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FOREWORD

This report documents the results of work under Contract

5PL 955050 to fabricate and deliver to the Jet Propulsion Lab-

oratory (3"PL) four traction elements for JPL's Mars Rover

i demonstration model utilizing Lockheed's Loopwheel concept.

The 3"PL Technical Manager was Dr. G. Paine.

The work was performed by personnel of Lockheed MissLles

& Space Company's Huntsville Research & Engineering Center in

the Loopwheel Program Office managed by Mr B. Hobson Shirley.

Dr. Wol/gang Trautwein was the Project Manager.
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Section 1 [

INTRODUCTION AND SUMMARY [!
|
I,

Lockheed Missiles & Space Company's I-luntsville Research & Engi- I

neering Center has for the last eight years developed the Loopwheel (or

Elastic Loop) mobility concept, which appears to be uniquely qualliied to (
!,

provide a high degree of mobility at low weight and stowage requirements I"
for the next Mars mission now in the early planning stage, ft

The development of the I,oopwheel mobility concept was initiated at

Lockheed=Huntsville in 1969 as a Company-funded project and has received

continued Company support to this date. A first generation test unit was

completed in 1970 under Lockheed's Independent Development Program.

Tests of a second generation Loopwheel were conducted for NASA by the _1i

U. S. Army Engineer Waterways Experiment Station (WES) in Vicksburg, i_

Mississippi. These tests have shown that the Loopwheel provides an 85 to !

100% improvement in soft soil traction over the wheeled Lunar Roving Ve.- )'I
hicle at lower power requirements. _:

i,

The objective of this study effort was to provide the mobility system 1_

for ffPL's Mars Rover demonstration model, i,

Loopwheel traction elements compatible with sterilization and Mars r

surface environmental constraints were designed under Contract JPL 954795 if

and described in Ref. 1. They are compatible with the rover mass, range and I

stowage requirements of JPL's point design Mars Rover (Ref. 2). 1
I

In order to save cost the Loopwheel suspensions for the demonstration I

model were made of S-glass/epoxy instead of titanium alloy specified for t,

flight units. One of the four Loopwheel suspensions designed, fabricated, ilitested and delivered to ffPL under this contract is shown in Figs. la and lb.
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Fig. la - LoopwheelSuspension of 1.04 m (41 in.) Length, 12 Vdc Electrical
Drive System and 71Z N (160 lb) Load Capability Built for JPL
Mars Rover Demonstration Model
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Fig. lb - Front View of Loopwheel Suspension
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The load carrying fiberglass loop core is covered by a rubber tread on the

outside. Reinforced rubber gear belts bonded along the inside edges provide

positive engagement and transmission of drive torques.

A 12 Vdc drive motor with a 167:1 gear head is installed in the payload

section of the hull. A chain drive transmits the motor power to the rear

sprocket, whereas future flight units would be directly driven by brushless

hub motors within each sprocket, leaving the entire hull volume available for

payload.

The complete four-Loopwheel mobility system is shown in Fig. 2 in-

stalled in the JPL Mars Rover Demonstration Model with double-Ackerman

steering and independent four-leg height control.

The pitch articulation of each Loopwheel within its fork is demonstrated

in Fig. 3, where a 30 cm (12 in.) stepup and stepdown obstacle is negoti&tcd hy

thc two right-hand Loopwhecls. The rover chassis is held in a horizontalatti-

tude by the height control system incorporated into the JPL chassis design.

The suspension system design and analysis is described in Section 2.

The operational characteristics as demonstrated and evaluated during the

shakedown and acceptance tests included:

• 3Z deg slope climbing on clay

• 56 cm (3)- in.) step obstacle negotiation with all four Loopwheels ]
(two at a time, Fig. 4) ]

• Tractive force per Loopwheel equal to the Loopwheel's vertical
load of 712- N (160 lb)

• Scuff steering on hard and soft ground, and

• Removal of rocks from inside the Loopwheel's envelope.

