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Abstract. Although geoid or surface gravity
anomalies cannot be uniquely related to an interior
distribution of mass, they can be related to a
surface mass distribution. However, over horizontal
distances greater than about 100 km, the condition
of isostatic equilibrium above the asthenosphere
is a good approximation and the total mass per unit
column is zero. Thus the surface distribution of
mass is also zero. For this case we show that the
surface gravitational potential anomaly can be
uniquely related to a surface dipole distribution
of mass. Variations in the thickness of the crust
and lithosphere can be expected to produce undula-
tions in the geoid.

Introduction

The gravitational potential and acceleration can
in general be obtained by integrating over any
specified distribution of mass. In many cases,
however, the detailed distribution of mass in the
crust and mantle may be unknown. In these cases
unique relationships between the gravity and geoid
anomalies and surface distreibutions of density may
be of considerable use. One example of such a-
relationship is the Bouguer formula for the gravity
anomaly Ag, .

(D

(2)

where Ap is the density anomaly. The Bouguer
formula is valid if the horizontal scale of the
density variation is large compared with the verti-
cal scale h and h«a where a is the radius of the
earth.

Ag = 2ir G a(x,y)

where G is the gravitational constant and the
surface density distribution is

rh
,a(x,y) = Ap (x,y,z)dz

Fig. 1. Illustration of the circular disk
formulation.
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Using the technique of matched asymptotic expan-
sions, Ockendon and Turcotte (1977) have derived a
power series expansion for the gravitational accel-
eration and potential caused by slowly varying
density changes. They find that if the near
surface density distribution is in isostatic
equilibrium then the gravitational potential
anomaly AU is given by

AU -2ir G6 (x,y) (3)

where the surface dipole density distribution is

rh
5(x,y) =1 z A p ( x , y , z ) d z (4)

'0
The conditions for the validity of this relation
are the same as for the Bouguer formula with the
additional isostatic requirement that a = 0, i.e.,
that the gravity anomaly given by the Bouger
formula (1) is zero.

It is the purpose of this paper to give two
elementary planar derivations of (3) and to test
its validity for near surface density variations
on the earth.

Disk Approximations

We first consider a circular disk of thickness
h and radius R as shown in Figure 1. The density
of the disk is a function of the vertical coordi-
nate z, p(z), but not of r. The contribution to
the gravitational acceleration of each element of
mass in the disk is

GsdM
(5)

Integrating over the volume of the disk to obtain
the vertical components of the gravitational
acceleration on the axis at a distance d above
yields

fY= 2.TTG I I (d + z) rp(z) drdz
J J [ r*+ (d+ z ) Z ] J / 2 (6)

(7)

0 "0

First integrating with respect to r and then
taking the limit R -»• °° gives

- 2 , G f h p ( ) d
R¥l 82 = 2^GJQ

which is the Bouguer formula previously given in
(I).

The gravitational potential due to each element
of mass is

dU =
GdM

FT (8)
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by taking two equal surface mass distributions of
opposite sign, oj < 0 on z = 0 and a 2 = - ai on
z = h (Fig. 3a); the limits a2 •*•+<», a i -»•- »
and h -+ 0 are taken such that

r* n zpdz = = 6

Fig. 2. Illustration of the application of
Gauss' theorem to a thin layer of mass
anomalies.

Integrating over the volume of the disk to obtain
the potential at a height d on the axis of the
disk yields

'is finite. It follows from (13) and (14) that

g z = 0 z > h, z < 0

0 < z < h
(16)

8Z =

Using the relationship between the gravitational
field and potential, g = 3U/3z the difference in
the potential across tne dipole layer is

U = 2irG

f

I I rp(z) dzdr
I J [r2 + (d + z)*]*/*

•'n Jn

(9)
U+ - U = 4ir Go 2 4uG6

We choose our origin for U such that

Integration with respect to r and expanding for
large R gives

/.h /-h 1 >h
U = 2nG [R I p(z)dz - I (d + z) p(z) dz + -^

JQ JQ

U -U

(17)

(18)

so that the distribution of U illustrated in Figure
3c is obtained and .

