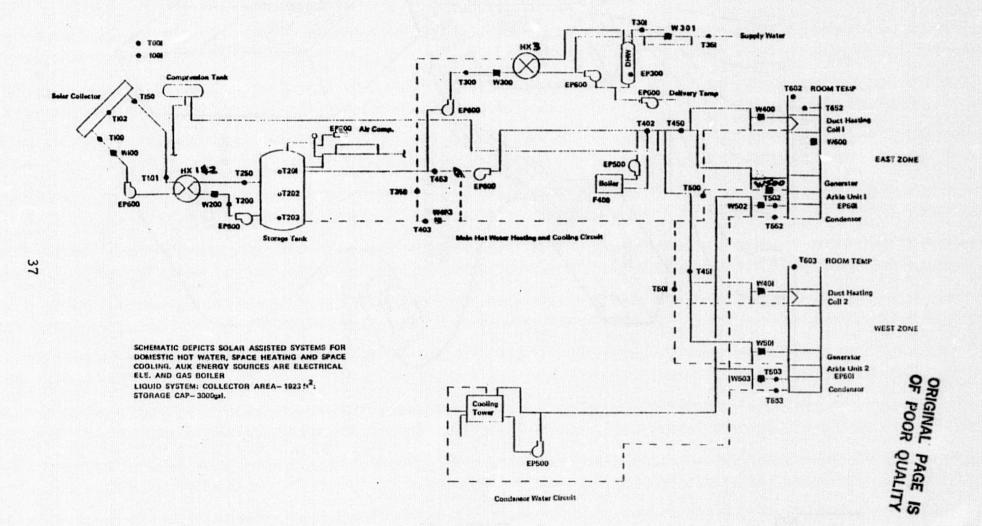
NOTES - THE FIRST LINE OF THIS COLUMN DEFINES ANY INFORMATION REQUIRED TO SUPPORT CLARIFICATION OF THE MEASUREMENT.

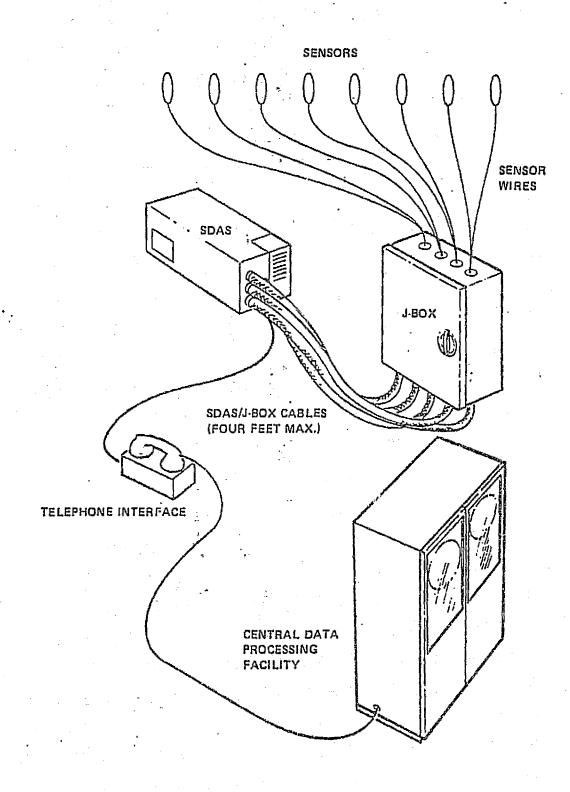
SERIAL NUMBER - THE SECOND LINE OF THIS COLUMN DEFINES AN ITEM UNIQUE SERIAL NUMBER MARKED BY THE MANUFACTURER.

IP7933729

NOTE 1 - DATA NOT CURRENTLY DEFINED.

NOTE 2 -- ENGINEERING UNIT VALUES MUST BE CALCULATED USING COUNTS & SCALE FACTORS.


NOTE 3 - LIQUID FLOW WITHIN ± 5% OF DISPLAYED VALUE.


NOTE 4 - INSULATION WITHIN ± 5 BTU OF DISPLAYED VALUE.

NOTE 5 - POWER MEASUREMENT RANGE VALUES & SCALE FACTORS ARE HALVED DUE TO FOUR TURNS THRU TRANSDUCERS.

NOTE 6 - POWER MEASUREMENT RANGE VALUES & SCALE FACTORS ARE REDUCED DUE TO MULTIPLE TURNS THRU TRANSDUCERS.

NOTE 7 - VALUES APPEAR ON ATTACHED PAGES AT THE REAR OR END OF THESE LISTINGS.

DATA COLLECTION SYSTEM

INSTRUMENTATION COMPONENTS SECTION

,	INSTRUMENTATION	PROGRAM AND COMPONENTS	LIST	DECADE 80 HOUSE	7/28/77
			•	IP 7933729	REV A

EQUIPMENT NAME			PART NUMBER		SERIAL NUMBER
JUNCTION BOX		#1	7933575		036 .
		#2			
CABLES (J-BOX T	O SDAS)	1 4			
NO. T			7933579-1		
NO., 2		m ju :	7933583		
NO. 3			7933579-2	*# **	•
NO. 4		1.	7933579-3		
NO. 5		•	7933578	• •	
SDAS		#1	7932922		028
	•	#2			
				. 	
IBM DRAW	ING NUMBER		7933729	•	

INSTRUMENTATION P	ROGRAM AND	COMPONENTS	LIST	DECADE 80 HOUSE	 4/25/77
	•			TP 7933729	REV

MEASUREMENTS SECTION

PARAMETER		NUMBER
WIND DIRECTION		
ELECTRICAL POWER		4
FLOWRATE (NATURAL GAS)		1
SOLAR FLUX		1
HUMIDITY		
SPARE		(1)
TEMPERATURE	* • •	28
DIFFERENTIAL TEMPERATURE		
FLOWRATE (LIQUID/AIR)		12
WIND SPEED		
TOTAL		46

