Characterization of Solar Cells for Space Applications

Volume V. Electrical Characteristics of OCLI 225-Micron MLAR Wraparound Cells as a Function of Intensity, Temperature, and Irradiation

B. E. Anspaugh

T. F. Miyahira

R. S. Weiss

(NASA-CR-158501) CHARACTERIZATION OF SOLAR N79-22630 CELLS FOR SPACE APPLICATIONS. VOLUME 5: ELECTRICAL CHARACTERISTICS OF OCLI 225-MICRON MLAR WRAPAROUND CELLS AS A Unclas FUNCTION OF INTENSITY, (Jet Propulsion Lab.) G3/44 25097

April 1, 1979

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

TECHNICAL REPORT STANDARD TITLE PAGE

.

1. Report No. JPL Pub 78-15,	2. Government	Accession No. 3.	Recipient's Catalog N	0.
Vol V 4. Title and Subtitle Characteriz Space Applications, Volume VI tics_ofcOCLI 225-Micron MLAR V Function of Intensity, Tempera	zation of Sola 'cElêctrical C Wrapáround Cel ature, and Irr	r Cells for 5. haracterise 15 ās a 6. adiation	Report Date <u>4–1–79</u> Performing Organizatio	on Code
7. Author(s) B. E. Anspaugh, T. R. S. Weiss	F. Miyahira,	and 8.	Performing Organizatio	n Report No.
9. Performing Organization Name an JET PROPULSION LABO	d Address DRATORY	. 10.	Work Unit No.	
California Institut 4800 Oak Grove Driv	e of Technolog ve	gy 11.	Contract or Grant No. NAS 7-100	•
Pasadena, Californi	a 91103	-13.	lype of Report and Pe	riod Covered
12. Sponsoring Agency Name and Add	iress	JP.	L Publication	1
Washington, D.C. 20546		14.	Sponsoring Agency Co	de .
15. Supplementary Notes	<u> </u>		ing , , , , , , , , , , , , , , , , , , ,	1
			,	
Electrical characteristics 2. ohm-cm silicon solar cel format as a function of so and 1-MeV electron fluence	s of OCLI 225- lls are presen plar illuminat	micron MLAR wrap ted in graphical ion intensity, to	around N/P, and tubular emperature,	
17. Key Words (Selected by Author(s)))	18. Distribution Sta	tement	
Spacecraft Design, Testing, ar Performance Power Sources	nd	Unclassified	- Unlimited	
19. Security Classif. (of this report)	20. Security C	assif. (of this page)	21. No. of Pages	22. Price
Unclassified	Unclassifi	ed	66	
			4	/-

•

HOW TO FILL OUT THE TECHNICAL REPORT STANDARD TITLE PAGE

Make items 1, 4, 5, 9, 12, and 13 agree with the corresponding information on the report cover. Use all capital letters for title (item 4). Leave items 2, 6, and 14 blank. Complete the remaining items as follows:

- 3. Recipient's Catalog No. Reserved for use by report recipients.
- 7. Author(s). Include corresponding information from the report cover. In addition, list the affiliation of an author if it differs from that of the performing organization.
- 8. Performing Organization Report No. Insert if performing organization wishes to assign this number.
- 10. Work Unit No. Use the agency-wide code (for example, 923-50-10-06-72), which uniquely identifies the work unit under which the work was authorized. Non-NASA performing organizations will leave this blank.
- 11. Insert the number of the contract or grant under which the report was prepared.
- 15. Supplementary Notes. Enter information not included elsewhere but useful, such as: Prepared in cooperation with... Translation of (or by)... Presented at conference of... To be published in...
- 16. Abstract. Include a brief (not to exceed 200 words) factual summary of the most significant information contained in the report. If possible, the abstract of a classified report should be unclassified. If the report contains a significant bibliography or literature survey, mention it here.
- 17. Key Words. Insert terms or short phrases selected by the author that identify the principal subjects covered in the report, and that are sufficiently specific and precise to be used for cataloging.
- 18. Distribution Statement. Enter one of the authorized statements used/to denote releasability to the public or a limitation on dissemination for reasons other than security of defense information. Authorized statements are "Unclassified—Unlimited, " "U.S. Government and Contractors only, " "U.S. Government Agencies only, " and "NASA and NASA Contractors only."
- 19. Security Classification (of report). NOTE: Reports carrying a security classification will require additional markings giving security and downgrading information as specified by the Security Requirements Checklist and the DoD Industrial Security Manual (DoD 5220.22-M).
- 20. Security Classification (of this page). NOTE: Because this page may be used in preparing announcements, bibliographies, and data banks, it should be unclassified if possible. If a classification is required, indicate separately the classification of the title and the abstract by following these items, with either "(U)" for unclassified, or "(C)" or "(S)" as applicable for classified items.
- 21. No. of Pages. Insert the number of pages.
- 22. Price. Insert the price set by the Clearinghouse for Federal Scientific and Technical Information or the Government Printing Office, if known.

Characterization of Solar Cells for Space Applications

Volume V. Electrical Characteristics of OCLI 225-Micron MLAR Wraparound Cells as a Function of Intensity, Temperature, and Irradiation

- B. E. Anspaugh
- T. F. Miyahira
- R. S. Weiss

.

April 1, 1979

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

. .

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under NASA Contract No. NAS7-100. ABSTRACT

Electrical characteristics of OCLI 225-micron MLAR wraparound N/P, 2 ohm-cm silicon solar cells are presented in graphical and tubular format as a function of solar illumination intensity, temperature, and 1-MeV electron fluence.

CONTENTS

.

.

.

Ι.	INTRODUCTION	1
II.	CELL DESCRIPTION	1.
III.	TEST PROGRAM	2
IV.	DISCUSSION OF RESULTS	3
BIBLI	DGRAPHY	5
APPENI)IX	56

.

•

.

