DEVELOPMENT AND FABRICATION OF IMPROVED POWER TRANSISTOR SWITCHES

P. L. Hewer
Westinghouse R\&D Center
Pittsburgh, PA 15235

C. K. Thu

Westinghouse Semiconductor Division
Youngwood, PA 15697

LIMEY MB TM
May 5 is
Lhaceregeng cater
HESTON, VIRGINIA
Prepared for
National Aeronautics and Space Administration
NASA Lewis Research Center
Contract NAS3-18916

DEVELOPMENT AND FABRICATION OF IMPROVED POWER TRANSISTOR SWITCHES

P. L, Hower
Westinghouse R\&D Center
Pittsburgh, PA 15235

C. K. Chu

Westinghouse Semiconductor Division Youngwood, PA 15697

$$
N 79-21273 \#
$$

Prepared for
National Aeronautics and Space Administration NASA Lewis Research Center
Contract NAS3-18916

* For sale by the National Technical Information Service, Springfield, Virginia 22151List of Figuresii
List of Tables v

1. Summary 1
2. Introduction 2
3. Device Design 5
3.1 Background 5
3.2 Design Examples 5
3.3 Sensitivity to Changes in Device Variables 11
3.4 Emitter-Base Geometry 11
3.5 Forward Safe Operating Area 12
3.6 Dynamic Considerations 18
3.6.1 Turn-on 18
3.6.2 Storage Time 20
3.7 Other Considerations 24
4. Processing Investigation 25
4.1 Packaging Considerations 25
4.2 Impurity Profile 27
4.3 Wafer and Fusion Processing 32
5. Electrical Performance 34
5.1 Collector Characteristic 34
5.2 Forward SOA 37
5.3 Switching Performance- Resistive Load 40
5.4 Switching Performance - Inductive Load 40
5.4.1 Waveform Measurements 45
5.4.2 Energy Loss Measurements 45
5.5 Reverse SOA 52
6. Scale-Up Study 56
6.133 mm Design 56
6.2 Effect of Base Metallization 56
7. Conclusions 62
8. Acknowledgements 62
9. References 63
10. Appendices 64
Page
Fig. 1 Optimum design results for (a) $V_{C E O}$ (sus) $=400 \mathrm{~V}$ and (b) 600 V 7,8Collector current density is plotted perpendicular to the planeformed by peak current gain ($\mathrm{hFEO}_{\mathrm{FE}}$) and reach-through parameter m.
Fig. 2 General shape of the triple-diffused impurity profile.9
Fig. 3 Sensitivity of $V_{C E O}$ (sus) and $h_{F E}\left(I_{C}=50 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2.5 \mathrm{~V}\right.$) to 13(a) collector doping, (b) collector width and (c) peak currentgain.
Fig. 4 Effective area vs. collector current for the 659 mask design 16$\left(A_{E M}=1.6 \mathrm{~cm}^{2}, Z=33 \mathrm{~cm}, I_{C R}=142 \mathrm{~A}\right)$.
Fig. 5 Collector current vs. collector emitter voltage corresponding 17 to the onset of thermal instability with emitter ballast resistance as the parameter.
Fig. 6 Collector current rise time vs. collector current for different turn-on base currents.
Fig. 7 Collector-emitter voltage waveforms for different turn-on base currents.
Fig. 8 Storage time vs. collector current with base current as the parameter.
Fig. 9 Storage time vs. collector current with collector recombination 23lifetime as the parameter $\left(I_{B F}=I_{B R}\right)$.
Fig. 10 Influence of lifetime on the current gain and storage time for 24 the $V_{\text {CEO }}$ (sus) $=450 \mathrm{~V}$ design.
Fig. 11 Cross-sections showing conventional and CBE assembly techniques. 26 The external package (not shown) provides the compressive force indicated by the arrows.
Fig. 12 Transistor fusion with emitter preform attached. 28
Fig. 13 Stud package used for encapsulating fusion of Fig. 12. 29

Fig. 14 Metallization pattern for 659 mask. The outer diameter is 1.67 cm .

Fig. 15 Impurity profile showing typical concentrations and dimensions.31
Fig. 16 Processing flow sheet with device cross-sections. 33

Fig. 17 Measured collector characteristics for two devices with different sustaining voltage.

Fig. 18 Measured gain-current product vs. sustaining voltage for devices from three different runs.

Fig. 19 Second breakdown current vs. emitter ballast resistance. The measured currents are the largest values that pass the test for 0.5 A increments.

Fig. 20 Forward SOA diagram for different pulse times.
Fig. 21(a) $i_{C}(t)$ and $v_{C E}(t)$ waveforms for transistor $18 B 53$.
Scales: $i_{C}=5 A / d, v_{C E}=20 \mathrm{~V} / \mathrm{d}, \mathrm{t}=0.2 \mu \mathrm{~s} / \mathrm{d}$. $I_{B F}=6 A, V_{C C}=200 \mathrm{~V}$.
Fig. 21(b) Turn-off waveforms for transistor 18B53.

$$
\begin{aligned}
\text { Scales: } \quad & i_{C}=5 \mathrm{~A} / \mathrm{d}, i_{B}=1 \mathrm{~A} / \mathrm{d}, \\
\mathrm{t} & =1 \mu \mathrm{~s} / \mathrm{d} . \quad I_{B F}=I_{B R}=3 \mathrm{~A} .
\end{aligned}
$$

Fig. 22 Test circuit used for switching performance evaluation.
Fig. 23 Turn-off waveforms for transistor 22B-92. Scales:
(a) $i_{C}=10 \mathrm{~A} / \mathrm{d}, \mathrm{v}_{\mathrm{CE}}=50 \mathrm{v} / \mathrm{d}, \mathrm{t}=0.1 \mu \mathrm{~s} / \mathrm{d}$.
(b) $i_{C}=10 \mathrm{~A} / \mathrm{d}, \mathrm{p}=2 \mathrm{KW} / \mathrm{d}, \mathrm{t}=0.1 \mu \mathrm{~s} / \mathrm{d}$. $\mathrm{T}_{\mathrm{c}}=23.5^{\circ} \mathrm{C}$.

Fig. 24 Block diagram of switching-loss measurement.
Fig. 25 Example of waveforms for the turn-off interval, showing collector-current, collector-emitter voltage, instantaneous power, base current and integrator gating signal.

Fig. 26 Turn-on waveforms for device 25A-49. Scales:
(a) $i_{C}=20 \mathrm{~A} / \mathrm{d}, \mathrm{v}_{\mathrm{CE}}=100 \mathrm{~V} / \mathrm{d}, \mathrm{t}=0.1 \mu \mathrm{~s} / \mathrm{d}$,
(b) $i_{C}=20 \mathrm{~A} / \mathrm{d}, \mathrm{p}=2 . \mathrm{KW} / \mathrm{d}, \mathrm{t}=0.1 \mu \mathrm{~s} / \mathrm{d}$.
$\mathrm{L}=530 \mu \mathrm{H}, \mathrm{L}_{\mathrm{S}} \simeq 0, \mathrm{~V}_{\mathrm{CC}}=300 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=30^{\circ} \mathrm{C}$.
Fig. 27 Measured turn-on and turn-off losses.
Fig. 28 Total power lost in the transistor $\left(P_{L}\right)$ and dissipated
power $\left(P_{D}\right)$ due to the thermal path through the device and heat sink vs. junction temperature. P_{L} is shown for two frequencies.

Fig. 29 Safe operating frequency vs. heat sink thermal resistance
for different collector currents.
Fig. 30 Reverse SOA and test circuit. 54
Fig. 31 Base-emitter voltage (normalized to $\mathrm{kT} / \mathrm{q}=25.6 \mathrm{mV}$) and current 58 density for the typical sector shown in Fig. 32.

Fig. 32 Metallization pattern showing base fingers and radial distance 59 from base trunk centerline.

Fig. 33 Fractional reduction in emitter area vs. collector current due to base metallization sheet resistance for the pattern of Fig. 32.

LIST OF TABLES

Table Page
1 Optimum Designs for $h_{F E}=10$ at $V_{C E}=2.5 \mathrm{~V}$ 10
2 Characteristics of Transistors of Fig. 17 36
3 Predicted Performance of a 33 MM Dia. Fusion 57
4 DC Characteristics 66
5 Switching Times 67
6 Test Data on Sample Devices 68
7 Test Data 73

1. SUMMARY

The overall objective of this program is the development of device design and processing techniques which permit the fabrication of npn transistors suitable for high-efficiency switching applications where the required $\mathrm{BV}_{\mathrm{CEO}}$ voltage is in the range of 400 to 600 V . An important aspect of the program has been the increase of the emitter area over that available in present commercial devices.

The transistors described in this final report are 23 mm in diameter and have an emitter area that is approximately eight times larger than that practical with a T0-3 package. This "scale-up" has been achieved without serious side-effects such as voids at the $\mathrm{Si} /$ header interface and non-uniformities in the emitter current distribution.

The electrical performance achieved is consistent with the predictions of the optimum design theory used for the transistor design. Specific sections of the report describe the device design, wafer processing techniques, and also various measurements which include DC characteristics, the forward safe operating area, and switching times. A new method is proposed for characterizing the switching performance of power transistors for operation in switching regulator circuits. The report ends with projected performance for a 33 mm diameter transistor.

2. INTRODUCTION

During the first half of the 1960^{\prime} s, the bipolar transistor was generally viewed as a device capable of switching only relatively low power levels. For most applications that needed a voltage blocking capability greater than about 200 V and currents in excess of about 30A, the only semiconductor device available was a thyristor. These devices usually had a much larger conducting area than did the transistors of that era.

In the late 60^{\prime} s and early 70's, higher voltage transistors became available at a cost that made them attractive for off-line switching regulator applications. It is interesting to note that the market need which spurred the cost reduction of these devices was that of the automobile electronic ignition. The ignition application requires an open-base sustaining voltage $V_{C E O}$ (sus) in the range of 300 to 500 V , which turns out to be convenient for applications using rectified 110 and 220 V AC line voltage. The packaging and assembly technology used for these transistors (TO-3) limited emitter areas to about $0.2 \mathrm{~cm}^{2}$, with the result that output power levels were limited to a few hundred watts.

