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Abstract. Various adjustment strategies
are now being used in North America to obtain
vertical crustal movements from repeated
leveling. The more successful models utilize
polynomials or multiquadric analysis to des-
cribe elevation change with a velocity surface.
Other features permit determination of non-
linear motions, motions associated with earth-
quakes or episodes, and vertical motions of
blocks where boundaries are prespecified. The
preferred models for estimating crustal motions
permit the use of detached segments of relev-
eling to govern the shape of a velocity surface
and allow for input from nonleveling sources
such as tide gages and paired lake gages. Some
models for extracting vertical crustal movements
from releveling data are also excellent for
adjusting leveling networks, and permit
mixing old and new data in areas exhibiting
vertical motion. The new adjustment techniques
are more general than older static models and
will undoubtedly be used routinely in the future
as the constitution of level networks becomes
mainly relevelings.

Introduction

In the United States, most leveling
surveys have been performed to support individ-
ual engineering or mapping projects. Until
recent years the timing .and arrangement of the
surveys were rarely influenced by the geodesist's •
need to detect verical crustal movement. The
most prominent factors influencing the network
development were the availability of cooperative
funding from local government and the desire
to eliminate what were regarded as weaknesses
in the network. Generally, the development
of most national networks geographically follows
the development of a nation, and "ideal" plans
for quickly establishing a network of strategically
spaced lines are rarely implemented.

Because of the manner in which most national
networks evolve and are maintained, the geodesist
is challenged to find ways of detecting crustal
movements from scattered releveling over an
original network which is also not time-homogeneous.
The detection of vertical crustal movements is
important to the earth scientist, but for the
geodesist it is also necessary to model such
movements when adjusting networks of leveled
height differences of different dates. The
geodesist then wants to find models which bring
consistency between the observations, the
detected movements or velocities, and the heights
being published.
Various methods for determining and predicting

vertical crustal movements have been used in
North America. They are described in the
following pages. Each of the methods works well
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in particular circumstances; two of the methods
are general enough to be used frequently in
height computations. Figure 1 through 4 sche-
matically illustrate characteristics of leveling
networks. Various line types indicate that
observations were obtained in different years.

Methods and Models

Method 1

Occasionally. the_ distribution of original and
repeated levelings is almost ideal for a small
area (see Figure 1). Two levelings covering the
study area, each accomplished within a short time
period and adequately separated from each other in
time, may be adjusted independently. After the
adjustments, movements are calculated by comparing
the two sets of adjusted heights. To make the
comparison, a movement is assumed to be known for
one of the common points; usually the movement at
that point is taken to be zero and the computed
movements are considered relative. If one of the
points is a tide gage, absolute movement at that
point can be inferred from the tide gage record.
Absolute movements at other points can.be
calculated by adding in a constant when making
the comparison. Velocities are obtained by
dividing the movements by the time elapsed between
epochs.
Method 1 is worth mentioning because it does not

involve complicated mathematical models and thus
avoids the need to develop special computer
programs. However, the network in Figure 1 is
handled equally well by the more general methods
described next.

Method 2

Often this method is more applicable for crustal
movement determination than Method 1 because data
requirements are less restrictive. The original
and repeat observations existing in an area will
generally not be separated by a constant time
interval. By forming velocity difference obser-
vations from repeat levelings, the data are
effectively made homogeneous. Since velocity
observations are independent of date, velocity
misclosures should theoretically equal zero if
leveling is perfect and the assumption of constant
movement is correct.
The velocity difference, Av, between points

connected by releveling is computed according to:

Av = (1)
At

where Ahj and Ah2 are the old and new observed
height differences respectively, and At is the
time elapsed between levelings .
The variance of the velocity difference is

computed using equation (2),

Av
(nrj + m|)S /At2 (2)
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FIGURE 1
Complete Releveling - Two. Leveling Epochs

FIGURE 3
Multiple Relevelings, Single Levelings
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FIGURE 2
Scattered Releveiings

FIGURE '4
Multipis Flelcvclings, Single Levslrngs,

and Detached Roloveiings
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where m? and m^ are the a priori unit variances
of the old and new levelings, and S is the distance
between link terminals.
The velocity differences forming a network may

be disconnected but not by long distances.
Constraints requiring velocities in the same small
locality to be identical can hold the segments
together. These constraints are reasonable only
if the geographical separation of observations is
not great or the variation in velocity occurs
very gradually over the unconnected area. Weighted
constraints that allow some motion between neighbor-
ing junctions may also be used to hold disconnected
segments together, but selecting a weight may be like
guesswork.