<u>Figures</u>

•

1.	Average I_{sc}/cm^2 as a Function of Temperature 6
2.	Average V _{OC} as a Function of Temperature7
3.	Average I_{mp}/cm^2 as a Function of Temperature 8
4.	Average V_{mp} as a Function of Temperature9
5.	Average P_{max}/cm^2 as a Function of Temperature 10
6.	Average Curve Factor as a Function of Temperature 11
7.	Average AMO Efficiency as a Function of Temperature 12
8.	Average I_{sc}/cm^2 as a Function of Intensity 13
9.	Average V _{oc} as a Function of Intensity 14
10.	Average I_{mp}/cm^2 as a Function of Intensity 15
11.	Average V_{mp} as a Function of Intensity 16
12.	Average P_{max}/cm^2 as a Function of Intensity 17
13.	Average Curve Factor as a Function of Intensity 18
14.	Average AMO Efficiency as a Function of Intensity 19
15.	I _{SC} Temperature Coefficient 20
	PAGE IV INTENTIONALLY BLANK

Figures (contd)

.

.

,

-

16.	V _{oc} Temperature Coefficient	21
17.	'Absolute P _{max} Temperature Coefficient	22
18.	Percent P _{max} Temperature Coefficient	23
19.	Average I _{sc} /cm ² as a Function of Temperature After 10 ¹⁴ electrons/cm ²	24
20.	Average V _{OC} as a Function of Temperature After 10 ¹⁴ electrons/cm ²	25
21.	Average I _{mp} /cm ² as a Function of Temperature After 10 ¹⁴ electrons/cm ²	26
22.	Average V _{mp} as a Function of Temperature After 10 ¹⁴ electrons/cm ²	27
23.	Average P _{max} /cm ² as a Function of Temperature After 10 ¹⁴ electrons/cm ²	28
24.	Average Curve Factor as a Function of Temperature After 10 ¹⁴ electrons/cm ²	29
25.	Average AMO Efficiency as a Function of Temperature After 10 ¹⁴ electrons/cm ²	30
26.	Average I _{sc} /cm ² as a Function of Intensity After 10 ¹⁴ electrons/cm ²	31
27.	Average V _{OC} as a Function of Intensity After 10 ¹⁴ electrons/cm ²	32
28.	Average I_{mp}/cm^2 as a Function of Intensity After 10^{14} electrons/cm ²	33
29.	Average V _{mp} as a Function of Intensity After 10 ¹⁴ electrons/cm ²	34
30.	Average P _{max} /cm ² as a Function of Intensity After 10 ¹⁴ electrons/cm ²	35
31.	Average Curve Factor as a Function of Intensity After 10 ¹⁴ electrons/cm ²	36
32.	Average AMO Efficiency as a Function of Intensity After 10 ¹⁴ electrons/cm ²	37 ·
33.	I _{SC} Temperature Coefficient After 10 ¹⁴ electrons/cm ²	38
,		

.

.

•

-

Ŧ

Figures (contd)

34.	V _{OC} Temperature Coefficient After 10 ¹⁴ electrons/cm ²	39
35.	Absolute P _{max} Temperature Coefficient After 10 ¹⁴ electrons/cm ²	40
36.	Percent P _{max} Temperature Coefficient After 10 ¹⁴ electrons/cm ²	41
A-1	Solar Cell	A-1
A-2	Test Plate	A-2
A-3	Solar Cell Characterization Facility	A-3
A-4	Solar Cell Environmental Test Chamber	A-3

<u>Tables</u>

1.	Average Short-Circuit Current	42
2.	Average Open-Circuit Voltage	43
3.	Average Maximum Power Current	44
4.	Average Maximum Power Voltage	45
5.	Average Maximum Power	46
6.	Average Curve Factor	47
7.	Average AMO Efficiency	48
8.	Average Short-Circuit Current After 10 ¹⁴ electrons/cm ²	49
9.	Average Open-Circuit Voltage After 10 ¹⁴ electrons/cm ²	50
10.	Average Maximum Power Current After 10 ¹⁴ electrons/cm ²	51
11.	Average Maximum Power Voltage After 10 ¹⁴ electrons/cm ²	52
12.	Average Maximum Power After 10 ¹⁴ electrons/cm ²	53
13.	Average Curve Factor After 10 ¹⁴ electrons/cm ²	54
14.	Average AMO Efficiency After 10 ¹⁴ electrons/cm ²	55

SECTION I

INTRODUCTION

A series of reports is being generated to present parametric characterization data on both state-of-the-art and developmental solar cells of interest to the photovoltaic community. These data consist of the electrical characteristics of the candidate solar cell under a wide range of temperature and illumination intensity combinations of the type encountered in typical space applications. This series (JPL Publication 78-15) will consist of a number of reports, each report being devoted to a particular type of solar cell and identified by a volume number. Previously published reports with their associated solar cell descriptions are listed in the bibliography to this document. Each report consists primarily of working graphs and tables and does not address itself to interpretive conclusions. The formatting of this series of reports will be relatively invariant to facilitate comparisons between the characteristics of any of the cell types considered in the series. This report contains a set of parametric data on the OCLI 2 x 4-cm wraparound cell which was produced in limited quantity as a possible candidate for the Solar Electric Propulsion Mission. Parametric data are presented for the cells both before and after irradiation with 1 x 10^{14} e/cm² of 1 MeV electrons.

SECTION II

CELL DESCRIPTION

The cells reported here were manufactured by OCLI in pilot line quantities and are not yet space-qualified. These cells are fabricated from crucible grown, P-type silicon, boron-doped to a resistivity of 1-3 ohm-cm (2 ohm-cm nominal). The cell dimensions are $2 \times 4 \times 0.023$ cm (9 mils) thick. The electrical contacts on both the front and back surfaces are evaporated Ti-Pd-Ag. The contact pattern on the front surface consists of 12 fingers running the long dimension of the cell. The fingers terminate in contacts deposited on the cell edges. These cell edge contacts wrap around to the rear of the cell and terminate in pads measuring approximately 0.31 x 0.46 cm. The wraparound contacts and pads are insulated from the silicon by a dielectric oxide material deposited prior to contact deposition. The cells are not textured and have a 2-layer antireflection coating, giving the cells a green appearance.

SECTION III

TEST PROGRAM

The solar cells were mounted on a copper test plate using RTV 560. The test plate was in turn mounted to a heat sink with provisions for both heating and cooling so that the cells could be maintained at the desired temperature, independent of the solar intensity. All testing was carried out in a vacuum at a pressure of less than 1×10^{-6} torr.