About that time, it became clear to a number of workers that some of the techniques used for making large-area thyristors (e.g. 2 to 3 cm in diameter) might also be used to increase the conducting area of bipolar transistors. A notable effort along these lines was the Westinghouse 1401.

This transistor had metallurgical emitter area of $2.2 \mathrm{~cm}{ }^{2}$ and used a "single-diffused" impurity profile. That is, the base region is lightly-doped with respect to the collector. An inherent feature of this profile is that the current density that can be controlled for a given $V_{C E O}$ (sus) is considerably less than that of a "triple-diffused"
or epitaxial collector profile, where the collector is lightly doped with respect to the base. Other disadvantages are the low value of $\mathrm{V}_{\text {CEO }}$ (sus) that is practical $(\stackrel{\sim}{<} 250 \mathrm{~V})$ and the long rise and fall times during switching, e.g., 1 to $2 \mu \mathrm{~s}$.

In the meantime, circuit designers working with higher voltage T0-3's overcame one of the drawbacks of triple-diffused transistors, i.e. device failure during turn-off of inductive loads, by adding protective networks that by-pass the inductive energy around the transistor during turn-off. This improvement, coupled with the ability to control higher current densities and the ability to operate at higher switching frequencies, favors the triple-diffused type of profile over the single-diffused for most power electronic applications. There are some noteworthy exceptions to this rule, namely, applications where the transistor must dissipate a significant amount of power, e.g., low-frequency amplifiers and current limiting circuits.

As experience with high-voltage TO-3 size transistors increased, it became clear that there were applications e.g. motor control, induction heating, and inverters in the 5 to 20 KW range, where a larger area transistor would be useful. In these applications, the alternative approach of paralleling many smaller devices presents problems due to non-uniform current distribution during turn-off. Thus, a single large transistor was needed.

The obvious question is: can larger transistors be made and still be cost-competitive? We believe the answer to this question is "yes". For example, the techniques described in this report are routinely used to produce interdigitated thyristors up to 5 cm in diameter. While the steps necessary to adapt thyristor and rectifier processing techniques to transistors are not trivial, they pose no major technological hurdles. We are confident that many of the processing and design procedures worked out for the present 23 mm transistors will be applicable to even larger devices.

This final report describes our approach to the adaptation of these techniques. The first section of the report describes the basic device design, with subsequent sections dealing with processing, measurement of switching performance, and projections of performance for a larger 33 mm diameter transistor.

3. DEVICE DESIGN

3.1 Background

As is true in many situations, the design of a transistor requires a compromise. The desire to achieve a large blocking voltage conflicts with the need to control a large collector current at a given current gain $h_{F E}$. By using appropriate models for transistor behavior, it is possible to state this conflict quantitatively and at the same time develop an "optimized" design [1]. For example, if $V_{C E O}$ (sus) and $h_{F E}$ (at some $V_{C E}$) are given, then it is possible to determine an impurity profile that will maximize the collector current density, thereby giving a minimum area design (for a given I_{C}), or a maximum current (for a given emitter area A_{E}).

The physical reasons for this result can be traced to basic electrical properties of silicon, e.g., carrier mobilities, impact ionization coefficients, and heavy doping effects. Therefore, once $V_{C E O}$ (sus) and $h_{F E}\left(V_{C E}\right)$ are chosen, there will be a corresponding current density that cannot be exceeded and the only way to obtain the desired I_{C} is to make A_{E} large enough.

There are also other criteria which influence the transistor design. For example, switching times, forward and reverse safe-operatingareas, and junction leakage currents should be given consideration when designing a transistor; however, in most designs, the dominant terms are $V_{C E O}$ (sus) together with some specification describing the on state, such as $h_{F E}$ at some I_{C} and $V_{C E}$.

3.2 Design Examples

To demonstrate the design approach used during this contract, two examples are given here for $\mathrm{V}_{\mathrm{CEO}}$ (sus) $=400 \mathrm{~V}$ and 600 V . During the
contract period, the method of [1] was modified to include the difference in electron diffusion coefficient D_{n} between base and collector regions. Also, the optimization sequence of [1] has been included as part of a computer program and the optimum impurity profile is now obtained directly without any intermediate steps.

The fact that current density goes through a maximum is demonstrated in Fig. 1. In this Figure, the peak current gain $h_{\text {FEO }}$ is related to the impurity profile of Fig. 2 by

$$
\begin{equation*}
h_{F E O}=\frac{\mathrm{G}}{\mathrm{Q}_{\mathrm{B}} / \mathrm{D}_{\mathrm{B}}} \tag{1}
\end{equation*}
$$

where $G e 5 \times 10^{13} \mathrm{~cm}^{-4}$-s and is the emitter "Gummel number". Q_{B} is the total number of base impurity atoms per unit area, shown as the shaded area of Fig. 2. For an npn transistor

$$
\begin{equation*}
Q_{B}=\int_{0}^{W_{B O}} N_{A}(x) d x \tag{2}
\end{equation*}
$$

where N_{A} is the base acceptor concentration and $W_{B O}$ is the metallurgical base width. D_{B} is the electron diffusion coefficient in the base and is approximately equal to $20 \mathrm{~cm}^{2} / \mathrm{s}$ for the type of designs used in this program.

Thus, as $h_{\text {FEO }}$ is increased the "device variable" Q_{B} decreases according to (1). The remaining axis of Fig. 1 is called the reachthrough parameter m and is defined by

$$
\begin{equation*}
\mathrm{m}=\mathrm{N}_{\mathrm{C}} / \mathrm{N}_{\mathrm{BB}} \tag{3}
\end{equation*}
$$

where N_{C} is the collector doping and $N_{B B}$ is doping that corresponds to bulk breakdown with the emitter open ($\mathrm{BV}_{\mathrm{CBO}}$). Once m and $\mathrm{h}_{\mathrm{FEO}}$ are chosen, it is possible to determine the three device variables Q_{B}, N_{C} and W_{C}, as is shown in [1]. Of these three, the collector width W_{C} is the most critical in terms of meeting a given $\mathrm{V}_{\mathrm{CEO}}$ (sus), h_{FE} specification. The optimum design results are summarized in Table 1.

Fig. I(a) Optimum design results for $\mathrm{V}_{\text {CEO }}$ (sus) $=400 \mathrm{~V}$. Collector current density is plotted perpendicular to the plane formed by peak current gain ($h_{F E O}$) and reach-through parameter m.

Fig. $1(\mathrm{~b})$ Optimum design results for 600V. Collector current density is plotted perpendicular to the plane formed by peak current gain ($h_{F E O}$) and reach-through parameter m.

Dwg. 7684A90

Fig. 2 General shape of the triple-diffused impurity profile.

TABLE 1
Optimum designs for $h_{F E}=10$ at $V_{C E}=2,5 \mathrm{~V}$

$V_{C E O}($ sus $)$	J_{C}, \max	N_{C}	W_{C}	$h_{F E O}$	Q_{B}
$(\mathrm{~V})$	$\left(\mathrm{A} / \mathrm{cm}^{2}\right)$	$\left(\mathrm{cm}^{-3}\right)$	$(\mu \mathrm{m})$	-	cm^{-2}
400	81.4	1.72×10^{14}	44.1	23.6	4.24×10^{13}
600	32.1	1.01×10^{14}	69.1	23.6	4.24×10^{13}

physical constants: $\quad D_{C}=22 \mathrm{~cm}^{2} / \mathrm{s}, \mathrm{G}_{\mathrm{e}}=5 \times 10^{13} \mathrm{~cm}^{-4}-\mathrm{s}, \mu_{\mathrm{co}}=1.3 \times 10^{3} \mathrm{~cm}^{2} /(v-\mathrm{s})$ $D_{B}=20 \mathrm{~cm}^{2} / \mathrm{s}$, ionization coefficient data from (1).

3.3 Sensitivity to Changes in Device Variables

It is important to consider variations in the three device variables, particularly if the device is to be manufactured in large numbers. The design theory has been extended to include the case where two of the variables are fixed and the third is varied over a range and the resulting $h_{F E}$ and $V_{C E O}$ (sus) is calculated. In this way, estimates of an acceptable limit on each device variable can be determined.

For example, Fig. 3 shows the effects of changing N_{C}, W_{C} and $h_{F E O}$. For this example $V_{\text {CEO }}$ (sus) was chosen to be 450 V and an $A_{E}=1.0 \mathrm{~cm}^{2}$ was assumed. As an example of specification limits, it was assumed that $V_{C E O}$ (sus) $\geq 400 \mathrm{~V}$ and $h_{F E} \geq 10$ at $I_{C}=50 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2.5 \mathrm{~V}$. The curves of Fig. 3 then show the maximum acceptable range of W_{C} (43 to 60 microns $), N_{C}\left(0.58\right.$ to 2.2×10^{14}) and $h_{F E O}(16$ to 43$)$. In reality, operation within smaller ranges would be desirable since all three quantities will have some distribution about the optimum value.

3.4 Emitter-Base Geometry

The design of the previous section assumes that the current density is uniformly distributed over the emitter. In reality, this never occurs since the lateral flow (under the emitter) of the base current I_{B} results in a "crowding" of the emitter current to the edge of the emitter stripe.

During the contract a new analysis of this problem has been worked out [2]. The two important parameters which characterize an interdigitated emitter-base geometry are the metallurgical emitter area $A_{E M}$ and the perimeter along the base-emitter boundary Z. For most designs it is possible to relate the emitter finger width to $A_{E M}$ and Z by

$$
\begin{equation*}
A_{E M}=Z L_{E} \tag{4}
\end{equation*}
$$

where L_{E} is approximately equal to one-half of the average emitter stripe width.