4
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roT: " Fig. 4 - Climbing of 56 cm

Uk_._ . __=_, " __' h ';'_=_ During Shakedown
_ . v Tests
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Section _-

LOOPWHEEL SUSPENSION ANALYSIS AND DESIGN

Z.I LOOPWHEEL CONFIGURAT:ON

The major Loopwheel dimensions for a Mars roving vehicle were estab-

lished and documented in Ref. I by parametric studies and finite element struc-

tural analysis computer runs. A titanium alloy (Ti=5 A!-2.5 Sn) was determined

to best withstand the high and low temperature extremes of sterilizatic. _, and

Martian night and would safely withstand a sufficient number of stress cycles

for a 500 km (310 mi) range. ,'

In order to save cost fiberglass loop cores were substituted for titanium

for the present demonstration model for which a d,*sign ILfe of lO,000 load cycles

or 12 km (7.5 mi) range was assumed at temperatures between 40 and It0 F.

The selected coniiguration is shown in Fig. 5. The major dimensions

were adapted from the rover point design of Refs. 1 and Z. However, the drive

motor is located in the payload bay of the hull chain-driving the rear sprocket

whereas hub motors in both sprockets were selected for the flight units. De-

tails of the Loopwheel design are shown in Fig. 6. The core material, S-glass

reinforced epoxy, is being used by Lockheed for Loopwheels to be installed in

combat vehicle prototypes.

Using the notations of Fig. 7, maximum bending stresses in the loop core

can be estimated based on the peak strain at the minimum bend radius:

t 1
:

0

where

R = 15 in.
o

R = 3.98 in. (radius of drive sprocket : rn,_nimum radius)

t = 0.1ZZ in.

8
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r O.I_-Z \ '
' Thickness \ i

Uniroyal HTD "". [ ' --\ I [ "Gear Belt _\_j t

8 mm Pitch _.,.._,. [ \ • 'Z.." :

!

0.044 Natural /1 ' "_Rubber Sheet

_,.1............ 7.88 -_:-] _ Rubber
! I

Grousers

Note: Dimensions tn inches. :

Fig. 6 - Loop Core Details
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, 0.12.2

Ro _ t

a. Unloaded b. Under Nominal Design

Load (160 lb)

Fig. 7 - Loopwheel with Tread in Unloaded and Loaded Configuration

The selected fiber orientation results in a modulus in flexure

E = 4.7 x 106 psi

which leads to cyclic bending stresses

a = (E

tE 1 I
- z

o

= 52,922 psi

The stress cycles are approximately symmetric in tension and com-

pression. Therefore, theS-N curves for zero mean testing of S-glass in

11
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Fig.8 apply. The mean fatigue stress for a 50 percent probability of achiev-

ing 104 cycles is 75,000 psi whereas the 3Oprobab[lity or 99.87 percent life

expectancy at 104 cycles for this composite material is 57,000 psi. The pre-

dicted cyclic stresses of 52,922 psi therefore are 7 percent below the 30

fatigue limit. These calculations are based on conservative worst case as-

: sumptions and are considered acceptable for an experimental demonstration

model.

The outer loop surface is protected from scratches by a 0.044 in. sheet

of rubber bonded to the fiberglass and wrapped around the edges. Rubber

tread lugs are bonded in a 4-in. pitch chevron pattern to the outer rubber

sheet for improved traction. The lug bond can be strengthened by adding i

1/8 inch rivets with steel washers at each end through the lugs and fiberglass

core at two places per lug, approximately 1.0 inch from the inner and outer

lug edges. An analysis of the fatigue life reduction of the fiberglass core

because of the addition of the holes gives a life expectancy of 6.4 x 103 cycles,

approximately 35% less than that of the unperforated loop.