The illumination source used was a Spectrolab Model X-25 Mark II Spectrosun filtered solar simulator. This simulator uses an optical integrator lens in the optical system which uniformly distributes a relatively collimated light beam at specific distances from a 2.50-kW short-arc zenon lamp. A system of filters modifies the spectral distribution so that it approximates that of space sunlight. The light beam provides a pattern having a uniformity of $\pm 1\%$ over an area of 225 cm² at the test plane. Ilumination intensity is varied by position of the simulator in combination with transmission filters. The solar simulator beam is introduced into the vacuum chamber through a window of 7940 fused silica. The solar intensity and spectral integrity of the solar simulator are constantly monitored and maintained, using space-calibrated standard cells obtained with the NASA/JPL solar cell balloon flight standardization program. Photographs of the solar cell, the assembled plate, and the experimental characterization test facility are shown in Figures A-1 through A-4 in the appendix.

The temperature range covered in these measurements was -160 to 140°C, while the solar intensity range covered was 5 to 250 mW/cm². The data were taken at each environment point in the matrix in the form of an I-V curve. The appropriate parameters were then read from the I-V curves and punched on cards for the computer analysis and curve plotting functions. The cell temperature was monitored by a thermocouple attached to the surface of a separate cell mounted with the cells under test. Prior, intermediate, and posttest ambient measurements were performed daily to ensure that the accuracy and stability of the test equipment and the test specimens themselves were maintained within +2% during the course of the testing program.

After the initial solar cell measurements over the above temperature and intensity ranges, the test plate was mounted in the evacuated target chamber of the JPL Dynamitron and irradiated with 10^{14} e/cm² of 1-MeV electrons. During the irradiation the cells were maintained at 28°C. After the irradiation the cells were annealed at 60°C for 66 hours, then illuminated for 4 hours at 28°C with the AMO simulator. No significant changes in cell electrical output were observed as a result of either the annealing or the photon illumination. The cells were then characterized over the same intensity and temperature schedule and the data processed as before. Following this, the cells were remeasured at 135.3 mW/cm², 28°C, under the same conditions as the postirradiation anneal.

SECTION IV

DISCUSSION OF RESULTS

A computer program computes statistical averages and standard deviations with respect to the measured cells for each intensitytemperature measurement condition. It then produces summary tables, as shown in Tables 1 to 14, that display averages and standard deviations of the cell characteristics in a two-dimensional array format, one dimension representing cell temperature and the second dimension representing incoming light intensity (AMO spectrum). The program then produces plots of the various electrical parameters of interest, with either incident intensity or cell temperature as the independent variable, as shown in Figures 1 to 14 and 19 to 32. Least square fits to the data points are then made automatically to the measured data points using a second-degree polynominal for most parameters. The V_{OC} and V_{mp} data points are fit with a linear equation. The curve factors and AMO efficiencies are not fit but are interconnected from point to point. In addition, the program calculates the temperature coefficients of the pertinent cell electrical parameters of interest, . using the aforementioned curve fits, and plots these as a function of temperature, with intensity as a parameter, as shown in Figures 15 through 18 and 33 to 36. Tables 1 to 7 and Figures 1 to 18 summarize the preirradiation data. Tables 8 to 14 and Figures 19 to 36 summarize the postirradiation data.

The figures are intended to be working artifacts; that is, they are formatted in such a way that they can supply information of a general nature or may be used to generate predictions, comparisons, computer input data, etc. To facilitate comparisons and inputting, all units are standardized as follows:

- (1) All currents are in units of mA/cm^2 .
- (2) All voltages are in units of mV.
- (3) All power outputs are in units of mW/cm^2 .
- (4) All curve factors are in dimensionless units.
- (5) All efficiencies are in percentages and are based on total cell area.
- (6) All temperatures are in ^OC.
- (7) All incoming intensities are in units of mW/cm² and are representative of an AMO spectrum.
- (8) All geometric dimensions are in units of cm or μm (whichever is most convenient conceptually).

The tables included in this report contain complete numerical information with respect to the average values of the following solar cell electrical parameters: I_{SC} , V_{OC} , IP_{Max} , VP_{Max} , P_{Max} , CF, and efficiency at each intensity-temperature combination. For each such parameter at each such intensity-temperature combination the standard deviation is presented to provide estimates of statistical validity. All efficiency, current, and power output data is on the basis of unit area derived by dividing measured output by total cell area.

After the 10^{14} e/cm² irradiations and anneal, the cells were found to degrade 8.8% in P_m, 6.0% in I_{SC}, and 2.9% in V_{oc} when measured at 135.3 mW/cm² incident intensity and 28°C. After the parametric measurements they had degraded an additional 5.7% in P_m, 4.5% in I_{SC}, and 1.3% in V_{oc}. It is not known precisely when the additional degradation occurred. Measurements of other 2 ohm-cm cells in this laboratory have shown a reverse annealing which occurs at or below 200°C, suggesting the possibility that the reverse anneal may have occurred during the time the cells were held at elevated temperature.

The low-temperature, low-intensity I-V curves of these cells varied greatly from cell to cell as can be inferred from the large standard deviations in the tabulated electrical parameters. This is due to the onset of three effects: (1) the increasing relative importance of shunting at low cell current output, (2) the appearance of a voltage drop across the Schottky barrier at the rear contact silicon-metal interface, and (3) the appearance of a broken knee effect characterized by a rather abrupt change in slope of the I-V curve at voltages below normal knee voltage.

Unirradiated cells exhibited Schottky barriers at temperatures below -100° C at all intensities examined. Irradiated cells had Schottky barriers appearing at temperatures as high as -60° C at the 135.3- and 250-mW/cm² intensity levels, but at lower intensities the barriers appeared only at temperatures below -80° C. Most cells had broken knees at low intensities. The lower the incident intensity, the higher the temperature of broken knee occurrence. At 5 mW/cm², broken knees occurred at all temperatures below 0° C, but at 100 mW/cm² broken knees occurred at all temperatures below -120° C. The onset of the broken knee effect appears to be independent of radiation. Cell shunting is independent of radiation and simply occurs in those cells which have low shunt resistance.