Most base-emitter geometries can be characterized by a "cross-over current" $I_{C R}$ defined by

$$
\begin{equation*}
I_{C R}=36 q \frac{z}{L_{E}} \frac{1+b}{b} G_{e} D_{C}^{2} \tag{5}
\end{equation*}
$$

where b is the electron-hole mobility ratio at high injection levels ($b \simeq 2$), and $D_{C} \simeq 22 \mathrm{~cm}^{2} / \mathrm{s}$ is the high-level electron diffusion coefficient in the collector. As I_{C} becomes comparable to $I_{C R}$, current crowding effects decrease the "effective" emitter area A_{E} from the metallurgical area $A_{E M}$. In this context, A_{E} is the area of a one-dimensional transistor with equal $h_{F E}$.

Figure 4 shows an example of the A_{E} reduction that occurs with increasing I_{C} for a mask design (659) that is described in Section 4 of this report. This graph was calculated using the mask dimensions and the analysis of [2]. Taken together with Fig. 1, this graph demonstrates the fact that the amount of interdigitation required will decrease for higher voltage transistors. For example, the maximum current density decreases from 81 to $32 \mathrm{~A} / \mathrm{cm}^{2}$ as $\mathrm{V}_{\text {CEO }}$ (sus) increases from 400 to 600 V . Operating with A_{E} at the same percentage of $A_{E M}$ would then allow almost a factor of 3 increase in L_{E}. This means that photolithography and emitter patterning techniques become less stringent as $\mathrm{V}_{\mathrm{CEO}}$ (sus) is increased.

3.5 Forward Safe Operating Area

In the initial part of the program, a fair amount of effort was placed on predicting and measuring the forward SOA. Recently, switching performance has received more attention and for these applications, forward SOA is of secondary importance.

For applications where the transistor must dissipate significant power, as in a linear amplifier, the forward SOA is important and can be increased by "building-in" emitter ballast resistance R_{E} by selective emitter metallization schemes. For these applications, a realistic operating boundary is the onset of thermal instability which is shown in Fig. 5. It can be seen that the forward SOA can be improved substantially by making small increases in R_{E}.

Fig. 3(a) Sensitivity of $V_{C E O}$ (sus) and $h_{F E}\left(I_{C}=50 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2.5 \mathrm{~V}\right.$) to collector doping.

Fig. 3(b) Sensitivity of $V_{C E O}$ (sus) and $h_{F E}\left(I_{C}=50 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2.5 \mathrm{~V}\right)$ to collector width.

Fig. 3(c) Sensitivity of $V_{C E O}$ (sus) and $h_{F E}\left(I_{C}=50 A, V_{C E}=2.5 \mathrm{~V}\right.$) to peak current gain.

Fig. 4 Effective area vs. collector current for the 659 mask design ($\left.A_{E M}=1.6 \mathrm{~cm}^{2}, Z=33 \mathrm{~cm}, I_{C R}=142 \mathrm{~A}\right)$.

Fig. 5 Collector current vs. collector emitter voltage corresponding to the onset of thermal instability with emitter ballast resistance as the parameter.

3.6 Dynamic Considerations

At the present time, there is no comprehensive design theory for predicting the switching performance of bipolar transistors. This difficulty can be traced to the dearth of practical device models that account for device/circuit interaction in a typical regulator application. The inadequacy is particularly evident in trying to predict the turn-on and turn-off waveforms or the point of onset of second breakdown (Reverse SOA) for switching regulator type circuits.

Some progress has been made in predicting turn-on waveforms with a resistive load and also storage time, which is relatively insensitive to load inductance.

3.6.1 Turn-on

When the transistor is turned-on, a charge due to excess carriers is initially supplied to the metallurgical base and emitter regions of the transistor. As the turn-on process continues, the excess carrier concentrations reach a point where the base-collector junction changes from a blocking to an injecting junction and the effective base region "widens" into the metallurgical collector. Beyond this point, the turn-on process tends to slow down because of the relatively long time it takes to buildup the steady-state carrier profiles in the collector.

This process has been analyzed using a charge-control model [4] for the case of a resistive load. For this project, the predicted waveforms have been calculated for the 450 V optimum design indicated in Fig. 3 .

The collector current rise time corresponding to a 10 to 90 percent increase in $i_{C}(t)$ is shown in Fig. 6, where a step-like base drive current $I_{B F}$ is assumed. As one might expect, increasing $I_{B F}$ decreases the rise time. The abrupt increase in the slope of the curves corresponds to the onset of the base-widening process. On this portion of the curve, t_{r} is a strong function of I_{C} and $I_{B F}$. It can be seen that t_{r} values in the range of 0.2 to $0.5 \mu s$ should be obtainable for I_{C} in the range of 40 to 60A.

Fig. 6 Collector current rise time vs. collector current for different turn-on base currents.

The behavior of $v_{C E}(t)$ during turn-on is usually of more interest, since the voltage waveform exhibits a "tail" that can contribute a significant component to the overall switching loss. Figure 7 shows the predicted waveforms for the same conditions as in Fig. 6. Again, the abrupt change in slope at $V_{C E}=14.7 \mathrm{~V}$ is due to the onset of the basewidening. Beyond this point $v_{C E}$ is directly proportional to the thickness of the neutral or unmodulated portion of the collector.

3.6.2 Storage Time

Under this program a model for storage time has also been developed. This model accounts for the behavior in the "active" and "remote" base regions during the time it takes to reduce the excess hole concentration to zero at the $n-n^{+}$(collector) junction by applying a reverse base current $I_{B R}$.

It is intended that the details of the analysis will be published at a later date. For present purposes it is only necessary to consider the results of the analysis. The curves of Fig. 8 are plotted for different values of base drive which is assumed to be symmetrical, i.e., $I_{B F}=I_{B R}$. If lifetime is varied, it has a monotonic effect on storage time with the greatest influence being at low values of I_{C} as can be seen from Fig. 9.

The reason the curves show t_{s} going to zero as I_{C} increases is that the "internal" base current required to achieve I_{C} is increasing and a smaller portion of the terminal current I_{B} is then available to forward bias the "remote" base-collector diode. Eventually, all of I_{B} is required to turn-on the transistor and it is no longer possible to forward bias the remote base-collector diode. At this point $t_{s}=0$ and the operating point moves from the classical to the quasi-saturation region of the collector characteristic. For an approximate operating range of 10 to 60 A of collector current these calculations show that a t_{s} in the range of 1 to $3 \mu s$ can be expected for typical base drive conditions.

Fig. 7 Collector-emitter voltage waveforms for different turn-on base currents.

Fig. 8 Storage time vs. collector current with base current as the parameter.

Fig. 9 Storage time vs. collector current with collector recombination lifetime as the parameter ($I_{B F}=I_{B R}$).

3.7 Other Considerations

For the calculations of Sections 3.2 and 3.3, the effect of collector recombination is ignored; however, a decreasing value of τ can seriously degrade $h_{F E}$, since additional base current is now required to accommodate the recombination process occurring in the base-widened portion of the collector.

The influence of τ on $h_{F E}$ at $I_{C}=50 \mathrm{~A}$ and t_{s} at $I_{C}=20 \mathrm{~A}$ is shown in Fig. 10. The value of $h_{F E}$ for an infinite τ is 12.9. It is possible to stay within 10 percent of this value provided $\tau \geq 35 \mu \mathrm{~s}$. Thus this type of calculation can be used to provide a guide for lifetime requirements of the wafer processing.

The topics of turn-off behavior and reverse SOA are discussed in Section 5. Also included in that section are comparisons between measurements and the models used for the device designs of the present section.

Fig. 10 Influence of lifetime on the current gain and storage time for the $\mathrm{V}_{\mathrm{CEO}}($ sus $)=450 \mathrm{~V}$ design

4. PROCESSING INVESTIGATION

4.1 Packaging Considerations

One of the major strengths of the approach used in this program is that maximum use is made of existing Westinghouse high-power silicon device technology. The problems of fabricating p-n junctions over a large. area, say $\xlongequal{\sim} 2 \mathrm{~cm}^{2}$, have been solved to a large extent with these techniques.

In addition, problems with "hot spots" due to voids in the silicon-metal interface are generally avoided with present techniques. These include alloying the silicon wafer to a molybdenum substrate and then packaging the resulting element or "fusion" under pressure to ensure good electrical and thermal contact. . This process has been termed Compression-Bonded Encapsulation (R), or CBE, and has many advantages which are appealing for large-area transistor fabrication.

The CBE technique differs significantly from methods used to make the large majority of power transistors which typically have a chip area $<1 \mathrm{~cm}^{2}$. For these devices, the silicon chip or die is solder-bonded to a header, and base and emitter contact is made via soldered tabs or ultrasonically-bonded wires as shown in Fig. 11.

It might appear that the conventional methods could be "scaled-up" to larger areas, but there are difficulties with this approach. Contacting the emitter area with many wire bonds would be needed to ensure uniform current distribution. This becomes topologically awkward and also expensive. In addition, solder-bonding a large area chip runs the risk of forming a void which can seriously degrade the forward SOA.

The CBE technique overcomes these problems and,in addition, provides an opportunity for topside heat removal if a disc-type package is used. Figure 11 shows the cross-section of the stud package which was used for most of the devices fabricated under this program. This

Fig. 11 Cross-sections showing conventional and CBE assembly techniques. The external package (not shown) provides the compressive force indicated by the arrows.
package is generally more convenient to use and the resulting thermal resistance (0.13 to $0.18{ }^{\circ} \mathrm{C} / \mathrm{W}$) is adequate for most applications. Figures 12 and 13 show the transistor fusion and stud package. Figure 14 is reproduction of the metallization pattern of the 659 mask used for the fusion of Fig. 12.

4.2 Impurity Profile

While the techniques used under this program have many things in common with high-power rectifier and thyristor technology, there are also some significant differences. Foremost among these is the impurity profile, which is shown in Fig. 15 for a typical design. It can be seen that the junction depths are considerably shallower than for a typical high-power rectifier or thyristor.