2.2 HULL AND FORK DESIGN

The riveted aluminum alloy hull supports load rollers, swing arms and

drive sprockets and transmits all loads from the Loopwheel to the rover

chassis via a pivoting fork (Fig. 9). The structural design was based on the

following load assumptions per Loopwheeh

Maximum Vertical Load: 330 lb

Maximum Side Load: Z90 lb

A 0.063 in. thickness of 2024-T3 aluminum alloy was found to provide suffi-

cient stiffness for the box section of the hull. A structural analysis was per-

formed to determine stresses and maximum deflections of the forks, also

12
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t = 13.75

145 ib

145 lb
0.125 x 5 x 5

6061-T6 63

0.032 Note: Din_ensions in inches.

0.063

6.7 Section

X-X

Fig.9 - Fork Layout
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,, based on the 0.063 in. thick aluminum alloy. The moment of inertia in the

critical section x-x was calculated to be

I = 0.2105 in 4
XX

which results in a deflection under side load P = 145 lb of

Z p_3
6 - 3 El - 0.119 in.

and maximum stresses

a = _ = 145 x 13.75 x 0.74Z
xx I 0.ZI05

XX

= 7,030 psi

These calculations were based on conservative, worst case assumptions and

are considered to be acceptable.

Z.3 SUSPENSION COMPONENTS

Bearing selection for the load rollers was based on a maximum radial

load of 330/4 = 82.5 lb since there are four bearings per Loopwheel. The

ball bearing size (New Hampshire SR6-5 PPD) is rated for 203 ib radial load I

and 1000 hr life at 100 rpm. Although over designed with respect to load and [
I

speed capability this size was selected because it could be readily integrated 1

into the axle and housing design.
t
t

The load roller axle shown in Drawing R81101 was analyzed for maxi-

mum bending stresses. The axial moment of [ntertia was calculated to be

, I..o
= 0.000853 in4.

i

15 !
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Tl,e bearing load acts on a moment arm 0.375 in.long. This results in a

maximum bending stress in the axle of

85 x 0.375 x 0.4375
cr = = 16 349 psia 0.000853 " '

For the selected aluminum alloy Z024-T3 with ultimate tensile strength of

64,000 psi there is an adequate margin of safety:

64,000 1 = 7-.9 .
M.S. = 1--6-,349

The swing arms were also analyzed for lateral deflection due to maxi-

mum side loads and for associated bending stresses. Assuming an average

load carrying wid.fla of 2.0 in. for each 0.25 in. thick swing arm. a maximum

lateral deflection between sprocket and swing arm pivot point of 6 = 0.033 in.

was calculated with associated bending stresses under 10,000 psi. Deflection

and stress levels were acceptable.

2.4 DRIVE SYSTEM

The primary requirement to be met by the drive system was a 160 lb

tractive force developed at the Loopwheel/ground interface without stall and

a no-load forward speed in the order of 2.7 in./sec (250 m/hr) or better with

12 Vdc input power.

An off-the-she_ gear motor, Von Weise Model VW33-A IB2, was found

which meets these requirements. Its major performance characteristics are

given in Fig. 10. The no-load motor speed of 2350 rpm results in 2350/167 _-

14.07 rpmat the gear head. A further gear reduction in the chain drive

r7 = 2.045:1
c

reduces this speed to 6.88 rpm at the drive sprocket or

V° = /..86 in./sec (262 m/hr) .

16
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The B°O,motor is designed principally, for -/f'_A-_F-'_/-/;''_::_'--/ / "° F'_I7_l"-'-_)r' ----A- _.alObareommutator, ballorsh,avebea,'h,gs ___-____"and int(,rnal or external I)nL4w_. _"x _

VW VOLT ...... STACK- NO LOAD FULL LOAD ' " T()RQ-UE" "H.P. DUTY
NUMBER DC INCHES SPEED AMPS SPEED AMPS IN, OZ,

' AA',,_ 12 1/10 cont 2 6100 .9 5000 ' 9.2 20

BB2 12 1/6 Int. q 2 6300 1.3 5000 16 33 •
AC"'-B2-- 12 1720 " Cont. 'j 3/4 " 5800 .4 5000 5.1 10

ADB2 ._" 12 -" 1/12 InL ' 3i4 _6()00 .55 5000 7.4 .. 17
AEB2 12 1/ 10 Cont. 2 4000 .gb .3300 10 33
AFB2" 12 1/6 -" Int. 2 4200 1,4 3300 '" 16.5 ' 48

- AG82 12 1/20 Cont. "' 3/;I 380"0" ,5 3300 5 15
AHR2 12 1/ 12 Int. 314 3950 .6 3300 7 30

" AIB2 J 12 1/10 Conl, 2 -- 2350 1 165U g.8 57 'AJB2' JI2 116 .... Ini. '_-- - 2 2450 1.35 1650 16:6 g5

AKB2 12 1/_0 Conl, 314 2400 .45 1650 4.7 30 ;
ALB2 12 ;/12 InL 314 2500 .6 1650 ;'.3 47

Fig. 10 - Drive Motor with 167:1 Worm Gear Reduction. ModelVW33-A1BZ
Manufactured by Von Weise Gear Company, St. Louis, Mo.