The effects reported here for the wraparound cells are not attributable to the wraparound configuration since cells of standard design behave in the same manner. At the higher temperature regions of normal spacecraft operation the cells do not exhibit the low temperature I-V anomalous behavior.

BIBLIOGRAPHY

PREVIOUS VOLUMES

Characterization of Solar Cells for Space Applications, JPL Publication $78\mathchar{-}15$

- Volume I. Electrical Characteristics of OCLI Violet Solar Cells as a Function of Intensity and Temperature, March 1978.
- Volume II. Electrical Characteristics of Solarex 50 Micron Solar Cells as a Function of Intensity and Temperature, August 1978.
- Volume III. Electrical Characteristics of OCLI Hybrid MLAR Solar Cells as a Function of Intensity and Temperature, September 1978.
- Volume IV. Electrical Characteristics of Spectrolab BSF 200-Micron Helios Cells as a Function of Intensity and Temperature, November 1978.

Figure 1. Average I_{sc}/cm^2 as a Function of Temperature

. Figure 2. Average $V_{\rm OC}$ as a Function of Temperature

Figure 3. Average I_{mp}/cm^2 as a Function of Temperature

Figure 4. Average V_{mp} as a Function of Temperature

Figure 5. Average P_{max}/cm^2 as a Function of Temperature

Figure 6. Average Curve Factor as a Function of Temperature

Figure 7. Average AMO Efficiency as a Function of Temperature

SHORT CIRCUIT CURRENT, mA/cm²

Figure 8. Average I_{sc}/cm^2 as a Function of Intensity

Figure 9. Average $V_{\rm OC}$ as a Function of Intensity

Figure 10. Average $\rm I_{mp}/\rm cm^2$ as a Function of Intensity

Figure 11. Average ${\tt V_{mp}}$ as a Function of Intensity

MAXIMUM POWER, mW/cm²

Figure 12. Average P_{max}/cm^2 as a Function of Intensity

Figure 13. Average Curve Factor as a Function of Intensity

Figure 14. Average AMO Efficiency as a Function of Intensity

Figure 15. I_{sc} Temperature Coefficient

Figure 16. V_{oc} Temperature Coefficient

Figure 17. Absolute P_{max} Temperature Coefficient

Figure 18. Percent P_{max} Temperature Coefficient

Figure 20. Average $V_{\rm OC}$ as a Function of Temperature After 10^{14} electrons/cm^2

Figure 21. Average I_{mp}/cm^2 as a Function of Temperature After 10^{14} electrons/cm²

Figure 22. Average $V_{\rm mp}$ as a Function of Temperature After $10^{14}~{\rm electrons/cm^2}$

Figure 23. Average P_{max}/cm^2 as a Function of Temperature After 10^{14} electrons/cm²

SHORT CIRCUIT CURRENT, mA/cm²

Figure 26. Average I_{sc}/cm^2 as a Function of Intensity After 10^{14} electrons/cm²

Figure 27. Average V_{OC} as a Function of Intensity After 10^{14} electrons/cm²

MAXIMUM POWER CURRENT, mA/cm²

Figure 28. Average I_{mp}/cm^2 as a Function of Intensity After 10^{14} electrons/cm²

Figure 29. Average V_{mp} as a Function of Intensity After 10^{14} electrons/cm²

Figure 30. Average P_{max}/cm^2 as a Function of Intensity After 10^{14} electrons/cm²

Figure 31. Average Curve Factor as a Function of Intensity After $10^{14}\ electrons/cm^2$

Figure 32. Average AMO Efficiency as a Function of Intensity After 10¹⁴ electrons/cm²

Figure 36. Percent P_{max} Temperature Coefficient After . 10^{14} electrons/cm^2

•		- OC N /	LI DIELEC	TRIC WRAP	'ARDUND 'g stiteni	N	
		2		000-00 U	A STETCO	4	
		¢ ,	A 4 A 802 -80-10	63 UM			
		11		CONTINO			
		K	LATER AR	PC FONITIO			
			- CAAC43F1				
		34	WHEE SIZE				
CELL TEMP.		9	OLAR INTE	NSITY (MU	(/cM**2)		
(DEG. C)	5.00	15,00	25.00	50.00	100.00	135.30	250.00
-160.00	1.24	3.67	6.13	12,33	24,45	•	
	(20.)	(.04)	(.08)	(+13)	(.29)		
-140.00	1.25	3.75	6.20	12.44	24.44	•	
	(.02)	(.04)	(.07)	(+14)	(,29)		
+120.00	1.27	3.80	6.26	12.57	24.66	•	
	(.02)	(.04)	(.08)	(.14)	(.36)		
=100,00	1.27	3,79	6.35	12.70	24.89	•	
-	(.02)	(.04)	(.09)	(+15)	(.34)		
-80,00	1.29	3.83	6.41	12,80	25.06	34.67	•
	(.02)	(.04)	(.09)	(+15)	(.29)	(°° 40)	
-60.00	1.30	3.87	6.47	12.91	25,34	34.99	64.1
	(.02)	(.05)	(.09)	(+16)	(.40)	(.43)	(#85)
=40.00	1.31	3,91	6.54	13.01	25.63	35.37	64.8
-	(.02)	(.04)	(.09)	(.16)	(.36)	(.46)	(.83)
-20.00	1.32	3.94	6.61	13.14	25,97	35.57	65,5
	(*05)	(.05)	(.09)	(+15)	(*32)	(.46)	{,94}
•00-	1.34	-3.96	6,68	13.28	26.29	35.91	66.17
•	(.02)	(+05)	(.10)	t+16)	(,38)	(.50)	(,88)
20.00	1.35	4.01	6.74	13,43	26.62	-36.41	67.22
	(105)	(.04)	(.09)	(+15)	t:35)	(+45)	(93)
40.00	1.37	4.06	6.82	13.65	27.13	37.00	67.91
•	(20*)	(+05)	C.103	(+15)	(,36)	(+47)	(95)
60.00	1.38	4.10	6.91	13.81	27:45	37+57	68.61
	(.02)	(+05)	(+09)	(+18)	(.38)	(+51)	(197)
80.00	•	-	•	13,97	-27.91	37,92	69.29
		•		(+17)	C.40)	(+51)	(1.00)
100.00	•	-	•	14.10	28,11	38,34	70.00
			•	(.18)	(.39)	(.51)	<u>t</u> :971
120.00	•	-	•	14,22	28,42	38:73	70.76
	•			(+17)	(,35)	.(.53)	(+88)
140.00	-	-	•	14,36'	28,67	39.08	71.0
				· (+18)	(.39)	(.50)	(+98)
				t			

.

