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THE MEAN-SQUARE ERROR OPTIMAL LINEAR DISCRIMINANT FUNCTION AND

ITS APPLICATION TO INCOMPLETE DATA VECTORS

1. INTRODUCTION

In many pattern recognition problems, it is desirable to map observed data

vectors in n-dimensional Euclidean space Rn , n > 1, to R1 in order that, hope-

fully, either the efficiency of classification will be increased by classifying

the transformed observations in R 1 or new insights into the structure of the

data will be gained by literally viewing the transformed observations in

R1 . A map used for such purposes should be simple in structure while having

the property that transformed observations from the different populations

under consideration are as well separated as possible. Consequently, such

a map is often chosen to be linear  and, in some sense, optimal from the

point of view of separating the transformed observations of the populations

at hand.

In some applications, one may expect to encounter data vectors which are

incomplete in the sense that the values of one or more of the components

of these vectors are unknown or missing. In such circumstances, both the

choice and the implementation of a linear map from R n to R  require special

consideration. Indeed, once a linear map from R n to R  has been chosen, it

is necessary that incomplete data vectors be mapped to R l in such a way that

their images are statistically compatible with the linear images of complete

data vectors. Furthermore, if n is large and if components of data vectors

can be missing at random, then it is generally impossible to prepare in

advance enough "compatible" maps to meet every missing-component eventuality.

Consequently, it seems advantageous in such circumstances to choose a linear

map from Rn to R1 for which one can easily obtain a "compatible" linear map

appropriate for each incomplete data vector as it is encountered.

1 Throughout this memorandum, the term "linear" is used in reference to affine
maps (linear plus constant) as well as to maps which are truly linear.
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When there are only two populations under consideration, the mean-square

error (MSE) optimal linear discriminant function (LDF) is a linear mapping

from R  to R l which provides, in a certain sense, optimal separation in Rl

of the transformed observations from the two populations. It is particularly

suitable for applications in which incomplete data vectors occur for two

reasons.

The first reason is that, for every k,

imposes certain statistical properties

One consequence of these properties is

for each subset of the components of a

from the point of view of classificati

the MSE-optimal LDF from R  to R1

on transformed observations in R
1

.

that the MSE-optimal LDF appropriate

data vector is automatically compatible

)n with the MSE-optimal LDF for a full

data vector. Another consequence is that a map closely related to the MSE-

optimal LDF, referred to in the following as the "derived map," can be

defined for each subset of the components of a data vector and is guaranteed

to be compatible with the derived map for a full data vector in a way

appropriate for viewing the structure of transformed observations in R1.

The second reason is that, as each incomplete data vector is encountered,

both the MSE-optimal LDF and the corresponding derived map appropriate for

the known components of the vector can be determined relatively easily from

a relatively small amount of stored information.

In the following sections, the MSE approach to classifier design is reviewed

and specialized to the two-class case and the linear discriminant function.

(Much of the material offered in this connection is either standard or an

adaptation of standard material to suit the present purposes (see ref. 1).)

Observing the statistical properties which the MSE-optimal LDF imposes on

transformed observations in R 1 , the derived maps are defined and their

statistical properties are discussed. We conclude by describing three

methods: a "straightforward" method, a method due to Kittler (ref. 2), and

a method proposed by Golub2 by which the MSE-optimal LDF and the corresponding

Private communication.

=;
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derived map appropriate for a subset of the components of a vector can be con-

structed with relatively little computation and storage. The relative advan-

tages of the three methods depend in general on the particular application at

hand in a fairly complex way; this dependence is discussed in some detail.

I

W.

1-3

k



J

or

! ^-

r:

2. THE MSE APPROACH TO CLASSIFIER DESIGN

Suppose that x = (x l , •••, xn ) T is an observation in R  known to be on one

of m statistical populations w l , ---, wm . If the cost of misclassifying an

observation is taken to be 1, then the Bayes optimal classification rule is

the following: assign x to w i if and only if

P(wi /x) = max P(wj/x)

where P(wi /x) denotes the posterior probability that x is an observation on

w i . It is often difficult or impossible to evaluate the posterior proba-

bilities P(w i /x) and therefore one must frequently deal with approximations

of these probabilities in implementing the Bayes rule. Such approximations

are commonly of the form

P(wi /x) ;,: J^ (x)	 i = 1, ---, m	 (1)

where (D(x) = [o l (x), •••, Or (x)]T is a vector whose components are conveniently

chosen linearly independent functions of x, and for each i,

a i = (a il , 
•••, air)T is a parameter vector determined so that approximation

(1) is optimal in some sense. The classification rule determined by a set

of such so-called discriminant functions aTo is the following: assign x

to wi if and only if a io(x) = m^ xa^0 x).