-	INSTR	UMENTATION PROGRA	M AND CO	OMPONENT?	5 LIST D	ECADE NO HOUSE		9.EV:	05/16/78 PAGE: 23
	•			REPORT	F BY CHAMMEL	ASSIGNMENT			
L	MEAS NUMBER	MEASURENENT NAME	C 4 W 1 R 1 R 1 R 1 R 1 R 1 R 1 R 1 R 1 R 1	OPERATIN SENSOR (SDAS GA) ACYDAL (IG PANGE OUTPUT PANGE IN PEP PANGE	MICROBED TYPE MICROBED P/N SENSOF EXCIT	TEMP SERIAL # SCALF FACTOR UN CPOS SCALE FACT (AO.AI.AZ.AJ)	SENSOR TYPE ITS SENSOR MANUFACT OBS SENSOR P/N NELL P/N	NOTES SEBIAL E
123456	7453 -0027 0202	STORAGE TO LOAD TEMP		9-100	DEGF MY /+242.86	8810GF 7932988	DEGF/81T +3136507E-05 +2017434E-07 +0004707E-09 +0001821E-13	PRT MINCO 553P40736 F203U15	(T0403)
789	EP300-0027	DIN AUX ELECT PONER	03 A 2	0/10 0-50 50	KN MV	STRATGHT 7932985	KW/BIT -0195312E-07	WATT YDER ONIO SEMITRONICS PCS-29.	
10 12345	T350 -0022	DHW/HX-3 STOP STOE RET TMP	04 - 3	0-100 50	DFGF MV /+247.14	8RIDGE 7932988	DEGF/RIT +31 90 960 F= 05 +21 95 754 E= 97 +6004639 F= 09	PRT MINCO \$53P40736 F203U15	(TD300)
15 16 17 18 19 20	FP600-0022	SYSTEM OPER PHR P1-P56P9	05 A 2	0/5 0-100 50	KH KH	STRAIGHT 7932985	±0001761E-13 KW/BIT	WATT XDCP OHIO SEMITRONICS PC5-52	NOTE 5
20 1223456	1351 -0022	OHW MAKEUP	gr. g \$1700000 dr r wheeles	30/230 0-100 50 +31-458	negr HV /+241.72	BR 10GF 7932988	0. -0948828 	PRT MINCO \$53P497736 F203U15	(TD301) O
27 28	1001 -0022	TOTAL SOLAR RADIATION			BTU/FTZ-HP	CAPAC ITOP 7934363	+3145888E-05 +2006045E-07 +0004648E-09 +0021802E-13	PYRONOM FPPLEY PSP	15389F3 O
23 32335	T403 -0022 0802	LOAD TO STORAGE RETURN TEMP		30/230 0-100 50	DEGF MV /+243.83	BRIDGE 7932998	2.8905765 1621 DEGF/RIT +3222644E-05 +2018420F-07 +0004706E-09 ±0001815E-13	PRT HINCO S57040Z36 F203UI5	QUALITY
36 37 38 39 40	E600 -0022	AUX ROILER NAT	09 - 2	0/1000 0-5	FT3 V	STRAIGHT 79329R5 +5 VDG	#000[A]66-13 FT3/B[T 0 40775170E-07	GAS METER AMERICAN METER AL-250 M-NGF	er sommer i men gregor i i i

REV: G

PAGE: 24

REPORT BY CHANNEL ASSIGNMENT

	N	TEAS NUMBER	MEASYREMENT	IA S I	OPERATING SENSOR OL SDAS GAIN ACTUAL O	UTPUT RANGE	MICROBPO MICROBPO ISENSOR EX	TYPE SCALE FACTOR UNITS PYH CPUS SCALE FACTORS CIT (40, A1, A2, A3)	SENSOR TYPE SENSOR MANUFACT SENSOR PZN WELL PZN	NOTES SERIAL #
	123456	T150 -0022 1003	COLL-APRAY OUTLET TEMP	10 - 3	30/450 0-100 50 +32,724	PFGF MV '/ /+465.77	AR IDGE 7932987	DEGF/BIT +3272356F-05 +4055294E-07 +0001604F-09 +9001315E-12	PRT MINCO \$53P40Z36 F203U15	(TD100)
44	7 8 9	EP500-0022	P6,P10,COOLING TOWER FANEPPW	11 A 2	0/3 0-100 50	MA KA	STRAIGHT 7932985	KW/BIT 0 +0029325E-07	WATT XDCR OHIO SEMITRONICS PC5-22	The state of the s
	1123 123 145 16	1202	COLLECTOR/HX-1	12 - 3	30/230 50 50 0.100	MV	BR IDGF 7932988	DEGP/BIT +319988F-05 +1947871E-07 +0004388E-09 +0001609E-13	PRT MINCO \$53P40736 F203U15	
	17 18 19 -	EP601-0022	EASTENEST ARKLA BLOHECTRL PH	13 A Z	0/1.667 0-50 50	KW HV	STPAIGHT 7932985	KW/BIT 0 0032617	WATT XDCR OHIO SEMITRONICS PC5-28	NOTE 6
ĺ	21 22 23 24 25 26	1300 -0022 * 1402	STORAGE WATER TEMP TO HX3	14 - 3	30/230 0-100 50 +33.451 /	DEGF MV /+245.14	BRIDGF 7932588	1493 NEGE/BIT +3345099E-05 +2019327E-07 +0004699E-09 +0001826E-13	PPT 91NCO \$53P40236 F203U15	
	27 28 29 31 32 32	1581 1581	FAST OUCT AIR FLOW RATE	15 - 2	0/1250 0-5 1	FРИ V	STRAIGHT 1932985 115 VAC	FPM/BIT 0. +1442508E-07 +9003687E-07 +0006569E-10	ANEMOMETER SIFRRA 430-2	INDIC STP
1	305 305 305 307 308	1402 -0022*** 1602	ANX ROILER RTA	16 - 3	30/230 0-100 50 +32-000	DFGF HV /+236.03	HRIDGF 793299H	DFGF/81T 431999886-05 +1947871E-07 *9004398F-09 +9001609E-13	PRT MINCO 553P47736 F203U15	

	14314	G 4. MINITED PROPER	The contract of the contract o		ķг	V: G	PAGE:	25
	•		PEPORT BY CHANNS	L ASSIGNMENT				
L N E	MEAS NUMBER	MEASUREMENT NAME	H A WIDPERATING PANGE A S I SENSOP OUTPUT RAM N Y P SDAS GAIN N P ACTUAL OPER RANGE	HICRORRO TYP MICRORRO PYN SENSOP EXCIT	E SCALE FACTOR UNIT	SENSOR TYPE SISENSOR MANUFACT SISENSOR PIN WELL PIN	NOTES SERTAL #	
1 2 3 4	W100 -0022 1759	COLLECTOR FLOW	17 - 2 0/30-61 GPM 0-10 MV	STPATCHT 7932945 +5 VOC	GPM/RIT 0 +3025000F-06 SOCT	HKV-1-1/2JO7	\$/N4283	
5 67 8 9	1802	EAST FAN COLL/	18 - 3 30/230 DEGF 0-100 NV 50 +31.366 /+742.30	BP INGE 7932989	DEGE/BIT +3136665E-05 +2012212E-07 +0004674E-09 +0001823E-13	PRT MINCO 553P40Z36 F203UI5	(TD4501	
11 13 14	W200 -0027	COLLECTOR-HX TO STOR FLU RIE	19 - 2 0/30.53 GPM 0-10 MV	STRAIGHT 7932985 +5 VOC		FLOW METER RAMAPO MKV-1-1/2J07	. S/N4294	
15 16 17 18 19 20	2002 2002	WEST FAN COIL/	20 - 3 30/230 SFGE 0-100 MV 50 +31.863 /+244.10	RP INGE 7932988	DEGF/HIT +3186329E-D5 +2024293E-07 +2004746E-39 +0001816E-13	PPT MINCO \$53P40736 F203U15	{TD451}	ORIGINAL OF POOR
21 22 23 24	9400 -6022 2153	EAST FAN COIL HIR FLOW RATE	21 - 2 0/6.06 GPM 0-10 HV	STRAIGHT 7932985 	GPM/RIT 0. +6878149E-07 SOCT	FLOW METER PAMAPO MKV-1-107	\$/N4233_	PAGE
25 26 27 28 29 30	1552 <u>-</u> 0022 2202	ENTERPENPEND	22 - 3 30/230 BEGF 0-100 MV 50 +32.452 /+243.54	88 10GF 793299	#3245176E-35 +324513727E-07 +2013727E-07 +3004676E-09 +9001803E-13	PRT HINCO 553P40736 F203U15		A 22

