SPACE-BASED SOLAR POWER CONVERSION AND DELIVERY SYSTEIMS STUDY

VOLUME V

ECONOMIC ANALYSIS

```
(NASA-CR-150298) SEIIVERY SISTEEMS STUDY- Final Report UnclaS
VOLUME 5: ECONMMIC ANAN.N.) 279 p
```

- 1 12/MFA01

SPACE-BASED SOLAR POWER CONVERSIOA AND DELIVERY SYSTEMS STUDY

FINAL REPORT
vOLUME V

ECONOMIC ANALYSIS

Prepared for
National Aeronautics and Space Administratiol George C. Marshall Space Flight Center

Under Contract No. NAS8-31308

March 31, 1977

IF MAN CAN DECIDE WHERE HE WANTS TO GO, SCIENCE CAN TELL HIM THE BEST WAY TO GET THERE

This study of space-based solar power conversion and delivery systems addresses a variety of economic and programmatic issues relevant to their development and deployment. Specifically, the study focuses on the costs, uncertainties and risks associated with the current photovoltaic Satellite Solar Power System (SSPS) configuration, and with issues affecting the development of an economically viable SSPS development program. In particular, the desirability of low earth orbit (LEO) and geosynchronous (GEO) test satellites is examined and critical technology areas are identified.

The main focus of the effort reported herein has been the development of SSPS unit production (nth item), and operation and maintenance cost models suitable for incorporation into a risk assessment (Monte Carlo) model (RAM). The RAM was then used to evaluate the current SSPS configuration expected costs and cost-risk associated with this configuration. By examining differential costs and cost-risk as a function of postulated technology developments, the critical technologies, that is, those which drive costs and/or cost-risk, are identified. It is shown that the key technology area deals with productivity in space, that is, the ability to fabricate and assemble large structures in space, not, as might be expected, with some hardware component technology.

An assessment of LEO and GEO test satellites as components of the SSPS development program was performed using a decision tree approach. Five development program options were examined. This work serves as a benchmark for the formulation of effective program plans and establishes the value of test satellites of the proper scale. It is shown that the probability of successfully implementing the current configuration SSPS appears to be sufficiently high so that an economically justifiable program plan for the pursuit of the SSPS concept can be developed.

It should be cautioned that the economic analyses discussed herein are preliminary and make use of program plans and data that need further review. Thus, while the methodologies employed are sound and may lead to significant results, and the insights gained from these analyses may be valuable, decisions should be based on the results only after a thorough review of the cost model, the data used and the assumptions made for the analyses.

Finally, a few utility interface issues were identified and preliminarily examined. These include the need for and cost of installed reserve as a function of SSPS reliability/availability, the effect of power fluctuations due to clouds, precipitation and Faraday rotation, and the effect of power outage due to solar eclipse near the equinoxes.

NOTE OF TRANSMITTAL

The economic analyses of space-based solar power conversion and delivery systems developed and reported in this volume have been prepared for NASA, George C. Marshall Space Flight Center, under Contract NAS8-31308. ECON study manager for this effort was Dr. George A. Hazelrigg, Jr. Data for the analyses were provided by the Grumman Aerospace Corporation, the Raytheon Company and Arthur D. Little, Inc. as subcontractors to ECON. The study managers for these organizations were Mr. Rudolph J. Adornato, Mr. Chet Wendell and Dr. Peter E. Glaser, respectively.

ECON also recognizes the assistance and substantial contributions of Mr. Gregg R. Fawkes of ECON in the preparation of this report, and the guidance of Dr. Bette M. Winer of Arthur D. Little, Inc. and Mr. Owen E. Maynard of Raytheon Company. Special recognition is due to Mr. Walter E. Whitacre of the Payload Studies Office of Marshall Space Flight Center as the COR for this study.

Submitted by:

Approved by:
Klaus P. Heiss President
Chapter Page
Frontispiece ii
Abstract iii
Note of Transmittal iv
List of Figures viij
List of Tables $x i j i$

1. Introduction 1
2. The Economic Feasibility of Space-Based Solar Power Conversion and Delivery System 3
2.1 Economic Feasibility of a Space-Based Solar Power System 3
2.1.1 Space-Based Solar Power System Costs 3
2.1.2 Development Program Costs 8
2.1.3 Alternative Power System Costs 11
2.1.4 Comparative Economic Analysis 13
2.2 Economic Feasibility of a Power Relay Satellite 16
2.2.1 Power Relay Satellite System Cost 16
2.2.2 Development Program Costs 17
2.2.3 Terrestrial Power Transmission System Costs 24
2.2.4 Comparative Economic Analysis 26
3. Cost, Uncertainty and Risk Analysis of Space Systems 29
3.1 Uncertainty, Risk and Decision Making 33
3.2 General Procedure 38
3.2.1 Cost Modeling. 41
3.2.2 Uncertainties 41
3.2.3 Effect of Reliability 42
3.3 Comparison of Alternatives 43
3.4 The Relationship Between Engineering and Economics 45
4. Cost Modeling of Space-Based Solar Power Systems 48
4.1 Development Program Costs 48
4.1.1 Supporting Research and Technology Program Costs 49
4.1.2 150 kW Test Satellite Program Costs 49
4.1.3 Geosynchronous Orbit Test Satellite Program Cost 49

TABLE OF CONTENTS (continued)
Chapter Page
4.1.4 DDT\&E Costs 50
4.1.5 First Unit Production Costs 50
4.2 Unit Production Cost Model 50
4.2.1 Ground Station Cost Model 52
4.2.2 LEO Launch Cost Model 52
4.2.3 Factory-in-Space Cost Model 55
4.2.4 LEO-GEO Transportation Cost Model 55
4.2.5 Satellite Procurement Cost Model 56
4.3 Operation and Maintenance Cost Model 56
4.3.1 Launch Facility 0\&M Cost Model 56
4.3.2 Ground Station 0\&M Cost Model 56
4.3.3 Space Station and Support 0\&M Cost Mode1 58
4.3.4 Satellite 0\&M Cost Model 58
5. Analysis of Uncertainty and Risk in Space-Based Solar Power Systems Production, Operation and Maintenance 60
5.1 Current State-of-Knowledge 60
5.2 Risk Assessment of the Current Configuration 64
5.3 A Cost-Risk Comparison of SSPS Alternatives 71
5.4 Power Beam Ionospheric and Biological Effects 74
6. Identification of Critical Technologies and Issues 80
6.1 Critical Issues 80°
6.1.1 Launch Complex and Operations 81
6.1.2 Orbital System 84
6.1.3 Rectenna and Power Interface Systems 85
6.2 Critical Technologies 86
6.2.1 Analysis of Alternative Solar Cell Materials 92
6.2.2 Analysis of the Effect of Construction Time 94
7. Analysis of Alternative Program Plans 96
7.1 Direct Development Program 96
7.2 GEO Test Satellite to Fuli-Scale Program 96
7.3 LEO and GEO Test Satellites to Full-Scale Program 99
7.4 Decision Tree Analysis of Alternative Program Plans 99
7.5 Analysis of Programs IV and V 115
8. Programmatic Risk Analysis 122

TABLE OF CONTENTS (continued)

Chapter9. Utility Interface Analysis125
9.1 Effects of Reliability 125
9.2 Effects of Solar Eclipses 134
9.3 Effect of Power Fluctuations 137
References 141
Glossary of Technical Units and Abbreviations 143.
Appendix A Economic Methodology 144
A. 1 Methodology for Comparative Economic Analysis of Electric Generation Systems 144
A. 2 Computation of the Present Value of Capital and the Equivalent Annuity 149
A. 3 Reconciliation of Alternative Approaches for Computing the Present Value of Capital and Equivalent Annuity 149
A. 4 Computation of Economically Justifiable SSPS Unit Cost 153
A. 5 DDT\&E Payback Analysis 155
Appendix B Unit Production Cost Model 160
B. 1 The Present Unit Production Cost Model 160
B. 2 The Unit Production Cost Model Used to Evaluate Programs I, II and III 175
Appendix C Operation and Maintenance Cost Mode1 194
Appendix D The Current State-of-Knowledge 199
Appendix E Establishing Uncertainty Profiles 214
Appendix F States-of-Knowledge at Decision Points 216
Appendix G Computation of Conditional Probabilities 244
Selected Bibliography 246

LIST OF FIGURES

Figure Page
2.1 Comparative Economic Analysis of a 5GW SSPS Operating Over the Period 1955-2025 14
2.2 PRS Cost Elements Versus Peak Power Density at Transmitter 18
2.3 PRS Cost for Various Power Outputs 19
2.4 PRS Cost for Several Transmitter Cost Factors 20
2.5 PRS Cost for Several Transportation/Assembly Cost Factors 21
2.6 PRS Cost and System Efficiency 22
2.7 PRS Orbital System Program Schedule and Cost 23
2.8 Power Transmission Cost Comparisons 27
3.1 Risk Analysis 31
3.2 Quantifying the State-of-Knowledge Relative to a Parameter, x 32
3.3 Illustration that Point Cost Estimates Are Generally Low 34
3.4 The State-of-Knowledge on R 36
3.5 The Chance of Winning as a Function of R 36
3.6 A Decision Tree Illustration of the Thumbtack Flip Game 37
3.7 Decision Tree for the Thumbtack Flip Game with a Test 39
3.8 Risk Analysis Methodology for Unit Production and Operation and Maintenannce Costs 40
3.9 Development of the Technology Frontier 43
3.10 Comparison of Technology Alternatives 44
3.11 A Typical Cost Versus Risk Tradeoff 47

LIST OF FIGURES (continued)

Figure Page
4.1 SSPS Program Cost Model 48
4.2 Relationship of SSPS Components to the System Efficiency Chaị 51
4.3 Unit Production Cost Model 53
4.4 General Logic Flow of the SSPS Unit Production Cost Mode 54
4.5 Operation and Maintenance Cost Mode1 57
4.6 Computer Algorithm for Computing Cost of Replacing Failed Components 59
5.1 Current Configuration of an SSPS Satellite 61
5.2 Uncertainty Profiles 63
5.3 Cumulative Distribution Function of SSPS Unit Cost for the Si Solar Cell Configuration Assembled in LEO Using 65 a Small Factory
5.4 Cumulative Distribution Function of SSPS Operation and Maintenance Cost for the Si Solar Cell Configuration Assembled Using a Small Base in LEO 66
5.5 Cumulative Density Function of the Net Present Value of an SSPS Unit Referenced to the Initial Operation Date 69
5.6 Cumulative Distribution Function of Net Present Value of an SSPS Unit at the Initial Operation Date as a Function of Price of Power 70
5.7 Total Life Cycle Cost of the Second SSPS Unit 72
5.8 A Comparison of Total Life Cycle Costs for SSPS Alternatives 73
5.9 Comparison of Revenues Generated by Alternatiye SSPS Solar Cell Materials 75
5.10 Net Present Value of an SSPS Fleet for Different Combinations of Assembly Scenario and Solar Cell Material 76

LIST OF FIGURES (continued)

Figure Page
5.11 Chance That the Second Unit Will Pay Off 77
5.12 The Effect of Constraints on Maximum Microwaye Power Density 78
6.1 Social and Enyironmental Impact Matrix 83
6.2 Effect of Remoying Uncertainty on Cost Components-- Major Cost- and Risk-Driying Factors 91
6.3 The Effect of Removing Uncertainty in Components in Solar Cell Technology for Alternative Solar Cell Materials 93
6.4 The Effect of the Time Required to Construct and Transport One SSPS to GEO on the Present Value of Total Life Cycle Costs '95
7.1 Program I Schedule 97
7.2 Program II Schedule 98
7.3 Program III Schedule 100
7.4 Cumulative Distribution Function of Total (Life CycTe) Second Unit Costs 101
7.5 Probability Density Function of Total (Life Cycle) Second Unit Costs 102
7.6 Present Value of Gross Reyenues Generated by Each Program 104
7.7 Present Value of Total Life Cycle Costs for Units 2 Through 109 105
7.8 The Net Present Value of the Alternative Programs 106
7.9 Decision Tree Representation of Program I 108
7.10 Decision Tree Representation of Program II 109
7.11 Decision Tree Representation of Program III 110
7.12 Decision Rule for Program I 111

LIST OF FIGURES (continued)

Figure Page
7.13 Decision Rule for Program FI 112
7.14 Decision Rule for Program III 113
7.15 Program IV and V Schedule 116
7.16 Development Program Decision Tree for Programs IV and V--Data Shown for Program V, Si Solar Cell Configuration SSPS 118
9.1 Cumulative Distribution of Steam Generating Units Added Between Years (Percent of Installed on Generating Units Sizes Equal or Greater Than Abscissa) for the East Central Region 126
9.2 Geographic Area of the Eastern Central Area Reliability Coordination Agreement 127
9.3 Relationship of Generating Unit Availability to Total Energy Cost 130
9.4 Installed Capacity Reserve Requirements as a Function of Utility System Size and SSPS Reliability Level for a One-Day-in-Ten-Years Loss-of-Load Probability 131
9.5 Installed Capacity Reserve Requirements as a Function of Utility System Size and SSPS Reliability Level for a One-Day-in-One-Year Loss-of-Load Probability 133
9.6 Duration of SSPS Eclipses at Synchronous Equatorial Orbit 134
9.7 Daily Load Cycles for Summer Peak and Winter Peak Days Among ECAR Systems for 1962-66 135
9.8 Seasonal Variation of Monthly Peak Loads Among ECAR Systems 136
9.9 Projected Expansion of the Northeast Regional Transmission System From 1970 Through 1990 138
9.10 Effect on the Cost of SSPS-Produced Power of Fluctuations in Power Transmission 139

LIST OF FIGURES (continued)

Figure Page
A. 1 Electric Generation System Cash Flow Profile 145
A. 2 Present Value Rationale, $R=7.5 \%$ 147
A. 3 Methodology for Determining the Present Value of Capital and Equiyalent Annuity 150
A. 4 Reconciliation of Alternative Approaches 151
A. 5 Methodology for Computing the Economically Justifiable Unit Cost of a 5,000 MW SSPS 154
A. 6 Methodology for SSPS DDT\&E Payback Analysis 156
A. 7 Payback Analysis of SSPS Development Programs 157
E. 1 Methodology for Establishing Shape of Cost Uncertainty Profile 215
G. 1 Analysis of Conditional Branching Probabilities 245

LIST OF TABLES

Table Page
2.1 Annual Cost of an Operational 5 GW SSPS 4
2.2 Five Gigawatt SSPS Unit Cost Summary 4
2.3 Five Gigawatt Operational SSPS Unit Cost 5
2.4 Microwave Antenna Maintenance Cost 7
2.5 Rotary Joint and Array Control System 7
2.6 Solar Array Maintenance Cost 8
2.7 Maintenance Support Cost 9
2.8 SSPS Direct and Related Deyelopment Programs 9
2.9 Support Programs 10
2.10 Cost Estimates for Terrestrial Power Generation Plants 12
2.11 PRS Maintenance Cost 23
6.1 SSPS-Related Social and Environmental Impacts Identified to Date 82
6.2 Critical and Testable SSPS Social and Environmental Risks 83
6.3 The Effect on Cost and Cost Risk of Changes in the State-of-Knowledge 88
7.1 Test Satellite Subprograms 117
7.2 Programs IV and Y Costs 119
7.3 Results of Programmatic Analysis 120
9.1 Annual Generation Costs of Alternate Sources to Cover SSPS Unit Eclipse Time 137
A. 1 Method for Estimating the SSPS DDT\&E Payback Function 158
D. 1 Unit Production Cost Model Input Values 200
D. 2 Unit Production Cost Model Input Values 203

LIST OF TABLES (continued)

Table Page
D. 3 Launch Facility Ground Station, and Space 0\&M Input Values 212
D. 4 Satellite 0\&M Input Values 213
F. 1 State-of-Knowledge at Decision Points - Program I. 217
F. 2 State-of-Knowledge at Decision Points - Program II 220
F. 3 State-of-Knowledge at Decision Points - Program III' 223
F. 4 State-of-Knowledge at Decision Points - Program IV 226
F. 5 State-of-Knowledge at Decision Points - Program V 235

1. INTRODUCTION

This report provides a detailed documentation of the economic studies that ECON performed under Contract No. NAS8-31308 for the National Aeronautics and Space Administration, George C. Marshall Space Flight Center. The purpose of this study is to provide an economic assessment of both satellite solar power and power relay satellite concepts. Specifically, the study addresses three questions, sequentially, releyant to each concept:

1. Can it be done?
2. Should it be done?
3. How should it be done?

The first question addresses the technical and economic feasibility of each concept. To do this, system configurations were selected and studied in some detail. Critical technology areas were identified and futuristic but plausible technology goals were assumed to be met in each area. The systems were then costed (deterministically) subject to the above technology assumptions, and compared to the projected costs for alternative systems. The results of this effort show that satellite solar power is technically feasible and has economic potential, and that a power relay satellite is technically feasible but would be of no identifiable economic benefit over the foreseeable future. As a result of this outcome, no further attention was given to the power relay satellite concept in this study. The technical and economic feasibility studies are documented in Section 2.

The second question, addressed only to the satellite solar power concept, asks for a determination of the economic justification for proceeding with a satellite solar power system development program. To answer this question, a classical risk/decision analysis was performed. This analysis acknowledges first that it is not possible, today, to know:

1. What a satellite solar power system built with 1990's technology 20 years hence will cost
a. to produce and
b. to operate and maintain.
2. What the price of electric power will be from alternative energy sources available in the same period.

Secondly, the analysis recognizes that any satellite solar power system development program will be a segmented program where the "economic" purpose of each program segment will be to buy information to make the decision either to continue the program or to terminate it, thereby controlling risk.

To perform this analysis, a system cost model suitable for a risk analysis was developed and implemented into a risk analysis model. The risk analysis model was used to assess cost-risk associated with both the unit production cost and the operation and maintenance costs for a number of satellite solar power system alternatives. These data were then used as inputs to a decision analysis performed on the development program. A number of alternative programs were analyzed and several of them found to be "economic". That is, a preliminary economic justification is presented for undertaking the initial phase of one of these programs. It is shown that an effective level of effort would be $\$ 25$ million per year through 1979, leading to a decision to conduct a space-based test using a 150 kW satellite. It is also shown that alternative solar cell materials, besides single crystal silicon, warrant attention. These studies are documented in Sections 3, 4, 5 and 7.

Finally, the question, How should it be done? was addressed. Critical technology areas and issues were identified and flagged as appropriate for emphasis in future studies. The major areas that were identified as both containing a significant amount of uncertainty and being key cost and/or cost-risk drivers are fabrication and assembly of large structures in space, and solar energy conversion technology. This effort is documented in Section 6.

Section 8 provides some comments on programmatic risks and Section 9 identifies and analyzes some key economic issues relevant to the utility interface area.
2. THE ECONOMIC FEASIBILITY OF SPACE-BASED SOLAR POWER CONVERSION AND DELIVERY SYSTEMS

In performing an economic analysils of any system which might be deyeloped over a 20- to 30 -year time period, and which has inherent in it a variety of uncertainties, the economist should first ask, Is it feasible? This question was asked in the first phase of the ECON study. To answer it, futuristic (which is to say, optimistic) but plausible technology goals were assumed to be met in each critical technology area for the two systems under study, a Satellite Solar Power System (SSPS), and a Power Relay Satellite (PRS). Based upon these assumptions, the SSPS and PRS systems were costed and then compared with terrestrial power generation and transmission systems of equal output capability. Deterministic cost models of the space-based systems were used along with conventional sensitivity analysis (including a variety of assumptions about price escalations of the terrestrial systems) in order to gain insight into which factors seemed to be the major cost drivers. The format that was used to do comparative economic analysis of the space-based systems with terrestrial systems is found in Sections 2.1.4 and 2.2.4 for the SSPS and the PRS, respectively.

2.1 Economic Feasibility of a Space-Based Solar Power System

Discussion of the economic feasibility of a space-based solar power system is divided into four main areas: system costs (Section 2.1.1), development program costs (Section 2.1.2), costs of terrestrial alternatives (Section 2.1.3), and a comparative economic analysis of space-based versus terrestrial systems (Section 2.1.4). The results of this section are based on the SSPS configuration as obtained at the end of the first study phase. The configuration changes somewhat through the remainder of the study.

2.1.1 Space-Based Solar Power System Costs

Table 2.1 provides an annual cost summary of an operational 5 GW SSPS. This summary presents only the recurring unit and operations and maintenance costs and does not include DDT\&E. Also, these costs are for a representative operational unit after "learning" has been accomplished. The "serial number" is not specified. With an assumed operational life of 30 years, the busbar cost of energy generated by a 5 GW SSPS would be $26.7 \mathrm{mil1s} / \mathrm{kwh}$. This includes 15.0 mills for capital recovery at a 7.5 percent discount rate, 3.1 mills for maintenance and 8.6 mills for taxes and insurance.

Table 2.2 contains a summary of the major 5 GW SSPS unit cost elements. As seen, the satellite hardware accounts for only about 30 percent of the total cost. Transportation is the major cost element (43.2 percent) and the ground station accounts for 18 percent.

Table 2.3 contains the detailed cost summary of the elements that comprise the capital investment component (satellite and receiving antenna) of the 5 GW SSPS. As noted above, a relatively minor proportion of the total cost is represented by "space hardware" (31 percent), the rest consisting

Table 2.1 Annual			Cost of an Operational 5 GW SSPS
	Annual Cost,	Power Cost	
Element	$\$$ millions (1974)	1974 mills/kWh	
$:$ Satellite	657	15.0	
0 Maintenance	136	3.1	
Taxes, Insurance	377	8.6	
TOTAL	1156	26.7	

Table 2.2 Five Gigawatt SSPS Unit Cost Summary

	Table 2.3	Five Gigawatt 0	rational SSPS Un	Cost
System Components	$\begin{array}{r} \text { Mass } \\ \times 10^{6} \mathrm{~kg} \\ \hline \end{array}$	Design Variable	Speciftc Cost, 5 (1974)	Unit Cost, 5 billions (1974)
Satellite				2.293
- Solar Array	12.3			1.826
- Blankets	(7.33)	$27.8 \mathrm{~km}^{2}$	54/m ${ }^{2}$	1,501
- Concentrators	(1.23)	$51.1 \mathrm{~km}^{2}$	$1.1 / \pi^{2}$. 057
- Structure	2.23 0.54	$2.23 \times 10^{6} \mathrm{~kg}$	$81 / \mathrm{kg}$.180
- Mast	0.54 (0.37)	$0.64 \times 10 \varepsilon \mathrm{~kg}$	$81 / \mathrm{kg}$. 050
- iransmitzing Antenta	5.72	$5 \times 10^{6} \mathrm{ksi}^{\mathrm{i}, 2}$		
Antenta - Power Oifstrib. - Phase front	(0.34)	$5 \times 10^{6} \mathrm{ksi}$	($18 / \mathrm{kH}$)	.495 .090
Control	(0.13)		(25/kH)	. 130
- Waveguide	(2.31) (2.33)		($14 / \mathrm{kW}$)	. 070
- Structure	(0.41)		($15 / \mathrm{KH} / \mathrm{H})$. 130
Supot tes	2.53			
- Cryo Propeltants	(.981)			Neg
- Ion Propellants	(.772)			lleg
- $3 / \mathrm{L}$ रesupply				Ne 3
Equigrent				. 573
- i2 LEO Solacs Seations 3				
- 1 Geto space stacion	(.920)			. 217
- Assemoly Equipment ${ }^{3}$ - Manned Manipula-				
tors - ielegerators	(.023)			. 038
- ieleoperators	(039)			
- Eabrication				. 089
- Stoduie ${ }^{\text {Crew Module }}$	(.016)			. 015
- Oroit Ma incenance				. 007
Module ${ }^{3}$	(.002)			. 005
iranseorsacton				3.278
- Buycn Tenicla Fleest				1.314
- Space Snutsies		2 for 2 years	$500 \times 10^{6} / \mathrm{yr}$	240
- iarge Cr ${ }^{\text {a }}$ - ina^{3}		3 for 2 fears	$3179 \times 10 \% / \% \mathrm{r}$	1.074
- Sarge Crjo iug				. 008
- Advances !on 5tage ${ }^{3}$				-053
- ILS Elignes			$39 \times 10^{0 / 816}$	1.313
- Satallita		99		. 391
- Suoslies		13		. 117
- Smutite siocnts		17		. 005
- Srem Rocation		72	$512 \times 10 \mathrm{~d} / \mathrm{fit}$. 379
- -eicooerator				
Ecuinrenc		1		311
- Srew vouule		1		004
3ersanne ${ }^{\text {1 }}$		1711 Man Years	$545 \times 10^{3} \mathrm{f} 7 \mathrm{r}$. 077
2ecsivinc matanna				1.345
- Real Issace				.395
- Site ${ }^{\text {Prasaracian }}$. 040
- Suagort Strucsure				. 370
- रF-3t Subarrays				- 380
- zhase				. 235
Conerol				. 025
Forne Ssps Masis/Cosz	T3.06			$7.58{ }^{\text {a }}$ (5)
'Ye: acimer outpue at zusodr.			:160 -iggne pje-i,	
こ̇rficiancy :osses nave zeen feecuntad E*-			Eigurvaiant :o :isi $3 / \mathrm{kd}$ or 15.31 atlis, 掺.	
jirorstzed aver tive ssas jntis.				

of the equipment required for orbital fabrication and assembly, transportatiol and the rectenna.

The costs of fabrication and assembly equipment as well as high energy stages (for transport of equipment and personnel from LEO to GEO) have been amortized over five SSPS units. It has been assumed that five SSPS units can be fabricated and assembled over a 10 -year period, and the amortization formula repays the original capital with interest (7.5 percent) with equal annual payments. The launch yehicle fleet, space shuttles and HLLV have been costed in a similar manner but in these cases the amortization is based upon use-1ife of 100 flights and a 2 -week turn-around. Assuming that the launch vehicle fleet will be dedicated to the SSPS program, there exists a "cushion" of extra flights that would incur only operations costs. The three HLLVs are capable of 156 flights in a 2 -year period and the two space shuttles are capable of 104 flights. One hundred twelve HLLV flights and 76 shuttle flights are estimated to be required for each SSPS, or 56 and 38 per year, respectively. With 2-week turn-around the fleets are capable of 78 and 52 flights annually, respectively, allowing 22 and 14 additional flights, respectively. This result allows for sizable growth in the activity level of launches or reduction in the average launch vehicle load factor (to 75 percent) without significant cost impact.

As given above, the fleet was costed assuming a 100 -use life and this. resulted in $\$ 1.31$ billion ($2.6 \mathrm{mills} / \mathrm{kWh}$). Were the use-1ife 150 flights, the charges would be $\$ 0.94$ billion; use-life 200 flights, $\$ 0.75$ billion; use-life 500 flights, $\$ 0.43$ billion.

The annual maintenance cost estimate shown in Table 2.1 includes both the cost of subsystem units which fail and must be replaced as well as the cost of maintenance support equipment and personnel. Tables 2.4 through 2.6 list the definition of the Lowest Replaceable Unit (LRU) for the solar array, the microwave antenna, the rotary joint and the array control system.

Included are estimates of the failure rates and the corresponding number of LRUS replaced over the power station's 30-year life. The recurring maintenance cost for the array is estimated at $\$ 3.99$ million/yr while the cost to maintain the antenna is $\$ 0.99$ million $/ \mathrm{yr}$. The control system, mainly the ion engines for pointing of the array and antenna rotary joint, requires the most maintenance, $\$ 39.10$ million $/ \mathrm{yr}$.

The nonrecurring (excluding development costs) and the recurring costs for maintenance support have been analyzed assuming the following scenario:

- A six-man space station is required for monitoring the satellite and for use as a repair shop and garage for maintenance teleoperators
- Maintenance is performed using ground-controlled teleoperators
- Space station crews are rotated four times per year, using the Shuttle and a chemical tug

Table 2.4 Microwave Antenna Maintenance cost

Element	LRU Description	$\begin{gathered} \text { LRU } \\ \text { Mass, } \mathrm{kg} \end{gathered}$	LRU Failures Over 30 Years	Cost Over 30 Years, \$ M	Average Cost Per Year, $\$ M$
1. MNT Tube	1670-18×18m Subarray	3017	4	5.73	0.19
2. Power Dist.	$18 \times 18 \mathrm{~m}$ Subarray	3017	1	1.43	0.05
3. Command Electronics	1670 Units	467	3\%	20.56	0.69
4. Trans. Antenna (Exclude tubes)	1670-18×18m Subarray	3107	1	1.43	0.05
5. Structure	To Design	--	--	--	--
6. Contour Control	6680 Units	22	1404	0.35	0.01
TOTALS MILLS/KWH					0.99 0.02

Assumptions:

1. WN Tube - MTBF $=1.14 \times 10^{-6}$ hours projected (no moving parts, no seals and low temperature cathode).
2. Power Dist. - Highly redundant system expected to meet 30 year life requirement, one subarray failure assumed.
3. Comand Electronics - 30 year life achieved with high level of redundancy, 3 percent fallure assumed.
4. Trans. Antenna - Waveguides considered structure with low failure rate. One subarray failure assumed,
5. Structure - Assumed not to fall.
6. Contour Control - Failure rate $=0.8 \mathrm{~F} / 10^{-6}$ (1 percent duty factor) for brushless DC motor operating $500^{\circ} \mathrm{K}$.

Table 2.5 Rotary Joint and Array Control System

Element	LRU Description	$\begin{gathered} \text { LRU } \\ \text { Mass, } \mathrm{kg} \end{gathered}$	LRU Failures Over 30 Years	Cost Over 30 Years, \$ M	Average Cost Per Year, \$ M
Rotary Joint					
- Slip Ring	24 Brushes, 4 Slip Rings				
- Brush - Slip Ring		10 63	72 12	0.24 0.26	$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$
- Orive	8 Brushless Notors/Gear Train Units (4 Active, 4 Standby)				
- Motor/Gears - LIM		1367 1086	24 -	11.0	0.37
Control System					
- Actuators	64 Electric Engines	203	640	1010	33
- Propeilant	24,000 KG/Year	--	--	--	5.7
TCTALS MILLS/KWH					39.09
					0.9

Assumptions:

1. Slip Ring - Previous space station studies indicate MTBF $=10$ years within reach.
2. Orive - Same as slip ring.
3. Actuators - Current estimates place ion engine fallure rate at $3800 \mathrm{~F} / 10^{6}$ hour. Assume order magnitude improvement and a 10 percent duty factor. Cost assumes $\$ 7500 / \mathrm{KG}$ for engine and power conditioning.

Element	LRU Description	LRU Mass, kg	LRU Failures Over 30 Years	Cost Over 30 Years, \$ M	Average Cost Per Year, § M
1. Blanket	80-1670 $\times 207 \mathrm{~m}$ Modules	97,484	1	41.90	1.40
2. Concentrator	160-1670 $\times 207 \mathrm{~m}$ Nodules	768	1	0.23	0.01
3. Nonconducting Structure	To Design	-	-	-	-
4. Buses	400 m	26,000	1	8.29	0.28
5. Switches	59 Blocking 010 DES/Blanket LRU	97,484	1	41.90	1.40
6. Mast	6(+), 6(-) Buses/Panel	85,000	1	27.12	0.9
TOTALS MILLS/KWH					$\begin{gathered} \$ 3.99 \mathrm{M} \\ 0.09 \end{gathered}$

Assumptions:

1. Blanket - Cell open circult fallure $=2.6 \times 10^{-4} /$ year. The probability of 5.6 percent LRU power loss over 30 years is less than 10^{-99}. One LRU replacement assumed over 30 years.
2. Concentrator - Mirror failure less likely than blanket failure, one LRU replacement assumed over 30 years.
3. Nonconducting Structure - Assumed not to fail.
4. Buses - Bus/connector failure rate (OAO) $=10^{-9} \mathrm{~F} /$ year. One LRU replacement assumed over 30 years.
5. Switches - Blocking diode failure rate $(O A O)=10^{-7}$ f/year. Assumes one blanket LRU replaced because of diode failure.
6. Mast - Same as for buses.

- An HLLV/Ion stage (payload $=181,600 \mathrm{~kg}$ to LEO) is used to initially place the space station and to resupply the station once each year.

The maintenance support costs are summarized in Table 2.7.

2.1.2 Development Program Costs

A three-phase SSPS development program was assumed for initial analysis: Phase I, a 15 MW low-earth-orbit satellite with an initial operation date (IOD) of 1 January 1985; Phase II, a 1 GW SSPS with an IOD of 1 January 1990; and Phase III, a 5 GW SSPS with an IOD of 31 December 1995. Presumably, the first 5 GW unit (1995) would be "grown" from the earlier 1 GW unit. The cost estimates for the above program are summarized in Tables 2.8 and 2.9. The costs associated with each of the program phases have been organized by expenditure period within three different development program categories: Direct Development, Design, Testing and Evaluation (DDT\&E); related DDT\&E; and Support Programs.

The direct DDT\&E programs pertain to those program elements which would not be developed were it not for the decision to develop the SSPS. These total approximately $\$ 19.3$ billion, and the costs are distributed over the

Table 2.7 Maintenance Support Cost, 5 millions (1974)

Nonrecurring (Excludes Development)	
- Space 8ase	
- Hardware	\$490
- Transport	58
- Manipulator Modules	
- 50 Units at	5400
- Transport	S 1
- Mission Control Facility	S 20 9919
Recurring/Year	
- Crew Rotation (4 flights)	
- Shuttle Flights	\$ 42.0
- Shuttle Amortization	$\$ 1.8$
- Tug Flights	$\$ 4.0$
- Tug Amortization	50.6
- Crew Transport Module	\$ 4.0
- Crew Transport Module Anortization	\$ 0.7
- HLLV (1/Year)	\$ 9.0
- Amortization	56.0
- Ion Stage	\$ 1.0
- Amortization	\$ 4.6
- Mission Control	
- Personnel (320)	$\frac{\text { S 14.0/Year }}{\text { S } 87.7}$

Development Item	Expenditure Period			Total
	1981-1985	1986-1990	1991-1995	
DIRECT				
- Solar Array	1108	2453	3104	6665
- Rotary Joint	383	446	149	978
- Transmitting Antenna	616	464	250	1340
- Recerving Antenna	75	1610	403	2088
- 15 NW Demo Sat Subtotal	$\frac{427}{2609}$			427
- Managernent, S\&I (e 40\%)	2609 1044	4973 1989	3916	11071
Subtotal	3653	6962	5482	15981
- 20.2 Uncertainty Factor	731	1392	1096	3136
Subtotal Direct	4384	8354		$\underline{19319}$
RELATED				
- Assembly Equipment	410			
- Legistics Equipment	44			
- Maintenance Equipment		44		
- Fabrication Module	271			
Subtotal	725	$\overline{44}$		769
- Management, S\&1 (@ 40~~)	$\frac{290}{1015}$	18		308
Subtotal	1015	б2		1077
- 20: Uncertainty Factor	$\underline{203}$	$\frac{12}{74}$		215
Subtotal Related	1218	74		1292
TOTAL	$\begin{gathered} \overline{5502} \\ (3394) \end{gathered}$	$\begin{gathered} \overline{8428} \\ (3557) \end{gathered}$	$\begin{gathered} \overline{6579} \\ (1931) \end{gathered}$	$\begin{aligned} & \overline{20609} \\ & (8882) \end{aligned}$
Note: () indicates 1975 present value, $r=7.5$ percent.				

Table 2.9 Support Programs, 5 millions (1974)			
Technology Development		ear	
	1986	1992	Total
- Leo Transport - Shuttle Derivative - Heavy Lift Launch Vehicle	380	6540	$\begin{array}{r} 380 \\ 6540 \end{array}$
GEO Transport - Largy Cryo Tug - Advanced Ion Stage - Propellant Depot - Tug for Depot	166 223 215	3847	166 3847 223 215
- GEO Crew Training Module	190		190
- Leo Space Station	2225		2225
- GEO Space Station Subtotal	$\frac{224}{3623}$	10387	$\frac{224}{14010}$
- Management, S\&I (@40\%) Subtotal	$\frac{1449}{5072}$	$\frac{4155}{14542}$	$\frac{5604}{19614}$
- 20\% Uncertainty	1014	2908	3993
TOTAL	$\begin{gathered} 6086 \\ (2570) \end{gathered}$	$\begin{aligned} & 17450 \\ & (5130) \end{aligned}$	$\begin{aligned} & 23536 \\ & (7701) \end{aligned}$

Note: () indicates 1975 present value, $r=7.5$ percent.
three phases of the program plan. The heaviest funding requirements occur over the period 1986 through 1990. The development costs in this period could provide for the installation of a 1 GW pilot plant in synchronous orbit. The purpose of this plant would be to provide a final decision point on the technical and economic feasibility of an operational plant. The unit cost of this pilot plant would be approximately $\$ 16$ billion, allowing for management and uncertainty as provided in Tables 2.8 and 2.9. A major component of the pilot plant's cost would be transportation. This is because the HLLV and ion orbit transfer stage are not expected to be developed until 1990. The plant would not be strictly a development item since it is expected that some of the unit cost could be offset by revenues from the sale of power. The decision to install a 1 GW plant should be based upon its economic merit. This is assessed in Section 7 of this volume.

Of smaller magnitude are the development costs referred to as "related DDT\&E." These are developments that are necessary for the realization of an SSPS but which might be required by other space programs as we11. It is not unreasonable to anticipate that other programs will require the development of assembly, logistics and maintenance equipment. These developments require relatively small funding amounting to approximately $\$ 7.1$ biliion through the first operational SSPS unit. In total, the direct and related costs are equal to $\$ 20.5$ billion.

The DDT\&E designated "support programs" are required for the Jaunch assembly and orbital transfer of the SSPS. Unlike the other technology developments, these are likely to be required--in part or entirety--by other space programs. If the only "customer" for these systems were the SSPS, then the SSPS should bear the full burden of repaying their deyelopment, but one would not expect this to be the case.

It is likely that other space programs will require these systems but that the SSPS will have specific requirements of a technical or programatic nature. In this case, the SSPS should bear the economic burden caused by its specific requirements.

2.1.3 Alternative Power System Costs

Studies of the economic feasibility of the SSPS concept must be made in comparison with terrestrial power generation systems currently in use or likely to be in use before the year 2000.

For the purposes of this study, terrestrial power generation systems have been designated as either "existing" or "future" systems. Although the present form of existing systems may not be installed in the time frame when SSPS could become operational, these systems provide the most reliable data base for the purposes of an economic comparison.

Existing systems include oil-fired and coal-fired fossil fuel plants and light water reactor nuclear (LWR) plants. The technical characteristics of these systems are well-known. The major uncertainties associated with these systems are: the availability and price of fuels for the oil-fired and nuclear systems, the environmental hazards associated with all terrestrial systems, and the economic (investment) problems resulting from the social and environmental challenges currently being placed before nuclear systems.

The pollution problems and costs associated with the current methods of using coal to directly fire a steam generator have led to the development of several entirely different future approaches and processes for using coal either directly (as in the case of fluidized bed combustion) or after the significant amount of processing required for coal gasification or liquefaction. For this study, enumeration of the costs and system efficiencies associated with future coal processing plants was conducted for: two coal liquefaction techniques (Consol Synthetic Fuel and Solvent Refined Coal), 6 high-BTU coal gasification techniques (Lurgi, Hygas-Electrothermal, Hygas-Steam-0xygen, Bigas, Synthane, CO_{2} Acceptor) and 3 low-BTU techniques (BOM Atmospheric, BOM Pressurized, Lurgi). Two future advanced nuclear fission reactor systems considered to be representative of the developing nuclear technology were studied (i.e., the Liquid Metal Fast Breader Reactor (LMFBR) and the High Temperature Gas Cooled Reactor (HTGR).

The operating characteristics and capital cost estimates summarized in Table 2.10 have been derived from the literature on each of the generation systems used here for comparison. They are "representative" numbers for each type of system, acknowledging that significant cost variations occur from one site to another.

Table 2.10			Cost Estimates for Terresirial Power Generation Plants \$ (1974); Discount Rate $=7.5$ K						
Flant type	Brect Coalfired	oirmet 011- sired	$\begin{aligned} & \text { fludilized- } \\ & \text { Ded } \\ & \text { Coan- } \\ & \text { rired } \end{aligned}$	Low-DIU Coal-Gas flral	Ilight-0ru con-Gas Tired	tiguerlesCoal Flicd	L IIght Hater Heactor	H1ghTcmperature Gas-Cooled Reactor	thquid Hetal rast Breeder Reactor
Mature Plant Avallabllity lactor	. 75	. 75	. 75	. 0	. 0	. 75	. 3	. 15	. 75
Lead tlare ${ }^{(1)}$									
Preconstruction	2.5	2.5	2.5	-	-		5	5	
Construction	4	3.5	3	$4(5)$	4(5)	4(5) :	6	1	- 6
Heat rate ${ }^{(2)}$									
Envirounentally Unregulated		0.962	'-	-	-	-	10,200	-	-
Enviromentally negulated			9.616	$\begin{aligned} & 11,590 \\ & \text { (tox Pres) } \end{aligned}$	$\begin{gathered} 15,050 \\ \text { (Synthane) } \end{gathered}$	$\begin{aligned} & 13,790 \\ & \text { (average) } \end{aligned}$	10,300	8,740	0,650
Solid Haste ${ }^{(3)}$ (${ }^{\text {a }}$									
Environmentalty Unregulated (lbs./kWh)	0.091	-	-	-	-	\cdots			
Envirormentally Regulated							1.9	-	-
(lbs./kWh)	0.279	-	. 115	. 120	. 157	. 116	1.94	1.09	\pm
Capital Cost (\$/kW(1974))									
Env Iromientally Unregulated		240							
EnyIrommentally Regulated	330	253	250	236	340	445	${ }_{363}{ }^{16}$	300	$\text { } 411$
Cost of capltal (4)						(aversge)			
(1974 milis $/ \mathrm{kWh}$)	4.8	3.6	3.6	3.2	4.6				
$\begin{aligned} & 0 \text { and } \begin{array}{l} \text { cost }(4) \\ \left(1974 \mathrm{mill}^{2} / \mathrm{kHh}\right) \\ \text { ruel } \operatorname{Cost}(4) \end{array} \end{aligned}$				3.2	9.6	6.6	5.3	5.5	1.1
	2.1	0.7	1.3	2.4	2.3	3.6			
	6.3	14.5	6.1	7.6	10.4	9.0	2.9	5.0	1.9
Taxes and Insurance (1974 mills/kwh)	2.5	1.9	2.1	1.7	2.4	3.5	2.9	5.0	3.6
oustar cost (1974 millș/kwh)	15.7	20.7	13.1	14.9	19.7	22.7	12.0	11.7	12.9
(i) Capital Expenditures assumed to occur In unifonm Increments duing construction plase (See fconomic thetiodoloyy). (2) Cost of operating pollution contiol equlymant reflected ln heat rate, not 0 anid \boldsymbol{H} cost. ${ }^{(3)}$ Cost of solid waste disposal poe ficluited in total musum cost. (4) For environarentally regulated plants oply (See Aypemilx Λ. Sect lon $\Lambda .7)$ ${ }^{(5)}$ Uata not arallable; conservative assmation mate for purposes of economic amatysis. (6) The metirod of anolysis used by utlility companies ($6 x$ inilation, tox discmunt rates) ylelds an equivatent cost of s951/kM for this plant tin 1985 dollars (See Aypemilix A).									

The components of the total "cost at the busbar" include the costs of: capital; operation and maintenance; fuel; and taxes, insurance and depreciation (an annual charge of 5 percent of the capital investment). The fuel and $0 \& M$ costs are taken from the literature; the method for determining the cost of capital as a user charge is described in Appendix A (to wit, determining the equivalent annuity over the 30 -year'plant lifetime at a 7.5 percent discount rate to repay the capital expenditures made in equal increments during the construction phase). All cost estimates are expressed in 1974 dollars.

2.1.4 Comparative Economic Analysis

At existing relative prices, the SSPS would not be cost effective compared with terrestrial systems but, at expected future relative prices, it may well be cost effective. Figure 2.1 illustrates the comparative economic analysis for an SSPS operational in 1995.

The x-axis (abscissa) contains average values for the cost of electric generation over the 30 -year period (1995-2025) in mills/kWh. The y-axis contains the "economically justifiable" 5 GW SSPS unit cost, evaluated at a 7.5 percent discount rate. The method by which this has been estimated, and the rationale for the choice of discount rate, is described in Appendix A.

The analysis compares the 5 GW SSPS with terrestrial fossil fuel systems. (i.e., oil and coal-fired generation plants).

The line, R, in Figure 2.1 relates the generation cost in mills/kWh of terrestrial coal and oil-fired systems over the period 1995-2025, as indicated on the x-axis. A range of cost estimates resulting from the study performed by University of California, Berkeley for JPL is also provided.

The coal and oil system values are based on three projections of the future:

- Relative fuel prices ${ }^{*}$ remain constant $\left(C_{0}, 0_{0}\right)$.
- The relative prices of coal increase by 2.6 percent per year, and the relative price of oil increases by 0.67 percent $\left(C_{A}, O_{A}\right)$
- Fhe relative prices of coal and oil increase by 5.0 percent per year $\left(C_{B}, O_{B}\right)$.

As indicated by the suggested probability distributions, the first projections have a very low expectation. Regarding coal, the cost of production
"Relative prices" refer to the price relationship of all goods and services to each other. The usual practice is to consider one good as the baseline and calculate all prices relative to it. Obviously, generalized inflation would not affect relative prices.

Figure 2.1 Comparative Economic Analysis of a 5GW SSPS Operating Over the Period 1955-2025
will rise as it becomes necessary to mine deeper veins and provide the expected environmental and human safeguards. Regarding oil, increased scarcity will no doubt raise relative prices. In fact, new oil-fired capability may not be installed after 1995.

The second projection has been adapted from the work of E.A. Hudson and D.W. Jorgenson and is highly regarded in the economic energy literature. The estimates were derived from their analysis of a scenario in which the government does not intervene with respect to energy prices.

The third projection has been deriyed from the Hudson-Jorgenson scenario, in which the United States government levies a "BTU" tax of \$0.05/million BTU (to encourage fue1 conservation), oyer the period 1975-1980 and \$1.35/ million BTU over the period 1980-1985. ** The goal of this action is United States energy independence by 1985.

Based upon projection of the Hudson-Jorgenson estimates of relative price changes to the year 2025, the typical coal-fired plant would generate electric power at an average price of $25.1 \mathrm{mil1s} / \mathrm{kWh}$ over the period 1995-2025. If a vigorous policy of energy independence were to be pursued, the average generation price would be about $33 \mathrm{mills} / \mathrm{kWh}$.

The same analysis for oil indicates that the projections of the HudsonJorgenson estimates of "no policy change" would not affect the relative standing of oil-fired systems. With an "energy independence" policy, the price of electric power from oil-fired plants might be driven off the scale.

Based upon these results, there is some expectation--the probability of which is discussed in Section 5--that the SSPS will be cost effective with respect to fossil fuel systems by 1995. Furthermore, since fossil fuel systems depend upon nonrenewable sources of energy, the economic viability of SSPS should be enhanced relative to these beyond 1995.

While every attempt has been made to cost the systems on a consistent basis, one major element of cost has not been addressed: the systems' relative social and environmental impacts. Within this study we have begun to develop a framework for evaluating these impacts. This will, however, require much further study before our level of understanding is adequate for the purpose of decision making.

A second issue that could impact total systems cost is the relative acceptable distance between population and industrial centers for SSPS rectennas and conventional electric power generators. This is an important determinant of the cost of energy transmission, and hence, the delivered

[^0]cost of electric power to the user. Based on current trends in plant siting, it does not seem likely that major energy-intensive industries-such as metals processing--would locate near 5 to 10 GW nuclear sites. The rectenna site, on the other hand, would appear to be amenable to such activity. These issues, howeyer, await future study.

Finally, it should be noted that the U.S. Energy Research and Development Administration (ERDA) is currently funding research in electric generation technologies, such as ocean thermal and solar power towers that are expected to produce energy in the range of $30-50 \mathrm{mills} / \mathrm{kWh}$, as well as fusion power, the potential cost of which is more difficult to estimate.

The conclusions of the feasibility study are: given appropriate technological advances and continued increases in the real cost of generating electrical power by terrestrial systems, satellite solar power systems might become economically viable by the mid to late 1990s; however, an SSPS is not cost effective compared to fossil fuel alternatives at the present time even given the futuristic technological advances assumed.

Had the results of the feasibility study indicated that the SSPS would not be economically viable in the 1995 and beyond time period, even given that futuristic technology goals would be achieved, then it would be appropriate to discontinue further studies related to this particular configuration of space power system. Until such time that an economically viable space power system concept can be found, the pursuit of a space power system concept would have to be based upon justification other than its ability to compete, on a cost-effectiveness basis, with alternative methods of electrical power generation. Since the indication in this study is that the space power system concept examined could become cost effective in the 1990-2000 time period, it is appropriate to continue the economic analysis of this system, not with the focus on what optimistically could happen but, rather, with the focus on what might likely happen. Thus, the second phase of economic study involves a risk analysis of the space power system concept.

2.2 Economic Feasibility of a Power Relay Satellite

Discussion of the economic feasibility of a Power Relay Satellite is divided into four main areas: PRS system costs (Section 2.2.1); development program costs (Section 2.2.2); terrestrial power transmission system costs (Section 2.2.3) ; and a comparative economic analysis of space-based versus terrestrial systems (Section 2.2.4).

2.2.1 Power Relay Satellite System Cost

The Power Relay Satellite (PRS) Microwave Power Transmission concept uses a reflector in synchronous orbit to provide power transfer from a transmitting antenna at one ground location to a ground receiving and rectifying antenna at a distant location. The transmitting antenna is a phased array radiating through slotted waveguides and the receiving antenna is a rectenna similar to that used for SSPS.

The economic and technical issues for transportation, assembly and maintenance are the same for the PRS as for the SSPS. The same array of transportation options should be considered in the assessment of PRS economics, though the use of a Heavy Lift Launch Vehicle (HLLV) may not be found to be cost effective. Simple deriyatives of a Shuttle may be found to be adequate.

The cost trends for the PRS are illustrated in Figure 2.2 for a 5 GW case plotted as functions of peak power density at the transmitting antenna. There is a tradeoff between the transmitting antenna cost and the reflector cost. The totals for a range of ground power outputs in Figure 2.3 show that capital cost decreases with increasing total power output and, depending upon the power output, decrease with peak ground power density.

The environmental/biological levels shown in Figure 2.3 make it clear that the economics of the PRS drive the acceptance of greater environmental risk in going to higher power densities than the SSPS.

Figures 2.4, 2.5, and 2.6 illustrate that the basic cost trends noted above are relatively insensitive to assumptions on equipment manufacturing cost, orbital transportation and assembly costs, and system efficiency. The transportation and assembly cost is a relatively minor factor in this example.

A PRS design point was selected at a peak power density of $50 \mathrm{~mW} / \mathrm{cm}^{2}$ for 5 GW and 10 GW systems because this is at the "knee" of the total cost curve. Lower power densities imply great risk of cost escalation due to the steepness of the cost curve in that area; and higher power densities increase the biological/environmental risk without a commensurate reduction in cost.