Method 3 '

Vanicek and Cristodulides [1974]. The primary advantage
of surface fitting is its usefulness on networks of
scattered relevelings of the type shown in Figure 2.
The velocity surface V can be expressed by a

generalized two-dimensional polynomial:

k
V(x,y) = £ cifi(x,y) (3)

where f. are arbitrarily chosen, linearly inde-
pendent1functions of the coordinates x and y,
and c. are the coefficients which best fit the
observations. A velocity difference can be
written as:

AV(x,y) = I cififi(x,y)

Method 3, which fits a velocity surface through a field
of velocity differences, is described in detail by
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where Af.(x,y) = f.(xg,Xg) - f.(x̂ ,x̂ ), for a
pair of connected bench marks, A and B. Because
of simplicity, the two dimensional-algebraic
functions x^-yJ, i, j = 0, 1, 2 ..... m are
frequently used for the f^.

In the above type of adjustment , the unknowns
are the coefficients c^ , and the observations
are velocity differences computed from levelings
using equation 1. The origin of the coordinate
system is usually taken to be a point near the
center of the study area. Once the coefficients
are known, velocities for desired points are
calculated using equation 3.
Although method 3 works well on the network

shown in Figure 2, it would not fully utilize
the measurements shown in Figure 4. To do so
would require a nondiagonal weight matrix or
preprocessing to obtain weighted mean velocity
differences when there is more than one
releveling. Neither does the model utilize the
information found in circuit misclosures. The
main advantage of Method 3 is that it minimizes
the number of unknowns in the solution.

Method 4

This technique uses simple polynomials to
describe height variations at selected bench marks
in the study area. If implemented in its most
basic form, the observations are differences of
elevation rather than velocity differences.
It is assumed that elevation differences are
connected as shown in Figure 3.

At the onset, we pick a starting or reference
time, t0. Then, for example, the height of a
bench mark A at time t. is .written as follows:

levelings, in appropriate locations,
can also add strength to the solution.

(2) Velocity and velocity difference
observations are easily introduced to
the adjustment. Velocities which
have been inferred from tide gage
records are entered as weighted para-
meters ; velocity difference observa-
tions, computed from pairs of lake
level gage records may be entered as
differences between the At coefficients
corresponding to the two points on the
sides of the lake.

(3) The solution produces a homogeneous set
of heights which correspond to a
selected point in time, t

(4) Each point, polynomial may, have its
own degree, the degree being limited
only by common sense and the number of
excess observation of different date
contacting the point and connecting
it to the network.

Regarding item (4), it is occasionally difficult
to decide how many unknowns can be solved for at
each point. Unusual configurations of observa-
tions may cause one to guess incorrectly.
Therefore, for large complex networks, it is
helpful to have a preprocessing program or
subroutine to determine solvability.

Method 5

This is a combination of Methods 3 and 4.
For any bench mark A in the study area, we can
give the following expression for its height at
time t.

i

h . = h
a,i a,o

+ a - t )o + a(t. - t )2i o
= h + V(x ,y )

a,o a a
. - t )
i o

(8)

where h is the elevation of bench mark A at the
reference time. The observation equation for
Method 4 is:

r, . = h
b-a,i a

- h, vb-a,i
(6)

where Ah . is the observed difference of
elevation Between bench marks A and B at time t..
Ordinarily the data redundancy will not permit

the use of polynomials higher than degree 3; there
is not much advantage in a higher degree even if
permitted by the data. When the degree of the
polynomial (equation 5) is 2, then aj is the
velocity of elevation change at time t0 and a2
the acceleration. At a time other than t0 the
instantaneous velocity at bench mark A is
calculated according to