N/A N/A

+3222617E-05 +2016094F-07 +0004693E-09 +0001407F-13

SHORT 7932938

AR IDGF 7932988

N/A N/A

(TD503)

INSTRUMENTATION PROGRAM AND COMPENERTS LIST --- DECADE BO HOUSE

30/230 0-130 50

DFGF MV

+32.226 7+243.57

T553 :-00 22

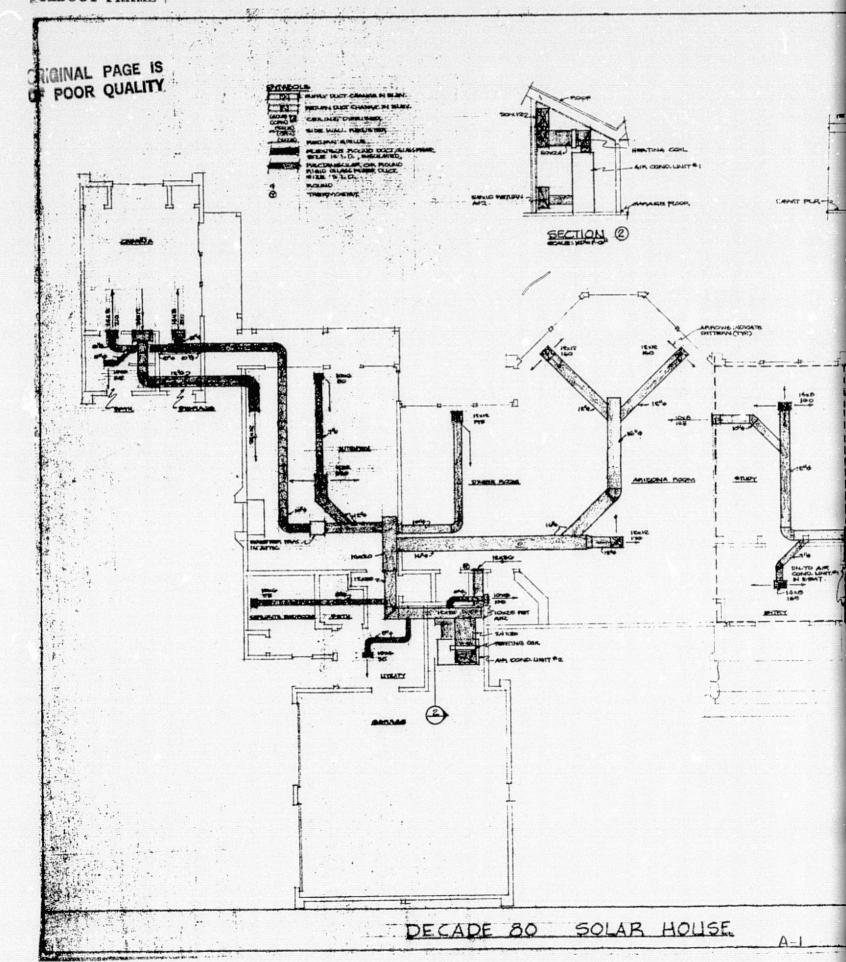
2402

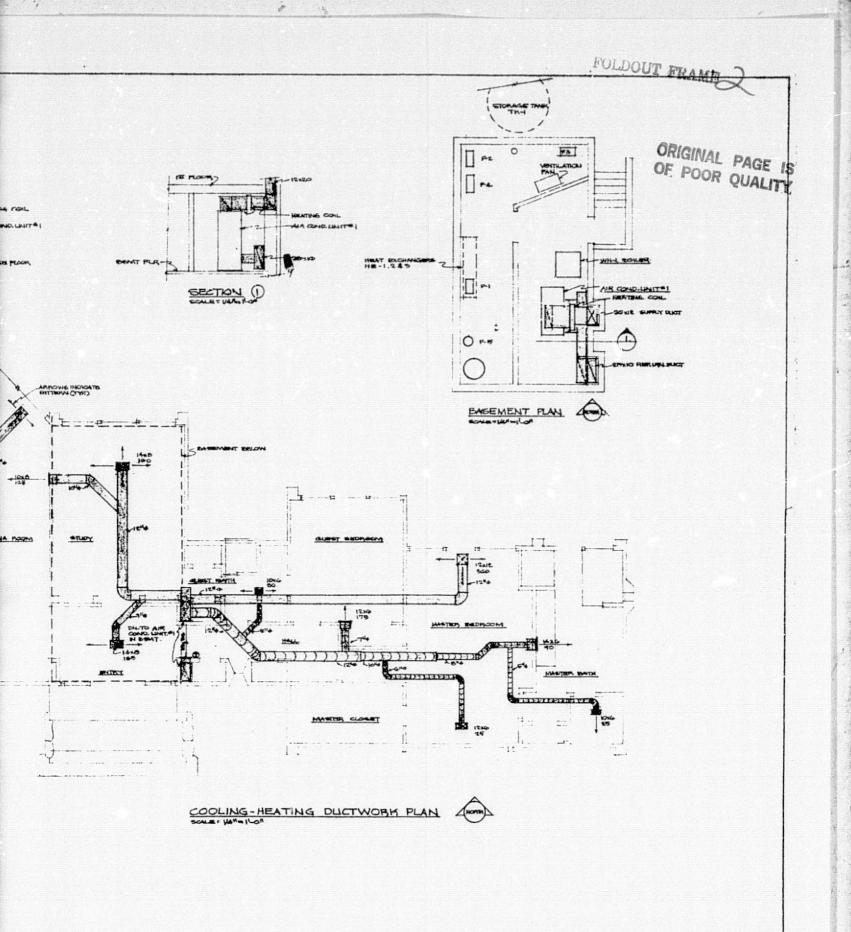
05/16/78

	INSTR	UMENTATION PROGRA	AH AND C	OMPONENTS	LIST	DECADE 80 HOUS	E 197933729 RE	Y:	05/16/7 PAGE1	9
	•			REPORT	BY CHANNE	L ASSIGNMENT				
HZ I	MEAS NUMBER	ME4 SUREMENT	H AW A SI N Y R	OPERATION (SENSOR (SDAS GA)	IG RANGE DUTPUT RANG IN DER RANGE	HICROBRO TYPE HICROBRO PAN ISENSOR EXCIT	TEMP SEPIAL * EISCALE FACTOR LEPOS SCALE FACTOR LEPOS SCALE FACTOR	SENSOR TYPE SISENSOR HANDFACT SENSOR PAN WELL PAN	NOTES SERIAL #	
1 2 3 4	W401 -0022 2553	WEST FAN COIL WIR FLOW RATE	25 - 2	0/6.98 0-10 50	GPH HV	578A16HY 7932995 65 VOC	<u>6</u> 04/017 0 6897913E-07 SACT	FLOW METER PAMAPO HKV-1-J07	S/N4234	
5 6 7 8 9	T652 -0022 2601	EAST DUCT H C AIR DUTL TEMP	26 = 3	3-100	DEGF NV /÷165.85	88 IDGE 7932 990	DEGF/817 +3268000F-05 +1278545E-07 +0002217E-09 +0005692E-14	PRT H1 NCO \$53P 95Z36 F1 32	LTDAOD1	
112314	T102 -0027	COLLECT SURFACE	27 - 2	<u> 7-100 - </u>	DEGF MV /+449.55	BR IDGE 7932987	DEGE/BIT +3199876E-05 +3915971E-07 +0001499E-08 +0001179E-12	PRT HINCO S344	PINS 487	
17 18 20 21 22	T001 -0022	OUTDOOR DRY SULB TEMP	28 - 3	-20/120 0-100 50 -19.027	DEGF MV /+119+85	BR IDGE 7932986	DFGF/BIT 1902760E-05 +1333191E-07 +0002326E-09 +0006040E-14	PRT MINCO \$53P40Z36		
23 25 25 26	W500 -0022 2955	EAST ARKLA GEN WIR FLOW PATE	53 = 5	0/12.09 0-10 50	GPM MV	STRAIGHT 7932985 +5 VOC	GPM/HIT 0: +1194780E-06 SQCT	FLOW METER RAMAPO MKV-1-JO7	S/N4235	
27 28 29 30 31 32	3002 3002	CCLLECTOR INLET	30 - 3	30/230 0-100 50 +31.637	DEGF MV /+243.14	RR IDGE 79329n#	DEGF/BIT +3163712E-05 +2017480E-07 +0004705E-09 +0001811E-13	PRT MINCO \$57P40736 F203UL5		Prophago and the state and
3455 355 365	w301 -0022 NOTE 2	TO LOAD	31 - 5	0/120 0-5 1	GAL V	STRAIGHT 7932985 115 VAC	GAL/BIT ,0977517	PLOWMETER HERSEY AMERICAN 448-3/4-3/4H		