In the MSE approach to classifier design, one attempts to determine parameter

vectors a  which minimize the MSE of approximation (1), given by

J(A) = j^p(x)n (P(x) - AT

R	
I2P(x)dx

where

P(x) = [P(wllx), ..., P(wmlx)aT

A	 = (a l , ..., am)

p(x) = the unconditional probability density function of x

I ( = the Euclidean norm, i.e., JuJ 2 = uTu

2-1
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In practice, J(A) can seldom be evaluated exactly. Typically, a labeled

sample X = {xk}k=l,•-•,N of independent observations on the mixture of

wi g •••, wm is given, and the objective function

N	 2
J(A) = E Ia k - AT^(xk),

k=1

	

is minimized, where 
a 	 (akl'	

akm)T is defined by

C1	

= 1 if xkewj 
	 m

kj
0 if xkOwj

For large samples, the minimizer of J should be approximately the same as

the minimizer of J. Indeed, if one denotes by X i the subset of X consisting

of observations on w i and by Ni the number of observations in x i , then

_	
`	

2	
m N. I E

N J(A) = N E IAT^(xk)I - 21.E N N.	 ai^(xk) + 1

xkeX	 '-1	 xk£Xi

It follows from the strong law of large numbers (see ref. 3) that with

probability 1,

lim N J(A)	 fn  !A

Tq,
( x )I'p (x)dx - 2 f

n 
p (x) TAT

4,
(x)p(x)dx + 1

N	 R 

Since this expression differs from J(A) by a constant independent of A, it

has the same minimizer as J.

A necessary condition for A to be a minimizer of J is that all partial

derivatives of J with respect to the entries of a vanish. This is equivalent

to the condition that SA = B, where

N

S = L (D(xk)4,(xk)T

k=1

;y	
2-2
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and

NN`

B - 1 1 O(xk)a
k=1

If S is nonsingular, this condition is sufficient as well as necessary, and

J has a unique minimizer,

A = S-1 B	 (2)

Since the functions 0 1 ,	 or are linearly independent, the matrix

fn  
o(x)'(x)Tp(x)dx

R

is nonsingular, and it follows that, with probability 1, S is nonsingular

for sufficiently large N. In fact, if 0 1 , •••, Or are real-analytic as well

as linearly independent, S is nonsingular with probability 1 whenever N > r.

(See Appendix 2 of ref. 4.) Thus it is reasonable to assume in the following

that S is nonsingular and that the unique minimizer of J is given by eq. (2).

The discriminant functions a it determined by eq. (2) are referred to as the

MSE-optimal discriminant functions.

2-3
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3. THE MSE-OPTIMAL LDF IN THE TWO-CLASS CASE

Suppose that there are only two statistical populations under consideration.

The classification rule determined by discriminant functions a^0 and aTO

can be phrased in the following way: assign x to w l if and only if

aTO(x) > 0, where a = a l - a2 . If a^0 and a20  are the MSE-optimal discrim-

inant functions determined by eq. (2) on the basis of some labeled sample,

then a can be obtained by right-multiplying both sides of eq. (2) by

( 1 1 -1) T to yield

a = S-lb
	

(3)

where

N

b =

	

	 0(xk)Rk

k=1

and

+1 if xkEwl

Sk -

-1 if xkEw2

1;	
For a so defined, a T 0 is referred to as the MSE-optimal discriminant function.

The MSE-optimal LDF is the MSE-optimal discriminant function a TO obtained by

defining 4)(x) = ( I ) . (Vectors and matrices are expressed in partitioned

forms whose meanings should be clear from the context.) In this section, an

explicit expression is derived for the MSE-optimal OF in terms of the obser-

vations in a given labeled sample.

One easily obtains

N1 - N2

N1 - N2

b = r x  - L xk =

x kQl	 xkEX2	
Nlml - N 2m2

3-1
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k=1

=1 x k 	N	 ^T

S=

NN
x E

N x xTSW + Nl ml m^+ N2m2m2

Fd k 	k k
k=1	 k=1

where

	

m  = N E x k 	i = 1, 2

i xkexi

N

M = NLi
r 

x 

k=1

and

N
T	 T	 T

SW =	 xkxk - N l m l ml - N2m2m2

k=1

The matrix SW is called the "within-class scatter matrix" and can be written

as

SW = Sl + S2

where

Si = Fa (xk - m i )(xk - mi)T

xkeXi

is the scatter matrix for wi.