+ 2a2(t. - t )^
(7)

When'the degree of the polynomial (equation 5) is
of degree 1, aj is a constant velocity.
The above method has some very nice advan-

tages:
(1) If there are three or more relevelings

over the same segments, all can be put
into the adjustment without resorting
to a nondiagonal weight matrix. Single

where, for example,

V(xa'ya) = °o + Cl X

2

cy + ex y
2J a 3 a-"a

(9)

The unknowns in the adjustment are the height at
each point corresponding to time t , and the
coefficients c ,k = l,2,3,...m which define the
velocity surface. If u is the number of unknown
junction heights, then the total number of
unknowns is u + m. The observation equation
is then written as in equation (6). Note that
the constant term of equation (9) drops out. The
constant term is the absolute velocity of height
at the origin of the network. If known, this
can be conveniently specified and its uncertainty
propagated into computed velocities.

Method 5 has the important advantages of
Methods 3 and 4. Height differences are adjusted
rather than velocity differences; therefore,
no processsing is required to convert leveling
observations to velocity differences. Method
5 is preferable to Method 3 when the number of
unknowns in the adjustment does not tax the
computer.
The choice of whether to use Method 4 or

Method 5 will depend on the configuration of
relevelings and the extent of the geodesist's
foreknowledge of the movement pattern in the
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study area. In general, Method 4 is more
sensitive,but the relevelings must be inter-
connected; otherwise, each independent sub-
network must have its own initialization in
height and velocity.

The solutions produced by Methods 4 and 5 are
conceptually different. Method 5 gives a solution
that requires all bench marks in a relatively small
locality to take on the same velocity, because
velocity is a function of position. Method 4
does not naturally provide for this local
consistency, but it can be forced by the addition
of appropriate constraints between the velocity
unknowns of points in the same locality.
Generally, the weighted sum of squared residuals

(V'PV) from Method 4 will be less than the
corresponding sum from Method 5. Method 5 produces
a smoothly fluctuating velocity surface, whereas
Method 4 accommodates the observations with any
number of bumps and dips having whatever
amplitudes are required to minimize corrections
to the observations. It is probably misleading
to argue which method is best from this point
of view because both produce results of high
value and the comparison of the two solutions may
be of most interest. The larger separations of
the two solutions can be regarded as loc.̂ .l
velocity anomalies. These should be exanduv.d
closely as they may be indications of local
accumulations of systematic errors in the leveling
data.
Polynomial expressions for velocity surfaces

may produce problems with computer graphics
because the fitted surfaces quickly taken on
extreme values outside the data area. This
may ruin the scale of three-dimensional plots,
produce error messages, or use excessive computer
time for contouring. To avoid these problems,
multiquadric (MQ) analysis has been used as an
alternative to polynomials in crus.tal movement
investigations [Holdahl and Hardy, 1977].

Method 6

This is essentially the same as Method 5 except
that we employ MQ analysis, and replace equation
(9) with

k

5a

destruction of scale by an extreme value calcu-
lated at an uncontrolled edge of a rectangular
study area.

In Method 6 , nodal points should be placed at
each location that has a solvable point velocity,
as in Method 4. Additional nodal points can
be added wherever detached tilt information is
located.
Scattered or detached relevelings (see Figure 5a)

cannot contribute to the determination of the
absolute position of a velocity surface unless
they are individually initialized by a measured
or assumed velocity. However, detached relevel-
ings can be used to aid in determining the local
shape of a velocity surface. This was mentioned
previously as being the original motivation for
developing Method 3. Methods 5 and 6 also permit
the use of detached relevelings . In Method 5 ,
the velocity difference observation equation
resulting from a detached releveling between
points A and B would be written as

c.. (12)