389012 442	T632 -0022 3201	FAST ZONE LIVE SPACE TEMP	32 - 3	30/160 0-100 50 +32.044	DEGF MV 7+164•78	BRIDGE 7932990	DEGF/81T +3204475E-05 +1274464E-07 +0002204E-09 +0005588E-14	PRT MINCO S53P42Z36		1

EY: G

PAGF2 . . 27 ...

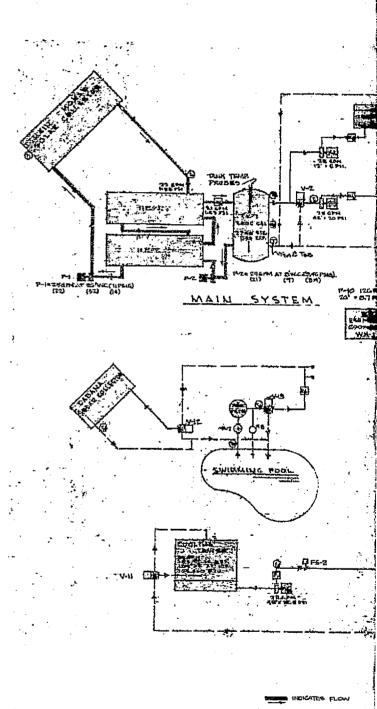

REPORT BY CHANNEL ASSIGNMENT


L N E	MEAS NUMBER	MEA SUREMENT NAME	H A H A S I N Y R	OPERATING SENSOR OF SOAS GAIN ACTUAL OF	RANGE UTPUT RANGE PER RANGE	MICROBED TYPE MICROBED P/N SENSOR FXCIT	TEMP SEPIAL # (SCALE FACTOR UNIT) (CPDS SCALE FACTOR) (TAO, 41, 42, 43)	SENSOR TYPE SENSOR MANUFACT SENSOR P/N WELL P/N	NOTES SERIAL #	
1 2 3 4	N4 03 -00 22 NOTE 2	STORAGE TO H/C SYSTEM FLOW	33 - 2		GPM BV	STPAIGHT 7932985 +5 VDC	_GPM/51T 0 +2294691F-06 SOCT	FLOW METER PAMAPH MKV-1-1/2J07	S/N4285	· · · · · · · · · · · · · · · · · · ·
5 7 8 9 10	7603 <u>-0022</u> 3401	WEST ZONE LIVE SPACE TEMP	34 - 3	30/160 0-100 50 +31.774	0EGF MV /+160.92	88 IDGE 7932990	DEGE/81T +3177459E-05 +1240522E-07 +0005081E-14	PRT MINCO S53P40736		
11 12 13 14	W300 -0022	STORAGE TO OHW	35 - 2	0/24.44 0-10 50	GPM MV	STRAIGHT 7937985 +5 VOC	GPM/BIT 0. +2415256E-06 SOCT	FLOW METER RAMAPO MKV-1-J07	S/N4231	
15 16 17 18 19 20	3602 3602	STOPAGE TO HX-2 TEMP	36 - 3	30/230 0-100 50 +32.226	nege MV /+239.21	BR IDGE 7932988	1424 DFGF/BIT +3222662E-05 +1975429E-07 +0004505E-09 -0001733E-13	PRT MINCO 557049236 F203UI5		유유
21 22 23 24	W501 -00 <i>22</i> 3755	WEST APKLA GEN WTR FLOW RATE	37 - 2	0/11.78 0-10 50	GP4 MV	STRAIGHT 7932985 +5 VDC	GPM/BIT 0: +1164145E-06 SOCT	FLOW METER PAMAPO MKV-1-JO7	.\$/N4236	RIGINAL F POOR
25 26 27 28 29 30	T201 -0022 3802	STORAGE TOPNK	38 - 3	30/230 0-100 50 +31.954	0EGF MV /+237.39	BR IDGE 7932988	DEGF/BIT +3195472F-05 +1961132E-07 +0004433E-09 +0001656E-13	PRT MINCO \$53P190Z36 F203IN54		PAGE
31 32 33 34	W502 -0022	EAST ARKLA COND FLOW RATE	39 - 2	0/11.76 9-10 50	GPH MV	STRAIGHT 7932985 +5 VDC	GPM/BIT 0. +1162168E-06 SOCT	FLOW METER OGAMAN MKV-1-JO7	S/N4237	Z 22
367 37 39 40	1202 -0027 4002	STOPAGE TANK TEMP - MIDDLE	40 - 3	30/230 0-100 50 +31,818	DEGE MV / +237, 96	BP IDGF 7932988	DEGF/RIT +3191883E-05 +1967637F-07 +0064470E-09 +0061667F-13	PRT MINCO 553P190Z36 F203U154		

