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Abstract. The period since the first GEOP con-
ference in 1972 has seen marked changes in global
tidal modelling, with many new models produced in
the past two years. Two trends have been evident.
The first centers on the incorporation of terms
for ocean loading and gravitational self attrac-
tion into Laplace's Tidal Equations (LTE). The
second centers on a better understanding of the
problem of near resonant modelling and the need
for realistic maps of tidal elevation for use by
geodesists and geophysicists. These trends are
described. Although new models still show signi-
ficant differences, especially in the South
Atlantic, there are significant similarities in
many of the world's oceans. This allows sugges-
tions to be made for future locations for bottom
pressure guage measurements. Where available,
estimates of M2 tidal dissipation from the new
models are significantly lower than estimates from
previous models. The new estimates are consistent
with recent estimates of the rate of decelleration
of the lunar longitude.

Introduction

Over the past seven years since the first GEOP
conference in 1972 there have been two marked
trends in tidal modelling. The first centers on
the incorporation of the terms for ocean loading
and gravitational self attraction into Laplace's
Tidal Equations (LTE). The second centers on a
better understanding of the problem involved with
near resonant modelling and the need for realistic
maps of tidal elevation for use by geophysicists
and geodesists. It is the purpose of this article
to describe these two trends, and to look at what
improvements are likely in the future.

Because of the scope of the article, and since
many researchers have calculated models only for
M2, only M2 models after 1972 will be presented.
Calculations for other constituents will be men-
tioned in passing. For a good summary of model-
ling prior to 1977 and a detailed discussion of
modelling techniques see Hendershott [1977].
Another excellent summary can be found in
Cartwright [1977].

Ocean Loading and Self Gravitation

The terms for ocean loading and self attraction
were incorporated into LTE by Hendershott [1972].
The effect that these terms have on LTE may be
summarized as follows. LTE may be written after
Hendershott [1977] as a single elliptic elevation
equation in negative mercator coordinates as

) + £2sech2T i<r/g-6) + F (i)
where
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and

e2 = «22a/gD Q = l/(s2-tanh2T)

D = D H(((),T) s = cr/2fi (A)o

where T,((> are the mercator latitude,and longitude,
CQ is the observed ocean tide, F

T,F<I> are the meri-
ional and zonal components of dissipative stress,
a is the tidal forcing frequency, fi is the earth's
angular rate of rotation, T is the total tide gen-
erating potential, 6 is the geocentric solid earth
tide, D is the local depth of the ocean, and a is
the radius of the earth. The exact form of dissi-
pative stress for each model will depend on the
choice of F and F9.

For a rigid earth, T = U (the astronomical pot-
ential) and 6 = 0, i.e.

F/g - 6 = U/g (5)

In the presence of solid earth deformation and
tidal loading F/g - 6 may be expressed as follows.
In the usual Love number notation (Munk and
MacDonald, 1960, p.
harmonic component of the potential is

24,29,30), the n spherical

T = (1+k )U + (l+k')ga 5
n n n n n on
th

(6)

while the n spherical harmonic component of the
solid earth tide is

h U /g + h'ct r, .n n n n on (7)

th
Here the n spherical harmonic of the observed
ocean tide is

? = ZC Ym(sin9) (8)
on m nm n

where Y is the spherical harmonic normalized
after Backus [1958], i.e. |Ym| = 1, Un is the n

th

spherical harmonic componentnof the astronomical
potential (in practice only U_ need be consi-
dered) , 9 is the latitude, and

C = /A (<('l,e')Ym(sine')cos9'd<j)'d9'. (9)nm o n

Thus if one defines

then

F/g - 6 = + Z(l+k'-h')a //<; Ym*cos9'd<t>'d9'
n n n n on

(10)

(11)
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Fig. 1. The M2 gravitational potential divided by g seen by an observer fixed to the
surface of the earth in the absence of ocean tidal effects, i.e. (l+k«-h«)U-. (amplitudes
in cm, phases in degrees)

or by placing the summation inside the integral, ,.:

F/g - 6 = 1 +

/A0(<t>',e')G(<!>
i,ei |4>,e)coseid())'d9I (12)

where G(<j>' ,9' |4>,8) is a Green's function evaluated
by Farrell [1972]. In negative mercator coordin-
ates

F/g - 6 =

' |<j),T)sech2T'd<|>'dTI (13)

The presence of this global integral makes solu-
tion difficult. Hendershott [1972] proposed the
iterative sequence

+ e2sech2TC1 = ,

~1

i,(E(l+kn-hn)Un/g) + F

//^~G(<J>I,T'|<l>,T:)sechVdcj)1dTI (15)

and found it divergent for M2 in the absence of
interior dissipation, i.e. F = 0. Gordeev, et.
al [1977] showed that this procedure will converge
in the presence of interior dissipation. Their
calculations based on the Longman [1963] Green's
function are consistent with the importance of
these terms. Parke [1978a] showed dramatically
that the loading and self gravitation terms are

important for M2 by comparing the surface poten-
tial seen by an observer fixed to the surface of
the earth with and without ocean effects, i.e.

F/g = (l+k2-h2)U2/g

F/g = (l+k2-h2)U2/g

(16)

(17)

where the ocean terms were calculated based on the
Parke-Hendershott model discussed in the next sec-
tion. These charts are shown in figures 1 and 2.
Note the considerable distortion in the North
Atlantic caused by the ocean effects. Histori-
cally researchers have had trouble with local
models of the North Atlantic using the equilli-
brium potential. Perhaps this is the reason why.

Over the past several years the importance of
the terms for ocean loading and self attraction
has gradually become accepted, with models sans
ocean loading effects being published as late as
1977. Starting in 1972, the first iteration of
Hendershott is a model sans loading effects and is
presented in figure 3. The calculation is based
on a six degree Mercator grid with specified ele-
vation boundary conditions and implicit dissipa-
tion, i.e. F = 0. Energy is allowed to freely
flow through the boundaries to be dissipated in
the shallow seas and shelves.

Zahel.[1973] calculated a model for Kl using a
four degree spherical mesh graded toward the
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Fig. 2. The M2 gravitational potential divided by g seen by an observer fixed to the
surface of the earth when the effects of ocean loading and gravitational self attraction
from the Parke-Hendershott [1978] tidal model are added, i.e. (l+k,-h )U
(amplitudes in cm, phases in degrees) i 1 i

+ £(l+k'-h')a £ .
n n n n o n

poles, reflecting boundary conditions, and dissi-
pation of the form

F/pD -r((u2+v2)1/2/D)u AV2u (18)

where r is a bottom drag coefficient and A a
lateral eddy viscosity with r = .003 and A = 10
cm /sec. Zahel presented, a similar calculation
for M2 on a one degree mesh at the IUGG meeting in
Grenoble in 1975, and subsequently published
[Zahel,1977]. Figure 4 is a copy of the cotidal .
chart presented in 1975. Zahel has recently com-
pleted a model including loading effects (Trevor
Baker, personnal communication).

Estes [1977] repeated Zahel's procedure for M2
using a two degree mesh and allowing for deforma-
tion of the solid earth by the astronomical forc-
ing. Resulting amplitudes were smaller as would
be expected. This calculation was extended to S2,
N2,K2,K1,01, and PI. The M2 model was used as a
starting point for the iterative procedure of
Hendershott described above. Convergence was
found after 16 iterations. This model is shown in
figure 5.

Parke [1978b] solved the modified LTE on a six
degree Mercator mesh using specified elevation
boundary conditions and no interior dissipation.
This was done by using a set of test functions
similar to the iterates of Hendershott as a basis
set for a least squares fit to the complete equa-
tions. The test functions were generated by the
same method as the iterates, except that period-

ically the best least squares fit was subtracted
from the equations and an iterative sequence
started on the residuals. This was done to aid
numerical stability. Solutions for M2 and S2 were
found to be unrealistically resonant, while for Kl
the iterative procedure of Hendershott was found
to be convergent and the solution showed every
sign of being far from resonance.