In Method 6,

k

V(x
cjQ h (10)

r -.
^ c. |Q<x b ,y b ,x j ,y j ,D)-Q<x j i ,y a ,x j ,y j ,D)J

(13)- AV,b-a

The C. are undetermined coefficients; Q is a
quadric kernel function; the x.,y. are the positions
of nodal points; and D is a geometric parameter
which may or may not be needed depending on the
quadric form. Nodal points should be located
where there are solvable point velocities or tilt
information. If the hyperboloid is selected as
the quadric form, we then have the following
expression for velocity of elevation change:

(y - y j )
2 + D2?- (11)

Substituting (11) into (8) gives us a model for
leveling adjustments, which advantageously
produces automated graphic displays of the veloc-
ity surface and velocity error surface without

Sea
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addition, t>k,ek, for k=np-H ,np+ne, are the begin-
ning and ending dates of ne movement episodes so
that nt=np+ne. We note that the episodic movements
are treated as linear within the duration of the
episode.

Observation equations for m relevelsd segments
can now be written :

Ah(x1,y1,x2,y2,t2) - Ah

where 4V is obtained from the observed height dif- u(x,y,to) is everywhere equal to zero. In
ferences, as in equation (1). These same equations
can be used to incorporate relative velocities
between pairs of water level gages on a lake (see
Figure 5b). In the latter case, £V would be the
slope of a line fitted through a plot of differences
between readings from gages at A and B obtained over
a period of years.
For two or more relevelings over a detached

segment, equations (12) and (13) are not appro-
priate. In Models 5 and6, it is better to use the
usual height difference observation equations, and
add another observation (fictitious or otherwise)
that specifies a height at t0 for one of the points
on the detached segment. This eliminates concern
for correlation of velocity difference observations.
In setting up crustal movement studies, it has been -
convenient to have only one fictitious fixed height,
which may be called "mean sea level." It has a
height of 0.0 meter at the reference time, t0, and
other heights at to are provided to the adjustment
as fictitious height difference measurements from
it with an appropriate weight. These fictitious
height difference measurements are, in fact,
contraints. No special coding is required if they
are treated as measurements.

(16)

where d^ denotes the m-vector of the differences
of leveled height differences, Ah, and r_ is the
residual vector. If

Method 7

Vanicek revised his original model (Method 3)
to consider episodic and nonlinear movements. In
the expanded model the "observations" are relative
movements obtained by comparing repeated measure-
ments of height differences, whereas in Method 3
they are velocity differences.
The mathematical formulation for the movement

surface, u is

u(x,y,t) = ̂  cokTk(t)

n = (nx-ry nx+ (17)

we can find the solution, c^, through the method
of least squares. The normal equations are
solved, in the computer program, through ortho-
gonalization.
The shift coefficients, cn, cannot be

determined from the releveled segments alone.
Movement u* (x,y,t) of at least one, but generally
ng tide gages (x,y) must be determined from sea
level records at nd dates to allow for evaluating
the shift'coefficients. The following n -n<j
observation equations can be then formulated:

where

Tk(t) = t"

i=0

"y
j=o

= T(t)c + X(x,y,t)c
— —o —~

k k - k

t<b,.

Tk(t) =— (t-b)/(e-b) <t-<

k=l,np

k=np+l,np-me

t>e1/

If ng-n^ > n-t, then the equations (18) may be
solved for c^, again using the method of least
squares.
For each tide gage the uplift u* must be

determined so as to satisfy the following
condition :

0-3)

u*(x,y,to) = 0. (19)
As with Method 3, the advantage is primarily

the reduced number of unknowns. However, the
same disadvantages remain: (1) observations
may be correlated and (2) information contained
in circuit misclosures is not utilized.

and c^ is the n-vector of unknown coefficients c. ..
for the previously chosen values nx,ny of maximum
power in x and y.