Table 2.11 summarizes the maintenance costs for the PRS. The major maintenance cost drivers for PRS are similar to the SSPS, namely, the contour control actuators and the electric propulsion units used for attitude control and stationkeeping.

Maintenance support costs for PRS are similar to those required for SSPS, namely, costs associated with resupply and recycling crews of $\$ 86 \mathrm{M} / \mathrm{yr}$. The cost of equipments replaced each year is small, approximately $\$ 4 \mathrm{M} /$ year. Subsection 4.4 discusses in detail the assumptions used to establish maintenance support costs.

2.2.2 Development Program Costs

Figure 2.7 is-a PRS development plan used as a strawman schedule for economic analysis. A geosynchronous demonstration satellite is scheduled for 1985. The transportation/assembly modes assumed available in this time frame are:

Figure 2.2 PRS Cost Elements Versus Peak Power Density at Transmitter

[^1]Figure 2.3 PRS Cost for Various Power Outputs

Figure 2.4 PRS Cost for Several Transmitter Cost Factors

Figure 2.5 PRS Cost for Several Transportation/Assembly Cost Factors

Figure 2.6 PRS Cost and System Efficiency

ORIGINAL PAGE IS OF POOR QUALITY

Element	LRU Description	LRU Mass kg	LRU Failures Over 30 Yrs	Cost Over 30 Yrs 5 M	Avg. Per Yr \$M
1 Structure	To Design	--	--	--	--
2 Reflectors	$18 \times 18 \mathrm{~m}$ Subarray		1	.	
3 Contour Control Actuators	6680 Units	22	1404	0.35	0.01
4 Contour System Actuators	64 Electric Engines	203	640	1010	3.3
Propellant	$885 \mathrm{Kg} / \mathrm{Yr}$	--	--	--	0.21
Total					3.52

Phase	$76,77,78,79,80,81,8283,8485,86,87,88,89,90,91,92,93$,
I - Geo Demo II - Operating Plant	
	1985 System 1990 System
Mass	$.581 \times 10^{6} \mathrm{~kg} \quad 0.505 \times 10^{6} \mathrm{~kg}$
- DDT\&E	\$7696M \$264M
Unit Cost	\$2491M \$567M
Maintenance	- $\quad \$ 90 \mathrm{M} /$ Year
Total Progr	through first operation unit $=$ S 5.18

Figure 2.7 PRS Orbital System Program Schedule and Cost

- Shuttle
- Full Capability Tug
- LEE Space Station
- GEO Space Station

Based on these major system elements the cost for transportation and assembly is approximately $\$ 4790 / \mathrm{kg}$. The 1990 system, which is an improved yersion of the demonstration satellite, was analyzed, assuming the following transportation and assembly system elements:

- Deploy Only Launch Vehicle derivative of Shuttle
- Large Cryo Tugs which are derivatives of the Shuttle External Tanks
- LEO Space Station
- GEO Space Station.

Based on these major elements, the transportation and assembly costs . are $\$ 1080 / \mathrm{kg}$.

2.2.3 Terrestrial Power Transmission System Costs

In order to compare the PRS transmission concept with terrestrial alternatives, use has been made of available data on representative terrestrial systems in order to design transmission systems that would provide a capability equal to that of the PRS. While these systems provide such a capability, it is unlikely that they would in fact be built under any foreseeable circumstances.

The categories of terrestrial alternatives studied include transmission via conventional circuits and super conducting transmission lines (all of which are considered to be "existing" systems even though some currently exist only in experimental application), and hydrogen transmission and microwave transmission via waveguides (which are classified as "future" systems).

In order to design the most economic terrestrial power delivery systems that would provide a capability equal to that of the PRS, it was necessary to make the following basic design assumptions:

- Power input--AC electric power would be at the appropriate voltage level.
- Power output--AC electric power would be at the appropriate voltage level.
- All transmission systems would have the capacity required to most economically deliver 5,000 or $10,000 \mathrm{MW}$. Additional capacity would be added at the source to provide the capability of economically carrying that power which would be lost along the route.
- Designs would be those which were most economical in 1974.
- The cost of the energy lost because of transmission would be based on a 1974 cost of $\$ 0.02 / \mathrm{kwh}=\$ 175 \times 10^{3} / \mathrm{MW}$-year.
- All transmission systems would be in use 100 percent of the time.
- Overland circuits would range from 2,000 to 5,000 miles long. This is independent of the great circle distance between the transmitting and receiving points.
- Only transmission capability would be considered. No credit would be given for the potential benefit of energy storage, since the PRS does not provide any energy storage option.
- Systems having a transmission efficiency of less that 50 percent would not be considered.

The costs of the transmission systems have been calculated in a consistent mills/kWh user charge format (as a function of transmission distance) for comparison with the PRS.

Conventional Transmission Systems

There is no single cost per circuit or single effective resistance/ circuit-km for any particular system. The resistance/circuit-km can be reduced (within limits), but only with a corresponding increase in capital costs. Designing the optimum system requires knowing the detailed relationship between the capital costs and resistance and a specific transmission route. Since these data are not generally available, it was necessary to use a representative capital cost and representative effective resistance per circuit-km for each system considered.

The capital costs and effective resistances/circuit-km that were used in this part of the study have been garnered from a variety of sources published in various years. The costs have all been adjusted to 1974 dollars using the Handy-Whitman Index and the resulting yalues then compared to each other, to make sure they were reasonable and consistent. These values represent the best estimate of the costs that can be made, given the limitations of this study.

The total transmission costs for all the terrestrial systems are not sensitive to the cost of the land required for the right-of-way (ROW). The ROW costs have been included as part of the capital costs of the various conventional transmission systems and assumed to average $\$ 1000 /$ acre--low for flat land near cities and high for mountainous or desert terrain. This is equivalent to about $\$ 11,200 /$ circuit-km for the $765-\mathrm{kV}$ ac overhead line, just 3.6 percent of the total costs of the circuit.

The cost of delivering energy is the sum of the fixed costs and the operating costs of the system used. The systems had to be designed to minimize this sum. However, the operating costs and the fixed costs are related. The higher the loading of each transmission circuit, the fewer the circuits required to deliver the same amount of power and the lower the capital costs and, thereby, the fixed costs. On the other hand, the higher the loading of the circuit (except the Superconducting Power Transmission Line), the higher the percentage of power that is lost, and this loss must be paid for ($20 \mathrm{mills} / \mathrm{kWh}$).

Each transmission system was then designed to.achieve minimum total cost, while not exceeding a 50 percent transmission loss. It was necessary to do this type of economic analysis for each of the candidate transmission systems. However, as a result of the high capital costs for underground systems, the minimums for the naturally cooled underground systems always occur when the circuit is loaded above the thermal limit. For that reason, extra underground circuits are added only when it is necessary to carry more power than the existing circuit can physically accommodate. A minimum does exist for the forced-cooled conventional underground systems.

The costs for the nine different conventional systems have been summarized in Figure 2.8. This figure serves as the basis for comparison to the PRS (Section 2.2.4).

Hydrogen Transmission

The cost of transmission by pipeline compares unfavorably with the ± 500 kV dc overhead line. In addition, one of the basic design parameters was that no system would be considered if the transmission losses were greater than 100 percent of the delivered energy. Hydrogen transmission clearly does not qualify for overland transmission; however, cost estimates for LH_{2} transport by tanker have been included in Figure 2.8 for the purpose of comparison of international energy transfer costs.

2.2.4 Comparative Economic Analysis

The PRS system in its current configuration has been compared with terrestrial electric transmission systems that currently exist or that might exist in the 1990-2020 time frame. Transmission costs for PRS systems with output powers ranging from 5 to 10 GW have been compared with terrestrial systems delivering comparable outputs. This comparison is summarized in Figure 2.8.

Figure 2.8 Power Transmission Cost Comparisons

The PRS would provide less costly energy transmission than current or projected underground cables, and would be less costly for distances greater than $5,600 \mathrm{~km}$ than the current 765 kV ac oyerhead lines. It offers higher costs than currently existing $\pm 400 \mathrm{kV}$ dc oyerhead lines or seyeral other systems already in limited application (such as the dc superconducting cable) or those expected to be utilized (such as the $\pm 800 \mathrm{kV}$ dc overhead line). The relatively higher costs of the PRS are the result of both high capital costs and unavoidably high transmission losses. Specifically, at an output level of 10 GW the cost of the PRS transmission losses, calculated at a representative generation cost of $20 \mathrm{mills} / \mathrm{kWh}$, are almost 50 percent greater than the capital costs.

Sensitivity analyses were conducted to determine the effects of decreases in antenna efficiency, phase control, and beam control efficiency in the PRS system. Ten percent decreases in each of these individually were found to increase transmission costs on the order of 2 mills/kWh.

The PRS concept is limited to overall system efficiencies of 50 to 60 percent, even with individual system elements developed to the highest practicable limits. If there existed the political requirement for large intercontinental energy transfers, the PRS seems to be economically superior to bulk energy transport via liquid hydrogen.

Based upon the results obtained in this section, the PRS was not studied in the second or third study phases.

3. COST, UNCERTAINTY AND RISK ANALYSIS OF SPACE SYSTEMS

An investment or engineering decision involves the commitment of resources with the hope of future benefits. In order to determine how best to commit resources, decision makers are forced to predict, forecast, or guess the future. The uncertainty about the exact course of future events creates risk in the form of unforeseen fluctuations in the resulting resource costs and cost-flow patterns. Since the future is not (and generally cannot be) known with certainty, the evaluation, comparison and decision making process must explicitly take into account the effect of uncertainty and risk.

The above notion is brought to light most vividly by a simple coin-toss game described by Daniel Bernoulli that has become known as the St. Petersburg paradox [1]. First, a player must pay to enter the game. Then, a fair coin is tossed until it falls heads on the nth toss at which time the player receives a prize of $\$ 2^{n}$. The question is, how much the player should be willing to pay to enter the game. Since the probability of a head first occurring on the nth toss is $\left(\frac{1}{2}\right)^{n}$, the expected value* of the game is infinite.

$$
\text { E.V. }=\sum_{n=1}^{\infty} 2^{n}\left(\frac{1}{2}\right)^{n}=\infty
$$

Thus, a decision maker who does not consider risks should be happy to pay any sum of money to enter the game. Yet, although the possible winnings are very high, the probability of winning a significant amount is remote. For example, the player can win only $\$ 32$ if a head first occurs on the fifth toss but his chance of lasting to the fifth toss without a head is only $1 / 32$. In fact, to take the illustration one step further, it can be noted that the player should expect that the expected value of the game, infinity, will never be achieved. Thus, not only should one never count on an expected value occurring but, in addition, there exist special cases for which the expected value can never occur.

Clearly, informed decisions and proper selection of alternatives or courses of action should be based upon more than the consideration of

[^2]$$
\text { E.V. }=\sum_{\substack{\text { range } \\ \text { of } x_{i}}}^{\sum} f\left(x_{i}\right) p\left(x_{i}\right)
$$
the most likely or expected situations--they should consider the relative levels of risk. In order to accomplish this, risk must be quantified in the same sense that most likely or expected values are quantified. In other words, decision makers must take into account what can go right and what can go wrong and the chance of going right or wrong and this should be done quantitatively. A method is presented in the following pages which demonstrates how engineering and cost uncertainties and reliability can be taken into account in order to quantitatively assess costs and cost risks associated with space power systems.

Figure 3.1 places risk analysis in perspective with typical engineering analyses. Most engineering analyses are point estimates. A point estimate is obtained by inputting the "best guess" or estimate of the various system parameters into a model to obtain "single number" estimates of system cost or performance. Point estimating procedures seek an answer to the question, What do you think? It is often recognized that point estimates can be wrong. Thus, a next step is generally to conduct a sensitivity analysis. A sensitivity analysis considers variations around the "best guess" parameters of the point estimate and thus addresses the question, What if you are wrong? Risk analysis, on the other hand, adds a new dimension by addressing the question, What do you know? To do this, it provides a framework for adding ranges and probability distributions of system parameters for input to system models and provides, as output, ranges and probability distributions of system cost and performance rather than single number estimates of these values.

The answer to the question, What do you know?, incorporates the answer to the question, What do you think? As shown in Figure 3.2, the answer to the question, What do you think?, is typically the most likely value for a parameter to take on. That is, it is the value of the parameter for which the probability density function* obtains a maximum. In addition, however, it includes information such as the minimum and maximum values which the parameter can assume (that is, the range of the parameter outside of which there is zero probability of occurrence of the parameter) and confidence bounds which serves to establish the form of the probability density function.

As an adjunct to the above discussion, it can be.observed that, in general, for continuous distribution functions such as the one shown in Figure 3.2, there is a zero probability that exactly the most likely value will occur. In other words, there is probability one that the answer to the question, What do you think?, is wrong.
*The probability density function, $p(x)$, gives the probability per unit of x that a random variable, x, lies between the value x_{0} and $x_{0}+\Delta x$ for very small Δx. That is, the probability that x takes on a value between x_{0} and $x+\Delta x_{0}$ is

$$
p\left(x_{0}\right) \Delta x
$$

Figure 3.1 Risk Analysis

Figure 3.2 Quantifying the State-of-Knowledge Relative to a Parameter, x

One is thus led to question the validity of point cost estimates. Indeed, without performing a risk analysis, cost estimates are generally wrong and almost invariably low. The reason for this is easily explained within the context of risk analysis. System cost estimates are generally performed by dividing the system into subsystems, costing the subsystems individually and summing these costs to obtain the total system cost. However, it must be recognized that a cost estimate is a forecast of the future and thus can be expressed only as a probability distribution. Hence, single point estimates are, in fact, samples from such distributions. A characteristic of most aerospace subsystem cost probability distributions is that they are skewed such that the mean or expected value of the distribution is higher than the most likely value. But it is the most likely value that is generally obtained by soliciting point estimates. Now, when one adds the subsystem costs together to obtain the total system cost, whether it is explicitly recognized or not, one is adding probability distributions; and the mean value theorem asserts that, if one adds together a number of probability distributions, the resulting distribution tends to approacl a normal (Gaussian) distribution for which the expected value and the most likely value are the same, and these are equal to the sum of the expected values of the component distributions, not the sum of the most likely values. Thus, in the summation process, the increment of cost between the most likely value and the expected value for each subsystem is left out and the resulting sum is low by the sum of these increments.

Figure 3.3 illustrates this phenomenon. A, B and C are component subsystems of the total system. Solicitations of point cost estimates result in the most likely values, L_{A}, L_{B} and L_{C}. The sum of the cost differences between the most likely values and the expected values, E_{A}, E_{B} and E_{C}, namely $\Delta_{A}+\Delta_{B}+\Delta_{C}$, is neglected in point cost estimates. Thus, the estimate of ESYS or LSYS, the expected or most likely values of total system cost, is low by this amount. This explains why most cost estimates are low. Of course, in general, one does not obtain expected values anyway and the cost of any particular system may deviate from the expected value by some amount that can be estimated only by performing a risk analysis.

3.1 Uncertainty, Risk and Decision Making

Decision makers are often confronted with a wide range of alternatives from which they must select one or a few alternatives to pursue. The selection of the "best" alternative must invariably consider the risks inherent in each candidate alternative. For example, consider the investment of private savings. Clearly, a vast number of alternatives exist ranging all the way from placing the savings in a government insurec bank account to placing the total sum on Crazy Horse to win in the fifth at Belmont. In between these extremes (and maybe beyond them) are all the opportunities present in the stock market. Obviously, the private investor who puts his entire savings into the investment that offers the possibility of the highest return is rare. * Most investors readily admit foregoing significant potential returns to obtain added security (reduced risk) in an investment. The same philosophy must also apply for the federal government in the selection of alternative courses of action to meet the energy needs of the nation in the year 2000 and beyond.

At this point, however, one finds oneself on the horns of a dilemma. On the one hand, the technologies that offer the opportunities for the greatest potential payoff are precisely those technologies for which there is the greatest risk; whereas, those technologies for which the risks are acceptable provide limited opportunities for energy independence and energy assurance. How then is it possible to economically justify the pursuit of advanced, high risk technologies with potentially high payoff? The answer lies in the development of technology implementation programs with controlled risks. Risk-controlled programs are programs in which the decision maker is never forced to make a decision that has a negative expected value in order to pursue a technology development, and they are programs in which the "down side" risk associated with technology development decisions is maintained at or below an acceptable limit.

For good reason. Few such investors exist who have nonnegative savings.

- Central Limit Theorem
- Sum of Distributions Yields Gaussian Distribution
- Most Likely Value = Expecter Value
- Expected Value = Sum of Expected Values of Component Distributions

Figure 3.3 Illustration that Point Cost Estimates Are Generally Low

A simple game serves to illustrate this principle. A player must pay $\$ 100$ to enter the game. Then a thumbtack is flipped 20 times. If it lands point up 15 or more times, the player wins and his prize is $\$ 250$ ($\$ 150$ net). Otherwise the player loses. The key to the value of the game is, of course, the probability of the thumbtack landing point up on any particular toss, R. Unlike a fair coin, however, one can only guess about the value of R. But rather than to guess only a single number for R, the player is wise to describe his state-ofknowledge about $R, P_{R}(R)$. For example, see Figure 3.4 which is one individual's guess at $P_{R}(R)$. Independent of the state-of-knowledge about R, it is possible to assess the chance of winning the game, $P_{W}(R)$, as a function of R.* This is shown in Figure 3.5. Then, it is straightforward to compute the players expectation of winning the game,

$$
\text { EXPECTATION OF WINNING }=\underset{R}{\sum} P_{R}(R) \times P_{W}(R)=.297
$$

and from this computing the expected value of the game.

$$
\text { EXPECTED VALUE }=\text { PRIZE } \times \text { CHANCE OF WINNING }=\$ 74.25
$$

Note in the example shown that the game has an expected value of $\$ 74.25$ which is less than the $\$ 100$ entry fee. Thus, the net expected value of the game is negative.

It is interesting here to point out the meaning of the expected value. Clearly, the game pays either $\$ 0$ or $\$ 250$. Thus, the expected value will never be obtained. The proper interpretation, however, is that, if the player played a large number of independent games such as this, his winnings would be approximately equal to the sum of the expected values of the individual games. Hence, if the player can play a large number of games, each with a positive net expected value, he can expect, with a high degree of confidence, to obtain a net positive payoff. If, however, some of the games have negative net expected values, the player can expect his total payoff to be reduced. A corollary to this for the federal government is that only those technology application programs with a positive expected value should be undertaken.

The thumbtack flip game presented above can be illustrated in terms of a decision tree as shown in Figure 3.6. The decision is
*The probability of 15 or more "ups" out of 20 flips is the sum of the probabilities of 15 out of 20,16 out of 20,17 out of 20,18 out of 20,19 out of 20 and 20 out of 20 . The values for each of these probabilities are derived from the binomial distribution.

Fiaure 3.4 The State-nf-Knnwitarine on D

Figure 3.6 A Decision Tree Illustration of the Thumbtack Flip Game
to enter the game or not. If the answer is no, the player remains at his status quo. If the answer is yes, the player encounters a net expected loss of $\$ 25.75$. Thus, it might well be expected that a prudent player would choose not to enter the game.

Can the game be changed in any way that would lead to a positive net expected payoff? Note that the key to the fact that the game has a net negative payoff is the state-of-knowledge on R, Figure 3.4. Suppose that state-of-knowledge could be improved for a small cost. For example, suppose the player could "rent" the thumbtack for \$10, flip it a large number of times and, thus, determine the value of R precisely. Now the decision tree takes on the form shown in Figure 3.7. If the player decides to enter the game, he first commits only $\$ 10$ to test the thumbtack. Then, and only then, if the thumbtack passes the test, that is, if R is equal to or greater than 0.8 in the decision rule shown, the player enters the game. Because the player is able to determine R at a low cost, he is able to control his risk and thus establish a positive net expected payoff for the game.

The game of technology application and the role of economic studies in this game is very similar to the thumbtack flip game. It is very much a game of information in which the objective is to establish a technology application program plan that controls risk and provides a positive net expected payoff. This is accomplished by a sequence of studies, analyses and tests that provide information necessary to move forward through the program. And like the thumbtack flip game, the ul. timate mechanism for controlling risk is the option to exit (or not enter the game. In a tecthnology implementation program, it is the option to recognize that the program has failed and to terminate it. If a program plan that has a positive net expected payoff cannot be developed, it is a clear indication that the technology is not sufficientiy developed to undertake an implementation program and the only thing that can be justified is a low level program of basic research. Risk analysis provides the mechanism for evaluating the probabilities necessary to establish and evaluate alternative program plans.

3.2 General Procedure

A risk analysis to evaluate the state-of-knowledge relative to space-based solar power systems (SSPS) needs to address the unit produc. tion and the operation and maintenance cost risks for SSPS units subsequent to the first unit.* The procedure for doing this is to first develop a deterministic cost model and then to incorporate this cost model in a Monte Carlo simulation computer program as shown in Figure 3.8. The data, consisting of system component costs, efficiencies, masses,

In general, the first unit will not be a production satellite, and hence, its costs will not be reflective of the long-term economics of SSPS.

Figure 3.7 Decision Tree for the Thumbtack Flip Game with a Test

Figure 3.8 Risk Analysis Methodology for Unit Production and Operation and Maintenance Costs
reliabilities, etc., are input as probability distributions--states-of-knowledge. These variables are then sampled by the use of a sequence of random numbers. The sampled inputs are entered as deterministic numbers into the cost model and the results stored in a table. The process is then repeated several times (perhaps 250 to 1000 times) and the stored results thus generated are used to produce statistics and probability distributions that describe the risk associated with a specific alternative. In rare cases, with sufficiently simple problems, it is possible to perform a risk analysis without resorting to computer simulation techniques. The case of SSPS is far from this simple.

3.2.1 Cost Modeling

To perform a cost-risk analysis one must first produce a cost model. The cost model should provide for the interdependencies of various cost components. For example, if the mass of some system component increases, the number of launches required increases, the number of men to assemble the system increases, etc. Also, it is important that the model be constructed so as to minimize modelling error, that is, to minimize errors in the representation of system costs. To some extent, it is possible to create such models; however, the process is largely an art and it is difficult, if not impossible, to describe a procedure for the development of such models.

The cost models developed for the risk analysis of SSPS are described in Section 4 and Appendices B and C of this volume.

3.2.2 Uncertainties

Uncertainties in the value of system parameters, such as costs, masses, efficiencies, etc., are the result of an imperfect state-ofknowledge relative to all components and aspects of the system. The magnitude of the uncertainties is related to the time in the system development cycle that the estimates are made and the state-of-development of the component technologies at that time. Uncertainties may, admittedly, be difficult to quantify. However, it might be inferred that the more difficult it is to quantify uncertainties, the greater the uncertainties are. The basic problem, thus, is to quantify uncertainty, that is, to define the state-of-knowledge.

The quantification of uncertainty requires that informed estimates be made of ranges of uncertainty of key variables and their probability distributions within the range. The uncertainty assessments can be made by individuals with the assistance of an experienced analyst or, for example, they can be made by an experienced group of individuals
using Delphi type techniques $[2,3]$.* Such estimates are very subjective in nature and quantitatively express the attitudes regarding the uncertainties. The estimates reflect past experience with similar efforts, problems which have been encountered in the past, insights into problem areas which might develop, etc.

Uncertainties can be quantified. In fact, most large corporations use risk analysis techniques which employ uncertainty assessments as a standard procedure in the evaluation and comparison of new business alternatives [4-10]. A methodology for establishing the shape of uncertainty profiles is described in Appendix E.

3.2.3 Effect of Reliability

The effect of reliability in various operations and components is to introduce risk into a system even if all costs, masses, efficiences, etc., are known precisely. The fact that there is a chance for failures to occur implies that there is a chance that costs will be incurred to remedy the failure. Since failures cannot generally be predicted (precisely), there exists an inherent variability in the cost of constructing or maintaining any system in which failures can occur.

The maintenance of an SSPS requires dealing with failures. To the extent that such failures can influence operation and maintenance costs, there is variability in these costs that must be accounted for in the risk analysis. While failures of various sorts, for example, launch vehicle failures, can occur in the production phase of an SSPS unit these have been neglected in the risk model described herein. The cost and risks associated with component failures in the operation and maintenance of an SSPS unit are included in the operation and maintenance cost-risk model. The procedure for their computation is described in Section 4.3. *The Delphi technique, initially researched at RAND, is a technique of systematically obtaining opinions from a panel of experts on a particular issue. The Delphi technique eliminates the committee approach for making estimates. It replaces direct confrontation and debate with a carefully planned program of sequential individual interrogations, usually conducted by questionnaires. The series of questionnaires is interspersed with feedback derived from the respondents. Respondents are also asked to give reasons, anonymously, for their expressed opinions, and these reasons are subjected to a critique by fellow respondents. The technique puts emphasis on informed judgment. It attempts to improve upon the panel or committee approach by subjecting the views of individual experts to each other's criticism in ways that avoid face-to-face confrontation and preserve anonymity of opinion and of arguments advanced in defense of those opinions.

Figure 3.9 Development of the Technology Frontier

3.3 Comparison of Alternatives

The ultimate purpose of any economic analysis of the sort described herein is to support a decision making process, that is, to provide guidance in the comparison and selection of alternatives. This includes choices between alternatives within a particular program, for example, between various SSPS configurations; or between alternative programs, for example, between SSPS and terrestrial alternatives. It is worth reiterating here, as proven above, that choices between alternatives cannot, in general, be made on the basis of most likely or expected values above. Rather, consideration must be given to both the expected outcome and the associated risk.

The risk profile of many alternatives approaches a normal or Gaussian distribution* to a sufficient extent that is suffices to describe these alternatives in terms of their expected value and risk (standard deviation). Now, consider the range of alternatives contained within the set of systems labeled SSPS, expressed in terms of their expected value and risk (Figure 3.9). Certainly there exist many ways of implementing

* A normal distribution can be fully described by two parameters, the mean or expected value and the standard deviation of the distribution. Other distributions require description by other parameters and full description of a distribution may require specification of several parameters.

Figure 3.10 Comparison of Technology Alternatives
a technology to produce an SSPS. Each way results in a unique expected value and risk as shown by the points plotted in Figure 3.9. It should be the objective of the program manager to determine the "best" technology implementations. These are those implementations which simultaneously maximize the expected value and minimize the risk. Given any technology base to work from, there is a limit to the extent to which these mutually competitive goals can be simultaneously met. This limit is known as the technology frontier and it represents the focus of best achievable combinations of expected value and risk commensurate with the specified technology base. The selection of the "best" alternative from the technology frontier requires a statement of the decision maker's risk preferences. It cannot be made by economic principles alone.

Thus, in terms of the selection of alternatives within a program, the purpose of a risk analysis is to define the technology frontier. The selection of alternatives between competing programs is accomplished by comparing the technology frontiers (Figure 3.10). As shown, Technology B might be SSPS, Technology C, terrestrial nuclear and Technology A, terrestrial fossil fuel--the curves are arbitrarily drawn here for
illustrative purposes only. As shown, Technologies B and C always dominate A. Thus, A would never logically be chosen on economic grounds. On the other hand, the selection between Technologies B and C depends on the risk preferences of the decision maker. A highly risk-averse decision maker would forego the potential to obtain a high value in order to obtain reduced risk by choosing to implement Technology B in the region of expected value that produces low risk. A less risk-averse decision maker might choose Technology C, seeking the opportunity to capture a higher value.

In the end analysis, it is the decision maker(s) who decides what technologies to use and how to implement them based upon his personal set of preferences. The economist or analyst cannot make such decisions for him. However, the economist, analyst and engineer, working together, can provide the decision maker with information that fully describes the potential consequences of each alternative choice so that a well-considered selection can be made. The purpose of risk analysis is to provide the methodological framework for obtaining this information.

3.4 The Relationship Between Engineering and Economics

It should be recognized that, while systems engineering is a vital element of a technical and economic assessment of a space power system concept, the systems that are engineered for such assessments are not the systems that might be built 20 years from now. Indeed, based upon the present state-of-knowledge, it is neither possible nor desirable to focus present engineering efforts on the detail design of a "flightworthy" system. Rather, the engineering efforts are properly addressed to the development of a more detailed technical understanding of the general concept of space power systems and to providing a basis for both the technical and economic assessment of such a concept. Two basic approaches could be taken to the engineering effort. The first would seek to examine all the potential system configurations and types with the objective of identifying their characteristics. The second approach would focus on one or a few potential configurations and examine them in depth. It might be said that, given a limited budget to perform a study, the first approach succeeds in determining essentially nothing about everything while the second approach provides a good understanding of (probably) the wrong thing. Ultimately, some combination. of both approaches must be taken. However, this study took the second approach. The reason is that one purpose of this study is to provide an economic assessment of the space power system concept and, in order to do this, it is necessary to study each assessed concept in some detail. As a result, this study does not cover the range of ideas and configurations that may have been dealt with, but it does provide economic analysis results that would have been impossible to provide if the first approach had been taken.

It is important here to make one other point as well. The purpose of this economic analysis is to provide information to a decision
making process. Relevant to a space power system, however, it is not necessary, nor is it dasirable, to decide upon the developing of a particular system configuration at this time. Rather, it is only necessary to decide upon the funding of a supporting research and technology (SR\&T) program that will improve upon the present state-of-knowledge in various critical technology areas so that, in the future, a decision can be made either to proceed with the development of a particular space power system configuration or, if at that time the concept proves not to be economically (or otherwise) viable, to terminate the program. Thus, if the system configuration studied in depth justifies proceeding with an SR\&T program, it has appropriately served its purpose and there is no need, for the purpose of economic justification, to seek better configurations. The only remaining issue is one of identifying the critical technology items that should be addressed in the SR\&T program. But, to a substantial extent, these are independent of the system configuration and, thus, useful insights are gained as the result of an in-depth study on one configuration as conducted herein.

Now, if it is accepted that the purpose of the engineering work performed in this study is in support of a technical and economic evaluation. of space power, then the objective of that work should be to provide optimal designs against economic criteria. This does not mean that the system should be designed to minimize cost. Rather, both cost and costrisk should be taken into account. This principle is illustrated by the following example. Suppose, for the photovoltaic configuration SSPS studied, it is desired to find the optimal concentration ratio and, for this example, assume that the only area of cost uncertainty is the cost per unit area of the solar array blanket. Then, as shown in Figure 3.11, the (expected value of) cost would be minimized by proper choice of-the concentration ratio, $C_{R} *$. However, going to higher concentration ratios continues to decrease cost-risk since increasing concentration ratio reduces the solar array blanket area. Thus, looking at a plot of costrisk versus cost for varying concentration ratios indicates clearly that it would be undesirable to design the system to minimum cost since, by moving to slightly higher concentration ratios, it is possible to significantly reduce the cost-risk with only an infinitesimal increase in cost. The space power system risk analysis model developed as a result of this study is an existing tool for use in the analysis of engineering tradeoffs of this sort.

At this point in time, the best configuration is that one which provides the strongest justification for a development program.

Figure 3.11: A Typical Cost Versus Risk Tradeoff

4. COST MODELING OF SPACE-BASED SOLAR POWER SYSTEMS

The SSPS program is divided into three major cost categories: deyelopment, unit production, and operation and maintenance, as shown in Figure 4.1. The development includes all activities that occur through initial operation of the first full-scale unit, and the unit production cost model includes all recurring costs for producing the "nth" (typically second) SSPS unit--satellite and ground equipment. The reason for this division of costs is the variety of methods by which the first.unit could be built, for example, by growth from a 500 MW pilot satellite, whereby the costs of the first unit would not relate in any direct way to the costs of, say, the second unit.

- Although all cost components of an SSPS program are dealt with, the emphasis in this study has been on the development of recurring cost models (both unit production and operation and maintenance) for an SSPS. unit to serve as the basis for a risk analysis model. Descriptions of, first, the development costs (Section 4.1), and then of the unit production cost and the operation and maintenance cost models follow (Sections 4.2 and 4.3, respectively).

4.1 Development Program Costs

The estimates of development program costs were developed by Grumman Aerospace Corp. and the Raytheon Company. The costs are connected with specific programs whose rationales were established by Grumman. Development costs are not modeled functionally as are the recurring (unit production, 08 M) costs, and they are described only briefly here, being dealt with in more detail in Volume II.

Figure 4.1 SSPS Program Cost Model

A number of different development programs have been formulated and analyzed as a part of this study. These are discussed in detail in jection 7 of this volume and Volume II of this report. During the first study phase, a deyelopment program including a 15 MW LEO and a $1,000 \mathrm{MW}$ 3EO test satellite was costed. In the second study phase, two additional orograms were examined, one with no major test satellites and one making use of a 500 MW GEO test satellite. In the third study phase, two new development programs were formulated and analyzed. Both of these programs nade use of a 150 kW and a 2 MW test satellite but with different test objectives. The discussion below pertains mainly to the development programs formulated for the third study phase. The actual cost numbers for all of the deyelopment programs are given in Section 7 of this volume.

4.1.1 Supporting Research and Technology Program Costs

The three major areas of the supporting technology program include solar energy conversion technology, microwave transmission system technology, and large structure fabrication. Physical characteristics of the solar array blanket, such as solar cell conversion efficiency, specific mass, and thermal and radiation resistance, will be addressed as well as techniques for economic large-scale production. Microwave transmission technology development will be directed at the efficiencies of dc to rf conversion and phase front control as well as to the fabrication and assembly of waveguides and antenna and power transfer structures. Further, studies of the effect of microwave transmission on the ionosphere will be conducted using the Areceibo antenna. Finally, different structural materials will be examined consistent with the thermal environment, applied loads, and the requirements for on-orbit manufacturing and assembly. Also examined will be the equipment required for such space-based operations.

4.1.2 150 kW Test Satellite Program Costs

This test satellite is primarily intended to test solar array technology, involving the deployment of a large array by Shuttle sortie. Different deployment techniques may be tested. This test satellite may be used to test portions of the microwave transmission systems if it is transported to geosynchronous orbit.

The costs include design, procurement and assembly, and operation of the test satellite.

4.1.3 Geosynchronous Orbit Test Satellite Program Cost

Although this geosynchronous orbit test satellite is smaller (2 MW power output level) than those examined in preyious study phases, it is large enough to allow testing of the performance of major system elements as well as microwave transmissiom from geosynchronous altitude.

The costs include design, procurement and assembly, and operation of the geosynchronous test satellite.

4.7.4 DDT\&E Costs

The costs connected with the design, development, testing and eyaluation underlying the construction of the first full-scale prototype haye been separated from the actual costs of procuring the first unit. This separation allows for an intermediate determination of the state-of-knowledge and likely economic viability of the system, before committing to the procurement of the first unit.

4.1.5 First Unit Production Costs

The costs of procuring and assembling the first unit are dealt with independently from the costs of producing subsequent units, as the first unit may be constructed in a manner entirely different (for instance, by expanding a test satellite, or by using space stations instead of the projected factory-in-space from that used for subsequent "production run" satellites). Furthermore, there exists the possibility that production could be terminated after the first full-scale unit.

4.2 Unit Production Cost Model

The unit production cost model is based on sizing relationships provided by Grumman Aerospace Corporation [11] and the Raytheon Company [12]. Subsequent refinements, in particular the introduction of a factory-in-space concept, have been incorporated as well. A complete mathematical exposition of these relationships is found in Appendix B. The model in its present state of development identifies and represents the major cost elements for the current SSPS configuration and assembly scenario. The results of the model must still be considered to be pretiminary; because, whereas the cost elements have all been addressed, many issues of scheduling and operations have not. For example, the model currently does not explicitly account for amortization of certain equipment by annuities, as sufficient information is not yet avail. able concerning the timing of procurements or rates of utilization for this (transportation and assembly) equipment, nor does any model account explicitly for the timing of procurement of satellite and ground station components. Availability of such information in the future will allow continued refinement of the model. However, it is to be noted that these are refinements to the basic cost model and should not be interpreted as elements, the lack of which destroys the basic integrity of the model.

The central feature of an SSPS performance evaluation is a chain of power conversion and transmission efficiencies. This efficiency chain forms the backbone of the unit production cost model as seen in Figure 4.2, which shows the correspondence of system components to elements in the SSPS efficiency chain.

Most of the sizing (hence, cost estimation) of system components is done on the basis of power throughput. Since the power output is constrained as a design parameter in this study, a change in any element in the efficiency chain affects the power throughput (hence, size and cost) of all of the system commnenta nreredina it in the chain

ORIGINAL PAGE IS OF POOR QUALITY

Figure 4.2 Relationship of SSPS Components to the System Efficiency Chain

The unit production cost mode] has fiye Leye] 3 components, as shown in Figure 4.3: ground station, LEO (low earth orbit) launch, constructịon base, LEO-GEO (geosynchronous earth orbit) transportation, and satellite procurement. Each of these cost components is dealt with in detail below; an oyeryiew of the model's structure is proyided in Figure 4.4. The model has been kept as general as possible, that is, insofar as possible, design and performance parameters have been treated as variables. Certain assumptions, however, are implicit in the model. Wherever such limitations occur in the model, they have been called out in the discussion that follows. In future developments of the model, greater generality will be developed, allowing examination of the effects of a wider range of design tradeoffs.

4.2.1 Ground Station Cost Model

This cost model consists of the cost of land and site preparation for both the receiving antenna structure and a safety zone around the receiving antenna, rf-dc converters, phase control equipment and utility interface. The size of the rectenna was set in the Raytheon MPTS study [73], based upon $20 \mathrm{~mW} / \mathrm{cm}^{2}$ being an acceptable maximum power density level and 2.45 GHz being the optimum frequency for transmission and is then scaled by the elevation angle of the beam. The model does not allow tradeoffs* among receiving antenna area, cost, and power density; costs are determined on the basis of power level.

More detailed consideration of rectenna design and cost characteristics should be included in future developments of the model.

4.2.2 LEO Launch Cost Model

This model includes the cost of procuring and operating fleets of heavy lift launch vehicles (HLLVs) and Space Shuttles to launch to LEO the materials and personnel necessary for the construction placement and final check-out of an SSPS satellite. The HLLVs are used to Taunch equipment and supplies and the Shuttles are used to rotate on-orbit personnel. The upper and lower stages of the HLLV are dealt with separately in the model, as they have different expected design lives. The model allows consideration of payload masses, load factor, unit costs, launch operations costs per flight and vehicle design life. The costs for both vehicles are determined on a "per launch" basis by dividing the unit cost over the expected life of the vehicle and adding the launch operations and refurbishment costs per flight. The number of HLLV flights is calculated by dividing the total mass of the satellite and required assembly equipment by the payload of the HLLV and its load factor. Similarly, the number of shuttle flights is determined by the number of personnel needed on orbit, the number of personnel carried per shuttle flight and the rate of personnel rotation.

One limitation of the model in its present form is that it does not consider such operations factors as vehicle refurbishment (turnaround) time.

These tradeoffs were analyzed by appropriate cost and design inputs
to the model and the resulta aro cat forth in Cortinn $5 \mathbb{A}$.

Figure 4.4 General Logic Flow of the SSPS Unit Production Cost Model

Such scheduling factors will have to be considered as the model is refined because the rate of launch may be expected to be nonuniform for the construction of a single SSPS satellite, although the oyerall launch facility activity leyel could be expected to become more uniform (allowing more efficient use of resources) as more SSPS satellites are constructed simultaneously given proper planning to accomplish this. In addition to more detajled consideration of launch operations, explicit consideration of launch vehicle reliability should be included in future model deyelopment.

4.2.3 Factory-in-Space Cost Model

This model represents the costs of a factory-in-space, the preliminary design of which was developed by Grumman Aerospace in the final phase of this study. A single base is intended to construct the entire fleet of satellites.

In order to examine the cost differences of construction in LEO and GEO, the costs and masses of characteristics of the base which were principally affected by orbital location (orbit-keeping and attitude control propellant requirements, external power system (EPS) requirements, and radiation shielding) were included as separate variables in addition to the basic mass and cost of the base. Analysis of two different factory sizes (reflecting two different rates of construction), as well as the two orbital assembly sizes, was conducted by appropriate design and cost inputs.

The costs of the factory-in-space are attributed uniformly to each satellite built; that is, they are calculated on a "per satellite built" basis: where the total number of satellites built is a variable.

The major limitation of the factory-in-space cost model is the lack of detail possible because of the preliminary state of development of the design itself. Whereas it is possible to examine the relative cost-effectiveness of construction in LEO versus GEO for two specific base configurations, it is not possible to examine the configurations themselves to determine the most important cost- and risk-driving elements to help guide further studies.

4.2.4 LEO-GEO Transportation Cost Model

Two different LEO-GEO transportation scenarios are possible with this model. One reflects the costs of transporting a fully assembled satellite from LEO using an advanced ion stage. This scenario is used when analyzing LEO construction and includes the costs of the ion stage and its propellants, along with propellant storage tanks.

The other scenario reflects the costs of transporting the materials necessary for construction of the satellites to GEO using chemical cargo orbit transfer vehicles (COTV) and for using chemical personnel orbit transfer vehicles (POTV) for personnel (to and from the construction base). This scenario is used when analyzing GEO construction and includes the costs of the COTVs and POTVs (taking into account the design lives of each), the propellant necessary for the required number of trips (depending upon total satellite mass, crew size and crew rotation rate), and propellant storage tanle

At this point, no consideration has been giyen to yehicle reliability, which could have a significant impact on both total transportation and component procurement costs. Furthermore, the model accounts for one GEO space station per SSPS satellite, whereas the space station might be used for final checkout of a number of satellites; as more information becomes available concerning SSPS construction rate and operation and maintenance requịements, a proper accounting of this station can be made. Also to be included, as information becomes ayailable through further studies, is a relationship between ion stage size and cost, the cost of a cryo return stage for the ion stage, if it is reusable, and the cost of the degradation of the satellite solar arrays used to power the ion stage during the trip to GEO.

4.2.5 Satellite Procurement Cost Model

The satellite procurement model utilizes relationships which size the solar array blankets and concentrators based on solar cell efficiency, concentrator efficiency and the solar flux. The structure is sized by the area of the blanket, the antenna interface and antenna components sized by their respective power levels. All costs derive from cost relationships: cost/unit area for the array blankets and concentrators, cost/unit mass for structure, and cost/unit power for the microwave transmission portions of the satellite. The relative cost merits of three different solar cell materials were examined using appropriate cost and design inputs.

The details for sizing and costing this satellite configuration are fairly well developed. The major limitations at this point include an inability to internally size the satellite for different concentration ratios (this can be done by input variables, however) and an inability to trade off transmitting antenna size, cost and power density against ground station size and cost.

4.3 Operation and Maintenance Cost Mode1

The second element of SSPS unit recurring costs which was modeled in this study phase was the cost of operation and maintenance ($0 \& M$). The model contains four Level 3 components, as shown in Figure 4.5: launch facility $0 \& M$, ground station $0 \& M$, space station and support $0 \& M$ and satellite 0\&M; these are developed separately below.

4.3.1 Launch Facility 0\&M Cost Model

This component of the 0\&M model represents the cost of one heavy lift launch yehicle (HLLV) flight to low earth orbit, and the accompanying advanced ion stage (AIS) transfer to geosynchronous orbit of the material necessary to supply the on-orbit maintenance personnel, as well as the cost of launch facility mission control personnel.

4.3.2 Ground Station 0\&M Cost Módel

The component of ground station 0\&M cost includes the cost of both equipment replacement (at an assumed percentage rate per year) and ground station operation and maintenance personnel.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 4.5 Operation and Maintenance Cos.t Model

4.3.3 Space Station and Support 0\&M Cost Mode]

The cost of crew rotation is derived from the vehicle costs and the assumed rate of annual rotation. The costs of the GEO space station and the maintenance support equipment used by on-orbit personnej includes the amortized cost of procuring and transporting the station and equipment and, finally, the cost of the mission control to support the space station and on-orbit $0 \& M$ equipment is derived from an assumed cost per unit output power.

4.3.4 Satellite 0\&M Cost Model

The major cost associated with maintenance of an SSPS satellite is that of replacing components that fail. To serve as a guideline for the failure rates that might be expected from SSPS satellite components, the failure rates of recent equipment, such as that on the Orbiting Astronomical Observatory (OAO), have been used. Whereas it might be expected that reliability rates would be considerably improved through learning connected with SSPS construction, it is also true that SSPS components will have to be massproduced (unlike the hand-built components of the OAO, for example), possibly resulting in lower reliability. Goven that these two opposite effects will be occurring in a way that cannot now be predicted, the failure rates for recent or current equipment have been used as reasonable guidelines for this phase of analysis.

The smallest components which might be replaced in each subsystem in the event of failure have been identified, as well as the costs of procurement, transportation and installation on a cost-per-unit-mass basis.

Although the structures have been included as satellite components, it is expected that they will be designed so that their probability of failure during a 30 -year lifetime is zero.

The failure rates of smallest replaceable components are sampled in a Monte Carlo simulation to calculate a probability distribution for annual $0 \& M$ costs. The rate of replacements of units of a given satellite component is a random variable that depends on the mean time between failures for that component. That is to say, the nature of failures is such as to produce uncertainty in the annual $0 \& M$ cost despite potentially perfect knowledge of all costs. In the Monte Carlo simulation, the rate of replacement is obtained as a probability distribution over integer numbers of replaced units. The computer algorithm for computing the distribution of component replacements is shown in Figure 4.6. Each component is interrogated to determine if it fails during the period of consideration. If it does, it is replaced and the replacement part is interrogated to determine if it fails in the remaining time. The process is continued until the time period considered ends. Then, replaced units and replacement costs are accounted for.

Figure 4.6 Computer Algorithm for Computing Cost of Replacing Failed Components

5. ANALYSIS OF UNCERTAINTY AND RISK IN SPACE-BASED SOLAR POWER SYSTEMS PRODUCTION, OPERATION AND MAINTENANCE

5.1 Current State-of-Knowledge

The cost and risk analysis discussed in this section is based upon the current configuration SSPS, illustrated in Figure 5.1 , which is sized to generate $5375 \mathrm{MW*}$ of rectified power at the output bus of the receiving antenna at the beginning of life of the system. This power level was chosen to provide economies of scale while keeping the peak microwave power density in the center of the rectenna to about $20 \mathrm{~mW} / \mathrm{cm}^{2}$, a level that is expected to meet anticipated environmental standards. The $20 \mathrm{~mW} / \mathrm{cm}^{2}$ value approaches the anticipated threshold level for affecting changes in the ionosphere. It is noted, however, that the effects of these anticipated changes are unknown.

The satellite's mass in orbit is deterministically estimated to be 27.2 million kg , using the most likely values described below. An operating frequency of 2.45 GHz was selected based on considerations of power transmission efficiency, low susceptability to brownouts in rain, and minimal potential problems with radio frequency interference. The transmitting antenna is an active planar phased array which uses amplitrons for dc-to-rf power conversion. The photovoltaic power source nominally generates 9267 MW of power using an advanced 50 -micron thick silicon blanket that has an initial nominal efficiency of 9.2 percent at a solar concentration ratio of two. The overall efficiency from solar blanket busbar to ground station busbar is nominally estimated to be 58 percent.

The nominal design concept has two large solar cell arrays, each approximately $8.4 \mathrm{~km} \times 5 \mathrm{~km}$, interconnected by a carry-through structure of dielectric material. A 1.026 km diameter microwave antenna is located on the centerline between the two arrays and is supported by the central power

The 5000 MW power level commonly used in earlier phases of this study refers to the power output at the beginning of the sixth year of operation, although the satellite was designed to handle the higher beginning-of-life power level. (Degradation in the power level occurs throughout the life of the satellite because of degradation in system efficiency, primarily solar cell efficiency due to radiation damage.) The five-year point for power output represents a weighted average of power output over the lifetime of the satellite for the purpose of revenue projection. Because the rate of solar cell degradation and the discount rate are treated explicitly as variables in revenue projections, the actual beginning-of-1ife power output level will henceforth be used to describe the SSPS power level. Note that this adjustment of designated power level does not itself affect the sizing or costing of an SSPS.

- Concept Description

Collects solar power using photovoltaic converters and transmits power to Earth as microwave power. The microwave power is rectified to dc power at the ground receiving station.

- Typical Characteristics (Derived from Deterministic Estimate Based on Most Likely Values)
- Power
- Mass
- Size
- Orbit
- Life
- Operating Frequency
- dc-to-dc Efficiency
- Solar Cell Efficiency
- Solar Cell Material
- Initial Operation Date

5375 MW (BOL)
$27.2 \times 10^{6} \mathrm{~kg}$
$18.226 \times 4.13 \mathrm{~km}$
Geosynchronous
30 Years
2.45 GHz

58\%
9.2\% (BOL)

Single Crystal Silicon 1995 (prototype)

Figure 5.1 Current Configuration of an SSPS Satellite
transmission bus (mast) structure that extends the full length of the power station. The antenna is attached to the mast structure by a joint system which rotates 360 degrees in azimuth (east-west) and ± 8 degrees in elevation (north-south). The solar cell blankets are laid out between channel concentrators stretched over a supporting frame. In the analysis conducted here, in addition to single crystal silicon solar cells (Si), two other materials are also analyzed. These are gallium-arsenide (GaAs) and cadmiumsulfide (CdS). In all cases, a concentration ratio of 2 was used. It is recognized that this concentration ratio is not optimum for either of the last two materials; however, the conclusions thus obtained strengthen the notion that economically attractive solar cell material alternatives to Si do exist and should be given consideration.

In addition to the consideration given to different solar cell materials, four different construction methods were analyzed. All involve the factory-in-space concept developed by the Grumman Aerospace Corporation. The methods analyzed include total assembly in low earth orbit (LEO) with subsequent ion stage transportation to geosynchronous earth orbit (GEO) and total assembly in GEO and, for each assembly location, assembly using a small factory, capable of producing nominally four satellites per year; and a large factory, capable of producing nominally six satellites per year.

A range of uncertainty naturally occurs in trying to project the state. of design parameters or cost components that will exist in the 1990-2000 time period during which an early SSPS might be built. The range of uncertainty is reduced as the state-of-knowledge improves--generally through studies, testing or technological development. For factors about which little is known, a probability density function describing the state-of-knowledge is likely to be fairly broad and fairly flat; that is, that there is no pronounced likelihood that any particular outcome within the possible range of outcomes will occur. With development of the state-of-knowledge, however, the range of possible outcomes becomes more narrow and a peakedness in the distribution may arise around the expected (or most likely) value. The narrower the range and the more peaked the distribution (hence, the better one can predict the outcome), the more developed the state-of-knowledge is said to be.

In order to represent in the SSPS program cost model (described in Section 4) the state-of-knowledge that exists for the design factors relating to SSPS, ranges were established with maximum and minimum values, and a most likely value was assigned. The rule observed in setting the maximum (worst) and minimum (best) values was that there is essentially zero probability of the outcome exceeding the assigned maximum or being less than the assigned minimum. Most likely values were estimated based on available information and engineering judgment.

It was beyond the scope of this study to develop probability density functions in the manner described in Appendix E. However, distributions were assigned as shown in Figure 5.2 that might be representative of design factors, the states-of-knowledge of which are not well developed; that is,

Figure 5.2 Uncertainty Profiles
the distributions are not sharply peaked, however, neither are they particularly broad. For each variable, the particular distribution was selected based on the location of the most likely value between the minimum and maximum values. It is expected that this process would be refined, for example, according to Appendix E, in future work.