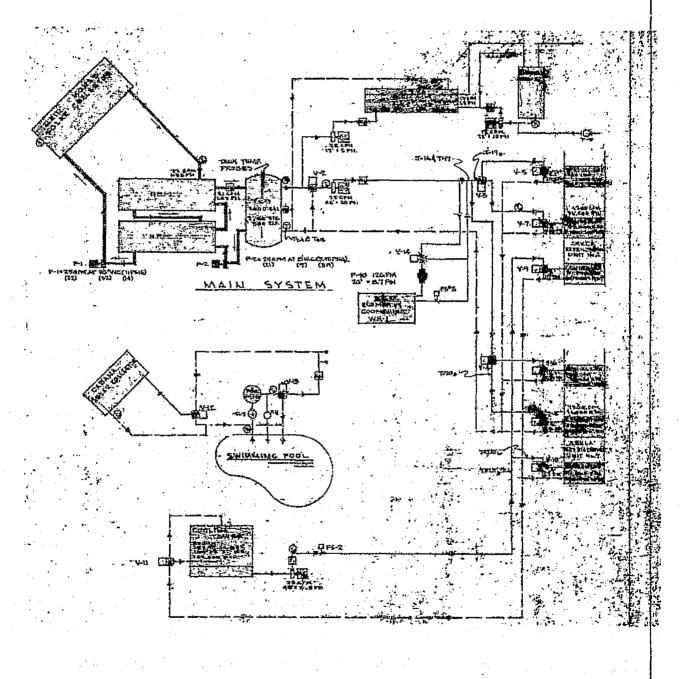
1.		INSTR	UHENTATION PROGRA	M AND CO) MPGNENTS	S LIST I	DECADE BO HOUSE	IP7933729	REV: G	05/16/78 PAGE: 28
		•			REPORT	RY CHANNEL	ASSIGNMENT			
	74 T	MEAS NUMBER	MEASUREMENT NAME	A S I	OPERATIN SENSOR C SOAS GAI ACTUAL C	NG RANGE NUTPUT RANGE IN NER PANGE	MICROBRD TYPE MICRORD PYN SENSOP EXCIT	TEMP SFRIAL # SCALE FACTOR UI CPDS SCALE FAC TAO, 41, 42, 43)	SENSOR TYPE NITS SENSOR MANUFACT TOPS SENSOP P/N WELL P/N	NOTES SERIAL #
	1 2 3 4	₩503 ~0022 4155	HEST ARKLA COND	41 - 2	0/11.94 0-10 50	GPM	STRAIGHT 7932985 +5 VDC	GPM/01T 0 +1174028E-06 S	FLOW METER RAMAPO 4KV-1-J07	\$/N4238
48	5 6 7 8 9	T203 -0022 4202	STORAGE TANK TEMP - BOTTOM	42 - 3	30/230 0-100 50 +31.728	DEGE MV /+237.90	BR I DGE 7932988	DEGE/RIT +3172820E-05 +1968649E-07 +0004474E-09 -0001694E-13	PRT 0 NINCO S53P180Z36 F203U154	
,	11 12 13 14 15	T250 -0022 4302	STOR INLET TEMP	43 3	0-100 50	0FGF HV /+239.15	88 IDGF 7932988	DEGF/BIT +3272644F-05 +1974918E-07 +0004501E-09 +0001737E-13	PRT MINCO SS7P40736 F203U15	[TD200]
	17 18 19 20 21 22	T301 -0022	DELIVERED DHW TEMP	44 - 3	0-100 50	DEGF MV /+240.27	BR IDGE 7932988	DEGF/817 +3240980E-05 +1943034E-07 +0004551E-09 +0001725F-13	PRT MINCO S57P40E36 F203UI5	
	23 24 25 26 27 28	7450 -0022 4502	GEN INLET THP	45 - 3	30/230 0-100 50 +32-226	DEGF MV /+238.73	BRTDGE 7932988	1437 DEGF/RIT +3222616E-05 +1970985E-07 +0004487E-09 +0001675E-13	PRT MINCO S57P40Z36 F203U15	
	29 30 31 32 33	1451 -0022 4602	WEST FAN COIL/ GEN INCET TMP/		0-100 ····	nege MV /+238.71	BRIDGE 7932988	1429 DFGF/BIT +3222600E-05 +1970860E-07 +D004484E-09 +0001685E-13	PRT MINCO S57P40Z36 F203U15	
	35 36 37 38 39 40	1502 -0022 4701	FAST APKLA COND INLET TEMP	agrama managan s	30/160 0-100 50 +32.453	DEGE 14V /+162.57	BP I DGE 7932990	DEGF/R17 +3245323F-05 +1249696F-07 +0002123F-09 +0005057E-14	PPT %INCO \$57P40Z36 F203U15	e de la companya del companya de la companya del companya de la co

INSTR	UMENTATION PROGRAM	AND COMPONENTS LIST	- DECADE BO HOUSE IP79337	29 REV: G	05/16/78 PAGE: 29	} <u></u>
•	· · · · · · · · · · · · · · · · · · ·	REPORT BY CHANN	IFL ASSIGNMENT			
I MEAS NUMBER	MEASUREMENT MAME	N F ACTUAL OPER RANGE	SENSOR EXCIT (40,41,4	•	NOTES SERIAL #	
1 1503 -0022 2 4801 5 6	WEST ARKLA COND INLET TEMP	49 - 3 30/160 DEGF 0-120 MY 50 +32.270 /+161.68	8PIDGF 7932990	E-05 \$57940736 E-07 F203U15 E-09		
				e de la companya del companya de la companya del companya de la co	en a company of the second	
					4	유동
The second of th						E POOR
				And the second s		ਹ ।
		·		. The second	e komo m ana dia ne di degli a cana di esta con alla con con	<u>.</u>

.