17
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During acceptance tests performed upon motor delivery the torque/

speed/current data of Table 1 were recorded with 12 Vdc input power. The

bench-mounted gear motors were loaded by well defined torques applied by

Table I

DRIVE MOTOR ACCEPTANCE BENCH TEST DATA

Motor I Gear Output Torque Tractive Force Rover Speed
No. (amp) Speed (in./Ib) at Loop (Ln./sec)

(rpm) (Ib)

I 6.4 9.83 Z60 133 Z.38

I 8.2 9.Z3 313 161 2-.24

Z 6.8 9.37 260 133 2.Z7

2 8.8 8.8Z 349 179 Z.13

3 6.7 9.Z3 260 133 2.2-4

3 8.9 8.57 349 179 2.06

4 6.9 9.23 260 133 2,24

4 9.Z 8.57 349 179 2.06

a pulley/cable/weight arrangement. In view of the short operating time of

the tests their performance was sufficiently unLform for the application. The

tested torque levels were found to provide the required tractive force at

acceptable speed and current values.

The chain drive from gear motor to drive sprocket must safely transmit

the maximum tractive force at the Loopwheel multiplied by the ratio of Loop-

wheel effective radius (3.98 in.) to chain sprocket pitch radius (1.792 in.) or

3.92

Fchai n = 160 x_ = 350 lb

The tensile strength of a standard 0.Z5 in. pitch roller chain is 900 Ib for a

margin of safety on the order of

90O
I = 1.57,

350

18
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which was considered to be sufficient even in view of occasional shock loads :{

above Fchai n. ,

! Z.5 ROCK REMOVAL SYSTEM

An autonomous rock removal system has been incorporated into the
,4

loopwheel mobility system. The concept is shown in Fig. I]. A set of five

wipers is spat'ed equal distances along the inside of the Loopwheel. Rocks up

to the maximum gap size between hull bottom and loopwheel which may fall

into the Loopwheel are moved to the rear (Fig. 12.) and liftedby one of the

wipers at the rear section of the loop. The liftingoperation is assisted by

two sets of rakes --made of coil springs --extending radially from two places

around each sprocket hub.

A large rock is removed whenever the wiper transporting the rock is

aligned with one of the rake arrays for positive lifting. Thus occurs every

1.5 sprocket revolutions. The wipers are aligned with rakes in the following

sequence:

Wiper !, 3, 5, Z, 4, 1, ...

Therefore, a rock will be lifted by a wiper two to three times before a rake

is in alignment with the wiper for positive removal, in the present configu-

ration only the rear chutes were optimally shaped for rock removal in forward

direction. No attempt was made to optimize the rock removal system in the

front section which has to remove rocks during extended travel in reverse

direction.

19
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Fig. 12 - Five Wipers are Installed at the Inner Surface
of the Loopwheeis
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Section 3

PERFORMANCE CHARACTERISTICS

For Lockheed's periormance evaluation of the complete four-Loopwheel

mobility system a wooden chassis was built with roll articulation between front

and rear modules as shown in Fig. 13. The forks were rigidly mounted to

corners of fl_e chassis. Wheel base and width was identical to JPL's rover

demonstration model. Two 70 A power supplies were installed inside the i

chassis. A Z50 ft, ll5 V umbilical cable provided power.

During the functional tests the following performance characteristics

were validated:

• Cruise Speed Forward and Reverse on Level Ground, 640 lb
Total Rover Weight

Voltage Average Speed
(V) CurrL'nt -"__7_c c)-----_h_

per Motor

(A)

12 0.94 2.34 214

14 1.08 7.90 _65

16 I.IZ 3.33 304,

18 1.12 3.80 347
L , ....