Accad and Pekeris [1978] calculated models for
M2 and S2 using a two degree mercator mesh with
implicit dissipation determined at the coasts by a
modified Proudman boundary condition. Instead of
treating the edge of the coastal shelves as a step
function, they treat it as a linear ramp. For a
step function, the assumption that the energy-
contained in the upper layer (of depth h') is dis-
sipated rather than reflected leads to the usual
Proudman condition

hun
(19)

where h is the depth offshore from the shelf and
u is the normal velocity. When the edge of the
shelf is considered as a ramp, this condition
becomes :

hu (20)

where R is a complex reflection coefficient
depending on S (the width of the ramp), h, and h'.
Accad and Pekeris used the values S = 100km and
h1 = 10m, while h was taken to be the observed
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Fig. 3. The Hendershott [1972] M2 tidal model, .(amplitudes in cm, phases in degrees)

Pig. 4. The Zahel [1977] M2 tidal model, (amplitudes in cm, phases in lunar hours)

value of the ocean depth closest to the grid point
on the coast. Ocean loading terms were approx-
imated by

EU+k'-h^d t. - - 0.085C = 10.085? (21)
n n n n on . :^o n • on

(l+k'-h')a - 0.085
n n n

(22)

for all n. The M2 results are given.in figure 6.
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Fig. 5. The Estes [1977] M2 tidal model with the effects of ocean loading and self
attraction included, (amplitudes in decimeters, phases in lunar half hours)
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Fig. 6. The Accad and Pekeris [1978] M2 tidal model, (ampl. in cm, phases in lunar hours)

Near Resonant Modelling

Over the past few years there has been increas-
ing geophysical interest in finding a realistic
representation of the open ocean tide. Historical
models of the semi-diurnal tides (primarily M2)
show significant differences, especially in the
Pacific and South Atlantic. Considering the
closeness to resonance of the problem, though, the
level of agreement is actually quite remarkable.

The fact that there are significant differences,
however, means that to produce realistic maps of
the ocean tidal elevation the problem of resonance
must be handled. This problem arises because
small errors in how one's model represents the
real ocean basins cause small errors in the freq-
uencies at which the model basin resonates. Near
resonance this causes a significant error in the
assigned amplitudes for these modes.

As an example of a near resonant one mode sys-
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Fig. 7. A comparison of the tidal response at
Punta Penasco North to the tide at the mouth of
the Gulf of California for two models with
different mean depth, after Stock [1976].

tern, figure 7 shows the model response of the Gulf
of California at two different mean depths after
Stock [1976]. Far from resonance, e.g. 01 and Kl,
the difference between the responses is small.
Near resonance, however, e.g. for M2, S2, and N2,
the difference is quite significant. In a one
mode system such as the Gulf of California, this
effect can be adjusted with a single parameter
such as the mean depth. The global.tide, however,
appears to be more complex. Four possible
approaches are:

(1) If one knew the near resonant global
normal modes, one could adjust one's model accord-
ingly.

(2) One can adjust model parameters.
Schwiderski [1978] follows this approach with a
one degree graded spherical mesh with linear eddy
dissipation with eddy viscosity A given by

A = aH(A,(j))L/2(l+iJcoscf>) (23)

and a linear bottom friction term with coefficient

B = bL ycoscj) (24)

where a and b are trial and error parameters,.L is
the equatorial mesh size, y is the mesh grading
parameter, and H(A,<j>) is the local depth of the
ocean. Note that A is directly proportional to H,
and that B has no depth dependence. The linear ~

bottom friction term is adjusted within set limits
at each boundary point and island station to force
as close as possible agreement between the obser-
ved and calculated tides at these locations.
Loading terms are approximated after Pekeris by

E(l+k'-h')ct t, - O.U
n n n .n on o (25)

where the factor 0.1 is attributed to Pekeris.
A cotidal chart copied from a plot provided by Ron
Estes is shown in figure 8. One consequence of
forcing agreement at island stations is the crea-
tion of small scale local distortions. See for
example the Southwest Pacific.