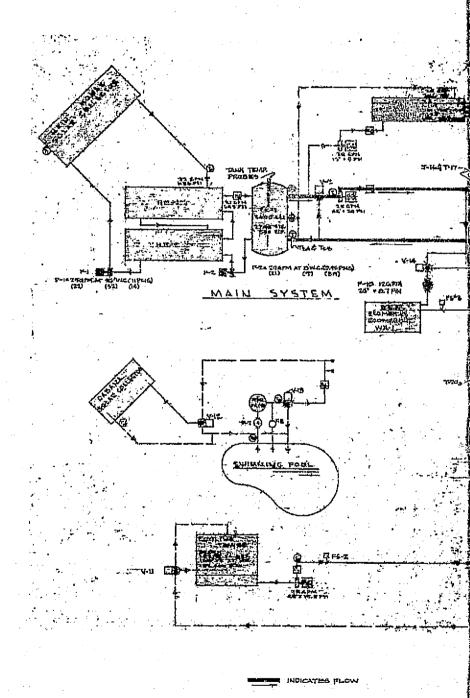
JAL 24, 1977


AIR DISTRIBUTION SYSTEMS

FOLDOUT FRAMP

ORIGINAL PAGE IS OF POOR QUALITY

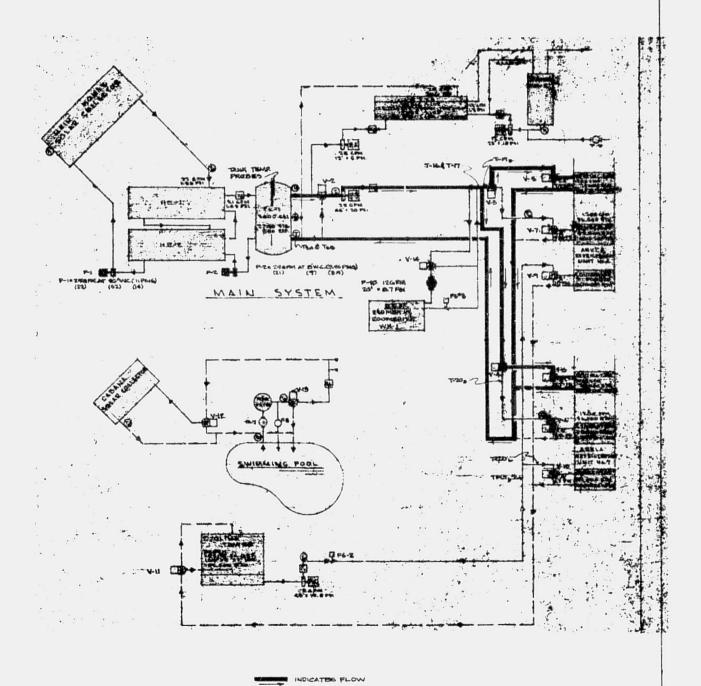
ORIGINAL PAGE IS OF POOR QUALITY


MINORATES FLOW

JAN.12,1977

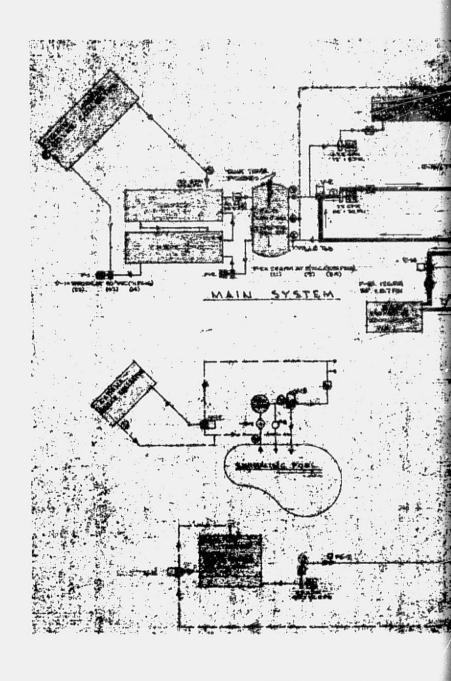
HOUSE

TUCSON ARIZON


HEAT TRANSFER FLUID FLOW ENERGY COLLECTION

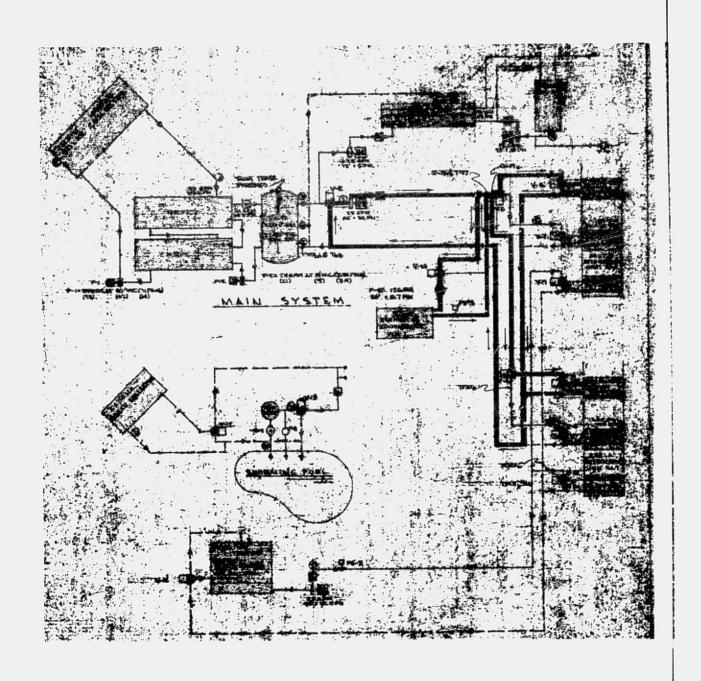
DECADE 80 SOLAR HOUSE

ICSOH . ARIZONA


HEAT TE

JAN. 12, 1977

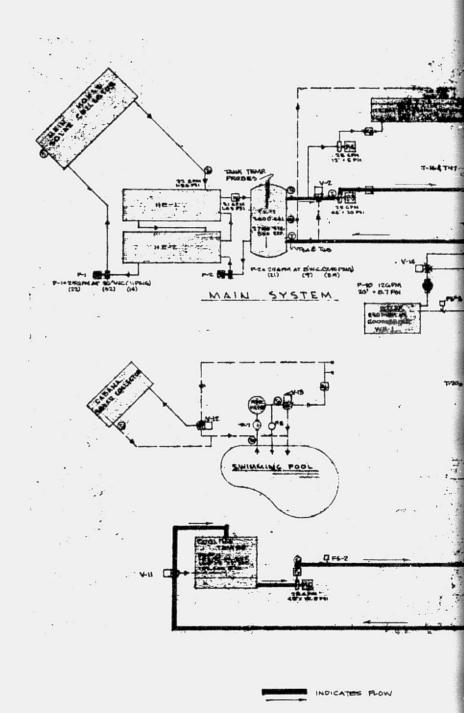
TUCSOH , ARIZONA

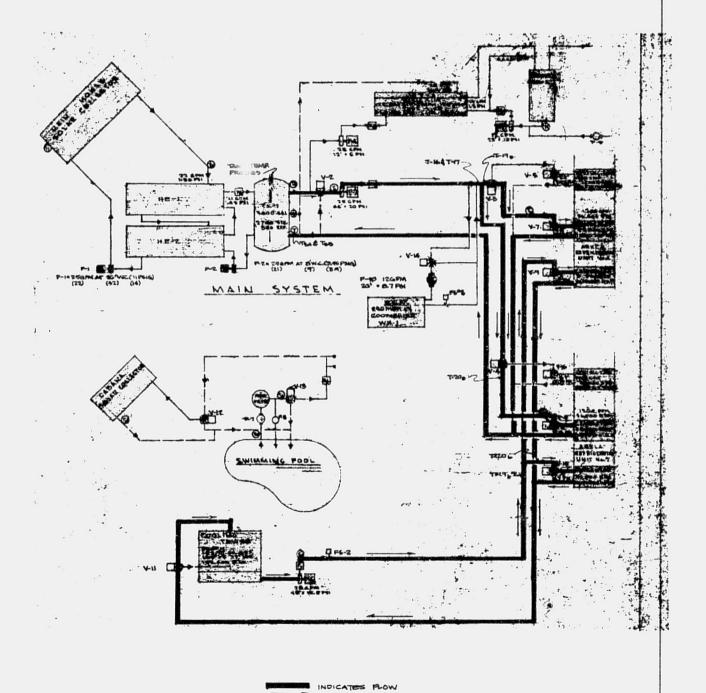

HEAT TRANSFER FLUID FLOW SPACE HEATING FROM STORAGE

DECADE 80 SOLAR HOUSE

TUCSON , ARIZONA

HEA"

