General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

National Aeronautics and
Space Acjministration

Lyndon B. Johnson Space Center

Houston. Texas 77058
77-FD-004

ORBITER DATA REDUCTION COMPTEX DATA PROCESSING REQUIREMENTS FOR THE

OFT MISSION EVALUATGION TEAM
(LEVEL C)
REVIEION B
(NASA-TM-79943) ORBITER DATA REDUCTION
COMPLEX DATA PROCESSING REQUIFEMENTS FOR THE
120 PHCAO AOMFAOTION TEAM (LEVEL C) (NASA) CSCL 09B ${ }^{\text {G3/60 }}$ Onclas G3/60 24260

ORBITER DATA REDUCTION COMPLEX
 DATA PROCESSING REQUIREMENTS FOR THE OFT MISSION EVALUATION TEAM

(LEVEL C)

REVISION B

77-FD-004

APPROVED BY:

Integration Division

PREPARED BY
ENGINEERING AND SPECIAL DETELORAENT BRANCH INSTITUTIONAL DATA SYSTEMS DIVISION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION LYNDON B. JOHNSON SPACE CENTER HOUSTON, TEXAS

ALT	Approach and Landing Test
BCD	Binary Coded Decimal
BET	Best Estimate of Trajectory
BITE	Built-in Test Equipment
cal	calibration
calcs.	calculations
CCT	Computer-compatiole tape
CDT	Compressed data tape
DFI	Development flight instrumentation
DISM	Data Log Summary uessage
EU	Engineering Unit
FM	Frequency Modulation
GHT	Greengich Mean Time
GPC	General purpose computer
GSE	Ground suppert eguipment
GSFC	Goddard Space Flight center
HEX	Hexadecimal
ICD	Interface Control Docurent
ID	Identification
IDS ${ }^{\text {D }}$	Institutional Data Systems Division
IEIG	Instrumentation Interchange Information Gisup
JSC	Lyndon B. Johnson Space Center
kbps	Kilobits per second
MET	Mission Elapsed Time, Mission Evaluation Tean
GMDBS	Master Heasurements Data Base System
MPAD	Mission Planning and Analysis Division
MSFC	Harshall Space Flight Center
MSID	Measurement/Stimulus Identification
MTU	Master timing unit
NASA	National Aeronautics and Space Administration
NIP	Network Interface Processor
0 D	Operational Downlink
ODEC	Orbiter Data Reduction Compley
OFI	Operational Flight Instrumentation
OFT	Orbital Flight Test
OI	Operational instrumentation
PCM	Pulse Code Modulation
If	Radio freguency
R/T	Real time
SAIE	Shuttle Avionics Integration Laboratory
sec.	Second
SIS	Shuttle Interface Simulator
SSDB	Standard Source Data Base
TBD	To be determined
TDRS	Tracking and Data Relay Satellite
TICM	Test Interface Control Nodule
TOC	Test Operations Center
\#B	Mide band

5.2.4.19	ATCS Pump Freon Outlet Temperatures. 5-7
5.2.4.20	Euel Cell $日 X$ Freon Heat Load (HLz3) 5-71
5.2.4.21	Mid-body Cold Plate Panels $1+2+4$ and
	Panels 3 i 5 Heat Loads (HL_{24} and HLps) . . . $5-71$
5.2 .4 .22	Hydraulic HX Inlet Temperature (THI1, THI2) . 5 -72
5.2.4.23	Hydraulic EX Heat Load (HL26) 5-73
5.2.4.24	Radiator LH and RH Danels Heat Loads
5.2.4.25	Radiator LH and BH panels Freon Flow Rates (H_{16}, W_{17}) 。
5.2 .4 .26	Radiator Panels $L-1, L-4, R-1$, and $R-2$ Heat Loads.
5.2.4.27	Flash Eqaporator, Ammonia Boiler or GSE $H X$ Heat Load (HL 3 3) 5-74
5.2.4.28	Overall atcs heat Load ($\mathrm{HL}_{\mathrm{g}+\text {) }}$. 5-75
5.2 .4 .29	
5.2.4.30	Anmonia Heat Absorption Capacity and Use
	Rate (C, $\mathrm{Ha}_{\text {a }}$) 5-75
5.2 .4 .31	Flash Evaporator mater 0se Rate (Wig) 5-76
5.2 .4 .32	Fuel Cell Power (PhR) 5-76
5.2 .4 .33	
5.2.4.34	Potable Water Use Rate (inzi) 5-76
5.2.4.35	auxility 0, Quantity (002). 5-77
5.2 .4 .36	Nitrogen Systems 7 and 2 Quantities (QN1, QN2) 5-77
5.2 .4 .37	Waste Water Dump Rate ($\mathrm{F}_{2} \mathbf{2}$) 5-78
5.2.	Structures Pressure calculations. 5-79
6.0	EESPOWSETTME........... 6-1
7.0	DATA MANAGEMENT REQUIREMENTS $\quad .1$
7.1	STORAGE AND ĒETRIEVAL $7-1$
7.2	DATA PREPARATION AND DISTRIBUTION $7-1$
7.3	STATUS TRACKING $7-2$
7.4	DATA SELECTION * 7-2
. 0	DATA MAGMITODE 8-

TABLES

4-1 ODRC Support $4-2$
5-1 ORT Input/Output Proaucts 5-2
5-2 Annotation Items 5-6
5-3 Wideband Track Characteristics. 5-16
5-4 OHS Input Measurements 5-20
5-5 KCS Quantity Inputs 5-22
5-6
5-7
RCS Calculation Constants 5-23

5
RGA Parameters. 5-45
5-8
DEU Input words 5-52
5-9
DEU Keystroke Conversion - 5

5-10
Input PCM Parameters 5-53

5-11
Internal Compartment Pressures. 5-56

5-12
5-13
On-0rbit Compartment pressures. 5-81

5-14 Orbiter Base Pressures 5-83
5-15
5-16
Miscellaneous External Pressures. 5-83

5-17
Miscellaneous Internal Pressures. $5-84$

5-18
Control Surface Deflections 5-85

5-19
5-20
Altitude Measurements 5. 86

5-2
Velocity Measurements 5-86

5-22
Acceleration Data 5-87

5-23
Temperature Measureilents 5-88

FIGURES
2-1 Concept of Data Flow 2-2
5-1 Data Flow 5-40
Redundancy Removal Criteria
B--3

This document addresses reguirements for post-test data reduction in support of the oFT mission evaluation team, specifically those which are planned to be implemented in the ODRC forbiter Data Reduction Complex). Only those reguirements which have been previously baselined by the Data Systems and Analysis Directorate configuration control board are included.

This document serves as the control document between IDSD and the Integration Division for OFT mission evaluation data processing requirements, and shall be the basis for detailed design of odrc data processing systems.

A conceptual ofr data flow is shown in Figure 2-1 as an aid to understanding the context of the ODRC in overall JSC data planning. IDSD orbiter data reduction systems are designated "Orbiter Data Reduction Complex" (ODRC). The ODRC systems support SAIL tests, selected mission support functions, and certain ground tests in addition to Shuttle $M E T$ activities that are addressed in this document.

Figure 2-1. - Concept of Data Flow

INPUT SQUECES

The sources of orbiter ray data will be the following:

- $64 / 128 \mathrm{kbps} \mathrm{PCM}$ operationalı data downlink.
- Site recorded downlink instrumentation tapes containing $64 / 128 \mathrm{khps}$ OD or 12 b kips DFI PCH data (see ODRC/MET ICD for magnetic tapes).
- Orbiter onboard data via ground support equipment (GSE) recorded instrumentation tapes containing $64 / 128 \mathrm{kbps}$ od or 128 kbps kbps DFI PCM data (see ODRC/MET ICD for magnetic tapes).
- Orbiter $F M$ data via GSE or site recorded instrumentation tapes, both 7 and 14 tracks.

The processed data sources will be computer-compatible tapes (CCT's) which may or may not already be converted to engineering units (EG's) (see Figure 1-1). These CCT"s will contain:

- Ephemeris/BEI (Format TBD)
- Orbiter FM data in EO's (see ODRC/iET ICD for四agnetic tapes)
- Master Measurement Data Ease System (MMBS) calibration tape, telemetry ioading tapes (see Detailed Requirements Document for the MMDBS)
- DLSM tape (see Interface Agreement for DLS

[^0]oft support is required for these tests listed in Table 4-1.

TABLE 4-1.-ODRC SUPPORT

EVENT	DATE
STS-0	Septerber 28, 1979
STS-1	Noverber 9, 1979
STS 2	TBD
STS 3	TBD
STS 4	TBD
STS 5	TBD
STS 6	TBD

The following general product types are required by oft data users:

- Tabulations (microfilm with option for paper)
- Page flots (microfilim)
- Continueus plots
- Conputer compatible tapes (CCT's)
- Strip charts

Table 5-1 sumarizes requirements for deriving the products from specific input sources. The general product requirements are described in detail in section 5.1. Specific requirements unique to inaividual subsystems are described in section 5.2.
5.1 GENERAL PRODGCTS

Certain general products and processing capabilities are required by the mission evaluation ata manager to support all oft tests. These required general capabilities are described in the following peragraphs.

5.1.1 Standard Tabulations

Standard time history tabulations must be available for all measurements defined in the orbiter $64 / 128$ kbps ${ }^{2}$ operational downlink, and the 128 kbps DFI downtink and for all parameters on the Ephemeris CCT. Nonstandard tabulation requiremenis are described in section 5.2 .

1all or and gpC formats except mass and main memory dups must be processed.

TABLE 5-1 - OFT INPUT/OUTPUT PRODUCTS

* $64 / 128 \mathrm{kbps} 00$ or 128 kbps DFI PCM

Standard tabulations shall provide measurements in predefined page groups in standard formats. The capability to change measurement groups by sfecial request is required. One standard format must allow up to 10 measurement colums with one time base column per page (called analog tabulation). A second standard format must allow up to 80 event measurements plus one time base column per page (called event tabulation).

Onits
On analog tabulations data for analog or digital measurements must be presented in either engineering units or raw pCy counts as a user option. The capability to convert from raw PCM counts to engineering units using information from the MMDBS calibration tape is required. on event tabulations, no calibration is required.
5.1.1.3 Mixed Sample Rates

It is requirea that tabulation groups be capable of containing measurements with different sample rates.
5.1.1.4 Measurement/Source Combinations

It is required that $O D$ measurements from the 01 (Operational Instrumentation) and up to five GPC subcoms may be simultaneously tabulated on the same page in any requested combinations. Combinations of analog, event, and digital type measurements are required. Measurements from different sources (OD, DFI, BET, Fif) must be merged to a common time base at a constant sample rate before display. Standard time corrections plus GPC skew correction wili be made before merging.
5.1.1.5 Time Correlation

GHT shall be the time base for all standard tabulations and should be presented in a standard time column. For the $O D$ source, the $O I$ time will be used as the time base. If the oI time is unusable, any standara GPC time can be used as the OD time base. A user option to bias the time base to an event elapsed time is required. GPC time words may be assigned to data colums but may not be biased. The capability to
request processing start/stop time(s) as a user option wust be available.

It is required that standard tabu_ation formats provide for the identification of sampling tine of individual measurement values, except when using GPC as the time base. Due to mixed sample rates and systematic time correlation errors, sample time for parameter values on single print lines need not be identical. A delta time value shall be included in each colum heading which. then added to the time base value for a given print line, will give the sample time of a particular paraneter value on the line. Ghen tabbing time homogeneous data sets, the homogeneous data set time shall be tabbed as a parameter. an indication is required whenever subcom skew is present: the window number qust be identified.

A tiae comparison tabulation shall display GMT, OI bitstream time, GPC bitstream time, and the MTU BITE words. Additionally, the frame counters for the $O I$, and GPC data subsets shall be displayed.
5.1.1.6 Event Heasurements

Event measurements must be available in either of the two general formats described in paragraph 5.1.1.1. Event words to be included in an analog tab must be converted to qeneric meaning, such as on-off, openclosed, up-down, etc. as specified on the madBS calibration tape. All event tabs shall display event words in binary format ("0" or "1") With up to 80 events per page. Event words are not restricted to parent word syllables, but can be made up of up to eight bilevels from anywhere in the PCM aownink.

5.1.1.7 Annotation

It is required that standard tabulation pages be annotated such that each data value can be readily interpreted as to source, telemetry format and winduw. data quality, time of occurrence, units, time base, and processing parameters used. Annotation must include those items listed in Table 5-2. In addition, it is required that a listing be provided prior to each product ID for standard tabs showing nomenclature and Cal effectivity date for each measureqent. For bilevels, a list of the interfretation of states, the sample rate, and the staleness is required. Measurements not in the current downink must be so labeled.
5.1.1.8
5.1 .1 .9

Significant Digits
Printing of excessive digits for a given neasurement shall be avoided. The number of digits printed shall be related to the gramularity of the parameter and determined according to the algorithm described in appendix A. Detailed processing and formatting are described in appendix c.

Data Compression
A redundancy removal capability $1 s$ required to avoid unnecessary printing of static tapulation lines. Redundancy removal must be selectable as an option by parameter. Then selected, the first line of data printed shall be a status line. This will be an initialization line for the beginning of a tab group; but for subsequent pages of the same tab group. it will be a status line showing the last output value for each parameter in that tab group. The algorithm described in Appendix B shall be used to accomplish tabulation data compression.

Iten	Description/Example	Tatulations		Plot
		page	Column	Pac
		Heading	Heading	Heas
Title	Otbital Flight	\mathbf{x}		i
Fliqht/rest	T'est No.	Y		λ
Test Date	June i, 1979	X		1
bata 3ocrce	- R/T - Site ID	x		2
	- Playback \quad / T Site ID			
	- Dump - Site ID - Range tape - Site ID			
Tab/Plot Group ID	07-01, 90-01, etc.	X		X
Shuttle Subsystem	structures, Avionics, etc.	X		>
Dounlist/Dovnlink Format	(Don't page Eor Sain/Mass Memory Dump)	K	x	;
Erocessing Date	July 1, 1979	X		λ
Time Correlation	Identiry tiae uisted to GsT. MET, etc.	X		λ
Processing Request		X		λ
Cal. File ID	Couttol tor date	X		K
Status	First line of data is last printed value		x	
Measurement Id	For event groups, iSIi of parent plus byte number	r \quad K	X	x
Band Pass Limits			\mathbf{x}	x
Sanple Eate	Samples/sec		\mathbf{y}	x
Delta T	This value, when added to the time of a given		X	
	line of print will give the time the parameter			
	in question was sampiled.			
Units	Engineering units		χ	x
Bite status		X		X
Telemetry yindow	For multiple rindor od		X	χ

A. \quad PCH Sync status Information - Loss of data due to bad frame synchronization in the ground data processing system shall be reported on a parameter-by-parameter basis by placing a notation in the appropriate data coluna Reestablishment of good sync will be evident by the presence of the first value for a given parameter being printed along with the corresponding time. The delta time betuefn time printouts for that parameter vill represent the data loss period for that parameter.
B. PCM BTTE Built-in-test-equipmenth status Information - There are two 16-bit status Yords; one contains status information regarding the master tining units and the other one contains status information IEgarding the PCM Master Unit. These words are to be checked against nominal 16-bit patterns. Whenever any one of the bits changes, a notation shall re printed on the page heading indicating that data are suspect or that status has ceturned to normal.
5.1.1.11 Data Availability Reports

A data availability tabulation is required for each data segment produced in standard product formats. The data availability report shall inciude start and stop times, product ID, data source identification, and processing date. Data gaps greater than 2 seconds will be flagged.

5.1.1.12 Data Base Report 1

> A report is required immediately berore each ort mission which shows the products available. The report will be in alphanumeric order by product ID, with only

[^1]MET products (E.g. not SAIL) listed. (SaIL products have the letter "S" as the 6th character of the group name; others are MET.) After each proauct a list of the measurements on that product is reguired giving the following information for each measurement:

```
1. MSID
2. Nomenclature
3. High/low range
4. Number of bits
5. Data type
6. Bandpass (tabs) or plot range (plots)
```

	A cross-reference tabalation of measurement IDs versus the product groups that contain the measurements is required for plot groups, CCT groups, and time history tabulation groups. The cross-reference tabulation shall be sorted by measurement ID, using a tro-level. ascending-magnitude sort. The primary sort shall use only characters $1,2,3,5,6,7$, and 8 of the measurement ID, and the secondary sort shall use only eharacters 9 and 10.
5.1.1.14	DLSM Report ${ }^{\text {a }}$
	A report of raw data availability from the BLSM tape is required. All available parameters from the tape are to be displayed.
5.1.2	Standard Page plots
	Standard time history page plots must be available for all analog and digital measurements defined in the obz $64 / 128 \mathrm{kbps}$ or DFI 128 kbps PCM forimats. Nonstandard page plot requirements are described in section 5.2.
5.1.2.1	General Format
	Standard time history page plots stall provide measurements in predefined page groups in a standard format. The capability to change measurement groups by special request is reguired. Plotting of $u p$ to eight reasurements vs: time is required per page.
5.1.2.2	Units
	Data for analog and digital measurements must be plotted in either engineering units or raw PCM counts as a user option. The capability to convert from raw PCy counts to engineering units using information from the MMDBS calibration tape is required.

[^2]It is required that standard page plot groups may contain measurements with different sample rates when requested.
5.1.2.4 Measurement/Source Combinations

Requirements and restrictions for grouping measurements on standard page plots are the same as those described for standard tabulations in paragraph 5.1.1.4 except that event measurements are not reguired on standard page plots.
5.1.2.5 Time Correlation

Gat shall be the time base for all standard page plots and shall be the x-axis plot parameter. a user option to bias the time base to an event elapsed time is required. Time correlation factors must be applied before plotting (i.e., staleness included but not gRC skew). The presence of subcom skew will be indicated by uindow for each page. Data before the requested start time or after the requested stop time should not be plotted.
5.1.2.6 Annotation

Annotation requirements for standard page plots are described in Table $5-2$ and section 5.1.1.7.
5.1.2.7 Data Compression

A redundancy removal capability is required to avoid unnecessary plotting of static data. plot reaudancy removal must be selectable as a user option by plot group. When selected, the nonredundant points shall be step-connected starting with the initial data value. The algorithm described in Appendix bill be used to accomplish plot data compression.
5.1.2.8 Grid Requirements

Data must be plotted on grids containing major division lines and minor division tic marks, with one gria per page. Major dirisions shall be labeled. The abscissa shall be scaled to the standard time base, up to tryo ordinate scales must be available for a single gria per page. Grids must be lighter than plotted information.