Setting a = ( a0), where a 0 is a scalar and a'cRn , one sees that eq. (3)

`a'
is equivalent to

3-2
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N	 NmT	 ap	 Nl - N2

	

Nm SW + N lm lml + N2m2m2 a'	 Nlml	 N2m2
r

This equation yields

a0 = N (Nl - N 2 ) - mTa'	 (4)

SWa'	 N I m l - N2m2 - Nmao - (N
I m

lm^ + N2m2m2)a# 	(5)

Substituting eq. (4) into eq. (5), one obtains

SW a t = N 
I 
m I - N 2m2 - (N I - N2 )m + (NmmT - N lm l M - N2m2mT)at

= 2 N N 2 (m l - m2 ) - N N 2 (ml - m2 )(m
l
 - m2)Ta'

	

N—r-- ^2 - ( ml - m2 )Ta' ](ml - m2 )

	

(6)

One sees from eq. (6) that, except for an unimportant scale factor, a' is

the Fisher linear discriminant SW 1 (m I - m2).

Writing a' = aSW I (m I - m2 ) and substituting this expression in eq. (6), one

obtains

A(ml - m2 ) = N N 

2 
[2 - a1 Iml - m2 ) { 2 ^ (ml - m2)

where the vector norm (; 11 is defined by 1
ju ll 2 = uT S

W
- I u. It follows

from this equation that

^^ l + N N 2 If m l 
m2^^2, = 2ND



i

► 	 or

2N 1N2

`	 - { N + N i N2 11 m1 	m2 1I }
1

2

( N1 + N2 + ll m l 	 m2 11
2)

Thus

at =	
2	

1 W l (m l - m2 )	 (7)

1N + N2 	 /
+ Il m l - m211 /
1 

Substituting eq. (7) into eq. (4)

aD 
N (N1	 N2) - mT 

l̂  +	 + llm - m 1i	
Swl(ml - m2)

I .	 \ N1	 N2	 l	 2

Using algebra, one obtains the simpler expression

i N 
+ I Im2112) 

- 1 —+ 
I Im1

a =	

112}
2	 1	 (8)

D fl—
 
+ 
N 

+ (! ml - m2 11 
/1	 2	 J

From eqs. (7) and (8), the MSE-optimal LDF is seen to be

aT40) = a  + a'Tx

_ t"2 + ilm2ll1

)

 - 

(

 NI } Ilml112)

(N 
+ -L

 + ll m1 - m2 11
1	 2

+ —L + -T	 ^m - m	
(ml - m2 

)TS 
w 1 X	 (g)

(N 1	 N2 
+	

1	 2	 )
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4. STATISTICAL PROPERTIES IMPOSED BY THE MSE-OPTIMAL
LDF AND THE DERIVED MAP

Once a map from Rn to R1 has been chosen, it is necessary to map incomplete

data vectors to R 1 in such a way that their images are statistically

compatible with the images of complete data vectors. The phrase "statistically

compatible" should be interpreted in a way appropriate for the intended

%)Djective of mapping data vectors in Rn to R1 , whether the objective is

efficient classification or gaining new insights into the structure of the

data set. Certain statistical properties imposed by the ME--optimal LDF on

transformed observations in R l anti the implications of these properties in

determining "statistically compatible" f-milies of maps will now be discussed.

Suppose that efficient classification is the objective of mapping data

vectors in Rn to R1 . Let L(x) - aTO(x) denote the MSE-optimal LDF as

'	 determined by eq. (9) on the basis of a labeled sample of observations on

two populations wl and w2 . According to the classification rule associated

with L, zero is the threshold for discriminating between transformed

observations on w l and transformed observations on w 2 . Since this is true

independent of n, it follows that the MSE-optimal LDF appropriate for each

subset of the components of a data vector has the same associated classi-

fication regions in R 1 as the MSE-optimal LDF for a full data vector. Thus

the family of all MSE-optimal LDF's appropriate for subsets of components

of data vectors may be regarded as being statistically compatible in a way

appropriate for this objective.

Now suppose that the primary objective of mapping data vectors in 
R  

to R  is

viewing the data. It is easily verified that

W- - N + 11ml - m2112

1	 2
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and

N - N l - 1Im l - m2I12
L(m2 ) = l

2	1	
2	 (11)

N + N2 + II ml - m2II

From eqs. (10) and (11), one sees that L(m 1 ) and L(m2 ) are in (-1, 1) and

lie symmetrically to the left and right, respectively, of

1	 1

NZ _ Wl

N + N + flm 1 - m2II
1	 2

Note that if N 1 /N2 is large, then both L(m 1 ) and L(m2 ) are near +1. If this

ratio is small, then both L(m l ) and L(m2 ) are near -1. If N 1 = N2 , then

L(m l ) = -L(m2).