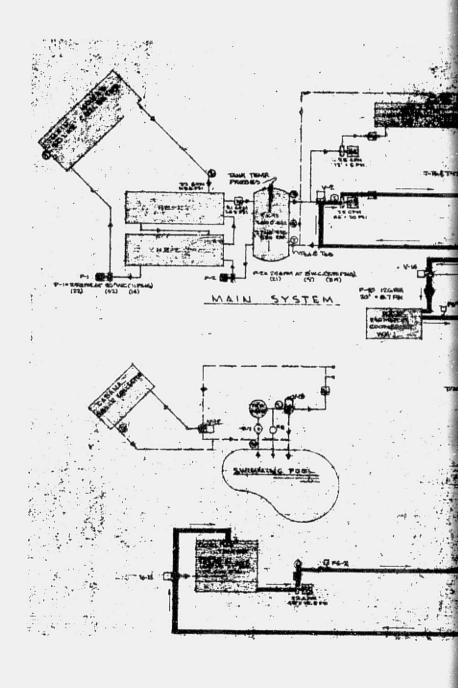



INDICATES FLOW

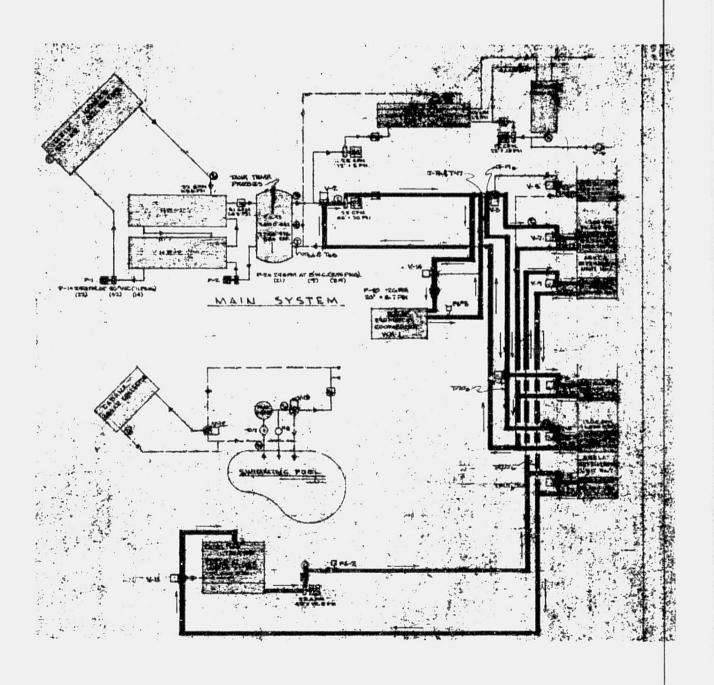
JAL 12, 1977

HEAT TRANSFER FLUID FLOW SPACE HEATING FROM ALXILIARY FOLDOUT FRAME

ORIGINAL PAGE IS

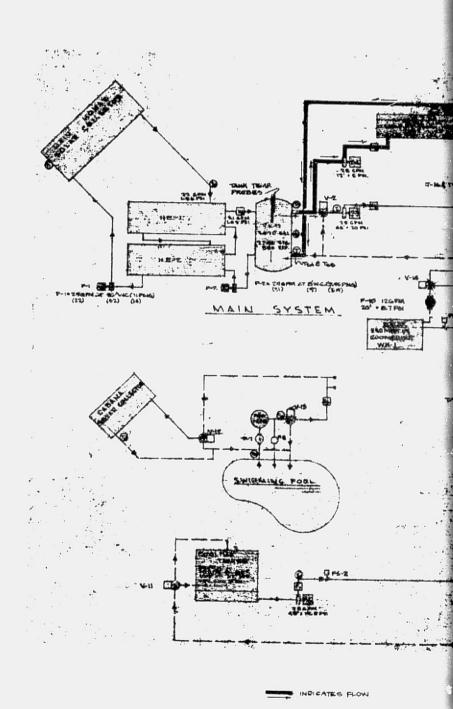


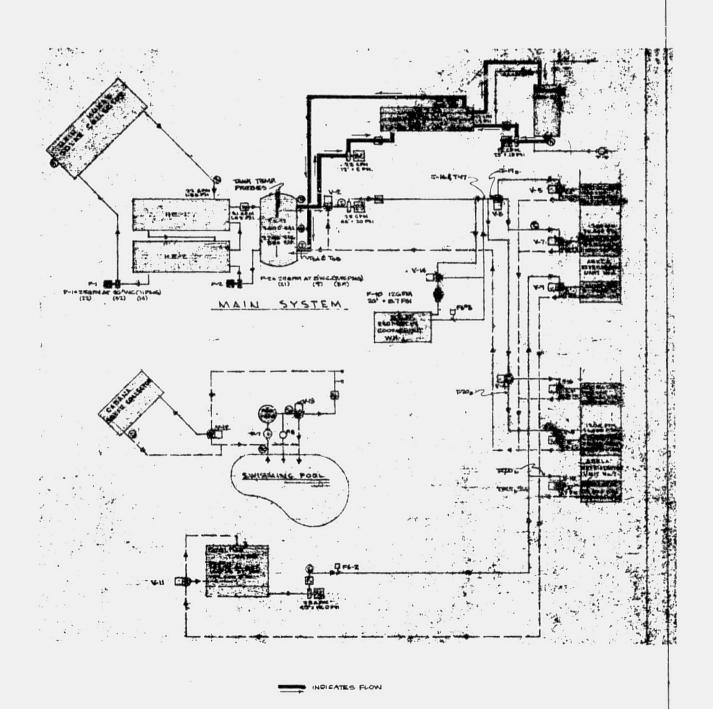
JAN 12. 1977


HEAT TRANSFER FLUID FLOW COOLING FROM STORAGE