Plotted data points shall be represented by symbols unique to each measurement on a paye. a user option by group is required to plot with or without vector connection of symbols. When vector connection is selected, symbols shall be displayed only at noncontiguous intervals. Indications on the plots shall be provided for gaps in the data as well as format changes.
5.1.3 Continuous Eorm Plots (Standard)

Plots in continuous (unpaged) form inust be available containing predefined combinations of measurements from the OD $64 / 128 \mathrm{kbEs}$ PCHl data or the DFI 128 kbps PCM data, subject to restrictions described in paragraphs 5.1.3.1-5.1.2.8 to follow. Requirements for special continuous form plots containing computed parameters and/or additional data sources will be describeđ in Section 5.2.

'5.1.3.1 General Format

Multimeasurement displays are required in continuous trace or discrete data point form (by option) with each measurement periodically identified. The capability to modify existing flots or define $n \in w$ plots by special request is required. Plotiing of up to 30 measurements vs. tine is reguired per plot. Data dropouts must be indicated on the output. The capability to allou overlapping measurement boundaries is required.
5.1.3.2 Bnits

Data for amalog and digital measurements may be flotted in either $E U$ or PCM counts as a user option. The capability to convert from PCM counts to $\mathrm{E} V$ from the MMDBS calibration tape is reguired.

[^3]

TSee footnote page 5-1.
5.1.4.3 Mixed Sample Eates
It is required that strip chart groups may contain measurements with different satiple rates.
5.2.4.4 Measurement Combinations
It is reguired that $O I$ and $G P C$ measurements may be included on the same strip chart. Combinations of analog, event, and digital type measuremonts are reguired. Grouping of measurements from more than one source is not reguired.
5.1.4.5 Time Correlation
The capability to select HASA 36 -bit range time, OI/DRI bitstream time, or any GPC bitstream time as a time base for strip charts is required. A user option to select processing start/stop time (s) and to bias the time base to an event elapsed time is required. Time words other than the time base shall be treated as data measurements and cannot be biased.
Systematic time correlation errors are sot required to be corrected in generating strip charts. The oI GuT corresponding to the beginning of each minor subframe shall be used to generate a coded time trace simultaneous with the display of immediately follouing OI or GPC data.
A unique time correlation group must be available as a separate strip chart. This product must include OI GMT (MTJ1 and MTU2), each available subcom (up to 5) bitstrean time, and either greand receipt GMT or range recorded GMT.
5.1.4.6 Annotation
Strip charts must be annotated as to data request number, calibration step levels, and measurement identification. Annotation may de manually added in handwritten form.
5.1.4.7 Word Formats
Op to 10 contiguous bits inclading sign for some measurements) must be included in digital-to-analog conversion of variable length words prior to display of GPC data.
It is required that status of the data processing system pCo bit synchronizer be displayed with each standard measurement group.
5.1.4.9 Hardcopy Quality
Standard strip chart hardcopy must be of permanent quality. Temporary bardcopy is acceptable only when noted on specific data reguests.
5.1.4.10 Signal Strength Stripehart
A special strip chart is required which displays the uplink/downlink signal strength which is FM recoratd on a separate track of the site instrumentation tape.
5.1.4.11 FU Stripcharts and oscillografhs
The capability is required to demultiplex (including tape error compensation) the 15 FM frequencies listed in Teble 5-3 and produce stripcharts andor oscillographs. Any one chart may contain any mix of the composite freguencies from one track of the input tape or up to four tracks at the same frequency.
This capability is for low volume, quick turnaround anomaly investigation and is not meant to replace msfC FM processing.

INPOT	CBY VCO	CENTER	Max mom
CHANNEL	NOMENCL ATURE	FREQ. (KHz)	DEVIATION (KHz)
1	NON-IRIG	12	1
2	NON-IRIG	16	1
3	NON-IRIG	20	1
4	NON-IRIG	24	1
5	NON-IRIG	28	1
6	NON-IRIG	32	1
7	NON-IRIG	36	1
8	IRIG-5B	48	4
9	IRIG-7B	64	4
10	IRIG-98	80	4
11	IRIG-118	96	4
12	IRIG-13B	112	4
13	IRIG-15B	128	4
14	IRIG-17B	144	4
15	NON-IRIG	184	16
	Fef. Freg.	240	N/A

Computer compatible tapes must be available containing predefined combinations of measurements from any of the Orbiter data sources listed in Section 3 . Units conversion and sample rate mixing oytions are the same as described in paragraphs 5.1.1.2 and 5.1.1.3 for standard tabulations. Two types of stanaiard cct's are required:

- Full sample rate - all measurements retain original sample rates. All measurements on a CCT are from only cne of the sources listed in Section 3.
- Interpolated - all measurements are linearly interpolated to a common user-specified sample rate. Measurements may ie mixed from any of the possible sources listea in Section 3.

Standard CCT's will be genereated in the ODRC output CCT Format. which is compatible with Univac 1108 computer systems. The format is documented in the ODRC/MET Interface Control Document for Magnetic Tapes. CCtes sent to MSFC will be in isfc FM CCT format, which is documented in the same ICD.

Requirements fer nonstandard CCT products, containing computed parameters or departing in any way from the above criteria, are described in Section 5.2.
5.1.6 Copies

The capability to copy instrumentation tapes, CCT's, strip charts, oscillograms, tabs, and plots must be available. only one-to-one dubs of the instrumentation tapes are required.

In addition to the general products descrined in Section 5.1 which are required to support all subsystems, certain specific products are reguired to support individual subsystems and specific test phases. Following is a description of specific requirements.

5.2:1 Poyer and Propulsion

5.2.1.1 OHS Calgulations

1. Chamber Pressure Conversion

Convert units to psia by the following:

$$
\begin{aligned}
& \mathrm{PCL}=1.25 * P C L \\
& \mathrm{PCR}=1.25 * \mathrm{PCE}
\end{aligned}
$$

2. Data Filtering

A11. pressure and quantity meagurenents in Table 5-4 will be filtered with the following filter:

Where the eleven filter constants (fi) are input on cards. The first five points for each parameter will be lost in initializing the filter. an option to bypass the filter must be available.
3. Flowrate

```
DQOL = (QOL - QOL')*KO
DQQR = (QOR - QOR') *K K
DQPL = (QPL - QEL')*KE
DQFA = (QFR - QFE')*KF
```

Where K_{0} and Kf are input on cards, and designates the previous value, hence flowrate is undefined for the First data point. Default values are $K_{o}=80.31$ and $K f$ $=48.99$.
4. Mixture Ratio

QRE $=\mathrm{DQOR} / \mathrm{DQFR}$
QRL $=$ DQOL/DQEL

5. System Pressures

```
DPOOL = PUOL - PCL
DPUFL = PUFL - PCL
DPUQR = POOR - PCR
DPURR = PUER = PCR
6. Engine Pressures
DPIOL = PIOL - PCL
DPIFL = PIFL - PCL
DPIOR = PIOR - PCR
DPIFR = PIFR - PCB
7. Hypergolic Pressures and Ratios
DPHL = PIOL - PIFL
DPHR = PIOR - PIFR
PRL = PIOL/PIFL
PRR = PIOR/PIER
8. Fuel Temperature Rise
DTL = TFL - TOL
DTR = TFE - TOR
9. X-axis Acceleration
AX = VX - VX'
where ' designates the previous value.
10. Output uill be on continuous form plots and on
CCT. The CCT will contain additional ob and BFI
parameters to be defined later.
```

TAELE 5-4. -OMS INPOT GEASUREMENTS

MSTD	SYMBOE	DESCRIPTION
V43P4221C	PUOL	Left oxidizer uilage pressure
V43P5221C	POOR	Right oxidizer ullage pressure
V43P4321C	POFL	Left fuel ullage pressure
V43P5321C	POFR	Right fuel ullage pressure
V43P4645C	PIOL	Left oxidizer inlet pressure
V4325645C	PIOR	Right oxidizer inlet pressure
V43P4646C	PIFL	Left fuel inlet pressure
V43P5646c	PIFR	Right fuel inlet pressure
V43P4649C	PCL	Left chamber pressure
V43P5649C	PCR	Right chamber pressure
V4304231C	QOL	Left oxidizer quantity
V4305231C	QOR	Right oxidizer guantity
V4304331C	QFL	Left fuel guantity
V4305331C	QPR	Right fuel guantity
V43T4642A	TOL	Left oxidizer injector temperature
V43T4643A	TFL	Left oxidizer inlet temperature
V43T5642A	TOR	Right oxidizer injector temperature
V43T5643A	TEi	Right oxidizer inlet temperature
V71L2200B	V	IMU-I accum vel. X

5.2.1.2 RCS Quantity Calculation

1. Input measurements and their substitutes are shown in Table 5-5. An option. must be available by parareter to select wich MSID is used far each. Constants needed for the computation are shown in Table 5-6. Those not listed in these tables must be read from input cards.
2. Vapor Pressure
```
    PFV(I) = F For I = 2, 4,6
    PFV(I) = E + D1-D2/TF(I) +D3*TF(I) for I = 1. 3,5 E is provided on input card.
```

3. Felium Compressibility Factory (I=1 thru 6)
```
PS(I) = (PST(I) + PS2(I))/2
ZS(I)=1+B1*PS(I)**S (I)** (-B2)
```

4. Helium Supply Systen Volume
```
VGS(I) = VHAM(I)* (1+PS(I)*A)**3+VGLI (I)
```

5. Feight in Helium Supply
```
WES(I) = (PS (I)*VHS(I))/(2S(I)*TS (I))
```

6. Oxidizer and Fuel Quantities
```
PF(I) = (PF1(I) + PF2 (I))/2
VHO(I) + [G# (WHI (I) -WHS (I) ) &TF(I) &R]/(RF(I)-PFV (I))
RHOF (I) = CI-C2*TF(I) +C3*PF (I) for I=1,3,5
RHOF(I)=.E1-E2*TF(I) +E3*PF(I) EOE I=2,4,6
BWPD(I) = 100*[REOF(I)*(YP(I)-VTP(I)-VHU(I))-WTP(I)]/
    GFDA(I)
```

WHI(I) and \quad FDA(I) are grovided on input caras.
7. Output $\mathrm{ENFD}(\mathrm{I})$ on a continuous forit plot and/or a tab. output uili be labeled as follows:

TABLE 5-5.-RCS QUANTITY INPUTS

SYMBOL	MSID	SUBSTIT DTE
TS (1)	V42T1100C	V4291104C*
PS1(1)	V42P1110C	V42F1112C*
PS2(1)	V42P1112C	V42P1110C
PF1 (1)	V42P1115C	V42P1210C*
PF2(1)	V42P1210c	V42Pf115C
TF(1)	V42F1200C	-4291300C*
TS(2)	V42T1104C	V42T1100C
PS $1(2)$	V42P1113C	-42P1114C*
PS2 (2)	V42P1114C	V42P1113C
PF1(2)	V42P1116C	V42P1310c*
PF2 (2)	\$42P1310C	V42P1116C
TF (2)	V42T1300C	V42T.1200C
TS (3)	-42T2100C	V42T2104C*
PS 1 (3)	V42P2110C	V42P2112C*
pS2 (3)	V42P2112C	V42P2110C
PF1 (3)	V42P2115C	V42P2210C*
PF2 (3)	V42P2210c	V42P2115C
TF (3)	V42T2200C	-42T2300C*
TS (4)	V42T2104C	V42T2100C
PS 1 (4)	V42P2113C	V42P2114C*
PS 2 (4)	V42P 2114 C	V42P21130
PF1(4)	V42P2116C	V42P2310C*
PF2 (4)	V42P2310C	V42P2316C
TF(4)	V42T2300C	V42T2200C
TS (5)	V42T3100C	『42T3104C*
PS1(5)	V42P3110C	V42P3112C*
PS2 (5)	V42P3112C	V42P3110C
Pr 1 (5)	V42P3115C	-42P3210C*
PF2 (5)	V42P3210C	V42P3115c
TP(5)	V42T3200C	V42T33000*
TS (6)	V42T3104C	V42T3100c
PS 1 (6)	V42P3113C	V42P3114C*
PS2 (6)	V42P3114C	V42P3113C
PF1(6)	V42P3116C	V42P3310C*
PP2(6)	V42P3310C	จ42P3116C
TE(6)	V42T3300C	V42T3200C

DESCRIPTION			
RCS-FWD TRAPPED OX LINE VOL			
RCS-FAD TRAPPED FU LINE			
RCS-L AFT TRAPPED OX LINE VOL			
RCS-L AFT TRAPPED FU LINE YO			
RCS-R AFT TRAPPED OX L			
RCS-R AFT TEAPPED ED LI			
FUEL DENSITY COEFFICIENT			
FOEL DENSITY COFFFICIENT			
FUEL DENSITY COEFFICIENT			
FUEL VAPOR PRESSURE			
HELIUG TEIGHT COEFFICIENT			
HELIUG GAS CONSTANT			
HELIUM SYSTEY VOLUME COEFFICIENT			
HELIUM COMPRESSIBIEITY COEFFICIENT			
HELIU COMPRRSSIBILITY COEFFICIENT			
RCS-FWD OX TK RESIDUAL WEIGHT			
RCS-FMD FG TK EESIDUAL WEIGHT			
RCS-L AFT OX TK RESIDUAL WEIGHT			
RCS-L AFT FU TK RESIDUAL TEIGGT			
RCS-E AFT OX TK RESIDUAL WEIGHT			
RCS-A APT PU TK RESIDUAL DEIGRT			
RCS-PKD HE BOTILE VOLUME			
RCS-L APT HE BOTTLE VOLUME			
RCS-K AFT HE BOTTLE VOLOME			
RCS-FED OX HE LINE VOLOME			
RCS-FWD FU HE LINE VOLOME			
RCS-L AFT OX HE LINE VOLEME			
BCS-L AFT FU HE LINE VOLUME			
RCS-R AFT OX HE LINE VOLUME			
RCS-R AFT FO HE LINE VOLWME			
RCS-FMD OX SYSTEM YOLUME			
RCS-EMD FU SYSTEM YOLUME			
RCS-L AFT OX SYSTEM VOLUME			
RCS-L AFT FO SYSTEM VOLUME			
RCS-R AFT OX SYSTEM VOLUME			
RCS-R AFT FO SYSTEM VOLUME			
OXIDIZER DENSITY COEPFICIENT			
OXIDIZER DENSITY COEPFICIENT			
OXIDIZER DENSITY COEFEICIENT			
OXID VAPOR PRESS COEFFICIENT			
OXID VAPOR PRESS COEFFICIENT			
OXID VAPOE RRESS COEFFICIENT			

SYMBOL	YALUE	
VTP (1)	701.0	
VTP (2)	620.6	
VTP(3)	1.0349	$\times 10^{3}$
VTP (4)	1.2217	$x 103$
VTP (5)	1.0349	$\times 103$
$V \mathrm{P}$ (6)	1.2217	$x 103$
E1	4. 1538	$x 10-2$
E 2	1.8697	$\times 10-5$
E3	1.4583	x 10-7
F	0.8	
G	1.008	
R	4635	
A	1.4972	x 10-6
81	9.7544	x 10-3
B2	0.897	
WTP (1)	200.0	
WTP(2)	127.0	
WTP (3)	117.0	
WTP (4)	68.5	
WTP(5)	117.0	
WTP(6)	68.5	
VHAH (1 or ${ }^{\text {d }}$)	3.043 x	10^{3}
VHAM (3 or 4)	3.043 x	10^{3}
VHAH (5 or 6)	3.043 x	10^{3}
V HLI (1)	13.7	
VGLI (2)	13.7	
VHLI (3)	23.6	
VBLI (4)	20.7	
V ALI (5)	23.6	
VHLI (6)	20.7	
VP(1)	3.1787	$\times 104$
VP(2)	3. 18679	$\times 104$
$V{ }^{\text {P (}}$ ($)$	3.20407	$\mathrm{x} 10^{4}$
VP(4)	3.20447	x 104
VP(5)	3.20407	x 104
VP(6)	3.20447	$\times 104$
C1	7.6027	x 10-3
C2	4.5162	x $90-5$
C3	4.1667	$\times 10-7$
D1	12.082	
D2	6111.0	
D3	4.03 x	$10-3$

5.2.1.3	APD Fuel Quantities		
A.	Measurements Reguired:		
Symbol	ID	Description	Units
P11	V4620100A	APO 1 fuel tank	k pressure psia
P21	$\nabla 46 \mathrm{P} 0200 \mathrm{~A}$	APU 2 fuel tank	k pressure psia
P31	V46P0300A	APU 3 fuel tank	k pressure psia
P12	V46P0105A	APO 1 fuel tank	k outlet pressure psia
P22	$V 46 \mathrm{P} 0205 \mathrm{~A}$	APD 2 fuel tank	k cutlet pressure psia
P32	V46P0305A	APU 3 fuel tank	k cutlet pressure psia
Ti	V46T0102A	APJ 1 fuel tank	k temperature deg F
T r	$\checkmark 46 \mathrm{~T} 0202 \mathrm{~A}$	APU 2 fuel tank	k temperature deg F
T_{3}	V46T0302A	APU, 3 fuel tank	k temperature deg F
B. Special Constants:			
Symbel	Units	Value	Descrintion
A	scalar	1.003	Linear coefficient for tank stretch; tentatipe value
B	scalar	$1.1666 \times 10-3$	stretch; teatative value Linear coefficient for tank stretch; tentative value
∇_{01}	cubic in.	0	Volume not subject to stretch APU 1
Vo?	cubic in.	0	```Volume not subject to stretch APU 2```
V_{03}	cubic in.	0	Volume not subject to stretch APU 3
V21	cubic in.	11,421	Tank volume at zero pressure, APU 1
v22	cubie in.	11,421	Tank volume at zero pressure, apu 2
V23	cubic in.	11.421	Tank volume at zero pressure, apd 3
I	degrees	459.69	Conversion of Fahrenheit to Rankine Temperature
RGCF	$\frac{(\operatorname{ps} i a) f^{3}}{(\bar{E} M)^{0} R}$. 334868	Specific gas constant; prelimiaary value
GEt	Eta^{3}	. 3982	Gaging error, $A P 0$ 1; preliminary value
GE_{2}	ft ${ }^{3}$	- 3982	Gaging error, APU 2; preliminary valueGaging error: Aqg 3 ;
GE_{3}	$f t^{3}$	- 3982 (
EFF_{1}	scalar	.99	tank expulsion efficiency, apu $1 ;$ preliminary value
EFF?	scalar	.99 Ta	Tank expulsion efficiency, APU 2 ; preliminary value
EFF_{3}	scalar	.99 T	Tank expulsion efficiency, APu 3; preliminary value
L	$1 \mathrm{bm} / \mathrm{ft}{ }^{3}$	79.484	Temeerature-to-density coefficient; preliminary yalue
\cdots	$1 \mathrm{bm} / \mathrm{ft}^{3}$	-0.0315	Temperature-to-density coefficient; prelifinary value