In these formulas x and y are local horizontal.
Cartesian coordinates calculated from latitude and
longitude through the'following transformation
equations:

x= (<£-<t>0)R ; y = U-A0)R cos <|>o (15)
where (<t>0>^o) i-

s tne centroid of all bench marks
and R is the mean radius of the Earth. Time, t,
is reckoned from a stipulated date, tQ, for which

The advantage of being able to estimate
episodic and nonlinear movements is very
attractive,, but these same features can easily
be incorporated in Methods 5 and 6 without
concern for correlation of observations.
Equation (8), for expressing height of point
A at time t., can be modified to include
terms corresponding to the elevation
change associated with earthquakes that
occurred between the times when levelings
were accomplished within the study "area:
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h . = h t V(x ,y )(t.-t )
a,i a,o a"a i o

u.(x ,y ,x. ,y. ,t. ,d.)
] a a' 3'V 3.' 3

(20)

where ne is the number of events or episodes,
t• the time of an earthquake, dj the depth of
the earthquake in units identical to x and y,
and (x.,y.) the location of an event. A
logica?. cnoice for the function u, suggested
by R. Snay, is one where episodic elevation
change decays with distance from the event:

u(x,y ,x. ,y . ,t. ,d.) = 0,
1 3 ] D

= > a.

if t. < t.

if t. > t..(21)

The coefficients, a., are to be solved for in
the adjustment. A nice advantage is that only
one unknown is introduced for each earthquake
or episode. If Figure 5c, three events are
illustrated, and the contribution of those
events can be evaluated at any time or location
following the adjustment. If episodic motions
are not modeled in' the adjustment, observations
which are suspected of having been affected by
earthquakes must be removed prior to adjustment.
Removal of observations should be the last
alternative, and is difficult to justify
except when the leveling is suspect or when
insufficient relevelings exist to permit solving
for episodic motion.

Another form of flexibility involves modeling of
vertical block motions characterized by discon-
tinuities of movement at fault lines, Methods 5
and 6 can be modified to accomplish this, As in
Figure 5d, we can divide a study area into three
blocks, P, Q, R, and express, for example, the
height of a point A, at time, t., on block P,
as follows:

h . = h + VD(x ,y Ht.-t ) (22)
a,i a,o P a'Ja i o

where V describes the velocity surface of block
P. The height difference between points A and
B, where B is on block Q, is given by

Ah, . = h, - h
l>-a,i b,c a,o

(23)

Essentially, every point is located on one of the
blocks, and each block has its own velocity surface.
Equation (22) can be supplemented with terms
which permit episodic or nonlinear vertical
motions within selected blocks.
By permitting the model to solve for block

motion, episodic motions, and accelerations we
greatly increase its flexibility. But there is
the concern that almost any kind of blunder or
systematic error may be modeled as crustal

movement. With an inflexible model the opposite
is true, i.e., unusual movements will be forced
to occur at constant rates and be partially
absorbed.by large corrections to the observations.
The ideal adjustment model, then, is one that is
very flexible arid provides the geodesist with the
possibility of describing vertical movement of
any type; and the best strategy for the adjust-
ment is to use only as much of that flexibility
as is prudent after considering the seismicity,
geology, and.engineering activity in the area.

Solvability

Networks of relevelings can become complicated
in the sense that casual observation of the net may
not reveal which unknowns are solvable. An
algorithm has been developed by Allen Pope of the
National Geodetic Survey, that uses the observa-
tion equations to resolve such questions.
If we use Method 4, the solvability algorithm

will resolve exactly which heights and point
velocities are solvable. When Methods 5, 6, and 7
are used, the solvability algorithm will show that
all coefficients of the velocity surface are un-
solvable if one attempts to solve for too many.
It has been very helpful to use the solvability
algorithm as an analysis tool by first formulating
the leveling adjustment using the observation
equations according to Method 4, i.e., pretending
to solve for the reference-time heights and
velocities at all junctions; and secondly
formulating the problem the way it would actually
be adjusted, using Method 6. When solvability fails
using Method 6, the user can identify the cause
by reviewing the output of solvability as
applied to Method 4. It tells which points
have solvable velocities. The number of-coef-
ficients that may be used to describe the
velocity surface is equal to the number of
solvable point velocities, plus the number of
paired junctions which do not have solvable
velocities but have relative velocity inform-
ation in between. These latter pieces of
floating tilt information must be counted by
looking at the network diagram.