It is worth noting that deeper junctions could also be used here, but this would require some sacrifice in switching times t_{r} and t_{f}. However, the advantage of this approach is that there would be some improvement in the base-collector breakdown voltage ($\mathrm{BV}_{\mathrm{CBO}}$) due to the improved contouring that can be obtained with a deeper base-collector junction [5]. In addition, some improvement beyond the "optimum design" results can be obtained if the base contains a region that has a concentration comparable to the collector. This problem has been investigated by Kotowski [6], who concludes that for metallurgical base-widths less than approximately $W_{C} / 5$, the improvement will be negligible. Thus a $\mathrm{W}_{\mathrm{BO}} \xlongequal{ } \mathrm{D}^{20 \mu \mathrm{~m} \text { would probably be necessary. }}$

The improvements that might be obtained with a deeper basecollector junction become of secondary importance if the transistor is to have low losses during turn-off. As shown in Section 5, these losses are usually dominant and therefore limit the maximum switching frequency. For this reason, emphasis was placed on a profile having a metallurgical base-width of 10 to $12 \mu \mathrm{~m}$. .

Fig. 12 Transistor fusion with emitter preform attached.

Fig. 13 Stud Package used for encapsulating fusion of Fig. 12.

Fig. 14 Metallization pattern for 659 mask.
The outer diameter is 1.67 cm .

Curve 714656-A

Fig. 15 Impurity profile showing typical concentrations and dimensions.

4.3 Wafer and Fusion Processing

Standard silicon wafer processing techniques were used to fabricate the transistor wafers. Numerous processing options were investigated and the particular sequence outlined in Fig. 16 was found to give the most favorable results. This Figure also shows a schematic cross-section of the wafer at each step.

The "emitter preform" is a replica of the metallized emitter region that is etched from a thin sheet (6 mil) of molybdenum. As shown in Fig. 11, the preform allows metallurgical contact to the emitter but avoids shorting out the base, which is contacted separately at the center of the fusion.

Beveling the base-collector junction is accomplished using a 5 deg. (negative) bevel. As described in the Interim Report [7], highvoltage planar junctions were also investigated with some success; however it was felt that this process requires additional work before it can compete satisfactorily with the standard bevel-etch technique.

For the diffusion steps, the phosphorous and boron diffusions are conventional open tube processes (POCl_{3} and BBr_{3}) while the Ga-Al diffusion is a sealed-tube process. The experimental results obtained under this contract indicate that the process of Fig. 16 is a good candidate for a production process of large-area transistors.

Fig. 16 Processing flow sheet with device cross-sections.

5. ELECTRICAL PERFORMANCE

Several electrical characteristics were measured for each experimental run of transistors. Typically, these measurements included the characteristics discussed in Section 2 (h $\mathrm{FE}_{\mathrm{FE}} \mathrm{V}_{\mathrm{CEO}}$ (sus), forward SOA, t_{t}, and t_{s}). In addition, a new method of rating the switching performance [8] was developed during this program. These new results are summarized in this section. Detailed device data is given in Appendices 1 and 2. Appendix 1 summarizes the results obtained during the period covered by the Interim Report [7], while Appendix 2 gives data on devices fabricated during the final portion of the contract.

5.1 Collector Characteristic

The collector characteristics were measured using a Tektronix 576 curve tracer with a 176 power pulse unit. This combination has a maximum I_{B} of 20 A and a maximum I_{C} of 200 A . $V_{C E O}$ (sus) was measured using a conventional inductive load circuit with a load inductance of 25 mH . Two examples of the collector characteristics are shown in Fig. 17 for devices having different $V_{\text {CEO }}$ (sus) voltages.

At large currents, $h_{F E}$ becomes approximately inversely proportional to I_{C}. That is, the product $h_{F E} I_{C}$ approaches a constant. As noted in Table 2 transistor 25 A 21 has $h_{F E} I_{C}=700 \mathrm{~A}$ and for 21 A 7 , $h_{F E} I_{C}=2500 \mathrm{~A}$. These values are about 70 percent of the maximum $h_{F E} I_{C}$ products one could expect with infinite lifetime and all other device parameters at their optimum values.

Figure 18 shows the distribution of $h_{F E} I_{C}$ vs. $V_{C E O}$ (sus) for approximately 50 devices taken from different experimental runs. It can be seen that $h_{F E} I_{C}$ for some devices exceeds the maximum theoretical value. This is most likely due to $G e$ exceeding the value of $5 \times 10^{13} \mathrm{~cm}^{-4}-s$ which was used for the calculation. Values of $G_{e}=8 \times 10^{13} \mathrm{~cm}^{-4}-s$ have been obtained in some cases, e.g., see Table 2. These G values are also in agreement with the results reported in [9].

Device 21 A 7
$V_{C E O}($ sus $)=190 \mathrm{~V}$

Fig. 17. Measured collector characteristics for two devices with different sustaining voltage.

TABLE 2
Characteristics of Transistors of Fig. 17

Notes:
(1) $\mathrm{V}_{\mathrm{CE}}=2.5 \mathrm{~V}, \mathrm{~h}_{\mathrm{FE}}=10$
(2) For $\tau=\infty$ using qeasured G, the current-crowding analysis of [2], and $N_{C}=1.43 \times 10^{14} \mathrm{~cm}^{-3}$.
(3) $\mathrm{At} \mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}$.

The devices of Fig. 18 showed collector lifetimes in the range of 10 to $40 \mu \mathrm{~s}$. This variation accounts for some of the scatter in the data points. Other quantities also vary about their target values, e.g., $h_{F E O}$, N_{C} and W_{C}, and contribute to the dispersion of the data points.

The amount of scatter indicated in Fig. 18 is considered to be acceptable as a starting point for an initial attempt at quantity production. Refinements in production methods can be expected to reduce the scatter.

5.2 Forward SOA

Some experiments were carried out using a metallization pattern which increases the effective value of series emitter resistance R_{E}. In this way it was possible to increase the forward SOA as mentioned in Section 2 in connection with Fig. 5.

The normal 659 mask pattern typically gives an R_{E} of 3 milliohms, as measured on the 576 curve tracer by the floating collector method [10]. For a one second test at $V_{C E}=100$, the predicted I_{C} for thermal instability is 1.35 A for this R_{E}.

As R_{E} is increased, the thermal instability collector current will increase as shown by the curve of Fig. 19. R_{E} was measured for a number of devices which were subjected to successive single pulses $\left(t_{p}=\right.$ one second). I_{C} was increased in 0.5 A steps until second breakdown (SB) was detected. The data points of Fig. 19 show the largest value of I_{C} for which $S B$ was not observed during the one second pulse.

It can be seen that the points follow the theory reasonably well for $R_{E} \stackrel{\approx}{<} 15$ milliohms. For larger R_{E} there is a marked deviation from the theory and increasing R_{E} results in no improvement in $I_{C, S B}$. It is likely that the simple one-dimensional model used for the calculations is no longer applicable for large R_{E} and it becomes necessary to consider two-dimensional effects [11].

Fig. 18 Measured gain-current product vs. sustaining vo1tage for devices from three different runs.

Fig. 19 Second breakdown current vs. emitter ballast resistance. The measured currents are the largest values that pass the test for 0.5 A increments.

Figure 20 shows the predicted forward SOA for different pulse times assuming a single pulse of duration t_{p}. These curves were calculated by using measured transient thermal impedance data together with the . criterion that the transistor becomes thermally unstable at a particular junction-to-case temperature. This temperature will be a function of I_{C} and R_{E}. Since the transistor must be in the thermally unstable mode for some time before it reaches second breakdown, these predictions will be conservative for short pulse times, e.g., $t_{p}{ }^{\sim} 1 \mathrm{~ms}$.

5.3 Switching Performance - Resistive Load

Only a limited number of measurements were made under resistive load conditions because this circuit does not adequately reflect operation in most inverter applications. Figure 21 shows turn-on and turn-off waveforms for transistor 18B53. It c̣an be seen that the turn-on waveforms are in qualitative agreement with the predictions of Figs. 6 and 7.

The turn-off waveforms show $t_{S} \simeq 4.5 \mu s$ (at $0.9 I_{C}$) which is larger than one might expect from Fig. 8. This is probably due to a higher lifetime and $h_{\text {FEO }}$ for transistor $18 B 53$ than was used for the calculations of Fig. 8. For example, with the measured $h_{F E O}(=45)$ and a τ of $35 \mu s$, a storage time of $3.9 \mu s$ is predicted. This is reasonably close to the measured value.

5.4 Switching Performance - Inductive Load

A large number of measurements were made using the test circuit of Fig. 22 which simulates the waveforms seen in a typical switching regulator circuit. For these tests a $v_{C E}$ snubber circuit was not used, so that $v_{C E}(t)$ rose very rapidly to the clamp voltage during turn-off, See Fig. 23(a). For this test $I_{B F}=15 \mathrm{~A}, I_{B R}=8 \mathrm{~A}, V_{C C}=300 \mathrm{~V}$ and $\mathrm{L}=280 \mu \mathrm{H}$. It can be seen that a peak power of 14 KW is reached during turn-off as shown in Fig. 23(b). This represents a "worst-case" situation for the transistor. Peak-powers in excess of 27 KW (90A @ 300V) have been

Calculated Maximum Forward Bias Safe Operating Area - S.O.A.

Fig. 20 Forward SOA diagram for different pulse times.

Fig. $21(\mathrm{a}) . \mathrm{i}_{\mathrm{C}}(\mathrm{t})$ and $\mathrm{v}_{\mathrm{CE}}(\mathrm{t})$ waveforms for transistor 18 B 53. Scales: ${ }^{i_{C}}=5 \mathrm{~A} / \mathrm{d}, \mathrm{v}_{\mathrm{CE}}=20 \mathrm{~V} / \mathrm{d}, \mathrm{t}=0.2 \mu \mathrm{~s} / \mathrm{d}$.

$$
I_{B F}=6 \mathrm{~A}, \quad V_{\mathrm{CC}}=200 \mathrm{~V}
$$

Fig. 21(b). Turn-off waveforms for transistor 18B53. Scales: $i_{C}=5 \mathrm{~A} / \mathrm{d}, \mathrm{i}_{\mathrm{B}}=1 \mathrm{~A} / \mathrm{d}$, $\mathrm{t}=1 \mu \mathrm{~s} / \mathrm{d} . \quad \mathrm{I}_{\mathrm{BF}}=\mathrm{I}_{\mathrm{BR}}=3 \mathrm{~A}$.