$K 1$	scalar	61.849	Helium compressibility coefficient
$K 2$	scalar	-9567.6	Helium compressibility coefficient
K3	scalar	21.345 .1	Helium compressibility coefficient
K4	scalar	-78.80 .3	Heliun compressibility coefficient
$K 5$	scalar	16.995	Heliun compressibility coefficient
$K 6$	scalar	-11761.6	Helium compressibility coefficient

C. Special parameters:

Symbol	Units	Value	Description	Variability
E\%	1 bm	TBD	Loaded helium mass, APU 1	Each Elight
明	1 mm	TED	Loaded helium mass, APD 2	Each flight
HM_{3}	1 bm	TBD	Loaied helium mass, 4 P 0	Each flight
Ci. 1	scalar	0 to	Oser input; selector for pil, $\operatorname{APU}(i) 1=1,2,3$	Each processing request
Ci2	scalar	0 or	User input; selector for pi2. $\operatorname{APO}(i) i=1,2,3$	Each processing request

D. Processing:

$$
P_{i}=\frac{(C i 1)}{C i} \frac{(P i 11+(C i 2 L(P i 2)}{C}, \quad(i 2) \quad(i=1,3)
$$

where
Pi = averaged fuel tank pressure (psia) for APU system i.

$$
\nabla c i=V o i+V Z i[A+P i(B)]^{3},(i=1,2,3)
$$

where

Vei $=$ volume corrected for tank stretch, apu systerl i (cubic inches)
Pi $=$ averaged fuel tank pressure, APD system i, computed above

$$
\mathbb{U} i=T i+T, \quad(i=1,2,3)
$$

Where
Ui $=$ temperature, degrees Rankine, APU systen i

```
Di}=K1(0i)+K
Ei=K3 + K4(Ui)
Fi = K5(0i) - Pi + K6 (i=1, 2, 3)
```

Where

Di, Ei, Fi = computed coefficients for compressibility of gaseous helium

$$
Z i=\frac{-E i+\sqrt{E i 2}-4 D i F i}{2 D i} \quad(i=1,2,3)
$$

where

$$
\begin{gathered}
2 i=\text { compressibility of the helium in aPU system (i) } \\
\quad \nabla 0 i=(2 i) \frac{R G C F}{P i} \quad(H M i)(0 i) \quad(i=1,2,3)
\end{gathered}
$$

Where
Voi = ullage volume in flight conditions (ft ${ }^{3}$), ApU system (i) $2 i=$ belium compressibility in apu system (i), computed above

$$
V P i=(E F F i)(V C i)-V O i-G E i \quad(i=1,2,3)
$$

where
$\nabla P i=u s a b l e f u e l$ volume remaining (it ${ }^{3}$), APO system (i)
VCi $=$ stretch-corrected tank volume, computed above

$$
\text { RHOPi }=L+(H)(0 i) \quad(i=1,2,3)
$$

where
RHORi $=$ fuel density in flight conditions, (1 bm/ft $)^{3}$)
Ui $=$ Bankine temperature, computed above

$$
\text { QCi }=\operatorname{BHOP} i \quad \operatorname{VPi} \quad(i=1,2,3)
$$

Where
Qci $=$ fuel tass remaining (1 bm)
VPi = fuel volume remaining, computed above

$$
\operatorname{Ri}(j)=\frac{\operatorname{Qci}(j)}{t(j)}=\frac{\operatorname{Qc} i(j-1)}{t(j-1)} \quad(i=1,2,3)
$$

where
Ri(j) = mass flow rate (pounds/second) at tiile t(j), AFU system (i)

$$
5-26
$$

Qci(j) $=$ fuel mass remaining at time $t(j)$
Qci(j-1) $=$ Fuel mass remaining at time $\mathrm{t}(\mathrm{j}-1)$
$t(j) \quad=$ sampling time associated with vaiue Bi(j)
t(j-1) $=$ time of sample immediately freceding t(j)

$$
\text { FCi }+(1-Q C i / H M i)(100) \quad(i=1,2,3)
$$

where
PCi $=$ fuel consumption (percent), APU system (i)
E. output:

Time-history page plots and tabulations of usable fuel remaining [Qci], mass flow rate [Ri], and fuel consumption [FCi].
F. Options:

Start and stop times (GMT), Iinear interpolation rate, output tabulation rate.
5.2.1.4 APU Performance Calculations
A. Beasurements required:

Symbol	ID	Description	Units
FL_{1}	V4650229E	Bigh speed select flag, APU	event
FI?	V4650229E	Eigh speed select flag, APU	event
FL_{3}	V46S0329E	High speed select flag, APD	event
IP	V07P9052A	Aft fusi intl press no. 100	psia
CP	V46P0120A	APO 1 gas gen chamber press	Esia
CP?	V 46 PO 220 A	APU 2 gas gen chamber press	Esia
CP_{3}	$\nabla 46 \mathrm{PO} 320 \mathrm{~A}$	ARU 3 gas gen chamber press	psia

B. Special Constants:

Symbol	Units	Value	Description and Remarks
W	BPM/percent	720	Percent to EPA conversion
TH	psia	500	Pressure threshold, APU pulses
TMin	¢Sec	20	Time Threshold, apu pulses
B10	scalar	88.49699649	Curve fit coefficient normal speed
$B_{\geq 0}$	scalar	-1.29934239	Curve fit coefficient normal speed
B_{11}	scalar	95.47388913	Curve fit coefficient high speed
B21	scalar	-1.258294872	2 Curve fit coefficient high sfeed
AP	psia	10	User-supplied for each run, default value of allbient fressure

Curve fit coefficients Ajkl, cjal, Djml, supplied by user where: $j=F L i \quad(i=1,2,3) ; F L i=0(D o r m a l)$ or 1 (high) APU speed. $k=1,2,3,4,5$ indicating the powers $0,1,2,3,4$, respectively, of (Logiophi) used in the polynomial.
$I=1,2,3$ indicating the powers $0,1,2$, respectively, of the fuselage pressure used in the polynomial.
For coefficients (C, D), the subscript mis used rather thank. $\mathfrak{m}=1,2,3,4,5,6,7$ indicating the power 0, 1, 2, 3, 4, 5, 6. respectively, of the pulse frequently used.

C. Drocessing:

A pulse shall be counted for APU system (i) each time the chamber pressure (CPi) rises from below or egual to (TH) to above (TH) and remains for at ieast (Tmin) milliseconds. A pulse ends when the chamber pressure drops below or equal to (TH) and remains therefor at least (Tmin) milliseconds. All points within that last (Tmin) are not included in the pulse. For each pulse counted, compute the pulse width phi in seconas and for Each specified interval (Δt) use the puise count (oci) to determine the frequency (Fi) (Fi = PCi/At) in pulses per second. A pulse that spans more than one interval shall be considered to be entirely within the interval in which the pulse ends, except that a pulse spanning either the start or stop time shall be ignored. also, the start time and beginning of the first interval shall coincide, and any interval shortened by the stop time (a partial interval) shall be discarded. At the end of each interval (Δ) t compute the averaged pulse wiath (PWi) as well as the sum and sum of the squares of pulse chamber pressures [ECPi and $\left[(C P i)^{2}\right]$ atid the number of chamber pressure values (ni). If valucs of CPi are lost due to sync or other problems, they shall not be included in the sums, and they are considered on the same side of the threshold (TH) as the last valid data value. The values of CPi used in the sums must be pulse values (i.e., exceed $T H$).


```
    Ajs2P + Ajsaral (Log PWi)*
Test: AHPi > B2j . P + B1j for j = FLi
```

If true, then

$$
\begin{aligned}
& {\left[\mathrm{Cj}_{3}+\mathrm{Cj}_{3} \mathrm{P}+\mathrm{Cj}_{3} \mathrm{P}^{2}\right] \mathrm{Fi}{ }^{2}+} \\
& {\left[\mathrm{Cj}_{4}+\mathrm{Cj}_{4} \mathrm{P}+\mathrm{Cj}_{4} \mathrm{P}^{2}\right] \mathrm{Fi}^{3}+} \\
& {\left[\mathrm{Cj}_{51}+\mathrm{Cj}_{52} \mathrm{P}+\mathrm{Cj}_{53} \mathrm{P}^{2}\right] \overline{\mathrm{Fi}}{ }^{4}+} \\
& {\left[\mathrm{Cj}_{61}+\mathrm{Cj}_{62} \mathrm{P}+\mathrm{Cj}_{63} \mathrm{D}^{2}\right] \mathrm{Fi} \mathrm{~S}+}
\end{aligned}
$$

$\left[\mathrm{Cl}_{71}+\mathrm{Cj}_{72} \mathrm{P}+\mathrm{Cj}_{\boldsymbol{3}} \mathrm{P}^{2}\right] \mathrm{Fi}^{6}$
If false, then

$$
\begin{aligned}
\mathrm{HPi}= & {\left[D j_{11}+D j_{22} P+D j_{33} P^{2}\right]+} \\
& {\left[D j_{21}+D j_{27} P+D j_{23} P^{2}\right] F i+} \\
& {\left[D j_{31}+D j_{32} P+D j_{33} P^{2}\right] F i z+} \\
& {\left[D j_{41}+D j_{42} P+D j_{43} P^{2}\right] F i 3+} \\
& {\left[D j_{51}+D j_{52} P+D j_{53} P^{2}\right] F i 4+} \\
& {\left[D j_{61}+D j_{6,2} P+D j_{63} P^{2}\right] F i 5+} \\
& {\left[D j_{71}+D j_{72} P+D j_{73} P^{2}\right] F i 6 }
\end{aligned}
$$

where:

$$
\begin{aligned}
& i=1,2,3 \text { (cpu system i) } \\
& j=\text { value of FLt at the end of the time interval (} \Delta t \text {) } \\
& \text { RPt = refined horsepower, APG system (i) } \\
& \text { Fin = pulse frequency computed for the time interval (} \Delta t \text {) } \\
& p=a v e r a g e ~ v a l u e ~ o f ~ I P ~ o v e r ~ t h e ~ t i m e ~ i n t e r v a l ~(~(~ A t) . ~ . ~ \\
& \text { Whenever } A p>0 \text { use } P=A P \text { and ignore ip }
\end{aligned}
$$

The following statistics should be computed over specified averaging intervals (Δt), typically 10 seconds:

$$
\sigma i=\sqrt{\left.\frac{\Sigma(C P i)}{n i}\right)^{2}-(\Sigma C P i)^{2} \angle n i} .
$$

-i = standard deviation of those (ni) values of cpi occurring during APU pulses in APU system (i) (i $=1,2,3$)
$\mathrm{ACP}=($ (CPi) $/ \mathrm{ni}=$ average chamber pressure (in, 2,3)
$\mathrm{APRi}=\mathrm{APU}$ roughness $=\operatorname{i} / \operatorname{ACPi}(i=1,2,3)$

$$
A E i=H P i \quad \text { P Pi } \cdot \operatorname{PCi}(i=1,2,3)
$$

where
$A E i=A P U$ energy, horsepower - hours

```
PWi = pulse vidth averaged over the time interval( \(\Delta\) )
pCi = pulse count over the time interval (\Deltat)
```

D. Output:

Page plots and tabulations of hoursepower (APHi, GPi). pulse count (PCi), pulse width (pui), pulse frequency (Fi), chamber pressure averages (ACPi), standard deviations (di), APD roughness (APRi), and energy (AEi). Each time value associatea with these parameters should be the end time of the averaging interval (Δt). At the end of each tabulation report. average values of pulse count (PCi), pulse width (PGi). and horsepower (HPi) will be printed as well as a total value for energy (sum of values $A E i$).
E.

Optious:
Start-stop (GMT): averaging interval (Δt), linear interpolation rate (IR) for all input OI measurewents.

5.2.2 herodynamics

5.2.2.1 Aerodynamics Performance Calculations

INPUT:

```
    NZ = V90A5381C
ALPGA = V95P3021C
    D = V95%0160C
    S = 2690
G = 32.174
    DTR =.01745329252
QBAR = V95P30111C
    HT = Cara input (DeFault = 183327)
```


PROCESSING:

$C N=N Z * ⿴ T /(S * Q B A R)$
$C L=C N * C O S(A L P A A * D T R)$
$C D=D * W T /(S * G * Q B A R)$
LOD $=C L / C D$

output:

NZ, ALPHA, D, QBAR, CN, CL, CD, LOD to standard tab and/or continuous form plot. Default sample rate is $1 \mathrm{~s} / \mathrm{s}$.

INPOT:

	$I=1$	$\mathrm{I}=2$	I $=3$	$I=4$
SP(I)	18.02	21.80	21.80	18.02
AP (I)	39.25	56.29	56.29	39.25
BP(I)	8.80	15.10	15.10	8.80
D (I)	87.044	83.613	83.613	87.044
GMGE(I)	75241.708	37974.820	37974.820	25241.708
DLE (I)	V 58H0852a	V5840802a	V58H0902A	V58.80952A
DPEF (I)	V90P2515C	V9002516C	V90p2518C	V90P2517C

$$
\begin{aligned}
C & =52.50270631 \\
\mathrm{HMC} & =.1019716214 \mathrm{E}-06 \\
D O & =.13089969 \\
D T R & =.01745329252
\end{aligned}
$$

$N X=V 34 A 3494 \mathrm{~A}(\mathrm{DFI})$
$N X=V 9045361 \mathrm{C}$
$\mathrm{NZ}=\mathrm{V} 90 \mathrm{~A} 5381 \mathrm{C}$

```
PROCESSING (FOC I = 1.4)
    F(I)={DLE (I)+D(I))*D'RA
    R(I)=SQRT(AP(I)**2+BP(I)**2-AP(I)*BQ(I)*COS(F(I)))
    HET(I)= DPEF(I)* (SP(I)*AP(I)*BP(I)*SIN(F (I)))/(F(I)*1.0E06)
    HMG(I) = HMC*(NX*SIN(DLE (I)*DTR+DO) +NZ**99862953
    -NY*.05233596)*COS(DLE(I)*ETR+DO))*EMGG(I)
HMAERO(I) = HMET (I)-HMG(I)
    CHE(I) = GMAERO(I)*C*1.0E06/QBAR
```


OUTPUT

Three standard tabs andor continuous fiora plots:

1. DLE (I) AND DPEF (I)
2. HMET(I) and HMG (I)
3. HMaERO (I) and CHE(I)

Label $I=1$ as LOB, $I=2$ as LIB, $I=3$ as $B L$ B, and $I=4$ as ROB; e.g., for tab 1. LOB LIB RIB ROB LOB LIB RIB ROB dle dle dle dle dpef deef dpef dpef

5.2.2.3 Aero Rate Calculations

1. Azimuth

Vector quantities are dencted with bars. Inputs are

$$
\bar{R}=\left[\begin{array}{l}
v 95 H 0185 C \\
V 9560186 C \\
V 9560187 C
\end{array}\right] \quad \bar{V}=\left[\begin{array}{c}
v 95 L 0190 c \\
V 95 L 0191 C \\
\nabla 95 L 0192 C
\end{array}\right] \quad \bar{k}=\left[\begin{array}{l}
k 1 \\
k 2 \\
k 3
\end{array}\right]
$$

where k1, k2, k3 and w are card inputs. Calculate

$$
\begin{aligned}
& \overline{\mathrm{N}}=\overline{\mathrm{V}}-\mathbf{W}(\overline{\mathrm{K}} \times \overline{\mathrm{B}}) \\
& \overline{\mathrm{N}}=\overline{\mathrm{R}} \times \overline{\mathrm{W}} \\
& \mathrm{AZ}=\tan ^{-1}\left[(\overline{\mathrm{~N}} \cdot \overline{\mathrm{~K}}\rangle\{\overline{\mathrm{R}} \mid /(\overline{\mathrm{N}} \times \overline{\mathrm{B}} \cdot \overline{\mathrm{~K}})] \quad\left(0-360^{\circ}\right)\right.
\end{aligned}
$$

2. Flight Path angle

FPa = V95H0261C (deg.)
3. Mach Number
$M=V 95 \mathrm{~L} 3029 \mathrm{C}$ (N.D.)
4. Rate Calculations

Let $M(I)$ denote the Mach number at time $T(I)$, then the Mach rate is:
$M R=[M(I+1)-M(I)] /[T(I+1)-T(I)]$
and similarly
$A Z R=[A Z(I+1)-A Z(I)] /[T(I+1)-T(I)]$
FPAR $=\{\operatorname{FPA}(I+1)-\operatorname{FPA}(I)] /[T(I+1)-T(I)]$
5. Output aZ, AZR, FPA, FPAR, M, Ma to a tab and/or 3 page plots. Default calculation rate is $15 / 5$.

5.2 .2 .4
 Actuator Calculations

INPUTS

```
DET.E(1) V58H0852A
\Gamma 12) V58H0802A
V58H0902A
V58%0952A
EQD.
ELEVON - *)
AILERN = 2- +DELE(2)-DELE(3)-DELE(4))
OUTPOT
    cntinuous form plots and/or
```

Ascent air Data System Calculations

1. MSFC PCM inputs are:

SYMBOL	MSID	NAME			UNITS S \angle S	
P2M	T07P9061a	NOSE	cap	PEESS-2 PORT	PSIA	1
PTM	T07P9550A	NOSE	Cap	total pless	PSIA	10
DPA	T07P9551A	Nose	CAP	$\triangle \mathrm{P}-\mathrm{PITCH}$	PSID	10
DPB	T07P9552A	NoSE	Cap	$\triangle \mathrm{P}-\mathrm{YAH}$	PSID	10
TCM	T07T9553A	NOSE	CAP	SPIKE TEMP	DEG F	1

These data will be gap filled, filtered, and linearly interpolate to $10 \mathrm{~s} / \mathrm{S}$ (See Section 5.2.2.6).
2. Polynomial Function

A special polynomial function will be referenced in the equations that follow.