Systematic Errors

Certain leveling errors are time-dependent.
Therefore, an attempt should be made to elim-
inate them prior to adjustment. Without elimi-
nation, their influence is modeled as vertical
movement. Where short time intervals or slow
velocities are involved, the error due to
uncorrected systematic leveling errors may be
larger than the real movements.
One of the errors most damaging to leveling

is caused by refraction. During normal day-
light working hours the line of sight is bent
upwards. The uphill sight will bend more than
the downhill sight because the density of air
changes most rapidly near the ground, the
hotter air being nearest the ground. The
amount of bending is proportional to the
square of the sight length, the leveled
height difference, and the vertical temperature
change, At, between heights of 50 and 250 cm.
At is dependent on time of day, season
local turbidity of the atmosphere, cloud cover,
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the direction of leveling, and the slope of
the leveling path.
Few countries have applied the refraction correction

that was developed by T. J. Kukkamaki in 1937. The
measurement of At, for input to the formula, has
been considered an awkward task for a leveling team.
The correction itself has long been considered too
small, probably because most of the documented
experience with measuring At comes from northern
countries where the sun exerts a lesser influence
because of its lower declination. In the lower
latitudes of the United States large temperature
gradients have been observed 5 to 10 times as
great as the average values observed in England.
Further, experiments and microclimate theory
support the idea that refraction error is less
on the north face of a mountain than on the south
face. This produces a north-south accumulation
of error when leveling on undulating terrain
[Holdahl 1978]. It was thought that only the
leveling in countries with large mountains suffered
significantly from refraction error. This is
incorrect because terrain that merely undulates
in the north and south direction can yield a
large accumulation of error if leveling extends
for several hundred kilometers.
Refraction error affects computations of crustal

movements in several ways.
(1) Two levelings accomplished in distinctly

different seasons (i.e., seasons with
different declinations of the sun) will
usually yield an apparent relative .
elevation change.

(2) Single levelings, that are not
corrected for refraction, but are
permitted as observations in some
adjustment models, will contribute
to circuit misclosures in a way that
cannot be distinguished from a con-
tribution to the same circuit mis-
closure caused by a real crustal
movement.

(3) A releveling accomplished with a
maximum sight length specification, which
significantly differs from the
specification used in the original
survey, will normally yield an apparent
crustal movement if all other conditions
are equal.

Because it has rarely been measured, it is necessary to
estimate At if a refraction correction is to be applied
to old leveling data. A method based on historic
measurements of solar radiation is being developed to
accomplish this [Holdahl 1978]. This method is untested
at this time. Until some method is shown to be
corrective, it is doubtful that high reliability can
be associated with conclusions derived from large
networks of releveling in areas of undulating terrain
and high levels of solar radiation.
.Another leveling error, which might be termed

systematic, results from neglect of gravity
anomalies. Some of the.above-described methods
for calculating crustal motions are not vulnerable
to this error (Methods 1,2,3, and 7). Methods 4,5,
and 6 would, however, be adversely influenced by
gravity anomalies if all the following conditions
exist:

(1) the height differences were not provided
in geopotential units;

(2) the gravity anomaly is large and height
rapidly changes over the study area;

(3) single levelings, i.e., segments or links
which have not been releveled, are used in
the network adjustment.

.Misclosures of leveled circuits are theoretically
equal to zero only when the height differences are
computed in geopotential units, thus taking into
consideration the variation of true gravity along
the level lines. For small study areas, where
variation in the gravity anomaly is small or re-
levelings exist over the entire net, the use of-
geopotential units is unimportant if only the
velocities of elevation change are desired. The
heights, rather than the velocities, are most
sensitive to gravity anomalies. The gravity
effect tends to cancel in the velocity determination
when releveling is complete. Networks with a
significant percentage of unreleveled segments
should usually be adjusted using geopotential units
because the cancellation may be incomplete or non-
existent.
Smaller types of known systematic errors exist

and their influence is dealt with by corrections
to the observed height differences. These include
the

(1) Astronomic correction: accounts for devia-
tion of the vertical due to
positions of the Sun and
Moon

(2) Rod correction: accounts for minor scale
error due to deviation of
calibrated rod length from
nominal rod length,

(3) Rod temperature correction: accounts for
i- contraction and expansion of

the rod length due to heat,
(4) Collimation correction: accounts for non-

parallelism of the telescope
and an equipotential surface
passing through its center,

(5) Orthometric correction: corrects for conver-
gence of normal equipotential
surfaces. Satisfactory only
when gravity anomalies are
near zero.