The range of values and the most likely value for each design factor may be found in Appendix D. It should be noted that these data are specific to the current configuration SSPS and are intended to represent the state-of-knowledge with respect to this particular configuration at this point in time. Al so shown in Appendix D are the data that were used for the analysis of cost and risk in the previous study phase. The data and results presented in this section are based on the satellite configuration and assembly techniques as they have been developed in their final (most advanced) form by this study.

Some adjustments have occurred during this phase of the study in the assignment of ranges and most likely values for a number of design factors. These adjustments have come as the result of more detailed analysis both in this study and in related studies (such as the space station studies being conducted by Grumman Aerospace Corporation). The adjustments having the greatest impact on system size and cost involve the solar array blanket: the values for specific cost, specific mass and solar cell efficiency, which had previously been treated as target values, are now viewed as the most optimistic values. Also, the efficiency of Si solar cells is taken to be 9.2 percent in this phase of the study. This is the result of the analysis conducted by A. D. Little, Inc. The lower efficiency cell corresponds to one which is more likely to be developed as a result of ERDA efforts. It does not incorporate band-pass filters to maintain a high efficiency under concentration ratios greater than one as did the previously assumed cell.

5.2 Risk Assessment of the Current Configuration

Based upon the assessment of the state-of-knowledge discussed in Section 5.1 and Appendix D, a risk assessment of the current configuration SSPS was conducted. The assessment provides probability distributions of unit production costs (2nd unit)* and operation and maintenance costs; see Figures 5.3 and 5.4. These figures show the cumulative distribution functions, referred to as risk profiles, for costs for the Si solar cell configuration SSPS assembled in LEO using a small factory. The probability value shown on the ordinate represents the probability (or confidence) that the current configuration SSPS could be produced (Figure 5.3) or operated and maintained

Because the first unit is not a production unit and may be constructed by various alternative methods, for example, growth to full-scale from a pilot plant, the cost model does not apply to this unit. The model applies essentially to the second unit. After the second unit, it should be expected that unit production costs will decrease from the value computed by the cost model, due to learning effects.

Figure 5.3 Cumulative Distribution Function of SSPS Unit Cost for the Si Solar Cell Configuration Assembled in LEO Using a Small Factory

Figure 5.4 Cumulative Distribution Function of SSPS Operation and Maintenance Cost for the Si Solar Cell Configuration Assembled Ușing a Small Base in LEO
(Figure 5.4) for a value shown on the abcissa, or less, under the current state-of-knowledge. Thus, for example, there is a 50 percent chance that the second unit SSPS could be constructed for $\$ 12.1$ billion (1974 dollars) or less. Alternatively, if one wished to commit to the construction of the second unit today and, furthermore, if one wished a 90 percent confidence of successfully completing that unit, one would have to commit about $\$ 23.4$ biliion (1974 dollars) to the project (for that unit--that is, in excess of the DOT\&E program).

Of course, one could argue over the accuracy of the curves shown in Figures 5.3 and 5.4. These curves are preliminary and do not include all of the uncertainties inherent in the current configuration SSPS. Thus, if anything, the high end of the unit production risk profile is probabiy optimistic. However, arguments over the high end of the risk profile do not necessarily apply to the low end and, thus, have only a limited effect on the decision process. Furthermore, one would probably never choose to commit $\$ 23.4$ billion to the production of a single SSPS unit since it is unlikely that the price that could be obtained for power at the rectenna busbar would be sufficiently high to pay back this capital cost.

What knowledge about the desirability of pursuing an SSPS development program can be legitimately gleaned from Figure 5.3 and 5.4? First, consider the process of obtaining cost estimates. Figure 5.3 shows that a cost estimate for the current configuration SSPS based upon deterministic estimates of all parameters in the cost model (most likely values) yields $\$ 7.34$ billion (1974 dollars).* Note that there is only about a 5 percent chance of the unit production cost being this low, and note that more appropriate estimates, the median cost, the expected cost and the 90 percent confidence costs, are substantially higher. The discrepancy between the deterministic estimate and the expected cost, some $\$ 7.7$ billion or 104 percent, is strictly the result of the system costing phenomenon illustrated in Figure 3.3. To obtain any more information from these distributions, it is necessary to combine them with additional data and assumptions in order to examine the probability distribution of net present value of an SSPS unit. Accordingly, the following assumptions are made:

1. The SSPS unit availability factor is 0.95 . That is, it is producing power 95 percent of the time. This includes power outages due to solar eclipses near the equinoxes.
2. The power output of the Si solar cell SSPS unit decreases with time due to degradation of various components, mainly the solar cells.**

[^3]3. The lifetime of the SSPS unit is 30 years.
4. The capital investment in the SSPS unit is made in one Tump-sum payment two years prior to the initial operation date of the SSPS unit.
5. In the initial year of operation, the price of power at the rectenna busbar is taken at two values, $20 \mathrm{mills} / \mathrm{kWh}$ and $30 \mathrm{mills} / \mathrm{kWh}$ (1974 dollars).
6. The real price of power at the rectenna busbar (1974 dollars) increases at the rate of one percent per year.
7. No charge is made for taxes and insurance.
8. Present value computations use a discount rate of 7.5 percent.

With the above assumptions, the cumulative distribution function of net present value (revenues minus costs) of an SSPS unit referenced to the initial operation date is as shown in Figure 5.5.* The proper interpretation of this curve is that there is about a 35 percent chance that, under the conditions of the above assumptions and at a price of $30 \mathrm{mills} / \mathrm{kWh}$ for power on the initial operation date of the system, the second SSPS unit will be economically viable. Also, the expected value and the median of the net present value distribution occur at substantially negative values. The clear implication of this is that not enough is known at present about the technologies required for the production of an SSPS unit to commit to a program to produce such a unit at this time.

The most critical assumption inherent in Figure 5.5 is the price of power at the rectenna busbar at the initial operation date. This assumption is treated parametrically in Figure 5.6 with the remaining assumptions held unchanged. Clearly, increases in the price of power at the rectenna busbar significantly increase the probability of an SSPS unit being economically viable.

In summary, the following conclusions can be drawn from the results of the risk assessment of the current configuration SSPS:

1. There is a finite chance that the current configuration SSPS could be economically viable. The magnitude of this chance is dependent primarily on the price of power at the rectenna busbar during the period of operation of the SSPS unit. Subject to the assumptions outlined above and a price of $30 \mathrm{mills} / \mathrm{kWh}$ for power at the rectenna busbar at the initial operation date, there is about a 35

Note that Figure 5.5 cannot be derived directly from Figures 5.3 and 5.4 and the stated assumptions because there is some degree of correlation between the unit production costs and the operation and maintenance costs that must be accounted for. Thus, the curve of Figure 5.5 is computed as an independent output of the risk assessment.

Figure 5.5 Cumulative Density Function of the Net Present Value of an SSPS Unit Referenced to the Initial Operation Date

Figure 5.6 Cumulative Distribution Function of Net Present Value of an SSPS Unit at the Initial Operation Date as a Function of Price of Power
percent chance that the second SSPS unit would be economically viable. This decreases to about 3 percent if the price of power is 20 milis/kWh on the initial operation date.
2. The economic viability of SSPS units beyond the second unit should improve due to:
a. Learning effects which should enable reduced unit production costs on subsequent units, and
b. An expected increase in the price of power at the rectenna busbar at the initial operation date of subsequent units.
3. The technology required to produce, operate and maintain a current configuration Si solar cell SSPS unit is not sufficiently developed or known to commit to the production of such an SSPS unit at this time.

The above conclusions do, however, support a decision to continue "low level" SSPS system studies and analyses with the purpose of formulating an economically viable program plan, that is, a program plan with a positive expected value and controlled risks, for the development of the SSPS concept.

5.3 A Cost-Risk Comparison of SSPS Alternatives

Twelve SSPS alternatives were analyzed, as noted above. These include three different solar cell materials, two different assembly locations, and two different construction facilities. The solar cell materials analyzed include Si, GaAs and CdS. The assembiy locations include total assembly at LEO with subsequent ion stage transportation to 'GEO, and-total assembly at GEO. (Construction of subassemblies in LEO and final assembly in GEO, which may offer advantages, was not examined.) The construction facilities assumed for SSPS construction are detailed in Volume II of this report.

The comparisons presented here are based on total life cycle costs for each alternative. The total life cycle costs are derived as the sum of the unit production cost and the annual operation and maintenance cost for the first 30 years of operation of a unit, all discounted back to the initial operation date of the unit. A typical probability distribution of total life cycle costs of the second SSPS unit for the Si solar cell configuration assembled in LEO by a small factory is given in Figure 5.7. Called out on this figure are four parameters which, together, provide a description of the probability distribution: the 10 percent confidence cost, the most likely cost, the expected value of the cost, and the 90 percent confidence cost. Since no single parameter can be adequately used to describe a probability distribution, the comparison is conveniently depicted here in terms of these four parameters, as shown in Figure 5.8. This figure shows remarkably similar costs for the different solar cell materials and different construction facilities, however, a significant difference according to the assembly location. The proper interpretation of this figure is that it is very likely that the costs for SSPS assembly in GEO would be greater than

Figure 5.7 Total Life Cycle Cost of the Second SSPS Unit

Figure 5.8 A Comparison of Total Life Cycle Costs for SSPS Alternatives
the costs for assembly in LEO with subsequent transportation to GEO. One should be careful to avoid the interpretation that GEO assembly will cost more than LEO assembly, or that some combination of the two locations is not economically desirable. It should also be emphasized that this result is configuration dependent.

Total life cycle cost, however, is only one side of the picture in comparing SSPS alternatives. The other side is the revenues generated by each alternative. Here, too, it must be pointed out that differences exist between the solar cell materials in terms of their respective rates of degradation due to radiation damage. Whereas Si solar cells degrade substantially with time, GaAs and CdS solar cells exhibit much lower rates of degradation. A full discussion of these effects is provided in Volume IV of this report. Consequently, an SSPS using these materials produces significantly more revenues over a 30 -year satellite operational lifetime than does an SSPS that uses Si solar cells. The effect of solar cell degradation on revenues generated by an SSPS with a beginning-of-life power of 5258 MW is shown in Figure 5.9 as a function of the price of power on the initial operation date. The advantages offered by GaAs and CdS are evident.

It is interesting to place the cost and revenue data shown above into the context of an SSPS fleet. Assuming that 120 units total (including the prototype) will be produced at the rate of four per year beginning with the second unit coming on line January 1, 1998, Figure 5.10 shows the expected value of the net present value of the fleet (referenced to January 1, 1977) and the standard deviation of this estimate (reflecting the present inability to estimate the total life cycle cost for each alternative). It is interesting that only the CdS solar cell configurations have a positive net expected value for the entire fleet. Thus, a commitment to an entire SSPS development program based upon the use of either Si or GaAs solar cells is clearly not justified today.

The data presented above can be shown to the decision maker in one other interesting way. In Figure 5.11 the probability that the second unit will pay off, that is, that the net present value of the second unit will be zero or more, is plotted as a function of the price of power at the rectenna busbar on the initial operation date of the unit, for units constructed using each of the three solar cell materials considered. This figure clearly shows the advantages offered by the alternative solar cell materials. The conclusion which one could properly draw from this figure is that there exist alternative solar cell materials to single crystal silicon and that these materials offer potential economic advantages. It may, therefore, be inferred that these alternative materials warrant some consideration in future studies.

5.4 Power Beam Ionospheric and Biological Effects

A major area of technical uncertainty impacting SSPS design is the effect of the microwave power beam on the ionosphere and on biological materials. These effects are likely to result in a constraint on the maximum power density somewhere in the range of $10 \mathrm{~mW} / \mathrm{cm}^{2}$ to $100 \mathrm{~mW} / \mathrm{cm}^{2}$. The technical

:igure 5.9 Comparison of Revenues Generated by Alternative SSPS Solar Cell Materials

Figure 5.10 $\begin{aligned} & \text { Net Present Value of an SSPS Fleet for Different Combinations of Assembly Scenario } \\ & \text { and Solar Cell Material }\end{aligned}$

Figure 5.11 Chance That the Second Unit Will Pay Off
aspects of this issue are discussed in Volume III of this report. As a part of this study, the economic impact of this constraint on the second and subsequent units was investigated. The results are summarized in Figure 5.12 for a CdS solar cell configuration SSPS. On the left side of this figure, a probability distribution (heavy line) is given that indicates the likelihood of being constrained to operate at or below a given maximum microwave power density. This joint distribution is decomposed into its two constituent parts, the likelihood of encountering a constraint due to ionospheric effects and the likelihood of encountering a constraint due to biological effects. The maximum microwave power density is then assumed to determine the beginning-of-life power and this in turn determines the expected value of the total life cycle cost for each unit. The revenues that each unit generates depend on the price of power at the rectenna busbar. They are shown accordingly on the right side of the figure. A point to the right of the break-even line indicates that the revenues are larger than the costs. The shaded region drawn about the $30 \mathrm{mills} / \mathrm{kWh}$ line indicates the present 1σ uncertainty in the total life cycle cost estimate. It should be read vertically as indicated. The conclusions of this study can be summarized as follows:

1. The SSPS is likely to be constrained to operate at a maximum microwave power density below $100 \mathrm{~mW} / \mathrm{cm}^{2}$.

Figure 5.12 The Effect of Constraints on Maximum Microwave Power Density
2. The magnitude of the maximum microwave power density constraint will impose a design condition on the satellite, either determining power level as shown in Figure 5.12 or forcing other methods of limiting the power beam power density, for example, defocusing the beam or employing multiple beams.
3. The economics of the second and subsequent units is not strongly affected by the magnitude of the constraint. Over the full range upon which the constraint is likely to be imposed, the break-even price of power varies only about 4 mills $/ \mathrm{kWh}$.

Although the magnitude of the constraint is not an important economic parameter, it is nonetheless necessary to determine its value relatively early in the program to allow for the systems impacts and provide for the necessary program planning.

6. IDENTIFICATION OF CRITICAL TECHNOLOGIES AND ISSUES

A variety of technical, social and environmental issues exist with respect to the development and production of an SSPS. The purpose of this section is to identify and, to a limited extent, quantify these issues. Some of the issues, particularly the social and environmental issues, might support differences in the price of power at the rectenna busbar versus the busbar of a conventional power plant. Others, particularly the critical technologies, affect the cost and risk of an SSPS unit. The work documented below is a "first cut" at identifying critical technologies and issues as they drive the economics of an SSPS unit and should not be construed as final and definitive results based upon which actions should be initiated. Rather, the results are presented here for review and to provide guidance for continuing technical and economic studies of SSPS. These results represent an interim status only and should be viewed in that context.

6.1 Critical Issues

Associated with SSPS are numerous social and environmental impacts which need to be understood prior to implementation. Decisions concerning the appropriate level of all such "impacts" (that is, interactions between an SSPS and the environment) are guided by an expression of social preferences-whether through the economic system or through government regulation. For example, regulations concerning noise levels from launch vehicles or downrange launch safety will affect the location of the launch complex. Implicit in the expression of social preferences is a weighing of the benefits of one method or use against the benefits of others. For instance, a decision on where to locate the receiving antenna involves a comparison of the benefits of SSPS-delivered electricity against the benefits of other uses for the same piece of land; in this example, in addition to the economic evaluation of relative benefits (as reflected in the price of the land), social preferences would be expressed concerning less tangible values, such as aesthetics, through regulatory processes such as land zoning. In any event, the expressions of social preferences become design considerations affecting both the technical and economic characteristics of the system.

Even where there exists a clear social value for imposing design conditions or constraints (for example, safety from radiation that is detrimental to human health), it might not be clear what effect a given SSPS design could have because sufficient scientific data do not presently exist (for example, it is not known precisely at what level of microwave radiation a health hazard exists). These areas of uncertainty may require testing--in this example, to establish the effects on health due to various levels of long-term exposure to microwave radiation. As this uncertainty is reduced by testing, an SSPS can be designed that assures compliance with the perceived safety needs, yet more nearly approaches the economic potential of the concept.

A11 of the areas of social and environmental impact associated with an SSPS that have been identified to date $[14,15]$ are summarized in Table 6.1. This table lists the major areas of impact by the three main system elements: launch complex and operations, orbital system, and rectenna and power interface systems. These impacts were then organized in the manner suggested by Figure 6.1: first, according to those impacts which are critical, that is, those which might have substantial detrimental local or even global impacts (for example, interaction of the microwave beam with the ionosphere) which would render an SSPS socially unacceptable or which cause substantial economic uncertainty (for example, acceptable microwave densities affecting rectenna size) and those impacts which clearly could not; next, according to those impacts which could be tested (such as effects of exposure to microwave energy) and those which could not (such as shifts in demographic patterns resulting from the location of terrestrial facilities). At this time, there appear to be no impacts with which there are associated large uncertainties and that are thought to be critical, but which are not amenable to testing to reduce uncertainty or simply to a logical decision process. The impacts considered to be both testable and critical represent the areas of social and environmental risk associated with an SSPS which must be dealt with in the development of a test/validation/documentation program. These risks are summarized in Table 6.2. More complete descriptions of each impact that has been identified to date follow.

6.1.1 Launch Complex and Operations

Land Management. The decision on where to locate the facilities to handle SSPS-related launch activities must balance such issues as proximity to sources of materials to be launched and propellants, down-rate safety, launch advantage provided by southerly location, and climate and weather patterns. In addition to these considerations, the issue of possible alternative land uses arises for whatever sites are being examined. This impact is a decision variable (nontestable, noncritical).

Waste Heat. The waste heat from the launch vehicles is one of two sources of terrestrial waste heat associated with SSPS (the other being the rectenna). While the exact effect in the atmosphere of such heat is not known, it is thought to be negligible, even with a high level of traffic; hence, this impact is a decision variable (possibly testable, but noncritical).

Safety and Control. If there are populated areas down range of the launch facility, adequate safeguards must exist to insure that they are not endangered by either routine launchings or in the event of a launch failure; this risk is considered in the launch site decision (nontestable, but criticality controlled by location--that is, by decision).

Environmental Modification. Two major environmental impacts that have been identified with the launch complex are the noise from the launch vehicles and the pollutants injected into the atmosphere by propellant combustion. Noise levels must be taken into account in siting and designing the launch facilities (testable, noncritical) and the effect of different

Table 6.1 SSPS-Related Social and Environmental Impacts Identified to Date

	LAND MAIIGEEMENT	RADIANT ENERGY DENSITIES	WASTE HEAT	$\begin{aligned} & \text { SAFETY } \\ & \underset{\&}{\prime} \\ & \text { CONTROL } \end{aligned}$	CNVIRONMENTAL MODIFICATION	RCSOURCE EXTRACTION \& MANUFACTURIIG	AESTHETICS	$\begin{aligned} & \text { SOCIAL } \\ & \text { EFFECTS } \end{aligned}$
LAUNCH CO:APLEX \& OPERATIONS	COMPETING DEMANDS		LAUNCH VEHICLES	LAUNCH SYSTEM SAFETY	NOISE pOLLUTION LAUIICH FAILURE	LAUNCII facilities LAUHCH VEHICLES PROPELLANTS	$\begin{aligned} & \text { APPEARANCE } \\ & \& \\ & \text { DESPOILMENT } \end{aligned}$	OEMOGRAPHIC SHIFTS
ORBITAL SYSTEM		interaction WITII IONOSPHERE efrects on OM-ORBIT PERSOHNEL		BEAM CONTROL ASSEHBLY SAFETY	RADIO frequency intcrferENCE	COMPONENT materials	nighttime REFLECTIONS	REL IANCE ON SPACE TECHNOLOGY
RECTENTA \& POWER interface SYSTEMS	COATPETIMG DEMAMOS MULTIPLE USE CHANGES IN LAND-USE patterns	EFFECTS OF LONGTERM EXPOSURE	10-15\% of TOTAL TRANSMITTED energy	BEAM CONIROL POWER INTCRFACE CONTROL	LOCAL EFFECTS OF WASTE HEAT	RECTENNA facility COMPONENTS	$\begin{aligned} & \text { APPEARANCE } \\ & \text { \& } \\ & \text { DESPOILMENT } \end{aligned}$	CHA:GE IN DEPMOGRAPHIC PATTERNS

Figure 6.1 Social and Environmental Impact Matrix

Table 6.2	Critical and Testable SSPS Social and Environmental Risks		
RAOIANT ENERGY	SAFETY AND		
OENSITIES		\quad	CONTROL
:---			

propellant combustion products in the atmosphere must be carefully considered (testable, critical). Constraints placed on propellant types and launch site location could affect transportation costs. Another area of environmental concern deals with the possible nature of the materials being taken into orbit (for example, gallium-arsenide solar cells), which could cause a threat due to potential catastrophic failure of the launch vehicle. These considerations could force the use of less efficient materials. Whether or not the risks are to be taken is a matter of decision (nontestable, critical).

Resource Extraction and Manufacturing. The type and amounts of the materials necessary for launch site construction must be considered, but this is not expected to pose any difficulties as no critical material types or amounts are involved. The use of these materials to support the SSPS project is a social decision justified, through prices for these materials, if SSPS is economically viable (nontestable, noncritical).

Aesthetics. The effect of the launch facilities on the appearance of the surroundings will be considered in the siting decision (nontestable, noncritical).

Social Effects. Location of the launch site will undoubtedly result in local demographic shifts; this is, of course, a necessary adjustment to provide labor support for launch operations (nontestable, noncritical).

6.1.2 Orbital System

Radiant Energy Densities. It will be necessary to determine in advance the extent and type of interactions of the microwave beam with the atmosphere, particularly in the ionosphere where such interactions may affect the F-layer or may attenuate the beam itself, reducing transmission efficiency (testable, critical). Also of concern is the effect of microwave energy densities on on-orbit maintenance personnel (testable, critical), which could affect the cost of on-orbit maintenance.

Safety and Control. This represents a major area of concern, particularly in beam control. Safety systems will have to insure that there is no chance of a focused beam wandering from the rectenna area in the event that pointing control is lost. Whereas it is expected that the beam will become defocused should the pointing. system fail, testing is necessary to assure that the safety systems are "fail-safe" (testable, critical). This is a technology item that could affect the social acceptability of an SSPS. Its economic effect is uncertain but probably small. Safety of on-orbit personnel is also a concern during the construction phase (testable, critical) and can affect the orbital assembly rate.

Environmental Modification. The effects of such large power transmissions via microwaves is not known and will have to be tested. Problems with sidelobes and reradiated energy causing radio frequency interference must be dealt with in a careful test program. The results of this program will be necessary for final frequency allocation and filter design, which can affect system efficiency and transmission losses (testable, critical).

Resource Extraction and Manufacturing. Resource considerations will be important design variables; however, it is not expected that SSPS requirements (even in such critical materials as platinum, samarium or cesium) will be more than a small fraction of current consumption (nontestable, noncritical).

Aesthetics. Structures as large as an SSPS satellite will create noticeable nighttime reflections. To accept these reflections is a social decision (nontestable, noncritical).

Social Effects. Power from space could represent man's first reliance on space technology for basic needs. The exact effects of the perception of this is hard to predict. Also, there will be new political and security considerations connected with reliance on large power sources that might be vulnerable to sabotage or attack (nontestable, noncritical).

6.1.3 Rectenna and Power Interface Systems

Land Management. . Land-use considerations with respect to the receiving antenna include competing demands, the possibility of multiple use, and projected changes in land-use patterns, such as the location of energy-intensive industries near rectenna sites or the moving of population areas away for the purposes of safety. These factors will be reflected in land prices and zoning as a reflection of social preferences (nontestable, noncritical).

Radiant Energy Densities. An important area of uncertainty exists concerning the effects of long-term, low-level exposure to microwave energy. An extensive testing program is necessary to determine the effects of such exposure on human, animal and plant life in the rectenna area and surroundings (testable, critical). Constraints imposed by maximum allowable microwave densities can affect the rectenna site location, design and areal extent.

Waste Heat. Rectification losses at the receiving antenna will result in the generation of waste heat equivalent to 10 to 15 percent of the total transmitted energy. It is expected that by controlling the albedo of the antenna surface, the average heat value for the area can be maintained. However, because the rectenna waste heat release will be continuous, the daily temperature cycle will be changed. The effect that this change will have on plant and animal life, as well as local weather patterns, is not expected to be large (possibly testable, noncritical).

Safety and Control. As mentioned in Orbital System Safety and Control, maintenance of beam control is crucial (testable, critical). In addition, the safety and reliability of the utility power interface must be assured (testable, noncritical).

Environmental Modification. (see Rectenna and Power Interface Waste Heat).

Resource Extraction and Manufacturing. An analysis of material requirements similar to that for other parts of the system must be conducted for
this segment of the system. It is expected that there will be no problems, as most of the material used for the antenna structure is aluminum (nontestable, noncritical).

Aesthetics. So large a structure as the receiving antenna will certainly have an effect on the appearance of the surroundings. This must be considered in the siting analysis (nontestable, noncritical).

Social Effects. Changes in demographic patterns may well result from the location of the receiving antenna. These are the result of social choices (nontestable, noncritical).

The above identified issues could each affect the production and the operation and maintenance costs of an SSPS unit. While they are identified above, no assessment has yet been made of their specific impact on costs. This work remains to be performed in continuing studies.

6.2 Critical Technologies

In this section, the technologies critical to the economically successful production of a current configuration SSPS are identified. Two separate efforts are reported. The first deals with the full spectrum of technologies needed to produce an SSPS, and the second focuses on solar cell technology. The first effort was performed during the second study phase and the results derive from the cost model and state-of-knowledge as identified during that study phase. This study suggested the importance of solar cell technology as a critical technology area. In the third study phase, considerable emphasis was placed on an analysis of alternative solar cell materials and was performed using the cost model and state-of-knowledge as updated during the third study phase. The critical technologies are identified in terms of their contribution to the cost and risk of SSPS unit production as follows. First, the risk profile of the current configuration SSPS was established as is described in Section 5. Then, from the lists of inputs to the risk analysis model (for the second study phase), 56 potentially significant technology items were identified. As identified in Section 5, each of these variables has associated with it a state-of-knowledge that is described by a probability density function ranging from a minimum value to a maximum value. (Based on today's knowledge, there is probability zero that a parameter will lie outside the range so described. Furthermore, the probability density function has its maximum value at the most likely value of a parameter.) The assessment of critical technologies focuses on the minimum, maximum and most likely values of each significant input variable. The effect of removing uncertainty in each of these variables is then investigated by setting the range over which each variable may vary to zero, one-by-one, first to the minimum value, then the most likely value, and then the maximum value. That is, the effect of removing uncertainty in each variable is investigated over the full range of values which, by today's state-of-knowledge, each variable may take on. For example, to determine the contribution to cost and risk of the cost of the solar array blanket per unit area, that cost is input to the risk model as a deterministic value, first at its minimum value, then at its most likely value and, last, at its maximum value, holding all other inputs
as they are described in Section 5. The results of this exercise are given in Table 6.3, with the variables listed in three groups. The top group in the table presents the results for the critical technology areas. These are the technologies that drive the cost and risk. They include:

- Solar cell efficiency
- Specific mass of the solar blanket
- Fraction of satellite assembled by man
- Rate of manned assembly
- Rate of remote assembly
- LEO space station unit cost
- Solar array blanket specific cost.

It is interesting to note that these critical technologies encompass only two general areas: uncertainties associated with the solar arrays, that is, solar array costs, mass and performance, and uncertainties associated with the assembly of large systems in space. These seven elements of risk are plotted in Figure 6.2, which visually shows the potential for control of cost and risk by technology development in each area.* This figure clearly shows the driving technology to be the rate of manned assembly--that is, productivity in space is the major cost and risk driver for the current configuration SSPS. Since this conclusion could substantially affect future SSPS development programs, it is recommended that it be subjected to a careful review before being fully accepted. It must be emphasized again that these results derive from subjective assessments of the state-of-knowledge relative to the current configuration SSPS and are subject to variability upon review. However, there is little doubt that this is an area of uncertainty that needs to be dealt with sooner rather than later.

The second group of variables in Table 6.3 are variables that are only moderately important cost and risk drivers. These are variables which should probably receive attention as components of major study areas but, at this time, do not deserve specific studies for their resolution.

Note that control of risk obiains not only due to removal of uncertainty in the variable under consideration but also due to the fact that uncertainty in other system components may be reduced due to such removal of uncertainty. For example, removing uncertainty in the rate of manned assembly also removes uncertainty in the number of LEO space stations required, the number of shuttle flights, the number of EVA units, etc. On the other hand, solar array blanket specific cost affects only the cost of the solar array, hence, removal of this area of uncertainty has little effect on total risk.

	Table 6.3 The Effect on Cost and Cost Risk* of Changes in the State-of-Knowledge (continued)						
		Range of Yalues (58illions, 1974)					
			st		kely		
	Item	Mean Cost	$\begin{aligned} & \text { Cost } \\ & \text { Risk } \end{aligned}$	Mean Cost	$\operatorname{Cos} t$ Risk	Mean $\operatorname{Cos} t$	Cost Risk
ractors llaving ho Hoticeable Cost- and Risk-Driving Lefrects	Beam Collection Efficiency Ratio: Conducting Structure Mass to Array Area Ratio: Nonconducting Structure Mass to Array Area Specific Mass of Central Mas: Specific Mass of DC-RF Converters	14.61	3.69	15.17	3.72	14.89	3.22
		15.00	3.65	14.60	3.67	14.94	3.56
		14.71'	3.41	14.69	3.64	14.97	3.54
		14.78	3.45	14.84	3.78	14.55	3.55
		14.68	3.40	14.80	4.08	15.30	3.82
	Specific Mass of Antenna Interface	14.89	3.84	14.60	3.41	15.06	3.74
	Specific Mass of Ohase Control Electronics	14.65	3.58	14.89	3.64	14.85	3.91
	Teleoperator Availability Factor	14.53	3.42	14.95	3.74	14.85	3.89
	Teleoperator Hork Factor	14.75	3.82	14.61	3.30	15.18	3.93
	Fabrication Module Availabriity factor	14.98	3.90	14.56	3.78	14.85	3.70
	Menipuiator Availability Factor	14.89	3.77	15.18	3.72	14.63	3.18
	Fabrication Module Unit Mass	14.54	3.41	14.62	3.15	14.59	3.37
	Manipulator Unit Mass	14.55	3.73	14.75	3.37	14.70	3.37
	Leo Soace Station Unit Mass	14.47	3.21	14.98	3.83	14.93	3.50
	Crew Module Unit Mass	15.02	3.66	14.60	3.60	14.93	3.56
	GEO Space Stazion Unit Mass	14.84	3.50	14.69	3.64	14.83	3.45
	Fabrication Module Unit Cost	14.74	3.50	14.72	3.60	14.57	3.54
	Shuttle Unit cost	14.74	3.50	14.78	3.51	14.67	3.58
	Manipulator Unit Cose	14.73	3.85	14.92	3.72	14:7E	3.49
	GEO Space Station Unlt Cost	14.79	3.70	14.56	3.78	15.03	3.90
	AIS Unit Cost	14.83	3.96	14.59	3.57	14.75	3.69
	Anterna Power Distribution Specific Cost	14.52	3.15	15.16	3.72	15.03	3.80
	Phase Control Specific Cost	14.50	3.41	14.60	3.15	14.69	3.37
	'Naveguide Soecific cost	14.58	3.37	14.73	3.37	14.60	3.73
	Solar Array Concentrator Specific Cost	14.79	3.45	14.62	3.64	14.97	3.50

	Table 6.3 The Effect on Cost and Cost Risk* of Changes in the State-of-Knowledge (continued)						
	Iten	Range of Values (S6illions, 1974)					
		Best		Most Likely		Horst	
		Mean Cost	$\begin{aligned} & \text { Cost } \\ & \text { Risk } \end{aligned}$	Mean Cost	Cost Risk	Mean Cost	$\begin{aligned} & \text { Cost } \\ & \text { Risk } \end{aligned}$
	Conducting Structure Soectific Cost	14.57	3.49	14.32	4.05	15.22	3.67
	Mrscellaneous Equipment Specific Cos:	14.87	3.84	14.61	3.41	15.05	3.73
	Rectenna Site Specific Cost	14.63	3.59	14.38	3.55	14.89	3.90
	PF-DC Converter Soecific Cost	14.98	3.62	14.90	3.57	15.17	3.44
	Dower Interíace Specific Cost	14.68	3.60	14.68	3.60	14.74	3.53
	Phase Control Specific Cost	14.78	3.56	14.67	3.65	14.75	3.53
	"Cost Risk" is the standard geviation of the cost estimate. ** The nomnal case incluces: for best value, a deterministic-cost estmate using the best values for each design factor, for most likely value, a Morite Carlo simulation using the full range for each design factor; for worst value, a deterministic cost estimate using the worst values for each design factor.						

Finally, the third group of variables includes those variables that are weak cost and risk drivers. In general, the effect of technology development in these areas is not of sufficient magnitude to be resolved by the risk analysis model.

As a note of caution in the interpretation of values in Table 6.3, it should be recognized that these values derive from a Monte Carlo simulation, that is, they are obtained by sampling probability distributions. They are not the result of precise computation. Thus, these data contain some amount of noise. For example, determination of expected costs is accurate to about $\$ 200 \mathrm{milli}$ ion one sigma or about ± 1 percent. Determination of risk is also accurate to about the same absolūte amount, or about ± 5 percent. This amount of noise accounts for the apparent inconsistencies in some of the results presented in Table 6.3, particularly with respect to the Group 3 variables.

In summary, the risk analysis model has been used to identify the technology areas that are the major drivers of cost and risk--the critical technologies. It is concluded that there are two major areas of critical technology:

1. The ability to construct large systems in space, and
2. Solar cell blanket mass, cost and efficiency.

Figure 6.2 Effect of Removing Uncertainty on Cost Components-Major Cost- and Risk-Driving Factors

Of these technology areas, productivity in space is key. It is recommended that:

- These conclusions be reviewed by a "panel of experts," and
- Assuming that their validity is confirmed, these technology areas should be addressed by detailed study early in the continuing program.

6.2.1 Analysis of Alternative Solar Cell Materials

Threé solar cell materials were studied as candidates for the, energy conversion subsystem of the SSPS: single crystal silicon (Si), galliumarsinide (GaAs) and cadmium-sulfide (CdS). The present state-of-knowledge regarding these different materials is substantially different. Si cells have a long history of use in space, whereas cells made of the other materials are presently laboratory curiosities. Nonetheless, GaAs and CdS materials offer the possibility of being lower cost alternatives. The problem is that very little is known about these materials and, therefore, data with respect to them must be considered highly speculative. (To some extent, this is also true of very thin, low cost Si cells, despite the present background of knowledge regarding Si solar cells in general.) This section deals with what is not known about alternative solar cell materials. From the work documented in Section 5 of this volume, it is concluded that materials other than Si deserve consideration. The efforts devoted to studying alternative materials should be focused to provide the best possible selection with the minimum investment in resources.

Three areas of uncertainty in solar cell materials technology were examined. These include solar cell efficiency, blanket mass and blanket cost. An analysis of the effect of learning about these three parameters was conducted using the same methodology that is described above for the identification of critical technologies. The results of this analysis are shown in Figure 6.3. The conclusion is that the driving area of uncertainty for all solar cell materials is the cost of the solar array blanket. It must be recognized that the cost that will actually apply in the 1990s, when an SSPS might be built, cannot be known before the date when the system is built. What can be known today, however, is the upper limit of the solar array blanket cost. Thus, a major focus of solar cell research over the next several years should be the establishment of an acceptable upper bound on this cost. By so doing, a major area of risk in the SSPS program i.s effectively controlled. It is also recommended that the solar cell material to be used in the final satellite solar power system not be chosen now or, for that matter, in the near future. Rather, the proper approach is to perform research on a number of alternative materials at this time, and to remain flexible in the selection of the material that will ultimately be used. This will permit the decision to be made when the state-of-knowledge on alternative solar cell materials is substantially improved.

Figure 6.3 The Effect of Removing Uncertainty in Components of Solar Cell Technology for Alternative Solar Cell Materials

6.2.2 Analysis of the Effect of Construction Time

A brief analysis was conducted to determine the economic effect of the time required for SSPS construction and transportation to station in GEO. The analyses documented in this volume all assume that the capital expenditure for an SSPS unit is made as a lump-sum payment two years prior to the initial operation date of the system. A discount rate of 7.5 percent is then used to determine the present value of the capital cost referenced to the initial operation date. The period of time between the lump-sum payment and the initial operation date of the system is referred to as the costequivalent construction time. It is defined such that the present value of the lump-sum payment and the present value of the actual construction cost stream, referenced to the initial operation date of the system, are equal. Increasing the cost-equivalent construction time increases the present value of the total life cycle cost of the system, as shown in Figure 6.4. This figure clearly shows the need for maintaining a short cost-equivalent construction time. This means, among other things, procurement of hardware items on a schedule that is closely keyed to the satellite construction schedule. The magnitude of the economic impact of construction time on overall-SSPS economics suggests that added attention should be given to the development of production schedules for candidate satellite configurations.

Figure 6.4 The Effect of the Time Required to Construct and Transport One SSPS to GEO on the Present Value of Total Life Cycle Cost
*
*This is the time increment between the time that a present valueequivalent lump sum payment would be made and the initial operation date of the system. The present value-equivalent payment is a payment of magnitude equal to the undiscounted unit production cost made at a point in time when the present value of both the lump sum payment and the actual cost stream, discounted to the initial. operation date, are equal.

7. ANALYSIS OF ALTERNATIVE PROGRAM PLANS

Previous sections of this yolume have been directed at the deyelopment and use of a risk analysis model for the assessment of cost-risks associated with the production of an SSPS unit (satellite and ground station). This section makes use of the results of the risk analysis to assess a number of alternative SSPS development program plans and to gain insights necessary for improying the proposed plans. The programatic analysis documented in this section was conducted in two steps during the second and third study phases. First, during the second study phase, three development programs, Programs I, II and III, were formulated and eyaluated. The results are based on the cost model and input data developed during that phase of the study. Then, based on the insights deyeloped from the analysis of the first three development programs, two new development programs, Programs IV and V, were formulated and evaluated. As a part of this effort, alternative solar cell materials were evaluated in the context of the overall development program. The results reported for Programs IV and V are based on the cost model and input data as updated during the third study phase.

The discussion below treats Development Programs I, II and III first in their entirety. Then Programs IV and V are discussed separately in Section 7.5.

7.1 Direct Development Program

The Program I, Direct Development, schedule is shown in Figure 7.1. The program begins with a supporting research and technology (SR\&T) program in 1977 and proceeds into the design, development, test and evaluation (DDT\&E) phase in 1984. The decision to produce the first unit is made in 1987 and the initial operation date of the first unit is December 31, 1991. The final social and environmental (FS\&E) impact statement is required on December 31, 1983; the technology is set as of December 31, 1986; and the heavy lift launch vehicle (HLLV) is required on January 1, 1989.

After the initial operation date (IOD) of the first unit, it is assumed that four years elapse before the IOD of the second unjt. This is because the first satellite is essentially a full-scale test and time is required for redesign of the satellite to achieve lower second unit costs. Beginning with January 1, 1996, new satellites become operational at the rate of two per year through 1999. Then, beginning on January 1, 2000, four new satellites become operational each year, until a total of 109 satellites have been produced.

A more detailed description of the program plans is given in volume II of this report.

7.2 GEO Test Satellite to Full-Scale Program

The Program II, GEO Test Satellite to Full-Scale, schedule is shown in Figure 7.2. The program begins with an SR\&T phase in 1977. A preliminary

Figure 7.1 Program I Schedule

Figure 7.2 Program II Schedute
social and environmental impact statement is required on December 31, 1979, and on January I, 1980 the decision to develop a 500 MW GEO test satellite is made. The IOD of the GEO test satellite is December 31, 1985, Commitment to the DDT\&E of the full-scale satellite is made on January $1,1985$. In reality, this decision would probably be reviewed after the IOD of the GEO test satellite; however, this degree of freedom ịs not considered here. A commitment to produce the first satellite is made on January 1, 1987, and the satellite IOD is December 31, 1991. The decision to proceed with the implementation of subsequent units is made on January $1,1992$.

Implementation of subsequent units proceeds with the second unit IOD on January 1, 1994. Two new units become operational each year through 1999, then four new units are added each year, until 109 units have been produced. In this program, only a two-year lag is proyided between the IODs of unit one and unit two, since the additional information gained from the GEO test satellite should enable better design of the first unit, thus requiring less redesign of the second unit than in Program I.

7.3 LEO and GEO Test Satellites to Full-Scale Program

The Program III, LEO and GEO Test Satellites to Full-Scale, schedule is shown in Figure 7.3. The program begins with an SR\&T phase in 1977. Conmitment to a LEO test satellite is made in 1980 and the IOD of the satellite is December 31, 1985. Commitment to a GEO test satellite is made on January 1 , 1985, and the IOD of the GEO satellite is December 31, 1990. Commitment to the DDT\&E of the full-scale satellite is made January 1, 1992. The.IOD of the first full-scale unit is December 31, 1995. The decision to implement units 2 through 109 is made on January 1, 1996.

Implementation of units 2 through 109° begins with the IOD of the second unit on January 1, 1997 and proceeds at the rate of two per year through 1999, then four per year through unit 109. In this program, there exists only a one-year lag between the IOD of the first and second units because, first, two test satellites are flown in this program and, second, the 100 of the first unit is four years later than in Programs I and II. Thus, the first unit should be essentially a production unit and should require very little redesign.

It should be noted that these three programs are approximate and not yet well-developed. Assumptions had to be made to perform the following analysis.

7.4 Decision Tree Analysis of Alternative Program Plans

The analysis of alternative program plans begins with an assessment of the current state-of-knowledge relative to the present configuration SSPS. This is assessed in Section 5 and results in the probability distribution of second unit costs shown in Figures 7.4 and 7.5 , which provide both the cumulative distribution and probability density functions, respectiyely, of the present value of the total (life cycle, that is, capital investment plus operation and maintenance) unit costs referenced to the initial operation

Figure 7.3 Program III Schedule

Figure 7.4 Cuniulative Distribution Function Of Total (Life Cycle) Second Unit Costs

Figure 7.5 Probability Density Function Of Total (Life Cycle) Second Unit Costs
date of that unit. Throughout the analysis which follows, this cost ị the key decision yariable. Note that the first unit cost is not important here, insofar as the first unit is essentially a prototype and its costs do not necessarily relate to the second and subsequent uitt costs. In the computation of the unit costs shown, it is assumed that the capital inyestment for the SSPS unit is made in a lump sum payment two years prior to the initial operation date of the unit, and a discount rate of 7.5 percent is used. In addition, the following assumptions are made;
7. The beginning-of-life power of each unit is 5258 MW .
2. The SSPS power output decreases at 1 percent per year from the beginning of life throughout the unit lifetime.
3. Each SSPS unit has a lifetime of 30 years.
4. Each SSPS unit is producing power 95 percent of the time.
5. Implementation of second and subsequent satellites is described in Sections 7.1, 7.2 and 7.3. That is, the initial operation date of the second unit is as follows:
Program I - January 1, 1996
Program II - January 1, 1994
Program III - January 1, 1997.

Thereafter, units come on line at the rate of two per year through 1999, then at the rate of four per year until 109 units have been produced.
6. The cost of the third and subsequent satellites is related to the cost of the second satellite according to a 90 percent learning relationship. That is, the cost of the nth unit, C_{n}, is given as a function of the cost of the second unit by the relation

$$
C_{n}=C_{2} \quad 0.859^{\ln (n-1)}
$$

7. The price of power at the rectenna busbar is assumed given on January 1, 1992. After that date, the real prịce increases at the rate of 1 percent per year.

It is assumed that a decision to select one of the three alternative programs will be made on January 1, 1977, thus all following data are referenced to that date. Under the conditions of the above assumptions, the present value of gross revenues of each program is given as a function of the price of power at the rectenna busbar on January 1, 1992, in Figure 7.6. Likewise, the present yalues of total life cycle costs for units 2 through 109 are given as a function of the present value of the second unit total cost referenced to the initial operation date of that unit in Figure 7.7. From these figures and from the present values of costs of each program (including operation and maintenance costs of the first unit), the net present value of each program

Figure 7.6 Present Value of Gross Revenues Generated by Each Program
is determined as a function of the second unit cost and the price of power on January 1, 1992, as shown in Figure 7.8. The price of power in this figure does not include an allowance for taxes and insurance. Thus, if taxes and insurance are 8.6 mills/Wh as previously estimated, the curves labeled $20 \mathrm{mills} / \mathrm{kWh}$ would actually represent a total price of $28.6 \mathrm{mills} / \mathrm{kWh}$ at the rectenna busbar on January 1, 1992. In the analysis that follows, it is assumed that the price of power at the rectenna busbar on January 1, 1992 is $20 \mathrm{mills} / \mathrm{kWh}$ (or $28.6 \mathrm{mills} / \mathrm{kWh}$ including $8.6 \mathrm{mills} / \mathrm{kWh}$ allowance for taxes and insurance).

The alternative program plans are now analyzed to determine theị expected values. As outlined in Section 3, a go-ahead decision on a specific program plan should be predicated on the basis that that plan has a positive expected value and that risks associated with the plan are adequately controlled. Selection of the best program plan would normally be to choose that plan that yields the highest expected yalue at the desired decisionmaking confidence leyel. The confidence leyel for decision making chosen for this analysis is 80 percent. While this is a moderately high confidence level, it is not so high as to arouse disputes oyer the accuracy of the tail (high end) of the distribution shown in Figure 7.4.

Present Value of Total Life Cycle Costs for the Second Unit Referenced to the Initial Operation Date of that Unit, $\$$ billons (1974)

Figure 7.7 Present Value of Total Life Cycle Costs for Units 2 Through 109

Figure 7.8 The Net Present Value of the Alternative Programs

To proceed with the analysis, the program plans outlined above are expressed in the form of decision trees as shown in Figures 7.9, 7.10 and 7.1 At each decision point in these decision trees, there is a specific criteri based upon which the decision will be made to continue or to terminate the program. These criteria are deriyed as shown in Figures 7.12, 7.13 and 7.1 First, the state-of-knowledge as of January 1, 1977 is assessed, as shown i Figure 7.4. Then, the 80 percent confidence state-of-knowledge is estab-lished--with 80 percent confidence, the second SSPS unit can be produced at a cost of $\$ 24.1$ bilition (1974) or less. This state is plotted as a point il each of Figures 7.12, 7.13 and 7.14. Next, the "break eyen" cost of the second unit is computed for each program pian. This is the cost of the second unit for which there is exactly zero net present yalue for the entir, program (present value of costs equals present yalue of reyenues). This cost, for each program plan, is taken as the technology target and is also plotted. This shows the cost that the second unit must come in at or below for a "successful" program. Thus, in Program I a successful program is defined as one which proves that the second unit costs are equal to or less than $\$ 18.9$ billion (1974) by January 1, 1992--the initial operation date of the first unit and the completion date of the development program. At that date, a decision will be made to implement the second and subsequent units or to discontinue the program with the operation of the first unit. For simplicity, the decision rule is then taken as a linear improvement in the 80 percent confidence bound of the technology during the development progran These curves are shown as the 80 percent confidence technology requirements for each program. If the technology development is such that the 80 percent confidence technology bound remains under the 80 percent confidence technology requirement throughout the development program, then the development program will be a success.

Many other decision rules could be formulated. In fact, the one discussed here is probably not the best. For example, the target technology could be based on breaking even only with respect to unsunk (that is, uncommitted) funds. This would improve the chance of success of the program, but would not assure payback of the development costs. In addition, there is nc reason that the technology requirement must improve linearly with time, a1though this rule does seem to lead to quite logical technology requirements.

The process of program control consists of "testing" the technology at each decision point. Based on the results of this test, the program continues or is terminated. The test consists of measuring the state-of-knowledge at each decision point at the 80 percent confidence leyel.

In the computation of expected yalue for each program plan, it is neces sary to assess the prior probabilities (that is, the probabilities based on today's state-of-knowledge, before the test takes place) that each test will be passed or failed. To do this, each branch of the decision tree is though of as a process of buying information on the cost of the second unit. As such, the work performed on these branches does not change the cost of the

Figure 7.9 Decision Tree Representation of Program I

Figure 7.10 Decision Tree Representation of Program II

Figure 7.11 Decision Tree Representation of Program III

Figure 7.12 Decision Rule For Program I

Figure 7.13 Decision Rule For Program II

URIGINAL PAGE IS
 OF POOR PUALE IS

Figure 7.14 Decision Rule For Program III
second unit, * rather it determines with increasing accuracy what that cost is. Thus, a key part of this analysis is an assessment of the accuracy with which the second unit cost will be known at future points in time. To perform this assessment, the improyements in the states-of-knowledge of each yariable of the cost model resulting from work performed on each branch of each decision tree have been subjectịyely estimated, These estimates are shown in Appendix F. Then, the risk analysis model was run to establish the magnitudes of the cost-risks associated with each decision point. The values of the resulting standard deyiations of cost estimates, σ_{A}, σ_{B}, etc., at each decision point are shown in Figures 7.9, 7.10 and 7.11.

Now, given the 80 percent technology requirement and given the states-of-knowledge at each decision point, it is possible to compute the prior probabilities that each branch of each decision tree will result. It is first necessary to establish the expected yalue technologies at each decision point. This is done by assuming that the form of the probability distribution of second unit cost is Guassian (or normal) and that the 80 percent cumulative probability point occurs, for each decision point, on the 80 percent confidence technology requirement line. Thus, the required state-ofknowledge at Decision Point A of Program I is expressed as a Gaussian distribution with a standard deviation of $\$ 2.863$ billion (1974) and an 80 percent cumulative distribution point of about $\$ 21.7$ billion (1974). The expected value technology requirement can be derived as the mean of this distribution. Thus, the expected value technology requirement lines shown on Figures $7.12,7.13$ and 7.14 represent the required expected values of cost estimates made at the time of the corresponding decision points. The methodology for computing the prior probabilities of taking each branch on a decision tree is given in Appendix G.

The resulting values are shown in Figures 7.9, 7.10 and 7.11. Finally, the expected value of each program is computed as the sum of the outcomes for each path through the corresponding decision tree weighted by the probability of occurrence of the path. The expected values for the three program plans considered are as follows:

| Program I: | $+\$ 7.51$ billion (1974) |
| :--- | :--- | :--- |
| Program II: | $-\$ 7.10$ billion (1974) |
| Program III: | $-\$ 0.92$ billion (1974). |

Under the specific set of assumptions chosen for this analysis, only Program I has a net positive expected yalue. Thus, of the three specific program options examined during the second study phase, one could only economically justify undertaking Program I. Howeyer, recall that this analysis is subject to many assumptions and preliminary cost estimates. For example, decision making is conducted at the 80 percent confidence level. At a lower
*This is because throughout the analysis, the cost of the second unit is taken to be the estimated cost that will occur, as a result of the planned technology programs, at the time that the second unit is produced.
confidence level, or at a higher price for power at the busbar, Programs II or III or a yariant of these programs may become the desired aiternatiye. The appropriate confidence leyel for decision making might not be 80 percent; this needs to be examined in further studies and the uncertainty relatiye to the price of power at the busbar should be incorporated into future analyses. Changes in other parameters could also alter the aboye result.