P6[K, X] will represent a sixth order polynomial of X using coefficient set K. There will be aine card-input sets: KM, KA, KDí, KB, KDB, KS, KDS, KAI, KBI. Each will have three subsets of seven coefficients and two break points B1 and B2:

$X<B 1$	use subset
B	
$B 1 \leq X<B 2$	use subset
$B 2 \leq X$	use s ubset
3	

3. Transducer sensitivities

All CIJ values are card inputs for $I=1,7$ arf $J=1,7$

```
TCMC = C11+C12*TCM+C13*TCM**2+C{4*ECA**3
    *C15*TCM**4+C16*TCM**5+C 17*2CM**6
PZICC = C21+C22*PZM+C23*PZ#**2+C24+PZ#**3
    +TCMC* (C25+C26*PZM+C27*PZ24**2)
PTMC = C31+C32*PTM+C33*PTM**2+C34*PTH**3
    +TCMC* (C35+C 36*PTM+C37*PTM**2
If DPA\geq0 then DPAC = C41+C42*DPA+C43*DPA**2+C44*DPA**3
                                    +TCMC*(C45+C46*BEE+C47*BPA**2)
If DPA<0 then replace C4J wita cSJ for J=1,7
If DPG\geq0 then DPGC=C61+C62*DPB+C63*DPB**2+C64*DPB**3
                                    +TCMC* (C65+C66*DPB+C67+DPB**2)
```

4. Static Pressure and mach Number

PAVE = PZAC-.5*DPAC
MIND $=\sqrt{5 *[\text { PTMC } / \text { PAVE }] * *(2 / 7)-1]}$
$\mathrm{MACH}=P 6[K A, M I N D]$
5. Angle of Attack and Sideslip
$\mathrm{RA}=\mathrm{P} G[\mathrm{KA}, \mathrm{MIND}]$
$\mathrm{AIND}=\mathrm{DPAC} /(\mathrm{PTMC*RA})$
$\mathrm{DA}=\mathrm{F} 6[\mathrm{KDA}, \mathrm{MIND}]$
$\mathrm{RB}=\mathrm{P} 6[\mathrm{~KB}, \mathrm{MIND}]$
$B I N D=D P B C /(P T M C * R B)$
$\mathrm{DB}=\mathrm{P} 6[\mathrm{KDB}$, MIND]
AINT $=\mathrm{P} G[\mathrm{KAI}, \mathrm{BIND}]$
BINT $=\mathrm{PG}[\mathrm{Kab}$, AIND]
$\mathrm{ALPHA}=\mathrm{AIND}+\mathrm{DA}+\mathrm{AINT}$
BETA $=B I N D+D B+B I N T$
6. Static and Dynamic pressures
$\operatorname{CPSDB}=\mathrm{P} 6[\mathrm{KS}, \mathrm{MIND}]$
DCPSD $=\mathrm{PG}[\mathrm{KDS}, \mathrm{AIND}]$
CPSD $=$ CPSDB+DCPSD*BETA
PS = PAVE* (1-CPSD) *CF
QBAR $=\mathrm{CQ} \# \mathrm{PS*MACH*MACB}$

*[6/(7*MACB**2-1)]** (-2.5)
where $C P$ and $C Q$ are card inputs.
7. Standard Atmosphere Table

A table of standard atmosphere data $H(I), T(I)$, and $P(I)$ for $I=1,238$ will be card input, as well as normalization constants 90 to To. Using linear interpolation, enter the P (I) With the value PS/PO and determine the corresponding value of air from H (I) and teyp froar (I).
8. Equivalent and true airspeeds

```
VE=CE* \sqrt{}{QBAR}
VT = CT*MACH* }\sqrt{}{TEMP*TO
```


5.2.2.6 Time-Tag and Filter Calculations

1. Overviey

There are four major functions this calculation encompasses, with optional paths to bypass each when desired. There is also optional output to CCT or CFP.
2. Major Functions
a. Rolling staleness correction
b. Gap filling
c. Filtering
d. Linear interpolation

The possible processing routes and outputs are shown in figure 5-1.
3. Rolling Staleness Correction
a. Special usId Table

This table will be a card-generated and cardupdated file (≤ 400 MSID's) containing by MSID the onboard rate of acquisition or calculation (RATE), the smallest GPC cycle number (ACN) when acquisition or calculation took place and a special flag (FLAG). Each MSID needed for output is checked to see if it is in the table. If it is, then stalenss is calculated and an appropriate full rate source file is generated; but if it isn't in the file, a standard full rate source file is generated.
b. GPC Hingr Cycle Detecrination

The parent word 9930020 pz (tenth character may also be \bar{W}. Y, or Z for various formats) contains the GFC Phase Count (bits $0-1$) and the Dounlist Frame (bits 2-7). Whenever the Phase count changes from 0 to 1 , set the GPC minor cycle $=0$. Each time the Downlist Frame changes, the gPC Hinor Cycle is increnented by on@. The GPC Hinor Cycle must be injtialized for each CDS and a correspondence to the Downlist Erame maintained so that for each sample of an $63 I D$, a GPC Hinor Cycle number (DCN) can be assigned to its downist frame.

Using the smallest acquisition cycle number (HCN) and the number of cycles between acquisitions (Δ $=25 /$ RATE) the rolling staleness (RS) is then
$\mathrm{RS}=\mathrm{MOD}[D C N+\Delta-\mathrm{ACN}-1, \Delta] * 40$ msec
where MOD is the modulo or remainder function. If RS $=(\Delta-1) \neq 40$ and FLAG $=1$ then set $R S=-40$ msec.

a. Full-Rate Source

Subtracting the $R S$ from the normal time tag results in the proper time for each sample. Now the original onboard sample rate is reconstructed, giving evenly spaced (in tine) data samples, except for some tissing samples (gaps) if the downlist rate is less than the oaboara rate. Gaps must be filled with a special fill Fattern so they can be recognized on output or during further calculations. Note that if the downlist rate is greater, redunaant samples will be lost (overstored). Also note that if the onboard rate is $25 \mathrm{~S} / \mathrm{S}$, no rolijing staleness occurs. Rates slower than $1.04 / \mathrm{sec}(\Delta=24)$ will be redundantly filled to that rate.
4. Gap Filling
aissing data values, whether from staleness computations, sync losses, or tape eriors, cause "gaps" in the sequential series of real data values. If the time difference between the real values on each side of the gap is not greater than 2 seconds, the intermediate point (s) will be replaced by linearly interpolated data. Each measurement will then have a gap-filled full-rate source. In adaition, a difference array (or source) will be created Eor each measurenent at its osn sample rate. Each value in the array will be zero except at the times where gaps rere Eilled and there the values will be one. The difference array must be available for output to CCT or CFP.

A gap-filled array and a difference array for each measurement is available from part 4 above. Input at run time will be a set of filter information includiag which measurements to filter and cut-off frequencies for each sapple rate; i.e., 25, 12.5. 5, 1.04 and 1. A fourth order Butterworth forward and backward filtering will be used to generate the output array. The input array must be saved and the output array subtracted from it to form the difference array.

6. Linear Interpolation

The full-rate source arrays fill be linearly interpolated to a card-input sample rate, with all arrays aligned to the same time points using an existing proqram MERLIN.

5.2.3 Avionics

5.2.3.1 RGA Calculations

1. Inputs

Input parameters and symbols are listed in Table 5-7 for reference. Computations are at $5 \mathrm{~S} / \mathrm{S}$ except where noted.
2. Orbiter HGA

Compute DP12, DP23, DP34, DP41, DY12, DY23, DY34, DY41. DR12, DR23, DR34, DR41 where DP12=PR1-PR2; DY41=YR4-YR1, etc. Dutput to a tab whenever the absolate value of any computed parameter exceeds a card input value.

Also compute MP12, MP23, MP34, MP41, MY12, MY23, MY 34, MY41, MR12, MR23, MR34, GR41 where iP12=TPDP12, MY23=TY-DY23, MR4T=Th-DR41, Etc, and

```
TP = CP1 + CP2*|SOPR|
```

$T Y=C Y 1+C Y 2 * \mid S O Y R 1$
$T R=C R 1+C B 2 * \mid \operatorname{SORRI}$
where CP1, CP2, CY1, CY2, CR1, CR2 are card-input
values.

Output to tah whenever the absolute value of any computed parameter is less than a card input value.

3. Orbiter_Accelerometer Assembly

Compute DL12. DL23, DL34, DL41, DN12, DN23, DN34, DN41 whete DL $12=\mathrm{LA} 1-\mathrm{IA} 2$, DN41=NA4-NA1, EtC. output to a tab.

A1so compute ME12, ML23, ML34, ML41, M 12, YN23. NN34, MN4 where $\operatorname{HL} 12=T \mathrm{~L}-\mathrm{DL} 12$. MN23=TN-DN23, etc., and TL and TN are card-input values. output to a tam.
4. SRB RGA'S

```
Compute at I S/S DIP12, DLP23, DLP31, DRP12,
DRP23. DRP31, where DLP12 = LPR1-LPR2, DRP31=
RPR3-RPR1, Etc., and at 5 S/S
DPLR = SLPR - SRPR
DPLO = SLPR - SOPR
DPRO = SRPR - SOPR
Similarly compute DLYi2, DLY23, DLY31, DRY12, DEY23.
DRY31 at 1 S/S and DYLR, DYLO, DYRO at 5 S/S.
output to tabs, groupings TBD.
ALso compute MPL12, MPL23, MPL31, MPR12, MPR23, MPR31. MYL12, MYL23. MYL32, \(\quad\) YPR12; MPR23, MPR31, MYR12, MYR23, WYR31 Where MPL \(12=\mathrm{T}\) S-DLP 12 , GYR31=TS-URY31, etc. where TS is a card-input value. output to a tab.
```

TABLE 5-7.-GGA PARAMETEFS

MSID	SYMBOL	DESCRIPTION
V95R4031C	PR1	Compensated Pitch Rate 1
V95R4032C	PR2	Compensated Pitch Rate 2
V95R4033C'	PR3	Compensated Pitch Rate 3
V95R4034C	PR 4	Compensated Pitch Rate 4
VG5R4061C	YR1	Compensated Yaw Rate 1
V95R4062C	YR2	Compensated Yaw Rate 2
$V 95 R 4063 \mathrm{C}$	YR3	Compensated Yaw Rate 3
V05R4064C	YR4	Compensated Yaw Rate 4
V95R4001c	RR1	Compensated Roll Rate 1
V95R4002C	R日2	Compensated koll kate 2
V95R4003C	RR3	Compensated Roll Rate 3
V 9584004C	RE4	Corpensated Roll Rate 4
V95A4101C	LA 1	Compensated Lateral AA 1
V95A4102C	La. 2	Compensated Lateral AA 2
V95A4103C	LA3	Compensated Lateral Aa 3
795a4104C	LA4	Compensated Lateral AA 4
V95A4151c	NA 1	Compensated Normal Aa 1
V95a4152r	NA2	Compensated Normal ad 2
V95A4153c	NA3	Compensated Normal AA 3
V95A4154C	NA 4	Compensated Normal a 4
V95R4181C	LPR 1	LH SRB Pitch Rate 1
V9584182C	LPR2	LH SRB Pitch Hate 2
V95R4183C	LPR3	LH SRB Pitch Rate 3
V95R4211C	RPR 1	RH SRB Pitch Rate 1
V95R4212C	EPR2	BH SAB Pitch Rate 2
V95R4213C	RP'3	RH SRB Prtch Rate 3
V95R4191C	LYR1	LH SRB Yaw Rate 1
V95R4192C	LYE2	LH SEB Yaw Rate 2
V95R4193C	L, YE3	LH SBb Yaw Rate 3
V95R4221C	RYR \dagger	BH SRB Yaw Rate 1
V95R4222C	RYR2	RH SRB Yaw Hate 2
V95E4223C	RYR 3	RH SEB Yaw Rate 3
V908532 1c	SOPR	Selected Orbiter Pitch Rate
V90R5341C	SOYR	Selected Orbiter Yaw kate
V90R2525c	SIPK	Selected Lit SRB Pitch Rate
V90R2527C	SRPR	Selected RH SRB Pitch Rate
V90R2526C	SLYR	Selected LH SRB Yaw kate
y90R2528C	SRYR	Selected br SRb Yaw Rate
V90R5301C	SOER	Selected Orbiter Roll Rate

5.2.7.2 Funvay Coordinate Conversion

Inputs

SYMBOL	MSID	QNITS
MLSAZ	V9043002C	Deg.
MLSEL	V90H3032C	DEG.
MLSRNG	V90H3062C	Ft.
TEA	V9517000C	Sec.
HRA	V9044002C	Ft.
THETAR	V90E2217c	Deg*
V3	V95L0192C	$F \mathrm{t} / \mathrm{Sec}$
TSTATE	V90W0534c	Sec.
B1	$790 \times 3003 \mathrm{x}$	-
B2	V90×3033x	-
B3	V90×3063X	-
B4	V90x4003x	\cdots
TAZ	V9506000c	Sec.
TEL	V95i6010C	Sec.
TRNG	V95\%6020c	Sec.

Calculations

 $A=1+T A N^{2}(M L S E L)+T A N 2(M L S A 2)$ $B=2 *(K 1-K 2) * T A N^{2}(M L S E L)$
$C=(K 1-K 2)^{2 * T A N 2}(M L S E L)-(M L S E N G)^{2}$ $X=(B-5 Q \in(B * B-4 * A * C)) /(2 * A)$
where TAN is two quadrant tangent, SQRT is square root, and $K 1$, $K 2$, and $K 3$ are input on cards.

R $\mathcal{R}=K E+X$
$R 2=(K 2-K 1) * T A N(M L S A Z) * K 3$
R $3=($ R1-K1)*TAN(MLSEL)
TAVG $=(T A Z+T E L+T R N G) / 3$
2. Search for first time g4 $=1$, then compute:

R4 = HBIAS + (TSTATE+T1-TRA) *V3-SIN (THETA1-THETAR)*DRANB-HRA where SIN is the sine, and H日IAS, T1, THETAI, DEANB are input on cards.

outputs:

```
Output TAVG, R1, R2, E3, R4, to a tab and/or
continuous form plot (except TAVG). TAVG and
TSTATE will be output as Day-Hr-qin_Sec. Labels
will be:
```

OUTPUT
TAVG
R 1
R 2
83
R4
TSTATE

LABEL
MLS AVG TIME
VEE X HRT RUNEAY
VEA Y GRT RUNWAY
VEH Z HRT RUNWAY
ALT Z WRT RUNWAY
TSTATE

5.2.3.3 Avionics Aerodynamic Calculations

1. Surface Movement Calculation

Inputs

MSID
V90H7505C
V90H7525c
v90H7555C V90日 7575 C V90H7010c V90H6701C V90H6410C

Description

LIB fabk
LOB fabk EIB fabk ROB fabk Rudder fdbk Speedbrake fabk Body flap bdbk

Sum the absolute value of the difference between the current value and previous value for each parameter. The first data point will be lost during initialization of the sum, and syac dropouts will be ignored (skipped). output will be to continuous form plots or page plots.
2. Integrated Pitch and Roll Rates

Inputs

MSID
 Description

V90R5321c Pitch rate
v9085301C Roll Rate
Sum the absolute value cf each rate divided by its current sample rate (s/s from Descriptor Data Base). Sync dropouts will be replaced by the last in-sync value and used in the sums. output to continuous form plots or page plots.
3. Aerosurfaces_Calculations

Inputs

MSID
V90H7505C
V9017525c
V90H7555c
v90H7575C

Description
LIB elevon fabk
Lo'b elevon fdbk
RIB elevon fabk
$A O B$ elevon fabk

Calculations

$D L=(L O B+L I B) * .5$
$\mathrm{DR}=(\mathrm{BOB}+\mathrm{RIB}) * .5$
DELV $=(D L+D R) * .5$
DAIL $=(D L-D R) * .5$
output to a contiuous fermplot and/or tab.

5．2．3．4 Main Engine Distances

1．Inputs

SYMBOL	MSID	QNITS
DY1	758日1 100A	Deg．
DY2	V58H1200A	DEG．
DY 3	V 58日1300A	$D \in g$ ．
DZ1	V58日1750A	$D \in G$.
D22	V58日1250A	Deg．
DZ3	V58日1350A	Deg．

2．Z－Compo믈 t s

$$
\begin{aligned}
& \mathrm{DZ12}=157 *[\sin (\mathrm{DY} 1-3)-\sin (\mathrm{DY} 2+3)] \\
& \mathrm{DZ} 13=157 *[\sin (\mathrm{DY} 1-3)-\sin (\mathrm{DY} 3+3)] \\
& \mathrm{DZ23}=157 *[\sin (D Y 2-3)-\sin (\mathrm{DY} 3+3)]
\end{aligned}
$$

3．Y－Components

```
DY12=157*[sin(0Z1)-sin(DZ2+3.5y)]
DY13 = 157*[sin(-D21)-sin(3.5-DZ3)]
DY23=-157*[\operatorname{sin}(DZ2+3.5) - sin (-DZ 3-3.5) ]
```

4．Engine Distances
R12 $=\sqrt{(53-D Y 12)^{2}+(103 \rightarrow D Z 12)^{2}-102.625}$
R13 $=\sqrt{(53-D Y 13)^{2}+(103-D 213)^{2}-102.625}$
R23 $=\sqrt{(106-D Y 23)^{2}+(D 223) \mathrm{c}-102.625}$

Output R12，R13．R23 to continuous form plet andor tab（default is $1 \mathrm{~S} / \mathrm{s}$ ）．

1. overyiew

There are four DEU's each downlisting 16 yords at $1 \mathrm{~s} / \mathrm{s}$. The first 15 words will be decoded into a message line that will be output on a tab, one tab per bed. See Table 5-y for input ySID's.
2. Keystroke conversion

The number of valid keystrokes is in bits 11-16 of word 2. Up to 30 keystrokes are packed three per word in words 3 thru 12, bits 0-4, 5-9, 1014. The valid keystrokes are converted to acronylas (see Table 5-9) and concatenated to form the text message. If bit 4 and/or 10 of word 1 is set to one, the appropriate acronym will be added to the end of the text message.
3. Header Processing

The DED ID (bits 5-7), the major function (bits 8-9) and the message tyge (bits 0-3) will be extracted from word 1 and displayed in decimal, and status bits (bits 11-15) from word 1 will be displayed in binary to forll a leader for the message line.
4. Status_Checking

Words 13, 14 , and 15 will be checked and if they đo not equal the appropriate hex value, a flag will appear on the message line.