Table 1. Average Short-Circuit Current

-

		đ	CLT DIELE	CTRTC WRA	PAROUND		
		Ň	/P 2	OHMecM	CG SILICO	N	
		2	× 4 × _0	225 CM			
•							
		· .	1450-40	CONTING			•
				COALTHO			
			U CUVERSL	The			
		3	AMPLE SIZ	2.8			
CELL TEMP.			SOLAR INT	ENSITY (M	W/CM##2)		
(DEG. C)	5.00	15.00	52°00.52	50.00	100.00	135.30	250.0
=160.00	794.99	816.26	816.14	811.90	809.15	•	
-	(53.75)	(33.29)	(18,98)	(11.90)	(11.70)		•
-140-00	782.15	801.31	800.71	798.26	796-32	-	
	(42.97)	(24.85)	(15.26)	(12.88)	(12.80)		•
-120.00	770-61	784.75	787.09	786.00	784.29	•	
	182.661	118.281	fill_0/10/	(11.47)	(13.39)		
-100 00	757.70	772 10	77/ 16	771.84	772.75	-	-
-100.00	133110	778 <u>81</u> 0	719833	/ 3 07	/12 133	-	-
	(24.23)	114,073	(13,34)		(13+1C) 964 D/	944 85	_
● 80 • 00	724.12	/30./1	/20.72	760.40	700874	/00+03	•
	[10,50]	(10.57)	(10,41)	111.101	[]] 04]	(11407)	• u •
=60,00	44.589	718.88	727.04	737.02	743434	/43.40	1414
	(15,54)	(7.07)	(5.74)	(6.58)	(8,03)	(8.84)	(940
= 40.00	638.79	673.95	687.54	22.201	714+24	718.84	1271
	(14.04)	(5,84)	(3,87)	(3.16)	(3,73)	(4.46)	(5.5
-20.00	592.21	628.71	642.96	660.35	675+74	682.61	693.
	(12.73)	(5,20)	(3,23)	(5.06)	(1,85)	(1299)	(5*2
.00	545.39	582.01	597.77	616.30	633.34	641+17	653.
3	(10,79)	(4.96)	(2.60)	(1.89)	(1,48)	(1,53)	(1.9
20.00	498.41	535.70	551.54	571.67	589.92	598.35	612.
- •	(9.73)	(4.28)	(2.74)	(1.86)	(1.52)	(1.50)	(1.9
40.00	451.45	489.61	505.59	526.67	\$46.10	554.82	-569.
	(8.81)	(4.06)	(2.57)	(1.77)	(1.58)	(1.70)	(1.8
60.00	403.46	442.82	1150 QK	441.97	502.07	511.24	527.
00100	17.831	(3,94)	12.341	(1,90)	(1.77)	. (1.81)	(2.1
80.00	() (= 5)			415.41	457.26	467-07	481.
04440	-	-	-	(2.21)	(1.87)	(1.96)	12.2
100.00	_	-	_	TAC 43	1169.31	499.14	000
100*00	■ 、	-	-	207.02	415461	726134	
130.00	_	_	_	143 03	169413	<u>、ビナナリノ</u> ステナ、コピ	104
IEV,UV	ø	-	•	348.72	307801	311463	3700.
L				(2+34)	(2+41)	[2.27]	- <u>(</u> 2 +4
140.00	-	-	•	240.30	521+47	552+44	372.
				AD. 371	73 SÁN	22.843	r 7 . A

Table 2. Average Open-Circuit Voltage

ORIGINAL PAGE IS

.

		0C N/ 2	LI DIELEC P 2 V 4 V .02	TRIC WRAF OHM=CM (DR CM	G SILICO	N	
		<u>د</u>	 - Dh-10	CO UM			
		2	LAVER AR	COATTNG			
		ŇÔ	COVERSET	DF			
		SA	MPLE SIZE	8			
CELL TEMP.		5	OLAR INTE	NSITY (MU	(/CM**2)		,
(DEG. C)	5.00	15,00	25.00	50.00	100.00	135.30	250.
-160.00	.95	3,00	5.22	11.10	22.66	•	- •
	(+07)	(*53)	(,32)	(.46)	(+60)		
=140 <u>.</u> 00	.97	3,10	5,38	11.25	22.59	•	up
	(+07)	(•55)	(,29)	(.43)	(.52)		
-120,00	.99	3.19	5,49	11.45	23.00	-	•
	(.08)	(.20)	(+25)	(+36)	(+46)		
-#100 <u>.00</u>	1.01	3.24	5.64	11.65	23.22	•	•
~	(.08)	(,18)	(151)	(.34)	(.36)		
=80°00	1.05	3,33	5.76	11.75	23.56	32.61	3
	(+08)	(+16)	(+17)	(•50)	(+33)	(.44)	
≈60 •00	1.07	3.42	5.87	11.97	23.63	32.94	60.
	(+08)	(+143	(+14)	(.21)	(+35)	(+473	(• 7 (
#40¢00	1.04	3.40	5,97	12.00	24.02	33.25	00.
-30.00	C	(411)	[•1]]	[+19]	[,20]	_(+35)	(. ði
₩20 <u>0</u> 00	1.11	3,36	8.04	12.17	24.37	33.30	01.
0.0	1.00		[.00]	(+10)	(130) 7/1 50	(.51)	C . D
6 V Q	1013	3433	0.00	10.00	24830	33:36	0140
20.00					しゅぼりえ ちゅう しゅう しゅう しゅう しゅう しょう しょう しょうしょう しょくりょう しょうしょう しょうしょ しょうしょう しょう	(
20.00	1014 . f 851	J,3/	2413	16+37	2460/	33.0£	010
40.00	1.16	1.60	4.19	12.50	25200	(843) TT.01	1 E D 2
40000	1.051	1.063	1.041	1.431	6 101	22471 2 141	1 2
60-00	1.14	1.69	4.33	(315)	34.07	18403	<u> </u>
00,00	6.041	1.061	1.051	16446	1.261	(.14)	1.63
-80.00		-		12.42	34.95	33.84	60.1
	-	-	-	1.141	6.383	1.443	1.7
100.00	•	-	•	12.30	24.77	11.64.	60.3
		_	_	(. 14)	(.29)	(.50)	6.8
120.00	•	-	-	12.16	24.31	33-08	59.1
		-	-	(.16)	[.33]	(.50)	(.7)
140.00	•			11.98	23.83	32.23	57.
		-	-	(.15)	6.441	- f_461	6.00
						18487	