As an interesting aside, explore the limiting behavior of L(m l ) and L(m2)

for increasingly large samples. Suppose that N 1 and N 2 grow large in such

a way that

NlN )m	 aN = 1

and

N2

N-o N - 

n2

for somL nonnegative a 1 and a2 satisfying a 1 + a2 = 1. Denote by ui and Ei

the mean vector and covariance matrix, respectively, for observations on w 

in Rn , and set E = a l E l + 0'2
E 2 . Using algebra, it follows from the strong

law of large numbers that, with probability 1,

a - a + Ilu l - 
P211 

lim L(ml) = 1
	 l2	 lN-wo	
a1 + I + I I u 1 - u2I I

2



E f

F r,

a- N- I I ul - V12 1
 1 2

	lim L(m2 ) = 2
	 1

N-w	
« + -L+ I I ul - u2 11

	1 	 ct2

where the norm 11 11 is now defined by

I I u 11 2 = uT2: -1 u for ucRn

It is evident from eqs. ( 10) and ( 11) that L maps the sample means in R  to

points in R1 which depend on the sample means and variances in Rn . From L,

however, one can easily obtain .. map, called the "derived map" and denoted

by L', for which this is not the case. Specifically, we define

t Nl + N2+ I ( ml - m2 1 1 2 (	 V. N2

L ^ (x)	 11 ml - m2 11 2	 L(k) + 11m l - m2 1I

=

II 

m 1-------^ 1IM2I I 2 - IIm l I I 2 + 2(m 1 - m2 )TSW 1 x	 (12)

1	 211

One verifies immediately that L'(m i ) _ +1 and L'(m2 ) 	 -1, independent of

n and the sample statistics in Rn . It follows that for each subset of the

components of a data vector, the derived map appropriate for that component

subset maps the sample mean vectors of w l and w2 in that component subset

to +1 and -1, respectively. Consequently, one may regard the family of

derived maps associated with subsets of components of data vectors as being

statistically compatible for the objective of viewing the data to the extent

that sample means of w l and w2 in subsets of components of data vectors are

compatibly mapped.

If both viewing the data and classification are objectives of mapping data

vectors in Rn to R 1 , one may easily associate a classification rule with L'

identical to that associated with L by observing that L(x) > 0 if and only if

1 _ 1

	L' (x) >	 ^1	 N2

11 m l - m2 11

4-3
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5. CONSTRUCTION OF THE MSE-OPTIMAL LDF AND THE DERIVED

MAP FOR INCOMPLETE DATA VECTORS

To successfully employ the MSE-optimal LDF or the derived map in mapping

incomplete data vectors to R 1 , it may be essential to construct appropriate

maps for incomplete data vectors as efficiently and accurately as possible.

Three methods are offered for constructing the MSE-optimal LDF or the derived

map appropriate for a subset of the components of a full data vector: a

"straightforward" method, Kittler's method, and Golub's method. These

methods require relatively little computation and storage, and require no

"retraining", i.e., no direct dealing with the original labeled sample; hence

they are well-suited for applications in which it is desirable to construct

the appropriate map for each incomplete data vector as it is encountered.

The underlying algebraic problem which must be solved to obtain the MSE-

optimal LDF or the derived map appropriate for an incomplete data vector is

described in the following section. Three procedures for solving this

problem are offered and three methods are derived for constructing the

desired MSE-optimal LDF and the derived map. A discussion of the relative

advantages of these methods in applications, focusing on the relative

efficiency and accuracy of the methods, concludes the section.

5.1 THE ALGEBRAIC PROBLEM

Suppose that A is a positive-definite symmetric k x k matrix and that u and

v are vectors in R  satisfying Au = v. For given indices i l , •••, iQ,

Z < k, denote by v the vector in R k-z obtained by deleting components

i 1 , •••, i k from v, and denote by A the (k - R) x (k - k) matrix obtained by

deleting rows and columns i l , •••, i k from A. Consider the following

problem: Find u*eR
k-k

 which satisfies Au* = v. This algebraic problem is

the fundamental problem which must be solved in constructing the MSE-

optimal LDF or the derived map appropriate for an incomplete data vector.

Three procedures for solving this problem follow; each procedure assumes

that some information associated with the equation Au = v is initially

available.

5-1
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In the first procedure, it is assumed that A and v are available. The

	

procedure consists of simply forming Aa nd v and 	 solving Au* av 	 in a straight-

forward manner. In formulating this procedure, it is specified that the

equation is to be solved by first obtaining the Cholesky decomposition of A

and then solving the resulting triangular systems. This method is not only

stable but also faster than competing methods such as Gaussia.1 elimination.