WORD NOMINAL EEX VALUE
138200
148000
150000

5. Qutput

The leader, the status flags, and the text message will form the message line which will be output to a tab along with the GPC time Eor wora 1. If the message line is the same as the previous message line, it will not be output.
table 5-8.-DEU Input hords

HORD	DEU1	DEE_2	QEU_3	DED 4
1*	V92M6721Px	V92M6780pX	V92M6.844PX	V924690.4PX
2	V9206725cx	v92U6784CX	V9206848CX	V9206908cx
3	V92J6728CX	V92J6792Cx	V92J6852cx	V92J6912CX
4	V92J6732CX	V92J6796CX	ri236856cx	V92J6916Cx
5	V92J6736Cx	V92J6800cx	V 32 J 6860 CX	V9 2 J 6920 Cx
6	V92J6740Cx	V92J6804CX	V92J6864CX	V92J6924Cx
7	v92J6744CX	V92J6808CX	V92J6868CX	V92J6928Cx
8	V92J6748Cx	V92J6812cx	V92J6872cx	792J6932Cx
9	V92J6752CX	V92J6816Cx	V92J6876CX	V9 236936 Cx
10	V92J6756cx	-92J6820Cx	V92J6880CX	V92J6940CX
11	V92J6760CX	V92J6824CX	V92J6884CX	V92J6944Cz
12	V92J6764cx	V92J6828CX	V92J6888Cx	V92J6948CX
13	V72H5650p\%	V72H5720PX	V72\%5810PX	V72E5910EX
14	V72H5670PX	V72H5740px	V72日58302x	V72H5930PX
15	v72H5680px	V72H5750. ${ }^{\text {x }}$	V7265840.	V72H59402x

*MSIb's for chilaren may be used, if desired.

TABLE 5-9.-DEU Keystroke Conversion

This calculation will monitor a set of MSID's and compute the percent of the time that each is greater than a given threshold. The progran should be uritten to read the set of MSID's and thresholis from a carddriven file, because RCS engine firing, MOS engine firing, and heater duty cycles will each have a different table and process different time segments. An option aust be available at run time to select total time or running time for the $\%$ calculation. an option must be availabe to select high or low duty cycle.

1. For each MSID (Mi) and its threshold (Ti). Whenever Mi>ti then $t i=t i+1 / S R i$, where t is the running sum of "on" time and $S \mathrm{~A}=$ current samples per second from Descriptor Data Base. If Mi is out of sync, it is assumed to have the same value as the last in-sync data point.
2. Whenever total time is selected: Dt $=$ stop time - start time. Whenever running time is selected: Dt = current time - start time.
3. Duty cpele percent (DCPi) is:

DCPi $=100$ * ti/Dt, for high duty cycle DCPi $=100$ ($\mathrm{Dt}-\mathrm{ti}$)/DT, for log duty cycle. The DCP values are output to continuous form plots in groups to be defined in Level D.
4. Heater duty cycle calculations require two thresholds THi and Thi and an input option by parameter to decide Which to use first. Then Ti $=$ THi or $T i=T L i$ by option at the start of the run. Whenver the threshold is crossed, then set $T i$ to the other value and proceed as in steps 1-3.

1. overyiey

MSBLS, TACAN, and Radar Altimeter PCy outputs will be compared to parameters calculated from the BET. TACAN will be run at long range (about 20 to 200 uiles) wile aSBLS and Altimeter will be run near the runway (less than about 20 miles). Default calculation rate is $1 \mathrm{~S} / \mathrm{S}$.
2. PCy Input

Table 5-10 lists the aSID's needed and symbols used in the calculation equations.
3. BET Input and Transforgation

The navigation position XLF, YLF, ZLF with respect to the runway and the geodetic altitude of the navigation base h, all in feet, will be extracted from the EET. The position will be transformed

```
X = XLF sin}0+YLf cose
```

$y=X L F \cos \theta-Y L f \sin \theta$
$z=-Z L F$
where $\theta=$ runway azimuth from true north which is
card input.
4. Station Location and Transforqation

The taCan station number (Best 2 out of 3 from STAT, STA2, and SIA3) will be used to look up the coordinates of the TACAN station (LT, $\lambda T, A T$) froll 10 card input sets. These coordinates are then transformed to produce (XT, YT, ZT)

```
YT = (RE+AT)*[sin\lambdaT*\operatorname{cos}\lambda0-\operatorname{cos}\lambdaT*\operatorname{sin}\lambda0*\operatorname{cos}(L0-LT)]
XT = - (RE+AT)*[cos\lambdaT*sin(IC-LT)]
```



```
    -RE-AO
```

table 5－10．－INPUT pCit parameters

SYMBOL	MSID				UWITS	STATUS
E1	V74H1535B	Tacan	1	Bearing	Deq．	SE1
B2	V74H1635日	TACAN	2	Bearing	deg．	SE2
B3	V74日1735B	TACAN	3	Eearing	deg．	SE3
RA 7	V74H9554B	tacan	1	Range A	ת． $\mathrm{m}_{\text {，}}$	SRT1
RA2	V74H1654B	TACらN	2	Range A	D．四．	SRT2
RA3	V74 1754 B	TACAN	3	Range A		SET 3
QS 1	V74H1555B	TACAN	1	Range B		SET 1
R．B2	V74 1 1655B	TACAN	2	Range B	口．四．	SRT2
BB3	V74 1755 B	TACAN	3	Range B	I．${ }^{\text {If }}$	SET3
A21	V74日1092B	MSELS	1	Azimuth	deg．	SA1
A22	V74 1112 B	MSBLS	2	Azimuth	deg ．	SA2
A23	V74 H1212B	MSBLS 3		Azimuth	deg．	SA3
EL 1	V74 H9032B	MSBLS	1	Elevation	d玉g．	SE1
EL2	V74H1132B	MSBLS	2	Elevation	$d \in g$.	SE2
EL3	V74\％1232B	MSELS	3	Elevation	deg．	SE3
RH1	V74E1052日	MSBLS	1	Range	n． $\mathrm{m}_{\text {．}}$	SEM 1
RM2	V74日1152B	MSBLS	2	Range	可．回。	SEn 2
RM3	V74H7252B	MSBLS		Range	口．m．	SRM3
日1	V74 1804 E	Radaf	AL2	T 1	ft．	SE1
H2	V74H1854日	RADAR	ALT	T 2	ft．	SH2
HSNAP	V90月4002C	RADAR		T SNAP	Et．	－
STA 1	V74K1514B	TACAN	1	Chan．Number	－	－
STA2	V74K1614B	TACAN	2	Chan．Number	－	－
STA3	V74K1714B	TACAN	3	Chan．Number	＊	－

where (LO, $\lambda 0$, and AO) are card-input longitude, latitude, and altitude above MSL of the center of the $B E T$ runway coordinate system and $R E=20925721.78$ Et. MSBLS bas a range/azimuth station location (LEA, AEA, ARA), and an elesation station location (LE, $\lambda E, A E$), both card inputs. Each must de transformed as above to produce (XRA. YRA, ZRA) and (XE, YE, ZE).

5.

6. Status_checking

Each TACAN, HBBL and altimeter data word has validity, self-test and/or fail bits Which must be built into a status word for output flots and histogram logic. Each status word is "good" if $=0$ and "bad" if

```
=1. Status Words are logical variables, hence set \(=1\) if the computation \(\neq 0\).
```

```
SB1 = [V74M1530P bits 1 and 2 j+[V74M2531P bits 5 and 6]
SB2 = [V74M1630P bits 1 and 2]+[V74M1631P bits 5 and 6]
SB3 = [V74n1730P bits 1 and 2]+[V74M1731p bits 5 and 6]
SRT1= [V74M1550P bits 0 and 1]+[V74M1551P bits 5 and 6]
SRT2=[V74M1650P bits 0 and 1]+[V74M1651P bits 5 and 6]
SRT3= [V74M1750P bits 0 and 1]+[V74M1751P bits 5 and 6]
SRE1=[V74X1051B]+[V74X1053B]+[V74X1054B]
SRM2 = [V74X1151B]+[V74X1153B]+[V74X1154B]
SRM3=[V74X1251B]+[V74X1253B]+[V74X1254B]
SET=[V74X1031B]+[V74X1033B]+[V74X1034B]
SE2 = [V74X1131B]+[V74X1133B]+[V74X1134B]
SE3 = [V74X1231B]+[V74 X1233B]+[V74X1234B]
SA1 = [V74X1013B]+[V74X1014B]
SA2 = [V74X1173B] [ [V74X1114B]
SA3 = [V74X1213E]+[V74X1214B]
SH1 = 1-[『74X1805E]
SH2 = 1-[V74X1855B]
```


7. Histograms and_3tatistics

Each parameter which is to be histogramed will have a histogram minimum (MIN), maximum (MAX) and resolution (SS) as well as a status MSID as shown in Table 5-10. For any parameter Pi, $i=1$ to N, count the number of points wich fali in bin J; i.e., MIN + (J-1)*SS SPi< MIN+J*SS. Peints Pi<MIN and Pi $\quad \mathrm{MAX}$ are "wild" points and are not included in the histogram. Foints occurring while the status is "bad: (see part 6) are not included either. The total number of "net" points (not bad nor wild) is counted and used to convert hiscogram numbers to percent, and also to compute the mean and standard deviation for the histogram. Histograms will be ploted with \% on the Y -axis and MIN to MaX on the X -axis.

The following statistics will be printed on or near the plot:

DATA_EOINTS
TOTAL XXXX
E:LD XXXY
BAD XXXX
NET XXXX

GISTOGEAA连_(NET)

RESOLOTION XXX. XXX
ERAOR MEAN $K X X X, X X X$
ERROR STO. DEV. XXX.XXX

8. TACAN Output

a. Time fistory Plots:
a. BERRT and SB1, BERR2 and SB2, BERR3 and SB3. KERET and SET1, EERB2 and SRTZ, RERR3 and SRT3
b. Histograms: (Ref. section 6)

BERR1, BERE2, BEER3, RERR1, REER2, RERR3
c. Crossplots:

d. Time history tabs

- RT, RERR1, PRERR1, BT, BERR1, PBERE1, VT, ET
- BT, RERR2, PRERR2, 自T, bERR2, PGERR2, VT, ET
- RT, RERR3, PRERR3, BT, BERE3, PBERi3, VT, ET


```
RM=(1/C) \sqrt{}{(X-XRA)2+(Y-YRA)2+(Z-ENA)2}}\quad\textrm{Am
MRERE1 = RM-RM1
MRERRZ = E4-RM2
MRERR3=RM-RM3
MPRERE1=100* GRERR1/RM
MPRERR2 = 100*MRERR2/RM
MPRERR3 - 100*MRERR3/RM
AZ = - tan-1[(X-XRA)/(Y-YRA) ]+360-6 deg.
AERR1 = AZ-AZ1
AERR2 = AZ-AZ2
AERR 3 = AZ-AZ3
PAERR1 = 100*AERR1/AZ
PAERR2 = 100*AERR2/AZ
PAERR3 = 100#AERR3/A2
```



```
EM = tan-1[ (Z-ZE)/|(X-XE) sinG+(Y-YE) cos0|]
EERR1 = EM-EL1
EERR2 = EM-EL2
EERR3 = EM-EL3
PEERR1 = 100*EERR1/EM
PEERR2 = 100*EERR2/EM
```

```
    PEERR3 = 100*EERR 3/EM
    Dh=h-HBIAS where HBIAS is card input
    BERR1 = Dh-日1
    PGERR1 = 100*HERR1/Dh
    BERR2 = H1-H2
    PGERR2 - 100*HERR2/Dh
    HM = RE*Sin(EM)
    HERR3 = GM-HSNAP
    PHERRS = 100%HERR3/Dit
10. YSBLS/Altimeter output
a. Time history plots:
    MREEE1 and SRM1, MREAR2 and SRM2, MHERR3 and SRM3,
    AERE1 and SA1, AERE2 and SA2, AERR3 and SA3.
    EERR1 and SE1, EERE2 and SE2, EERR3 and SE3,
    HEBR1 and SH1, HERR2 and SH2
b. Histograms:
    MRERR1, MRERR2, MRERR3, AERE1, AERR2, AERR3, EERR1,
    EERR2, EERG3, HERB1, HERR2
c. Crossplots
    MBERR1 and MPRERR1 v5. RM
    MRERR2 and MPREGR2 ys. RM
    MRERG3 and MPREER3 vS. RM
    AERR1 and PAERR1 vS. KM and also vs. AZ
    AERf2 and paERR2 vs. KA and also vs. AZ
    AERR3 and PAERR3 vS. BM and also vs. AZ
    EERR1 and PEERE1 vs. RH and also vs. EM
    EERR2 and PEERR2 vs. RM and also vs. EM
    EERR3}\mathrm{ and PEERR3 vS. RM ama also vS. EM
    HERR1 and PHERR1 vS. RH
    GERR2 and PHERR2 vs. Dh and also vs. RM
    HERR3 and PGERR3 vS, Dh
```

```
5.2.3. 8
tacan Runway Coordinates Conversion
```

1. Inputs

SYGBOL	SOURCE	GNITS	DESCEIPTION
TIME	$V 95 H 5001 \mathrm{C}$		SEC

2. Computations
autiply RANGE by 106 and HBABO by 103 to get feet.
RTAC $=\mathrm{BD}+\mathrm{ALT}-\mathrm{MSL}$
BVEA $=$ RD+BBARO
$\mathrm{A}=\mathrm{BEAR}+\mathrm{MAGCOR}+3.1415926$
CosB $=(\mathrm{R} * \mathrm{R}+\mathrm{BANGE} \mathrm{E} * 2-\mathrm{K} \nabla \mathrm{EH} * * 2) /(2 * \mathrm{RTAC}$ RRANGE)
$D=$ RANGE* (1-COSB**2)**. 5
RTD1 $=D * \cos (A)$
RTD2 $=D * \sin (A) \quad=\overline{\operatorname{RTD}}$
 $\overline{\overline{R R} \bar{A}}=[42] \cdot(\overline{\mathrm{REF}}-\overline{\mathrm{RLS}})$
3. Qutput

Dutput TIME and $\overline{B R}$ components to tab and/or CFP.


```
= 3563.7
Bi = -120.1 Di = -0.0225
```

for $i=5$ and 6
ELG1 $=W_{7}$ (T01 - TI1)
HLO2 $=\mathrm{H}_{\mathrm{B}}{ }^{\text {* }}$ (T01 - TI2)
$\mathrm{HL}_{5}=$ HLW $1+\mathrm{HLH} 2$
Onit
\#in V61R2722A I/C 解2 flov rate lbs/hr
V61T2663A Cabin $H X$ wlt in teme. OE

$2 \overline{12 F I}$

$$
5-63
$$

```
    TI2 V61T2665A Cabin HX WL2 in temp. of
    m01 1V61T9067A Capin HX TLI out tempn oF
5.2.4.5 IMU Air Heat Load (HL6)
    Tave = (T1 + T2 +T3)/3
    #. = 161.94 * CFM * P/(Tave + 460)
    HL6 = 0.24 * Wo** (Tave - T4) (BTU/LE)
    Measurements Required:
    Symbol Meas.No. DEscription Unit
    T1 1V61T9151A IMD 1 out temp. OF
    T2 IV61T9152A IM| 2 out temp. OF
    T3 1V61T9153A IMU 3 out temp. DF
    T4 V61T2552A Cabin terperature of
    P V61P2405A Cabin pressure ESIA
CFM = 34
5.2.4.6 Avionics Bays tX Water Side feat Loads (HLi)
HL®1i = Ai * Ws* (T01i - TIIi)
HIG2i = Bi * 泊* (T02i - TI2i)
HLi= = KLW1i + HLM2i
(BTU/HR)
i = 7 for bay 1
i = S for Bay 2
i = 9for Bay 3A
Measurements Reguired:
Symbo1 Meas.Neg Description
T01, V61T2615A Bay 1 HX water out temp, (fly) or
T027 V61T2616A Bay 1HX water out temp. (NL2) OF
TI17 IV61Tg125A Bay 1 HX water in temp.(mL1) of
TI27 iVG1Tg126A bay 1 &X water in teme. (NL2) of
T01a V61T2618A Bay 2 HX water out temp. (WL1) oF
```


$A_{7}=0.2785$	$B_{7}=0.2785$
$A_{9}=0.2677$	$B_{8}=0.2677$
$A_{9}=0.3931$	$B_{9}=0.3931$

5.2.4.7 Avionics Bays Cold Plate Heat Loads (inLi)

```
    Wi=(Ai * Ws) + (Bi * No)
HLW1i = Ai * Ws * (T01i + TIIi)
HLN2i = Bi * W6 * (T02i - TI2i)
```



```
i = 10 for Bay 1
i = 11 for Bay 2
i = 12 for Bay 3A
i = 13 for Bay 3B
```

Weasurements kequired:

Symbol	Meas. No.	DESCEiption					Wnit
T0110	V61T2624A	Bay	1	CP	WL1	out temp.	${ }^{0} \mathrm{~F}$
TO210	V61T2625A	Bay	1	CP	HL2	out temp.	OF
TII 10	V61T2615A	Bay	1	CP	何L 1	in temp.	${ }^{\circ} \mathrm{F}$
TI210	V61T2616A	Bay	1	CP	WL 2	in temp.	${ }^{\circ} \mathrm{F}$
To1it	V61T2627A	Bay	2	CP	四L 1	out temp.	aF
TO2 1	V61T2628A	Bay	2	CP	WL 2	out teap.	${ }_{0} \mathbf{F}$
TI112	V61T2618A	Bay	2	$C P$	WL1	in temp.	${ }^{0} \mathrm{E}$
TI21i	V61T2619A	Bay	2	CP	HL2	in temp.	${ }^{\circ} \mathrm{F}$
TO112	V61T2630A	Bay	3	CP	WL1	out temp.	${ }^{\circ} \mathrm{F}$
TO2 12	V61T2631A	Bay	3	C?	\$L2	out temp.	${ }^{\text {OF }}$
TI1 12	V61T2621A	Bay	3	CP	WL1	in temp.	${ }^{\circ} \mathrm{E}$
TI212	V61T2622A	Bay	3	CP	TL2	in temp.	${ }^{\circ} \mathrm{F}$

[^4]$$
5-65
$$

5.2.4.8 IMD HX Hater Side Heat Load (HE 14)

Measurements Required:

5.2.4.9 IMU HX Air Inlet and outlet Temperatures (TUI and TUO)

Tave $=(T 1+T 2+T 3) / 3$
T UI = Tave $+136.5 / \mathrm{AQ}$
TOO = TUI $-\mathrm{HL}_{24} / \mathrm{Ha}$
Measurements Required:

Symbol	Meas. ${ }_{\text {NOㅇ﹎ㅇ }}$	Descriotion	Unit
T 1	1 V 61 T 9151 A	IMU 1 out temp.	0 F
T2	- 76179152 A	IHD 2 out temp.	OF
T3	176179153 A	IMU 3 out temp.	0 F
49	coaputed in	Section 5.2.4.5	1bs/hr
P	V61P2405A	Cabin pressure	Esia
HLI ${ }^{\text {\% }}$	computed in	Section 5.2.4.8	ETU/HR

[^5]5.2.4.10 DFI Plus Dry Wall Heat Loads (HL_{2} 5)


```
H\mp@subsup{L}{15}{\prime}=\mp@subsup{W}{5}{*}*(T01 - TJ1) + h; * (TO2 - TJ2)
```

(BTD/HR)
Measurements Required:

Symbol	Meas. №.	Description	Onit
T100	V61T2624A	Bay 1 CP WLI out temp.	OF
T210	V61T2625A	Bay 1 CP WL2 out temp.	${ }^{0} \mathrm{~F}$
T111	V61T2627A	Bay 2 CP hli 1 out temp.	${ }^{\circ} \mathrm{F}$
T211	V61T2628a	Bay 2 CP ML 2 out temp.	${ }^{0} \mathrm{~F}$
T142	V61T2630a	Bay 3a CP WL1 out temp.	${ }^{\circ} \mathrm{F}$
T212	V61T2631a	Bay 3A CP WL2 out temp.	${ }^{\circ} \mathrm{F}$
T1.3	${ }^{176199147 A}$	Bay 3B CR Wh1 out temp.	${ }^{\circ} \mathrm{F}$
T213	1761 T 9148 A	Bay 3日 CP WL2 out temp.	${ }^{0} \mathrm{~F}$
T01	V61T2743A	I/C ML1 in temperature	${ }^{\circ} \mathrm{F}$
T02	V61T2723a	I/C WI2 in temperature	${ }^{0} \mathrm{~F}$
Ai, Bi	computed in	section 5.2.4.7	
W	computed in	Section 5.2.4.3	1bs/hr
H_{6}	computed in	Section 5.2.4.3	lbs/hr

5.2.4.11 Interchanger Water Side Heat Load (Hing)

$\mathrm{HLH} 2=\mathrm{Na}_{\mathrm{a}} *(\mathrm{TO} 2-\mathrm{TI} 2)$
$\mathrm{HL}_{15}=\mathrm{HL} \mathrm{H}_{1}+\mathrm{HL} \mathrm{H}_{2}$
(BUT/ER)
Measurements Required:

SyIII.01	Meas. №.	Description			\#nit
T01	V61T2744A		WL1 out	temperature	OF
T02	V61T2724A	I/C	WL2 out	temperature	${ }^{\circ} \mathrm{F}$
TI 1	V6172743A	I/C	\#l1 in	temperature	${ }^{0} \mathrm{~F}$
TI2	V6192723A	I/C	WI2 in	tenperature	${ }^{0} \mathrm{~F}$
ω^{W}	V61R2742A	I/C	HL1 flo	w rate	1bs/br
W_{B}	V61R2722A	1/C	WL2 flo	- rate	lbs/hr

1DFI

In the following sections, $f(T)$ is che function for freon specific heat
$f(T)=0.2233+0.015207 * \operatorname{EXP}(0.008755 * T)$
T = average of inlet and outlet temperatures Primed variable represents the last previously measured value recorded or computed. For initial values tcol' = TCI 1 and TC02' $=T C I 2$.
5.2.4.12 Interchanger Freon Inlet and Cutlet Temperature

```
TCI2 =T2 + (TCI 1 - T1)
                                    (0F)
CP1 = f((TCI1 _ TC01')/2)
CP2 = f(TCI2 + TC02')/2)
TC01 = TCI1 + (HE_16/(2* CP1 * W1))
TC02 = TCI2 + (RL16/(2 * CP2 * F2))
```

measurements Bequired:
Symbol Meas. No: Description Unit

TCI 1	V63T1155A	I/C FCL 1 in temp.	O_{F}
T1	V63T1207A	FCL 1 sink temp.	OF
T2	V63T1407A	FCL 2 sink temp.	${ }^{\circ} \mathrm{F}$
\%1	V63a1100A	FCL 1 I/C flow rate	Ibs/hr
\% 2	V63R1300A	FCL $2 \mathrm{I} / \mathrm{C}$ flow rate	$1 \mathrm{bs} / \mathrm{hr}$
HL_{16}	Computed in	Section 5.2.4.11	

$C P 1=\mathrm{f}((T 1+T 2) / 2)$
$\mathrm{HL}_{17}=\mathrm{CP} 1$ * W * (T2-T1)
$\mathrm{C} 2=\mathrm{f}((\mathrm{T} 2+\mathrm{T} 3) / 2)$
$\mathrm{HL}_{1 \mathrm{~B}}=\mathrm{CP} 2 * \mathrm{~W} *(\mathrm{~T} 3-\mathrm{T} 2)$
Measurements Required:

Symbol	Meas. No.	Description	Gnit
T 1	V63T9162A	DFI Bay 3 in temp.	${ }^{0} \mathrm{~F}$
T2	1763T9160A	DFI Bay 1 out temp.	${ }^{\text {OF }}$
T3	V6379161A	DFI Bay 2 out terp.	${ }^{\circ} \mathrm{F}$
\%	จ63891598	DFI Freon loop flow	16s/br

$\overline{\mathrm{D} F I}$

5.2.4.14 AFT Avionics Bays 4, 5, and 6 Heat Loads

```
    CP1i = f((T01i + TI1i)/2)
    CP2i = f((TO2i + TI2i)/2)
    HLF1i = CP1i * W1 * (T01i - TI1i)
    HLP2i = CP2i * Ed2 * (T02i - TI2i)
    HLi = HLF1i + HLF2i
```

 \(i=19\) for Bay 4
 i \(=20\) for Bay 5
 $i=21$ for bay 6

Measurements $R \in q u i r \in d:$
Symbol MEas. No. Description Unit

T0119	V63T9166A	Bay	4 FCL 1 out temp.	0 F
T0219	V63T9172A	Bay	4 FCL 2 out teap.	0 F
TI19	V63T9163A	Bay	4 FCL 1 in temp.	${ }^{0} \mathrm{~F}$
TI2 ${ }^{\text {a }}$	V6319167a	Bay	4 FCL 2 in temp.	${ }^{\circ} \mathrm{F}$
T0120	V63T9163A	Bay	5 FCL 1 out temp.	${ }^{\circ} \mathrm{E}$
T0220	V63T9167A	Bay	5 FCL 2 out temp.	OF
TI120	V63T9164A	Bay	5 FCL 1 in temp.	0 F
TI220	fassume same	as	V63T9164A)	
TO121	$\nabla 63 \mathrm{~T} 9164 \mathrm{~A}$	Bay	6 FCL 1 out teIIP.	9
T0221	(assulle same	as	V63T9164A)	0 F
TI121	V63T12074	Bay	6 FCL 1 in temp.	OF
TI221	V63T1407A	Bay	6 FCL 2 in temp.	${ }^{0} \mathrm{~F}$
41	V63R1105A	Bay	FCL 1 flou rate	1bs/hr
W 2	v63R1305a	Bay	L 2 flow rat	$1 \mathrm{bs} / \mathrm{h}$

5.2.4.15 Paylead HX Heat Lead (HL_{22})
$C P=f((T 1+T 2) / 2)$
$\mathrm{GL}_{22}=\mathrm{CP} * \mathrm{~W} *(\mathrm{~T} 2-\mathrm{T} 1)+1433$
Measurements Required:

Symbol	Meas. ${ }^{\text {No. }}$	Description	Unit
T1	V63T9162A	DFI Bay 3 in terip.	o^{F}
T2	V6399161A	DFI Bay 2 out terp.	${ }^{\text {a }}$
1	V63R9159A	DFI freon loop flow	1bs

5.2.4.16 Payload $n X$ ATCS Freon outlet Temperatures (TPO1. TPO2)
$C P 1=f\left((T P I 1+T P 01)^{\prime} / 2\right)$
$C P 2=E\left(\left(T P 12+\operatorname{TP} 02^{\prime}\right) / 2\right)$
TP01 = TPI $1+\mathrm{EL}_{2>} /(2 * \mathrm{CP1} *$ (1)
TP02 $=$ TPI2 $+\mathrm{HL}_{2 \mathrm{a}} /(2$ * CE1 * H 2$)$

Measurements Required:

Symbol	Meas. $\mathrm{NO}_{\underline{-}}$	Description		Quit
TPI 1	V63T1155A	I/C FCL 1 in	temp.	OF
W 1	V63R1103A	$\mathrm{P} / \mathrm{L} \mathrm{HX} \mathrm{FCL} 1$	flow rate	1bs/hr
砛	V63R1303A	P/L HX FCL 2	flow rate	1bs/br
TP12	computed in	Section 5.2.4	. 12	
HL 22	computedin	Section 5.2.4	. 15	

5.2.4.17 ATCS Pump Freon Inlet Temperatures (Thile min)

Measurements Reguired:

5.2.4.18 ATCS Pumpreon Flow Rates (Ti4, W15)

$W_{14}=W A 1+W P 1+H C 1$	$(1 b s / h c)$
$H_{15}=W A 2+W P 2+W C 2$	$(1 b s / h c)$

Measurements Required:


```
5.2.4.19 ATCS Pump Freon Outlet Temperatures (Td01. TNO2)
    CP1 = E(TWI1)
    CP2 = E(TWI2)
    TMO1=TWI1 + 1331/(CP1 * N14) OF
    TW02 = TNI2 + 1331/(CP1 # Nis) OF
    Measurements Required:
    Symbol Heas. No. Description Nnit
    TMI1 computed in Section 5.2.4.17 0%
    THI2 computed in section 5.2.4.17 of
    M:4 computed in Section 5.2.4.i|
    #5 computed in Section 5.2.4.1b lbs/hr
5.2.4.20 Fuel Cell HX Freon Heat Load (HLes)
    CP1 = F ((TW01 + T1)/2)
    CP2 = E ((TNO2 +T2)/2)
    HLF1 = CP1 * A * * F % * * (T1 - T䀬1)
    HLF2 = CP2 * B % * * W15 * (T2 * TWO2)
    HL23 = ELF1 + HLF2 (BTU/1D)
    Measurements Required;
    Symbol Meas.NO. Bescription Unit
    T1 1V63T9071A F/心 HX FCL 1 out temp. or
    T2 IV63T9073A F/C HX FCL 2 out temp. of
    TW01 computed in Section 5.2.4.19 OF
    T002 cemputed in Section 5.2.4.19 OF
    H14 computed in section 5.2.4.18 lbs/ar
    W15 computed in Section 5.2.4.1g lbs/hr
    Constants: A A = 0.871 E B = = 0.871
5.2.4.21 Uid-Body Cold Plate Panels 1 + 2 + 4 and Panels
                        3+5 Heat Loads (HLL24 and HL 25)
CP1 = E ({TW01 + T1)/2)
CP2 = F ((T002 + T2)/2)
CP3 = f ((TM01 + T3)/2)
```

1 DEI

Heasurements kequired:

Symbol	Meas ${ }_{\text {No. }}$	Description		Unit
T 1	1 V63T9012	$\operatorname{Bn} 1+2+4$	out teiap.	OF
T2	1 V 63 T 9012 A	Pn1 $1+2+4$	out temp.	${ }^{\circ} \mathrm{F}$
T 3	${ }^{1} \mathrm{~V} 63 \mathrm{~T} 9013 \mathrm{~A}$	Pri $3+5$ out	terp.	${ }^{\circ} \mathrm{F}$
T 4	1 V63T9013A	Pn1 $3+5$ out	temp	${ }^{\circ} \mathrm{F}$
T团 1	conputed in	Sectica 5.2.4		0 F
TW02	computed in	Section 5.2.4	19	${ }^{\circ} \mathrm{F}$
棘4	computed in	Section 5.2.4	18	1bs/hr
H_{15}	computed in	Secticn 5.2.4		1bs/hc

Constants:
$A_{15}=0.0834$
$A_{16}=0.0454$
$\mathrm{B}_{15}=0.0834$
$B_{16}=0.0454$
5.2.4.22 Hydraulic $4 X$ Inlet Temperature (THI1, TGI2)

Constarts:
$A_{14}=0.871$
$\mathrm{A}_{15}=0.0834$
$a_{16}=0.0454$
$\mathrm{B}_{\mathrm{t}} \mathrm{F}=0.871$
$\mathrm{B}_{15}=0.0834$
$B_{16}=0.0454$
$\overline{\mathrm{I} F \mathrm{~F}}$
5.2.4.23 Hydraulic HX Heat Load (HI_{2})

```
CP1=E ((THIT + T1)/2)
CP2 = f ((TUI2 + T2)/2)
HLE1 = CP! * ח14 * (THI1 - T丁)
#LH2 = CP3 * W: % * (THI2 - T2)
HL?6 = HLH1 + HLH2
```

(BTU/GR)
(BTO/HR)

Measurements Required:

Symbol	Meas. No.	Descrip	On		Wnit
T 1	V63T1209A	Hyd. EX	FCL 1 out	$t \in m p$.	0 F
T2	V63T1409A	Hyd. $\mathrm{HX}^{\text {d }}$	ECl, 2 out	temp.	O^{O}
THI1	computed in	Secticn	5.2.4.22		$\mathrm{O}_{\mathrm{F}} \mathrm{F}$
whI2	computed in	Section	5.2.4.22		0 F
W_{1}	computed in	Section	5.2.4.18		ibs/hr.
TH_{15}	computed in	Section	5.2.4.1d		lbs/hc

5.2.4.24 Radiator LH and RH Panels Heat Loads (HL_{2} 7. HL_{2})
$C P 1=f((T 1+T 3) / 2)$
$C P 2=E((T 2+T 4) / 2)$

($\mathrm{BTO}^{\prime} \mathrm{HR}$)
$\mathrm{HL}_{2 \mathrm{a}}=\mathrm{CP} 2 * W_{15} *(\mathrm{~T} 4-\mathrm{T} 2)$
($\mathrm{BTO} / \mathrm{HR}$)
measurements Required:

Symbol	Meabs, N 으응	Description	Unit
T1	V63T1209A	Rad. LH phi in temp.	${ }^{0} \mathrm{~F}$
T2	V63T1409A	Rad. RH pni in temp.	${ }^{\circ} \mathrm{F}$
T3	V63T1208A	Rad. If pnl out teimp.	${ }^{\circ} \mathrm{F}$
T4	V63T:408A	Rad. BH pnl out temp.	${ }^{\circ} \mathrm{F}$
$5_{1} 14$	computed in	Section 5.2.4.18	$1 \mathrm{bs} / \mathrm{hr}$
Hix_{4}	computed in	Section 5.2.4.18	lbs/bi

5.2.4.25 Radiator L in and RH Panels Freon Flow Rates (Wig. W_{17})

```
CPT = E ((T1 + T3)/2)
CP2 = f ((T2 +T4)/2)
#16 = HL, (CP/(CP1 * (T3 - T1))
W17 = EL, %/(CP2* (T4-T2))
```

(LES/HR)
(LBS/HR)

Measurements Bequired:

| Symbol | Meas. No. | Description | Unit |
| :--- | :--- | :--- | :--- | :--- |
| T1 | $V 63 T 1209 A$ | Bad. LE pal in temp. | op |
| T2 | $V 63 T 1409 A$ | Rad. RH pni in terp. | of |

T3	V63T1210A	Rad. L-1 pni out temp.	${ }^{\circ} \mathrm{F}$
T4	V63T1410A	Bad $\mathrm{R}-1 \mathrm{pn} 1$ out temp.	OF
HL_{27}	computed in	Section 5.2.4.24	btu/hr
HL20	computed in	Section 5.2.4.24	but/bI

5.2.4.26 Radiator Panels $L-1, L-4, R-1$ and $\mathbb{- 2}$ Heat Loads

(BTU/LB)
$\mathrm{HL}_{30}=\mathrm{CP} 2$ * H_{16} * (T3 - T4)
$\mathrm{HL}_{32}=\mathrm{CP} 4$ * H_{17} * (T6-T7)
Measurements Requifed:
Symbol Meas: No. Description Enit

T 1	V63T12才0A	Prit i-1 out temp.	${ }^{0} \mathrm{~F}$
T2	1)63T4002a	Prit l-1 in temp.	OF^{F}
T3	${ }^{1} \mathrm{~V} 63 \mathrm{~T} 9004 \mathrm{~A}$	Pn1 L-4 out temp.	0 F
T4	V63T1209a	Pnt L-4 in terp.	O^{F}
T5	V63T2410A	Pa1 $\mathrm{p}-1$ out temp.	${ }^{\circ} \mathrm{F}$
т6	${ }^{1} \mathrm{~V} 63 \mathrm{~T} 9021 \mathrm{~A}$	Pni $\mathrm{R}^{\text {-1 }}$ in temp.	$0^{\circ} \mathrm{F}$
T 7	IV63T9022A	Pnt $\mathrm{R}-2$ in temp.	${ }^{0} \mathrm{~F}$
W_{16}	computed in	Section 5.2.4.25	1bs/hr
可17	computed in	Sectien 5.2.4.25	1bs/hr

5.2.4.27 Flash Evaporator, Ammonia Boiler or GSE fX Heat Load (RLza)

```
CP1 = f ((T1 + T3)/2)
CP2 = f ((T2 + T4)/2)
HLB1 = CP1 * W14 * (T1 - T3)
HLB2 = CP1 * W1s * (T2 - T4)
HL33 = HLBT + ELIB2
```

2DFI

Measurements Required:

Symbol Meas. No. Descriptign Enit

T1	V63T1207A	Evap. FCL 1 out temp.
T2	V63T1407a	Erap. FCL 2 out temp.
T3	V63T1208A	Radiator FCl 1 out temp.
T4	V63T1408A	Radiator fCl 2 out teme.
88_{1}	computed in	Section 5.2.4.18
H_{15}	computed in	Section 5.2.4.18