The reason that the test satellites proposed haye negative net value becomes apparent from an examination of the program decision trees. The proposed test satellite subprograms cost more than the economic yalue they provide; thus, they add negative value to the oyerall program. Howeyer, this conclusion pertains only to the test satellite subprograms proposed in Programs II and III. It is inferred here that other test satellite subprograms might be developed with a net positive yalue. These programs could make use of smaller test satellites to "buy" essentially the same information at a substantially reduced cost. This logic forms the rationale for the formulation of Programs IV and V, which are discussed in the next section.

7.5 Analysis of Programs IV and V

As a result of the insights gained from the analysis of Programs I, II and III as discussed above, two new programs were formulated and analyzed during the third study phase. These two programs are very similar to each other and are, thus, both described together in this section. The program plans corresponding to Programs IV and V are shown in Figure 7.15. A technology development program begins with research and studies in 1977 and proceeds through about 1985. This program involves ground and orbital tests, including a number of shuttle flight tests on such things as solar cell materials, structures and construction techniques, and microwave power transmission. In 1980, as a part of the overall technology development program, a 150 kW test satellite subprogram is initiated. In 1983, also as a part of the overall technology development program, a 2 MW test satellite subprogram is initiated. The decision to design, develop, test and evaluate (DDT\&E) the first full-scale prototype is made January 1, 1987 and the decision to produce the full-scale prototype is made January 1, 1992. The first fullscale satellite becomes operational on December 31, 1995, and the decision to proceed with the implementation phase is made on January 1, 1996. In the implementation phase, it is assumed that four new satellites become operational each year, beginning on January 1, 1998 with the second unit, until a total of 120 satellites have become operational.

The differences between Programs IV and V are detailed in Table 7.1 and lie entirely in the test satellite subprograms. In Program IV, the 150 kW test satellite is built and remains in LEO. It produces 150 kW of power continuously (330 kW peak power with storage) and is used to power a space station. In Program V, this test satellite is sized to produce 150 kW of power (peak) and is built in LEO and transported to GEO, where it is used to conduct a number of experiments, including tests on plasma effects with large solar arrays in GEO, solar concentration, and microwave phase front control in the presence of a ground-heated ionosphere. The satellite will have a 100 -meterlong linear array transmitting antenna. The 2 MW test satellite in both

Figure 7.15 Programs IV and V Schedule

Parameter	Program IV	Program V
Power Level	150 kbl Cont. (330 kd Peak)	150 kN
Mass	13,000-21,000 kg	8,000-10,000 kg
1 Antenna	None	105 m Linear Array
Conc. Ratio	1	1.7 Design/1.5 Effective
Use	Power Space Station	Conduct Tests--Solar conc., plasma effects, microwave trans., ground heat lorosphere
Remarks	Stays in LEO	Built in LEO, trans. to GEO
2 制 Test Satellite		
Power Level	2 MW	2 NH
Mass	$20,000 \mathrm{~kg}$	$35,000-45,000 \mathrm{~kg}$
Antenna	$20 \mathrm{~m} \times 20 \mathrm{~m}$ Subarray	$20 m \times 20$ mi Subarray and 1000 m Linear Array
Remarks		Conduct ionospheric and pnase control eesis

Programs IV and V will be placed in GEO and used for microwave tests. However, in Program IV, the test will be performed using a $20 \mathrm{~m} \times 20 \mathrm{~m}$ antenna subarray whereas, in Program V, the satellite will have both a $20 \mathrm{~m} \times 20 \mathrm{~m}$ subarray and a 1000-meter linear array antenna.

The costs of Programs IV and V are summarized in Table 7.2 and a decision tree for these programs is shown in Figure 7.16. The programmatic analysis was conducted for Programs IV and V for an SSPS configuration making use of each of the three candidate solar cell materials examjned, Si, GaAs and CdS. The assumptions made on the size, power production, ayailability, and costs for the program are the same as those made for Programs I, II and III in Section 7.4, except that the power degradation in time is taken to be a function of the solar cell material as described in Section 5.3. The analysis then proceeds precisely as described aboye for Programs I, II and III.

The results of the programmatic analysis are summarized in Table 7.3. All of the programmatic alternatives examined in Programs IV and V are substantially better than those examined in Programs I, II and III. The results

Figure 7.16 Development Program Decision Tree for Programs IV and V--Data Shown for Program V, Si Solar Cell Configuration SSPS

Table 7.2 Programs IV and V Costs		
	$\begin{aligned} & \text { Decision } \\ & \text { Date } \end{aligned}$	$\begin{gathered} \text { P.V. } \\ \text { Cost, }{ }^{\circ} \$ 8 \end{gathered}$
Program IV Research and Studies LEO Test Satellite (150 kW) GEO Test Satellite (2 MN) DOT\&E Production of Prototype (First Unit) Implementation (Total 120 Satellites)	$\begin{array}{r} 1977 \\ 1980 \\ 1983 \\ 1987 \\ 1992 \\ 1996 \end{array}$	$\begin{aligned} & 0.070 \\ & 0.578 \\ & 1.216 \\ & 3.257 \\ & 5.513 \end{aligned}$
Program V Research and Studies LEO Test Satellite (150 kW) GEO Test Satellite (2 MW) $00 T 8 E$ Production of Prototype (First Unit) Implementation (Total 120 Satellites)	$\begin{aligned} & 1977 \\ & 1980 \\ & 1983 \\ & 1987 \\ & 1992 \\ & 1996 \end{aligned}$	$\begin{aligned} & 0.070 \\ & 0.679 \\ & 1.413 \\ & 3.247 \\ & 5.521 \end{aligned}$
*Present value of cost referenced to January 7.5 percent.	disco	rate of

for Programs IV and V indicate a significant adyantage for CdS solar cells and with GaAs solar cells being the second fayored option. Howeyer, too little is really known about these materials at this time to simply accept one or the other of these materials as the appropriate material for the SSPS in lieu of Si. But the results strongly suggest that the deyelopment program should not limit itself to the consideration of si solar cell mate-' rial alone. More work is necessary to define a solar cell material deyelopment program that, in its early phases, examines a broad range of potential materials and focuses on one or two materials only after much more is known about the full range of possibilities.

A second major area of interest in the comparison of Programs IV and V to Programs I, II and III is in the probability of success of the entire program that is estimated for each program alternative. Here it is seen that Programs IV and V both have about twice the chance of succeeding that Programs I, II and III have. This is due to two major effects. The first is that the risk analysis performed for the SSPS configurations examined in

Table 7.3 Results of Programmatic Analysis			
Program	Solar Cell Material	Probability of Success	$\begin{aligned} & \text { Expected } \\ & \text { value, } \end{aligned}$
1	Si	. 236	1.51
II	Si	. 204	-1.10
III	Si	. 181	-0.92
IV**	si CdS GaAs	$\begin{aligned} & .380 \\ & .560 \\ & .371 \end{aligned}$	$\begin{aligned} & 12.29 \\ & 25.60 \\ & 18.78 \end{aligned}$
V**	Si CdS GaAs	$\begin{aligned} & .389 \\ & .570 \\ & .379 \end{aligned}$	$\begin{aligned} & 12.43 \\ & 25.86 \\ & 19.00 \end{aligned}$
*Present value on January 1, 1977 at a discount rate of 7.5 percent. **For LEO assembly using the small factory-1n-space.			

Programs IV and V shows more cost-risk than the analysis performed for Programs I, II and III; however, the expected value of the costs was about equal for all the alternatives analyzed. Thus, not only is there a higher chance of a higher cost resulting for these alternatives, but there is also a higher chance of a lower cost resulting. In the context of a program plan that adequately controls high-side risk, this added risk is beneficial because it affords, at the same time, an increased chance for a more economical SSPS. That is to say that, in the early phases of a research and development program, it can be economically beneficial (and justifiable) to take risks in order to seek out potentially beneficial opportunities. The second effect deals with the fact that Programs IV and V appear to "buy information" in a more effective manner than do Programs I, II and III. , As discussed in Section 8, this results in a lower probability that a successful development effort will be mistaken for an unsuccessful one and the program terminated. It also means that there will be a lower probability of continuing a program that should be terminated.

The results of the above analysis clearly show that Programs IV and V are better than Programs I, II and III. They do not show, nor are they. meant to imply, that Program IV or V is the best program, or even the "right" program, to pursue. But they are economic and they are effective programs; and pursuit of one of them could probably be economically justified, even
after a substantially more in-depth analysis and reyiew. Howeyer, it is recommended that neither of these programs be pursued; but rather, that an effort should be deyoted, first, to the formulation of eyen better programs. The direction to pursue at this point would be one of finding parallel development paths, such as in the area of solar cell materịals, in order to increase the overall probability of success for the program.

As a final warning, the results of the above analysis depend upon the assumptions made. Changes in the assumptions may change the conclusions. Thus, while the insights gained may be yaluable, decisịons should be based on this analysis only after a thorough review of the cost model, the cost model (state-of-knowledge) data and the assumptions made for the analysis.

8. PROGRAMMATIC RISK ANALYSIS

Given the results of Section 7, a brief programmatic risk assessment is possible. This discussion will focus on Programs I, IV and V and drav comparisons between them. Program I is the only program, of the specific alternatives analyzed in the second study phase, that has a positive expected value. This development program consists of three major subprograms: an SR\&T subprogram, a DDT\&E subprogram and a first unit production subprogram. Success in each of these subprograms can be defined as achieving a state from which a decision to continue the program can be justified. Then, from Figure 7.9 , it is seen that the probability of a successful SR\&T subprogram is 0.376 , the probability of a successful DDT\&E subprogram is 0.692 given that the SR\&T subprogram is successful and the probability of a successful first unit production subprogram is 0.905 given that. the DDT\&E subprogram is successful.

The probability of success of the program is the product of the probabilities of success of each subprogram. Thus, there is a probability of 0.235 that Program I will be successfully completed. This compares with a probability of about 0.32 (from Figure 7.4) that the current configuration could be economically viable given Program I. Thus, the program as presently planned yields about a 27 percent chance of rejecting a viable outcome. That is, given that the current configuration is economically viable, there is about a 27 percent chance that it will be classified as not viable, resulting in a program failure. This is the result of inaccuracies in the measurements of projected second unit costs at Decision Points A and B. This loss could be reduced if more accurate measurements could be obtained at about the same cost.

Program V consists of five development phases: a research and studies subprogram, a 150 kW test satellite subprogram, a 2 MW test satellite subprogram, a DDT\&E subprogram and a first unjt production subprogram. The probabilities of success for the silicon solar cell configuration are respectively: $0.539,0.832,0.924,0.973$, and 0.967 . This yïelds a total probability of success for Program V of 0.389 for this configuration. One difference between Programs I and V that results in Program V having a higher probability of success lies in the cost model. While the cost model used to evaluate system costs for Program V incorporates additional areas of uncertainty compared to the cost. model used in Program I, these additional areas of uncertainty result in a higher level of cost-risk which subsequently yields both a higher probability of a lower cost and a higher probability of a higher cost. It is the higher probability of a lower cost that is pilayed upon in Program V to increase the probability of success of this program. Use of the factory-in-space concept for construction of the satellite also has a beneficial effect on program economics.

Comparing the probability of success of Program V, 0.389, to the theoretical maximum probability of success for that program as obtained from Figure $7.16,0.505$, it is seen that there is about a 23 percent chance of rejecting a viable outcome. This is a 15 percent reduction over Program I. That is to say, the economic analysis above indicates that one significant reason that Program V is more likely to be successful than Program I is that it is less likely that an incorrect economic assessment of the program at some future decision date will result in its termination. Properly structuring a development program to buy information for future decisions so as to insure that these decisions are made under the best possible state-of-knowledge is key in obtaining a high probability of success in a program.

It is also of interest to compare Programs IV and V for, say, the silicon solar cell configuration. These two programs are similar in most respects, differing only in the 150 kW and 2 MW test satellite subprograms. Program V is more costly than Program IV, yet Program V has a higher probability of success. Surprisingly, it does this while requiring the second unit total life cycle cost to be lower than is necessary for break-even in Program IV. The reason that this occurs is simply that Program V buys information to proceed through the program in a more efficient way than does Program IV. This example serves to indicate that there is an optimum funding level for an SSPS development program and that it is not necessarily true that the minimum cost program is either the best from an engineering point of view or from an economic point of view. In fact, the analysis described in this report embeds the engineering factors in the economic analysis.

A more detailed programmatic risk analysis is not possible under the resources of the present effort; however, it should be performed and the framework necessary to do it resides partly within the existing risk analysis model. The procedure for a more detailed risk analysis derives from the notion that the goal of the SSPS development is to provide a state-of-knowledge based upon which a decision can be made to proceed with the implementation of the second and subsequent units and that the efforts expended in the development program are, in fact, directed at measuring the total unit cost of the second unit. Thus, the output of each development subprogram is a measurement of a system parameter or parameters vis a vis the current configuration. The goals for the measurement accuracy of each parameter at each decision point can be derived from the tables in Appendices D and F. The next step in the programmatic risk assessment will be to assess the expected level of success in achieving each of the measurement accuracy goals thus set.

It is almost a certainty that the reader is confused at this point about the interpretation placed upon the activities undertaken in a development program. Thus, the above points are explained again. First, from the economic point of view, the justification for proceeding with a development program lies in the belief that an economically viable technology implementation can be achieved. Such a belief is valid only if it finds a basis in a postulated system configuration. Then, all economic measures must be made against this system configuration. It is not possible to compute economic measures against abstract ideas, just as it is not possible to compute
engineering measures against abstract ideas. For example, an engineer cannot answer the question, what are the stresses in a beam? He must be told the design of the beam and the loadings placed upon it. So must the economist be given such "design" information to perform his analyses. And just as the engineering answers change as the design changes, so also do the economic answers.

Now, the current SSPS configuration is not an existing piece of hardware. It is, in fact, a concept that might be realized at some future date. Insofar as that concept remains unchanged, all the technology development programs and analyses performed on it are only exercises of measuring parameters that describe it. Thus, until the configuration is changed, the development program is, strictly speaking, a measurement program. As such, it should be treated as a measurement program and the goals of each subprogram should be expressed in terms of measurement accuracies.

Everyone knows that design changes occur throughout a program. Design changes are made for basically two reasons: first, because the postulated configuration, when adequately measured, is found to fall outside of allowable system bounds and, second, because targets of opportunity arise to improve upon the existing postulated configuration. In either case, after the design change is made, both the engineer and the economist are dealing with a new system and must adjust their analyses accordingly. Such changes cannot be anticipated in advance. If they could, the system would be configured in the changed configuration in the first place. Thus, analyses are confined to deal with the current configuration and to base measures of system performance against this configuration.

After each design change, the program reverts back to a measurement program and remains such until the next design change. Thus, a development program can be thought of as series of measurement programs separated by discontinuties which represent design changes. To view a development program in this context offers the possibility of achieving a new dimension in the control of technology development and proarammatic risk.

9. UTILITY INTERFACE ANALYSIS

An effort was made during this study to ịdentify issues which might be important concerning the compatibility of the characteristics of the current configuration SSPS with the demands of electric utilities in the 1990 time period. How an SSPS conforms to the needs of utilities has not been analyzed and might have a significant impact on system economics. If some utility interface requirement were found to be critical, such a requirement would have to be weighed in the design process of SSPS components related to that requirement.

Three potential issues were identified by reviewing the present structure and requirements of utilities and the trends that are projected for the next 15 to 20 years. Then, the salient performance characteristics of SSPS were determined in order to examine the effects of yariations in these characteristics on utility design and costs. The most important SSPS features were found to be output power level, reliability and power level fluctuations (both predictable fluctuations like eclipses and random ones due, for example, to atmospheric attenuation).

The approach used for analyzing the effect and criticality of these characteristics is described below. It should be emphasized that much more detailed analysis is required--the modelling effort to do so was beyond the scope of this study. This analysis was intended only to delineate whether any of the above factors are likely to represent significant economic issues.

9.1 Effects of Reliability

Electric utilities design their generating and transmission systems to assure a standard level of reliability (usually a loss-of-load probability of one day in ten years*). This requires the utilities among other things to install greater generating capacity than necessary to meet the expected peak demand, so that if the peak loads deviate from the projections or generating capacity is lost through unscheduled outages, the load will not exceed the capacity. This installed capacity reserye margin represents a major cost component for utilities, and great care is taken in system design and scheduling to minimize the reserye margin required to maintain the design level of reliability. There are seyeral different approaches used by utilities to calculate what the appropriate reserye margin should be. The approach generally used now is to model the sizes and reliabilities of the units in a projected system, determining all of the possible combinations of

This means that, given the sizes and reliabilities of the units in this system and the projected annual peak loads, the probability of the load exceeding the generating capacity is one day (cumulative) in ten years.
outages among the units, the resulting leyel of generation for each combination, and the probability of this leyel of generation occurring. These probabilities of generation level are combined with a projected probability distribution of daily peak demands for a given year to calculate the total probability of some loss of load occurring. If the resulting relịability is not adequate, more generating capacity has to be added to the planned system.

There are a number of factors which affect utility system reliability which ought to be included in such a model. The size of a new unit will create a disproportionate increase in the reserye requirement if it is very large with respect to the other units in the system or large with respect to the total system capacity. This effect will decrease as other large units are added and/or as the total system capacity increases. An example of the trend toward larger unit sizes is proyided in Figure 9.1, which shows the distribution of sizes of units to be added this decade and next decade in the Eastern Central Area (ECAR), shown in Figure 9.2. The total capacity in this area is expected to increase from 55 GW in 1970 , to 116 GW in 1990. The effect of SSPS unit size is discussed later.

Figure 9.1 Cumulative Distribution of Steam Generating Units Added Between Years (Percent of Installed on Generating Units Sizes Equal or Greater Than Abscissa) For the East Central Region (Source: Federal Power Commission, The 1970 National Power Survey - Part II)

SLITTVAO Yood HO
SI ©DV TVNTMY
Figure 9.2 Geographic Area of the Eastern Central Area Reliability Coordination Agreement (Source: Federal Power Commission, Annual Report 1973)

Another key factor ịn utility system relịability is the forced outage rates for the indiyidual units which are determined hịstorically. A forced outage is caused by the faịlure of a component which causes the immediate or nearly immediate* shutdown of the unit. The experience of the utility industry is that the larger the unit the higher the forced outage rate and also that new units have higher outage rates during the initial break-in period (usually the first two years, but sometimes as long as six years). There are other terms used in the industry that relate to reliability, such as "ayailability", which is the fraction of a time period during which a generating unit is available for operation whether or not it is in operation. The difference between the amount of time that a unit has not been forced out and the amount of time it is ayailable includes the time for scheduled maintenance and the time it is not used. Since these outages can be scheduled to occur during off-peak periods when sufficient alternate capacity exists to compensate for the outage, whereas forced outages are as likely to occur during peak demand periods as during off-peak periods, it is the forced outage rate that is usually used to calculate the reserve requirements.

Increasing the number of generating units in a system and increasing the number of interconnections with other systems through power pooling both have the effect of reducing required reserve margins. The seasonal distribution of peak loads can also haye an effect on reserve margin; if there is wide variation between seasonal peaks, then planned outages can be scheduled for lower demand seasons without requiring reserve capacity. If, however, the load is fairly balanced from season to season, then it may be necessary to install reserve capacity to allow planned outages, such as those necessary for maintenance.

In recent years the utility industry has been experiencing a need for increasing reserves, primarily because of the introduction of large (800-1000 MW and larger) new units to systems composed of much smaller (100300 MW) units. In addition, the reliabilities of the new units have, in many cases, been substantially below their expected levels. With unit size levelling off in the future and with power pool interconnections increasing, the reserve margin might be expected to decline, so long as load levelling (the balancing of seasonal peak demands) does not force the installation of reserve capacity to allow for scheduled outages.

SSPS reliability is expected to be high because it is a largely passive, decentralized system, which does not involve high temperatures or pressures or rotating machinery for the generation of power. These are. factors which contribute to the high forced outage rates of new, large units.
*A shutdown immediately or up to the yery next weekend is defined as a forced outage on the basis of which the reserye margin is determined. If the shutdown can be postponed until the weekend, it is treated as a planned outage which does not require reseryè capacity.

Availability rates are used in calculating the cost of power from baseload generation plants, because ayailability rates account for the time that a plant is not able to produce power due to maintenance or other scheduled outages. The effect of ayailability on the cost of power can be significant, especially for capital-intensive generation methods such as nuclear reactors or SSPS. Based on cost data proyided by Arthur D. Little, Inc., * the total busbar energy cost has been calculated as a function of unit availability,** for three different generation systems: light water reactor, liquid metal fast breeder reactor and direct coal-fired plant. These relationships between energy costs and generating unit ayailability are displayed in Figure 9.3. Giyen that SSPS availability is expected to be about 95 percent, it is clear from Figure 9.3 that SSPS could tolerate a somewhat higher life cycle cost per kilowatt and still produce power at the same energy cost. Light water reactors currently are designed for 80 percent availability; and SSPS operating at 95 percent availability (Case A) could cost approximately $\$ 70 / \mathrm{kW}$ more than the light water reactor and produce power at the same capital equipment cost. The industry-wide experience for light water reactors at the moment is closer to 65 percent***; if this value remains unchanged, an SSPS costing $\$ 200 / \mathrm{kW}$ more than the nuclear plant (Case B) could produce power at the same capital equipment cost. Thus, the level of reliability projected for SSPS could be an important economic factor.

In addition to reliability, SSPS size in both absolute and relative terms is an important consideration in calculating the system reserve requirements and accompanying costs resulting from the introduction of an SSPS. A simulation which would estimate the cost effect of the addition of SSPS's to realistic representations of utility systems projected for 1995 could not be conducted within the scope of this study. However, an examination was made of the effect on reserve margin requirements of adding an SSPS to several systems, each containing units of uniform size and reliability, over a range of system sizes that might be typical in the future ($30-50 \mathrm{GW}$). The results are presented in Figure 9.4. The unit sizes used were 1 GW and 2.5
*hese cost data were proyided for use in the "Space-Based Solar Power Conversion and Deliyery Systems Study--Interim Summary Report," March 13, 1976.

A single yalue for installed cost for each system was given. This installed cost was factored up by the availability rate in calculating the cost of the capital component of the total busbar energy cost. A uniform increment appropriate to each system was added to cover fuel, operation and maintenance, taxes and insurance; hence, the only factor that was yaried was the cost of capital; as affected by availability.

This lower availability is the result of a number of factors including rapidly increasing unit size, non-standardized construction, safety shutdowns and the fact that a large number of units are retatively new and still in their break-in period.

Figure 9.3 Relationship of Generating Unit Availability to Total Energy Cost

GW, and the forced outage rates used were 8.7 percent* and 15 percent** the 1 GW plants and 22 percent*** for the 2.5 GW p.Jants.

The approach used in this analysis was to determine for each of the system configurations (1 GW units at an 8.7 percent outage rate, 1 GW units at a 15 percent outage rate and 2.5 GW units at a 22 percent outage rate) the necessary installed capacity reserve margin needed to insure the one-day-in-ten-years loss-of-load probability used by most utilities as a reliability standard. These reserye calculations were'conducted both for a given configuration system without an SSPS, and for the same type of system with an SSPS accounting for 5 GW of the total capacity. These calculations were conducted for three different leyels of SSPS forced outage rates.

The above analysis assumes that the load is constant at the rated system capacity. In reality, howeyer, the load equals (or exceeds) the rated system capacity for only a fraction of the time. Thus, the actual reserye margins required to achieve the stated loss-of-load probability are less than those indicated in Figure 9.4. Subsequently, the above analysis was performed also for a loss-of-load probability of one day in one year. The results of this exercise are shown in Figure 9.5. Comparison of Figures 9.4 and 9.5 indicate that the reserve margins required for a system with an SSPS should be reduced more than those required for a system without an SSPS as the loss-of-load probability requirements are relaxed. However, the effect of loss-of-load probability on the differential reserye margin requirements between systems with and without an SSPS is not substantial.

In summary, it can be noted that the inclusion of an SSPS is sometimes advantageous (that is, it reduces the required reserve margin) and sometimes disadyantageous, depending upon the system size and the reliability of the constituent units with an adyantage for SSPS in systems comprised of larger conventional power plants. Whether or not the SSPS is advantageous also depends on the reliability of the SSPS.
*This yalue is an ayerage between the future mature fossil plant and the future mature nuclear plant forced outage rates projected by the Northeast Regional Adyisory Committee to the Federal Power Commission. These values are optimistic compared with present experience.
**
This yalue represents a typical system forced outage rate for present power pools.

This yalue corresponds to current experience with new large generating units. Whereas improyement upon this level is expected in the future, it has been used here as a pessimistic value.

Figure 9.5 Installed Capacity Reserve Requirements as a Function of Utility System Size and SSPS Reliability Level for a One-Day-in-One-Year Loss-of-Load Probability

The purpose of this examination was to determine whether or not the installed reserve requirement posed by SSPS might be critical. From this analysis, reserye requirements do not appear to represent a critical economic issue. In fact, under certain circumstances, an SSPS may reduce the necessary reserve margin.

Further study is needed both to determine what the likely reliability level will be for SSPS and what the affect of an SSPS of such a reliability would be on a realistic representation of utility systems with the unit size and reliability characteristics that might be expected in the 1995 time period. Such analysis should also include the affects on system reliability of system interconnections and pooling.*

9.2 Effects of Solar Eclipses

An SSPS satellite in geosynchroneous orbịt will experience eclipses around midnight of yarying durations in the periods surrounding the two equinoxes, as shown in Figure 9.6. These eclipse periods occur during times that are daily and seasonal "valleys" in demand for nearly all utilities. Representative daily and seasonal load cycles are shown in Figures 9.7 and 9.8 , respectively.

Given that the eclipses occur during off-peak periods and that they are predictable, so long as sufficient alternate generating capacity

Figure 9.6 Duration of SSPS Eclipses at Synchronous Equatorial Orbit
*Arthur D. Little, Inc. is presently under contract to the Jet Propulsion Laboratory to study this problem.

Figure 9.8 Seasonal Variation of Monthly Peak Loads Among ECAR Systems (Source: The 1970
Power Survey - Part II.)
is ayailable, an SSPS eclipse may be treated as a planned outage not requiring installed reserve capacity. The costs then associated with an eclipse are the marginal costs of whatever alternate capacity is used to generate power during the eclipse period. The costs of alternate generation means have been assessed parametrically, and the results are presented in Table 9.1. The costs associated with an eclipse do not appear to be critical because in the worst case examined here (having to use peaking capacity during the duration of the eclipses) the average annual generating cost of power produced by an SSPS baseload system would only be increased by $0.5 \mathrm{mills} / \mathrm{kWh}$.

The scope of this study did not allow examination of the assumption of alternate capacity being available, as power during an SSPS eclipse would probably be provided by power pooling or other interconnections between utility systems. The size of power pools and the number of interconnections is growing. (An example of this expansion is provided in Figure 9.9.) It was noted in the example in Section 9.1, that the Eastern Central Area Reliability Coordination Agreement will oversee an installed capacity of over 100 GW in 1990. The effect of this pooling would be to reduce the cost of providing power during an SSPS eclipse. However, with SSPS satellites displaced by 2400 km in synchronous orbit, during maximum eclipse periods, seven satellites

Table 9.1 Annual Generation Costs of Alternate Sources to Cover SSPS Unit Eclipse Time				
Source of 1 Alternate Generation	Capital Cost (\$/kW, 1974)	$\begin{gathered} \text { Fuel Cost } \\ \text { (mills/kWh, 1974) } \end{gathered}$	Operation Time* (hours)	Annual Cost (\$, 1974)
Baseload Plants	--	6.0	135	4.05×10^{6}
Intermediate Load Plants	--	14.0	135	9.45×10^{6}
Peakload Plants	150	30.0	135	22.07×10^{6}
*Operation time assumes one and one-half ours of operation per ectipse period to account for start-up time.				

would be occulted at any point in time; hence, a given power pool area might be faced with replacing the capacity of several SSPS's during an eclipse period. The interaction of the effects of pooling and multiple occlusions is a complicated one requiring further study. An additional concern for further study should be the extent and effect of occultations of one satellite by another.

9.3 Effect of Power Fluctuations

The transmission frequency (2.45 GHz) of the current configuration SSPS was selected, in part, because of its relative insensitity to attenuation by atmospheric constituents. According to the Microwaye Power Transmission System Study [13] the greatest fluctuation in power level that might be expected from attenuation due to atmospheric effects such as heayy rain ($50 \mathrm{~mm} / \mathrm{hr}$) is ± 1 percent. Electric utilities are not able to sustain substantial fluctuations of power for significant periods of time without equipment damage. The daily operating reserye of utilities is composed of standby capacity that can be brought on-line within ten to twenty minutes as well as loads that can be interrupted on short notice (typically one minute).

Figure 9.9 Projected Expansion Of'The Northeast Regional Transmission System From 1970 Through 1990 (Source: Federal Power Commission, The 1970 National Power Survey - Part II.)

If the fluctuations in SSPS transmitted power are sufficiently rapid, then the effect will be a derating (reduction in the rated capacity) of SSPS. The effect on the cost of power produced by SSPS of various levels of power fluctuation is presented in Figure 9.10, with the effect of the expected variation of 1 percent to be an increase of about $0.2 \mathrm{mills} / \mathrm{KWh}$ in SSPS cost of capital,* hence an equivalent increase in the user charge of SSPS-produced power.
*This estimate represents a lower bound in that it does not include the component of $08 M$ cost that is directly related to installed - capacity regardless of operation time.

Figure 9.10 Effect on the Cost of SSPS-Produced Power

This analysis represents a "worst case" approach ịn that it assumes that fluctuations in transmitted power would render a certain percentage of SSPS power unusable, whereas in fact, there are a number of economic uses to which fluctuating or interruptịbla power can be put, including electrolysis or other automated processes. Howeyer, eyen in the worst case of power being lost, it does not appear that power fluctuations within the range currently anticipated for SSPS pose a significant economic issue.

REFERENCES

ORIGINAL PAGE IS OF POOR QUALITY

1. Bernoul1i, Danie], "Exposition of a New Theory on the Measurement of Risk," Uti.7ity Theory: A Book of Readings, Page, A.N., ed., p. 199-214, Wiley, New York, 1968.
2. Dole, S.H., Fisher, G.H., Harris, E.D., and String, J., Establishiment of a Long-Range Planning Capability, Rand Corporation Memorandum RM-6151-NASA, September 1969.
3. Quade, E.S., and Boucher, W.I. (Editors), Systems Analysis and Policy Planning, American Elsevier Publishing Co., 1968.
4. Hess, S.W. and Quigley, H.A., "Anal.ysis of Risk in "Investments Using Monte Carlo Techniques," Chem. Engng. Prog., Sec. No. 42, Volume 59, 1963.
5. Hertz, D., "Risk Analysis in Capital Investment," Harvard Business Review, January-February 1964.
6. Hertz, D., "Investment Policies that Pay Off," Harvard Business Review, January-February 1964.
7. VanHorne, J., "Capital Budgeting Decis.ions Involving Combinations of Risky Investments," Management Science, Volume 13, No. 2, October 1966.
8. Hillier, F.S., "The Derivation of Probabilistic Information for the Evaluation of Risky Investments," Management Science, April 1963.
9. Greenberg, J.S. and Edelman, F., "Venture Analysis: The Assessment of Uncertainty and Risk," Financial Executive, August 1969.
10. Spetzler, C.S., "The Development of a Corporate Risk Policy for Capital Investmene Decisions," LEEE Transactions on $\frac{\text { Systems }}{\text { Septembe }} \frac{\text { Science }}{1968}$ and $\frac{\text { Cybernetics }}{10}$, vol. SsC-4, No. 3, September 1968.
11. Nathan, A., "Space-Based Solar Power Conversion and Delivery Systems (Study) - Engineering Analysis Data Compilation," October 13, 1975, as well as subsequent meetings between ECON, Inc., and Grumman personnel.
12. Raytheon Co., "Space-Based, Solar Power Conversion and Delivery System Study - Microwave Power Generation Transmission and Reception," October 31, 1975.

KtrEkENCES (Continued)

13. Raytheon Co., "Microwave Power Transmission System Studies - Volume IV," December 1975.
14. R.J. Schlesinger et. al., Jet Propulsion Laboratory, "Identification of Some Technical-Societal Questions in Selected Critical Areas for Satellite Solar Power Station (SSPS) Concepts" September 17, 1974.
15. Arthur D. Little, Inc., "Space-Based Solar Power Conversion and Delivery Systems (Study) - Data for Future Impact Assessment", August 6, 1975.

Cm	centimeter (10^{-2} meters)
g	gram (10^{-3} kilograms)
GHz	gigahertz (10^{9} cycles per second)
GW	gigawatt (10^{9} watts)
η	efficiency (decimal fraction)
kg	kilogram (2.2046 pounds mass)
km	kilometer (10^{3} meters)
kV	kilovolt (10^{3} volts)
kW	kilowatt (10^{3} watts)
kidh	kilowatt-hours
m	meter (3.2808 feet)
micron, ($\mu \mathrm{m}$)	millionth (10^{-6}) of a meter
MW	megawatt (10^{6} watts)
mlN	milliwatt (10^{-3} watt)
RFI	radio frequency interference
solar flux	1353 megawatts per square kîlometer
σ	standard deviation

APPENDİX A
ECONOMIC METHODOLOGY

The purpose of this appendix is to present a detailed review of the economic concepts and analytical constructions used in this report. The objective is twofold:

- To provide the reader with the means to verify the study's results and substitute alternative input data and assumptions if desired, and
- To provide a reconciliation of the approaches used in this study with those of other energy-economics studies.

The basis for the first objective is clear. Regarding the second objective, it is all too often that due to the lack of complete information and inconsistency of approaches among energy-economics studies, comparisons are impossible. In this appendix, the minimum information. required to make interstudy comparisons is established.

The following topics are addressed:

- Methodology for Comparative Economic Analysis of Electric Generation Systems (A.1)
- Computation of the Present Value of Capital and the Equivalent Annuity (A.2)
- Reconciliation of Alternative Approaches for Computing the Present Value of Capital and Equivalent Annuity (A.3)
- Computation of Economically Justifiable SSPS Unit Cost (A.4)
- DDT\&E Payback Analysis (A.5).

A. 1 Methodology for Comparative Economic Analysis of Electric Generation Systems

Figure A. 1 illustrates the cash flow profile of a representative, 1 GW electric power generation system. The cash flows required for the construction of the system are represented by the values, $\$ 710$ million per year (C_{t}) over the period 1991 to 1995. The capital payback (A_{t}) is represented by the values, $\$ 41.7$ million per year over the 30 -year opera tional life of the system.

In the example shown, the constant dollar cost of the plant is $\$ 440$ per kilowatt and these costs are distributed equally over the

Figure A. 1 Electric Generation System Cash Flow Profile

4-year construction period.* According to the formula provided for computation of present value, the (1975) present value of the cost of capital is $\$ 368.40$ per kilowatt. The capital recovery payment (annuity over the 30 -year operational period of the plant) is a value such that its (1975) present value equals that of the present value of the capital. Thus, at the stipulated discount rate, 7.5 percent, the annuity $\left(A_{t}\right)$ is a cash flow received by the providers of capital to the utilities (lenders and equity owners) such that they (in 1975) are indifferent to holding $\$ 368.40$ or receiving an annuity of $\$ 41.70$ per year over the period 1995 through 2025. This present value concept is expanded below with the use of Figure A. 2 which provides an additional example.

Assume that a particular technology subststem of the SSPS were estimated to cost $\$ 380$ million and that the costs of development would be expended--eventy--over the period 1985 through 1990. Al1 expenditures would be paid out at the beginning of each year, that is, $\$ 76$ million would be expended at the beginning of each year for five years. Using the formula provided in Figure A.1, the present value of this expenditure is computed to be $\$ 761$ million. This is the value which is economically equivalent in 1975 to $\$ 360$ million expended in the way assumed, that is, five equal paynents. That is, a "rational" economic being would be economically indifferent between having a bank balance of $\$ 161$ million (in 1975) and receiving $\$ 76$ million per year for five years starting at the beginning of 1985.

As illustrated in Figure A.2, a $\$ 380$ million DDT\&E expenditure zould be financed with an initial bank balance of $\$ 161$ million starting in 1975. The present value, $\$ 161$ million, is a function of (1) the discount rate, (2) the year that the expenditure begins, and (3) the expenditure pattern. Higher interest rates and/or an earlier expenditure start would refuce the present value, and vice versa.

As shown in Figure A.2, $\$ 161$ million put in the "bank" would sompound at an annual rate of 7.5 percent to $\$ 325$ miliion at the beginning If 1985 when the first "withdrawal" of $\$ 76$ million is made. This would refuce the "bank balance" which would, in turn, increase by the interest eceived over the year; and then another $\$ 76$ million payment would be made, ind so on. After the last $\$ 76$ million payment, the balance would be reduced ;o zero.

The computed value of A, the economically equivalent annuity, s a function of the parameters shown, that is, M, the date of the beginning If construction, N the date of the beginning of operation, 0 the end of peration and R, the discount rate. The most sensitive parameter is $R--$
*The assumption of equal distribution of costs over the construction period is only for purposes of example. Certainly, the present value of capital may be computed under any distribution of outlays.

Figure A. 2 Present Value Rationale, $R=7.5 \%$
the higher the value of R the greater the annuity must be to yield an equivalent economic value, and vice versa.

To the value of A must then be added the "recurring" costs of the electrical generation system, that is, values for taxes and insurance, operations and maintenance and, in the case of the terrestrial systems, fuels.

A major point to be emphasized is that "constant dollars" not "current dollars" measure the economic cost of a project. Unless it can be shown that there will be differential inflation among the cost components of a plant, the correct approach is to use constant dollars.

While the recent experience has, indeed, evidenced a higher rate of inflation for fuels than other generating systems ${ }^{\text { }}$ cost components, the historical data show that over the long-run, relative price changes in these categories have been essentially equal. It is assumed, therefore, that the recent dramatic (differential) inflation in fuels will be a short-run phenomenon, and by the time period in which the SSPS or terrestria systems would be constructed (around 1995) the relative prices will have readjusted themselves to their long-run historical relationships. The issue is that we do not know what the rate of differential inflation may be over the next 20 years, and it is deemed preferable to make the neutral assumption-which, again, is in line with the historical trend-that over the long run the relative rate of inflation among the cost components will be approximately equal. On the other hand, to the extent that it is believed that differential changes in the real economic cost may be expected, that is, relative prices of fuels, etc., these should be introduced into the analysis.

The discount rate chosen for this study, 7.5 percent, is economically conservative with respect to the SSPS. This rate has the effect of placing a relative cost burden on the SSPS, since it is the most capital intensive of the systems being compared. Other studies* have indicated a required real average rate of return (between equity and debt capital) for the future funding of electric utilities to be about 5 percent. We have elected to use a higher discount rate for two reasons: one, to introduce a risk factor for uncertainties in the development and operations in the SSPS system and two, to reflect the
*U.S. Federal Energy Administration, Project Independence Blueprint Final Task Force Report - Finance, November 1974.

The Aerospace Corporation, Power Plant Economic Model, Program Description/User's Guide (ATR-74[7417-16]-1, June 1974.

Hass, J.E., E.J. Mitchell and B.K. Stone, Financing the Energy Industry, Cambridge: Ballinger Publishing Company, 1974.
idea that SSPS--at least in its earliest stages--may be a mixed public/ private enterprise. Currently, a discount rate of 10 percent is being used to evaluate public projects. The 7.5 percent used would represent, therefore, an averaging between the real rate of return that is required by a commercial venture (5 percent) and that which is expected to accrue to purely public ventures (10 percent).

A. 2 Computation of the Present Value of Capital and the Equivalent Annuity

Figure A. 3 contains a summary of the methodology used for computing the present value of capital and the (economically) equivalent annuity. The numbers in parenthesis represent the step-numbers identified in the figure.

The "constant-dollar cost" measured in units of dollars per kilowatt (1) is divided by the "mature plant availability factor" (2). This equals the "adjusted constant dollar cost" measured in dollars per kilowatt (3). This value, divided by the "length of the construction period" measured in years (4) equals the "adjusted constant dollar cost" of capital per year measured in dollars per kilowatt (5). This value and others (the discount rate $[R]$ and the number of compounding periods per year [N]) as given in (6) are inputted to an equation (7) to compute the "present value of capital" at $t=0$ (8). This result and the other parameters in (9) may be inputted into an equation (10) which computes a value for the annuity that must be adjusted to account for the waiting (construction) period. This adjustment is done with the value generated in (11). This yields the equivalent annuity (PMT*), the dimensions of which are dollars per kilowatt per year. This value if received annually over the payback period would yield a present value equal to the present value of the capital. If a result in units of "mills per kilowatt-hour" is desirable, the next step is to divide the result in (12) by the constant, 8.76 , given in (13). This equals (14) the annuity value in mills per kilowatt-hour.

As indicated in Figure A.3, the parameter PMT is the value obtained in (5), Y is equal to the construction period in years given in (4), N is equal to one (the number of compoundings per year) and R is the discount rate. In (9) the parameter, PV, is the result obtained from (8), X is equal to the payback period (assumed to be 30 years), N is equal to one and R is equal to 7.5 percent. The value, 8.76 , given in (13) is the well-known conversion factor used to adjust dollars per kilowatt-year into mills per kilowatt-hour.

A. 3 Reconciliation of Alternative Approaches for Computing the Present Value of Capital and Equivalent Annuity

Figure A. 4 illustrates a reconciliation between various approaches that are used for determining the present value of capital and the equivalent annuity. As will be shown, they yield the same economic results.

Figure A. 3 Methodology for Determining the Present
Value of Capital and Equivalent Annuity

Figure A. 4 Reconciliation of Alternative Approaches (Costs in Units of $\$ / \mathrm{kW}$)

Method I is the approach used throughout this study. The example given is for a direct coal-fired plant operating at a (mature) plant availability factor of .75 . As provided in the previous section, the adjusted capital costs for an environmentally controlled system, is $\$ 440$ per kilowatt. As illustrated in Figure A.4, the capital costs are assumed to be distributed equally over the construction period, that is, $\$ 110$ per kilowatt, per year. The costs are then discounted back to the start of the construction period, $t=0$. The present value at $t=0$ given a 7.5 percent discount rate equals $\$ 368.40$ per kilowatt. The equivalent annuity over the operational period equals $\$ 41.7$ per year or $4.8 \mathrm{mills} / \mathrm{kwh}$.

According to Method II (which is the approach that JPL has chosen*), the present value calculations are evaluated at $t=4$, the end of the construction period. According to this approach, the present value of the capital would be $\$ 492.1$ per kilowatt. The numerical difference in present value between Method II and Method I is represented by the shaded area in the illustration for Method II, and this is usually referred to as "interest incurred during construction." The equivalent annuity evaluated at $t=4$ is $\$ 41.7$ per year, the same as Method I, and hence, the approaches used by ECON and JPL yield identical results.

The reason that the numerical results for the equivalent annuity are equal in approaches I and II is explained as follows: In Method I the present value of capital outlays is calculated at $t=0$ and revenues do not accrue until after $t=4$. Thus, there is a period of waiting (varying for each dose of capital outlay) before revenues accrue to pay back the capital expenditure. In Method II there is no waiting period, revenues are received in the period immediately following $t=4$, the reference date for which the present value of capital outlays has been computed.

Method III is Method II plus a factor provided for inflation during the construction period. As seen, the capital cost in constant dollars is the same. There is, additionally, an escalation factor-assumed for the example to be 6 percent per year--that would raise the total capital costs by $\$ 41.2$ per kilowatt. Added to this is the interest accrued during construction, and considering inflation, this would be $\$ 104.0$ per kilowatt. Total capital cost evaluated at $t=4$ is $\$ 585.2$ per kilowatt. In order to compute the equivalent annuity, the "nominal interest rate" of 13.9 percent is used. This is the product of the real interest rate, 7.5 percent and the inflation rate, 6 percent ($1.075 \times 1.06=7.1395$). Thus, under this approach with a 6 percent per year inflation assumed to be sustained throughout the 30 -year payback period, it requires $\$ 83.3$ per year (9.5 mills/kwh) to generate revenues with a present value equal to that of the capital, and provide for a real rate of return of 7.5 percent or $\$ 41.7$ per year in constant dollars.
*Doane, J.W. and R.P. O'Toole, "Baseline Economic Analysis for Solar and Conventional Central Power Plants," Jet Propulsion Laboratory Engineering Memorandum, September 3, 1975.

Each of these methods are economically equivalent. Although the numerical results may differ, each evaluates the systems to cost the same amount in terms of economic resources.

A. 4 Computation of Economically Justifiable SSPS Unit Cost

Figure A. 5 provides the methodology used for computing the "economically justifiable" unit cost of a $5,000 \mathrm{MW}$ SSPS.

The first input in Figure A. 5 is a value for electric generation costs (in mills per kilowatt hour) of an alternative (competing) system, item (1). This value must then be scaled up to the annual revenues at a level of $5,000 \mathrm{MW}$. The scaling factor is given in (2). This equals the annual revenues from the generation of $5,000 \mathrm{MW}$ per year, and it is this revenue which serves as the basis for the computation of the SSPS allowable unit cost.

Before the capital can be repaid, the SSPS has to pay its annual operation and maintenance costs, taken here to be $\$ 136$ million per year and taxes and insurance which are taken to be 32.2 percent of the revenues. The use of this latter constant requires an explanation.

It is a working assumption that annual taxes and insurance are equal to 5 percent of capital. This is in line with a "rule-of-thumb" currently used for terrestrial plants. One cannot, however, use the 5 percent constant in this exercise, since it is the capital itself that is to be estimated. To eliminate this problem, a "trick" has been devised. This is to assume that the cost for taxes and insurance would be incurred in the same proportion to revenues as computed with the original SSPS unit cost estimate. Hence, if the capital costs of SSPS are taken to be $\$ 7.6$ billion, using the 5 percent constant, the value for taxes and insurance is estimated to be $\$ 377$ million per year. Summing the annual cost of capital ($\$ 657$ million per year for the capital cost assumed), the value for maintenance ($\$ 136$ million per year assumed), and $\$ 377$ million per year, the total annual SSPS cost is $\$ 1170$ million per year. The proportion of annual costs for taxes and insurance is 32.2 percent of the total.

Subtracting the value for taxes and insurance and operations and maintenance from the annual revenues, a value may be obtained for the maximum economically justifiable annual revenues for repayment of the SSPS unit cost. This value is designated as the parameter, "PMT", and with the other parameters shown in (7) are inputted into the equation (8.) to obtain the economically justifiable present value (at $t=0$) of the unit cost (9). In order to convert the present values into undiscounted dollars, the result in (9) is inputted along with the parameters given in (10) into the equation shown in (11). This provides a value for the economically justifiable annual construction cost of the SSPS. To obtain the total economically justifiable unit cost, this result is multiplied by the value of the parameter " X " given in (10) which is the length of the construction period--in years. The product of the result in (11) and (12) is the economically justifiable ($5,000 \mathrm{MW}$) SSPS unit cost given in (13):

A. 5 DDT\&E Payback Analysis

A methodology for performing SSPS DDT\&E Payback Analysis is illustrated in Figure A.6. Inputs to the analysis are the SSPS buildup profile (1) and the present value of the SSPS DDT\&E (2). Although the exact date to which the DDT\&E is discounted is arbitrary, it is, in this example, 1975.

An assumed SSPS buildup profile is given in Figure A.7. As indicated, with an initial operational date (IOD) of (end of) 1995, by the (end of) 1996 there would have been one SSPS revenue-year. According to the build-up profile there would be a build-up rate of two SSPS per year until 2000, and after that, four per year through 2025. The cumulative number of 5 GW operational units at the end of a given year, t, would be as indicated in Figure A. 7.

The second input to the analysis is the present value of the SSPS DDT\&E (2). Here, this value in undiscounted dollars is assumed to be $\$ 44$ billion.

The next step (3) is to solve for "delta revenues" (R^{*}) per SSPS such that the (1975) present value of R^{*} equals the (1975) present value of the DDT\&E. Examples of the calculations of R^{*} for 1996, 1997 and 1998 are provided in Table A.l.

Table A. 1 contains examples of the method for computing the SSPS DDT\&E Payback Function.

By (end of) 1996, t--which for purposes of discounting back to 1975--is valued at "21." There is one SSPS operating for one year. To solve for R^{*}, the present value of R^{*} is set equal to the present value of the SSPS DDT\&E. The computed value is, of course, a relatively large value, and one would not expect that a single operational SSPS could ever repay the. ${ }^{\text {DDT }}$ (\&E. In 1997 ($t+1$) there would have been one SSPS operating for two years and three SSPSs operating for one year (the original SSPS would be operating for two years and the two additional SSPSs with a 1996 IOD would have been operating for one year). The method would be to solve for an R^{*} such that its present value would be equal to the present value of the DOT\&E. In 1998 ($t+2$) there would be one SSPS operating for three years, three SSPSs operating for two years and five SSPSs operating for one year, and so on.

As indicated in Figure A.7, the values of the DDT\&E Payback Function do not begin to fall into a reasonable "range" until about 2005 when 29 SSPSs will have been operating for at least one year, leading to a value of R^{*} of about 20 mills per kilowatt hour.

As stated in the report, the DDT\&E Payback Function becomes asymptotic to the x-axis as the alternative electric generation costs approach 27 mills per kilowatt hour. This is explained by the discounting phenomenon which reduces the present value of future revenues.

Figure A. 6 Methodology for SSPS DDT\&E Payback Analysis

Figure A. 7 Payback Analysis of SSPS Development Programs ($r=7.5 \%$)

Table A.l Method for Estimating the SSPS DDT\&E Payback function		
$(\underset{Y E A R}{(E N D}$	SSPS BUILD-UP SCENARIO	SOLUTION FOR (R*) ${ }^{l}$: ANNUAL REVENUES PER OPERATIONAL $\because \times 10^{3}$ MH SSPS2
1996(t)	1 SSPS operating for 1 year	$(1975) P V=\$ 16.5 \times 10^{9}=\frac{R^{*}}{(1+r) t}$.
1997(t+1)	1 SSPS operating for 2 years 3 SSPS operating for 1 year	(1975)PV $=\$ 16.5 \times 10^{9}=\frac{R^{*}}{(1+r)} t^{+}\left(\frac{3 R^{*}}{1+r) t+1}\right.$
1998(t+2)	$\frac{1}{3}$ SSPS operating for 3 years 5 SSPS operating. for 2 years 5 SSPS operating for 1 year	$(1975) P V=\$ 16.5 \times 10^{9}=\frac{R^{*}}{(1+r) t^{+}} \frac{3 R^{*}}{(1+r)}{ }^{\text {d }}+1^{+} \frac{5 R^{*}}{(1+r)}{ }^{t+2}$.
\cdots	. .	\cdots
2025 (t+29)	1 SSPS operating for 30 years 3 SSPS operating for 29 years ... 109 SSPS operating for 1 year	(1975)PV $=\$ 16.5 \times 10^{9}=\frac{R^{*}}{(1+r)} t^{+} \frac{3 R^{*}}{(1+r)} t+1+\ldots+\frac{109 R^{*}}{(1+r)} t^{+29}$
1. $R^{*}=$ Required annual revenues per SSPS in year $t+N$ for DDT\&E recovery. To convert to mills per kilowatt-hour, divide result by: 8.76(5.10 ${ }^{6}$). 2. $r=.075(7.5 \%), t=21$	d annual revenues per SSPS in year $t+N$ for DDT\&[recovery. ert to mills per kilowatt-hour, divide result by: 8.76(5.106). $.5 \%), t=21$	

To the value of R^{*} is added the unit SSPS costs shown in (4) as (R) and is estimated (under the above assumptions) to be 26.7 mills per kilowatt hour. R^{*}--which is a unique, interest rate-dependent value--is added to the value, R, which is constant, and the result is given in Figure A. 6 as (5)., the cost of electric generation of alternative system such that the SSPS DDT\&E is recovered by year t. This is the ordinate of Figure A.7. The reason that the ordinate and the result in (5) is given as the cost of alternative generation systems, is that we assume that SSPS would not be used if there were alternative systems available that would provide equal generation capabilities and electric power at lower cost.