• Scuff Steering on Smooth Concrete (Coefficient of Friction _ 0.5)
Turn Rate Approximately 90 deg per Minute at IZ V, Average
Current per Loopwheel 4.6 A; Rover Weight 640 lb.

• Scuff Steering on Gravel at IZ V Input Voltage, Average Current
per Loopwheel 4.4 A; Rover Weight 640 lb.

• Slope Climbing on Grassy Slopes up to 3Z deg at 640 lb Rover
Weight without Apparent Slip.

zZ
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• Step Obstacle Climbing Up to 2Z in. (56 cm) (Fig. 4) at 640 lb
Rover Weight, 1?- V, Maximum Current per Loopwheel = 6.6 A.

• Tractive Force (Pull) at 640 lb Rover Weight on Grass >640 lb.

,,, oRiGtNP,L F;'_'_:-!S
OF pOORQU,_LI'I'Y
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Section 4

CONCLUSIONS AND RECOMMENDATIONS

Like earlier prototypes the present Loopwheel mobility system demon-

strates a very high degree of mobility at a favorable payload-to-mass ratio.

The system also has a closed payload bay of over 24,585 cm 3 (1500 in 3)

volume with its bottom only 7.6 cm (3 in.) above ground.

Installed in the JPL Mars Rover demonstration model the four-Loopwheel

suspension with independent pitch articulation, double-Ackerman steering and

independent height control in at least two legs represents a maximum mobility

configuration attractive for autonomous long range rover missions of over

100 Km (62 miles) range and total rover mass of 400 Kg (880 lb) or more.

A similar degree of mobility has earlier been demonstrated for a three-

Loopwheel configuration with pitch and yaw articulation between a single-

loop front module and a dual-loop rear module under contract NAS8-Z8437.

However, more recent Mars mission planning calls for a much smaller mass

and stowage volume allocation for a rover with a typical mass for a "midi"

class rover of 120 Kg (Z65 lb) and a mobility range of one to several kilo-

meters.

Several very attractive options exist which take advantage of the Loop-

wheels's excellent traction, inherent stability due to its low e.g. and its ideal

science payload bay near the ground, yet reduce substantially mobility system

mass. volume and complexity.

One such midi-rover configuration is shown in Fig. 14. T_vo Loopwheel

suspensions are mounted to the chassis side-by-side. Obstacle climbing and

terrain.slope mapping capability is greatly improved by staggering the two

loops longitudinaliy. Hazardous slopes are readily detected by the leading

,,ORIGINAL
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Fig. 14 - Dual-Loopwheel Mldi-Rovcr Configuration. Two Pitch-
Articulated Staggered Loopwheels and Wheeled Tail

Provide ApproximateLy 80_0 Capability of Four-or Three-
l_oopwheel Rover. Steering bj Scuffing.
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Loopwheel's Ditch sensor while there is sufficient traction available to back

off from excessive slopes. For minimum turn scuff steering, the tail wheel

would be swiveled.

Further savings in weight, space and cost are possible with a sLngle-

Loopwhee[ mini-rover. A typical configuration is illustrated in Fig. 15. The

high mobility of a pitch-articulated Loopwheel is used to provide traction and

yaw-steering for the rover which is stabilized by two trailer wheels which

could be deflatable for minimum space stowage. A pitch sensor in the Loop-

wheel fork provides terrain-slope mapping information and excessive slope

hazard warning.

A recommendation is made that these and a range of other limited-

capability rover options be evaluated by preliminary conceptual design,

weight, performance and cost analysis. Components from the existing four-

Loopwheel mobility system could be used to validate and optimize the pre-

dicted performance.

Thus a wide range of mobility options could be presented to the plane-

tary science community and to NASA's mission planners to aid in the selection

of a most cost-effective Mars mission.

27
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Fig. 15 - Single-Loopwheel Midi-Rover with Pitch-Articulated |

i Loopwheel, Yaw-Steering and a Pair of Inflatable f
Trailer Whee's (Deflated for Stowage}. Drive Motors
in Each of the Two Sprockets Provide Dual-Redundant
Drive Train.
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