For a full discussion of this method and related methods, see references 5

and 6.

PROCEDURE 1:

a. Form v and A by deleting the components of v and the rows and columns

of A indexed by i i ; j - 1, •••, Q.
b. Obtain in the usual way the (k - z) x (k - x) upper-triangular

Cholesky factor R* satisfying R*TR* = A.

c. Obtain u* by solving in order the triangular systems R*Tz* = v and

R*u* = z*.

In the second procedure, it is assumed that A -1 and u are available. The

basis of this procedure is the following observation (ref. 2): If k = 1

and i t is denoted simply by i, then

A-1 = D - d rrT	(13)

where

d is the ith diagonal element of A-1

D is the (k - 1) x (k - 1) matrix obtained by deleting the ith row and
column from A 1

r is the (k - 1)-dimensional vector obtained from the ith column of A-1
by deleting d from it.

It follows that u* is given by

U

	

U* = u - d r	 (14)
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where u  is the ith component of u and u is obtained by deleting u i from u.

For general R, u* can be obtained from u and A-1 by repeated applications of

eqs. (13) and (14). For convenience in describing Procedure 2, assume that

i I > i 2 > * so > iV

PROCEDURE 2:

a. Set u(0) = u and A -1 (0) = A-1.

b. For j = 1, ---, X,, do the following:

1. Set

ui

u( j ) = ^U ( j - 1) - d j _ l	 r (J - 1)

where

u i (j - 1) is the component of u(j - 1) indexed by ij

J	 k-j
u(j - 1)eR	 is obtained by deleting u i (j - 1) from u(j - 1)

J
d(j - 1) is the diagonal entry of A-1 (j - 1) indexed by ij

r(j - 1)cR k-J is obtained by deleting d(j - 1) from the column

of A-1 0 - 1) indexed by ij

2. If j = Q, stop; otherwise, set

A-1 ( j ) = D( j - 1)	 d j l - 1 r (j - 1)r(j - 1)T

where

d(j - 1) and r(j - 1) are defined above

D(j - 1) is the matrix obtained by deleting the i j th row and

column from A-1 (j - 1)

c. Set u* = u(Q).

In the third procedure, it is assumed that one has available the upper-

triangular Cholesky factor R satisfying R 
T 
R = A and the vector z satisfying

R 
T 
z = v. Of course, u is determined by the equation Ru = z, which is in

r•
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upper-triangular form. The third procedure is based on the fact that, from

R and z, one can obtain in an relatively efficient and stable manner a

(k - k)-dimensional equation in upper-triangular form whose solution is u*.

Indeed, if R denotes the k x (k - R) matrix obtained by deleting columns

i l , •••, i k from R, then RTR = A, RTz = v, and RTRu* = v = RTz. Now one can

find a k x k orthogonal matrix P for which R = P( R* ), where R* is a
(k - k) x (k - k) upper-triangular matrix. (An efficient and stable way to

obtain P is by composing appropriate Householder transformations. See

ref. 7 for details.) Then RTR = R*TR*, and by setting PTz =(z**), where

z*eRk-k , one obtains

R*TR*u* - ( O )TPTz = R*Tz*

It follows that u* is given by the equation R*u* = z*, which is in upper-

triangular form.

PROCEDURE 3:

a. Form R by deleting the columns of R indexed by i j ; j = 1, •••, Z.

b. Obtain a k x k orthogonal matrix P for which the factorization

R = P( 0 ) holds, where R* is a (k - k) x (k - k) upper-triangular

matrix; set P z = ( **), where z*eRk-k.

c. Obtain u* by solving the upper-triangular system R*u* = z*.

5.2 THE THREE METHODS

To demonstrate the relation of the algebraic problem just described to the

problem of obtaining the MSE-optimal LDF or the derived map appropriate for

an incomplete data vector, recall that the MSE-optimal LDF L for vectors in

R  is given by L = a T4), where (P(x) = ( 1 ) and a is given by eq. (3). Since

this is true for general n, one sees that if xeR
n-k

 denotes the vector

obtained by deleting components i l , •••, i k from a vector xeR n , then the

MSE-optimal LDF appropriate for x, denoted by L, is given by

L = a*Tm



where

X

and a* satisfies

Sa* = S	 (15)

In this expression,

N

b	 d6k
k=1

and

N

S
 = E

^( X )
^ ( X )T

k	 k
k=1

For convenience, write

b0

bl

b =	 '

bn

and

	

S00 SO1	 SOn

S10	 S 11	 SIn

S=

i

I	 Sn0	 Snl	 Snn
1

It is clear that b is obtained from b by deleting from b the components

indexed by i j for j = 1, •-•, k; similarly, S is obtained from S by deleting

from S the rows and columns of S indexed by i j for j = 1, •-•, k. Thus the
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"
problem of determining L is fundamentally that of obtaining the solution

a* of eq. (15), which is an algebraic problem of the type gust described.