(3) Parke and Hendershott [1978] took the set
of test functions used by Parke [1978b] to solve
the modified LTE in the absence of interior dissi-
pation and fit them in the least squares sense to
interior (island) data. This was done for M2, S2,
and Kl and represents a first order correction to
the problem. The resulting models are .:on a six .
degree Mercator mesh with specified elevation
boundary conditions and dissipation only in shal-
low seas and on shelves. Encouraging is the fact
that the M2 calculation was shown to be stable
over a ±5% variation in the mean depth. All three
representations conserve mass. A cotidal chart
for M2 is given in figure 9.

(4) Estes (personnal communication) proposes
combining models of the tide with other data such
as altimetry and gravity measurements, with the
model value at each point considered simply as
another datum.

It is interesting and provocative that the
Schwiderski and Parke-Hendershott models show many
qualitative and quantitative similarities through-
out much of the worlds oceans. Starting with the
Pacific, both show a convergence of phases between
Japan and New Guinea, amphidromes off California,
Latin America, Chile, and in the Central Pacific.
West of the California amphidrome Schwiderski
shows small amplitudes and a convergence of
phases, while Parke-Hendershott shows a double
amphidrome. It should be noted that the absolute
difference between these two cases is small. The
amphidrome that Parke-Hendershott show southeast
of New Zealand has moved much farther to the east
and south in the Schwiderski model. Both show two
anti-amphidromes in the Pacific; Parke-Hendershott
at approximately 4°N 174°E and 2°S 126°W while
Schwiderski places them at approximately 6°S 176°E
and 4°S 129°W. The dominant feature of the Indian
Ocean for all models is a central anti-amphidrome.
Parke-Hendershott place this at approximately 18°S
78°E while Schwiderski places it at approximately
20°S 78°E. In the South Atlantic Parke-
Hendershott show a region of low amplitudes ex-
tending eastward from South America while
Schwiderski shows a double amphidrome. Both show
an anti-amphidrome next to the tip of Africa with
Parke-Hendershott placing it at approximately 32°S
5°E and Schwiderski at 30°S 10°E.

Discussion

Table 1 summarizes the global tide models
calculated since 1972. Recent estimates of model
dissipation by Parke-Hendershott [1978] of 2.22 x

ergs/sec and by Accad and Pekeris of 2.55 x
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Fig. 8. The Schwiderski [1978] M2 tidal model. Many shallow seas and shelves such as
the Patagonian shelf show spacial structure much too fine to be resolved at these scales
and so these regions have been left blank. (amplitudes in cm, Phases in degrees)

Fig. 9. The Parke-Hendershott [1978] M2 tidal model, (amplitudes in cm, phases in degrees)

ergs/sec are significantly lower than pre-
vious model estimates. Recent astronomical
estimates include Muller [1977] with 3.3 ± .2 x
1019 ergs/sec and Goad and Douglas [1978] with 3.3
± .4 x 1019 ergs/sec. It should be noted that the
astronomical estimates are for all lunar dis-
sipations not just M2. Estimates of the non-M2

ocean contribution to lunar dissipation vary from
0.3 - 1.0 x 1019 ergs/sec. This leaves a range
for the M2 ocean tidal dissipation based on the
Muller estimate of 2.1 - 3.2 x 1019 ergs/sec.
Miller [1966] estimates empirically a M2 dis-
sipation in the shallow seas and shelves of 0.9 -
2.5 x ID-*-9 ergs/sec. Combining these two esti-
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TABLE 1: Summary of Global Ocean Tidal Models since 1972

Model

Hendershott
r 1070 ii •*•? » ̂  J -

Zahel
[1973]

Zahel
[1973]

Estes
[1977]

Estes
[1977]

Schwiderski
[1978]

Parke-Hendershott
[1978]

Accad and Pekeris
[1978]

Const Ituent(s)