.

.

Table 3. Average Maximum Power Current

-

		N	7b 5	Онм=см	CG SILICO	N	
		2	X4X.0	225 CM			
		T	I=PD=AG				
-		5	LAYER AR	CDATING			
		N	O COVERSL	IDE			
		s	AMPLE SIZ	E B			
FLL TEMP.			SOLAR INT	ENSTTY (M	W/CM##2)		
(DEG C)	5.00	15,00	25.00	50.00	100.00	135.30	250.
-140.00		400 TE	407 76	713 EA	748 60	-	-
-100-00	242430.	247613 286 985	136 015	/37 E43	/10.50	-	•
-1/0 00	[1VI#EC] E#7 3E	(サンキロサ) 人がに えり	481 00	LE30393	401 43	_	-
-140400	24/462	//3 //7 V	137 341	131 213	(30 97)	-	-
-130 00	[710V0] EE2 27	(45443) 4/12 45	LE/ (CO)	1019211	(EV#73) 487 43	_	-
+120400	180 001	117 EEN	13/ 241	(30 40) 001*53	(18 73)	-	-
-100.00	[DU#77] E47 7K	476 49	LC4+90] 451 27	447 37	440 43	_	-
-100°00	30/4/3	113 851	176 161	130 603	00740Z	-	•
-80.00	[04:02] 540 EA	(33+32) (30 00	120e10j 1114 87	(20+40)	456 75	454 13	_
490400	707470	/34 07N	1040.07	033415	(17 (12)	/4E 101	•
-60 00	[JS+30] EET 43	(20877) 407 78	47// 47	444 35	477 49	6/10 36	477
-00.00	223402	432 001	FIG (17)	030.23	(12 01)	/13 37\	/ (7 7
-//0 00	E20 43	E75 00	202 17	1134001	41E 40	448 76	441.
	724 431	212400	775407	/11 (5)	18 401	(9.60)	/8.7
-20.00	(34042)	676 64	EE1 EA	1111123	670 43		291
420eVV	(28 07)	533.50	231#20	207,1C	(7.82)	20440/	15.2
0.0	1/13 97	100 75	EA7 35	535 37	670.40	5/13.00	546.
+VV	442401 /33 ///5	470873	19 651	JE 401	J37112 /1 0/13	243400	11 4
30.00	(66944)	146 63	100 43	130013	(3074)		500.
EU.UV	(20 04)	19 001	437102	41740E	474130 /2 781	21 2/1	2046
10 00	340.13	404 87	111.50	124077	448.50	454.37	459
40400	/16 60)	10 401	74 501	434442	20 175	12.661	18 1
60.00	716 27	152 00	770 77	107 75	104.17	811.12	// 4 15 .
00.00	(11.18)	18,121	14.601	11.451	(3.56)	(2.85)	11.1
80.00	(13010)	(0442)	(4:00)	2/4 50	341.43	347.37	172.
00.00	•	•	-	17 EE1	(3 14)	(2.42)	17.1
100.00	_	_	_	201 12	117 50	733.37	127.
100400	-	=	-	5/1 441 5/1 441	12 261	26213/ (1.01)	11.7
120 00	_	÷.	_	240 13	13163J 376 EA	281.12	281
140.00	-	•	-	200412 /5 311	612020	21 711	2039 /2 (
1/10 00	-	_	_	12023J 346 EA	313.00	241.75	2//6
1#0 ⁸ 00	+	-	-	610030 13 071	235+VV /3 541	5911/J	E774 /// (
		•		12+4()	(E+31)	(2.10)	1481

Table 4. Average Maximum Power Voltage

Original page is OF POOR QUALITY

•

		DC N/	LI DIELEC P P	TRIC WRAF Ohmech c	AROUND	J	
		2	x 4 x .0>	25 CM	A ATRICO		
		ŤI	+PD+AG				
		2	LAYER AR	COATING			
		NO	COVERSLI	DE			
		SA	MPLE SIZE	8			
ELL TEMP.		\$	OLAR INTE	NSITY (MW	////**2)		
(DEG. C)	5.00	15.00	25.00	50,00	100.00	135.30	250.0
-160.00	.52	1,96	3,65	7,91	16.29	•	•
	(.12)	(+27)	(.34)	(.54)	(.79)		
=140 ,00	.54	2.01	3.67	7.85	15.86	•	-
	(.12)	(*59)	(.33)	(+50)	(.74)		
<pre>+120.00</pre>	-56	5.06	3.68	7.50	15.73		-
	(.11)	(123)	(•52)	(45)	(.68)		
=100 <u>+</u> 00	.58	2.06	3.71	7,78	15+55	-	•
	(.10)	(+50)	(+25)	(_41)	(.54)		
●80 <u></u> 00	.60	2.10	5+75	7.12	15.45	21.40	•
	(+09)	L+173	(.21)	(+34)	(.30)	(,68)	
=60,00	• 5 9	2,08	5.00	1.02	15.20	21.04	30.3
	(*08)	(+14)	(+17)	[+20]	(***) *****	(400)	
● 40 _■ 00	• 57	2,00	3,30	(131	14+70	20.57	3713
DA A A	(• 0 7) E#	(+12)	[+14]	[+2]]	19293 18 19	(40)	100
● ∠ 0,00	e 34 7 043	1.00	3:33	0.93	14+13	14.4/	2200
	(.00)		101	(•10)	1867/	(+35)	1946 77 <i>8</i>
*00	• 50	1+/5	3.00		13+21	10.20	3344
30.00	L • U 5 J	(+07)		[14]	13 30	(+ 6 /)	1040
20.00	-40	1+34	2.03	5,73	12.20	10.01	30.94
	[.04]	1+06)	(07)	[1]	(+10)	(+23)	(
40.00	• 4 2	1.44	2.57	2.43	11+21	17+41	20+2
	(+03)	1.051	[.05]	(.08)	(+14)	(+ 2 1)	(+33
60 . 00	+ 57	1.24	2.31	4.84	10+14	14.00	22+3
	(=05)	(+05)	(_* 04)	(+07)	(.10)	(18)	(•47
80,00	•	•		4.30	4.02	12.45	22.3
		`		(+07)	(.10)	[18]	(+44
100.00	•	•	•	5.74	7.86	10.88	14.0
				(07)	[+13]	(+16)	(
120.00	•	-	•	3,10	6.70	9.30	10.0
448 85				(+05)	(<u>+</u> 15]	[15]	C.35
140 ± 00	•	• •	•	2,59	5+53	7.79	14+1
				(.05)	(.09)	(+17)	(+56