Unfortunately, there seem to be some systematic
errors which are unknown or poorly understood. This
is evident from sea slope determinations that have
been accomplished at different times in the last
several decades on the California coast. These
determinations show a spread that is too wide to be
attributed to random leveling errors. The most
recent sea slope determination agrees well with
estimates obtained by oceanographic techniques but
the disagreement of present and former determinations
is still a mystery. The geodesist should use
height-velocity adjustment models to filter data
and calculate motions, always being alert for
measurements that may be contaminated by systematic
error accumulation. At the same time the user must
be aware that any model has "built-in" assumptions
and constraints which restrict the ways in which
motion may be resolved, while nature produces an
endless variety of ways to exhibit motion.
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Detection of Accelerated Crustal Movements Based on
Terrestrial Techniques
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Summary. Reported accelerations in the verti-
cal displacement field disclosed through repeated
levelings are unassailable where the magnitudes
of the measured displacements that define these
accelerations overwhelm any conceivable survey
error and the nature of the measured movement is
fully consistent with its predicted occurrence.
Specific examples include those accelerations
associated with seismic slip events and massive
withdrawals of underground fluids. Aseismic
accelerations based on progressively smaller ver-
tical displacements are increasingly equivocally
defined; nonetheless, the reality of sharply de-
fined aseismic accelerations associated with
modest vertical displacements is independently
confirmed by both continuous sea-level measure-
ments [Wyss, 1977] and lake-level records [Wilson
and Wood, 1978]. Although replication of observed
elevations during the periods that both preceded
and followed aseismic uplift in southern Cali-
fornia [Savage and Prescott, 1979] is excellent
evidence of the existence of major vertical
accelerations, unambiguous data sets of this sort
rarely occur in the geodetic record. Moreover,
because the detection of vertical accelerations
commonly depends on the results of a single
leveling, validation of these accelerations may
require detailed assessment of the accuracy of the
critical survey. Where the interval between
levelings is significantly greater than the in-
ferred period of the acceleration, characteriza-
tions of accelerations based solely on the results
of repeated level surveys becomes significantly
less meaningful. However, four-dimensional
modeling techniques that depend only on the exis-
tence of continuous and/or discontinuous releveled
segments [Vanicek ert a_K, 1979], rather than con-
tinuous line or network relevelings, may permit
the detection and relatively unambiguous repre-
sentation of otherwise unrecognizable crustal
accelerations.

Continuing efforts directed toward the recog-
nition of accelerations in the vertical displace-
ment field should be based ideally on the results
of repeated level surveys coupled with those
additional measurements, such as continuous sea-
level records, repeated gravity surveys and so
forth, that provide temporal constraints on any
measured vertical movements. In addition, re-
peated levelings designed to detect vertical
accelerations should be tailored to the need. If,
for example, the purpose is the best possible
characterization of the vertical movement history
athwart an active fault, the most useful program
probably will continue to consist of frequently
repeated surveys along the same line referred to
a control point well removed from the deforma-
tional field associated with continuing fault

movement. On the other hand, where a generalized
representation of regionally developed accelera-
tions is desired, four-dimensional surface
fitting that utilizes segmented relevelings
randomly distributed in both space and time
probably is the most cost-effective approach for
meeting this goal. While surface-fitting tech-
niques tend to subdue short wavelength features,
they are especially well suited to the depiction
of those accelerations accompanying artificially
induced subsidence and broadly defined tectonic
deformation such as that recognized in southern
California.
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