5.2.4.28 Overall ATCS Heat Lead (KLs.)

5.2.4.29 Ampoia Systems a ano b quantities (QA1, QA2)

```
PS = 4.16 x 10-5 Ti3 + 6.62 x 10-3 Ti'2 + .736Ti + 30.57
```


$i=1$ for system A
i $=2$ for system B

```

Measurements Required:
S~mbol Meas. Ne. Description gnit
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathrm{T}_{1}\) & V63T1180A & N & Sys. & perature & \(\mathrm{o}_{\mathrm{F}}\) \\
\hline T2 & V63T1188A & \(\mathrm{NH}_{3}\) & sys. B & temperature & \(\mathrm{OF}_{\mathrm{F}}\) \\
\hline \(\mathrm{P}_{2}\) & V63P1196A & \(\mathrm{NH}_{3}\) & Sys. A & pressure & psia \\
\hline \(\mathrm{P}_{2}\) & V63P1197a & \(\mathrm{NH}_{3}\) & Sys. B & pressure & psia \\
\hline
\end{tabular}

Constants: Tank Volume VT \(=T B i\)
5.2.4.30 Ammonia Eeat Absorption Capacity and \(u s \in\) Rate ( \(C\), \(\mathrm{F}_{1}\) )
```

$\mathrm{A}=205.6617+.3171 \mathrm{TD}-.0012 \mathrm{TD}{ }^{2}$
$\mathrm{B}=4.16 \times 10-5 \mathrm{TD}^{3}+6.62 \times 10 . \mathrm{TPD}^{2}+.736 \mathrm{TD}+30.57$
$\mathrm{D}=(\mathrm{TA}+\mathrm{TB}) / 2$
$\mathrm{C}=\mathrm{A}+(-.30+.00125 \mathrm{TD})(\mathrm{P}-\mathrm{B})+363.82-1.0813 \mathrm{D}-.0005 \mathrm{D} 2$
$\mathrm{w}_{\mathrm{a}}=\mathrm{HL}_{3} / \mathrm{C}$ (IBS/HR)

```
```

 Geasurements Required:
 | Symbol | | Description | Unit |
| :---: | :---: | :---: | :---: |
| TA | V63T1180A | NH_{3} Sys. A temperature | O_{F} |
| TB | V63T1188A | Nis Sys. B temperature | ${ }^{0} \mathrm{~F}$ |
| TD | 1 - 63 T 9152 A | NH3 Bciler out temp | OF |
| P | $1 \mathrm{~V} 63 \mathrm{P9154}$ | NH3 Beiler out press | psia |
| HL3 3 | computed in | Section 5.2.4.27 | |

5.2.4.31 Flash Evaporator Water Use Bate (N10)

```
```

Wt9 = HL33/1000 (LBS/EK)

```
Wt9 = HL33/1000 (LBS/EK)
HLu3 computed in Section 5.2.4.27
5.2.4.32 Fuel Cell Pover (PTR)
\(P W R=(E 1 * I 1)+(E 2 * I 2)+(E 3 * I 3)(H A T I S)\)
Heasurements Required:
Symbol Heas. No. Eescription Unt
\begin{tabular}{llllll} 
E1 & \(V 45 V 0100 A\) & Fuel Cell 1 voltage & voles \\
E2 & \(\nabla 45 \nabla 0200 A\) & Fuel cell 2 & voltage & volts \\
E3 & \(V 45 V 0300 A\) & Fuel Cell 3 voltage & volts \\
I1 & \(V 45 C 0101 A\) & Fuel Cell 1 current & amp \\
I2 & \(V 45 C 0201 A\) & Fuel Cell 2 current & amp \\
I3 & \(\nabla 45 C 0301 A\) & Fuel Cell 3 current & amp
\end{tabular}
5.2.4.33 Fuel Cell water Generation Rate ( \(W_{p o}\) )
```

```
M20 = PWR * 0.00082 (LBS/GE)
```

M20 = PWR * 0.00082 (LBS/GE)
PWR computed in section 5.2.4.32
5.2.4.34 Potable Water Ose Rate (ivz)
$\mathrm{H} 20 \mathrm{i}=[\mathrm{Qi}(\mathrm{t})-Q i(\mathrm{t}+\Delta \mathrm{t})) / \Delta \mathrm{t}] * 1.683$
$\mathrm{W} 2 \mathrm{I}=\mathrm{H} 2 \mathrm{O}_{1}+\mathrm{H} 2 \mathrm{O}_{2}+\mathrm{H}_{2} 2 \mathrm{O}_{3}+\mathrm{H} 20_{4}+\mathrm{H} 20_{5}+\mathrm{H} 2 \mathrm{O}_{6}-\mathrm{H} 2 \mathrm{O}$
$i=1$ for Tank A use rate
$i=2$ for Tank B use rate
$i=3$ for Tank C use rate
$i=4$ for Tank D use rate
$i=5$ for Tank E use rate

```
\(\overline{1} \overline{\mathrm{D}} \overline{\mathrm{F}}\)

5.2.4.37 Waste Mater Dump Rate ( \(\mathrm{H}_{22}\) ) ,
```

\#72 = [(Q(t) - Q(t+\Deltat))/\Deltat]*1.683 LB/HR
\Deltat = time increment (hrs)
Measurements Required:
Symbol Meas. No. Description Gnit
Q V62Q0540A Waste Tank Quantity FCT
Output requirements are 41 tab/continuous-form-plot
groups. Groups 1-29 and the necessary calculations
must be available from OD data only. Groups 30-4;
reguire both OD and DFI data. Groupings will be shown
in the data processing plan.

```

\section*{INPUT:}

Special atmospheric CCT containing data points of Density, Amicient Pressure, ambient Temperature, wind Velocity, and wind azimuth vs. Altitude.

Datain \((I)=\) PCM MSID's in Tables 5-11 through 5-22
CFACT (I) = card input for each MSID (Defauit \(=1\) )
BIAS(I) \(\quad\) Card input for each MSID (Default \(=0\) )
\(K\) = Card input value of \(I\) to select VEL from table 5-19 (Default = V95H3015C)
\(I\) = Card input value of I to select ALT from Table 5-18 (Default = V95 3 3001C)
\(\mathrm{M}=\) Cara input value of \(I\) to select Bgo from Table 5-20 (Default = DiNS calc below)
\(N\) = Card input value of : \(\quad\) select Static from Table 5-20 (Default = AMBPRS calc below)
\(P=C a r d i n p u t v a l u e\) of \(I\) to select \(Q\) from Table 5-20 (Default \(=\) DYNP calc below)

\section*{PROCESSIUG:}
```

DATOOT(I) = DATAIN(I)*CFACT(I) +BIAS(I)
ALT = DATOUT(L)
DENS = Linearly interpolated density usimg aLT
AMBRRS = Linearly interpolated Ambient Pressure using ALT
AMBTMP = Linearly interpolated Ambient Temperature using aLT
WNuts. = Linearly interpolated wind Velocity using alt
anda, = Linearly interpolated wind Azlmuth usingaLT
VEL = DATOOT (K)
RHO = DATOUT (M) OE DENS if M=0
STATIC = DATOUT(N) OF AMBPRS if N=0
BYNP = .5*RHO*VEL*VEL
DELTAP(J) = DATOUT (J)-STATIC EOE ASID's in Tables 5-11, 13, 14
Q = DATOUT(P) Or DYNP if P = 0
CP(IJ) = (DATOUT(IJ)-STATIC)/0 for MSID's in Tables 5-13, 14, 15.

```

\section*{OOTPUT:}
1. CCT of all MSID's in Tables 5-11 through 5-23 in engineeriag units and at full rate.
2. CCT of all calculated values at fixed rate (Default = \(10 \mathrm{~S} / \mathrm{s}\) ). Date, time, and location of atmosfheric data should also be on this tape.
3. CCT of all MSID's in Tables 5-12, 14, 16, 21, 22, 23 in engineering units at full rate.

\section*{SPECIAL CONSIDERATIONS:}

The MSID's in Tables 5-11 through 5-23 are the reflection of current TLM loading. provision should be made to be able to upaate the MSID's in the tables without a software change. Provision should also be made to run without the atmospheric CCI as long as \(M\) and \(N \neq 0\).


\footnotetext{
ITo not calculate DELTAP
}
```

TABLE 5-12.-ON-OREIT COMPARTMENT pRESSURES
GEASUREMENT

```
NUMBER
v07P9019
V0729020
V0789040
V0789042
V07P9045
V07P9049
V07P9081
V07P9084

NAME
Forward RCS MLI
Forward Fuselage
Left Gis Pod Interanal
Left CMS Pod MLI
Aft Fuselage Compartment
Forward Fusel age Corpartment Mid Fuselage Equipment Bay MLI Mid Fuselage Louer Eyuipment Bay
```

azasurement data range 0.0001 to 5.0 tobe

```

TABLE 5-13.-BASE EEATSHIELD EXTERNAL PRESSUGES
heasurement NGMBER
v07P9371A V07P9373A v07P9376a v0789379A V0789380a V07P9381A V07p9382A v07P9383A V0729384A 707P9385A V07P9386A V07P9387A V0759388A v07p938sa

NAME
Vert. Stab. Base Press. Right oms pod Base Press 3 Fuselage Base Pressure 6 Fuselage nase pressure 9 Fuselage Base pressure 10 Fuselage Base Pressure 11 Fuselage Base Pressure 12 Fuselage Base Rressure 13 Fuselage Ease Pressure 14 Fuselage Base Rressure \(\quad 15\)
Fuselage base piessure 16
Fuselage Base Piessure 17
Fuselage base Eressure 18
Fuselage Base Pressure 19

MEASUREMENT
NUMBER
v07P9390a
F07P9391A
V07P9392A
V07P9393A
v07P9394A
v07P9395a
V0789396a

\section*{NAME}
Orbiter Base Pressure
measurement data range 0.0 to 0.1 gsia
table 5-15.-misceldaneous External peessures
measurement NOMBER

V07P9100a V07P9104a V07P9108A v07P9114A V07P9115A 507P9120A V07P9121a V07P9126A V07P9128A V0799129A v07P9130A V07P9132A VO7P9134A v07P9136A V07P9137A volp913.8A v0729140A

\section*{NAME}
```