APPENDIX B

UNIT PRODUCTION COST MODEL

The following is a listing of the equations incorporated in the Unit Production Cost Model. (A description of the cost model is found in Section 4.2.) The definitions of the variables used in these equations have been gathered together at the end of each cost model in order to avoid repetition. The model is documented first in its final form as it was used to evaluate unit production costs for Programs IV and V. In an earlier form, the model was used to evaluate unit production costs for Programs I, II and III. The cost model in this earlier form is also documented separately in this appendix. The model in its present form is described below.
B. $1^{\text {. The Present Unit Production Cost Model }}$

Satellite Mass

$$
\begin{aligned}
A_{B} & =\frac{P_{I N}}{P_{F} F n_{E F F}} \\
M_{S A B} & =m_{S A B} A_{B} \\
A_{C} & =\frac{\left(n_{E F F}-1\right) A_{B}}{n_{C O N C}} \\
M_{S A C} & =m_{S A C} A_{C} \\
M_{S T C} & =m_{S T C}\left(A_{C}+A_{B}\right) \\
M_{S T N C} & =m_{S T N C}\left(A_{B}+A_{C}\right) \\
M_{S T C M} & =m_{S T C M}\left(\sqrt{2 r_{A}\left(A_{C}+A_{B}\right)}+r_{L} D_{A N T}\right) \\
M_{A N T S} & =m_{A N T S} P_{A N T} \\
M_{A N T} P & =m_{A N T} P P_{A N T} .
\end{aligned}
$$

$$
\begin{aligned}
& M_{D C-R F}=m_{D C-R F} P_{D C-R F} \\
& M_{W G}=m_{W G} P_{D C-R F} \\
& M_{A N T-I N T}=m_{A N T-I N T} P_{A N T-I N T} \\
& M_{P C E}=m_{P C E} P_{P C E} \\
& M_{A N T}=M_{A N T S}+M_{D C-R F}+M_{W G}+M_{A N T-I N T}+M_{P C E}+M_{A N T ~ P D} \\
& M_{\text {TOT SAT }}=M_{S A B}+M_{S A C}+M_{S T C}+M_{S T N C}+M_{S T C M}+M_{A N T}+M_{M I S C}
\end{aligned}
$$

Construction Base Mass

$$
M_{C B} \quad=\left(m_{C B}+m_{P 1} p_{E P S R E Q}+m_{P 2} p_{E P S R E Q}+m_{R D S}\right) a_{C B}+m_{O P}+m_{A P}
$$

Masses Related to Interorbit Transportation

$$
\begin{aligned}
& N_{\text {POTV }}=\left(\frac{N_{\text {CREW }}}{f_{\text {POTV }}}\right)^{*} \frac{f_{\text {CROT }}}{R_{\text {CONST }}} \\
& M_{\text {POTVPRP }}=N_{\text {POTV }} f_{\text {POTVPRP }} \\
& M_{\text {PPT }}=\left[\left(\frac{M_{\text {POTVPRP }}}{f_{T}}\right)^{*} m_{T}\right] a_{T} \\
& N_{\text {COTV }}=\left(M_{\text {TOT SAT }}+M_{\text {CB }}+(1 / 3) M_{\text {POTVPRP }}+(1 / 3) M_{\text {PPT }}\right) \frac{1}{f_{\text {COTV }}} \\
& M_{\text {COTV }}=\left(\frac{N_{\text {COTV }}}{f_{\text {COTV LIFE }}}\right){ }^{m_{\text {COTV }}}
\end{aligned}
$$

$$
\begin{aligned}
M_{\text {POTV }} & =\left(\frac{N_{\text {POTV }}}{f_{\text {POTV LIFE }}}\right) m_{\text {POTS }} \\
M_{\text {COTVPRP }} & =N_{\text {COTV }}{ }^{f} \text { CARP } \\
M_{\text {CPI }} & =\left[\left(\frac{2 M_{\text {PL }}}{f_{T}}\right) * m_{T}\right] a . \\
\alpha_{\text {AIS }} & =e^{\Delta V_{\text {AIS }} / v_{\text {AIS }}} \\
M_{\text {AIS PROP }} & =\left(M_{\text {TOT SAT }}\right) \frac{\lambda_{\text {AIS }}\left(\sqrt{\alpha_{\text {AIS }}}-1\right)}{\lambda_{\text {AIS }}-\left(\alpha_{\text {AIS }}-1\right)\left(1-\lambda_{\text {AIS }}\right)} \\
M_{\text {AIS }} & =\frac{M_{\text {AIS PROP }}\left(1-\lambda_{\text {AIS }}\right)}{\lambda_{\text {AIS }}} \\
M_{\text {PROP DEPOT }} & =\left(\frac{M_{\text {AIS PROP }}}{f_{\text {IT }}}\right) * m_{\text {IT }}{ }^{2}{ }^{2}+M_{\text {DPT }}+M_{\text {OPT }}
\end{aligned}
$$

Total Mass to LEO

$$
\begin{aligned}
M_{\text {IOVP }}= & M_{\text {POTVPRP }}+M_{\text {COTVPRP }}+M_{\text {POTV }}+M_{\text {COTV }}+M_{\text {AIS PROP }}+M_{\text {AIS }} \\
& +M_{\text {PROP DEPOT }} \\
= & M_{C B}+M_{\text {IOVP }}+M_{\text {TOT SAT }}
\end{aligned}
$$

LEO Launch Cost

$$
\begin{aligned}
& N_{\text {HLLV }}=\frac{M_{\text {LEO }}}{M_{P / L}{ }^{f} \text { LOAD }} \\
& N_{\text {HUS }}=\frac{N_{\text {HLLV }}}{f \text { HUS LIFE }}
\end{aligned}
$$

$$
\begin{aligned}
N_{\text {HLS }} & =\frac{N_{\text {HLLV }}}{f_{\text {HLS LIFE }}} \\
N_{\text {SHUTTLE }} & =\frac{N_{\text {CREW }} \frac{{ }^{f} \text { CROT }}{R_{\text {CONST }}}}{f_{\text {SHUTTLE }}} \\
N_{\text {S UNITS }} & =\frac{N_{\text {SHUTTLE }}}{f_{S L I F E}} \\
C_{\text {HLLV }} & =c_{\text {HLLV }} N_{\text {HLLV }}+N_{\text {HUS }} c_{\text {HUS }}+N_{\text {HLS }} c_{\text {HLS }} \\
C_{\text {SHUTTLE }} & =c_{\text {SHUTTLE }} N_{\text {SHUTTLE }}+c_{S ~ U N I T ~} N_{S ~ U N I T ~} \\
c_{\text {LLLC }} . & =c_{\text {SHUTTLE }}+c_{\text {HLLV }}
\end{aligned}
$$

Construction Base cost

$$
\begin{aligned}
c_{C B}= & { }^{a}{ }_{C B}\left(c_{C B}+c_{P 1} P_{E P S R E Q}+c_{P 2} P_{E P S R E Q}+c_{R D S}\right)+c_{A P} m_{A P} \\
& +c_{O P} m_{O P}
\end{aligned}
$$

LEO-GEO Transportation Cost

$$
\begin{aligned}
c_{\text {LEO-GEO }}= & \left(\frac{N_{\text {COTV }}}{f_{\text {COTV LIFE }}}\right) \quad c_{\text {COTV }}+\left(\frac{N_{\text {POTV }}}{f_{\text {POTV LIFE }}}\right) c_{\text {POTV }}+ \\
& c_{\text {PRP }}\left(M_{\text {POTVPRP }}+M_{\text {COTVPRP }}\right)+a_{\text {AIS }} c_{\text {AIS }} \\
& +c_{\text {AIS PROP }} M_{\text {AIS PROP }}+c_{T}{ }^{a_{T}}\left(\frac{M_{\text {POTVPRP }}+M_{\text {COTVPRP }}}{f_{T}}\right) * \\
& +a_{I T} c_{I T}\left(\frac{M_{\text {AIS PROP }}}{f_{I T}}\right)
\end{aligned}
$$

Satellite Procurement Cost

$$
\begin{aligned}
C_{A N T}= & \dot{c}_{P D} P_{A N T}+c_{P C E} P_{P C E}+c_{W G} P_{D C-R F}+c_{D C-R F} P_{D C-R F} \\
& +c_{S T} P_{A N T} \\
C_{S A T}= & c_{S A B} A_{B}+c_{S A C} A_{C}+c_{S T C} M_{S T C}+c_{S T N C} M_{S T N C} \\
& +c_{S T C M} M_{S T C M}+c_{A N T}+c_{M I S C} M_{M I S C}
\end{aligned}
$$

Ground Station Cost

$$
\begin{aligned}
& A_{\text {RECT }}=\left(\frac{\pi}{4}\right)\left(\frac{5}{P_{5 Y R}}\right)\left(\frac{10^{4}}{\sin E}\right) \times 10^{6} \\
& C_{G R D ~ S T A T ~}=C_{R E C T} A_{\text {RECT }}+C_{\text {INTERF }} P_{\text {INTERF }}+C_{P C}
\end{aligned}
$$

Total Unit Production Cost
$C_{U P C}=C_{L L C}+C_{L E O-G E O}+C_{C B}+C_{S A T}+C_{G R D ~ S T A T}$

Definitions of Unit Production Cost Model Variables
Following is a listing of the definitions of the variables used in the unit production cost model, in the order of their initial appearance in the model.

$$
\begin{gathered}
A_{B}=\text { area of solar blanket }\left(\mathrm{km}^{2}\right) \\
P_{\text {IN }}=\text { power input to the solar array }(\mathrm{kW}) ; \\
P_{\text {IN }}=\frac{P_{\text {OUT }}}{\Pi}
\end{gathered}
$$

where $P_{\text {OUT }}=$ power output at the rectenna busbar (kW ; beginning of life, b.o.1.)

II $\quad=\quad$ system efficiency chain (i.e., the products of the efficiencies of all of the system components); $\Pi=n_{S C} n_{S A P D} n_{\text {ANT-INT }} n_{\text {ANT PD }}{ }^{n}{ }_{D C-R F} n_{P C} n_{\text {ION PROP }}$
$n_{A T M ~ P R O P ~} \eta_{B C} \eta_{R F-D C} \eta_{R E C T} P D$
where:
$\eta_{S C}=$ solar cell efficiency (at given concentration

```
    #}\mp@subsup{n}{\mathrm{ SAD }}{= = solar array power distribution efficiency
    n
    n
    \eta}\mp@subsup{|}{DC-RF}{}= dc-rf converter efficiency
    \eta #CC = phase control efficiency
n}\mp@subsup{}{\mathrm{ ION PROP }}{}=\quad\mathrm{ ionospheric propagation efficiency
n}\mp@subsup{n}{\mathrm{ ATM PROP }}{}=\mathrm{ atmospheric propagation efficiency
    \etaBC = beam collection efficiency
    \eta}\mp@subsup{|}{RF-DC}{}=\quadrf-dc converter efficiency
    \eta}\mp@subsup{\eta}{\mathrm{ RECT PD }}{}=\quad\mathrm{ rectenna power distribution efficiency (including
        utility interface)
    P
        the current configuration solar blanket (i.e., decimal
        fraction of total blanket area that is solar cells)
    F = solar flux constant (1353 x 10 % kW/km
    n
    M
    m
    A}C=\mathrm{ area of solar concentrator as seen by the sun (km
```



```
        MANT PD = total mass of the antenna power distribution system (kg)
            m
            M DC-RF = total mass of the dc-rf converters (kg)
            m
            P
```



```
            MWG = total mass of the waveguides (kg)
            mWG = specific mass of the waveguides ( 
            M ANT-INT }=\mathrm{ total mass of the antenna interface (kg)
            m
            P
P
MPCE = total mass of the phase control electronics (kg)
mPCE = specific mass of the phase control electronics (kg/kW);
PPCE = power input to the phase control electronics (kW);
P
M
MTOT SAT = total mass of an operational satellite (kg)
```

$M_{C B}$	total mass of the construction base attributed to each satellite for the purposes of estimating LEO launch cost per satellite built (kg)
${ }^{m} C B$	basic mass of construction base (excluding externat power system (EPS) and radiation shielding masses) (kg) [Note: this mass varies with construction base size]
$\mathrm{m}_{\mathrm{P} 1}$	specific mass of the construction base EPS solar array (kg/kW)
$\mathrm{P}_{\text {EPSREQ }}$	construction base EPS power requirements (kW) [Note: this power requirement varies with construction base size and orbital assembly site]
$\mathrm{m}_{\mathrm{P} 2}$	specific mass of the construction base EPS batteries (kg/kW)
$\mathrm{m}_{\text {RDS }}$	mass of the construction base radiation shielding (kg) [Note: this mass varies with construction base size and orbital assembly site]
${ }^{a}{ }_{C B}$	factor which attributes a uniform fraction of the construction base to the mass launched for each satellite built (${ }_{C B}=1 / N_{S A T}$, where $N_{S A T}=-$ total number of satellites built)
- $m_{0 p}$	mass of the orbit-keeping propellant required. by the construction base during the construction of one satellite (kg) [Note: this mass varies with the construction base size and orbital assembly site]
$\mathrm{m}_{\text {AP }}$	mass of the attribute control propellant required by construction base during the construction of one satellite (kg) [Note: this mass varies with the construction base size and orbital assembly site]
$\mathrm{N}_{\text {POTV }}$	total number of personnel orbit transfer vehicle (POTV) flights required to rotate construction base crew members during the construction of one satellite [Note: the POTV is used only in the case of GEO construction]

$N_{\text {CREW }}=$ total number of construction base crew members (including support personnel) [Note: this number varies with construction base size]
$f_{\text {POTV }}=\quad$ number of personne1 that can be carried per personne 1 orbit transfer vehicle (POTV) flight
${ }^{\mathrm{f}} \mathrm{CROT}=$ rate of crew rotations (number of rotations/year)
${ }^{\text {R CONST }}=\quad$ rate of satellite construction (number of satellites/ year)
$M_{\text {POTVPRP }}=$ total mass of POTV propellant consumed during the construction of one satellite (kg)
$f_{\text {POTVPRP }}=$ mass of propellant consumed per POTV (round-trip) flight (kg)
$M_{\text {PPT }}=$ total mass of POTV propellant storage tanks (kg)
$\mathrm{f}_{\mathrm{T}}=$ capacity of single propellant storage tank (kg)
$m_{T} \quad=\quad$ unit mass of propellant storage tank (kg)
$a_{T} \quad=\quad$ amortization factor which specifies what fractional amount of each propellant tank's design life is "consumed" for each satellite built ($\mathrm{a}_{\mathrm{T}}=1 /$ design life/R CONST , where design life is measured in years)
$N_{\text {COTV }}=$ total number of cargo orbit transfer vehicle (COTV) flights required to transport the mass necessary for the construction of one satellite [Note: the COTV is used only in the case of GEO construction]
${ }^{f}$ COTV $=$ payload capability of each COTV, from LEO to GEO (kg)
$M_{\text {COTV }}=$ total mass of COTV's "consumed" during the construction of one satellite (kg)

```
f}\mathrm{ COTV LIFE = design life of a COTV (number of flights)
    m
    M MOTV = total mass of POTV's "consumed" during the construction
        of one satellite (kg)
    f
    mPOTV = unit mass of a POTV (kg)
    MCOTVPRP = total mass of COTV propellant consumed during the
        construction of one satellite (kg)
    f
        flight (kg)
    M
    \alpha}\mp@subsup{\alpha}{\mathrm{ AIS }}{=\quad=\quad\begin{array}{l}{\mathrm{ ratio of total initial-to-final mass of the advanced ion}}\\{\mathrm{ stage and payload }}\end{array})
    \DeltaV
        .[Note: accounts for a two-way trip as well as
        maneuvering.)
    V
    MAIS PROP = total mass of ion propellant (kg)
    \lambda
    MAIS = total mass of the ion stage (dry)(kg)
    MPROP DEPOT = total mass of the tanks used as propellant depots (kg)
```

$m_{I T} \quad=\quad$ mass of a single ion propellant storage tank (kg)
$\mathrm{f}_{\mathrm{IT}}=$ capacity of a single ion propellant storage tank (kg)
${ }^{\text {a }}{ }^{\prime}{ }^{\prime}=$ amortization factor for the ion propellant storage tank
$M_{\text {IOVP }}=$ total mass of the inter-orbit vehicles and propellants (kg)

MLEO $\quad=\quad$ total mass launched to low earth orbit for the construction of one SSPS (kg)
$N_{\text {HLLV }}=$ total number of heavy lift launch vehicle flights
$M_{P / L} \quad=\quad$ the payload to LEO of an HLLV (kg)
$f_{\text {LOAD }}=$ average load factor for an HLLV (what percentage of payload is used)
$N_{\text {HUS }} \quad=\quad$ total number of HLLV upper stages "consumed" during the construction of one satellite (this may be a fractional amount)
f $_{\text {HUS LIFE }}=$ design life of an HLLV upper stage (number of flights).
$\mathrm{N}_{\text {HLS }} \quad=\quad$ total number of HLLV lower stages "consumed" during the construction of one satellite (this may be a fractional amount)
$\mathrm{f}_{\text {HLS LIFE }}=$ design life of an HLLV lower stage (number of flights)
$N_{\text {SHUTTLE }}=$ total number of shuttle flights
${ }^{f}$ SLIFE $=$ design life of a shuttle (number of flights)
$\mathrm{f}_{\text {SHUTTLE }}=\mathrm{n}_{\mathrm{flinh}}$ number of personnel that can be carried per shuttie
N_{S} UNITS $=$ total number of shutties "consumed"
$C_{\text {HLLV }}=$ total cost of HLLV activity (\$)
${ }^{c}$ HLLV $=$ cost per HLLV flight (operations) (\$)
$c_{\text {HUS }}=$ unit cost of an HLLV upper stage (\$)
${ }^{c_{H L S}}$ $=$ unit cost of an HLLLV lower stage (\$)
$\mathrm{C}_{\text {SHUTTLE }}=$ total cost of shuttle activity (\$)
${ }^{\text {c SHUTTLE }}=$ cost per shuttle flight (operations) (\$)
${ }^{\text {c }}$ S UNIT $=$ cost per shuttle unit (\$)
$C_{\text {LLC }}=$ total low earth orbit launch cost (\$)
${ }^{C}$ CB $\quad=$ total cost of the construction base attributed to each satellite for the purpose of estimating the assembly cost per satellite built (\$)
${ }^{c}{ }_{C B} \quad=\quad$ basic unit cost of construction base excluding costof EPS, radiation shielding and RCS propellants (\$)[Note: since one construction base is assumed tobuild the entire fleet of satellites, the cost ofthe construction base has been spread over all thesatellites, such that each satellite pays an annuityat its IOD, the sum of all of which annuities discountedat 7.5 percent per year equals the present value of thecost of the construction base at the IOD of the firstproduction unit--this value is the one shown in theinput data table in Appendix D. This cost varies withconstruction base size and orbital assembly site.]
$c_{\text {P1 }} \quad=\underset{(\$ / \mathrm{kW})}{\text { specific }}$ cost of the construction base EPS solar array (\$/kW)
$C_{\text {P2 }}=$ specific cost of the construction base EPS batteries (\$/kW)
${ }^{C_{\text {RDS }}}=$ cost of the radiation shielding (\$) [Note: this value varies with construction base size and orbital assembly site]${ }^{c_{A P}}=$ specific cost of attitude control propellant $(\$ / \mathrm{kg})$
${ }^{c_{O P}} \quad=$ specific cost of orbit-keeping propellant $(\$ / \mathrm{kg})$
$C_{\text {LEO-GEO }}=$ total cost of LEO-GEO transportation(\$)
${ }^{c}$ COTV $=$ unit cost of a COTV (\$)
${ }^{c_{\text {POTV }}}=$ unit cost of a PÖTV (\$)$c_{\text {RP }}=$ specific cost of OTV propellants ($\$ / \mathrm{kg}$)
$C_{\text {AIS }}=$ unit cost of the advanced ion stage (\$)${ }^{\text {a }}$ AIS $=$ amortization factor of the ion stage
${ }^{C}$ AIS PROP $=$ specific cost of the ion stage propellants ($\$ / \mathrm{kg}$)
${ }^{C}{ }^{T}$. $=$ unit cost of an OTV propellant storage tank (\$)
${ }^{c}{ }_{I T}=$ unit cost of an ion propellant storage tank (\$)
$C_{\text {ANT }}=$ total procurement cost of the transmitting antenna (\$)
$c_{P D}=$ specific cost of antenna power distribution ($\$ / \mathrm{kW}$)
$c_{\text {CE }}=$ specific cost of phase control ($\$ / \mathrm{kW}$)
$c_{W G} \quad=\quad$ specific cost of waveguide $(\$ / \mathrm{kW})$
$C_{D C-R F}=$ specific cost of dc-rf converters ($\$ / \mathrm{kW}$)

${ }^{\text {c }}$ ST	specific cost of antenna structure (\$/kW)
$\mathrm{c}_{\text {SAT }}$	$=$ total procurement cost of an operational satellite (\$)
${ }^{\text {c }}$ SAB	$=$ specific cost of solar array blanket ($\$ / \mathrm{km}^{2}$)
${ }^{\text {c }}$ SAC	$=$ specific cost of solar concentrator (\$/km ${ }^{2}$
${ }^{\text {c STC }}$	specific cost of conducting structure ($\$ / \mathrm{kg}$)
${ }^{\text {c }}$ STNC	specific cost of nonconducting structure ($\$ / \mathrm{kg}$)
${ }^{\text {c STCM }}$	$=$ specific cost of central mass ($\$ / \mathrm{kg}$)
${ }^{\text {M MISC }}$	specific cost of miscellaneous equipment ($\$ / \mathrm{kg}$)
$A_{\text {RECT }}$	$=$ total area of the rectenna site $\left(\mathrm{m}^{2}\right)$
$\mathrm{P}_{5 \mathrm{YR}}$	power output level of system after five years, where $P_{5 Y R}=P_{0 U T}\left(\frac{5}{5.258}\right)$
E	$=$ elevation angle 'of the power transmission beam (${ }^{\circ}$)
${ }^{\text {RECT }}$	$=$ 'specific cost of the rectenna ($\$ / \mathrm{m}^{2}$)
${ }^{\text {INTTERF }}$	specific cost of the power interface ($\$ / \mathrm{kW}$)
$\mathrm{P}_{\text {INTERF }}$	$=$ power input into the utility interface (kW); $P_{\text {INTERF }}=\frac{P_{\text {OUT }}}{{ }^{\text {IRECT PD }}}$
C_{nr}	$=$ cost of the rectenna phase control electronics (\$)

B. 2 The Unit Production Cost Model Used to Evaluate Programs I, II and III

Satellite Mass

$$
\begin{aligned}
& A_{B}=\frac{P_{I N}}{P_{F} F n_{\text {eff }}} \\
& M_{S A B}=m_{S A B} A_{B} \\
& A_{C}=\frac{\left(n_{\text {eff }}-1\right) A_{B}}{n_{C O N C}} \\
&=m_{S A C} A_{C} \\
& M_{S A C} \\
& M_{S T C}=m_{S T C}\left(A_{C}+A_{B}\right) \\
& M_{S T N C} \\
&=m_{S T N C}\left(A_{B}+A_{C}\right) \\
& M_{S T C M}\left(\sqrt{2 r_{A}\left(A_{C}+A_{B}\right)}+r_{L} D_{A N T}\right) \\
& M_{A N T S}=m_{A N T S}{ }^{P} \quad \\
&=m_{\text {ANT }} \\
& M_{D C-R F} P_{D C-R F} \\
& M_{W G}=R P_{D C-R F}
\end{aligned}
$$

$M_{\text {ANT-INT }}=m_{\text {ANT-INT }} P_{\text {ANT-INT }}$
$M_{\text {PCE }}=m_{\text {PCE }} P_{\text {PCE }}$
$M_{A N T}=M_{A N T S}+M_{D C-R F}+M_{W G}+M_{A N T-I N T}+M_{P C E}$
$M_{\text {TOT SAT }}=M_{S A B}+M_{S A C}+M_{S T C}+M_{S T N C}+M_{S T C M}+M_{A N T}+M_{M I S C}$

Assembly Equipment Mass

$$
\begin{aligned}
& M_{\text {MANNED }}=\beta M_{\text {TOT SAT }} \\
& M_{\text {REMOTE }}=(1-\beta) M_{\text {TOT SAT }} \\
& T_{\text {MANNED }}=\frac{M_{\text {MANNED }}}{R_{\text {MANNED }}} \\
& T_{\text {REMOTE }}=\frac{M_{\text {REMOTE }}}{R_{\text {REMOTE }}} \\
& N_{\text {LEO }}=\frac{T_{\text {MANNED }}{ }^{f} S}{T_{\text {CONT LEO }}{ }^{f} \text { M }} \\
& N_{\text {TELEx }}=\frac{T_{\text {REMOTE }}}{T_{\text {COST LEO }}{ }^{\mathrm{f}} \text { dELE AV } \mathrm{f}_{\mathrm{T}}} \\
& N_{F A B}=\frac{M_{S T C}+M_{S T N C}+M_{W G}+M_{S T C M}}{f_{F A B} R_{F A B}{ }^{T_{C O N S T} \text { LEO }}} \\
& N_{\text {MANI }}=\frac{\gamma N_{\text {LEO }}}{{ }_{S} f_{\text {MANI }}} \\
& N_{\text {LEO } S / S}=\frac{N_{\text {LEO }}}{f_{\text {LEO } S / S}} \\
& M_{F A B}=m_{F A B} N_{F A B} a_{F A B}
\end{aligned}
$$

$$
\begin{aligned}
& M_{\text {TEE }}=m_{\text {TEE }} N_{\text {TEL }}{ }^{a} \text { TEL } \\
& M_{\text {TUG }}=m_{\text {TUG }} N_{\text {TUG }} a_{\text {TUG }} \\
& M_{E V A}=m_{E V A} f_{E V A}\left(N_{L E O}+N_{G E O}\right) \\
& M_{\text {MANI }}=m_{\text {MANI }} N_{\text {MANI }} a_{\text {MANI }} \\
& M_{\text {LEO } S / S}=m_{\text {LEO } S / S} N_{\text {LEO } S / S}{ }^{\text {LEgO } S / S} \\
& M_{\text {AE PROP }}=f_{A E ~ P R O P ~} M_{T O T ~ S A T} \\
& M_{S / S \text { RES }}=f_{S / S \text { RES }}\left(N_{\text {LEO }}{ }^{\top} \text { CONS LEO }+N_{G E O}{ }^{\top} \text { CONS GEO }\right) \\
& M_{\text {CREW }}=m_{\text {CREW }}{ }^{\text {a }} \text { CREW } \\
& M_{G E O} \mathrm{~S} / \mathrm{s}=m_{G E O} \mathrm{~S} / \mathrm{S}^{a_{G E O} \mathrm{~S} / \mathrm{S}}
\end{aligned}
$$

Masses Related to Interorbit Transportation

$$
\begin{aligned}
& \alpha_{L C T}=\quad e^{\Delta V_{L C T} / v_{J C T}} \\
& m_{\text {LaT PROP }}=\frac{\lambda_{\text {LC }}\left(\dot{\alpha}_{\text {LC }}-1\right)}{\lambda_{\text {LC }}-\left(\alpha_{L C T}-1\right)\left(1-\lambda_{L C T}\right)} M_{\text {CREW }} \\
& M_{L C T}=\frac{m_{L C T ~ P R O P}\left(1-\lambda_{L C T}\right)}{\lambda_{L C T}} \\
& M_{\text {oCT PROP }}=m_{\text {LaT PROP }} \frac{T_{\text {COST GEO }}}{T_{\text {ROT }}} \\
& \alpha_{\text {AIS }}=e^{\Delta V_{\text {AIS }} / V_{\text {AIS }}}
\end{aligned}
$$

$$
\begin{aligned}
M_{\text {AIS PROP }} & =\left(M_{\text {GEO } S / S}+M_{\text {TOT SAT }}\right) \frac{\lambda_{\text {AIS }}\left(\sqrt{\alpha_{\text {AIS }}}-1\right)}{\lambda_{\text {AIS }}-\left(\alpha_{\text {AIS }}-1\right)\left(1-\lambda_{\text {AIS }}\right)} \\
M_{\text {AIS }} & =\frac{M_{\text {AIS PROP }}\left(1-\lambda_{\text {AIS }}\right)}{\lambda_{\text {AIS }}} \\
M_{\text {PROP DEPOT }} & =m_{\text {LHT }} \frac{M_{\text {LH }}}{f_{\text {LH }}}+m_{\text {LOXT }} \frac{M_{\text {LOX }}}{f_{\text {LOXT }}}+m_{\text {IT }} \frac{M_{\text {AIS PROP }}}{f_{I T}}
\end{aligned}
$$

Total Mass to LEO

$$
M_{U M A E}=M_{F A B}+M_{T E L E}+M_{A E P R O P}+M_{T U G}
$$

$$
M_{\text {MAE }}=M_{E V A}+M_{\text {MANIP }}+M_{L E O S / S}+M_{G E O S / S}+M_{S / S, R E S}
$$

$$
M_{\text {IOVP }}=M_{L C T}+M_{A I S}+M_{L C T ~ P R O P ~}+M_{A I S ~ P R O P}+M_{C R E W}+M_{P R O P}
$$

$$
M_{\text {LEO }}=M_{U M A E}+M_{M A E}+M_{\text {IOVP }}+M_{\text {TOT SAT }}
$$

LEO Launch Cost

$$
\begin{aligned}
N_{\text {HLLV }} & =\frac{M_{\text {LEO }}}{M_{P / L .} f_{\text {LOAD }}} \\
N_{\text {H UNITS }} & =\frac{N_{\text {HLLV }}}{f_{H L I F E}} \\
N_{\text {SHUTTLE }} & =\frac{N_{\text {LEO }} \frac{T_{\text {CONST LEO }}}{T_{\text {ROT }}}}{f_{\text {SHUTTLE }}}+\frac{N_{\text {GEO }} \frac{T_{\text {CONST GEO }}}{\cdot T_{\text {ROT }}}}{f_{\text {SHUTTLE }}} \\
N_{\text {S UNITS }} & =\frac{N_{\text {SHUTTLE }}}{f_{S \text { LIFE }}} \\
C_{\text {HLLV }} & =c_{\text {HLLV }} N_{\text {HLLV }}+c_{H \text { UNIT }} N_{H \text { UNIT }}
\end{aligned}
$$

$$
\begin{aligned}
& c_{\text {SHUTTLE }}=c_{\text {SHUTTLE }} N_{\text {SHUTTLE }}+c_{S \text { UNIT }} N_{\text {SUNIT }} \\
& c_{\text {LLC }}=c_{\text {SHUTTLE }}+c_{\text {HLLV }}
\end{aligned}
$$

Space Station and Assembly Cost

$$
\begin{aligned}
& c_{U M A E}=c_{F A B} N_{\text {FAB }} a_{\text {FAB }}+c_{\text {ToLE }} N_{\text {TEL }}{ }^{a_{T E L E}}+c_{A E ~ P R O P ~} M_{A E ~ P R O P ~} \\
& +c_{\text {TUG }} N_{\text {TUG }}{ }^{a}{ }^{\text {TUG }}+{ }^{+} \mathrm{c}_{\text {aRD OP }}{ }^{N_{\text {TEE }}}{ }^{f} \text { GRo }{ }^{\top} \text { CONS LEO } \\
& C_{\text {MAE }}=c_{E V A}\left(N_{\text {LEO }}+N_{G E O}\right) f_{E V A}+c_{\text {MANI }} N_{\text {MANI }} a_{\text {MANI }}+c_{\text {LEO }} / S \\
& N_{\text {LEO } S / S}{ }^{a_{\text {LEO }} / S} \text { }+c_{\text {GEO } S / S} N_{G E O S / S}{ }^{a} \text { GEO } S / S ~+c_{S / S} \text { RES } \\
& \text { - } M_{S / S \text { RES }}+\left(N_{\text {LEO }} T_{\text {COST LEO }}+N_{G E O} T_{\text {CONS GEO }}\right) c_{\text {ORB }} \\
& c_{S / S \& A}=c_{U M A E}+c_{\text {MAE }}
\end{aligned}
$$

LEO-GEO Transportation Cost

$$
\begin{aligned}
c_{\text {LEO-GEO }}= & c_{\text {LOT }} a_{\text {LOT }}+c_{\text {AIS }} a_{\text {AIS }}+c_{\text {LCT PROP }} M_{\text {CT PROP }}+c_{\text {AIS PROP }} \\
& M_{\text {AIS PROP }}+c_{\text {CREW }} a_{\text {CREW }}+\dot{c}_{\text {LHT }} \frac{M_{\text {LH }}}{f_{\text {LHT }}} a_{\text {LIT }}+c_{\text {LOXT }} \frac{M_{\text {LOX }}}{f_{\text {LOXT }}} \\
& a_{\text {LOUT }}+\frac{c_{I T T} M_{\text {AIS PROP }}}{f_{I T}}
\end{aligned}
$$

NOTE: The ratios $M_{L H} / f_{\text {LT }}, M_{\text {LOX }} / f_{\text {LOX }}$ and $M_{\text {AIS PROP }} / f_{I T}$ are integers rounded up.

Satellite Procurement Cost

$$
\begin{aligned}
C_{A N T}= & c_{P D} P_{A N T}+c_{P C E} P_{P C E}+c_{W G} P_{D C-R F}+c_{D C-R F} P_{D C-R F} \\
& +c_{C T} P_{A N I T}
\end{aligned}
$$

$$
\begin{aligned}
{ }^{c_{S A T}}= & c_{S A B} A_{B}+c_{S A C} A_{C}+c_{S T C} M_{S T C}+c_{S T N C} M_{S T N C}+c_{S T C M} \\
& M_{S T C M}+c_{A N T}+c_{\text {MISC }} M_{\text {MISC }}
\end{aligned}
$$

Ground Station Cost

$$
\begin{aligned}
C_{G R D ~ S T A T ~}= & c_{R E} P_{R F-D C}+c_{S T R U C T} P_{R F-D C}+c_{\text {INTER }} P_{\text {INTER }} \\
& +c_{P C} P_{R F-D C}
\end{aligned}
$$

Total Unit Production Cost

$$
c_{U P C}=c_{L L C}+c_{L E O-G E O}+c_{S / S \& A}+c_{S A T}+c_{G R D ~ S T A T}
$$

Definitions of Unit Production Cost Model Variables

Following is a listing of the definitions of the variables used in the unit production cost model, in the order of their initial appearance in the model.
$A_{B}=$ area of solar blanket $\left(\mathrm{km}^{2}\right)$
$P_{\text {IN }} \quad=$ power input to the solar array ($k: l l$);

$$
P_{I N}=\frac{P_{O U T}}{T}
$$

where $P_{\text {OUT }}=$ power output at the rectenna busbar (kW ; beginning of life, b.o.1.)
$\Pi \quad=\quad$ system efficiency chain (i.e, the products of the efficiencies of all of the system components); $\Pi=\eta_{S C} n_{S A P D} \eta_{A N T-I N T}{ }^{n_{A N T}}$ PD ${ }^{n_{D C-R F}}{ }^{\eta_{P C}}{ }^{\prime \prime}$ ION PROP
$\eta_{A T M}$ PROP $\eta_{B C} \eta_{R F-D C} \eta_{R E C T}$ PD
where:
$n_{S C}=\begin{aligned} & \text { solar cell efficiency (at given concentration } \\ & \text { ratio, b.o.l.) }\end{aligned}$

${ }^{\text {n SAPD }}$	= solar array power distribution efficiency
$\eta_{\text {ANT.-INT }}$	$=$ antenna interface efficiency
$\eta_{\text {ANT PD }}$	$=$ antenna power distribution efficiency
$n_{D C-R F}$	$=$ dc-rf converter efficiency
${ }^{7} P C$	$=$ phase control efficiency
${ }^{7}$ ION PROP	$=$ ionospheric propagation efficiency
BATM PROP	$=$ atmospheric propagation efficiency
${ }^{\prime} B C$	= beam collection efficiency
${ }^{\prime} R F-D C$	$=\quad r f-d c$ converter efficiency
TRECT PD	$=$ rectenna power distribution efficiency (including utility interface) \qquad
P_{F}	= ratio of area of solar cells to area of blanket of the current configuration solar blanket (i.e., decimal fraction of total blanket area that is solar cells)
F	$=$ solar flux constant (1353 $\times 10^{3} \mathrm{WW} / \mathrm{km}^{2}$)
$n_{\text {eff }}$	$=$ effective concentration ratio
$M_{S A B}$	$=$ total mass of the solar blanket (kg)
$m_{S A B}$	$=$ specific mass of the solar blanket ($\mathrm{kg} / \mathrm{km}^{2}$)
${ }^{A} C$	$=$ area of solar concentrator as seen by the sun (mm^{2})

${ }^{n} \mathrm{CONC}$	efficiency of the concentrator
$M_{S A C}$	$=$ total mass of the solar concentrator (kg)
${ }^{\text {m SAC }}$	$=$ specific mass of the solar concentrator ($\mathrm{kg} / \mathrm{km}^{2}$)
$\mathrm{M}_{\text {STC }}$	$=$. total mass of the conducting structure (kg)
$m_{\text {STC }}$	$=$ ratio of conducting structure mass to solar array area as seen by the sun ($\mathrm{kg} / \mathrm{km}^{2}$)
MSTNC	$=$ total mass of nonconducting structure (kg)
${ }^{\text {m STNC }}$	$=$ ratio of nonconducting structure mass to solar array area as seen by the sun ($\mathrm{kg} / \mathrm{km}^{2}$)
MSTCM	$=$ total mass of the central mast (kg)
${ }^{\text {m STCM }}$	$=$ specific mass of the central mast ($\mathrm{kg} / \mathrm{km}$)
$r_{\text {A }}$	= the aspect ratio of a solar array (length/width)
r_{L}	$=$ factor (>1) to allow for antenna clearance (distance between solar arrays divided by the diameter of the antenna)
$\mathrm{D}_{\text {ANT }}$	$=$ diameter of the transmitting antenna (km)
Mants	$=$ total mass of the antenna structure (kg)
$\mathrm{m}_{\text {ANTS }}$	$=$ specific mass of the antenna structure ($\mathrm{kg} / \mathrm{kW}$)
${ }^{P_{\text {ANT }}}$	$\begin{aligned} & =\text { power input to the antenna (} \mathrm{KW} \text {); } \\ & = \end{aligned}$

$$
\begin{aligned}
& M_{D C-R F}=\text { total mass of the dc-rf converters (kg) } \\
& m_{D C-R F}=\text { specific mass of the dc-rf converters (} \mathrm{kg} / \mathrm{kW} \text {) } \\
& P_{\text {DC-RF }}=\text { power input to the dc-rf converters (kW); } \\
& P_{D C-R F}=\frac{P_{\text {OUT }}}{n_{R E C T} \text { PD }{ }^{n_{R F-D C ~}}{ }^{n_{B C}}{ }^{n_{A T M ~ P R O P ~}}{ }^{n_{I O N ~ P R O P ~}}{ }^{n_{P C}}{ }^{n_{D C-R F}}} \\
& M_{W G}=\text { total mass of the waveguides (} \mathrm{kg} \text {) } \\
& m_{W G} \quad=\text { specific mass of the waveguides (} \mathrm{kg} / \mathrm{kW} \text {) } \\
& M_{\text {ANT-INT }}=\text { total mass of the antenna interface (kg) } \\
& m_{\text {ANT-INT }}=\text { specific mass of the antenna interface (} \mathrm{kg} / \mathrm{kW} \text {) } \\
& P_{\text {ANT-INT }}=\text { power input to the antenna interface (kW); } \\
& \begin{aligned}
\text { WT-INT } & =\frac{P_{O U T}}{n_{\text {RECT PD }} \eta_{\text {RF-DC }} \eta_{B C} n_{A T M ~ P R O P ~} n_{\text {ION PROP }} \eta_{P C} \eta_{D C-R F ~} n_{A}} \\
M_{\text {PCt }} & =\text { total mass of the phase control electronics (kg) }
\end{aligned} \\
& m_{\text {PE }} \text {. = specific mass of the phase control electronics (} \mathrm{kg} / \mathrm{kW} \text {) } \\
& P_{\text {CE }}=\text { power input to the phase control electronics (kW); } \\
& P_{P C E}=\frac{P_{\text {OUT }}}{n_{\text {RECT }} \text { PD }{ }^{n_{R F-D C ~}}{ }^{n_{B C}}{ }^{n_{A T M ~ P R O P ~}}{ }^{n_{\text {ION PROP }}{ }^{n_{P C}}}} \\
& M_{\text {ANT }}=\text { total mass of the antenna (} \mathrm{kg} \text {) } \\
& M_{\text {TOT SAT }}=\text { total mass of an operational satellite } \\
& \text { MMISC . = total mass of miscellaneous equipment (kg) } \\
& \beta \quad=\quad \text { percentage of total satellite mass to be assembled } \\
& \text { by man (input) }
\end{aligned}
$$

$M_{\text {MANNED }}$	$=$ total mass of satellite to be constructed by on-orbit personnel (kg)
Mremote	= total mass of satellite to be constructed by remote control (kg)
$T_{\text {MANNED }}$	$=$ total man-days of construction time
$\mathrm{R}_{\text {MANNED }}$	$=$ rate of manned assembly (kg/man-day)
TREMOTE	$=$ total machine-days of construction time
$R_{\text {REMOTE }}$	$=$ rate of remote-controlled assembly (kg/machine-day)
$N_{\text {LEO }}$	$=$ number on-orbit personnel*
f TELE AV	$=$ factor to account for downtime of teleoperators (i.e., the percentage of the time they are available)
f_{T}	$=$ factor to account for percentage of time that teleoperators can be doing useful work
TCONST LEO	$=$ total construction time in low earth orbit (days)
f_{M}	$=$ factor of productivity account for operations in space (productive time/total work time)
f_{S}	$=$ number of shifts per day
$N_{\text {TELE }}$	$=$ number of on-orbit teleoperators
$N_{\text {FAB }}$	$=$ total number of fabrication modules

[^4]| $\mathrm{R}_{\text {FAB }}$ | $=$ rate of fabrication of modules (kg/days) |
| :---: | :---: |
| $f_{\text {FAB }}$ | = factor to account for fabrication module downtime (i.e., the percentage of the time the units are available) |
| $M_{F A B}$ | $=$ total mass of the fabrication units (kg) |
| $m_{F A B}$ | $=$ mass of a single fabrication module (kg) |
| ${ }^{a_{F A B}}$ | = amortization factor for fabrication module (Note:
 All amoritzation factors $=T_{\text {CONST LEO }}$ /design life of |
| $M_{\text {tele }}$ | $=$ total mass of the teleoperator units (kg) |
| ${ }^{\text {T TELE }}$ | $=$ mass of a single teleoperator (kg) |
| ${ }^{\text {a }}$ TELE | $=$ amortization factor for teleoperators |
| ${ }^{\text {M TUG }}$ | $=$ total mass of the LEO support tugs (kg) |
| ${ }^{\text {m TUG }}$ | $=$ mass of a single LiEO support tug (kg) |
| ${ }^{\text {a }}$ TUG | $=$ amortization factor for LEO support tugs |
| $M_{\text {EVA }}$ | $=$ total mass of extra-vehicular activity (EVA) units (kg) |
| $m_{\text {EVA }}$ | $=$ mass of single EVA unit (kg) |
| $N_{G E O}$ | $=$ total number of geosynchronous personnel (input) |
| $\mathrm{f}_{\text {EVA }}$ | $=$ factor to account for whether or not EVA units must be tailored to individuals or can be used repetitively and for how long |
| Mmanip | $=$ total mass of the manned manipulator units (kg) |

$m_{\text {MANIP }}$	mass of single manned manipulator unit (kg)
$\mathrm{a}_{\text {MANIP }}$	= amortization factor for manned manipulators
$M_{\text {LEO }} /$ /S	$=$ total mass of the low earth orbit space stations (kg)
$\mathrm{m}_{\text {LEO }} \mathrm{S} / \mathrm{S}$	$=$ mass of a single LEO station (kg)
${ }_{\text {L LEO }} / \mathrm{S}$	$=$ amortization factor for LEO space stations
MAE PROP	$=$ total mass of the assembly equipment propellant (kg)
$\mathrm{f}_{\text {AE PROP }}$	$=$ factor used to estimate propellant requirements
$M_{S / S}$ RES	$=$ total mass of the space station resupply (kg)
$\mathrm{f}_{S / S}$ RES	$=$ factor used to estimate space station resupply requirements ($\mathrm{kg} / \mathrm{man} /$ day)
${ }^{\text {TCONST GEO }}$	$=$ total. construction time at geosynchronous orbit (days)
$M_{\text {CREW }}$	$=$ total mass of crew modules (kg)
${ }^{\text {m CREW }}$	$=$ mass of a single crew module (kg)
${ }^{\text {a CREN }}$.	$=$ amortization factor of crew miodule
$M_{G E O} \mathrm{~S} / \mathrm{S}$	$=$ total mass of geosynchronous space stations (kg)
$\mathrm{m}_{\mathrm{GEO}} \mathrm{S} / \mathrm{S}$	$=$ mass of a single geosynchronous space station (kg)
${ }^{\text {a GEO }} \mathrm{S} / \mathrm{S}$	$=$ amortization factor for GEO space stations
$\alpha_{\text {LCT }}$	$=$ ratio of total initial-to-final mass of the large cryo tug plus crew module

$\Delta V_{\text {LCT }}=$ total LEO-GEO mission $\Delta V(\mathrm{~m} / \mathrm{sec}$) (Note: Accounts for a two-way trip as well as maneuvering and rendezvous.)
$V_{J_{L C T}}=$ rocket exhaust jet velocity (m/sec)
$\begin{aligned} m_{\text {LCT PROP }}= & \text { mass of cryo propeliants required for one round-trip } \\ & \text { to } G E O(\mathrm{~kg})\end{aligned}$$\lambda_{\mathrm{LCT}}=$ propellant mass-fraction of the cryo tug.
$\alpha_{\text {LCT }}=\quad \begin{aligned} & \text { ratio of total initial-to-final mass of the cryo tug } \\ & \text { and crew module }\end{aligned}$
MLCT $=$ mass of the large cryo tug (dry) (kg)
$m_{\text {LCT PROP }}=$ mass of propellant for one large cryo tug trip togeosynchronous orbit (kg)
$M_{\text {LCT PROP }}=$ total mass of cryo propellants used during the construc- tion of one SSPS (kg)
$T_{\text {ROT }}=$ time period between crew rotations (days)
$\alpha_{\text {AIS }}=\quad=\begin{aligned} & \text { ratio of total initial-to-final mass of the advanced ion } \\ & \text { stage and payload }\end{aligned}$
$\Delta V_{\text {AIS }}=$ total LEO-GEO mission ΔV of the ion stage ($m / s e c$)
(Note: Accounts for a two-way trip as well asmaneuvering.)$V_{J_{\text {AIS }}}=$ exhaust jet velocity of the ion stage ($\mathrm{m} / \mathrm{sec}$)
$M_{\text {AIS PROP }}=$ total mass of ion propellant (kg)
$\lambda_{\text {AIS }}=$ propellant mass-fraction of the ion stage
MAIS $=$ total mass of the ion stage (dry) (kg)
$M_{\text {PROP DEPOT }}=$ total mass of the tanks used as a propellant depot in low earth orbit (kg)
$m_{H T} \quad=$ mass of a single liquid hydrogen tank (kg)
$M_{\text {LH }} \quad \stackrel{y}{=}$ total mass of liquid hydrogen to be stored $\left(M_{L H}=[1 / 7] \quad M_{L C T}\right.$ PROP $)$
${ }^{f} H T=$ capacity of a liquid hydrogen storage tank (kg)
$m_{\text {LOX }}=$ mass of a single liquid oxygen storage tank (kg)
$M_{\text {LOX }}=$ total mass of liquid oxygen to be stored $\left(M_{\text {LOX }}=[6 / 7] \quad M_{\text {LCD PROP }}\right)$
$\mathrm{f}_{\text {LOUT }}=$ capacity of a liquid oxygen storage tank (kg) (Note: The estimate of storage for cryo propellants is based on the total amount needed for the construction of one SSPS being stored at one time; this need not be true.)
$m_{I T}=$ mass of a single ion propellant storage tank (kg)
$\mathrm{f}_{\mathrm{IT}}=$ capacity of a single ion propellant storage tank (kg)

MUMAE $=$ total mass of unmanned assembly equipment (kg)

MaE $_{\text {MAE }} \quad=$ total mass of the manned assembly equipment (kg)
$M_{\text {IOVP }}=$ total mass of the inter-orbit vehicles and propellants (kg)
$M_{\text {LEO }}=$ total mass launched to low earth orbit for the construcdion of one SSPS (kg)
$N_{\text {HLLV }}=$ total number of heavy lift launch vehicle flights
$M_{P / L} \quad=$ the payload to LEO of an HLLV (kg)
$f_{\text {LOAD }}=\begin{aligned} & \text { average load factor for an HLLV (what percentage of } \\ & \text { payload is used) }\end{aligned}$
$\begin{aligned} N_{\text {H UNITS }}= & \begin{array}{l}\text { number of HLLV } \\ \text { of one SSPS }\end{array}\end{aligned}$
$f_{\text {H LIFE }}=$ number of flights for which HLLV designed
$N_{\text {SHuTtLE }}=$ total number of shuttle flights
f_{S} LIFE $=$ number of flights for which shuttle designed
$f_{\text {SHUTTLE }}={\underset{\text { number }}{ } \text { flight }}_{\text {personnel that can be carried per shuttle }}$
$N_{S \text { UNITS }}=$ total number of shuttles acquired ${ }^{* *}$
$\mathrm{C}_{\text {HLLV }}=$ total cost of HLLV activity (\$)
$c_{\text {HLLV }}=$ cost per HLLV flight (operations) ($\$$)
$c_{\text {H UNIT }}={ }^{-}$cost per HLLV unit (\$)
$C_{\text {SHUTTLE }}=$ total cost of shuttle activity ($\$$)
${ }^{c_{\text {SHUTTLE }}}=$ cost per shuttie flight (operations) (\$.)
${ }^{c_{\text {SUNIT }}}=$ cost per shuttle unit. (\$)
$C_{\text {LLD }}=$ total low earth orbit launch cost (\$)
*This value is not taken to be an integer as one HLLV may service
several payloads.
** This value is not taken to be an integer as one shuttle may service
several payloads.
$C_{\text {UMAE }}=$ total cost of unmanned assembly equipment ($\$$)
$\mathrm{C}_{\text {FAB }}=$ unit cost of fabrication module (\$)
$c_{\text {TELL }}=$ unit cost of teleoperator ($\$$)
$C_{A E ~ P R O P}=$ specific cost of assembly equipment propellant ($\$ / \mathrm{kg}$)
$\mathrm{C}_{\text {TUG }}=$ unit cost of LEO support tug (\$)
$C_{G R D O P}=$ cost per ground operator (for teleoperators) (\$)
$f_{G R D}=$ number of shifts of ground operators
$C_{\text {MAE }}=$ total cost of manned assembly equipment ($\$$)
$c_{\text {EVA }}=$ unit cost of EVA equipment (\$)
$c_{\text {MANI }}=$ unit cost of manned manipulator. $(\$)$
$C_{\text {LEO }} S / S=$ unit cost of LEO space station (\$)
$c_{G E O S} / S=$ unit cost of GEO space stations (\$)
$\mathrm{C}_{\text {SIS RES }}=$ specific cost of space station resupply ($\$ / \mathrm{kg}$)
$C_{\text {ORB }}=$ individual cost of on-orbit personnel (\$/day/person)
$c_{S / S \& A}=\begin{aligned} & \text { total } \\ & S S P S(\$)\end{aligned}$
$C_{\text {LEO-GEO }}=$ total cost of LEO-GEO transportation
$C_{\text {CT }}=$ unit cost of large cryo tug ($\$$)

$a_{\text {LCT }}$	$=$ amortization factor of cryo tug
${ }^{\text {c AIS }}$	$=$ unit cost of advanced ion stage (\$) (Note: In this model there is no connection between the sizing used for mass estimation purposes [of the cryo tug and the ion stage] and the uni.t cost.)
$\mathrm{a}_{\text {AIS }}$	$=$ amortization factor of the ion stage
$C_{\text {LCT PROP }}$	$=$ specific cost of cryo tug propellant (\$/kg)
${ }^{\text {C }}$ AIS PROP	specific cost of ion propellants ($\$ / \mathrm{kg}$)
${ }^{\text {CREW }}$	$=$ unit cost of crew module (\$)
$c_{\text {LHT }}$	$=$ unit cost of liquid hydrogen storage tank (\$)
${ }^{\text {a }}$ LHT	$=$ amortization factor for liquid hydrogen storage tank
${ }^{\text {LOXT }}$	$=$ unit cost of Tiquid oxygen storage tank (\$)
${ }_{\text {a LOXT }}$	$=$ amortization factor of liquid oxygen storage tank
${ }^{c_{I T}}$	$=$ unit cost of ion propellant storage tank (\$)
${ }^{\text {a }}$ IT	$=$ amortization factor of ion propellant storage tank
$C_{\text {ANT }}$	$=$ total procurement cost of the transmitting antenna (\$)
$C_{P D}$	$=$ specific cost of antenna power distribution (\$/kW)
$c_{\text {PCE }}$	$=$ specific cost of phase control (\$/kW)
${ }_{\text {c }}^{W G}$	$=$ specific cost of waveguide (\$/kW)

${ }^{C_{D C-R F}}=$ specific cost of dc-rf converters ($\$ / \mathrm{kW}$).
$c_{S T}=$ specific cost of antenna structure ($\$ / \mathrm{KW}$)
$C_{\text {SAT }}=$ total procurement cost of an operational satellite (\$)
$c_{\text {SAB }}=$ specific cost of solar array blanket $\left(\$ / \mathrm{km}^{2}\right)$
$c_{S A C}=$ specific cost of solar concentrator $\left(\$ / \mathrm{km}^{2}\right)$
${ }^{c_{\text {STG }}}=$ specific cost of conducting structure $(\$ / \mathrm{kg})$
${ }^{C_{\text {STNC }}}=$ specific cost of nonconducting structure ($\$ / \mathrm{kg}$)
${ }^{{ }^{\text {STOL }}}=$ specific cost of central mass $(\$ / \mathrm{kg})$
${ }^{C_{\text {MISC }}}=$ specific cost of miscellaneous equipment ($\$ / \mathrm{kg}$)
$C_{\text {GRO STAT }}=$ total procurement cost of the ground station ($\$$)
$c_{R E} \quad=\quad$ specific cost of real estate and site preparation $(\$ / \mathrm{kW})$
$c_{\text {STRUCK }}=$ specific cost of rectenna structure $(\$ / \mathrm{kW})$
$C_{R F-D C}=$ specific cost of rf-dc converters ($\$ / \mathrm{kW}$)
$c_{\text {INTER }}=$ specific cost of the power interface $(\$ / \mathrm{kW})$
$c_{P C}=$ specific cost of phase front control ($5 / \mathrm{kW}$)
$P_{R F-D C}=$ power input into the rf-dc converters (KW) ;

$$
P_{R F-D C}=\frac{P_{O U T}}{n_{R E C T} P_{D} n_{R F-D C}}
$$

$P_{\text {INTERF }}=$ power input into utility interface (kW);
 $$
P_{\text {INTERF }}=\frac{P_{\text {OUT }}}{n_{\text {RECT PD }}}
$$

APPENDIX C

OPERATION AND MAINTENANCE COST MODEL

The following is a listing of the equations incorporated in the Operation and Maintenance Cost Model. (A description of the cost model is found in Section 4.3).