Fig. 22 Test circuit used for switching performance evaluation.

Fig. 23. Turn-off waveforms for transistor 22B-92. Scales:
(a) $i_{C}=10 \mathrm{~A} / \mathrm{d}, \mathrm{v}_{\mathrm{CE}}=50 \mathrm{~V} / \mathrm{d}, \mathrm{t}=0.1 \mu \mathrm{~s} / \mathrm{d}$.
(b) $i_{C}^{C}=10 \mathrm{~A} / \mathrm{d}, \mathrm{p} \stackrel{C E}{=} 2 \mathrm{KW} / \mathrm{d}, \mathrm{t}=0.1 \mu \mathrm{~s} / \mathrm{d}$.
$\mathrm{T}_{\mathrm{c}}=23.5^{\circ} \mathrm{C}$.
applied during turn-off with no destructive effects; however this topic (which is related to the reverse SOA) requires additional investigation.

5.4.1 Waveform Measurements

Figure 24 shows a block diagram of the measurement set-up used to evaluate the switching performance [8]. The gated integrator integrates the multiplier output of a Philips PM 3252 oscilloscope during the interval of interest, e.g. for the time interval where $p(t) \geq \hat{p} / 10$ and \hat{p} is the peak power. (It has been found that no serious error results if an even larger interval of $t g=1 \mu s$ is used.)

The integrator output is proportional to a switching energy, $E_{O N}$ or $E_{O F F}$, corresponding to the turn-on or turn-off intervals. A typical set of data is shown in the waveforms of Fig. 25. For this test, the integrator gave $E_{O F F}=4.03 \mathrm{~mJ}$. Assuming a triangular $p(t)$ waveform during turn-off, the triangle would have a base equal to $2 \times 4.03 \times 10^{-3} / 20.8 \times 10^{3}=0.39 \mu \mathrm{~s}$, which agrees well with the $p(t)$ waveform shown. Similar measurements have been made during turn-on [8].

The idea of using $E_{O N}$ and $E_{O F F}$ to describe the switching performance is appealing because it is not necessary to take into account the detailed shape of the $v_{C E}(t)$ and $i_{C}(t)$ waveforms during the switching interval. This is particularly true for the $p(t)$ waveform during turn-on, which can be rather complex, e.g., see Fig. 26. For this example $\mathrm{E}_{\mathrm{ON}}=2.65 \mathrm{~mJ}$.

5.4.2 Energy Loss Measurements

$E_{O N}$ and $E_{O F F}$ have been measured for a wide range of conditions on a single transistor that is typical of the recent experimental runs. Perhaps the most important type of data obtained using this method is shown in Fig. 27 , which shows $E_{O F F}$ and $E_{O N}$ as a function of case temperature and peak collector current. Because the average power is kept to a small value during the measurement, the junction temperature is approximately equal to the case temperature. With this data and

Dwg. 6439A27

Fig. 24 Block diagram of switching-loss measurement.
(v) Transistor - Test Data - Inductive Switching

$$
\mathrm{t}_{\mathrm{SV}}=1.3 \mu \mathrm{~s}
$$

Fig. 25. Example of waveforms for the turn-off interval, showing collector-current, collector-emitter voltage, instantaneous power, base current and integrator gating signal.

Fig. 26. Turn-on waveforms for device 25A-49. Scales;
(a) $i_{C}=20 \mathrm{~A} / \mathrm{d}, \mathrm{v}_{\mathrm{CE}}=100 \mathrm{~V} / \mathrm{d}, \mathrm{t}=0.1 \mu \mathrm{~s} / \mathrm{d}$,
(b) $i_{C}^{C}=20 \mathrm{~A} / \mathrm{d}, \mathrm{p} \stackrel{C E}{=} 2 \mathrm{KW} / \mathrm{d}, \mathrm{t}=0.1 \mu \mathrm{~s} / \mathrm{d}$.
$\mathrm{L}=530 \mu \mathrm{H}, \mathrm{L}_{\mathrm{S}} \simeq 0, \mathrm{~V}_{\mathrm{CC}}=300 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=30^{\circ} \mathrm{C}$.

Curve 696002-A

Fig. 27 Measured turn-on and turn-off losses.
knowledge of the intended pulse repetition rate, it is possible to estimate the total switching losses.

For example, for a single periodic pulse of repetition frequency $f(=1 / T)$, with a conduction time $t_{\text {cond }}$, the total power lost in the transistor is

$$
\begin{equation*}
P_{L}=\left(E_{O N}+E_{O F F}\right) f+P_{O N} \cdot \delta \tag{6}
\end{equation*}
$$

where $\delta=t_{\text {cond }} / T$ and $P_{O N}$ is the steady-state conduction power. $P_{O N}$ can be obtained from the collector characteristic using the $I_{B F}$ of interest. $E_{O N}, E_{O F F}$ and $P_{O N}$ will all be functions of junction temperature T_{J}. Of these three terms, the most sensitive is $\mathrm{E}_{\mathrm{OFF}}$, which increases by approximately 2.5 times as T_{J} increases from room temperature to $150^{\circ} \mathrm{C}$.

Using the data of Fig. 27, together with $P_{O N}$, which can be obtained from the 576 curve tracer, it is possible to determine whether a particular operating frequency will permit thermally stable operation or not. This determination can be made without subjecting the device to thermal runaway conditions as is demonstrated in Fig. 28.

For this example, P_{L} is calculated from (6) for two frequencies. Also shown in Fig. 28 is a plot that is determined by the heat flow path from junction to ambient. In some systems the determination of this curve can be rather involved; however, it is usually possible to estimate $T_{J}-T_{A}$ as a function of the power dissipated P_{D} at the junction. As an example, for a junction to case thermal resistance $R_{\theta J C}$ and "heat sink" thermal resistance $R_{\theta C A}, P_{D}$ is given by

$$
\begin{equation*}
P_{D}=\frac{T_{J}-T_{A}}{R_{\theta J C}+R_{\theta C A}} \tag{7}
\end{equation*}
$$

For simple systems where heat flow is due to conduction, $R_{\theta C A}$ will be constant and a straight line plot as shown in Fig. 28 will apply. For convection, forced-air, or liquid cooled systems a more complicated plot may be required.

Fig. 28 Total power lost in the transistor (P_{L}) and dissipated power (P_{D}) due to the thermal path through the device and heat sink vs. Junction temperature. $\mathrm{P}_{\mathrm{L}}{ }_{\mathrm{D}} \mathrm{s}$ shown for two frequencies.

By breaking the problem into two parts, one of determining P_{L} vs. T_{J} and one of determining P_{D} vs. T_{J}, it is possible to predict the steady-state operating conditions. In addition, one can determine what device and circuit conditions will lead to thermal runaway. For example, if $R_{\theta J C}+R_{\theta C A}=0.4^{\circ} \mathrm{C} / \mathrm{W}$ and $f=20 \mathrm{KHz}$, Fig. 28 shows stable operation at $\mathrm{P}_{\mathrm{L}}=\mathrm{P}_{\mathrm{D}}=95 \mathrm{~W}$ and $\mathrm{T}_{\mathrm{J}}=100^{\circ} \mathrm{C}$, for a collector current of 50A. If f is increased to 50 KHz , there is no $P_{L}=P_{D}$ solution and an actual system would be thermally unstable. To obtain a steady-state solution at this frequency, T_{A} must be decreased or $R_{\theta C A}$ decreased.

This idea can be extended further by defining a "maximum safeoperating frequency" SOF, which corresponds to some maximum safe junction temperature, $\mathrm{T}_{\text {JMAX }}$. In practice, $\mathrm{T}_{\text {JMAX }}$ will be somewhat less than the temperature for which increasing junction leakage current leads to transistor thermal runaway.

From (6) the SOF is given by

$$
\begin{equation*}
\operatorname{SOF}=\left(\frac{T_{J M A X}-T_{A}}{R_{\theta J C}+R_{\theta C A}}-P_{O N} \delta\right) /\left(E_{O N}+E_{O F F}\right) \tag{8}
\end{equation*}
$$

The $S O F$ is plotted vs. the effective heat sink thermal resistance $R_{\theta C A}$ in Fig. 29 for a particular example.

It can be seen that operation in excess of 100 KHz is possible provided $R_{\theta C A}$ and i_{C} are kept within the appropriate limits. In addition, switching VI products in excess of 24 KVA can be obtained at lower frequencies.

5.5 Reverse SOA

Most "high-voltage" transistors are subject to a failure mechanism (second breakdown) that can occur during turn-off of an inductive load. The region of the $I_{C}, V_{C E}$ plane within which the failure mechanism can be triggered is termed the Reverse Safe-Operating Area (SOA), a name suggested by the more familiar forward SOA.

Fig. 29 Safe operating frequency vs. heat sink thermal resistance for different collector currents.
\because

Fig. 30 Reverse Operating Area and Test Circuit.

At present, we have only a limited knowledge of the Reverse SOA for the D60T. An interpretation of some recent work at the National Bureau of Standards [12] suggests that the Reverse SOA will have the general shape shown in Fig. 30, where the curves are drawn for constant $I_{B R}$, or with $V_{B E}$ clamped to a voltage source (which prevents breakdown of the emitterbase junction).

The details of these curves for the present transistors are still being determined. Experience to date shows that the curves for $I_{B R} \approx 10 \mathrm{~A}$ lie to the right of the point $I_{C}=80 \mathrm{~A}, \mathrm{~V}_{\mathrm{x}}$, where $\mathrm{V}_{\mathrm{x}} \simeq \mathrm{V}_{\mathrm{CEO}}$ (sus). - 50v.

As noted in the interim report, the methods developed during the present contract period can be extended to even larger devices. As part of the present program, a preliminary design has been worked out for a 33 mm dia. fusion, which is the next larger diameter in production at the Westinghouse Semiconductor Division.