.

Table 5. Average Maximum Power

Table (5.	Average	Curve	Factor
---------	----	---------	-------	--------

-		N.	/P 2	OHM=CM	CG SILICO	N	
		2	x 4 x .0	225 CM			
		T	I=PD=AG				
		2	LAYER AR	COATING			
		N	O COVERSL	IDE			
		S	AMPLE SIZ	£8			
ELL TEMP.			SOLAR INT	ENSITY (M	W/CM++2)		
(DEG. C)	5.00	15.00	25.00	50,00	100.00	135.30	250,0
=160.00	.5270	.6536	.7295	.7905	.8232	-	
	(.1091)	(.0921)	(.0721)	(.0514)	(.0378)		
-140.00	.5439	• 6688	.7384	.7906	.8148	-	
	(.1072)	(.0844)	(.0667)	(=0464)	(.0318)		
-120,00	.5703	.6884	.7456	.7894	.8132	-	•
	(.1026)	(.0737)	(.0566)	(.0414)	(.0308)		
-100.00	.5988	.7051	•7545	.7915	.8087	- ••	•
	(.0943)	(+0651)	(.0518)	(.0368)	(.0256)		
≠80 ₊ 00	-6396	•7305	.7685	.7935	.8103	.8112	-
	(.0899)	(.0566)	(.0435)	(.0297)	(*0500)	(.0176)	
≈60 ∎00	•6675	•7511	.7787	.7993	.8064	8087	+799
	(.0809)	(0500)	(.0398)	(.0271)	(0209)	(.0148)	(+012
₩40 <u>+</u> 00	6791	•7602	.7913	.8002	.5077	.8091	•791
	(0734)	(.0424)	(.0357)	(.D242)	(.0176)	(.0143)	(0114
-20,00	.6670	- •7608	17840	.7984	.8053	5208	
	[+0637]	(+0373)	(.0201)	(.0203)	(.0155)	(.0138)	(+0094
•00	,6864 / 0867	+7514 / 07/95	47726	.7875	a7934	.7904	£77]
30.00	[.033/]	(+V342)	(.0295)	(.0183) 789/	(0116)	(0110)	(+00%)
20,00	±8030	€7420 4 030/D	#7500	#1720	•7/70	#7717	e732
10 00	(+U474) 4777	(+V&Y4)	[•V233]	L.0154J	(40121) 9840	(DUVY)	(<u>+</u> UUUU
40800	10/23 / Annes	+/2/1	4/442	1537	+/30Y	+/5UB	8/6 / 0084
60.00	(+U443) 4847	(+UE01) .7007	L = U17/J 7985	しょり130) フォルウ	(• UUDZ) . 73#4	(10110J 7904	
00000	+070/ / A1781	97073 7.03/11	4/233	+/347 / 013/11	+/30/ / 011E1	●/C71 /.0088\	#703 /.00#3
80.00	(*0310]	1945913	(*0103)	.7070	. 7074	.7021	.470
20100	-		-	1.01201	1.00901	1-00833	1.007
-100-00	•	-	-		.4787	.6718	.61
	-	-	-	6-01213	1.00801	6-00813	1.0090
120-00	-		-	.6487	.64222	.6368	.603
******	-	-	-	1.00931	1.01081	1-00721	1.0091
140:00	-		-	.6091	. 6907	.4000	.54
	-	•	-	(-0106)	(.0070)	(.0090)	1.0092
_						1600.43	******
0783 87AN	NADE BEUTA	TTONE LDE		O A DENEUE			