Launch Facility 08M

$$
\begin{aligned}
& C_{L V F ~ 0 \& M}=N_{0 \& M ~ F L T S}\left(c_{\text {HLLV }}+a_{H L L V} c_{H \text { UNIT }}+c_{\text {AIS FLT }}\right. \\
&\left.+C_{\text {AIS }}{ }^{a} \text { AIS }\right)+N_{\text {LFP }} f_{\text {LFP }}
\end{aligned}
$$

Ground Station 0\&M

$$
C_{G S T ~ 0 \& M} \quad=f_{G R D ~ E Q U I P} C_{\text {GRD STAT }}+N_{G S T} p c_{G S T} p
$$

Space Station and Support 0\&M

$$
\begin{aligned}
& { }^{C_{\text {CoOT }}}={ }^{\mathrm{f}_{\text {CROp }}}\left({ }^{c_{\text {SHUTTLE }}}+{ }^{a_{\text {SHUTTLE }}}{ }^{c_{S}} \text { UNIT }+c_{\text {TUG OP }}\right. \\
& \left.+c_{\text {TUG }} a_{\text {TUG }}+c_{\text {CREW REF }}+c_{\text {CREW }} a_{\text {CREW }}\right) \\
& { }^{c_{S / S ~ O \& M}} .={ }^{a_{S / S}} \quad \dot{0 \& M}\left(c_{G E O S / S}+M_{G E O S / S} c_{G E O} \text { TRANSP }\right) \\
& \mathrm{C}_{S / S} \text { EQUIP } \quad=\mathrm{a}_{S / S} \text { EQUIP }\left(\mathrm{N}_{0 \& M} \text { MANI } \mathrm{m}_{0 \& M} \text { MANI }{ }^{\mathrm{C}}\right. \text { GEO TRANSP } \\
& +\mathrm{N}_{0 \& M} \text { MANI } \mathrm{C}_{0 \& M} \text { MANI) } \\
& { }^{C_{S / S M C}}=f_{S / S M C}{ }^{P_{\text {OUT }}}
\end{aligned}
$$

Satellite 0\&M

$$
c_{S A T ~ 0 \& M}=\sum_{i=1}^{n} c_{S A T} \operatorname{COMP}_{i}
$$

Definitions of 0\&M Cost Model Variables
Following is a listing of the definitions of the variables used in the Operation and Maintenance Cost Model, in the order of their appearance in the model.

$C_{\text {LVF 0 M M }}$	total annual cost of launch facility 0 M ($\$ / \mathrm{yr}$)
$N_{0 \& M}$ FLTS	total number of flights per year to resupply the maintenance space station \& the manned manipulators (input) ($1 / \mathrm{yr}$)
${ }^{\text {chLLV }}$	cost per HLLV flight (operations) (\$)
${ }^{\text {H HLLV }}$	amortization factor for the HLLV ($\mathrm{a}_{\text {HLLV }}=1 /$ total number of design life flights per vehicle).
${ }^{\text {c }}$ UNIT	unit cost of HLLV (\$)
${ }^{\text {AIS FLT }}$	cost per AIS flight (operations) (\$)
$\mathrm{C}_{\text {AIS2 }}$	$=$ unit cost of AIS for O\&M flights (\$)
${ }^{\text {a }}$ AIS	amortiza'tion factor for the AIS
$N_{\text {LFP }}$	total number of launch facility mission control personnel (injut)
${ }_{\text {f }} \mathrm{FF}$	$=$ cost per person for launch facility mission control personnel ($\$ / \mathrm{yr}$)
$C_{\text {GST }}$ O\&M	$=$ total annual cost of ground station 08 M ($\$ / \mathrm{yr}$)
$f_{\text {GRD EQUIP }}$	$=$ assumed annual (fractional) rate of ground equipment replacement

${ }^{\text {GRD STAT }}$		total procurement cost of the ground station (output value of unit production cost model) (\$)
$N_{\text {GST }} \mathrm{P}$	$=$	total number of ground station 0\&M personnel (input)
$c_{\text {GST }} \mathrm{P}$	$=$	cost per person for ground station 0\&M personnel (\$/yr)
${ }^{\text {c CROT }}$	$=$	total annual cost of crew rotation (on-orbit 0\&M personnel) (\$/yr)
${ }^{\text {f }}$ CROT	$=$	number of crew rotation flights per year (no./yr)
${ }^{\text {c SHUTTLE }}$	=	cost per shuttle flight (operations) $(\$)$
${ }^{\text {a SHUTTLE }}$	$=$	amortization factor for shuttle
${ }^{\text {c S UNIT }}$	$=$	unit cost of shuttle (\$)
${ }^{\text {CTUG OPS }}$	$=$	cost per tug flight (operations) (\$)
${ }^{\text {c }}$ TUG.	$=$	unit cost of tug (\$)
${ }^{\mathrm{a}}$ TUG	$=$	amortization factor for tug
${ }^{\text {C CREW REF }}$	=	cost of crew module refurbishment per flight (\$)
${ }^{C}$ CREN	$=$	unit cost of crew module
${ }^{\text {CREW }}$	$=$	amortization factor of crew module
$\mathrm{C}_{S / S} 0 \& \mathrm{M}$	$=$	total annual cost of space station \& support 0\&M (\$/yr)
${ }^{a_{S / S}}$ O\&M	$=$	amortization factor of $0 \& M$ space station (fraction reflecting number of stations used per year (1/design life of space station)

$c_{\text {GEO }} \mathrm{S} / \mathrm{S}$	$=$ unit cost of GEO space station (\$)
M GEO S/S	mass of a single GEO space station (kg)
$c_{\text {GEO TRANSP }}$	specific cost of transportation to GEO ($\$ / \mathrm{kg}$)
${ }^{\text {S/S EQUIP }}$	total annual cost of maintenance support equipment ($\$ / \mathrm{yr}$)
${ }^{\text {a }}$ /S EQUIP.	amortization factor for manipulators
$\mathrm{N}_{\text {ORM MANIP }}$	$=$ total number of O\&M manipulators
m_{0} M M MANIP	$=$ mass of a single 0 0 M manipulator (kg)
$C^{\text {ORM M M }}$ MIP	$=$ cost of a single 08M manipulator (\$)
${ }^{c_{S / S} M C}$	$=$ total annual cost of the space station mission control ($\$ / \mathrm{yr}$)
${ }^{\mathrm{f}}$ S/S $\mathrm{S} \cdot \mathrm{MC}$	specific cost of the mission control facility ($\$ / \mathrm{kW} / \mathrm{yr}$)
$P_{\text {OUT }}$.	$=$ power output at the rectenna busbar (beginning of life) (kW)
${ }^{\text {SAT }}$ O\&M	$=$ total annual cost of satellite 08 M (\$/yr)
${ }^{\text {SAT COMP }}{ }_{i}$	$=$ total annual cost of replacing the failed units of the i th satellite component (see Table C.3) ($\$ / \mathrm{yr}$)
	$\left.\begin{array}{rl} \mathrm{c}_{\text {SAT COMP }_{i}}= & \mathrm{f}_{\text {SAT COMP }_{i}}{ }^{\mathrm{S}_{\text {SAT }}} \text { COMP }_{i} \\ & \left(\mathrm{c}_{\text {COMP PROC }}^{i}\right. \end{array}+\mathrm{c}_{\text {GEO TRANSP }}\right)$

APPENDIX D

THE CURRENT STATE-OF-KNOWLEDGE

The current state-of-knowledge relative to the current configuration SSPS is reflected by the ranges of input variables to the risk analysis model. These ranges have been subjectively assessed and are given in Table D.1 for the unit production costs for Programs I, II and III, and in Table D. 2 for the unit production costs for Programs IV and V. Tables D. 3 and D. 4 give the input variables for the operation and maintenance costs which are the same for all five programs.

The sources for these input data include one report prepared by Grumman Aerospace Corp. (A. Nathan, "Space-Based Solar Power Conversion and Delivery Systems [Study]--Engineering Data Compilation," October 13, 1975) and two reports prepared by Raytheon Co. ("Space-Based Solar Power Conversion and Delivery System Study--Microwave Power Generation, Transmission and Reception," October 31, 1975, and "Microwave Power Transmission System Studies," Volumes II and IV, December 1975).

In addition, several meetings with Rudy Adornato and C. Allan Nathan of Grumman Aerospace were conducted to review and update these data, and Owen Maynard of Raytheon Co. was consulted on several occasions concerning the microwave portions of the systems. Data on solar cell materials was supplied by Arthur D. Little, Inc. as a part of this study. Their work in preparing these data is reported in volume IV of this report,

mput elemeht	Units	Yaritable MAME	RANGE OF Yatues		
			3Est	WSt LixELY	NORST
Power Output te the susbar (bol)	k	p	*	5.258×10^{5}	*
Packing factor of the solar slanket	Fraction	P_{F}	0.99	0.95	0.91
Effective Concentrazion Ratio	Fraction	${ }^{n}$ eff	2.0	2.0	2.0
Salar cell Efficiency (bol)	Fraction	${ }^{7} \mathrm{SC}$	0.1440	0.1297	0.1019
Solar array Power ofstribution Efficient	fraction	${ }^{7}$ sapg	0.75	0.93	0.92
Antennd Interface efficiency	Sraction	$n_{\text {ast-int }}$	0.99	0.98	0.97
Ancenna Pawer oistribution Efficiency	fraction	${ }^{\text {a aht }}$ ¢ ${ }^{\text {a }}$	0.97	0.36	0.96
OG-2f Converser Efficiency	iraction	${ }^{\text {O }} \mathrm{OC-RE}$	0.70	0.87	0.85
Phase Control Efficiency	Fraction	${ }^{7} \mathrm{c}$	0.97	0.96	0.95
lonosphertc Propagation Efiliciency	Fraction		1.00	1.00	1.00
itmosoherte Propagation Efficiency	Fraction	${ }^{\text {ata }}$ PROP	0.99	0.99	0.99
3ean Callecsion Efficiency	Fraction	${ }^{8} 8$	0.95	0.725	0.90
RF-DC Converter Efsiciency	Fraction	${ }^{\text {n }}$ F-9C	3.30	0.37	0.84
Reccenad Power Olstefbution Effictency	Fraction	${ }^{7} \mathrm{rect} \mathrm{po}$	0.95	0.34	0.93
spectfie mass of the Solar Sianke:	$\mathrm{kg} / \mathrm{km}^{2}$	7_{518}	282×10^{3}	400×10^{3}	\$25x10 ${ }^{\text {3 }}$
Efficiency of the Solar Concentrator	craceion	${ }^{3} \mathrm{sc}$ ate	0.90	0.85	0.80
Specific tass of the Salar concentrator	$69 / \mathrm{km}^{2}$	$\mathrm{Masic}^{\text {c }}$	39829	53340	79120
Ratis. Conduetiny Struct itass to drray irea	$89 / 8 n^{2}$	$\mathrm{a}_{\text {Sic }}$	1140	\$600	5050
zatio: xoncond. Struct. पass es irray tred	$\mathrm{cg} / \mathrm{kn}^{2}$	$\square_{\text {ajuc }}$	34200	38080	41800
Specifte Yass of Eaneral Yast	89/kn	${ }^{\text {m STCM }}$	\$3970	48950	53740
Asper: patio of Solat array	Fraction	$r_{\text {A }}$	-	1.2	*
Antenna Clearance	fraction	r_{1}	*	1.5	-
Didineser of Transmitaing anteina	'm	$0_{\text {ast }}$	-	0.33	-
Specific Mass of antenne Structira	$\times 9 / \times 4$	$\mathrm{m}_{\text {AHTS }}$. 1802	0.0891	0.0980
Spectife Mass of OC - za Converters	<9/aid	$\mathrm{moc}_{\mathrm{OL}-2 \mathrm{~F}}$	9. 2435	0.2772	3.4546
Specifle Mass of Wavegutdes	Kg/× ${ }^{\text {c }}$	$3: 3$	0.2473	ง 2748	0.5496
Specific Mass of incenna literface	$\times \mathrm{ki} \times 2$	Fintiot	0.0171	0.0190	0.0380
Spectific yass of Phase Contral Electronics	kg/x'd	${ }^{7} 9 \mathrm{ces}$	3.3160	2.0138	0.0356
Miscelldnesus mass	$\times 9$	${ }^{4}{ }_{\text {HiSC }}$	70×10^{2}	100×10^{3}	380×10^{5}
Percensage of Sacellite issemaled by yan	Fraceon	3	323	2. 10	3.30
Rate of hanned issamoly	cg/Day	${ }^{2}$ yavasf	354	:00	30
qace of gemote issemoly	kg/0ay	マzemore	506	100	+3
istal Construc:ion fire	Days	${ }^{\text {'cursi }}$	-	:30	-
Saift factor	10ay	${ }_{\text {f }}$	-	3.0	*
Personnel Productiviej factor	Erscion	${ }^{4}$	5:3	350	0.50
ielsooerator Avaliasility factor	eraction	${ }^{\prime} \mathrm{TCLS}$ dV	035	9.30	0.35
releogerator dork eactor	araction	':	ग. 50	0.30	\%. 29
caoricscton Rats of पodules	xq/9ay	$2_{\text {cha }}$	5550	3000	2250
Fiorication module ivatiabllity facior	Fraction	$\mathrm{f}_{\text {Fi, }}$	3.30	¢. 20	0.10
Parcencage of ${ }^{\text {anersonmal using *antoulatars }}$	Frac:10n	1 !	-	2.10	-
Manioulstor tratizollity iactor	=rastion	$f_{\text {wamio }}$	J. 30	3.30	3.20

ORIGINAL PAGE IS OF POOR QUALITY

tabie d.l unit proouction cost model input values, contio.

IMPUT ELEMEMT	UNITS	yariable MUE	Range of yalues		
			3EST	mast tixely	\%0¢St
Sunber of Personnel Per LEO Space Staction	Muaber	$\mathrm{f}_{\mathrm{LEO}} 5 / 5$	-	12	-
Fabrication Module Unit Mass	${ }^{69}$	$\mathrm{m}_{\text {FAB }}$	1500	4540	9000
Teleoperator Unit Mass	k9	${ }^{\text {TreLE }}$	50	180	250
LEO Supgore Tug Unit yass	$\times 9$	${ }^{\text {a }}$ TUG	300	1364	3000
gua Equipment Unie Mass	kg	- $=1 /$	68	90	135
Eva Untt Use factor	=racsosn	${ }^{\text {¢ ¢ ¢ }}$	0.40	0.30	0.20
Manipulatar Unic Mass	$\times 9$	${ }^{\text {mamip }}$	900	1980	3800
LEO Spaes Station dnie Mass	k9	${ }^{\text {mise }} \mathrm{s} / \mathrm{s}$	30×10^{3}	102×10^{1}	150×10^{3}
assembly Équig. p-opallancessctmation factor	Fraction	${ }^{\text {F }}$ AE PqOP	0.91	0.62	0.05
Soace Stacton Resupaly Estimation factor	Re/man/dav	's/S Res	-	10	-
Crex Madule Unit Yass	${ }_{8} 9$	${ }^{3}$ CREX	12×10^{3}	13×10^{3}	15×10^{3}
GE0 Soace station Unit Mass	$\times 9$	${ }^{\text {a }}$ ceno S/S	40×10^{3}	50×10^{3}	76×10 ${ }^{3}$
LCT TOC3l LEO-GẼ0 Mtssion av	m/sec	${ }^{3} \mathrm{~L}_{6 \mathrm{ct}}$	-	3534	*
LCT Rocxet Exhause Jec lelocity	m/sec	${ }^{1}{ }^{\text {LecI }}$	*	2564	-
Lu\% गrometanc yass-rraction	praction	${ }^{*} \mathrm{LCT}$	-	0.80	*
Crew Rotacion Period	Oays	${ }^{3} \mathbf{8 0}$	180	8	60
Als Tacal Lso-geo mission iv	p/sec	${ }^{13} 415$	-	9753	.
dis Exaust Jet veiocity	m/s:c	${ }^{1}{ }_{3} 115$	*	47315	*
dis Propellant Mass-īrdcilan	Fruseion	λ_{4} is	-	0.335	-
Liquid Hytrogen Storage ianx linic Mass	$k 7$	${ }^{3} \mathrm{HT}$	*	39105	*
Liquid Hyarogen Storage Tank Capacity	${ }^{4} 9$	C_{HI}	\checkmark	78090	-
L'quid 0xygen storage tank Unit yass	$\times 9$	reseit	-	39105	-
Liquid Jxygen Storage Tank Eapditity	<9	${ }^{6}$, oxt	-	720900	*
lon Preoeldan: Storsqe iank पass	49	$7{ }_{7}$	-	39105	-
ton tropeltant Storage Pank Capacity	$\times 9$	${ }_{4} i_{1}$	*	:21900	-
HLCV Jayload to Leo	49	${ }^{4} \mathrm{P} / \mathrm{L}$	*	181×10^{3}	*
HLiv dyerage load fictor	Fraction	$\mathrm{f}_{\text {LOMO }}$	100	2.90	0.30
HLLY Purneround time	Days		*	:	-
Yumeer of personnel s ar shucsle cilgnt	Humber	${ }^{\text {f Shutele }}$	60	40	29
shutile iurnaraund itma	gays	${ }^{5} 5$ ivan	*	14	-
buntan Cost far ytit Eitgne	5	${ }^{5} 4$ LLI	$\mathrm{d} \times 10^{5}$	9×10^{5}	20×10^{5}
ntiv Jait cost	5	$\mathrm{c}_{\mathrm{H} \text { unit }}$	350×10^{5}	$\therefore \mathrm{COX}^{1} 10^{5}$	900×10^{8}
Launch Cost Per jhuctie flignt	5	$c_{\text {sturict }}$	$11 \times 10^{\text {a }}$	12×10^{5}	20×10^{6}
Shutile Unft Cost	5	$c_{\frac{3}{3} \text { unti }}$	150×10^{3}	260×10^{5}	250×10^{6}
Fibrication Mosuit Un't Cost	3	${ }^{\text {c }}$ FAB	10×10^{5}	12×10^{5}	20×10^{6}
Fabrication Hodule dmortsation Fic:or	-raction	${ }^{4}=18$	\cdots	0.2	-
Teleoperstor Unit cost	5	${ }^{\text {c }}$ TLS	2.0×10^{5}	3.5×10^{5}	10.0×10^{5}
Teleoperstor dmartisation factar	eraceion;	${ }^{3} \mathrm{BELE}$	-	9.2	.
Assemoly Equioment ? l	S/kg		*	033	-
LEv Supoors -uq Jate coss	5	${ }^{5} \mathrm{CH}$	2.0×10^{5}	25×10^{5}	10.2×10^{5}
-ts suosort Tug mmortisacion factur	Frac:ion\|	1-.if	-	22	-

ikput elemint	UHITS	Vartable HME	raige of values		
			9®St	Wost Lixsty	MORST
Munber of Snifts for Ground Doeracors	Number	$\mathrm{f}_{\mathrm{G} 2}$	-	4	*
E4A Equipaent Unit cose	5	${ }^{\text {c eva }}$	1.5×10^{5}	$2.0 \times 10^{\text {a }}$	5.0×10^{5}
Manlpulator Unit Cost	5	$c_{\text {Mamip }}$	8.0×10^{0}	11.0×10^{6}	30.0×10^{6}
Manipulator Amorsisation factor	Eraction	${ }^{\text {a }}$ ¢ ${ }^{\text {anat? }}$	*	0.2	*
LeO Space Staction Uniz cos:	S	${ }^{\text {cten }} \mathrm{s} / \mathrm{S}$	190×10^{6}	$360 \times 10^{\text {b }}$	720×10^{5}
LEO Space scation dmortisation factor	erac:ion	${ }^{\text {digo }}$ S/S	\bullet	0.2	-
SED Space Station Unfe Cost	s	${ }^{\text {cheo S/S }}$	96×10^{5}	130×10^{5}	360×10^{6}
GEO Space stacion dmortisation factor	frac:ion	${ }^{1} \mathrm{GEO} \mathrm{S} / \mathrm{s}$	\checkmark	0.2	-
Sosce Scacton Resupgly Specific Cose	s	$c_{s / s}$ qes	5.0	10.0	20.0
LCT Unit Cost	3	$\mathrm{C}_{\text {ICt }}$	12×10^{6}	15×10^{5}	$25 \times 10^{\circ}$
Let matortisation factor	Fracsion	${ }^{\text {d }}{ }_{\text {L }} \mathrm{Ct}$	-	0.2	-
Als Unit cose	S	$c_{\text {cis }}$	150×10^{5}	150×10^{5}	1000×10^{5}
als Amersisation factor	Fraction	${ }_{4}{ }_{\text {ats }}$	*	0.2	*
Cryo Tug prosellane Spectific case	319\%	$c_{\text {cet orop }}$	-	0.55	*
Lon Propellant Specific Cost	Six9	$c_{\text {cis opop }}$	*	0.32	-
Cren Module Unic Cost	S	$¢_{\text {crex }}$	12×10^{5}	23×10^{5}	40×10^{5}
Grew Yodute tmorstzation Factor	Fraction	${ }^{3}$ ren	-	G.Es	*
Liguad nyargsen Storase Tank Unit Cost	s	$E_{\text {cht }}$	12×10^{5}	15×10^{5}	20×10^{5}
Liquid Oxygen scorsge rank untz Cast	5	$c_{\text {LOXI }}$	$12 \times 10^{\overline{0}}$	15×10^{5}	$20 \times 10^{\frac{1}{3}}$
Con Prepellant Storaq* iank Unit Cost	5	${ }^{\text {i }}$ i	12×10^{5}	16×10^{5}	20×10^{5}
Liquid Hydrogen Fanx Amorcisacion Faczor	Fraction	${ }^{1}$ int	3.57	1.0	1.3
-lauid oxygen idnk daoreisation facior	Fraction	${ }^{1} 1000$	0.57	1.0	i.j
ion Pragellant fank Amartisation factor	Fraciton	${ }^{1} 15$	0.67	i. 0	$1 . \%$
Ancenna Power gistribution soecifie cost	5/8M	$c_{p o}$	9.72	10.50	21.30
3hase Control sgecific Cost	S/XN	${ }^{\text {PCP }}$	16.33	18 ;0	37. 13
arvegula Spectfic Cost	s/kx	${ }^{\text {asg }}$	7.92	a.30	:7 30
di-af Converter specific Cos:	\$/x'4		14.67	16.30	32 J
Antenta Structure soectific cos:	5/ak	${ }_{5}{ }_{5}$	3.90	9.90	id. 30
Solar drray 3lanket specific cast	$3 / \mathrm{km}^{2}$	$\mathrm{c}_{5 \times \mathrm{S}}$	275×10^{5}	53.0×10^{5}	1653×10^{5}
Solar Array Concentrator Specitic cost	S/80 ${ }^{2}$	$c_{\text {SAC }}$	1.04×10^{5}	2.07×10^{3}	6.22×10^{5}
Eoncuctiag structure Soec:fic cost	5/2\%	$\mathrm{C}_{5 \mathrm{sic}}$	20.0	31.3	360.3
Hon-Conducting Structure Specific Cost	5/kg	${ }_{\text {csinc }}$	20.0	31.3	3000
Eantral Yast sjecific cost	5/kg	${ }^{\text {sfich }}$	29.0	31.0	300.0
Miscelianeous Equipnent Soecifite Cost	3/k9	${ }^{\text {chise }}$	219	437	360
Rectenna Sice Specific tost	5/8.4	${ }_{\text {cre }}$!9.39	22.10	42.29
2ectemma Structure soectific Cost	3/x/	$c_{\text {struct }}$	3338	93.20	185.4)
zF-JC esavertor specific cast	3/84	${ }^{\text {\%F-OC }}$	5600	62. 20	124-9
Power incerface soecitic cost	Sixd	${ }^{\text {cintene }}$	29.30	4.20	23.40
ihase Control soecific Cost	$5 . \mathrm{km}$	5 s	3.33	3.:0	719
Solor riux Consiant	K.j	F	.	3.53×10^{3}	-

Input Element	Units	Variable Name	Range of Values		
			Best	Most Likely	Worst
Power Output at Rectenna Busbar (B.O.L.)	kW	$\mathrm{P}_{\text {OUT }}$	--	5.258×10^{6}	--
Solar Cell Efficiency (B.O.L.) CdS Si GaAs	Fraction Fraction Fraction	$\eta_{S C}$ $n_{S C}$ $n_{S C}$.065 .118 .184	.054 .092 .149	.043 .067 .176
Solar Array Power Distribution Efficiency	Fraction	${ }^{n_{\text {SAPD }}}$	0.95	0.93	0.92
Antenna Interface Efficiency	Fraction	$\eta_{\text {ANT INT }}$	0.99	0.98	0.97
Antenna Power Distribution Efficiency	Fraction	${ }^{\prime}$ ANT PD	0.99	0.98	0.97
DC-RF Converter Efficiency	Fraction	${ }^{7} \mathrm{DC-RF}$	0.90	0.87	0.85
Phase Control Efficiency	Fraction	${ }^{\eta_{P C}}$	0.96	0.95	0.94
Ionospheric Propagation Efficiency	Fraction	$\eta_{\text {ION PROP }}$	1.0	1.0	1.0
Atmospheric Propagation Efficiency	Fraction	${ }^{\text {n }}$ ATM PROP	0.99	0.99	0.99
Beam Collection Efficiency	Fraction	${ }^{n} \mathrm{BC}$	0.97	0.95	0.93
RF-DC Converter Efficiency	Fraction	${ }^{\text {RF-DC }}$	0.91	0.88	0.85
Rectenna Power Distribution Efficiency	Fraction	$\eta_{\text {RECT P }}$ PD	0.96	0.95	0.94
Packing Factor of Solar BTanket	Fraction	P_{F}	0.99	0.95	0.91
Solar Flux Constant	$\mathrm{kW} / \mathrm{km}^{2}$	F	--	1.35×10^{6}	'_-

- Input Element	Units	Variable Name	Range of Values		
			Best	Most Likely	Worst
Effective Concentration Ratios	Eraction	$\eta_{\text {EFF }}$	2.0	2.0	1.8
Specific Mass of Solar Blanket CdS Si GaAs	$\begin{aligned} & \mathrm{kg} / \mathrm{km}^{2} \\ & \mathrm{~kg} / \mathrm{km}^{2} \\ & \mathrm{~kg} / \mathrm{km}^{2} \end{aligned}$	$m_{S A B}$ $m_{S A B}$ $m_{S A B}$	$\begin{aligned} & 1.15 \times 10^{5} \\ & 8.05 \times 10^{5} \\ & 3.32 \times 10^{5} \end{aligned}$	$\begin{aligned} & 1.49 \times 10^{5} \\ & 11.5 \times 10^{5} \\ & 4.32 \times 10^{5} \end{aligned}$	$\begin{aligned} & 1.94 \times 10^{5} \\ & 14.95 \times 10^{5} \\ & 5.26 \times 10^{5} \end{aligned}$
Efficiency of Solar Concentrator	Fraction	${ }^{1} \mathrm{CONC}$	0.90	0.86	0.82
Specific Mass of Solar Concentrator	$\mathrm{kg} / \mathrm{km}^{2}$	${ }^{m}$ SAC	39820	59340	79120
Ratio: Conducting Structure Mass to Solar Array Area	$\mathrm{kg} / \mathrm{km}^{2}$	${ }^{\text {m }}$ STC	4140	4625	5060
Ratio: Nonconducting Structure Mass to Solar Array Area	$\mathrm{kg} / \mathrm{km}{ }^{2}$	${ }^{\text {m STNC }}$	35900	39900	43890
Specific Mass of Central Mast	$\mathrm{kg} / \mathrm{km}$	$\mathrm{m}_{\text {STCM }}$	100×10^{3}	120×10^{3}	200×10^{3}
Aspect Ratio of Solar Array	Fraction	$r_{\text {A }}$	--	1.2	--
Antenna Clearance	Fraction	r_{L}	--	1.5	--
Diameter of Transmitting Antenna	km	$\mathrm{D}_{\text {ANT }}$	--	1.027	--
Specific Mass of Antenna Structure	kg/kW	$\mathrm{m}_{\text {ANT }}$. 0262	. 0291	. 0320
Specific Mass of DC-RF Converters	kg/kW	$m_{\text {DC-RF }}$. 2495	. 2772	. 4544
Specific Mass of Antenna Power Distribution System	kg/kW	$\mathrm{m}_{\text {ANT PD }}$	0.047	0.052	0.104

Table D. 2 Unit Production Cost Model Input Values (continued)

Input Element	Units	Variable Name	Range of Values		
			Best	Most Likely	Horst
Specific Mass of Waveguides	kg/kW	$m_{W G}$	0.3786	0.4207	0.8415
Specific Mass of Antenna Interface	kg/kN	${ }^{\text {ANT }}$ INT	0.0771	0.0190	0.0380
Specific Mass of Phase Control Electronics	kg/kW	$\mathrm{m}_{\text {PCE }}$	0.0760	0.0178	0.0356
Miscellaneous Satellite Mass	kg	$M_{\text {MISC }}$	70×10^{3}	100×10^{3}	360×10^{3}
Basic Unit Mass of Construction, Small	kg	${ }^{m} \mathrm{CB}$	2.475×10^{6}	2.75×10^{6}	3.025×10^{6}
Basic Unit Mass of Construction, Large	kg	${ }^{m} \mathrm{CB}$	4.95×10^{6}	5.5×10^{6}	6.05×10^{6}
Specific Mass of EPS Solar Array	kg/kW	m_{PI}	1.5	2	5
EPS 'Power Requirements, Small Base 'LEO	kW	$P_{\text {EPS REQ }}$	2376	2640	2904
EPS Power Requirements, Large Base LEO	kW	${ }^{\circ}$ EPS REQ	6466	7185	7903
EPS Power Requirements, Large Base GEO	kW	$\mathrm{P}_{\text {EPS REQ }}$	2628	2920	3212
EPS Power Requirements, Small Base GEO	kW	$\mathrm{P}_{\text {EPS REQ }}$	945	1050	1155
Special Mass of EPS Batteries	kg/kW	$\mathrm{m}_{\mathrm{P} 2}$	25	27	40

			Range of Values		
Input Element	Units	Variable Name	Best	Most Likely	Worst
Orbit Keeping Propellant Mass, Small Base LEO	kg	m_{OP}	9000	10000	14000
Orbit Keeping Propellant Mass, Large Base LEO	kg	$\mathrm{m}_{0} \mathrm{P}$	9000	10000	14000
Orbit Keeping Propellant Mass, Small Ease GEO	kg	$\mathrm{m}_{0 P}$	0	0	0
Orbit Keeping Propellant Mass, Large Base GEO	kg .	m_{0}	0	0	0
Attitude Control Propellant Mass, Small Base LEO	kg	$m_{A P}$	2.52×10^{6}	2.8×10^{6}	3.08×10^{6}
Attitude Control Propellant Mass, Large Base LEO	kg	$\mathrm{m}_{\text {AP }}$	7.35×10^{6}	1.5×10^{6}	1.65×10^{6}
Attitude Control Propellant Mass, Small Base GEO	kg	$\mathrm{m}_{\text {AP }}$	2.52×10^{3}	2.8×10^{3}	3.08×10^{3}
Attitude Control Propellant Mass, Large Base GEO	kg	mAP	58.5×10^{3}	65×10^{3}	71×10^{3}
Total Satellite Fleet Size	Number	$N_{\text {SAT }}$	--	120	--
```Total Crew Size, Small Base```	Number	$N_{\text {crew }}$	600	682	750
```Total Crew Size, Large Base```	Number	$\mathrm{N}_{\text {crew }}$	- 1600	1875	2060

Table D. 2 Unit Production Cost Model Input Values (continued)

Input Element	Units	Variable Name	Range of Values		
			Best	Most Likely	Horst
Number of Personnel Carried per POTV Flight	\#/Flight	$\mathrm{f}_{\text {POTV }}$	80	75	70
Number of Crew Rotations Per Year	\#/Year	${ }^{\text {frROT }}$	3	4	6
Rate of Satellite Construction	\#/Year	$\mathrm{R}_{\text {const }}$	8 Large/ 6 Small	6 Large/ 4 Smal1	5 Large/ 3 Sma11
Propellant Consumption per POTV Flight (RT)	kg	${ }^{\text {f POTV PRP }}$	156×10^{3}	759×10^{3}	162×10^{3}
Capacity of Propellant Storage Tank	kg	f_{T}	--	106×10^{3}	--
Unit Mass of Prope1lant Storage Tank	kg	m_{T}	--	3.18×10^{3}	--
Payload of COTV	kg	${ }^{\text {f COTV }}$	--	250×10^{3}	--
Unit Mass of COTV (Dry)	kg	${ }^{\text {m COTV }}$	--	35×10^{3}	--
Design Life of POTV	\# Flights	${ }^{\text {f POTV Life }}$	--	30	--
Unit Mass of POTV (Dry)	kg	$\mathrm{m}_{\text {COTV }}$	--	17×10^{3}	--
Propellant Consumption per COTV Flight	kg	${ }^{\text {f }}$ COTV PRP	--	475×10^{3}	--
HLLV Payload to LEO	kg	$\mathrm{M}_{\mathrm{P} / \mathrm{L}}$	--	265×10^{3}	--
AIS Propellant MassFraction	Fraction	$\lambda_{\text {AIS }}$	--	0.7289	--
AIS Total LEO-GEO Mission ΔV	$\mathrm{m} / \mathrm{sec}$	$\Delta V_{\text {AIS }}$	--	5975	--

Table D. 2 Unit Production Cost Model Input Values (continued)

Input Element	Units	Variable Name	Range of Values		
			Best	Most Likely	Horst
AIS Exhaust Jet Velocity	$\mathrm{m} / \mathrm{sec}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~J}_{\text {AIS }} \\ & \hline \end{aligned}$	--	50,000	--
Ion Propellant Storage Tank Capacity	kg	$\mathrm{F}_{\text {IT }}$	--	2.33×10^{6}	--
Ion Propellant Storage Tank Unit Mass (Dry)	kg	${ }^{m} \mathrm{IT}$	--	163×10^{3}	--
HLLV Average Load Factor	Fraction	$f_{L O A D}$	1.0	0.9	0.8
Design Life of HLLV Upper Stage	\# Flights	$\mathrm{f}_{\text {HUS LIFE }}$	500	500	400
Design Life of HLLV Lower Stage	\# Flights	$\mathrm{f}_{\text {HLS LIFE }}$	300	300	200
Number of Personnel per Shuttle Flight	Number	${ }^{\text {f SHUTTLE }}$	--	75	--
Design Life of Shuttle	\# Flights	${ }^{\text {f SLIFE }}$	--	100	--
HLLV Upper Stage Unit Cost	\$	${ }^{\text {chuS }}$	175×10^{6}	192×10^{6}	250×10^{6}
HLLV Lower Stage Unit Cost	\$	${ }^{\text {chLS }}$	175×10^{6}	191×10^{6}	250×10^{6}
Launch Operations Cost per HLLV Flight	\$	$\mathrm{c}_{\mathrm{HLLV}}$	6.5×10^{6}	6.9×10^{6}	9.0×10^{6}
Launch Operations Cost per Shuttle Flight	\$	${ }^{\text {c SHUTTLE }}$	12×10^{6}	13×10^{6}	20×10^{6}
Shuttle Unit Cost	\$	${ }^{\text {c SUNIT }}$	190×10^{6}	200×10^{6}	250×10^{6}

Input Element	Units	Variable Name	Range of Values		
			Best	Most Likely	Horst
Basic Unit of Construction Base (Smal1)	\$	${ }^{\text {c }}$ CB	1.128×10^{9}	2.165×10^{9}	3.631×10^{9}
Basic Unit Cost of Construction Base (Large)	\$	${ }^{\text {c }}$ CB	2.447×10^{9}	3.612×10^{9}	5.23×10^{9}
Specific Cost of EPS Solar Array	\$/kW	${ }^{\text {c }}$ 1	100	200	600
Specific Cost of EPS Batteries	\$/kW	${ }^{\text {c }}$ P2	4000	5000	20000
Cost of Radiation S'nielding, Small Base LEO	\$	${ }^{\text {c }}$ RDS	5×10^{6}	10×10^{6}	30×10^{6}
Cost of Radiation Shielding, Large Base LEO	\$	${ }^{\text {c }}$ RDS	15×10^{6}	30×10^{6}	100×10^{6}
Cost of Radiation Shielding, Small Base GEO	\$	${ }^{\text {chDS }}$	15×10^{6}	30×10^{6}	100×10^{6}
Cost of Radiation Shielding, Large Base GEO	\$	${ }^{\text {chDS }}$	30×10^{6}	90×10^{6}	200×10^{6}
Specific Cost of Altitude Control Propellant	\$/kg	${ }^{\text {c }}$ AP	--	. 33	--
Specific Cost of Orbit-Keeping Propellant	\$/kg	${ }^{\text {c }}$ O	--	. 33	--
COTV Unit Cost	\$	${ }^{\text {C }}$ COTV	12×10^{6}	15×10^{6}	25×10^{6}
POTV Unit Cost	\$	${ }^{\text {P POTV }}$	18×10^{6}	23×10^{6}	40×10^{6}

Table D. 2 Unit Production Cost Model Input Values (continued)

- Input Element	Units	Variable Name	Range of Values		
			Best	Most Likely	Hiorst
Specific Cost of OTV Propellant	\$/kg	$\mathrm{C}_{\text {PRP }}$	--	. 55	--
AIS Unit Cost	\$	$\mathrm{C}_{\text {AIS }}$	150×10^{6}	400×10^{6}	500×10^{6}
Specific Cost of Ion Propellant	\$/kg	${ }^{\text {c AIS PROP }}$	--	. 33	--
CTV Propellant Storage Tank Unit Cost	\$	${ }^{\text {C }}$ T	12×10^{6}	16×10^{6}	20×10^{6}
Ion Propellant Storage Tank Unit Cost	\$	${ }^{\text {C }}$ IT	12×10^{6}	16×10^{6}	20×10^{6}
Antenna Power Distribution Specific Cost	\$/kW	${ }^{C}$ PD	6.00	6.59	12.52
Phase Control Electronics Specific Cost	\$/kW	${ }^{\text {c PCE }}$	25.77	28.63	56.80
Wave Guide Specific Cost	\$/kW	${ }^{\text {WGG }}$	12.13	13.47	26.95
DC-RF Converter Specific Cost	\$/kW	${ }^{\text {c }}$ DC-RF	14.67	16.3	32.6
Antenna Structure Specific Cost	\$/kW	${ }^{\mathrm{C}_{S T}}$	12.40	13.78	27.56
Solar Array CdS Blanket Si Specific Cost GaAs	$\$ / \mathrm{km}^{2}$ $\$ / \mathrm{km}^{2}$ $\$ / \mathrm{km}^{2}$	$\begin{aligned} & c_{S A B}^{c_{S A B}} \\ & c_{S A B} \\ & c_{S A B} \end{aligned}$	$\begin{aligned} & 4.87 \times 10^{7} \\ & 4.87 \times 10^{7} \\ & 4.87 \times 10^{7} \end{aligned}$	$\begin{array}{r} 8.66 \times 10^{7} \\ 8.66 \times 10^{7} \\ 20.3 \times 10^{7} \end{array}$	$\begin{array}{r} 27.06 \times 10^{7} \\ 73.06 \times 10^{7} \\ 148.8 \times 10^{7} \end{array}$
Solar Array Concentrator Specific Cost	\$/km²	${ }^{\text {c }}$ SAC	1.04×10^{6}	2.07×10^{6}	6.22×10^{6}
Conducting Structure Specific Cost	\$/kg	${ }^{\text {c }}$ STC	20	81	300
Nonconducting Structure Specific Cost	\$/kg	${ }^{\text {c STNC }}$	20	81	300

Table D. 2 Unit Production Cost Model Input Values (continued)

Input Element	Units	Variable Name	Range of Values		
			Best	Most Likely	Worst
Central Mast Specific Cost	\$/kg	${ }^{\text {c STCM }}$	20	81	300
Miscellaneous Equipment Specific Cost	\$/kg	${ }^{\text {c MISC }}$	219	437	750
Rectenna Specific Cost	\$/km ${ }^{2}$	${ }^{\text {R RECT }}$	7.37	10.98	16.06
Beam Elevation Angle	Radians	E	--	50	--
Power Interface Specific Cost	\$/kw	${ }^{\text {c INTERF }}$	39.8	44.2	88.4
Phase Control Specific Cost	\$/kw	${ }^{C} \mathrm{PC}$	20.29×10^{6}	23.79×10^{6}	49.81×10^{6}

Table D. 3 Launch facility ground station, and space station om input values

$$
\begin{aligned}
& \text { ORIGINAL PAGE IS } \\
& \text { OF POOR QUALTTY }
\end{aligned}
$$

APPENDIX E
 ESTABLISHING UNCERTAINTY PROFILES

The purpose of this Appendix is to describe a methodology for establishing uncertainty profiles. The methodology is illustrated in Figure E. 1.

The first step is to establish the range of uncertainty. * The range is based upon knowledgeable persons assessing what can go right and what can go wrong. The range is thence divided into five equal intervals (it has been found that it is difficult to "think" in terms of more than five or six interyals). The second step is to perform a relative ranking of the likelihood of the variable falling into each of the intervals. Once this has been accomplished, the general shape (skewed left, skewed right, central, etc.) of the uncertainty profile has been established. The third step is to establish relative values of the chance of falling into each of the intervals. For example, in the illustration, the chance of falling into the first interval is estimated to be half as likely as falling into the second interval. This is repeated for each interval relative to the previously considered interyal The last step is to solve the illustrated equation for the quantitative values by substituting the data from the previous step.

It can be helpful to have a few individuals independently perform the above procedure. Then they can compare their results and make changes accordingly.

[^5]
a) Specify Range of Uncertainty

b) Perform Ranking (Qualitative)

c) Establish Relative Values
$$
P_{1}+P_{2}+P_{3}+P_{4}+P_{5}=1
$$

By substituting from (c) Solve for P Values

d) Establish Quantitative Values
gure E. 1 Methodology for Establishing Shape of Cost Uncertainty Profile (Ddf)

```
APPENDIX F
STA.TES-OF-KNOWLEDGE AT DECISION POINTS
```

The states-of-knowledge at the decision points of each alternative program plan have been subjectively assessed and are shown here in Tables F. 1 to F.5. The numbers shown represent the percent reduction in uncertainty (that is, the range) in each variable oyer the state-of-knowledge today (that is, January 1, 1977). These improvements in the states-of-knowledge derive from work that is scheduled during each branch of the respective decision trees. The variables for which a dash is indicated have been treated as deterministic in the analysis conducted to date. It has also been assumed in this analysis that the state-of-knowledge relative to operation and maintenance costs does not change from the present state-ofknowledge until the IOD of the first unit at which time all uncertainty disappears.