M2

Kl

M2

M2,S2 ,N2 ,K2 ,
Kl.Ol.Fl

H2

M2

M2.S2.K1

M2.S2

Mesh

6°

spherical

1*

spherical

2°
spherical

3°
spherical

1°
spherical

6°
mercator

2*

Boundary
Conditions

specified

reflecting

reflecting

reflecting

reflecting

reflecting

specified
elevation

modified Proud-

Form of Dissipation
Dissipation (x 1019 erg s"1 )

Implicit, in shallow 3.08

bottom stress in
shallow water

bottom stress in 3.77
shallow water

bottom stress in
shallow water

bottom stress in -
shallow water

bottom friction bL2iicos<f>
eddy dissipation ~

a/2 L H(X,«t>)(l-HJcos4>)

implicit, In shallow H2 - 2 .22
seas and shelves only 52 « 0.208

Kl = 0.221

implicit, in shallow M2 « 2.55

I .ending
Terms

yielding to

force only

none

none

yielding to
astronomical
force only

complete potential
using Green's
function

en t lm.1 1 e load J ng
terms with O.KQ

complete po tpn t ln l
using Green's
function

estimate loading
man condition seas and shelved only
using ramp shaped
shelf edge

S2 - 0.526 terms with
0.085r,n

mates, one would expect M2 ocean tidal dissipation
to be in the range 2.1 - 2.5 x 10̂ 9 ergs/sec which
is in excellent agreement with the new model
estimates.

In the last section, it was noted that there
exists a marked similarity between the models of
Parke-Hendershott and Schwiderski. There are also
a number of qualitative similarities with the
loading solutions of Estes and Accad and Perkeris.
All four models show two anti-amphidromes in the
Pacific and one in the Indian Ocean, although
Estes' anti-amphidrome in the eastern Pacific is
much further south than that for the other three.
Estes also shows an anti-amphidrome just west of
the tip of Africa similar to that of Parke-
Hendershott and Schwiderski. All four show amphi-
dromes in the North Atlantic, in the South
Atlantic near Antartica, off the coast of
California, and in the central Pacific.

Anti-amphidromes represent ideal places for
bottom pressure guage measurements, since they are
locations of large ampitude and spacial stability.
Because of the strong similarities in the location
and number of anti-amphidromes in the above M2
models, a strong recommendation can be made as to
where measurements should be taken. Thus the
following list of locations is recommended; near
1°S 175°E, near 3°S 128°W, near 19°S 78°E, and
near 31°S 8°E. Also since there are relatively
large variations from model to model in the
South Atlantic between South America and Africa,
30°S 30°W is recommended.

Although new models for other constituents
are not shown here, similar recommendations can
be made for S2. Accad and Pekeris' S2 model
shows anti-amphidromic points at 2°N 176°E, 10°N
142°W, and 18°S 74°E while Parke-Hendershott
show anti-amphidromic points at 6°N 172°E, 8°N
142°W, and 22°S 75°E. Therefore ideal locations
for S2 bottom pressure guage measurements would

be at 4°N 174°E, 9°N 142°W, and 20°S 74°E. Not
surprisingly, two of the three locations are
almost identical with those for M2.

For the future, there are three potential
directions for improvement in the ability to re-
present the open ocean tide. All models refer
back to known observations either directly
through specified elevation boundary conditions,
indirectly through adjustment of a friction
parameter(s), or simply as a measure of model
quality. Unfortunately, coastal observations are
on the wrong side of the shelves, and quite often
in bays or estuaries. Island observations are
often inside lagoons. The growing collection of
bottom pressure guage measurements will help.
Cartwright and Zetler (personnel communication
with Zetler) are collecting present measurements
for publication by the International Association
for the Physical Sciences of the Ocean (IAPSO).
Shelf models of such difficult regions as the
Patagonian Shelf will also help. Satellite
altimetry measurements will ultimately provide
spacial (if not as accurate) coverage of the
global tide. In special regions where there
are high tidal amplitudes and short length
scales, so that the spacial structure of the tide
can be separated from orbit errors, existing
satellite data can quite possibly be utilized.
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