6.133 mm Design

For this design a metallurgical emitter area of $3 \mathrm{~cm}^{2}$ was assumed with an $\mathrm{L}_{\mathrm{E}}=15 \mathrm{mils}(381 \mu \mathrm{~m})$, which is the same width used on the present 659 mask. Table 3 gives the predicted electrical performance for this size. The overall current handling capability is expected to increase by more than a factor of two over the present 23 mm design.

It can be seen that a considerably larger base current will also be required. The present base lead is rated at 20 A of DC current. The base lead wire can be increased in diameter without much difficulty; however, there is an additional problem related to the voltage distribution along the base metallization pattern. Although transverse current flow through a distributed base resistance is less deleterious than that for an emitter resistance, a non-uniform current distribution will eventually occur as I_{C} is increased.

6.2 Effect of Base Metallization

The problem has been analyzed in a fashion similar to that of Ref. [2] with the exception that in the present case the resulting differential equations are solved numerically. Figure 31 shows the calculated results for the present 659 mask at a relatively large value

TABLE 3

Predicted Performance for a 33 MM Dia. Fusion

$\mathrm{V}_{\mathrm{CEO}} \text { (sus) }$ (V)	$h_{\mathrm{FE}} \mathrm{I}_{\mathrm{C}}{ }^{(1)}$ (A)	$I_{B} @ h_{F E}=5$ (A)
400	1700	68
600	1200	48

Notes:
(1) $\mathrm{V}_{\mathrm{CE}}=2.5 \mathrm{~V}$

Fig. 31 Base-emitter voltage (normalized to $\mathrm{kT} / \mathrm{q}=25.6 \mathrm{mV}$) and current density for the typical sector shown in Fig. 32.

Figure 32. Metallization pattern showing base fingers and radial distance from base trunk centerline.

Fig. 33 Fractional reduction in emitter area vs. collector current due to base metallization sheet resistance for the pattern of Fig. 32.
of I_{C}. Figure 31 is a plot of normalized $v_{B E}$ along each base finger, with the left-hand axis corresponding to the center of the base "bus" or trunk that contacts all fingers. The metallization pattern is labelled in Fig. 32.

It is not too surprising that most of the voltage drop occurs along the trunk and only small voltage differences occur along each finger.

With the present analysis, it is possible to predict the reduction in effective area that will occur with a given pattern and base metallization sheet resistance $R_{S B}$. An example of this calculation is shown in Fig. 33. This curve does not take into account the problem of emitter current crowding which will cause a further reduction in effective area A_{E}.

It can be seen that the effects of base metallization begin to be important for $I_{C} \xlongequal{\geqslant} 100 \mathrm{~A}$ for the present design. As the device size is increased, these effects become more serious and it will be desirable to develop methods of improving the base contact to minimize the voltage differences that occur along the base trunk.

7. CONCLUSIONS

The major effort of this program has been the adaptation of present large-area device technology to the fabrication of high-voltage switching transistors. In carrying out this work a number of problems have been solved which deal with the design and fabrication of these transistors.

The work has been successful in the sense that a new transistor (Westinghouse D60T) has been announced which has attracted a great deal of interest from workers in the field of power electronics. The basic design and processing for this device follow closely the results described in this report. (The data sheet for this device is included in Appendix 3.) It is anticipated that the techniques described here will provide a background for future device designs which are larger in area and improved in performance.

8. ACKNOWLEDGEMENTS

The authors acknowledge the technical assistance of D. F. Carnahan, M. N. Sterrett, and G. W. Vomish. The switching evaluation circuit was designed by J. B. Brewster. Assistance with electrical evaluation was given by J. E. Marinchak and R. J. Fiedor. Helpful comments and suggestions were provided by G. R. Sundberg, D. J. Page, and L. R. Lowry.
9. REFERENCES
[1] P. L. Hower, "Optimum design of power transistor switches," IEEE Trans. on Electron Dev., ED-20, pp. 426-435, April 1973.
[2] P. L. Hower and W. G. Einthoven, "Emitter current crowding in high-voltage transistors," IEEE Trans. on Electron Dev., ED-25, pp. 465-471, April 1978.
[3] P. L. Hower and P. K. Govil, "Comparison of one-and twodimensional models of transistor thermal instability," IEEE Trans. on Electron Dev., ED-21, pp. 617-623, Oct. 1974.
[4] P. L. Hower, "Application of a charge-control model to highvoltage power transistors," IEEE Trans. on Electron Dev., ED-23, pp. 863-870, Aug. 1976.
[5] V.A.K. Temple and M. S. Adler, "The theory and application of a simple etch contour for near ideal breakdown voltage in plane and planar $p-n$ junctions," IEEE Trans. on Electron Dev., ED-23, pp. 950-955, Aug. 1976.
[6] T. W. Kotowski, "High injection region analysis and optimization of power transistors," IEEE Power Elec. Specialists Conf. Record1977, pp. 27-34.
[7] P. L. Hower and C. K. Chu, "Development fabrication of improved power transistor switches," Contract NAS 3-18916 Interim Report, Report No. NASA CR-135013, National Technical Information Service, Springfield, VA 22151.
[8] P. L. Hower, J. B. Brewster, and M. Morozowich, "A new method of characterizing the switching performance of power transistors," IEEE Ind. App. Soc. Conf. Record-1978 pp. 1044-1049.
[9] R. P. Mertens, H. J. DeMan, and R. J. Van Overstraetan, "Calculation of the emitter efficiency of bipolar transistors," IEEE Trans. on Electron Dev., ED-20, Pp. 772-778, Sept. 1973.
[10] B. Kukle and S. L. Miller, "Accurate mieasurement of emitter and collector series resistances in transistors," Proc. IRE, 45, p. 90, Jan. 1957.
L. J. Giacoletto, "Comments on measurement of emitter and collector series resistances," IEEE Trans. on Electron Dev., ED-19, Pp. 692-693, July 1972; ibid., p. 1224, Nov. 1972.
[11] G. Bosch, "Anomalous current distributions in power transistors," Solid-State Elec.; 20 pp. 635-640, July 1977.
[12] D. L. Blackburn and D. W. Berning, "Some effects of base current on transistor switching and reverse-bias second breakdown," IEEE Int. Electron Dev. Mtg. Technical Digest-1978, pp. 671-675.

10. APPENDICES

Appendix 1 Data
Appendix 2 Data
Appendix 3 Papers
Appendix 4 Westinghouse D60T Data Sheet

APPENDIX 1

TEST DATA ON TRANSISTORS FABRICATED DURING FIRST PERIOD OF THE CONTRACT

The initial design goals are given in Tables 4 and 5. It was determined early in the contract period that an emitter area of at least $0.5 \mathrm{~cm}^{2}$ was required to simultaneously meet specifications (1) and (5). A fairly coarse geometry mask was designed (mask 565) and 50 devices were tested and delivered to NASA. These devices were originally intended for an ion-engine space craft application which required $\mathrm{V}_{\mathrm{CEO}}$ (sus) $\geq 600 \mathrm{~V}$.

Table 6 lists measured data on these devices. The averaged results are:

Specification Number	$\begin{aligned} & V_{C E} \text { (sat) } \\ & (5) \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{CE}}(\mathrm{sat})$ (6)	$\begin{gathered} \mathrm{V}_{\mathrm{CE}} \text { (sus) } \\ \quad(1) \\ \hline \end{gathered}$
Average of 50 devices	0.66 V	0.55 V	680V
Desired	≤ 0.4	≤ 0.8	≥ 600

As a confirmation of the design theory, a number of the devices did simultaneously meet all three requirements; however, on the average V_{CE} (sat) at 5 A was about 50 percent larger than the goal. The main reason for this increase is that the collector width on most of the devices is thicker than the optimum value.

Table 4- Dc Characteristics *

Symbol	pecificati Number	Description	Value
$\mathrm{BV}_{\mathrm{CEO}}{ }^{\text {(sus) }}$	(1)	Minimum collector-emitter sustaining voltage, base open	600 V at 100 mA
$\mathrm{BV}_{\mathrm{CER}}$ (sus)	(2)	Minimum collector-emitter sustaining voltage, $\mathrm{R}_{\mathrm{BE}}=$ 47 ohm	800 V at 100 mA
$\mathrm{BV}_{\mathrm{EBO}}$	(3)	Minimum emitter-base breakdown voltage, collector open	8 V at 1 mA
$\mathrm{I}_{\text {CER }}$	(4)	Maximum collector-emitter leakage current, $\mathrm{R}_{\mathrm{BE}}=$ 47 ohm	0.1 mA at 600 V
$\mathrm{V}_{\mathrm{CE}}{ }^{\text {(sat) }}$	(5)	Maximum collector-emitter saturation voltage at $\mathrm{I}_{\mathrm{C}}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.25 \mathrm{~A}$	0.4 V
$\mathrm{V}_{\mathrm{CE}}{ }^{\text {(sat) }}$	(6)	Maximum collector-emitter saturation voltage at $I_{C}=10 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~A}$	0.8 V
$\mathrm{V}_{\mathrm{BE}}{ }^{\text {(sat) }}$	(7)	Maximum emitter-base saturation voltage at $\mathrm{I}_{\mathrm{C}}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.25 \mathrm{~A}$	1.0 V
$h_{\text {FE }}$	(8)	Minimum de forward current transfer ratio at $I_{C}=10 \mathrm{~A}$, $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$	10
${ }^{1} \mathrm{C}, \max$	(9)	Dc collector current absolute maximum rating	15 A

[^0]Table 5 - Switching Times

Specification			RFP Proposed		
Symbol	Number	Description	Value	Value	Units
t_{r}	(10)	Maximum collector current rise time*	0.1	0.15	$\mu \mathrm{S}$
t_{f}	(11)	Maximum collector current fall time*	0.1	0.12	$\mu \mathrm{s}$
t_{s}	(12)	Maximum collector storage time*	0.5	0.7	$\mu \mathrm{s}$

;
Table 6 (cont.)
70


```
Table 6 (cont.)
```


Notes

${ }^{*} I_{\text {CEO }}{ }^{@} V_{\text {CEO }}=600 \mathrm{~V}$ or $V_{\text {CEO }}{ }^{@} I_{\text {CEO }}=0.1 \mathrm{~mA}$, whichever occurs first as voltage is increased.
(4) $h_{\text {FE }}$
(5) $V_{E B O}, I_{\text {IBO }}$

$$
I_{C}=10 \mathrm{~A}, V_{C E}=5 \mathrm{~V}
$$

${ }^{* * I_{E B O}}{ }^{@} V_{E B O}=8 V$ or $V_{E B O}{ }^{@} I_{E B O}=1 m A$, whichever occurs first as voltage is increased.
(6) $\quad \begin{array}{r}* * * \\ V_{\text {CEO }} \text { (suss) } \\ V_{\text {GER }}(\text { pus })\end{array}$
$I=100 \mathrm{~mA}$, except where noted by use of a slash, e.g., 950/40 means the voltage was measured at 40 mA
(b) Semiconductor Division inductive test set. $L=20 \mathrm{mH}$ or 1000 mH as noted.
***This test was initiated using $L=1000 \mathrm{mH}$; however, destructive oscillations were sometimes observed with this inductance and L was reduced to 20 mH for the remainder of the test.