Similarly, taking eq. (12) as the defi
^

n, observe that the derived map for x,

L'(x)	
m

l
 -lA 

II	 [11m2112
1	 2

nition of the derived map for general
^

denoted by L', is given by

- Ilm l i( 2 + 2(ml - m2 ) TSW I x	 (16)

where

"	 1	 "
m i = 	 xk	 i=1,2

N

i xkEXi

^ AT	^ AT	^ AT
SW =	 xkxk - 

'J A
m l ml - N2m2m2

xkEX

and the norm I) II is now given by

IIuII 2 = uTSW1 u for uERn-^

AAClearly, m l and m2 are obtained from m l and m2 , respectively, by deleting
^

components i l , •••, i^ from ml and rn2 ; similarly, SW is obtained from SW by
^

deleting rows and columns i l l •••, i, from SW . Since L' is easily specified

once the vectors SW-l ml and SWl m2 are known, one sees that the problem of

determining L' is fundamentally that of solving the equation

S
W
 U!, = in	 i = 1, 2	 (11)

Once the role played by the algebraic problem of section 5.1 in the
"

determination of L and L' has been established, three methods of obtaining

these maps are immediately suggested. These methods can be formulated as

follows.

5-6
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THE STRAIGHTFORWARD METHOD OF OBTAINING L:

a. Recall b and S from storage.

b. Determine a* - S-l b by using Procedure 1 to solve eq. (15), taking

k = n+l, v-b,A=S, and u*=a*.

c. Obtain L = a*T0.

THE STRAIGHTFORWARD METHOD FOR OBTAINING L':

a. Recall ml , m21 and SW from storage.

b. For i = 1, 2, determine ui - SW l mi by using Procedure 1 to solve eq. (17),

taking k = n, v - m i , A = SW and u* = ui.

c. Using ui = SWl mi , i = 1, 2, determine ^^m1 4^ 2 , (^m2 (^ 2 , SW1 (m1 - m2),

and JIM" l - m2 112.

d. Obtain L', as given by eq. (16).

THE KITTLER METHOD FOR OBTAINING L:

a. Recall a - S-l b and S-1 from storage.

b. Determina a* = S- l b by using Procedure 2 to solve eq. (15), taking

k=n+1, u-a,A-1 = S -1 , and u*=a*.

c. Obtain L = a*T0.

THE KITTLER METHOD FOR OBTAINING L':

a. Recall SW I ml , SW l m2 , and SW-1 from storage.

b. For i = 1, 2, determine ui = SWlmi by using Procedure 2 to solve eq. (17),

taking k = n, u = SWl mi , A-1 = SW 1 , and u* = ui.

C. 
Using ut = SW l m i , i = 1, 2, determine (^m l (` 2 , 11m2 1y 2 , Swl (m1 - m2 j,

and 11 ml - m2112.

d. Obtain L', as given by eq. (16).

.pp

IL



or

F .1

THE GOLUB METHOD FOR OBTAINING L:

a. Recall from storage the upper-triangular Cholesky factor R of S and

the solution z of RTz - b.

b. Determine a* = o%-l b by using Procedure 3 to solve eq. (15), taking
k = n + 1 and u*=a*.

c. Obtain L - a*T0.

THE GOLUB METHOD FOR OBTAINING.[':

a. Recall from storage the upper-triangular Cholesky factor R of S  and

the solutions z i of RTz i = m i for i = 1, 2.

b. For i = 1, 2, determine u i - SW 1 
m
^ 
i by using Procedure 3 to solve eq. (17),

taking k = n, z = z i , and u* = ui.

c. Using ut = S_m i , i = 1, 2, determine 1im 1 11 2 , 11^21)	 SW1(m l - ^2)'
I.

and 11^l - ^2112•

d. Obtain L', as given by eq. (16).

5.3 RELATIVE ADVANTAGES OF THE THREE METHODS

In discussing the relative advantages of the three methods formulated in

section 5.2, the focus is on efficiency and accuracy. None of the three

methods presents any particularly stringent requirements of storage or

preparatory computation.