(d + z) 2 p(z) dz + 0 (R~ 3 ) ]

0
(10)

U -2-n G6 = - 2irG zpdz (19)

First applying the condition of isostasy, i.e.
.h

p(z) dz = 0
'0

and then taking the limit R -»• <= yields
.h

zp(z)dz

' 0

which is the formula previously given in (3).

r
U = -2TTGJ

Jo

which is the same as (3) .
' In order to establish the quantitative validity

of (3) we consider the gravity and potential fields
due to spherical harmonic distributions of mass on '
spherical surfaces. The gravitational field just
outside a spherical surface due to a surface mass
distribution an Sn (where S is 'the spherical

(11) surface harmonic of order n) on the surface is
given by (Jeffreys, 1976, p. 234)

Mass-Layer Approximations 4ir G M" 3^ n + l / n n

For mass anomalies confined to thin layers it
is useful to integrate (5) over the cylindrical
volume illustrated in Figure 2. Gauss' theorem
may then be used to convert one of the .volume inte-
grals to a surface integral with the result

The wavelengths of the surface mass distribution
can be related to the order of the harmonic n by

2ira
n (21)

ffg • d*s = - 4TT G/T/
where a is the radius of the sphere (of the earth).

(12' For short wavelength distributions we take the
limit n •*• » in (20) with the result

In the limit h -»• 0 these integrals can be evaluated
to yield (Officer, 1974, pp. 262-269)

- 8

However by symmetry

4TT GO

so that c
I
J

2-n G I p dz

(13)

(14)

(15)

^ -crscr.

h
(o) (b) (c)

which is the Bouguer formula (1).
A surface dipole mass distribution is obtained

Fig. 3. Gravitational acceleration (b) and
potential (c) associated with a dipole mass
distribution (a).
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lira gn-*=°
2 IT G a S

n n
(22)

-4irG
(2n + 1

a S a
n n

1 +

n+2

(23)

The condition of isostasy requires an equal mass
defect on the inner sphere to that on the outer
sphere. Allowing for the difference in area we
require (Jeffreys, 1976, p. 237)

Kn ~ (a - h)2

Substitution of (24) into (23) yields

U = ,,-*lFG.> a S a
(2n + 1) n n

Taking the limit h/a -»• 0 in (25) gives

1 -

lim U =
-4irnGa S hn n

2n + 1h/a-K)
Next taking the limit n -»• °° we find

lim-U = -2n Go S h
-

(24)

(25)

(26)

(27)

and noting that onSnh is the surface dipole distri-
bution of mass this is the same as (3).

By using (25) we can compare the results for
finite depths of compensation h with the limiting
solution given in (27). This is done in Figure 4.
The ratio of the surface potential U from (25) to
the value 2ir GanSnh is given as a function of 1/n
for h = 25, 50. 100, 200, and 400 km. The corres-
ponding wavelengths from (21) are also included.
We see that the approximation breaks down as expec-
ted when the wavelength is of the same order as the
depth of compensation, i.e., as A/h -»• 1. For depths
of compensation of 50 km or less the error in using
(27) is 10% or less over a wide range of wavelengths.
It should be emphasized that the case of two mass
layers is an extreme case of compensation at depth.
The realistic case of distributed mass with depth
will lead to lower errors than those given in Figure
4 if the mass differences are limited to a depth h.

Discussion

The gravitational field and potential outside a
closed surface can be uniquely related to a surface
distribution of mass. The Bouguer formula (1)
relates the local gravity anomaly to the magnitude
of the surface mass distribution a. However, over
horizontal distances greater than about 100 km on
the earth's surface, the condition of isostasy is
a good approximation and requires that the surface

which is the Bouguer formula.
In order to represent a dipole distribution of

mass we consider a spherical harmonic distribution
of surface mass on a sphere of radius r = a-h with
amplitude KnonSn in addition to the distribution of
surface mass anSnon the sphere r = a. The resulting
gravitational potential just outside the outer
sphere is given by (Jeffreys, 1976, p. 237)

li.lO'km
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Fig. 4. The ratio of the surface potential U
on the earth from (25) to the value for a
surface dipole layer (27) as a function of 1/n
for various values 'of the depth of compensation
h. Also included are the values of the wavelength
A corresponding to the value of 1/n from (21).

mass distribution of a be zero.
If the surface mass distribution is zero the

gravitational field and potential outside a closed
surface can be uniquely related to a surface dipole
distribution of mass. In this case (3) relates the
local gravitational potential anomaly to the magni-
tude of the surface dipole layer a. The measured
distribution of surface potential anomalies can be
directly used to obtain a surface distribution of
the density dipole strength. This surface mass
dipole distribution can be directly related to the
density distribution in the crust and lithosphere,
although there will also be other, deeper contri-
butions to the external gravitational field and
potential. We have shown that the local associa-
tion of the potential anomaly with the dipole
density distribution is a good approximation for
the depths of compensation associated with the
crust or lithosphere.

The gravitational potential anomaly is directly
proportional to the geoid anomaly. The geoid
anomaly is measured directly by radar altimetry
from the GEOS-3 satellite. Haxby and Turcotte
(1978) have shown that several measurements of
geoid anomalies can be related to density varia-
tions in the crust and lithosphere using (3) .
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