ORIGINAL PAGE IS OF POOR QUALITY

Imput elerght	tMITS	variazle HAME	improyevent in the stiterof. KHOMEDGE OVER TOOAY,:	
			0.9. 1	0.9. 3
Povar Output at ehe gusbar	$\underline{1}$			
Pacting factor of the Solar Blanket	$\underline{\text { chen }}$	p	-	\cdots
Effective Concentration Ratio	Fraction	${ }^{5}$	\% 0	100.
Solar Cell Efflclency	Fraction	neff	\cdots	--
Solar Array Power oistribution efficiemay	Fraction	${ }^{\text {f }}$ S	15	100
Antenta Intertaca Efficiency	Fraction	$\mathrm{n}_{\text {SAPO }}$	75	100
Antenna ?ower oistribution Efficiency	fraction	${ }^{\text {namt-int }}$	75	100
OC-RF Converter Effictency	Fraction	$\mathrm{n}_{\text {AMT P }} \mathrm{O}$	75	100
Ohase Control Efficiency	Fraction	${ }^{0} \mathrm{OC-RF}$	75	100
lonospheric Propagaclon Efficiency	=raction	${ }^{\text {fpC }}$	75	100
Tonospheric Propagacton Efficiency	fraceion	${ }^{\text {nton prop }}$	\rightarrow	--
Ataospheric Propagation Efficiency	Fraction	${ }^{\text {¢ }}$ ATM Prop	0	100
dest Collection Effleiency	fraction	${ }^{7} 9 \mathrm{C}$	0	100
Rf-de converter Efficiency	fraction	${ }^{\text {af - }} \mathrm{Oc}$	0	:00
Spectfic Mass of the solar Blatket	Fraction	${ }^{\text {naget }}$ po	75	100
Soceific Mass of the Solar blanket	$49 / 8 \mathrm{~cm}^{2}$	$\mathrm{m}_{\text {SAB }}$	30	160
Efficiency of the Solar Concentrator	fraccion	${ }^{\text {ncoac }}$	30	100
Specific Mass of the Solar Concentrator	$\mathrm{xg} / \mathrm{xa}^{2}$	${ }^{515} 5$	0	100
Racio: Yon-cona. Seruct. Yass :o array drea	<9/6a2 ${ }^{2}$	${ }^{3}$	20	100
Soesfitie hass of Centrai hast	*q/km	$0_{\text {asem }}$	30	100
Aspect Ratio of Solar array Antenna clearance	Fraction	${ }^{\text {r }}$	*-	\rightarrow
antenna clezrance	fraction	${ }_{L}$	\cdots	-
Diametar of Transmatting Antenna	\%	${ }^{0}$ ant	*-	--
Specific yass of dintenna structure	, $\mathrm{kg} / \mathrm{x} 4$	${ }^{\text {anats }}$	30	100
Soecific lass of OC-as Convercers	kg/ $\times 4$	${ }^{\text {a }}$ ac-2\%	30	100
$\frac{\text { Spectific mass of haveguides }}{\text { especific Mass of hacenna lateriace }}$	kg/ki	${ }^{m} 9 \mathrm{AG}$	30	100
Specific Mass of Ancenna literface	k9/kd	${ }^{\text {andintint }}$	10	100
Specifte Mass of Prase control Electrontes	$\mathrm{kg}_{3} / \mathrm{kH}$	$\mathrm{n}_{\text {pes }}$	30	:00
Miscellaneous hass	kg	${ }^{\mathrm{H}} \mathrm{HISC}^{\text {c }}$	50	100
Percentage of Satellite issembled oy man	fraction	3	0	100
Rata of Hanned issemoly	kg/0ay	${ }^{2}$ ufines	25	70
Rate of remote Assembly	kg/0ay	${ }^{2}$ zerate	25	'0
Tacal Construction fime	9ays	${ }^{\text {i coust }}$	-	--
Shift factor	1/0ay	f_{s}	--	--
Personnel Productivity factor	fraction	f_{1}	5	30
Teleogerator Availability factor	Frdetion		0	ion
Teleogerstor Hopk faccor	Fraction	t	0	ico
fabrication zate of Madulas	x9/0ay	$\mathrm{R}_{\text {E18 }}$	0	100
Fabrication vadule dvailability factor	craction	$f_{\text {FAB }}$	J	100
Percentage of Personnel Jsing Hanipulators	fraction	γ	-	\cdots
Manfoulator Avallabiltty eacear	fraction		3	03

	-	CHME	O.P. λ	0.9. 3
Sumber of Personnel Per teo space station	Number	'LEO \$/s	--	--
Fabrication sodule U̇nity yass	$\times 9$	${ }^{\text {Faia }}$	25	100
teleoperazor'unit ${ }^{\text {cuss }}$	kg	atELE	25	100
beo Sugpore tug Unis Mass	kg	${ }^{\text {mitug }}$	0	100
EfA Equipment Unic :ass	kg	${ }^{\text {cevt }}$	50	100
Eva Un2t ust factor	zrzesion	${ }^{\text {EVA }}$	0	100
Yanipulator Unit hass	* 9	$\operatorname{MaSNIP}^{\text {a }}$	25	100
t50 sidee Stacton Unit Yass	\&9	${ }_{5} 5_{50} 5 / 5$	25	100
Assemoly ${ }^{\text {cquid }}$ Propelidant Estimation factor	zracetan	'גE 3 PQo	0	100
Sodce 5cation तesupply Estimation Factor	Frac:ion		--	**
Irem Module Jnic vass	kg	${ }^{\text {²\% }}$ ¢	25	100
GEO Space Seacion unit Mass	kg	${ }^{\text {acco }}$ S/5	25	100
LCT Total Lã-je0 mission $4 y$	nisec	$\mathrm{V}_{16 \mathrm{C}}$	--	--
LCT Rockec Exhaust jec velociey	n/sec	${ }^{7}{ }^{\text {LCi }}$	--	*-
Chi propelinnt dass-traction	Fractian	LCT	--	**
Crew zocation ? 4104	Days	rot	0	100
ils Total Leo-jẽ Yission AY	m/ses	$\mathrm{SN}_{\text {AIS }}$	\cdots	-
Als Exndust Jez leloctey	n/sec	${ }^{1}$ 1:15	--	\cdots
fis fropeslanc lass-irtcion	Fraceion	${ }^{4}$ its	--	**
Liquid Hyarogen stordge fanx tnt: Muss	69	7 \%	\cdots	*
Liquid Hysrogen Storage ionk Eadacity	kg	Cu^{-}	--	--
Liquta Oxycen 3 Eorage iank נntt Mass	kg	${ }^{3} \mathrm{COY:}$	\cdots	--
Liquid oxygen Scarage Tanx Capatith	<9	$C_{\text {Coxi }}$	--	\cdots
Con Pradellant storage fank Mass	\%9	\%: 1	--	--
ton propelline Storsge Tank Eagactiy	\& 9	$6_{i}-$	--	-
+LC\% zayload to LE0	*g	$4^{\prime \prime} / \mathrm{L}$	--	--
HLCy dverage ladd isctor	Fraction	${ }_{\text {f DMO }}$	0	100
HLLY Iurnaraund itme	Sdys	$\mathrm{t}_{\mathrm{H}} \mathrm{i}: \geq \mathrm{m}_{\text {, }}$	--	--
'luaber of zersonnel our shatiie zifont	Vuaber		0	i00
Shutele iurnaround *ime	Da/s	T_{5}-18,	--	\cdots
tuunch Cost ver thit \% 7n	5	为し1	1	ic)
ALEV Unו ${ }^{\text {cose }}$	5	$\mathrm{E}_{4} \mathrm{mad!}^{\text {! }}$	0	100
buunch Cast per shuttiq Fitght	5 1		100	100
- Snutile vait Cose	5	\%s untij	100	100
Eabrication Yodula Init Cost	31	${ }^{*} \mathrm{SB}$,	0	100
Fuerfcation wocula mmartasacton Faccor	Fraction!	$1=13$	--	\cdots
Teleoderasor liait tust	31		0	100
ieleogerator amorsisation ficior	Fraction	${ }^{\text {axal }}$	--	*-
issemsly Equioment Procellate jpeetfic tost	5	- -200	--	--
isonsupeorc iug Unit.cos:	3	$\overline{c o s s ~}^{\text {ind }}$	3	İO
1E0 Supgore fay imareisation =aceser	=ractan	${ }^{7} \mathrm{HC}$]	\cdots.	--

ORIGINAL PAGE IS
OF POOR QUALITY OF POOR QUALITY

TABLE F．1．STATE－OF－KNOWLEDGE AT DECISION POLNTS－PRCGRAM I（CONTINUED）				
thPut Elemert	UnITS	vartable HALSE	IWPROYEYENT LIT ThE STATE－vF－ XHOKLSOGE SYEQ TCCAY，：	
			0．9． 1	0．P． 3
Humber of Shifts for Ground Operators	Yumber	${ }^{\text {cigd }}$	－－	－－
Eva Equipment Unit Cost	\＄	$\mathrm{c}_{\text {Eva }}$	2	100
Manipulator Unit cost	5	$c_{\text {mantp }}$	0	100
Manioulazor hnortisacion facior	Fraccion	${ }^{3}$ mamip	\cdots	－－
LEO Space Scation Uni E Eost	§	$c_{\text {L50 }} / 75$	3	100
Lso Space Station imortisation Eactor	Fraction	${ }^{4} \leq 50 \mathrm{~s} / \mathrm{s}$	\cdots	－－
GEO Space Station Unit cosz	s	${ }^{\text {c }}$ GEO s / s	0	\％ 0
GEOO Space Station Amor：1sacton Factor	Fraction	${ }^{\text {d }}$ 2E0 S / S	－－	－
Spate Station Resuoply Soecific Cost	\＄	$c_{S / S}$ RES	0	100
Let Jnic Cost	s	$t_{\text {cif }}$	0	90
Lef amorzlsation factor	eracion	${ }^{\text {dic }}$［	\cdots	－－
ats Unit Cos：	3	$\mathrm{C}_{\text {ars }}$	0	So
Als maortisacion factor	Fraction	${ }^{4}$ ats	－	－－
Cryo Tug Provellant Specific Cost	\％／$¢$	$c_{\text {LCT }}$ pagr	－－	＊＊
Lon Propellant Specific cos：	ミ¢	$c_{\text {cis prop }}$	\cdots	\cdots
frax Module inortisation Ficear	Fraction	4¢0ミス	－－	－－
Llauid Hytrogen Storage Tanx Unit cast	5	${ }_{6} 64$	0	100
L：quig yyorogen Ssordye idnk Unit cost	；	Etur	3	100
Liquid Oxygen Storage ienx Unic cast	5	5_{100}	0	ISO
fon propelidnt Storage ianx Unit Cos：	\％	${ }^{9} \mathrm{i}$	0	100
－tquid Hydrogen rank imortisacion fictor	Fraceion	${ }^{3} 149$	0	100
Livisd 0x／gen ：̇anx mmorilsacion factor	Fraction	${ }^{a_{1}} 10 \times 7$	）	100
：On Prodellant iank Amortisation factor	Fraction	${ }^{3}$ it	0	100
Ancernd Dower Distribution soectific iast	：／k＇d	6_{30}	， 35	70
＇hase Conerol spacific Cose	3／8त	${ }^{9} \mathrm{P}$	25	io
daveguise Specific Cost	3／kd	$\varepsilon_{4 G}$	35	75
dC－RF Sanyerier joecific iost	5124	－36－8F	25	i
incenad Structura joectic sosi	Sisd	CSF_{5}	3	30
Soldar dreay 3anket sozelific Sose	5／8m ${ }^{2}$	－SAS	23	；
jolar irray Eancen－miter Spenitic ：ost	3， xa^{2}	${ }^{\text {csac }}$	35	30
Conduc：ing strucsure Svecific cost	5／ks	${ }^{\text {csic }}$	3	90
non－Conducefng Strueture spectift iost	5189	${ }^{\text {sinic }}$	J	30
Centra：＇las：Soectilc cost	5／89	$\mathrm{c}_{\text {sirsi }}$	0	30
Wiscellaneous Ëuipmens Specifice cost	5／89	C！！3C	25	30
lec：Ennd slie Specrifte iast	51\％N	$¢_{\text {¢ }}{ }^{\text {c }}$	25	100
Recienna Structsre Soecific Cos：	5／812	$\mathrm{e}_{\text {sizuct }}$	25	1\％0
？f．JC ionvertor soecific case	5／24	$\mathrm{c}_{\text {OF } 3 \mathrm{c}}$	25	100
＇cwer intariace jpentife $=0$ S		${ }^{\text {craitas }}$	25	ico
Prise eancol soectic ios：	Sixd｜	is	25	1 no
Solar＝lux Constane	8.1	$\stackrel{1}{7}$	\cdots	\because

- TABLE F.2. STATE-OF-KNOWLEDGE AT DECISION POINTS - PROGRAM II					
InPut Elehent	- untist	yariagle SME	impROVENENT IN THE STATE - OF XHOMEEDGE DYER. JOAY, :		
			2. ${ }^{\circ} .4$	- 9.9.3	0.7 .6
Power Qutput at the susbar: \quad,	$\mathrm{X} \boldsymbol{H}$	- p	. -	-	-
Packing factor of the Solar zlanket	Fraction	P_{F}	20	90	100
Effective Concentration Racio	fraction.	, ${ }^{n}$ eff	-	-	-
Solar Gall Effictency	Fraction	${ }^{n} \mathrm{SC}$	40	90	100
Solar Array Power olscrfoucion Efficiency	fraction	- ${ }^{\text {S SiPO }}$	10	100	120
Ancenna thearface Effictency	Fraction	${ }^{\text {ant-int }}$	20	100	15
Ancenma Power oistribucion Efficiency	Frac:ion	$\mathrm{n}_{\text {ast }} \mathrm{P}^{\text {a }}$	40	1 iv	103
OC-RF Converter Effictency	Fraction	${ }^{\text {OC. }}$ RF	≤ 0	100	:00
Phase Control Effletency	Fraction	noc	50	:00	100
lonospnaric propagation Efficiency	Eraction	$3_{\text {y }}$	-	-	-
Aenospmeric fropagation Efficiency	Fraction	${ }^{\text {indm prop }}$	0	100	100
Beam Collection Efficiency	Fraction	$7_{\text {g }}$	0	100	190
nf-DC Convarter Efficiency	fraction	$\mathrm{n}_{\text {nf-oc }}$	0	100	100
Rectenna Power gistribution Efficiency	${ }^{\text {craction }}$	${ }^{\text {npect po }}$	50	100	100
Specticie yass of the solar blanx=c	<-/kin ${ }^{2}$	${ }^{7} 583$	20	30	100
Efficiency of the Solar Concentricar	Eraction	${ }^{7}$ case	20	70	100
Spectifle Hass of the Solar Concentrsior	*9/80 ${ }^{2}$	${ }^{3}$ Saic	0	30	130
Ratio: Conducting sterct. Nass io arrs, drat	$4 \mathrm{~g} / \mathrm{knt}^{2}$	$x_{s}-c$	29	70	190
Zazto: Aon-Conc. Struct. Yiss is deriy dead	$\times \mathrm{c} / \mathrm{km}^{2}$	${ }^{\text {s }}$ s-ric	20	30	109
Sazetfte Yass of Eentrsl Yass	$\mathrm{kg} / \mathrm{xm}{ }^{2}$	${ }^{5150}$	20	90	160
aspect Ratio of Solar deray	Eracefon	${ }_{4}$	-	-	-
intenna glearance	fraccion	r_{L}	-	-	-
Ofacter of transaicting anceana	* ${ }^{\text {m }}$	0 mat	${ }^{\circ}$	-	*
Sjectifle rass of antenna Structure	$\mathrm{kg}_{\mathrm{g} / \mathrm{xC}}$	Tisis	30	70	10
Specific Mass of oc-if Eonverters	${ }^{\mathrm{g} / \mathrm{g} \times \mathrm{X}}$	${ }^{3} \mathrm{OC}-8 \mathrm{~F}$	30	50	100
Sgecific yass of indyeguides	' $9 / \times 1$	$\mathrm{F}_{19} \mathrm{C}$	30	90	'vo
Soectfic Mass of datenita fnterfac:	く9/<i'	${ }^{\text {B }}$ Ant-tist	50	So	100
Specifie rass of Phdse control Electronics	$85 / \times 4$	${ }^{3} \mathrm{Pes}$	JU	F0	100
Miseelianeous Mass.	4	"tise	30	30	, 50
Percantage of jacellite issemotied by tan	z-3ceion	3	J	30	160
Bate of Hanned issenoly	4g/0ay		0	30	50
Rate of zamote issenoly	\%g/3sy	Pemote	0	20	30
Totsl Construseion rima	9ass	$\mathrm{i}_{\text {rotst }}$	-	-	-
shift Factar	1/0ay	f_{5}	-	-	${ }^{\circ}$
Personnel Productivity esesor	Eraction	${ }_{5}{ }_{1}$	5	\cdots	3
Teleoperstor dvaflabllliy. factior	frsetion	$\mathrm{frab}_{\text {cia }}$	了	100	! 0
Teleogerstor dork Fictar	raction	'.	\checkmark	180	1.0
fiorteation zate of vocules	kg/fa/	$8=18$	\bigcirc	\%	. 6
faoricacton yodule traildollief =sctar	=-aceien	\% 7 \%	7	100	. 50
sareentage of parsonnel ising Manivulators	Fracsion!	\cdots	\bullet		-
Uanioulator aviliabiley raceor	-racion	\%ransp	$3:$.	23-

ORIGINAL PAGE IS OF POOR QUALITY

-

TABLE F．2．STATE－OF－KNONLEDGE AT DECISION POINTS－PROGRAM II（Cont＇d）					
IHPUT ELEKERTS	untts	YARIABLE HWE	IMPROVETENT IN TIE STAIE－OF XHOLEDGE OVER TOOAY，：		
			O．P．A	0.9 .8	0.8 .6
Huaber of Shifts for Ground Operatars	Number	fGRO	＊	－	\checkmark
EYa Equipaent Unit Cost	5	${ }^{\text {c Eул }}$	0	100	100
Hanipulator Unit Cost	5	${ }^{\text {chanIP }}$	0	90	100
Hanipulator Anortisation factor	fraction	${ }^{\text {a manf？}}$	－	－	－
Lso space staston Unit Cost	5		0	100	100
beo Space Station daortisazton factor	Fraction	${ }^{2}$ LEO S／S	－	－	－
GEO Space Station Unft Cost	\＄	${ }^{6} \mathrm{GEO} 5 / 5$	0	100	100
GeO Space station dmortisacion factor	Fraction	${ }^{3} \mathrm{GEO}$ S／5	＊	－	－
Space Stazion Resupgly Spectice Cose	5	$c_{S / S}$ RES	0	100	100
LCT Unit Cost	\＄	${ }_{\text {LET }}$	0	160	100
LCT Anorcisacton factor	Fraction	${ }^{3} \mathrm{LCT}$	－	－	\bullet
AIS Unit cost	\＄	${ }_{C A I S}$	0	0	90
Als dmortisation factar	Fraction	${ }^{3} \times 15$	－	－	－
Cryo tug Progellant Specific Cost	3 mg	$\mathrm{c}_{\text {LCI }}$ grop	－	－	－
Ion Propellant Socifle Cost	ジこ	${ }^{C}$ AIS PROP	－	－	－
Crex Module tnit Cos：	5	$C_{\text {CRES }}$	0	100	100
Crew uodule dagarisation Eactor	Fraction	${ }^{4}$ CREY	－	－	＊
Liquid Hydrogen Storege Fink Unit Cost	\％	$s_{\text {cilt }}$	3	100	100
Liquid Oxygon Storage Fank Unit Cost	5	${ }^{6}$ ，0xt	0	103	100
Ion Propellant Storage Tank Unit Cost	\＄	${ }^{1} 17$	0	0	100
LIqufd Hydragent tank inartisation Factor	fraction	${ }^{\text {d }}$ LHT	0	100	100
Liquid Oxygen lank Amorcisation factor	Fraction	${ }^{\text {LOXT }}$	0	100	100
Ion fropellant rank daoreisation Factor	Fraction	${ }^{1} 1$	0	0	100
Antenna Power Ofstribution Soecific Cast	5／5：	50	10	30	100
Phase Controt Specific Cost	3／54	${ }^{5} \mathrm{P}$	is	10	100
Xaveguide Specfitc Cos：	5／54	${ }^{\text {cha }}$	10	90	100
OC－RF Converter Specific Cost	\＄／54	${ }^{4} \mathrm{OC-RF}$	＇0	90	100
Antenna Structure soecifit Cost	S／KM	${ }_{5} 5$	10	30	100
Solar Array tianxet Specifle Cost	3／km ${ }^{2}$	$C_{\text {SAB }}$	10	70	100
Soldr Array Concencrator Specffic Cost	5／km ${ }^{2}$		19	¢）	100
Conducting structure soecific Gost	s／kg	${ }^{\text {cste }}$	0	90	100
Hon－ionducting Structure Spectific Cost	S／kg	$c_{\text {STMC }}$	0	30	100
Central Hast Specific Cost	\＄／89	${ }^{\text {csten }}$	0	90	100
Miscallaneous Equipment Soectifle Cost	s／kg	${ }^{5} \mathrm{Hisc}$	10	90	1 CO
Rectenna site spectile cost	\＄／24	$\mathrm{C}_{\text {RE }}$	10	100	100
Rectanta Structure Specific Cost	5／ぬ4	csiruct	10	100	100
RE－OC Convertor specific Cost	5／女4	$\mathrm{c}_{\text {q．}}$	10	100	100
Power Interface Speclific Cost	3／ky	ctMTERE	10	100	100
Phase Concrol soectife cose	\＄／kM	${ }_{3}{ }_{5}$	10	100	160
Solar Fiux Eonsiant	${ }^{1} .2$	F	－	＊	－

TABLE F.3. STATE-OF-XNOWLEDGE AT DECISION POINTS - PROGRAM III					
thput elemeht	4 H 175	vartableHAME	ingroversit in the state - OF RHOKLEJGE OYER TODAY, :		
			0.P.8	0.9 .6	A 50
Power Output at the 8usbar	* \mathbf{W}	ρ	-	-	
Packing factor of the Solar blanket	Fraction	P_{F}	75	90	
Effective Concantration Ratio	Fraction	$n_{\text {eff }}$	-	-	
Solar Gell Efficiency	Fraction	${ }^{7} \mathrm{sc}$	60	90	
Solar Array Power Oistribution Efficienct	fraction	$n_{\text {SAPO }}$	50	100	
anceand incerface Efficiency	fraction	${ }^{\text {a }}$ AHT-iHt	50	100	
Antenna Pover Oistribucion Efficiency	iraction	$\mathrm{C}_{\text {AMT } \mathrm{PO}}$	50	100	
OC-hf Converter Effictency	Fraction		50	100	
Phase Control Effictency	Fraction	H_{ge}	15	100	
fonosphertc progagation Efficlency	fraction	${ }^{\text {n }}$ (OH PROP	-	-	
Ataosgheric frogagation Efficfency	${ }^{\text {s raction }}$	${ }^{\text {ath Prop }}$	0	100	
Beam Collection Efficiency	Fraction	${ }^{3} \mathrm{C}$	0	100	
RF-OC Convereter Efficiency	Fraction	${ }^{\text {remege }}$	0	100	
Rectenna Paver oistribution Efticlency	Fraction	frect po	70	100	
Specific mass of the solar blankes	crese ${ }^{2}$	"SAB	50	90	
Effictancy of the Solar concenerator	fraction	7 7 ${ }^{\text {arc }}$	50	90	0
Spectific Mass of the Salar Concentrstor	$8 \mathrm{~g} / \mathrm{km} \mathrm{m}^{2}$	${ }^{-5} 5$	50	90	
2ation conduc:iny strjc:. itass cs mray area	$\mathrm{kg} / \mathrm{km}^{2}$	${ }^{-105}$	50	90	$\underset{3}{3}$
Rapio: Mon-Gond. Struct. Yass to dreay area	k9/k7 ${ }^{2}$	${ }^{3}$ STAE	50	90	营
Soectfic Hass of Gentral yast	kg/ka	${ }^{5} \mathrm{stcy}$	50	90	2
Aspect racto of Solar deray	fraction	r_{2}	-		莨
Antenna Clearance	Fraction	r_{l}	-	-	
Oiaceter of Transatting incenna	$k *$	$0_{\text {AHT }}$	-	-	
Spectific mass of intenat seructure	$\mathrm{kg} / \mathrm{xN}$	${ }^{\text {amis }}$	60	50	
Spectific Mass of oc-ar conversers	kg/ky	$3 \mathrm{C-9F}$	50	90	
Specisie yass of liavapulsas	kg/kh	${ }^{3}$	60	So	
Speetfic yass of intenna tinteriace	\%g/ kN	${ }^{\text {a }}$ (IUT-IMT	60	90	
Soceffic Yass of phase Control Etectronics	k9/k'̇	${ }^{\square} \mathrm{PCE}$	3	30	
misceilanezus Yass	kg	4 yrse	50	30	
Parcentage of Satellite issembled by Man	Fracsion	3	20	${ }^{8} \overline{0}$	
Rate of Mannea Assemoly	ks/0ay	${ }^{7}$ Mat: ${ }^{\text {a }}$ ¢0	20	30	
Qase of pamote assembly	kq/0ay	$\mathrm{B}_{\text {ase }}{ }^{\text {core }}$	30	30	
Total Construciton Tine	Days	${ }^{\text {c }}$ corist	-	\bullet	
Shift factor	f/0ay	${ }_{5}$	-	-	
Personnel Productivity factor	Fraction	${ }_{11}$	20	90	
Teleoperstor Availasllity facior	Fraction	${ }^{\text {f }}$ TELE iV	29	100	
Teiegoerstor Mork factor	fraction	f	20	100	
Fabrication Race of Yodules	\%g/0ay	$\mathrm{R}_{\text {E, } 18}$	20	30	
Fabrication पodule ivallability factor	iracsion	f_{513}	20	100	
Percentage of personnel tsing Manipulators	Eraction	Y	,	-	
Manipulator Avaflioulicy Faceor	-racion	$\varepsilon_{\text {qastp }}$	50	Ho	

ORIGINAL PAGE IS OF POOR QUALITY

TABLE F．3．STATE－OF－XNOWLEDGE AT DECISION POINTS－PROGRAM III（Cont＇d）					
IhPut Element	units	yarlable पूल	IMPROVEMENT Id THE STATE－OF GHCRLEDGE OVER TOOAY．：		
			0．P．B	0．7．6	$2 \leq 0$
Humoer of Shifts for Ground Operators	number	t_{680}	－	－	
Eva Equipatane Unit cose	5	${ }^{\text {cerfa }}$	100	100	
Yanipulator Unit Cost	\＄	${ }^{\text {c mantr }}$	so	90	
Manipulator mmortsacton factar	rraction	${ }^{\text {a }}$ ¢ ${ }^{\text {amip }}$	－	－	
－SO Space Scation Uni：Cost	s	$c_{\text {LSo }} \mathrm{S} / \mathrm{S}$	－ 160	100	
Lso Soace station dmorcisazion ätesor	Eracion	${ }^{4}$ LEE $3 / 5$	－	－	
feot Spaca Stasion Unic Cusz	5	$\mathrm{c}_{550} \mathrm{~s} / \mathrm{s}$	75	100	
geo space stacton amortisation Eactor	fraccion		－	－	
Soace station kesuoply Specifit cosz	s	$\mathrm{c}_{\text {S／S }} \mathrm{PE} 5$	100	150	
LCT Unit Cost	s	$\mathrm{C}_{\text {ct }}$	75	100	
LGT deortisation factor	Fraction	${ }^{\mathrm{I}_{4} \mathrm{CT}}$	－	－	
Als Unit cose	5	$\mathrm{c}_{\text {ais }}$	0	0	
Als dmoreisation factor	fraction	${ }^{1} 4$ ： 5	－	－	
Cryo Tug Propellant Spectife Cost	Sica	c_{1} ci prop	．	－	$\stackrel{\text { a }}{\substack{\text { a }}}$
ton Propellant 3gecifie cost	こく	$c_{\text {its Prop }}$	－	－	
Cram Moquie Unte Cost	5	${ }_{\text {ceren }}$	ICO	100	\pm
Grew mocule inorsisacion factar	＝raceion	${ }^{3}$ ¢२E．${ }^{\text {c }}$	－	－	矢
Whaic hyarogen Starage idnk Laft cost	；	E17	0	150	$\stackrel{\text { E }}{\sim}$
Linuid Ox／gen Stirage tank Unic Sost	5	${ }^{\text {c }}$（0xi	0	100	告
ton Propellane Storage iank unte Cos：	ε	${ }_{4}{ }_{17}$	0	0	\cdots
Liquid dydrogen iank imorevsacion Edgeor	Fraction		0	100	
tiauld jxygen idnt dmortisation Factor	eraction	${ }^{\text {a }}$ ，0x：	0	100	
ion Propellant fank Amoreisacion Factor	Fraction	${ }^{1} i_{i}$	0	9	
dntepnz Power oiseribuetion Soectitic Cost	5／8H	c_{3}	50	¢0	
Thase Concrol soecrete tost	5／84	Sa_{5}	50	90	
avequrde Soecific cost	5／8．${ }^{\text {d }}$	${ }_{6} 6$	：0	90	
Jc－zf Converier soectitic fost	5.81	${ }_{0} 0$－2F	50	90	
datenna juruceara Sozelfic Eost		$3{ }_{5 i}$	So	90	
Solite dr－ay zisnxes spacife cost	5／8m ${ }^{\text {a }}$	$c_{3 \times 3}$	\＄0	70	
joidr Array Concent－ator Saecifice cost	5／8m ${ }^{2}$	${ }^{\text {c }}$ S ${ }_{\text {c }}$	50	30	
concacting seruc：ure soecific cas：	5／8g	${ }_{3} \mathrm{SiC}^{\text {c }}$	50	90	
Jon－iznduczing structure Specific cas：	5／89	Stic	\％ 0	90	
Eentral tase spectile cost	5／89	${ }_{\text {cisicu }}$	\％o	90	
Yiscelianeous Equroment specific Cost	5／89	$\mathrm{c}_{\text {YiS }}{ }_{\text {S }}$	30	30	
Zeczenna jice soectific tost	5／an	${ }^{\text {¢ }}$ ¢	：0	100	
zecienas struc：ure specific eose	sixs	${ }^{6}$ sisuci	5	100	
afric＝unvercar soectitic iost	5／k4	${ }^{\text {c }}$ \％F－3C	50	190	
Porer incerface soestitc zos：	5／62	C：uT？	\％ 0	100	
＇hase Contral specific cost	5／8．2	cop	50	100	
saiar ilux isnsezns	$\times 12$ ！	7	\bullet	－	

Table F. 4 State-of-Knowledge at Decision Points - Program IV							
Input Element	Units	Variable Name	Improvement in State-of-Knowledge, \%				
			DPA	DPB	DPC	DPD	DPE
Power Output at Rectenna Busbar (B.O.L.)	kW	${ }^{\text {POUT }}$	-	-	-	-	-
Solar Cell Efficiency (B.O.L.)	Fraction	${ }^{\text {n }} \mathrm{SC}$	40	60	80	90	100
Solar Array Power Distribution Efficiency	Fraction	${ }^{\text {ISAPD }}$	40	50	80	90	100
Antenna interface Efficiency	Fraction	${ }^{\text {n }}$ ANT INT	20	30	60	90	100
Antenna Power Distribution Efficiency	Fraction	${ }^{\eta_{\text {ANT }}}$ PD	-	-	-	- ${ }^{\circ}$	-
DC-RF Converter Efficiency	Fraction	${ }^{\prime} \mathrm{DC-RF}$	-	-	-	-	-
Phase Control Efficiency	Fraction	$\eta_{P C}$	-	-	-	-	-
Ionospheric Propagation Efficiency	Fraction	${ }^{7}$ ION PROP	-	-	-	-	-
Atmospheric Propagation Efficiency	Fraction	${ }^{7}$ ATM PROP	-	-	-	-	-
Beam Collection Efficiency	Fraction	${ }^{\prime} B C$	-	-	-	-	-
RF-DC Converter Efficiency	Fraction	$n_{R F-D C}$	-	-	-	-	-
Rectenna Power Distribution Efficiency	Fraction	${ }^{\text {n }}$ RECT PD	-	-	-	-	-
Packing Factor of Solar Blanket	Fraction	P_{F}	20	80	90	100	100.
Solar Flux Constant	$\mathrm{kW} / \mathrm{km}{ }^{2}$	F	-	-	-	-	-

Table F. 4 State-of-Knowledge at Decision Points - Program IV (continued)

Input Element	Units	Variable Name	Improvement in State-of-Knowledge, \%				
			DPA	DPB	DPC	DPD	DPE
Effective Concentration Ratios	Fraction	${ }^{n} \mathrm{EFF}$	20	40	80	100	100
Specific Mass of Solar Blanket	$\mathrm{kg} / \mathrm{km}^{2}$	$m_{S A B}$	20	50	70	100	100
Efficiency of Solar Concentrator	Fraction	${ }^{7} \mathrm{CONC}$	20	40	90	100	100
Specific Mass of Solar Concentrator	$\mathrm{kg} / \mathrm{km}^{2}$	${ }^{\text {m }}$ SAC	10	20	80	100	100
Ratio: Conducting Structure Mass to Solar Array Area	$\mathrm{kg} / \mathrm{km}^{2}$	${ }^{\text {m }}$ STC	20	50	90	100	100
Ratio: Nonconducting Structure Mass to Solar Array Area	$\mathrm{kg} / \mathrm{km}^{2}$	$m_{\text {STNC }}$	20	50	90	100	100
Specific Mass of Central Mast	$\mathrm{kg} / \mathrm{km}$	${ }^{\text {m }}$ STCM	20	50	90	100	100
Äspect Ratio of Solar Array	Fraction	$r_{\text {A }}$	-	-	-	-	-
Antenna Clearance	Fraction	r_{L}	-	-	-	-	-
Diameter of Transmitting Antenna	km	${ }^{\text {D ANT }}$	-	-	-	-	-
Specific Mass of Antenna Structure	kg/kW	$m_{\text {ANT }}$	20	30	70	100	100
Specific Mass of DC-RF Converters	$\mathrm{kg} / \mathrm{kW}$	${ }^{\text {m }}$ DC-RF	-	-	-	-	-
Specific Mass of Antenna Power Distribution System	kg/kW	$\mathrm{m}_{\text {ANT }}$ PD	-	-	-	-	-
Specific Mass of Waveguides	$\mathrm{kg} / \mathrm{kW}$	$\mathrm{m}_{W G}$	-	-	-	-	-

Table F. 4 State-of-Knowledge at Decision Points - Program IV (continued)

Input Element	Units	Variable Name	Improvement in State-of-Knowledge, \%				
			DPA	DPB	DPC	DPD	DPE
Specific Mass of Antenna Interface	kg/kW	${ }^{\text {maNT INT }}$	-	-	-	-	-
Specific Mass of Phase Control Electronics	kg/kW	$m_{\text {PCE }}$	-	-	-	-	-
Miscellaneous Satellite Mass	kg	MMISC	20	30	80	90	100
Basic Unit Mass of Construction, Small	kg	$m_{C B}$	20	40	80	90	100
Basic Unit Mass of Construction, Large	kg	$\mathrm{m}_{C B}$	20	40	80	90	100
Specific Mass of EPS Solar Array	kg/kW	$\mathrm{m}_{\mathrm{P} 1}$	20	40	80	90	100
EPS Power Requirements; Small Base LEO	kW	$P_{\text {EPS REQ }}$	20	40	80	90	100
EPS Power Requirements, Large Base LEO	kW	$P_{\text {EPS REQ }}$	20	40	80	90	100
,EPS Power Requirements, Large Base GEO	kW	$P_{\text {EPS REQ }}$	20	40	80	90	100
EPS Power Requirements, Small Base GEO	kW	$P_{\text {EPS REQ }}$	20	40	80	90	100
Specific Mass of EPS Batteries	kg/kW	$\mathrm{m}_{\mathrm{P} 2}$	30	50	70	100	100
Orbit Keeping Propellant Mass, Small Base LEO	kg	$m_{0 P}$	20	70	90	100	100 .

Table F. 4 State-of-Knowledge at Decision Points - Program IV (continued)

Input Element	Units	Variable Name	Improvement in State-of-Knowledge, \%				
			DPA	DPB	DPC	DPD	DPE
Orbit Keeping Propellant Mass, Large Base LEO	kg	m_{0}	20	70	90	100	100
Orbit Keeping Propellant Mass, Small Base GEO	kg	m_{0}	-	-	-	-	-
Orbit Keeping Propellant Mass, Large Base GEO	kg	mop°	-	-	-	-	-
Attitude Control Propellant Mass, Small Base LEO	kg	$m_{A P}$	20	60	90	100	100
Attitude Control Propellant Mäss, Large Base LEO	kg	$\mathrm{m}_{A P}$	20	60	90	100	100
Attitude Control Propellant Mass, Small Base GEO	kg	$\mathrm{m}_{\text {AP }}$	20	40	70	90	100
Attitude Control Propellant Mass, Large Base GEO	kg	$m_{A P}$	20	40	70	90	100
Total Satellite Fleet Size	Number	${ }^{\text {NSAT }}$	-	-	-	-	100
Total Crew Size, Small Base	Number	$\mathrm{N}_{\text {crew }}$	20	40	70	90	100
Total Crew Size, Large Base	Number	$\mathrm{N}_{\text {crew }}$	20	40	70	90	100
Number of Personne 1 Carried per POTV Flight	\#/Flight	$\mathrm{f}_{\text {POTV }}$	30	50	90	100	100
Number of Crew Rotations Per Year	$\frac{n}{\pi} /$ Year	${ }^{\text {f CROT }}$	30	70	90	100	100

Table F. 4 State-of-Knowledge at Decision Points - Program IV (continued)

Input Element	Units	Variable Name	Improvement in State-of-Knowledge, ic				
			DPA	DPB	DPC	DPD	DPE
Rate of Satellite Construction	$\frac{\#}{\#} /$ Year	$R_{\text {const }}$	20	50	90	100	100
Propellant Consumption per POTV Flight (RT)	kg	${ }^{\text {f POTV PRP }}$	20	70	90	100	100
Capacity of Propellant Storage Tank	kg	${ }^{\text {f }}$	-	-	-	-	-
Unit Mass of Propellant Storage Tank	kg	m_{T}	-	-	-	-	-
Payload of COTV	kg	${ }^{\text {f COTV }}$	-	-	-	-	-
Unit Mass of COTV (Dry)	kg	${ }^{\text {m COTV }}$	-	-	-	-	-
Design Life of POTV	\# Flights	${ }^{\text {f POTV Life }}$	-	-	-	-	-
Unit Mass of POTV (Dry)	kg	${ }^{\text {m COTV }}$	-	-	-	-	-
Propellant Consumption per COTV Flight	kg	${ }^{\text {f COTV PRP }}$	-	-	-	-	-
HLLV Payload to LE0	kg	$M_{P / L}$	-	-	-	-	-
AIS Propellant MassFraction	Fraction	$\lambda_{\text {AIS }}$	-	-	-	-	-
AIS Total LEO-GEO Mission ΔV	$\mathrm{m} / \mathrm{sec}$	$\Delta V_{\text {AIS }}$	-	-	-	-	-
AIS Exhaust Jet Velocity	$\mathrm{m} / \mathrm{sec}$	$\begin{aligned} & V \\ & J_{A I S} \end{aligned}$	-	-	-	-	-
Ion Propellant Storage Tank Capacity	kg	$\mathrm{F}_{\text {IT }}$	-	-	-	-	-

Table F. 4 State-of-Knowledge at Decision Points - Program IV (continued)

Input Element	Units	Variable Name	Improvement in State-of-Knowledge, :				
			DPA	DPB	DPC	DPD	DPE
Ion Propellant Storage Tank Unit Mass (Dry)	kg ${ }^{\text { }}$	$\mathrm{m}_{\text {IT }}$	-	-	-	-	
HLLV Average Load Factor	Fraction	${ }^{\text {f }}$ LOAD	20	50	70	100	100
Design Life of HLLV Upper Stage	$\stackrel{\#}{\text { F }}$ Flights	${ }^{\text {f HUS LIFE }}$	30	70	90	100	100
Design Life of HLLV Lower Stage	$\stackrel{\#}{*}$ Flights	$\mathrm{f}_{\text {HLS LIFE }}$	30	70	90	100	100
Number of Personnel per Shuttle flight	Number	${ }^{\text {f SHUTTLE }}$	-	-	-	-	-
Design Life of Shuttle	\# Flights	${ }^{\text {f SLIFE }}$	-	-	-	-	-
HLLV Upper Stage Unit Cost	\$	${ }^{\text {chuS }}$	30	70	90	100	100
HLLV Lower Stäge Unit Cost	\$	${ }^{\text {c }} \mathrm{HLS}$	30	70	90	100	100
Launch Operations Cost per HLLV Flight	§	${ }^{\text {c }} \mathrm{HLLV}$	30	70	90	100	100
Launch Operations Cost per Shuttle Flight	\$	${ }^{\text {c Shuttle }}$	100	-	-	-	-
Shuttle Unit Cost	\$	${ }^{\text {c SUNIT }}$	100	-	-	-	-
Basic Unit Cost of Construction Base (Sma11)	§	${ }^{\text {c }} \mathrm{CB}$	20	50	70	90	100
Basic Unit Cost of Construction Base (Large)	S	${ }^{\text {c }}$ CB	20	50	70	90	100

Table F. 4 State-of-Knowledge at Decision Points - Program IV (continued)

Input Element	Units	Variable Name	Improvement in State-of-Knowledge, \%				
			DPA	DPB	DPC	DPD	DPE
Specific Cost of EPS Solar Array	\$/kV	${ }^{\text {P }} 1$	20	50	70	90	100
Specific Cost of EPS Batteries	\$/kV	${ }^{C} \mathrm{P}_{2}$	20	70	100	-	-
Cost of Radiation Shielding, Small Base LEO	\$	${ }^{\text {c }}$ RDS	20	50	70	90	100
Cost of Radiation Shielding, Large Base LEO	\$	${ }^{\text {c RDS }}$	20	50	70	90	100
Cost of Radiation Shielding, Small Base GEO	\$	${ }^{c}$ RDS	20	50	70	90	100
Cost of Radiation Shielding, Large Base GEO	\$	${ }^{\text {c }}$ RDS	20	50	70	90	100
Specific Cost of Altitude Control Propellant	\$/kg	${ }^{C} A P$	-	-	-	-	-
Specific Cost of Orbit-Keeping Propellant	\$/kg	${ }^{\mathrm{C}} \mathrm{OP}$	-	-	-	-	-
COTV Unit Cost	\$	${ }^{\text {c COTV }}$	20	50	90	100	100
POTV Unit Cost	\$	$\mathrm{C}_{\text {POTV }}$	20	50	90	100	100
Specific Cost of OTV Propellant	\$/kg	${ }^{\text {c }}$ PRP	-	-	-	-	-
AIS Unit Cost	\$	${ }^{\text {C }}$ AIS	20	50	90	100	100
Specific Cost of Ion Propellant	\$/kg	${ }^{\text {c }}$ AIS PROP	-	-	-	-	-

Table F. 4 State-of-Knowledge at Decision Points - Program IV (continued)

Input Element	Units	Variable Name	Improvement in State-of-Knowledge, \%				
			DPA	DPB	DPC	DPD	DPE
CTV Propellant Storage Tank Unit Cost	\$	${ }^{\text {C }}$ T	20	50	90	100	100
Ion Propellant Storage Tank Unit Cost	\$	${ }^{\text {c }}$ IT	20	50	90	100	100
Antenna Power Distribution Specific Cost	\$/kW	${ }^{C} \mathrm{PD}$	-	-	-	-	-
Phase Control Electronics Specific Cost	S/kW	${ }^{\text {c PCE }}$	-	-	-	-	-
Wave Guide Specific Cost	S/kW	${ }^{\text {WGG }}$	-	-	-	-	-
DC-RF Converter Specific Cost	\$/KW	${ }^{C} D C-R F$	-	-	-	-	-
Antenna Structure Specific Cost	\$/kW	${ }^{\text {c }}$ ST	20	50	70	100	100
Solar Array Blanket Specific Cost	s / km^{2}	${ }^{c}$ SAB	20	50	70	100	100
Solar Array Concentrator Specific Cost	s / km^{2}	${ }^{\text {c }}$ SAC	10	40	80	100	100
Conducting Structure Specific Cost	\$/kg	${ }^{\text {c }}$ STC	10	50	90	100	100
Nonconducting Structure Specific Cost	\$/kg	${ }^{\text {c STNC }}$	10	50	90	100	100
Central Mast Specific Cost	\$/kg	${ }^{\text {c STCM }}$	10	50	90	100	100
Miscellaneous Equipment Specific Cost	\$/kg	${ }^{\text {CMISC }}$	10	40	70	100	100
Rectenna Specific Cost	$\dot{\$} / \mathrm{km}^{2}$	${ }^{\text {c RECT }}$	-	-	-	-	-

Table F. 4 State-of-Knowledge at Decision Points - Program IV (continued)

Input Element	Units	Variable Name	Improvement in State-of-Knowledge, \%				
			DPA	DPB	DPC	DPD	DPE
Beam Elevation Angle	Radians	E	-	-	-	-	-
Power Interface Specific Cost	\$/kw	$\mathrm{c}_{\text {INTERF }}$	-	-	-	-	-
Phase Control Specific Cost	\$/kw	${ }^{C} P C$	-	-	-	-	-

Table F. 5 State-of-Knowledge at Decision Points - Program V

Input Element	Units	Variable Name	Improvement in State-of-Knowledge, \%				
			DPA	DPB	DPC	DPD	DPE
Power Output at Rectenna Busbar (B.O.L.)	kW	$P_{\text {OUT }}$	-	-	-	-	-
Solar Cell Efficiency (B.0.L.)	Fraction	${ }^{\text {n }}$ S	40	70	85	90	100
Solar Array Power Distribution Efficiency	Fraction	${ }^{7}$ SAPD	40	60	85	90	100
Antenna Interface Efficiency	Fraction	$n_{\text {ANT INT }}$	20	60	75	90	100
Antenna Power Distribution Efficiency	Fraction	${ }^{\text {IANT PD }}$	-	-	-	-	-
DC-RF Converter Efficiency	Fraction	${ }^{7} \mathrm{DC}-\mathrm{RF}$	-	.-	-	-	-
Phase Control Efficiency	Fraction	${ }^{7} P \mathrm{C}$	-	-	-	-	-
Ionospheric Propagation Efficiency	Fraction	${ }^{7}$ ION PROP	-	-	-	-	-
Atmospheric Propagation Efficiency	Fraction	7ATM PROP	-	-	-	-	\cdots
Beam Collection Efficiency	Fraction	$\eta_{B C}$	-	-	-	-	-
RF-DC Converter Efficiency	Fraction	${ }^{7} \mathrm{PF}-\mathrm{DC}$	-	-	-	-	-
Rectenna Power Distribution Efficiency	Fraction	${ }^{\text {n }}$ RECT PD	-	-	-	-	-
Packing Factor of Solar Blanket	Fraction	P_{F}	20	80	90	100	-
Solar Flux Constant	$\mathrm{kN} / \mathrm{km}^{2}$	F	-	-	-	-	-

Table F. 5 State-of-Knowledge at Decision Points - Program ∇ (continued)

Input Element	Units	Variable Name	Improvement in State-of-Knowledge, \%				
			DPA	DPB	DPC	DPD	DPE
Effective Concentration Ratios	Fraction	$\eta_{E F F}$	20	70	90	100	-
Specific Mass of Solar Blanket	$\mathrm{kg} / \mathrm{km}^{2}$	${ }^{\text {m }}$ SAB	-	-	-	-	-
Efficiency of Solar Concentrator	Fraction	${ }^{7}$ CONC	20	90	100	-	-
Specific Mass of Solar Concentrator	$\mathrm{kg} / \mathrm{km}^{2}$	$\mathrm{m}_{\text {SAC }}$	10	40	90	100	-
Ratio: 'Conducting Structure Mass to Solar Array Area	$\mathrm{kg} / \mathrm{km}^{2}$	$\mathrm{m}_{\text {STC }}$	20	50	90	100	-
Ratio: Nonconducting Structure Mass to Solar Array Area	$\mathrm{kg} / \mathrm{km}^{2}$	$m_{\text {STNC }}$	20	50	90	100	-
Specific Mass of Central Mast	$\mathrm{kg} / \mathrm{km}$	$\mathrm{m}_{\text {STCM }}$	20	50	90	100	-
Aspect Ratio of Solar Array	Fraction	$r_{\text {A }}$	-	-	-	-	-
Antenna Clearance	Fraction	r_{L}	-	-	-	-	-
Diameter of Transmitting Antenna	km	$\mathrm{D}_{\text {ANT }}$	-	-	-	-	-
Specific Mass of Antenna Structure	kg/kW	${ }^{\text {mant }}$	30	60	90	100	-
Specific Mass of DC-RF Converters	$\mathrm{kg} / \mathrm{kW}$	$m_{D C-R F}$	-	-	-	-	-
Specific Mass of Antenna Power Distribution System	$\mathrm{kg} / \mathrm{kW}$	$\mathrm{m}_{\text {ANT PO }}$	-	-	-	-	-
Specific Mass of Waveguides	$\mathrm{kg} / \mathrm{kW}$	$\mathrm{m}_{W G}$	-	-	-	-	-

Table F. 5 State-of-Knowledge at Decision Points - Program V (continued)

Input Element	Units	Variable Name	Improvement in State-of-Knowledge, \%				
			DPA	DPB	DPC	DPD	DPE
Specific Mass of Antenna Interface	$\mathrm{kg} / \mathrm{kW}$	$\mathrm{m}_{\text {ANT }}$ INT	-	-	-	-	-
Specific Mass of Phase Control Electronics	kg/kW	$\mathrm{m}_{\text {PCE }}$	-	-	-	-	-
Miscellaneous Satellite Mass	kg	$M_{\text {MISC }}$	30	50	90	100	-
Basic Unit Mass of Construction, Small	kg	${ }^{m} C B$	20	40	80	90	100
Basic Unit Mass of Construction, Large	kg	${ }^{\text {m }}$ CB	20	40	80	90	100
Specific Mass of EPS Solar Array	$\mathrm{kg} / \mathrm{kW}$	$\mathrm{m}_{\mathrm{P} 1}$	20	40	80	90	100
EPS Power Requirements, Small Base LEO	kW	$P_{\text {EPS REQ }}$	20	40	80	90	100
EPS. Power Rēquirements, Large Base LEO	kW	$P_{\text {EPS R REQ }}$	20	40	80	90	100
EPS Power Requirements, Large Base GEO	kW	$\mathrm{P}_{\text {EPS REQ }}$	20	40	80	90	100
EPS Power Requirements, Small Base GEO	kW	$P_{\text {EPS REQ }}$	20	40	80	90	100
Specific Mass of EPS Batteries	kg/kW	$m_{p 2}$	30	50	70	100	-
Orbit Keeping Propellant Mass, Small Base LEO	kg	$m_{0} 0$	20	70	100	-	'-

Table F. 5 State-of-Knowledge at Decision Points - Program V (continued)