The efficiency of a method is usually reflected in the number of arithmetic

operations required to implement it. Since the relative numbers of

arithmetic operations required by the three methods are determined directly

by the relative numbers of arithmetic operations required by the three

procedures in section 5.1, consider the arithmetic operations necessary to

implement these procedures. In particular, since the number of additions

required by procedures of this type is approximately the same as the number

of multiplications required, the following formulas are offered which specify
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the numbers of multiplications required by Procedures 1, 2, and 3, respectively,

for any k. (When these procedures are used in the methods of section 5.2, k

is either n or (n + 1).)

3
k - t	 +	 ( k - Z ) 2 + -S (k	 t. )	 (18)

- 1 k - lr 
2

+ 0, _1 2 k - -+	 3+3(t - 1)(k - t)

+ 2 (t - 1) 2 + (k - k) + 5 (t, - 1) + 1	 (19)

T (£ - 1)(k - t) 2 + 7 (k - R)2 + "f (t - 1)( k - k) + r (k - k)	 (20)

It is apparent from the highest-order terms in these formulas that if k is

very large and if t is small relative to k, then the Kittler methcd requires

the fewest multiplications of the three, followed by the Golub method and the

straightforward method in that order. In fact, in these circumstances, if

Z - 1, then the numbers of multiplications required by the three methods are

0(k), 0(k2 ), and 0(k 3 ), respectively. If t > 1 but is still small relative to

t

	

	 k, then both the Kittler method and the Golub method require 0(k - t,) 2 multi-

plications, while the straightforward method requires 0(k - t) 3 multiplications.

If t = 2, then the Kittler method requires fewer multiplications than the

Golub method by about a factor of 12; however, as it grows, this advantage

quickly drops to a factor slightly greater than 3.

If k is not too large or if the size of x is significant relative to k, then

the order of the numbers of multiplications required by the three methods

changes. To illustrate the variance of this order with different values of k

and t,, see table I, in which the order is indicated on the left ("K," "G,"

and "S" represent "Kittler," "Golub," and "straightforward," respectively),

and the values of k are listed across the top. The lower right number in each

entry is the value of t for which the order on the left first occurred with

-- --
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the value of k given above; the upper left number in each entry is the fraction

LA. It should be noted that, except for fairly small k, the orders (K, G,

S), (K, S, G), (S, K, G), and (S, G, K) appear in order as R ranges from 1 to

(k - 1). Furthermore, if k is large, then these orders appear at fairly

well-specified values of k/k. Specifically, the order (K, S. G) replaces the

order (K, G, S) when k is about 10 percent of k; the order (S, K, G) replaces

the order (K, S, G) when k is about 21 percent of k; and the order (S, G. K)

replaces the order (S, K, G) when R is about 58 percent of k. Figures 1

through 5 indicate for five different values of k the relative sizes of the

numbers of multiplications required by the three methods as R ranges from 1

to (k - 1).
No

In gaging the accuracy of a method, one should consider not only the number

of arithmetic operations required by the method but also the stability of

the method. loosely speaking, a method is said to be stable if small errors

introduced in the course of the computation do not compound themselves to an

unreasonable degree as the computation proceeds; otherwise, the method is

said to be unstable. Somewhat more strictly speaking, stable methods

generally exhibit error growth which is linear in the number of arithmetic

operations performed, while the error growth associated with unstable methods

is exponential in the number of arithmetic operations performed. To quote

reference 8, "linear growth is normal, usually unavoidable, and not dangerous;

F'C
	 exponential growth may, however, be disastrous and should be avoided at all

costs."

The instability of a method may become especially serious when there are bad

features inherent in a particular problem to which the method is applied.

Here, the basic problem under consideration is that posed in section 5.1,

that of solving the linear equation Au* = v using information about the

equation Au - v. A linear equation involving a positive-definite symmetric

matrix is said to be ill-conditioned if the condition number, defined to be

the ratio of the largest eigenvalue to the smallest l , is large. The practical

i For a definition of the condition number for a general linear system, see
reference 6.

R
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importance of ill-conditioning is that small errors incurred in computing the

approximate solution of an ill-conditioned linear equation may result in

large errors in the approximate solution. Thus, procedures for solving an

ill-conditioned linear equation must be chosen with care in order that they

yield approximate solutions which are meaningful. In particular, unstable

procedures should be avoided in solving ill-conditioned linear equations.

The linear equations (15) and (17), which must be solved by the procedures
A	 A

of section 5.1 to obtain L and L', are likely to be ill-conditioned in many

applications. (The same is true of the "parent" equations Sa - b and

	

A	 A

SWu i - mi l i - 1, 2.) Indeed, the matrices S and S W will be ill-conditioned

	

if the "incomplete" labeled training vectors x k, 	 k	 1, •••, N, "nearly" lie

in some proper subspace of R n-t . This will occur, for example, if two or
A

more of the components of the "incomplete" vector random variable X are

highly correlated. Consequently, potentially unstable procedures sho-ild be

used in the solution of eqs. (15) and (17) only if it is ascertained that

these equations (and, perhaps, their "parent" equations as well) are not

too ill-conditioned.