APPENDIX 2
TEST DATA ON TRANSISTORS FABRICATED DURING THE FINAL PERIOD ON THE CONTRACT

Data is given in Table 7 for 25 devices which were delivered to NASA at the completion of the contract. The design used for these transistors is given in the text. Switching measurements were made using the circuit of Fig. 22.

TABLE 7 - TEST DATA

	H^{0}											
$\underset{x^{[4]}}{4}$												
	Parameter	$\mathrm{V}_{\mathrm{CEO}}(\mathrm{su})$	$h_{F E}\left(I_{C}\right)$	$\mathrm{v}_{\mathrm{CE}}=$		$\begin{gathered} \mathrm{G} \\ \mathrm{@} 60 \mathrm{~A} \end{gathered}$	$\mathrm{E}_{\mathrm{OFF}}$	$t_{s v}$	$\mathrm{h}_{\text {FEO }}$	$\mathrm{I}_{\mathrm{EBO}} \mid \mathrm{V}_{\mathrm{BE}}=7 \mathrm{~V}$	R_{BE}	E_{ON}
	Units	(V)	$\mathrm{I}_{\mathrm{C}}=40 \mathrm{~A}$	50A	60A	(A)	(mJ)	($\mu \mathrm{s}$)	(-)	(mA)	(Ω)	(mJ)
Device No.	See Note:	(1)					(2)	(2)	(3)	(4)	(4)	(2)
2		444	20.0	17.2	14.3	857	3.36	3.7	31	. 003		
4		406	12.5	10.8	9.4	563	3.12	3.1	20	. 002		
6		464	21.0	17.9	15	900	3.68	4.0	40	--	71	0.75
15		487	14.8	11.9	9.8	590	4.32	3.5	30	. 759		
20		435	25.0	20.0	16.2	973	3.08	4.0	43	--	283	
23		437	23.5	19.2	15.8	947	3.39	3.7	29	. 002		
24		458	19.0	15.6	13.0	783	3.57	3.4	36	6.95		
29		433	21.0	16.7	13.6	818	3.4	3.5	39	16.4		
45		416	17.0	14.3	12.5	750	2.59	3.7	28	--	177	
48		459	20.0	16.1	13.6	818			36	. 001		
49		442	22.0	18.5	15.0	900			39	1.30		
56		426	21.0	16.7	13.6	818			36	1.61		
72		384	11.0	10.0	9.1	545			16	--	59	
79		471	12.5	10.2	8.9	537			22	66		
92		382	17.4	13.2	10.7	643	1.71	1.6	38	--	300	
93		384	20.0	14.7	12.2	735	2.88	2.2	41	1.05		
96		392	14.3	10.9	9.2	554			38		93	
98		388	20.0	15.2	12.0	720			52	16.3		
102		370	21.1	16.1	13.3	800	2.67	2.0	46	2.27		
103		411	19.0	13.9	11.3	679			42		125	
107		446	22.0	16.1	13.0	800	3.20	2.5	49		70	0.75
108		393	20.0	15.6	13.0	783			39	1.68		
25B - 2		460	11.8	10.0	8.55	513			24	1.0		

Notes: (1) $\mathrm{V}_{\text {CEO }}$ (sus) measured using inductive turn-off ($\mathrm{L}=25 \mathrm{mH}$) with base open at $\mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}$.
(2) $\mathrm{E}_{\text {OFF }}$ is energy in turn-off pulse for collector current of 60 A , clamp-voltage of 300 V .
$\mathrm{I}_{\mathrm{BF}}^{\mathrm{OFF}}=15 \mathrm{~A}, \mathrm{I}_{\mathrm{BR}}=8 \mathrm{~A}$, load inductance $=280 \mu \mathrm{H}$.
(3) $h_{\text {FEO }}$ is peak current gain, $v_{\text {CE }}=5 \mathrm{~V}$.
(4) For $\mathrm{I}_{\text {EBO }}>20 \mathrm{~mA}$ @ 7 V , emitter leakage current was usually proportional to V_{EB}, in this case R_{BE} gives effective resistance, emitter-to-base.

APPENDIX 3

PAPERS PUBLISHED UNDER THIS CONTRACT
P. L. Hower, "Power Transistor Performance Tradeoffs," 1975 IEEE Power Electronics Specialists Conference Record, pp. 217-223, Los Angeles, June, 1975.
P. L. Hower and C. K. Chu, "Design and Performance of Large-Area Power Transistors," 1975 IEEE Industry Applications Society Conference Record, pp. 459-463, Atlanta, October 1975.
P. L. Hower, "Application of a Charge-Control Model to High-Voltage Power Transistors," IEEE Trans. on Electron Dev., ED-23, pp. 863-870, August 1966.
P. L. Hower, J. B. Brewster, and M. Morozowich, "A New Method of Characterizing the Switching Performance of Power Transistors," IEEE Ind. App. Soc. Conf. Record-1978 pp. 1044-1049.
P. L. Hower and W. G. Einthoven, "Emitter Current Crowding in High-Voltage Transistors," IEEE Trans. on Electron Dev., ED-25, pp. 465-471, Apri1 1978.

Ordering Information

Type	Voltage Rating (Volts)	Current Rating - Amperes			Gain
		40	50	60	
poor	400	4940	4050	4060	13
062T*	450	4540	4550		10
	500	5040			10

Example: Select the complete ten digit device part number you desire from the shaded area in the table above - i.e. a D60T454010 describes a stud mount transistor rated at 4.50 volts, 40 amperes, and a gain of 10 at rated current (40 amperes).
*Note: Disc package (D62T), consult factory.

DEVELOPMENTAL PRODUCT

These devices are developmental types intended for engineering evaluation Specifications and data are subject to change without prior notice. Westinghouse assumes no obligation for notice of change or future manufacture of these products

Electrical Characteristics $\left(\right.$ TCASE $=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Characteristic		Test Conditions	Min.	Typ.	Max.	Units
VCEO (SUS)	Collector-Emitter Sustaining Voltage		$\begin{aligned} & \text { IC }=200 \mathrm{~mA} \\ & \text { lB }=0 \\ & 300 \% \text { s Pulse } \end{aligned}$	See Page T33			
KCEV	Collector Cutoff Current (Base Emitter Reverse Biased)		At Rated VCE VBE (OFF) $=-1.5 \mathrm{~V}$.		10	100	$\mu \mathrm{A}$
ICEV	Collector Cutoff Current (Base Emitter Reverse Biased)		At Rated VCE VBE (OFF) $=-1.5 \mathrm{~V}, \mathrm{TC}=150^{\circ} \mathrm{C}$. 8	3	mA
IEBO	Emitter Cutoff Current		VEB $=7 \mathrm{~V}$			5	mA
hFE	DC Current Gain		$\mathrm{RC}=$ Rated, $\mathrm{VCE}=2.5 \mathrm{~V}$	10	15		
hFE	DC Current Gain		$\mathrm{IC}=90 \mathrm{~A}, \mathrm{VCE}=2.5 \mathrm{~V}$		5		
VCE (SAT)	Collector-Emitter Saturation Voltage		$\mathrm{IC}=$ Rated $\mathrm{Ic} / \mathrm{Ib}=8.33$. 75	1.25	Volts
VBE (SAT)	Base-Emitter Saturation Voltage		$\begin{aligned} & \mathrm{lc} / \mathrm{ls}=8.33 \\ & \mathrm{lc}=40 \mathrm{~A} \\ & \mathrm{lc}=50 \mathrm{~A} \\ & \mathrm{lc}=60 \mathrm{~A} \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.25 \\ & 1.50 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.50 \\ & 1.75 \\ & \hline \end{aligned}$	Volts
Cob	Output Capacitance		HEST $=1 \mathrm{MHz}, \mathrm{VCB}=10 \mathrm{~V}$		2500		य ${ }^{\text {H }}$
P_{T}	Gain-Bandwidth Product		TTEST $=1 \mathrm{MHZ}, \mathrm{IC}=5 \mathrm{~A}, \mathrm{VCE}=10 \mathrm{~V}$	7	10		MHZ
Rosc	Thermal Resistance Junction to Case		$\mathrm{VcE}=2 \mathrm{~V}$			0.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
td	Turn-On Delay	Resistive Load Switch Times	$\begin{aligned} & \mathrm{Vcc}=250 \mathrm{~V}, \mathrm{IC}=40 \mathrm{~A} \\ & \mathrm{IBI}=1 \mathrm{B2}=4.8 \mathrm{~A} \\ & \mathrm{t}_{\mathrm{p}}=50 \mathrm{us} \\ & \text { Duty Cycle }<2 \% \end{aligned}$			100	ns
t_{r}	Rise Time				0.9	1.0	$\mu \mathrm{s}$
1_{s}	Storage Time				1.25	2.5	$\mu \mathrm{s}$
4	Fall Time				0.3	0.5	$\mu \mathrm{s}$

200 Amperes 400-500 Volts

NPN Power Switching TRANSISTORS D60T/D62T

Calculated Maximum Forward Bias Safe Operating Area - S.O.A.