Nose Cap Surface X/L = 0.0
Fuselage Upper Surface C.L. X/L - 0.15
Forward Fuselage Hatch X/L = . 25
Left Fuselage }1/2=0.1
Right Fuselage X/L = 0.15
Left Euselage X/L - 0.40
Fight Fuselage X/L = 0.40
Left Fuselage x/L = 0.50
Left Fuselage x/L = 0.53
Right Fuselage X/L = 0.53
Left Fuselage x/L = 0.60
Left Fuselage X/L = 0.70
Left Fuselage X/L = 0.83
Left Fuselage X/L = 0.87
Right Fuselage x/L = 0.87
Left Fuselage X/L = 0.92
omS pod Left Surface X/L = 0.92

```

TABLE 5-16.- MISCELLANEOUS INTERNAL PRESSURES

MEASUREMENT NUMBEE

V6 1T2552A
V6 1 R 2556 A
V61P2405A
V61T2401A
V64P0101A
V64P0102A
V64P0103A
V64P0705A
『64P0106A
V64P0107A
V6420108A
V64P0110a
V64PO115A
V64P0120A
V64P0125A

\section*{NAME}

Crew Cabin Temperature
Crew Cabin Alf Flou Rate
Crew Cabin pressure
Crew Cabin Press. Eate of Change Airleck Differential Pressure 1 Airlock Differential pressure 2 Airlock Differential Pressure 3 Airlock/Cabin Differential Pressure Docking Module/Airlock Diff. Pressure Airlock/Docking Module Diff. pressure Cabin/Airlock Differential pressure Tunnel Adapter/Payload Diff. Pressure Tunnel adapter/Airlock Diff. Pressure Payload/Tunnel Adapter Diff. Pressure Airloack/Tunnel Agapter Diff. Pressure

\section*{TABLE 5－17．－CONTROL SORFACE DLELECTIONS}

MEASDREMENT

HUMBER
V94H2600C
V9．4 15530 C V94 55540 C V94 45550 C V94H5560C V94 45570 C V95H8210C V95H8310C V95H8001C V95H8010C V95月80160C V95H8110C V95H8160C V72H510．0 C マ72H5105C V72H5106C V72H5110C V72日5112C Y72 B 5120 C v72H5122C V72H5130C V72H5131C

\section*{NAMS}

Speed Erake Position Body Flap Position Rudder position Speed Brake Position Aileron position Elevator Position Compensated Rudder pos．FDBK Compensated Body flap Pos．FDBK Elevator position Compensated LIB Elevon Position Compensated LOB Elevon Position Compensated RIB Elevon Position Collpensated ROB Elevon Rosition Computed Ruder position Computed Speedbrake position Commanded Speed Brake position Compated LIB Elevon Position Computed Lon Elevon Position Computed RIB Elevon Position Computed ROB Elevon Position Computed bocy flap Position Computed Aileron Position
\[
c-2
\]
table 5－18．－ALTITUDE GEASUREMENTS
heasurement

NOMEER
V72H5352B
872H5356B
V72H5392B
V7245396B
V95H3001C
v9543003c
v95：3123C
V95\＃3125C

NAME
Left AVVI Indicated altitude Left AVVI Rađar Altitude Right aVVI Indicated Altitude Right AVYI Radar Altitude GNC Corrected Pressure Altitude GNC Uacorrected gressure Altitude Left Corrected pressure Altitude Right Corrected Pressure Altitude

TABLE 5－19．－VELOCITY MEASGREMENTS

MEASUREMENT

\section*{MUMBERS}

V72L7258B
V7217292B
V72L7296日
v721．7298B
V9010811c
V9010847C
V72R5354B
V72A5358日
V72R5394B
V72A5398B
V72L7252B
－72L7256日
V95H3015C
V95H3029C
V95L3101C
795L3103C
V95L314 1 C

\section*{NAME}

Left AMI Vehicle acceleration Right AMI Mach／Velocity
R．AMI Equivalent Airspeed
B．AMI Vehicle acceleration Ground Relative Velocity Nav Derived arch Number Left avVI Vertical Velocity Left AVVI Vertical Acceleration Right AVVI Vertical Velocity Bight aVVI Vertical acceleration Left AMI Mach／Velocity Left AMI Equivalent Airspeed GNC True Airspeed GNC Mach Number Left Mach Number Right Mach Number Left Equivalent aiespeed

TABIE 5－20．－MISCELLANEOUS TRAJECTORY PARAMETERS

MEASUREMENT MUMBER

V71P7040B
771 P 7540 B
V71P80408
V71P8540B
V95p 3201 C
V95P3203C
V95P3205C
V95P3211C
V95P3213C
V95P3215C
V72H7254B
v95月3011C
V95月3021C
V95H3025C
V95 H3105C
V95L3133C
V72H7294B
790H0803C

NAME
＊adta 1 Static Pressure
＊adra 2 static pressure
＊ADTA 3 Static Dressure
＊ADTA 4 Static pressure
GNC Corrected Total Pressure Right Corrected Total pressure Left Corrected Total Pressure
＊GNC Corrected Static pressure
＊Right Corrected 5 tatic pressure
＊Left Corrected Static Pressure Left ami ALPHA
＋GNC Dynamic Pressure
GNC Angle of attack
＊＊GNC Aif Density
Left True angle of attack
Left pressure Altitude Rate
Right AMI ALPGA
Nav angle of Attack
＊May be used for value of STATIC
＊＊May be used for value of RHC
t May be used for value of \(Q\)

TABLE 5－21．－ACCELERATION DATA

HEASUREMENT NU日BER

V73A1043A
V79A2040C
V79 A204 fC
V79A2043C
v79A2044C
V79A2046C
V79A2047C
V79A2048C
V79A2049C

HAME
\(Z\) Axis Acceleration
Lateral Acceleration Assy 1
Normal Acceleration Assy 1
Lateral Acceleration Assy 2
Normal Acceleration Assy 2
Lateral Acceleration Assy 3
Normal Acceleration assy 3
Lateral Acceleration Assy 4 Normal acceleration Assy 4

\section*{table 5-22.-TEMPERATURE MEASUREmENTS}

OEI
v38T9272A
V38T9275A
V3899276A V38T9277A V3819278A V3879282A V38T9421A

DFI
V3879001A V3899022A V38T9025a V38T9111A V38T9261A V38T9262A V3879263A V38T9264A V3849265A -3879268A V38T9269a V38т9270A v38992713 V 38 T 9320 A V38T9334A V38T9373A V38T9380A V3899406A

AFT FUSE UPR BLK AIR
aft fose top rear blk air
AFT FUSE UPR CENTER BLK AIa
AFT FOSE LGE CEWTEE BLK AIB AFt fose Lur bt blK ala AFT FOSE LH VENT DOOB HOTOR RG OMS/RCS POD VENT \& POHGE

GINDOK Cavisy outea side temp - side gatch WIndow Cavity-le cte wheld
WINDOW CAVITY-IH OTE FGD WSHLD
MID FUS RLD BAY pURGE LN VENT
FAD FUS CM OPR BLK AIE
FWD FUS St cavity blk ain
FHD FUS \& RCS FTK blkair
FWD fos b res fik blkati
Fhd eus cm lak elk air
MID EOS UPR FRONT BLK AIR
MID FQS UPR AFT BLK AIk
GOD FOS LTR FRONT BEK AIR
MIn fuS IGR aft bik air
bh FhD res vent gas
Lh FHD FeSLG VENT Gas
Li ple vent-aft gas
Ef PLE VENT-FGD GAS
RH FUSLG VENT GAS

TABLE 5-23.-EVENTS MEASUREMENTS

V59x3005x v59x3015x v59 33055 x V59 \(\times 3065 \mathrm{x}\) v59x3105x V59 x 3115 x \(759 \times 3205 \mathrm{x}\) V59×3215X V59x3255x V59x3265x V59x3305x V59x3315x ए59×3355x V59x3365x V59x3405x V59 83415 x v59x3455x V59x3465x v59x3505x V59 X \(3515 \times\) V59×3555X V59x3565X V59x3605X V59 43615X \(859 \times 3705 \mathrm{x}\) V59×3715X V59 \(\times 3.805 \mathrm{X}\) V59 X 3815 X V59X3855X V59 x 3.865 x V59×3905x V59 X 3915 X V59x4005 V59x4105x V59X4055x V59X4065x V59x4105x V59x4115x V59×4205x V59X4215x V59X4255x V59x4265x V59x4305x V59x4315x V59×4355x V59x4365x V59x4405x V59X4415X

L Fwd Vents 1 \& 2 closed 1
L Fwd Vents 182 closed 2
L Fwd Vents \(1 \& 2\) open 1
L Fud Vents 1 \& 2 open 2
L Fwd Vents \(1 \& 2\) Purge Ind. 1
L Fwd Vents \(1 \varepsilon 2\) Purge Ind. 2
L PLB Vent 3 Closed 1
L PLB Vent 3 Closed 2
L. plb Vent 3 Open 1

L PLB Vent 3 Open 2
L PLB/Wing Vents \(4 \& 7\) Closed 1
L PLB/bing Vents 4 \& 7 Closed 2
L plb/ring Vents \(4 \varepsilon 7\) open 1
L PLB/Wing Vents 4 \& 7 open 2
L PLB Vent 5 Closed 1
L PLB Vent 5 closed 2
L plb Vent 5 Open 1
L PLB Vent 5 open 2
L PLB Veat 6 closed 1
L PLB Vent 6 closed 2
L. PLb Vent 6 Open 1

L PLb Veat 6 Open 2
I plb Vent 6 purge pos. 1 Ind. 1
L PLB Vent 6 Purge Pos. 1 Ind. 2
L PLb Vent 6 purge pos. 2 Ind. 1
L plb Vent 6 purge pos. 2 Ind. 2
L AFT Vents \& \& 9 closed 1
L aft Vents \(B\) \& 9 Closed 2
L Aft Vents 8 \& 9 Open 1
L Aft Vents 8 \& 9 Open 2
L Aft Vents \(8 \& 9\) Purge 1
L Aft yents \(8 \varepsilon 9\) Purge 2
R. Fud Verts \(1 \& 2\) Closed 1
R. Fwa Vents \(1 \varepsilon 2\) Closed 2
R. Fud Vents i \(\& 2\) open 1
R. Fud Vents \(1 \& 2\) open 2
R. Fid Vents 1 \& 2 Purge 1
R. Fud Vents \(1 \& 2\) purge 2
R. PLb Vent 3 closed 1
R. PLB Vent 3 Closed 2
R. ple Vent 3 open 1
R. plb Yent 3 open 2
R. PLB/Ring Vents 4 \& 7 Closed 1
R. PLB/Wing Vents \(4 \varepsilon 7\) Closed 2
R. PLB/Wing Vents \(4 \& 7\) Upen 1
R. plb/ging vents 4 E 7 open 2
R. plb Vent 5 closed 1
R. PLb Vent 5 closed 2

TABIE 5-23.-EVENTS MEASUREMENTS (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|}
\hline V59X4455x & R. PLB & Vent 5 & open & & \\
\hline V59x4465x & R. PLB & Vent 5 & open & 2 & \\
\hline V59X4505X & R. PLE & Vent 6 & ciose & d 1 & \\
\hline V59x4515X & R. PLB & Vent 6 & Close & d 2 & \\
\hline V59x4555x & R. PLB & Veat 6 & open & & \\
\hline V59 X 4565 X & R. PLB & Vent 6 & open & 2 & \\
\hline V59x4605x & B. PLB & Vent 6 & Pucge & Pos. 1 & 1 Ind. \\
\hline V59x4615x & R. PLB & Vent 6 & Purge & Pos. 1 & Ind. 2 \\
\hline V59x4705x & R. PLB & Vent 5 & Purge & Pos. 2 & 2 Ind. \\
\hline \(V 59 \times 4715 \mathrm{x}\) & R. PLB & Vent 6 & Purge & Pos. 2 & Ind. 2 \\
\hline V59x4805x & R. 4 ft & Vents 8 & \(8 \& 9\) & Closed & 1 \\
\hline V59X4815x & R. Aft & Vents & 889 & Closed & 2 \\
\hline \(759 \times 4855 \mathrm{x}\) & R. Aft & Vents 8 & 889 & Open 1 & \\
\hline V59X4865x & R. Aft & Vents 8 & \(8 \& 9\) & Open 2 & \\
\hline V59x4905x & R. AFt & Vents 8 & \(8 \& 9\) & Purge 1 & \\
\hline \(V 59 \times 4915 \times\) & R. AFt & Vents \(B\) & 889 & Purge 2 & \\
\hline \(\checkmark 61 \times 2005 \mathrm{E}\) & Cabin & Vent Iso & \(01-\mathrm{C}\) & losea & \\
\hline \(\nabla 61 \times 2025 E\) & Cabin & Vent Isol & O1-0 & pen & \\
\hline V61×2045E & Cabin & \(V \in n t-C l\) & losed & & \\
\hline マ61×2065E & Cabin & Vent - O & Open & & \\
\hline
\end{tabular}

The ODRC is required to produce predefined standard and specific output products from 25 \% of the downlinked PCu data for an oF' mission within 6 weeks after landing. Low output volume high priority data requests will have a turnaround reguirement of 24 hours. The latter time assumes that the source data is available and time to obtain hardcopy from microfilm is not included.

IDSD will be responsible for data management functions Whigh are reguired to provide the products aescribed in section 5. In addition, IDSD will provide storage, retrieval, and distribution support for wide band FM products produced at \(y s p C\). The Level D dequirements Document will specify the number of products to be handled.
7. 1 STOBAGE AND RETRIEVAL
- Storage of the following tapes will be provided for a feriod of time to be specified in the Level D Requirements Document:
1. Instrumentation Tapes (7- or 14-track) OFT Elight Data (master copy) WB Master Range \(P C M\) Onboard Recorder Dump
2. Computer-Compatible Tapes NIP (intermeबiate DCG CCT) Ephemeris/BET Calibration FM DLSH Telemetry Loading
* Permanent onsite storage of microfila data products.
- Maintenance of an index adequate for locating tapes and microfilm basea upon single parameters (flight, date, time, data source).

DATA PRERAFATION AND DISTRIBUTION
It is required that IDSD:
- Obtain hardcopies and copies of aicrofila Ey utilizing central reproduction Eacilities.
- Prepare data books.
- Package and mail to designated recipients.
* Deliver onsite by courier.
7.3 status tracking
It is required that IDSD:
- Receive and implement data processing requestsfrom the Shuttle Evaluation Team Data hanager.
- Maintain status of data processing requests and provide timely status information to the Shuttle Evaluation Tean Data Ganager or his representative.
7.4 DATA SELECTION
Şince overlapping (in time) data will be received at JSC, it is required that IDSD select a standard Source Data Base (SSDB) for processing MET data requests. Selection is to be made based on data transmission quality (i.e., \% of frames missiny, sync drops) and not data content. The MET reserves the right to ask for alternate sources to investigate anomalies. IDSE will Provide the MET with a report of the SSDB listing the source for each time interval.

\section*{DATA MAGNITUDES}

Detailed requirements for the amount of data to be processed into various products will be specified in the level \(D\) reguifements document.

\section*{APPENDIX A}
determination of displayed significant digits

The capability to limit the number of signiticant digits necessary to describe a given parameter to those which convey meaningful intelligence is required. The following procedure describes the algoritim to be utilized for the determination of the number of flaces to the right of the decimal (D) for each parameter:
- Extract the number of bits (i) in the telemetry word and the calibration coerficients from the mind and calculate the high (H) and low (L) value for the parameter. If linear, substitute ( \(2 * * n-1\) ) and zero; if tigher order, substitute 256 evenly spaced points irom zero to (2**n-1). checking for max and min; if piecewise, check each data point for max and min.
- Calculate the data range (B), \(H=A B S(H-L)\). If \(R=0\), set \(D=2\) and skif to the end.
- Calculate the granularity indicator (G), \(G=\) LOG10 (R/(2** \((n+1))\) ). This effectively adds one bit to the granularity as a built-in conservatism so that significance will not be lost in nonlinear calibrations.
- Calculate the number of decimal places (D):
1. If \(G \geq 0\), then \(D=0\)
2. If \(G<0\), then \(D=T r u n c a t i o n(1-G)\)

This procedure shall be used for the determination of significant digits in all nominal tabulation groups. The capability to manually overriae at ran time the automatic shall be providea on a per parameter basis for exceptional cases.

\section*{APPENDIX B}

REDUNDANCY REMOVAL
redundancy removal
The capability to apply redundancy removal technigues to tabulated Orbiter \(O D\) PCM data parameters is required. Data bandpass limits are expressed in raw bitstream units. Bandpass limits are symmetrical about the initial "in-band" value; i.e., an "in-band" value may move up-scale or down-scale by an amount less thap the bandpass limit without forcing an output.

If the in-band value changes in magnitude are equal to or greater than the specified bandpass limit, that value will be output and become the new initial in-band value, with further output being inhidited until such time as another change in magnituae occurs equal to or greater than the bandpass limit. This relationship is depicted in Figure \(B-1\), Redundancy Removal Criteria.


B-3

\section*{APPENDIX C \\ STANDARD MEASUREMENT PRGCESSING}

\section*{APPENDIX C}

STANDARD GEASUREMENT PROCESSING

\section*{C. 1 GENERAL}

Each measurement output on a standard data product will be identified by its MSID, a ten-character identifier. Data processing for each measurement consists of three basic steps: fetrieval, interpretation, and formatting. This appendix outlines particular procedures to be followed for various input data sources, types of parameters, and types of output products.

\section*{C. 2 EETRIEUII}

The procedure for retrieving data for a measurement is dependent on the data source: Instrumentation tape via \(N\) IP CCT, TOC CDT, or TICa CDT. Retrieval is limited to 48 bits for all data tppes except DPL (double precision) which retrieves 50 bits, drofping the 8 least significant bits.

\section*{C. 2.1 NIP CCT}

The support Table CCT (described in the GDSD/IDSE ICD for oFT) gives the location and length of each parameter on the NIF CCT.
C. 2.2 Toc C日T

The SAIL Data Base Tape (described in the ODRC/SAIL ICD for SAIL OFT Data Tapes) gives the System ID number for each MSID on the TOC CDI as well as its length. TOC CDT records must be searched to find the System ID, then the data word (s) masked to extract the correct length. only System ID's from 0201 to \(1 F F F\) (hexadeginal) are standard measurements.

\section*{C. 2.3 TICM CDT}

Retrieval is basically the same as for \(T O C\) cDT when differences in tape format are taken into account. Only System Ib's from 0201 to \(O F F F\) and \(f r o m 8201\) to \(8 F F F\) are standard measurements.

\section*{C. 3 TNTERPRETATIOM}

Interpreting the data values consists of converting the raw retrieved bit pattern into a usable numeric value (evaluation). and then scaling it into engineering uats (calibration). Calibration is optional.
\[
c-2
\]

\section*{C. 3. 1 EVALUATION}

Evaluation is done on the basis of data type or its equivalent processing code (see Table C-1). For the NIP CCT the processing code comes from the Support Table CCT. For \(T\) OC and TICM CDT's the processing code comes from the SaIl Data Base CCT.

\section*{C.3.2 Calibration}

Calibrations for the NIP CCT come from the MaDBS calibration tape. They may take the form of polynomial coefficients, MSB value and offset, or data points (see usc 12750 for clarification). Calibrations for TOC or TICM CDI come from the SAIL Data Base CCT. They are in data pcint form only.

\section*{C. 4 FORMATTING}

The form in which data will be displayed is dependent upon the type of product. For plots, the value is displayed at its relative location with respect to the grid, no matter what processing code is used. For CCT's the value is output in univac 36 or 72 bit format (described in JSC 12865). With choice of length based on the length of the original data so that no information is lost. Event tabulations bypass the interpretation phase altogether and display the retrieved data in binary form. Analoq tabulations handle data from different processing codes in different ways which are described below.

TABLE C-1
PROCESSING CODES
\begin{tabular}{|c|c|c|c|}
\hline PC & EXisple \({ }^{\text {d }}\) & DATA TPEE & COHMENT \\
\hline 0 & - & - & Undefined or \(\mathrm{y} / \mathrm{A}\) \\
\hline 1 & UTSXEL & \[
\begin{aligned}
& \text { } X X, F X D \\
& B D, ~ B S U Z \\
& \text { SMDa }
\end{aligned}
\] & Fixed point unsignea \\
\hline 2 & STXXXL & \[
\begin{aligned}
& \text { HYS, EXS } \\
& \text { BSS, AMS }
\end{aligned}
\] & Fixed point sigued-two's complement \\
\hline 3 & SNAXXL & HES & Fixed point signed magnitude with a notification bit (W) of an overflou \\
\hline 4 & SEF & SPL & Ploating point signed, 32 bits \\
\hline 5 & Step & DPL & Floating point signed, 64 bits \\
\hline 6 & ORXXXL & AU0 & Fixed point, sign bit fiyed at zero \\
\hline 7 & XXXXXI & Hind, Find & parent Measurement. \#ust eramine subreas for frocessing \\
\hline & & & TIAE WORDS \\
\hline 8 & DAMS.S & EMD, EMD & OI GuT, MET time measurements \\
\hline 9 & :S.S & ESU, Eto & \[
\begin{aligned}
& \text { GPC time measurement first l6-bits } \\
& \text { LSB }=30 \text { min. nemaining } 32 \text { bits- } \\
& \text { LSB }=1 \text { miero sec (reset at } 30 \text { yin). }
\end{aligned}
\] \\
\hline 16 & EMXIXL & 3MS, HMS & \begin{tabular}{l}
Fixed point with directional bit do not conplement \\
\(R=0\) is positive, \(Q=1\) is negative
\end{tabular} \\
\hline \multicolumn{4}{|r|}{CODED DECIMAI HORQS (BCDL} \\
\hline 10 & \multicolumn{2}{|l|}{OKKHRHRTTTTUOUUO} & Seasurements with bits representing \\
\hline
\end{tabular}

See Space Shuttle Telemetry and Comuand Data Characteristics Handoook, Toi. 1 Eor detail formats.
\({ }^{2}\) Time measurements ana special weasurements are exceptions.
\[
c-4
\]
```

 thousands (K-kilo), hundreds (H), tens
 (T). Units (0)
 11 HHTTTTUUUUDDDD
tenths (D-deci), and bundredths (c-
centi)
12 ccec
13 HATTTTUUUU
Each letter represents one bit.
14 TTOUU0
TTTUOU0
CGARACTER CODES FOR TABLE C-1
One Character Per Bit
Sign bit 0=positive I=neqative--If negative tuo's
complement data bits.
M Most significant bit
L Least significant bit
N Notifier bit that a measurement has exceeded its
maximum value.
K Thousands bit (kilo)
H Gundred bit
T Tens bit
U Units bit
D Tenths bit (deei)
C Hundredths bit (centi)
O Bit always = 0
1 Bit almays = 1
R Reverse direction bit--Do not eomplement data bits.
One Character for Several_Bits
E Exponent bits
F Fraction bits
X Middle data bits
D Day bits
H Hour bits
M Minute bits
5 Second bits
.S Fraction of seconds bits

```

\section*{C.4.1 TAB COLUUNS}

Each tab column has aine usable characters displaying data plus one blank for separation. Each double tab column has 19 usable characters. The user should have the option of choosing either size.
C.4.2 DATA LENGTE aND TYPE

For NIP CCT's, the data length and type are extracted from the MMDB calibration CCT. For toc and TICM CDT's the length and processing code is extracted from the Sall Data Base cct.
C.4.3 DECIMAL FORMATS

Most measurements will appear in normal decimal format; e.g.. 16.32, -4532.992. Drocessing codes 1 (exeept ad and Bid), 2, 3. 6, and 16 will be decimal format with the number of aecimal places determined as shown in Appendix A. For length greater than 26 bits, a double column should be used. For data type BCD, codes 10-15, tuo decinal places will be used. For data tyfe SPL, code 4 . three decimal places will be used.
c.4.4 EXPONENTIAL FORMAT

Processing code 5 may have a dynamic range that makes decimal format unsatisfactory, hence scientific notation and a double columb is used; e.g., -6.123456789012E-07. Some code 4 woras way need scientific notation by user override.
C. 4.5 TIME FORMAT

Processing codes 8 and 9 will be displayed in a double column as days, hours, minutes, and seconds (with fractions to at least millisecon(s).
C.4.6 OTHER FORMATS

Processing code 7 and type BMD (except time) will be displayed in hexadecimal characters. For greater than 36 bits, a double column is required.
C.4.7 USER OPTIONS

While paragraphs C.4.1-6 above give standard or defadt formats. the user may exercise an override option when the tab group is built, which is normally long before ran time. The user may redefine a temporary tab group at run time which will in effect change the format of one or more measurement, but this will
require extra computer time, extra deck setup time and is error prone.

\section*{C. 5 SPECIAL MEASUREYENT EROCESSING}

Standard measurements have a single data value which is output in a standard column. Special measurements may not be on Supfort Tables or SAIL Data Base CCT, and also may have more than one value per occurrence.

\section*{C.5.1 TOC CDT}
A. GPC Sync

System ID 0000 (hex) is monitored for sync state uith each GPC treated independently. The initial state and any subsequent state change initiates a one line message giving time, GPC, and sync condition (sync loss or syac regained). Redundant messages for each GPC are suppressed.
B. PCM Sync

Syster ID 0002 (hex) is processed similar to GPC sync.
C. TICM/SIS Sync

System ID 0004 (hex) is processed similar to GPC sync.

\section*{C.5.2 TICM CDT}
A. Hardware Errors

System ID 0002 (hex) is processed uith occurrence outputting a one line error message giving time and the device and error by number.
B. SIS Frame Error/Status

System ID 0003 (hex) is processed with each oceurrence outputting a one line status message giving time and status value.
C. SIS Frame Parity Error System ID 8005 (hex) is processed with each occurrence outpotting a one line message giving previous and current frame count.
D. Read Not Ready

System ID 8006 (hex) is processed yith each occurrence outputting a one line message giving expected and current frame count.
E. SIS Fiame Out of Time

System ID 8007 (hex) is processed with each occurrence outputting a one line uessage giving frame counts one and two.
F. SIS Frane Count Errof

Systen ID 8008 (hex) is processed just like D above.
G. SIS Frame Count

Systen ID 8004 (hex) is processed just like a normal 32-bit data word, providing it is on the SAIL Data Base.
H. Message Linit

A maximum number of one-line error/status messages (default value 25 with eard everride) are permitted with a final message output saying the limit has been exceeded.```


[^0]:    $\overline{1} \overline{\mathrm{~A}} \overline{1} \overline{\bar{I}} \overline{\bar{I}}$ and GPC formats fsee Space Shuttie Telemetered and Recorded Data Format Requirements, JSC-10724, Dec. 1978)

[^1]:    Not in standard tabulation format

[^2]:    2Not in standard tabulation format
    see footnote page 5-1.

[^3]:    See Footnote page 5-1.

[^4]:    IDFI

[^5]:    $1 \mathrm{D} \overline{\mathrm{F}} \mathrm{I}$