Procedures 1 and 3 of section 5.1 are known to be stable. Indeed, Procedure 1

involves only Cholesky decomposition and the solution of two triangular

systems. Both Cholesky decomposition and the solution of triangular systems

are stable, and the latter can usually be carried out with a high degree of

accuracy (ref. 7). In Procedure 3, the formation of the initial Cholesky

factor R of A is stable, as is the solution of the upper-triangular system

R*u* = z*. Also, it was observed earlier that the factorization R - P(0

can be obtained in an efficient and stable way by constructing P as a

composition of Householder transformations (ref. 9).

On the other hand, Procedure 2 appears to be potentially unstable. The basis

of Procedure 2 is the repeated application of the matrix-inverse-update

formula ^jf step 2, which is derived from the Sherman -Morrison formula ( ref. 9),

for updating the inverse of a matrix following a rank 1 change. The Sherman-

Morrison formula is known to exhibit instability in many applications.

L_



Indeed, the potential for difficulties in Procedure 2 is apparent in the

formula of step 2: if the subtraction called for by the formula is subject

to numerical error, the resulting approximate inverse can actually fail to

be positive-definite! If only one component of a data vector is missing

(k n 1), then the inverse is not updated and the potential instabilities do

not materialize.

The salient points of this discussion are summarized and conclusions are

drawn in the following:

a. The straightforward method is always stable. It is preferred over

the other two methods for reasons of efficiency as well as accuracy

when more than about 21 percent of the vector components are missing.

It is more efficient than the Golub method when more than about

10 percent of the components are missing. If the number of components

of complete vectors is not large (no greater than 30 to 40) then the

straightforward method is competitive in efficiency with the Golub

method for any number of missing components.

b. The Kittler method is more efficient than either the straightforward

method or the Golub method when no more than about 21 percent of the

vector components are missing. However, because of the potential

instabilities inherent in this method, it should be used only when

speed of computation is of overriding concern and eqs. (15) and (17)

and their "parent" equations are well-conditioned. When only.one

component is missing, the Kittler method can be safely used and results

in considerable savings in computation time.

c. The Golub method is always stable. As the number of.components of

complete vectors becomes greater than 40, it offers increasingly

significant benefits in efficiency over the straightforward method

when no more than about 10 percent of the vector components are

missing. After more than a few components are missing, the advantage

in efficiency of the Kittler method over the Golub method drops to a

factor slightly greater than 3. The Golub method becomes more efficient
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then the Kittler method after about 58 percent of the components are

missing. Of course, the straightforward method is by far the most

efficient method at this point.
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TABLE I.--VARIANCE OF ORDER

I,

Order
4 8 12 16 20 24 28 32 36

K. G. S
1 i 1 1

K. S. G 08 .07 .06 .083
1 1 1 1 1 2 2 2 3

S. K, G
5 375 .33 .31 .30 .29 .28 .25 .25

2 3 4 5 6 7 8 8 9

S. G, K
75 .75 .6 .65 .667 .643 .62 .639

6 9 11 13 16 18 20 1	 23

k

Order
48 60 72 84 96 lu8 120 132 144

K. G'S
i 1 1 1 1 1_ 1 1 1

K,	 S, G •083 .083 .083 .095 .094 .093 .092 .091 .097
4 5 6 8 9 10 11 12 14

S. K. G
25 .231,,-*' .23 .226 .229 .222 220 .222

12 14 11 19 22 24  29 32

S,	 G,	 K
•625 .611 .611 .607 .604 .602

.2a

25

::g

91 .590
30 37 44 51 58 65 78 85

k

Order
200 300 400 500 600 700 800 900 1000

K,	 G. S
1 1 1 1 1

K,	 S, G
09 .097 .09 .098 .098 .099 .099 .099

19 29 39 49 59 79 89 99

S,	 K, G .21 .21 .21 .21 .21 .209 20.208
43 64 84 105 126  167 188 208

S,	 G,	 K
.59 .587 .58 .582 .58 .581 .581 .581 .581

118 176 233 291 349 401 465 523 581

t_
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Figure 1.-- Comparison of multiplications when k = 15.
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Figure 3.— Comparison of multiplications when k = 60.
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Figure 4.— Comparison of multiplications when k = 120.
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Figure 5.— Comparison of multiplications when k = 1000.
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