ORIGINAL PAGE IS

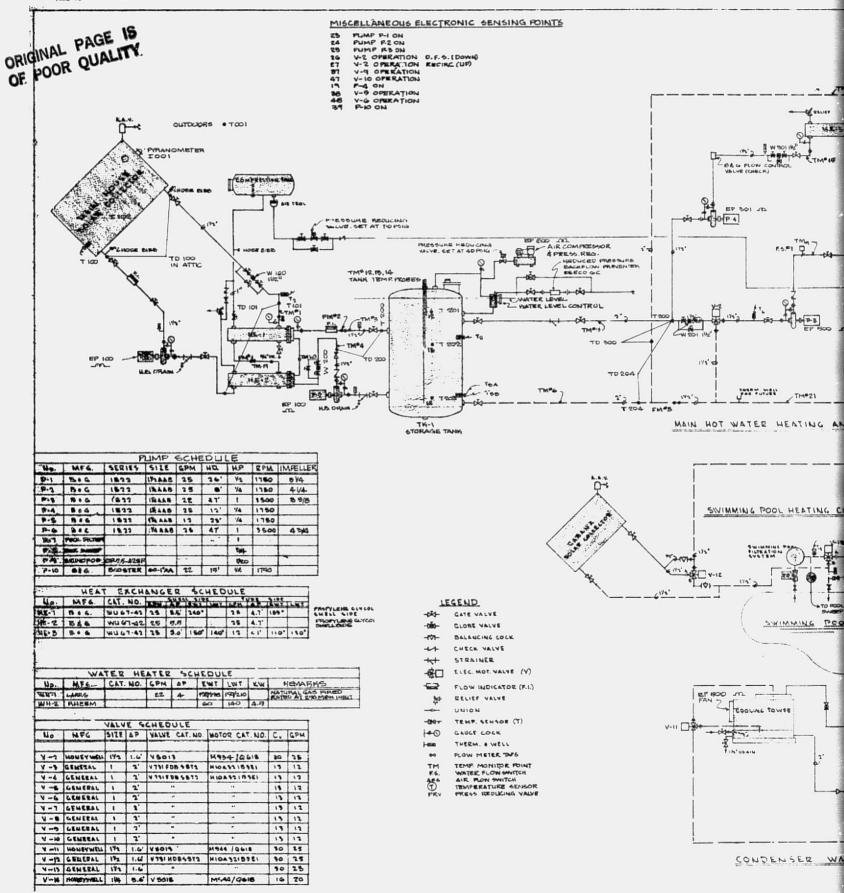
ORIGINAL PAGE IS

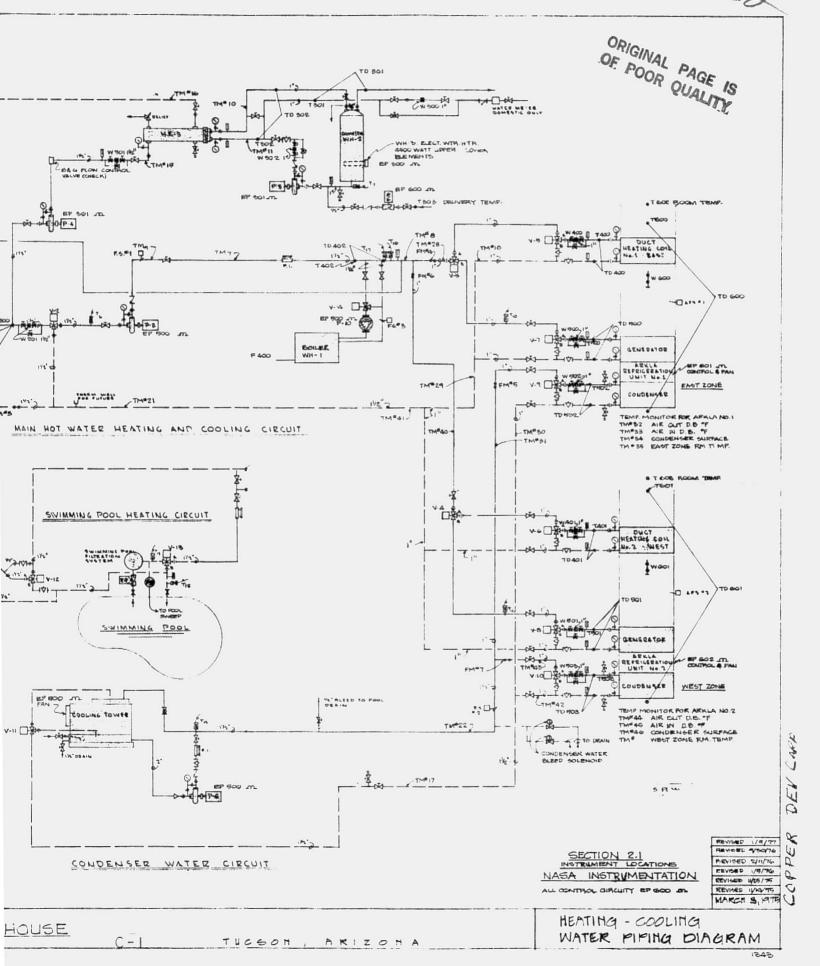

FOLDOUT FRAME 2



INDICATES PLOW

JAN-12, 1977


HEAT TRANSFER FLUID FLOW COOLING FROM AUXILIARY



JAN. 12, 1977

HEAT TRANSFER FLUID FLOW DOMESTIC WATER HEATING

DECADE 80 SOLAR HOUSE

JE 36 ...