NASA CR-159524

NASA Lewis Research Center
21000 Brookpark Road
Cleveland, OH 44135
Attn: D. J. Shramo, MS 3-31
H. W. Douglass, MS 501-5 1
H. W. Plohr, MS 501-5 1
R. C. Finke, MS 501-8 1
I. T. Myers, MS 501-8 1
G. R. Sundberg, MS 501-8 20
B. L. Sater, MS 501-8 1
J. F. Been, MS 501-7 1
A. G. Birchenough, MS 49-6 1
L. E. Light, MS 500-213 1
P. E. Foster, MS 7-3
Librarian, MS 60-3Report Control, MS 5-5
R \& QA Office, MS 500-211
R. L. Pickrell, MS 49-5
NASA Headquarters
Washington, DC 20546
Attn: RP/J. Lazar 1

RPP/J. P. Mullin

RPP/J. P. MullinRE/P. R. KurzhalsRES/E. C. PontiusKSA/Librarian1221KA/Librarian1
NASA Goddard Space Flight Center
Greenbelt,-MD 20771
Attn: Librarian, 252.0 1
NASA George C. Marshall Space Flight Center
Marshall Space Flight Center, AL 35812
Attn: R. Lanier, EC 12
R. Kapustka, EC 12
A. M. Holladay, EC 4
F. Villella, EC 43
Librarian
NASA Lyndon B. Johnson Space Center
Houston, TX 77058
Attn: J. T. Edge, EG 5 1
M. E. Wood, EG 2 1
W. Stagg, EH 5 1
Librarian 1
NASA Ames Research Center
Moffett Field, CA 94035
Attn: Librarian, MS 202-3 1
NASA Langley Research Center
Hampton, VA 23365
Attn: Librarian 1
NASA Flight Research Center
P.O. Box 273
Edwards, CA 93523
Attn: Librarian 1
NASA John F. Kennedy Space Center
Kenneday Space Center, FL 32899
Attn: IS-DOC-IL/Librarian 1
NASA Jet Propulsion Laboratory
4.800 Oak Grove Drive
Pasadena, CA 91103
Attn: D. K. Decker, MS 198-220 1
Librarian 1
NASA Scientific and TechnicalInformation Facili.ty
P.O. Box 8757
Balt./Wash: International Airport, MD 21240
Attn: Accessioning Department 25
Department of the Air Force
Wright-Patterson Air Force Base, OH 45433 1
AFAPL/POD, P. Herron 1
AFAPL/FDL, D. K. Bird 1
Advisory Group on Electron Devices
201 Varick Street
New York, NY 10014Attn: Working Group on Power Devices1
Commander
U.S. Army Electronics Command
Fort Monmouth, NJ 07703
Attn: R. A. Gerhold, DRSEL-TL-1
Commanding :icer
U.S. Army Research Office
P.0. Box 12211
Research Triangle Park, NC 27709
Attn: C. Boghosian
Naval Research Laboratory
4555 Overlook Avenue, SW
Washington, DC 20375
Attn: D. F. Barbe, Code 5260
Commander
NAVSEC Code 420 CTRBG
801 Center Building
Hyattsville, MD 20782
Attn: A. D. Hitt, Jr.
Commander
Harry Diamond Labs.
2800 Powder Mill Rd.
Adelphi, MD 20783
Attn: A. J. Baba, DRXDO-RCC 1
Naval Electronics Systems CommandWashington, DC 20360
Attn: Ron Wade, ELEX-0151431 1CommanderRADC
Griffiess AFB, NY 13441
Attn: J. B. Brauer, RBRM
Naval Air Systems Command
Department of the Navy
Washington, DC 20360
Attn: AIR 5368/W. T. Beatson 1
AIR 5368/L. Klein
Naval Electronics Laboratory Center
San Diego, CA 92152
Attn: J. Foutz, Code 9234 1
U.S. Army Electronics Command
Fort Monmouth, NJ 07703
Attn: E. Kittl
William R. Peltz DRSEL-PP-I-PI
United State Army
Mobility Equipment Research \& Development Command
Fort Belvoir, VA 22060
Attn: E. Reimers 1
D. L. Fetterman, DRX FB-EM 1
National Bureau of Standards
Building 225, Room D310
Washington, DC 20234
Attn: D. L. Blackburn, DLB/721 1
Department of Energy
Division of Electrical Engineering Systems
20 Massachusetts Aven.
Washington, DC 20545
Attn: R. Eaton, MS 2221-C 1
Naval Air Development Center
Department of the Navy
Johnville, PA 18974
Attn: R. H. Ireland (3043) 1
Jodeph Segrest (3043) 1
Naval Ship Research \& Development Center
Annapolis, MD 21404
Attn: Carl Kelkenbenz, Code 2771 1
Aerospace Research Application Center
1201 E. 38th Street
Indianapolis, IN 46205
Attn: E. Guy Buck 1
Naval Avionics Facility
6000 East 2lst Street
Indianapolis, IN 46218
Attn: J. H. Jentz 1
Naval Civil Engíneering Laboratory
Port Hueneme, CA 93043
Attn: H. H. Kajihara 1
Abacus Controls, Inc.
P.O. Box 893
Somerville, NJ 08876
Attn: G. A. Sullivan
Aybin Corp, Energy Div.
3180 Hanover Street
Palo Alto, CA 94303
Attn: S. Geiger
AiResearch Manufacturing Company
2525 W. 190th Street
Torrance, CA 90509
Attn: J. Ashmore
The Boeing Aerospace Company
P.O. Box 3999
Seattle, WA 98124
Attn: I. S. Mehdi, MS 4" 33 1
J. M. Voss, MS 8C-ن2
Delco Electronics
General Motors Coproration
6767 Hollister Ave.
Goleta, CA 93017
Attn: A. Barrett
Delta Electronic Control Corporation
2801 S. E. Main Street
Irvine, CA 92714
Attn: C. W. Jobbins
Electrical Engineering Department Duke University
Durham, NC 27706
Attn: T. G. Wilson
Hughes Aircraft Company
Space Systems Group
El Segundo, CA 90245
Attn: R. Martinelli
General Dynamics Corporation
Convair Aerospace Division
P.0. Box 748
Fort Worth, TX 76101
Attn: A. J. I. Carline 1
General Electric Company
Corporate Research \& Development
Schenectady, NY 12301
Attn: S. Krishna 1
D. Schaeffer
ESB Research
19 W. College Ave.
Yardley, PA 19067
Attn: G. Oughton
Electrical Engineering Department
Texas Tech University
Lubback, TX 79409
Attn: W. Portnoy
Gruman Aerospace Corporation
WEDE, Plant 35
Bethpage, L.I., NY 11714
Attn: E. Miller
Instrument Systems Corp.
Telephonics Division
770 Park Avenue
Huntington, L.I., NY 11743
Attn: S. Oken
International Rectifier Corporation
Semi-Conductor Division
233 Kansas Street
El Segundo, CA 90245
Attn: W. Collins 1
LTV Aerospace Corporation
Vought Missiles \& Space Company
P.0. B0x 5907
Dallas, TX 75222
Attn: A. Marek 1
Lockheed Electronics Co.
1830 NASA Road One
Houston, TX 77058
Attn: C. Wright 1
Lockheed Missiles \& Space CompanyP.0. Box 504
Sunnyvale, CA 94088
Attn: R. E. Corbett 1

Martin-Marietta Corporation
Denver Division
P.O. Box 179

Denver, CO 80201
Attn: E. Buchanen
National Semi-Conductor Corp.
Danbury, CT 06810
Attn: R. R. Bregar
Neomed
5595 Arapaho
Boulder, CO 80303
Attn: J. Esty
McDonnell Douglas Aircraft Co.
3855 Lakewood Blvd.
Long Beach, CA 90808
Attn: W. E. Murray, MS 36-43
McDonnel Douglas
P.0. Box 516, Dept. B454

St. Louis, MO 63166
Attn: J. Gilbert, Bldg. 106/2, MS 074
Motorola Semiconductor Products Div.
5005 E. McDowell Road
Phoenix, AR 85008
Attn: R. White
Power Electronics Associates, Inc.
Round Hill Road
Lincoln, MA 01773
Attn: F. C. Schwarz . 1
Power Tech; Inc.
9 Baker Court
Clifton, NJ 007011
Attn: A. M. Plner
RCA Solid State Div.
New Holland Ave.
Lancaster, PA 17604
Attn: S. W. Kessler
Rockwell International Corp.
Columbus Aircraft Div.
4300 E. Fifth Ave., P.O. Box 1259
Columbus, OH 43216
Attn: J. L. Frencho : 1
Simmonds Precision, Engine Systems Div.
Norwich-Oxford Road
Norwich, NY 13815
Attn: R. Close 1
Silicon Transistor Corp.
Katrina Road
Chelmsford, MA 01824
Attn: P. Fitzgerald
Solitron Devices, Inc.
1177 Blue Heron Blvd.
Riviera Beach, F1 33404
Attn: S. Holander 1
Texas Instruments, Inc.
P.0. Box 5474, MS 72
Dallas, TX 75222
Attn: H. D. Toombs
Transitron Electronic Corp.
168 Albrion STreet
Wakefield, MA 01880
Attn: S. Bakalar
Trans Therm Corp.
Ann Arbor, MI 48106
Attn: J. Souder 1
TRW Systems Group
One Space Park
Redondo Beach, CA 90278
Attn: J. Biess, MC M2/2367
D. Zerbel, MC M2/2145
University of Cincinnati
Dept. of Electrical Engineering
898 Rhodes Hall
Cincinnati, OH 45221
Attn: H. T. Henderson, ML 30
Westinghouse Aerospace Electrical Div.
P.0. Box 989
Lima, OH 45802
Attn: R. Skampfer
K. Shuey
Westinghouse Research Laboratories
1310 Beulah Road
Pittsburgh, PA 15235
Attn: P. L. Hower, 501-2D22

[^0]: *

    ```
    Proposed at beginning of contract.
    ```