Input' Element	Units	Variable Name	Improvement in State-of-Knowledge, \%				
			DPA	DPB	DPC	DPD	DPE
Orbit Keeping Propellant Mass, Large Base LEO	kg	m_{0}	20	70	100	-	-
Orbit Keeping Propellant Mass, Small Base GEO	kg	m_{0}	20	60	90	100	-
Orbit Keeping Propellant Mass, Large Base GEO	kg	m_{OP}	20	60	90	100	-
Attitude Control Propellant Mass, Small Base LEO	kg	$m_{A P}$	20	70	90	100	-
Attitude Control Propellant Mass, Large Base LeO	kg	$m_{A P}$	20	70	90	100	-
Attitude Control Propellant Mass, Small Base GEO	kg	$m_{A P}$	20	40	70	90	100
Attitude Control Propellant Mass, Large Base GEO	kg	$m_{A P}$	20	40	70	90	100
Total Satellite Fleet Size	Number	$N_{\text {SAT }}$	-	-	-	-	-
```Total Crew Size, Small Base```	Number	${ }^{\text {crew }}$	20	50	80	90	100
Total Crew Size, Large Base	Number	$\mathrm{N}_{\text {crew }}$	20	50	80	90	100
Number of Personnel Carried per POTV Flight	\#/Flight	${ }^{\text {f POTV }}$	30	50	- 90	100	-
Number of Crew Rotations Per Year	\#/Year	${ }^{\text {f CROT }}$	30	70	90	100	-

Table F. 5 State-of-Knowledge at Decision Points - Program V (continued)

Input Element	Units	Variable Name	Improvement in State-of-Knowledge, io				
			DPA	DPB	DPC	DPD	DPE
Rate of Satellite Construction	\#/Year	$R_{\text {const }}$	20	50	90	100	-
Propellant Consumption per POTV Flight (RT)	kg	${ }^{\text {f POTV PRP }}$	20	70	90	100	-
Capacity of Propellant Storage Tank	kg	$\mathrm{f}_{T}$	-	-	-	-	-
Unit Mass of Propellant Storage Tank	kg	${ }^{\mathrm{m}}$ T	-	-	-	-	-
Payload of COTV	kg	${ }^{\text {f COTV }}$	-	-	-	-	-
Unit Mass of COTV (Dry)	kg	${ }^{\mathrm{m}} \mathrm{COTV}$	-	-	-	-	-
Design Life of POTV	\# Flights	$\mathrm{f}_{\text {POTV Life }}$	-	-	-	-	-
Unit Mass of POTV (Dry)	kg	${ }^{\text {m COTV }}$	-	-	-	-	-
Propellant Consumption per COTV Flight	kg	${ }^{\text {f COTV PRP }}$	-	-	-	-	-
HLLV Payload to LE0	kg	$M_{P / L}$	-	-	-	-	-
AIS Propellant MassFraction	Fraction	$\lambda_{\text {AIS }}$	-	-	-	-	-
AIS Total LEO-GEO Mission $\Delta V$	$\mathrm{m} / \mathrm{sec}$	$\Delta V_{\text {AIS }}$	-	-	-	-	-
AIS Exhaust Jet Velocity	$\mathrm{m} / \mathrm{sec}$	$\begin{aligned} & V \\ & J_{\text {AIS }} \end{aligned}$	-	-	-	-	-
Ion Propellant Storage Tank Capacity	kg	$F_{\text {IT }}$	-	-	-	-	-

Table F. 5 State-of-Knowledge at Decision Points - Program V (continued)

Input Element	Units	Variable Name	Improvement in State-of-Knowledge, io				
			DPA	DPB	DPC	DPD	DPE
Ion Propellant Storage Tank Unit Mass (Dry)	kg	$\mathrm{m}_{\text {IT }}$	-	-	-	-	-
HLLV Average Load Factor	Fraction	$f_{\text {LOAD }}$	20	50	70	100	-
Design Life of HLLV Upper Stage	\# Flights	${ }^{\text {f HUS LIFE }}$	30	70	90	100	-
Design Life of HLLV Lower Stage	$\stackrel{\#}{*}$ Flights	f HLS LIFE	30	70	90	100	-
Number of Personnel per Shuttle Flight	Number	${ }^{\text {f }}$ SHUTTLE	-	-	-	-	-
Design Life of Shuttle	\# Flights	${ }^{\text {f SLIFE }}$	-	-	-	-	-
HLLV Upper Stage Unit Cost	\$	${ }^{\text {chiUS }}$	30	70	90	100	-
HLLV Lower Stage Unit Cost	\$	${ }^{\text {chiS }}$	30	70	90	100	-
Launch Operations Cost per HLLV Flight	5	${ }^{\text {c }}$ HLLV	30	70	90	100	-
Launch Operations Cost per Shuttle Flight	\$	${ }^{\text {c SHUTTLE }}$	100	-	-	-	-
Shuttle Unit Cost	\$	${ }^{\text {c SUNIT }}$	100	-	-	-	-
Basic Unit Cost of Construction Base (Smal1)	\$	${ }^{\text {c }}$ CB	20	50	70	90	100
Basic Unit Cost of Construction Base (Large)	\$	${ }^{\text {c }}$ CB	20	50	70	90	$10{ }^{\circ}$

Table F. 5 State-of-Knowledge at Decision Points - Program V (continued)

Input Element	Units	Variable Name	Improvement in   State-of-Knowledge, \%				
			DPA	DPB	DPC	DPD	DPE
Specific Cost of EPS Solar Array	\$/kV	${ }^{C}{ }^{1}$	20	50	70	90	100
Specific Cost of EPS Batteries	S/kV	${ }^{\text {c }}$ 2	20	50	90	100	-
Cost of Radiation Shielding, Small Base LEO	\$	${ }^{\text {c }}$ RDS	20	50	70	90	100
Cost of Radiation Shielding, Large Base LEO	\$	${ }^{\text {c RDS }}$	20	50	70	90	100
Cost of Radiation Shielding, Small Base GEO	S	${ }^{\text {croS }}$	20	50	70	90	100
Cost of Radiation Shielding, Large Base GEO	\$	${ }^{C}$ RDS	20	50	70	90	100
Specific Cost of Altitude Control Propeltrant	\$/kg	${ }^{\text {c }}$ AP	-	-	-	-	-
Specific Cost of Orbit-Keeping Propellant	\$/kg	${ }^{C} 0$	-	-	-	-	-
COTV Unit Cost	\$	${ }^{\text {c COTV }}$	20	50	90	100	-
POTV Unit Cost	S	${ }^{\text {POTV }}$	20	50	90	100	-
Specific Cost of OTV Propellant	\$/kg	$\mathrm{C}_{\text {PRP }}$	-	-	-	-	-
AIS Unit Cost	\$	$C_{\text {AIS }}$	20	50	90	100	-
Specific Cost of Ion Propellant	\$/kg	${ }^{\text {c AIS PROP }}$	-	-	-	-	-

Table F. 5 State-of-Knowledge at Decision Points - Program V (continued)

Input Element ${ }^{\text {' }}$	Units	Variable Name	Improvement in State-of-Knowledge, \%				
			DPA	DPB	DPC	DPD	DPE
CTV Propellant Storage Tank Unit Cost	\$	$C^{\text {T }}$	20	70	90	100	-
Ion Propellant Storage Tank Unit Cost	5	$\mathrm{C}_{\text {IT }}$	20	50	90	100	-
Antenna Power Distribution Specific Cost	\$/kW	${ }^{C}$ PD	-	-	-	-	-
Phase Control Electronics Specific Cost	S/kW	${ }^{\text {C PCE }}$	-	-	-	-	-
Wave Guide Specific Cost	S/kW	$c_{1 / G}$	-	-	-	-	-
DC-RF Converter Specific Cost	\$/kW	${ }^{C} D C-R F$	-.	-	-	-	-
Antenna Structure Specific Cost	\$/kW	${ }^{\text {c }}$ ST	20	70	90	. 100	-
Solar Array Blanket Specific Cost	$s / \mathrm{km}^{2}$	${ }^{c}$ SAB	20	50	70	100	-
Solar Array Concentrator Specific Cost	$5 / \mathrm{km}^{2}$	${ }^{c}$ SAC	10	60	90	100	-
Conducting Structure Specific Cost	\$/kg	${ }^{\text {c }}$ STC	10	60	90	100	-
Nonconducting Structure Specific Cost	\$/kg	${ }^{\text {c STNC }}$	10	50	90	100	-
Central Mast Specific Cost	\$/kg	${ }^{\text {c STCM }}$	10	50	90	100	-
Miscellaneous Equipment Specific Cost	\$/kg	${ }^{\text {CMISC }}$	10	50	80	100	-
Rectenna Specific Cost	\$/km ${ }^{2}$	${ }^{\text {CRECT }}$	-	-	-	-	-

Table F. 5 State-of-Knowledge at Decision Points - Program V (continued)

Input Element	Units	Variable Name	Improvement in State-of-Knowledge, :				
			DPA	DPB	DPC	DPD	DPE
Beam Elevation Angle	Radians	E	-	-	-	-	-
Power Interface Specific Cost	\$/kw	${ }^{\text {C INTERF }}$	-	-	-	-	-
Phase Control Specific Cost	\$/kw	${ }^{C} P C$	-	-	-	-	-

## APPEIIDIX G

## COMPUTATION OF CONDITIONAL PROBABILITIES

This appendix details the computational procedure for determining the probabilities necessary for analyzing the decision trees presented in Section 7. It is to be noted that the probabilities are conditioned upon getting to the decision node in question. Figure G. 1 shows the effects of the decision rules acting on the probability density function of the current state-of-knowledge for Program I. The population or density function after Decision Point $A$ is obtained by taking the product of the initial probability density function with one minus the cumulative distribution representing decision rule $A$. Thus:

$$
f_{A}(\cos t)=f_{0}(\cos t) \quad\left[1-C\left(M_{A}, \sigma_{A}\right)\right]
$$

where $C\left(M_{A}, \sigma_{A}\right)$ is the cumulative distribution function for a Gaussian distribution of mean $M_{A}$ and standard deviation $\sigma_{A}$. Likewise:

$$
f_{B}(\cos t)=f_{A}(\cos t) \quad\left[1-C\left(\dot{u}_{B}, \sigma_{B}\right)\right]
$$

and

$$
f_{C}(\cos t)=f_{B} \quad(\cos t) \quad\left[1-C\left(M_{C}, \sigma_{C}\right)\right]
$$

Then, noting that the area under curve $f_{0}$ is unity, $P_{A}$ is the area under curve $f_{A}$, and:

$$
P_{B}=\frac{\text { Area under curve } f_{B}}{\text { Area under curve } f_{A}}=\frac{\text { Area under curve } f_{B}}{P_{A}}
$$

and

$$
P_{C}=\frac{\text { Area under curve } f_{C}}{\text { Area under curve } f_{B}}=\frac{\text { Area under curve } f}{P_{A} P_{B}}
$$



Figure G. 1 Analysis of Conditional Branching Probabilities

SELECTED BIBLIOGRAPHY

## Economic and Decision Analysis

Arrow, Kenneth J., Aspects of the Theory of Risk-Bearing. Yrjö Jahnsson Lectures. Helsinki: Yrjö Jahnssonin Säätiö, 1965.

Arrow, Kenneth J., "Exposition of the Theory of Choice Under Uncertainty." Synthese, 16, December 1966, pp. 253-269.
Arrow, Kenneth J., "Functions of a Theory of Behavior Under Uncertainty." Metroeconomica, 11, Apri1-August 1959, pp. 12-20.

Arrow, Kenneth J., "Rational Choice Functions and Orderings." Economica, N.S., 26, May 1959, pp. 121-127.

Atherton, Wallace N., Theory of Union Bargaining Goals. Princeton University Press, Princetion, New Jersey, 1973.

Baker, Norman R., "R\&D Project Selection Models: An Assessment." IEEE Transactions on Engineering Management, Vol. EM-21, No. 4, November 1974, pp. 165-171.

Becker, Gordon M., "Objective Measures of Subjective Probability and Utility." Psychological Review, 69, March 1962, pp. 136-148.

Bernoulli, Daniel, "Specimen Theoriae Novae de Mensura Sortis." Commentarii Academiae Scientiarum Imperialis Petropolitanae, 5, 1738, pp. 175-192. English translation: "Exposition of a New Theory on the Measurement of Risk." Econometrica, 22, January 1954, pp. 23-26. Revised translation: "Exposition of a New Theory of Risk Evaluation." In Precursors in Mathematical Economics: An Anthology. Selected and edited by William J. Baumol and Stephen M. Goldfeld. Series of Reprints of Scarce Works on Political Economy, No. 19. London: London School of Economics and Political science, 1968, pp. 15-26.

Blackwell, David and M. A. Girshick, Theory of Games and Statistical Decisions. New York: John Wiley \& Sons, Inc., 1954.

Borch, Karl Henrik, "Reformulation of Some Problems in the Theory of Risk." Proceedings of the Casualty Actuarial Society, 49, November 1962, pp. 109-118.

Borch, Karl Henrik, "A Note on Utility and Attitudes to Risk." Management Science, 9, July 1963, pp. 697-700.

Borch, Karl Henrik, "Recent Developments in Economic Theory and Their Applications to Insurance." The ASTIN Bulletin, 2, 1963, pp. 372-341.

Borch, Karl Henrik, "The Economics of Uncertainty." In Essays in Mathematical Economics in Honor of Oskar Morgenstern. Edited by Martin Shubik. Princeton, New Jersey: Princeton University Press, 1967, pp. 197-210.

Borch, Karl Henrik, "The Theory of Risk." Journal of the Royal Statis$\frac{\text { tical Society }}{452-467}[B], 29$, No. 3, 1967, pp. 432-452. Discussion, pp. 452-467.

Borch, Karl Henrik, The Economics of Uncertainty. Princeton, New Jersey: Princeton University Press, 1968.

Borch, Karl Henrik, "Indifference Curves and Uncertainty." Swedish Journal of Economics, 70, March 1968, pp. 19-24.

Boulding, Kenneth E., "The Economics of Knowledge and the Knowledge of Economics." (Richard T. Ely Lecture), American Economic Review, 1966.

Bright, J. R., "On the Appraisal of Risks in Technological Innovation." In Research Development and Technological Innovation, R. D. Irwin, Inc., Homewood, Illinois, 1964.

Brown, Rex V., "Do Managers Find Decision Theory Useful?" Harvard Business Review, May-June 1970, pp. 78-89.

Canada, John R., "The Consideration of Risk and Uncertainty in Capital Investment Analysis." Management International Review, 7, No. 6, 1967, pp. 47-57.

Chipman, John S., "Stochastic Choice and Subjective Probability." In Decisions, Values and Groups. Edited by Dorothy Willner, Vol. I. New York: Pergamon Press, 1960, pp. 70-95.

Chipman, John S., et al., Preferences, Utility and Demand. Harcourt Brace Joranovich, Inc., New York, 1971.

Churchman, C. West, "Decision and Value Theory." In Progress in Operations Research. Edited by Russell L. Ackoff, Vol. 1. New York: Juhn Wiley $\&$ Sons, Inc., 1961, pp. 35-64.

Churchman, C. West, Prediction and Optimal Decision; Philosophical Issues of a Science of Values. Englewood Cliffs, New Jersey: Prentice-Hal7, Inc., 1961.

Coombs, Clyde H. and David Beardslee, "On Decision-Making Under Uncertainty." In Decision Processes. Edited by C. H. Coombs, R. L. Davis and R. M. Thrall. New York: John Wiley \& Sons, Inc., 1954, pp. 255-285.

Coombs, Clyde H., H. Raiffa and R. M. Thrall, "Some Views on Mathematical Model's and Measurement Theory." In Decision Processes. Edited by R. M. Thrall, C. H. Coombs and R. L. Davis. New York: John Wiley \& Sons, Inc., 1954, pp. 19-37.

Copeland, A. H., Sr., "Probabilities, Observations and Predictions." In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability. Edited by J. Neyman, Vol. II. Berkeley and Los Angeles: University of California Press, 1956, pp. 41-47.

Cramer, Harald, "On the Mathematical Theory of Risk." Försäkringsaktiebolage Skandia, Vol. II, 1855-1930. Stockholm: Centraltryckeriet, 1930, pp. 7-84.

Cramer, Harald, "A Theorem on Ordered Sets of Probability Distributions." Theory of Probability and its Applications, 1, No. 1, 1956, pp. 16-20.

Cramer, R. H. and B. E. Smith, "Decision Models for Selection of Research Projects." The Engineering Economist, January-February 1964, Vol. 9, pp. 1-20.

Danskin, John M., The Theory of Max-Min and Its Application to Weapons Allocation Problems. Springer-Verlag, Berlin, Heidelberg and New York, 1967.

Edwards, Ward, "Measurement of Utility and Subjective Probability." In Psychological Scaling: Theory and Applications. Edited by H. Bulliksen and S. Messick. New York: John Wiley \& Sons, Inc., 1960, pp. 109-127.

Edwards, Ward, "Subjective Probabilities Inferred From Decisions." Psychological Review, 69, March 1962, pp. 109-135.

Edwards, Ward, "Utility, Subjective Probability, Their Interaction and Variance Preferences." Journal of Conflict Resolution, 6, March 1962, pp. 42-51.

Encarnacion, Jose, "On Decision Under Uncertainty." Economic Journal, 75, June 1965, pp. 442-444.

Encarnacion, Jose, "On Independence Postulates Concerning Choice." International Economic Review, 10, June 1969, pp. 134-140.

Feather, N. T., "An Expectancy-Value Model of Information-Seeking Behavior." Psychological Review, 74, September 1967, pp. 342-360.

Feldstein, Martin S., "Mean-Variance Analysis in the Theory of Liquidity Preference and Portfolio Selection." Review of Economic Studies, 36, January 1969, pp. 5-12.

Fellner, William, "Distortion of Subjective Probabilities as a Reaction to Uncertainty." Quarterly Journal of Economics, 75, November 1961, pp. 670-689.

Fellner, William, Probability and Profit: A Study of Economic Behavior Along Bayesian Lines. Homewood, Illinois: Richard D. Irwin, Inc., 1965.

Fishburn, Peter C., Decision and Value Theory. New York: John Wiley \& Sons, Inc., 1964.

Fishburn, Peter C., "Bounded Expected Utility." Annals of Mathematical Statistics, 38, August 1967, pp. 1054-1060.

Fishburn, Peter C., "Interdependence and Additivity in Multivariate, Unidimensional Expected Utility Theory." International Economic Review, 8, October 1967, pp. 335-342.

Fishburn, Peter C., "Preferance-Based Definitions of Subjective Probability." Annals of Mathematical Statistics, 38, December 1967, pp. 1605-1617.

Fishburn, Peter C., "Utility Theory." Management Science, 14, January 1968, pp. 335-378.

Fishburn, Peter C., "Information Analysis Without States of the World." Operations Research, 17, May-June 1969, pp. 413-424.

Fishburn, Peter C., "A General Theory of Subjective Probabilities and Expected Utilities." Annals of Mathematical Statistics, 40, August 1969, pp. 1419-1429.

Fishburn, Peter C., "Preferences, Summation and Social Welfare Functions." Management Science, 16, November 1969, pp. 179-186.

Fishburn, Peter C., "Weak Qualitative Probability on Finite Sets." Annals of Mathematical Statistics, 40, December 1969, pp. 2118-2126.

Fishburn, Peter C., Utility Theory for Decision Making. New York: John Wiley \& Sons, Inc., 1970.

Gear, A. E., "A Review of Some Recent Developments in Portfolio Modelling in Applied Research and Development." IEEE Transactions on Engineering Management, Vol. EM-21, No. 4, November 1974, pp. 119-125.

Georgescu-Roegen, Nicholas, "The Nature of Expectation and Uncertainty." In Expectations, Uncertainty and Business Behavior. Edited by Mary Jean Bownan. New York: Social Science Research Council, 1958. Reprinted in N. Georgescu-Roegen, Analytical Economics, 1966, pp. 241-275.

Good, I. J., Probability and the Weighting of Evidence. London: Charles Griffin and Company, Ltd., 1950.

Good, I. J., "Rational Decisions." Journä of the Royal Statistical Society [B], 14, No. 1, 1952, pp. 107-114...

Gordon, Paul J., "Heuristic Problem Solving--You Can Do It." Business Horizons, Vol. 5, No. 1, Spring 1962.

Green, H. A. J., "Uncertainty and the 'Expectations Hypothesis." Review of Economic Studies, 34, October 1967, pp. 387-398.

Griswold, Betty J. and R. Duncan Luce, "Choices Among Uncertain Outcomes: A Test of Decomposition and Two Assumptions of Transitivity." American Journal of Psychology, 75, March 1962, pp. 35-44.

Greenberg, Joel S., "Risk Analysis." Astronautics and Aeronautics, November 1974, p. 48ff.

Greenberg, Joel S. and George A. Hazelrigg, "Methodology for Reliability--Cost-Risk Analysis of Satellite Networks." Journal of Spacecraft and Rockets, September 1974, p. 650ff.

Greenborg, J., T. H. Smith and W. E. Matheson, "Benefit/Risk Analysis of the Betacel Powered Pacemaker." A paper presented to the American Nuclear Society, San Francisco, California, November 11-15, 1973.

Gulliksen, Harold, "Paired Comparisons and the Logic of Measurement." Psychological Review, 53, July 1946, pp. 199-213.

Gulliksen, Harold, "Measurement of Subjective Values." Psychometrika, 21, September 1956, pp. 229-244.

Gulliksen, Harold, "Linear and Multidimensional Scaling." Psychometrika, 26, March 1961, pp. 9-25.

Gulliksen, Harold and Ledyard R. Tucker, "A General Procedure for Obtaining Paired Comparisons From Multiple Rank Orders." Psychometrika, 26, June 1961, 173-183.

Hadar, Josef and William R. Russell, "Rules for Ordering Uncertain Prospects." American Economic Review, 59, March 1969, pp. 25-34.

Hagen, 0., "Risk Aversion and Incentive Contracting." Economic Record, 42, September 1966, pp. 416-429.

Haines, A. L. and R. R. Iyer, "The Potential Use of Advanced Probability Analysis Techniques by Flight Standards in Safety Evaluations." Mitre Corp., McLean, Virginia, August 1975.

Hakansson, Nils, H., "Optimal Investment and Consumption Strategies Under Risk, An Uncertain Lifetime and Insurance." International Economic Review, 10, October 1969, pp. 443-466.

Hakansson, Nils H., "Optimal Investment and Consumption Strategies Under Risk for a Class of Utility Functions." Econometrica, 38, Septenber 1970, pp. 587-607.

Halldén, Sören, On the Logic of Better. Lund: C. W. K. Gleerup, 1957.
Harmond, John S., III, "Better Decisions With Preference Theory." Harvard Business Review, 45, November-December 1967, pp. 123-141.

Haring, J. E. and G. C. Smith, "Utility Theory, Decision Theory and Profit Maximization:" American Economic Review, 49, September 1959, pp. 566-583.

Harrah, David, "A Model for Applying Information and Utility Functions." Philosophy of Science, 30, July 1963, pp. 267-273.

Harsany, John S., "A General Theory of Rational Behavior in Game Situations." Econometrica, 34, July 1966, pp. 613-634.

Hazelrigg, George A. and William L. Brigadier, "A Decision Model for Planetary Missions." Paper to be presented at the AAS/AIAA Astrodynamics Conference, San Diego, California, August 16, 1976.

Heal, G. M., The Theory of Economic Planning. North-Hoiland PubTishing Company, Amsterdam-London, 1973.

Hertz, D. B., "Risk Analysis in Capital Investment." Harvard Business Review, Vol. 42, pp. 95-106.

Hespos, R. E. and Strassman, "Stochastic Decision Trees for the Analysis of Investment Decisions." Management Science, August 1965, Vol. 11, No. 7.0, pp. 244-259.

HirshTeifer, J., "Investment Decision Under Uncertainty: Choice-Theoretic Approaches." Quarterly Journal of Economics, 79, November 1965, pp. 509-536.

Hirshleifer, J., "Investment Decision Under Uncertainty: Applications of the State-Preference Approach." Quarterly Journal of Economics, 80 , May 1966, pp. 252-277.

Hirshleifer, J., Investment, Interest and Capital. Englewood Cliffs, New Jersey: Prentice-Ha11, Inc., 1970.

Howard, Ronald A., "Decision Analysis: Applied Decision Theory." A paper presented at the Fourth International Conference on Operational Research, Boston, 1966.

Karlin, Samuel, Mathematical Methods and Theory in Games, Programming and Economics, Vol. I. Reäding, Massachusetts: Addison-Wesley Publishing Co., Inc., 1959.

Kaufman, Gordon M., Statistical Decision and Related Techniques in 0il and Gas Exploration. Englewood Cliffs, New Jersey: Prentice-HaTl, Inc., 1963.

Kerrich, J.E., An Experimental Introduction to the Theory of Probability. Copenhagen: Munksgaard, 1946.

Keynes, John Maynard, A Treatise on Probability. London: Macmillan and Co., Ltd., 1921.

Klein, B. and W. Meckling, "Application of Operations Research to Development Decisions." Operations Research, May 1958.

Knight, Frank H., Risk, Uncertainty and Profit. Boston: Houghton Mifflin, 1921.

Koopman, B. O., "The Axioms and Algebra of Intuitive Probability." Annals of Mathematics [2], 41, April 1940, 269-292.

Koopman, B. 0., "The Bases of Probability." Bulletin of the American Mathematical Society, 46, October 1940, pp. 763-774.

Koopman, B. 0., "Intuitive Probability and Sequences." Annals of Mathematics [2], 42, January 1941, pp. 169-187.

Koopmans, Tjalling C., "On Flexibility of Future Preference." In Human Judgments and Optimality. Edited by M. W. Shelly and G. L. Bryan. New York: John Wiley \& Sons, Inc., 1964, pp. 243-254.

Kraft, Charles H., John W. Pratt and A. Seidenberg, "Intuitive Probability on Finite Sets." Annals of Mathematical Statistics, 30, June 1959, pp. 409-419.

Krelle, W., "A Theory on Rational Behavior Under Uncertainty." Metroeconomica, 11, April-August 1959, pp. 51-63.

Latané, Henry Allen, "Criteria for Cnoice Among Risky Ventures." Journal of Political Economy, 67, April 1959, pp. 144-155.

Lavalle, Irving H., "On Cash Equivalents and Information Evaluation in Decisions Under Uncertainty: Part I, Basic Theory; Part II, Incremental Information Decisions." Journal of the American Statistical Association, 63, March 1968, pp. 252-284.

Lehman, E. L., "Ordered Families of Distributions." Annals of Mathematical Statistics, 26, September 1955, pp. 399-419.

Layer, William, "Operations Research: A Management Assessment." Advanced Management, June 1961, pp. 13-17.

Lindgren, B. W., Elements of Decision Making. The Macmillan Company, New York, 1971.

Linowiecki, A. G. and. J. D. Lydick, "How Much Reliability Is Enough?" Offshore, February 1975, pp. 240-247.

Luce, R. Duncan and Howard Raiffa, Games and Decisions. John Wiley \& Sons, Inc., New York, 1957.

Luce, R. Duncan, "On the Numerical Represenation of Qualitative Conditional Probability." Annals of Mathematical Statistics, 39, April 1968, pp. 481-497.

Mack, Planning on Uncertainty: Decision Making in Business and Government Administration. John Wiley \& Sons, Inc., New York, 1971.

Magee, John F., "Decision Trees for Decision Making." Harvard Business Review, Vol. 40, No. 4, July-August 1964, pp. 126-138.

Mansfield, Edwin, editor, Managerial Economics and Operations Research-Techniques, Applications, Cases, Third Edition. W. W. Norton \& . Co., Inc., New York, 1975.

Marley, A. A. J., "Some Probabilistic Models of Simple Choice and Ranking.' Journal of Mathematical Psychology, 5, June 1968, pp. 311-332.

Marschak, Jacob, "Rational Behavior, Uncertain Prospects and Measurable Utility." Econometrica, 18, April 1950, pp. 111-141. "Errata," July 1950, p. 312.

Marschak, Jacob and Roy Radner, Economic Theory of Teams. Yale University Press, New Haven and London, 1972.

Marschak, Jacob, "Norms and Habits of Decision-Making Under Certainty." In Mathematical Models of Human Behavior. Edited by J. W. Dunlap. Stanford, Connecticut: Dunlap and Associates, 1955, pp. 44-53.

Marschak, Jacob, "The payoff-relevant description of states and acts." Econometrica, 31, October 1963, pp. 719-723.

Marschak, Jacob, "Decision Making: Economic Aspects." In International Encyclopedia of the Social Sciences. Edited by David L. Sills. Vol. 4, New York: Crowell Collier and Macmillan, 1968, pp.. 42-55.

Matheson, James E. and William J. Roths, "Decision Analysis of Space Projects: Voyager Mars." A paper presented at the National Symposium, Saturn/Apo110 and-Beyond, American Astronautical Society, June 11, 1967.

McAdams, Mathematical Analysis for Management Decisions. Macmillan, New York, 1970.

Menger, Karl, "Das Unsicherheitsmoment in der Wertlehre." Zeitschrifi für Nationalökonomie, 5, 1934, 459-486. English translation: "The Role of Uncertainty in Economics." In Essays in Mathematical Economics in Honor of Oskar Morgenstern. Edited by M. Shubik. Princeton, New Jersey: Princeton University Press, 1967, pp. 211231.

Moore, R. L., "Methods of Determining Priorities in a Program of Research." IEEE Transactions on Engineering Management, November 1974, Vol. EM-21, No. 4, pp. 126-140.

National Aeronautics and Space Administration, Office of Aeronautics and Space Technology, Technology Workshop, "Decision Analysis Applied to Test Options--A Case Study Evaluation of Flight/Ground Test Options for the Simulation of Outer Planet Probe Entry," August 5, 1975.

Neumann, John von and Oskar Morgenstern, Theory of Games and Economic Behavior. Princeton, New Jersey: Princeton University Press, 1944. Second edition, 1947. Third edition, 1953.

Newman, Management Applications of Decision Theory. Harper \& Row, New York, 1977.

North, D. Warner, "A Tutorial Introduction to Decision Theory." IEEE Transactions on Systems Science and Cybernetics, September 1968, Vol. SSC-4, No. 3, p. 200.

Pearson, A. W., "Project Selection in an Organizational Context." IEEE Transactions on Engineering Management, November 1974, Vol. EM-21, No. 4, pp. 152-158.

Pessemier, E. A. and N. R. Baker, "Project and Program Decisions in Research and Development." R\&D Management, October 1971, Vol. 2, No. 1.

PfanzagT, J., "Subjective Probability Derived From the Morgenstern-von Neumann Utility Concept." In Essays in Mathematical Economics in Honor of Oskar Morgenstern. Edited by Martin Shubik. Princeton, New Jersey: Princeton University Press, 1967, pp. 237-251.

Pratt, John W., "Risk Aversion in the Small and in the Large." Econometrica, 32, January-April 1964, pp. 122-136.

Pratt, John W., Howard Raiffa and Robert Schlaifer, "The Foundations of Decision Under Uncertainty: An Elementary Exposition." Journal of the American Statistical Association, 59, June 1964, pp. 353-375.

Pratt, John W., Howard Raiffa and Robert Schlaifer, Introduction to Statistical Decision Theory (Preliminary Edition). New York: McGraw-Hill, 1965.

Pruitt, Dean G., "Pattern and Level of Risk in Gambling Decisions." Psychological Review, 69, May 1962, pp. 187-201.

Radner, Roy, "Mathematical Specification of Goals for Decision Problems." In Human Judgments and Optimality. Edited by Maynard W. Shelly, II and Glenn L. Bryan. New York: John Wiley \& Sons, Inc., 1964, pp. 178-216.

Radner, Roy and Jacob Marschak, "Note on Some Proposed Decision Criteria. In Decision Processes. Edited by R. M. Thrall, C. H. Coombs and R. L. Davis. New York: John Wiley \& Sons, Inc., 1954, pp. 61-68.

Raiffa, Howard, "Deci-sion Analysis." In Introductory Lectures on Choices Under Uncertainty. Reading, Massachusetts: Addison Westey, 1968.

Raiffa, Howard and Robert Schlaifer, Applied Statistical Decision Theory. Boston: Division of Research, Graduate School of Business Administration, Harvard University, 1961.

Raiffa, Howard, "Preferences for Multiattributed Alternatives." The RAND Corporation, Memorandum RM-5868-DOT-RC, Apri1 1969.

Ramsey, Frank P., "Truth and Probability" (1926). In The Foundations of Mathematics and Other Logical Essays. Edited by R. B. Braithwaite. New York: Harcourt Brace and Co., 1931; The Humanities Press, 1950, pp. 156-190. Reprinted in Studies in Subjective Probability. Editer by Henry E. Kyburg, Jr. and Howard E. Smokler. New York: John Wile: \& Sons, Inc., 1964, pp. 61-92.

Richard, Scott F., "Multivariate Risk Aversion Utility Independence and Separable Utility Functions." Management Science, September 1975, Vol. 22, No. 1, pp. 12-21.

Rubenstein, A. H., "Setting Criteria for R\&D." Harvard Business Review, January-February 1957, pp. 95-104.

Sandmo, Agnar, "Capital Risk, Consumption and Portfolio Choice." Econometrica, 37, October 1969, pp. 586-599.

Savage, Leonard J., et a1., The Foundations of Statistical Inference. New York: John Wiley \& Sons, Inc., 1962.

Savage, Leonard J., "The Foundations of Statistics Reconsidered." In Studies in Subjective Probability. Edited by Henry E. Kyburg, Jr. and Howard E. Smokler. New York: John Wiley \& Sons, Inc., 1964, pp. 173-188.

Savage, Leonard J., "Difficulties in the Theory of Personal Probability." Philosophy of Science, 34, December 1967, pp. 305-310.

Scherer, F. M., "Government Research and Development Programs." In R. Dorfman (editor), Measuring Benefits of Government Investments, November 1963.

Schlaifer, Robert, Analysis of Decisions Under Uncertainty. New York: McGraw-Hill, 1967.

Schlaifer, Robert, "Probability and Statistics for Business Decisions." New York: McGraw-Hill, 1959.

Shackle, G. L. S., Expectation in Economics. Cambridge: At the University Press, 1949.

Shackle, G. L. S., Uncertainty in Economics. Cambridge: At the University Press, 1955.

Shubik, Martin, "Studies and Theories of Decision Making." Administrative Science Quarterly, 3, December 1958, pp. 289-306.

Shuford, Emir H., Jr., Arthur Albert and H. Edward Massengill, "Admissible Probability Measurement Procedures." Psychometrika, 31, June 1966, pp. 125-145.

Siegel, Sidney, "A Method for Obtaining an Ordered Metric Scale." Psychometrika, 21, June 1956, pp. 207-216.

Simon, Herbert A., "Theories of Decision Making in Economics and Behavioral Science." American Economic Review, 49, June 1959, pp. 253-283.

Simon, Herbert A., "The Logic of Heuristic Decision Making." In The Logic of Decision and Action. Edited by Nicholas Rescher. Pittsburgh: University of Pittsburgh Press, c. 1967, pp. 1-20.
Society for Industrial and Applied Mathematics, Energy: Mathematics and Models. Proceedings of a conference held at Alta, Utah, July 7-71, 1975. Philadelphia, 1976.

Strauch, Ralph E., "The Operational Assessment of Risk: A Case Study of the Pueblo Mission." A report prepared for United States Air Force Project RAND, R-G91-PR, March 1971.

Suppes, Patrick, "Some Open Problems in the Foundations of Subjective Probability." In Information and Decision Processes. Edited by Robert E. Machol. New York: McGraw-Hi17, 1960, pp. 162-169.

Swalm, Ralph 0., "Utility Theory--Insights Into Risk Taking." Harvard Business Review, 47, November-December 1966, pp. 123-136.

Swalm, Ralph 0., "Cardinal Utility Theory--Its Potential and Its Problems." Proceedings of the 19th Annual Institute Conference and Convention, American Institute of Industrial Engineers, May 1968, pp. 112-116.

Theil, H., Economics and Information Theory. Chicago: Rand MciNally \& Company, 1967.

Thorstone, L. L. and Lyle V. Jones, "The Rational Origin For Measuring Subjective Values." Journal of the American Statistical Association, 52, December 1957, pp. 458-471.

Tintner, Gerhard, "The Theory of Choice Under Subjective Risk and Uncertainty." Econometrica, 9, JuTy-0ctober 1941, pp. 298-304.
University of 0 kl ahoma, Energy Alternatiyes: A Comparatiye Analysis. Science and Public Policy Program, May 1975.
Vail (Valavanis), Stefan, "Alternative Calculi of Subjective Probabilities." In Decision Processes. Edited by R. M. Thrall, C. H. Coombs and R. L. Davis. New York: John Wiley \& Sons, Inc., 1954, pp. 87-98.

Vickrey, William, "Measuring Marginal Utility by Reaction to Risk." Econometrica, 13, October 1945, pp. 319-333.
Vickrey, William, "Utility, Strategy and Social Decision Rules." Quarterly Journal of Economics, 74, November 1960, pp. 507-535.
.. Vickrey, William, "Risk, Utility and Social Policy." Social Research, 28 , July 1961, pp. 205-217.

Wiest, Jerome D., "Heuristic Programs for Decision Making." Harvard Business Review, Vol. 44, No. 5, pp. 129-143.

Wilson, E. B., "Notes on Utility Theory and Demand Equations." Quarterly Journal of Economics, 60, May 1946, pp. 453-460.
Winkler, Robert L., "The Assessment of Prior Distributions in Bayesian Analysis." Journal of the American Statistical Association, 62, September 1967, pp. 776-800.

Winkler, Robert L.., "The Quantification of Judgment: Some Methodologicai Suggestions." Journal of the American Statistical Association, 62, December 1967, pp. 1105-1120.

Winkler, Robert L., "The Consensus of Subjective Probability Distributions." Management Science, 15, october 1968, pp. B67-B75.

## Probability

Kirkpatrick, Elwood G., Introductory Statistics and Probability for Engineering, Science and Tecinology. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1974.

Larson, Harold J., Introduction to Probability Theory and Statistical Inference. New York: John Wiley \& Sons, Inc., 1969.

## Solar and Other Energy Technologies

Abraham, B. M. and F. Schreiner, "A Low Temperature Thermal Process for Decomposition of Water." Science 180, f. 959, June 1973.

AIAA Technical Committee on Electric Power Systems, Solar Energy for Earth. New York: American Institute of Aeronautics and Astronautics, April $21,1975$.

Anderson, Richard L., Gordon Kent and Steven Lai, Glass-Si Heterojunction Solar Cells. Third Quarter Progress Repori for the period August 1, 1974 to September 30, 1974, RANN Document Center: National Science Foundation, October 25, 1974.

Arthur D. Little, Inc., "A Study of Base Load Alternatives for the Northeast Utilities System." A report to the Board of Trustees of Northeast Utilities, July 1973.

Arthur D. Little, Inc., Feasibility Investigations of Growing and Characterizing Gallium Arsenide Crystals in Ribbon Form. Third Quarter Progress Report for the period June 26, 1974 to Septembe: 30, 1974, RANN Document Center: National Science Foundation, October 1974.

Arthur D. Little, Inc., "Underground Power Transmission," ERC Publication No. 1-72, October 1971.

Atomic Energy Commission, Environmental Survey of the Uranium Fuel Cycle, Washington, D.C. - 1248, April 1974.

Auburn University Engineering Systems Design, Terrestrial Applications of Solar Technology and Research. Final Report, September 1973.

Barlow, H. M., "The Relative Power-Carrying Capacity of High Frequency Waveguides." Paper No. 1225, Radio Section, 1952, p. 21.

Blieden, $H$. Richard, The Status of the National Science Foundation Photovoltaic Program. Paper presented at the U.S. Section Annual Meeting of the International Solar Energy Society, Fort Collins, Colorado, August 20-23, 1974.

Boer, K., N. Freedman, H. Hadley, W. Nelson, K. Selcuk, C. Birchenall, J. Olson, L. Partain, Flat. Plate Collectors with CdS Solar Cells and First Indications of Feasibility for Their Large-Scale Use.

Bogus, K. and S. Matias, Ninth Photovoltaic Specialists Conference, Seattle, Washington, 1972.

Broome, K. R., D. J. Goertz and J. W. Hankin, "Microwave Power Transmission." The Journal of Microwave Power, May 1970, p. 171.

Bube, Richard H., Applied Research on II-V1 Compound Materials for Heterojunction Solar Cells. Quarterly Progress Report for the period July 1 to September 30, 1974, RANN Document Center: National Science Foundation.

Bube, Richard H., Applied Research on II-VI Compound Materials for Heterojunction Solar Cells. Progress Report No. 2, RANN Document Canter: National Science Foundation, February 1 to March 31, 1974.

Bube, Richard H., Applied Research on II-VI Compound Materials for Heterojunction Solar Cells. Semi-Annual Progress Report for the period January 1 to June 30, 1974, RANN Document Center: National Science Foundation.

Burchard, John K., et al., Some General Economic Considerations of Fuel Gas Scrubbing for Utilities. EPA, Research Triangle Park, North Carolina, 1972.

Bureau of Mines, "An Economic Evaluation of Waste Water Treatment for a 250 MM SCFD Synthane Plant." Report No. 73-22, April 1973.

Carlson, H. A., "The Stag Cycle, USOA-4-72." Paper given at the G. E. State-of-the-Art Seminar on Electric Utility Gas Turbine Applications, September 1972.

Chemical Engineering, "Economic Indicators," Vol. 81, No..1, 1974, p. 162.

Chu, Ting L., Development of Low-Cost Thin Film Polycrystalline Silicon Solar Cells for Terrestrial Applications, Semi-Annual Progress Report covering the period January 1, 9974 to June 30, 1974, RANN Document Center: National Science Foundation, January 15, 1974.

Chu, Ting L., Development of Low-Cost Thin Film Polycrystaliine Silicon Solar Cells for Terrestrial Applications, Third Quarter Progress Report covering the period July 1, 1974 to September 30, 1974, RANN Document Center: National Science Foundation.

Cigre Study Committee No. 31, "James Bay, Preliminary Transmission System Studies, 16 GW Over 1200 kil," London, England, 1972.

Council on Environmental Quality, Energy and the Environment-Electric Power, Government Printing Office, Washington, D.C., August 1973.

DeBeni, G. and C. Marchetti, "Hydrogen Key to the Energy Market," Euro Spectra 9, 46-50, 1970.

Department of Interior, "Development of Coal-Fired Fluidized-Bed Boilers Final Report," Research and Development Report No. 36 , Vol. II, Office of Coal Research, 1972.

Department of Interior, "Engineering Evaluation and Review of Consol Synthetic Fuel Process," Research and Development Report No. 70, Office of Coal Research, Washington, D.C.

Ehricke, Kraft A., "The Power Relay Satellite - A Means of Global Energy Transmission Through Space," Rockwell International Corp., March 1974.

Electrical World, "17th Steam Station Cost Suryey, " 1971.
Environmental Protection Agency, Development Document for Proposed Effluent Limitations Guidelines and New Source Performance Standards for the Steam Electric Power Generating Point Source Category, EPA 410/1-73/029, March 1974.
Environmental Protection Agency, National Public Hearings on Power Plant Compliance with Sulfur Oxide Air Pollution Regulations. Submitied to the Administrator, U.S. EPA by the members of the Hearing Panel, January 1974.

Fang, P. H., Columnar Silicon Film Solar Cells for Terrestrial Applications, RANN Document Center: National Science Foundation, October 20, 1974.

Fang, P. H., Research on Low-Cost Silicon Solar Cell Structure for Large Electrical Power Systems. Annual Report, prepared for the National Science Foundation, January 1973.
Fang, P. H., Research on Low-Cost Silicon Solar Cell Structure for Large Electrical Power System. Preoared for the National Science Foundation, NTIS, U.S. Department of Commerce, September 1973.
Federal Energy Administration, Project Independence - Solar Energy,
November 1974.
Federal Power Commission, "Detailed Environmental Analyses Concerning a Proposed Coal Gasification Plant for Transwestern Coal Gasification Co., Pacific Coal Gasification Co., and Western Gasification Co.," February 1, 1973.

Federal Power Commission, "Final Report - The Technical Advisory Task Force - Synthetic Gas - Coal Supply," National Gas Survey, April 1973.

Federal Power Commission, "FPC National Gas Survey - Synthetic Gas Coal Section," April 1973.

Fein, E., "A Hydrogen Based Economy." Report.69-08-10, prepared - $\because$ 'for, Northeast Utilities, October 1972.

General Electric Company, "EHV-Transmission Line Reference Book." © Project EHV, for the Edison Electric Institute, 1988.
Gibbs \& Hills, Inc., "Construction, Procedures, and. Costs for the Installation of Superconducting Cable-Systems." Prepared for Linde Division, Union Carbide Corp., EPRI Project, RPG 78-7, 1975.

Given, R. W., A Surviey of Solar Array Technology for Electric Propulsion. AIAA Paper No. 74-1083, AIAA/SAE 10th Propulsion Conference, San Diego, California, October 21-23, 1974.

Glaser, Peter, et al., Feasibility Study of a Satellite Solar Power Station. NTIS: U.S. Department of Commerce, February 1974.
Government Printing Office, "Hydroelectric Power Evaluation," Washington, D.C.

Haacke, G., Research on Cadmium Stannate Selective Optical Films for Solar Energy Applications. Semi-Annual Progress Report covering the period January 1, 1974 to June 30, 1974, RANN Document Center: National Science Foundation, July 1974.

Haacke, G., Research on Cadmium Stannate Selective Optical Films for - Solar Energy Applications. Third Quarter Progress Report covering the period July 1, 1974 to September 30, 1974, RANN Document Center: National Science Foundation, October 1974.
Hermannsfeldt, W. B., "Linac Alignment Techniques." Stanford Linear Accelerator Center, IEEE Transactions of Nuclear Science, NS-12, June 1965, pp. 9-18.

Hil tran Associates, Inc., "Environmental, Impacts, Efficiency and Cost of Energy Supply and End Use." HIT 593, prepared for CEQ, NSF and EPA, Vol. 1, November 1974, Vol. 2 January 1975.

Jet Propuision Laboratory, Comparative Assessment of Orbital and Terrestrial Central Power Stations. Progress Report No. T, peried May 1, 1974 to July 31, 1974, Spacecraft Power Section.

Jet Propulsion Laboratory, Comparative Assessment of Orbital and Terre'strial Central Power Stations. Progress Report No. 2, period August 1, 1974 to November 30, 1974, Thermal Energy Conversion Group.

Jet Propulsion Laboratory, Comparative Assessment of Orbital and Terrestrial Central Power Stations. Progress Report No. 3, pariod Deecember 1, 1974 to February 28, 1975, (Thermal Energy Conversion Group).

Jet Propulsion Laboratory, Photovoltaic Conversion of Solar Energy for Terrestrial Applications. Invited Papers, Cherry Hill, N.J., RANN Document Center: National Science Foundation, Vol. II, October 23-25.

Jet Propulsion Laboratory, Preliminary Assessment of Flat Plate Collector Solar Thermal Power Plants. Prepared by M. Kudret Selcuk, member of Thermal Energy Conversion Group, March 1975.

Jet Propulsion Laboratory, Photovoltaic Conversion of Solar Energy for Terrestrial Applications. Working Group and Panel Reports, Cherry Hill, N.J., RANN Document Center: National Science Foundation, Vol. 1, October 23-25.

Kearns, D. L., "Design of 'a Pressurized Fluidized-Bed Power Plant," AICHE Symposium Series, No. 126, Vol. 68, 1972.

Keller and Taylor, "Progress Report for the USAEC-DAT," Superconducting Line Project at LASL, July 1 to September 30, 1973, LA-5468-PR.

Komanoff, Charles, Power Plant Performance. Council on Economic Priorities New York, 1976.

Lichtin, Norman N., Photochemical Conversion of Solar Energy. Annual Progress Report covering period June 1, 1973 to December 31, 1973, January 22, 1974.

Lichtin, Norman N., Photochemical Conversion of Solar Energy. First Quarter Progress Report covering January 1, 1974 to March 31, 1974, April 30, 1974.

Lichtin, Norman N., Photochemical Conversion of Solar Energy. SemiAnnual Progress Report covering January 1, 1974 to June 30 , 1974, July 30, 1974.

Lichtin, Norman N., Photochemical Conversion of Solar Energy. Third Quarter Progress Report covering period July 1, 1974 to September 30, 1974, October 31, 1974.

Lindmayer, Joseph et al., Development of an Economical Silicon Solar Cell. Third Quarter Progress Report covering ihe period June T, 1974 to September 30, 1974, RANN Document Center: National Science Foundation, October 1974.

Loewenstern, W. Jr., and D. A. Dunn, "Cylindrical Waveguide as a Power Transmission Medium - Limitations Due to Mode Conversion." Proceedings of the IEEE, Vol. 54, No. 7, July 1966, p. 955.

Lurgic Mineral Techniques, "Clean Fuel Gas from Coal," Fuel Technology Division, 1973.

Massachusetts Institute of Technology (Yi Cheng, Douglas. Glasson, Vladimir Hruby, Phillippe Roesch, Steven Schneider, Kari Seppanen, Roy Setterlund, and Kevin Slimak), Engineering. Evaluations of Three Electric Power Generating Proposals That Utilize Satellite Space Systems, May 1974.

MITRE Corporation, Solar Energy Systems, Frank R. EIdridge, author, March 1973.

Mittleman, S. D., Investigation of Thin Film Solar Cells Based on CuzS and Ternary Compounds, RANN Document Center: National Science Foundation, April 1974.

Mrochek, J. E., "Economics of Hydrogen and Oxygen Production," Abundant Nuclear Energy, U.S. Atomic Energy Commission, 1969.

Moreno, T., Microwave Transmission Design Data, New York: Dover Publications, Inc., 1958.

National Research Council. National Academy of Sciences. Solar Cells - Outlook for Improved Efficiency, Washington, D.C., 1972.

National Science Foundation, Material Science Aspects or Thin Film Systems for Solar Energy Conversion, RANN Document Center, May 20-22, 1974.

Nelson, G. A., "Use Curves to Predict Steel Life," Hydrocarbon Processing, 44, 185, 1965.

Nera, "Possible Impact of Costs of Selected Pollution Control Equipment on the Electric Utility Industry and Certain Power Intensive Consumer Industries," 1972.

NSF, "Energy Distribution Research," Publication No. NSF-C-789, 1973.
Okress, E. C., W. C. Brown, T. Moreno, G. Goubau, M. 'I. H'eenan, and R. H. George, "Microwave Power Engineering," IEEE Spectrum, October 1964, p. 76.

Paul, H., Dr. -Ing, "Power Transmission of the Future-Microwaves or Superconductors?" Electronics and Power, Vol. 3, No. 2, 1968, p. 47 .

Ritner, E. S., Recent Advances in Components of Space, Power Systems. Paper presented at International Astronautical Federation (I.A.F.) XXVth Congress; Amsterdam, September 30 to October 5, 1974.
Russel, J. H. et al., "Hydrogen Generation by Solid Polymer Electrolyte Water Electrolysis," A.C.S. Meeting, Hydrogen Fuel Symposium, Chicago, August 1973.

Russel, J. H., et al., "The Development of Improved Plastic Pipe for Gas Distribution Purposes," AGA Catalog L21173, August 1972.

Rudolph, P. F. H., "New Fossil-Fueled Power Plant Process Based on Lurgi Pressure Gasification:of. Coal,". Lurgi Geseillschaft Für Warme-Und Chemo-Technik GmbH. $\therefore$ Papers presented ät Joint Conference of the Chemical Institute of Canada and the American Chemical Society, May 1970.

Spectrolab/Heliotek Divisions of Textron, Inc., Satellite Solar Power Station - Solar Photovoltaic Array Report, November 1971.

Westinghouse Research Labs, "Evaluation of the Fluidized-Bed Combustion Process, Vol. I Summary Report." Submitted to Office of Air Programs, EPA, Pittsburgh, Pa., November 15, 1971.

Whitman, Reguardt and Associates, "Handy-Whitman Index of Public Utility Construction Costs Bulletin No. 99," 1974.


[^0]:    -     * 

    Hudson, E. A. and D. W. Jorgenson, "U.S. Energy Policy and Economic Growth, 1975-2000," The Bell Journal of Economics and Management Science, Vol. 5, No. 2, Autumn 1974.
    ** It is to be stressed that the 5 percent value is not that of HudsonJorgenson. It is our projection of the constant dollar impact estimated in their analysis.

[^1]:    ORIGINAL PAGALITIY

[^2]:    "
    The expected value (E.V.) or mean value of a function, $f(x)$, of a random variable, $x$, is the sum of all values $f(x)$ may take, each value weighted by its probability of occurrence, $p(x)$, or mathematically:

[^3]:    $\cdots$
    This is somewhat different than the early estimate of $\$ 7.6$ billion which was based on certain technologies achieving their most optimistic values. The cost model used can, if fact, replicate the $\$ 7.6$ billion figure given the same assumptions.
    ** See Volume IV of this report for data on solar cell degradation.

[^4]:    -*Throughout this cost model numbers of items which must be integers are taken as integer values rounded high (e.g., 2.3 becomes 3 )

[^5]:    *The proper interpretation of the range is that there is a zero probability that the variable can lie outside the range. Hence, it can be inferred that there is zero probability that the minimum or maximum values will ever occur or be exceeded.