			AD AD	-1416 4444 -1416 4444		1	
		N/	7 N N N N	UMM#CM (336 Au	R STFICO	v	
		2	X4X .0	225 UM			
			C PD PAG				
		. 2	LAYER AR	COATING			
		N	COVERSE	IDE			
		- 57	AMPLE SIZ	E 8			
CELL TEMP.		8	BOLAR INT	ENSITY (MU	{/c###2}		
(DEG. C)	5.00	15,00	25.00	50.00	100.00	135.30	250.0
-160.00	10.43	13.04	14.59	15.83	16.29	•	-
	(2.49)	(1.82)	(1.35)	-(1.07)	(.79)		
-140-00	10.71	13.40	14.67	15.71	15.86	•	
-140100	(2,381	(1.71)	(1.30)	(.99)	(.74)		~
-120 00	11.17	13.72	14.70	15.60	15.73	•	
#150 B00	(2.27)	(1.53)	(1.11)	1.891	(.68)		
-100 00		13 76	14.82	15.55	15.55	-	
e100*00	(3 05)	11.261	(1.02)	f - 821	(.59)		
-80 00	11 00	14 03	18.00	15.44	15.45	15.82	
#00 <u>4</u> 00	11.77	21 (5)	1.875	1.473	1.501	(.50)	-
- 60 00	118071	(4419) (4419)		16 31	15.20	15.60	15.1
+0V+VV	11:07	13,00	74403	108K3	I JECU I JECU	1 2437	f . 4
- 10 00	(1.01)	17 78	47 32	14373	しゃサンス イルニアネ	(5,51	58.5
#4V_VU	11.30	13433	14463	14805	1 201	13951	1 2 2
	(1.59)				4/1 4 1	(137) 11	4/1.5
-20.00	10.79	12.30	13.36	13403	14013	14637	1 7 4 6
	(1+16)	(+63)	(*40)	(133)	(+25)	(124)	
•00	10.03	11.56	12.34	12.64	13.21	13+45 -	134
	(*65)	[.57]	(•35)	(+27)	C+193	(.20)	[+1
50.00	9.21	10.62	11.31	11.86	12-20	12.43	12.1
	.(,75)	(.43)	(,28)	(22+)	(.18)	(+17)	- (+1
40.00	8.34	9.63	10.27	10.87	11.21	11.39	11.
	(.63)	(.36)	(.20)	- (117)	(•14)	(+15)	C = 14
60.00	7.32	8,58	9.22	9,78	10.14	10.35	10.1
	(.48)	(.31)	(.17)	(+15)	(16)	(.13)	(*1)
80,00	-	•	-	8,61	9.02	9.19	9.(
-				(+13)	(.16)	(.13)	(.1)
100.00	•	-	-	7.48	7.86	8.04	7.1
				(.15)	(.13)	(.12)	(.14
120.00	-	-		6.33	6.70	6.87	6.1
				(.10)	(.15)	(.11)	(.1)
140.00	-	-	-	.5.19	5.51	5.76	5.4
140800	-	-	-	6.101	(.091	(13)	- (.i.)
			•	18143	28423		

Table 7. Average AMO Efficiency

.

.

·		- 00 4 F	TER 1.E14	TRIC WRAP E/CM**2 OHM-CM C	AROUND 1 MEV ELE 6 SILICON	EC	
		2	X4X 02	25 CM	• • • • • • • • •	•	
		Ť	-PD-AG				
•		2	LAYER AR	COATING			
		NO	COVERSLI	DE			
		SA	WPLE SIZE	8			
ELL TEMP.		5	SOLAR INTE	NSITY (MH	/CM++2)		
(DEG. C)	5.00	15.00	25.00	50.00	100.00	135.30	250.0
-166.00	1.09	3.30	5.50	10.95	21.92	-	-
	(.01)	(.02)	(.05)	(.08)	(+27)		
-14.0.00	1.10	3.39	5.60	11.16	22.23		-
	(.02)	(+04)	(.05)	(.07)	(+28)		
-120.00	1.11	3.40	5.68	11.32	22 + 51	-	-
	(.01)	(+03)	(+06)	(.09)	(+ 28)		
-100.00	1.15	3+46	5.77	11.51	22.84	-	-
	(.01)	(.04)	(.06)	(*08)	(,32)		
-80.08	. 1.17	3.51	5.86	11.66	23.13	30.90	-
	(.01)	(.04)	(.06)	(.09)	(<u>* 2</u> 6)	(.33)	
-60.00	1.19	3.57	5.95	11.82	23.42	31.12	58.1
	(.01)	(.04)	(.07)	(.10)	(.32)	(.34)	(.79
-40.00	1.21	3.62	6.02	11.97	23.77	31.48	58•9
	(.01)	(.04)	(.06)	(.10)	(.33)	(.28)	(.82
-20.00	1.22	3.68	6.11	12.16	24.20	31.98	59+8
	(.01)	(•04)	(.06)	(.11)	(.38)	(.33)	(.77
•00	1.24	3.73	6.21	12.37	24 • 64	32:81	60.9
	(.01)	(•04)	(.06)	(.11)	(.28)	(*34)	(.76
20.00	1.26	3.80	6.33	12.60	25.03	33.37	62.3
	(.01)	(.04)	(+07)	(.11)	(.32)	(.35)	(.82
40.00	1.29	3.89	6.47	12.87	25.77	34.21	63.7
	(.01)	(-04)	(.07)	(.11)	(.31)	(.38)	(.75
66.00	1.32	3.96	6-61	13-14	26 . 37	35.03	64.9
00000	(-01)	(.04)	(.07)	(.10)	(.35)	(.36)	1.80
88.00	-	-	_	13.39	26 - 95	35.87	66.0
00070				(.12)	(.34)	(-37)	1.78
100.00	_	-	_	13-61	27.43	36.61	67.6
100000				(.12)	1 731	(.37)	(1.07
128.00	_	-	_	13 03	10007	てき 3 7 J スク _ スパ	κα // κτου(
TCROCO	-	-	-	1 1 2 3	21000	0100 1 415	00+4 (70
140 30	_	_	_	(+12) 1/ 01	() 00 00	144 <u>1</u> 3 77 04	1010
T40*80	-	-	-	14 201	28 • 22	31+84	ნ ი ~~_
				(.12)	C+ 573	€.35}	••72
		70N0 80-	CTUEN TH	DADENTURG			
VUILI STAND	AKU LEVIAI	ICNS ARE	GIVEN AN	PARENTHES	ES.		-

Table 8. Average Short-Circuit Current After 10¹⁴ electrons/cm²

		0		CTRIC MRA	PAROLIND		-
		۰ ۸	ETER 1.F1	4 F/CM++2	1 WEV EL	FC	
		ע ער	TIER INEL		CC STLICC	.Е.С. м	
		N N	/F 2		CO SILICO	14	
		2	747.+U	220.00			
		1	I-PU-AG	CO.4.7.7.11.C			
		2	LAYER AR	CUATING			
		N	0 COVERSE	IDE			
		S	AMPLE SIZ	E 8			
CELL TEMP.	~ ^ ^	4 - 00	SCLAR INT	ENSILY (M	¥7CM**2)		
(DEC+ C)	5.00	15.00	25.00	50.00	100.00	135+30	258.00
-163.00	821.44	860.55	852.52	842.31	826 • 64	-	-
	(52+71)	(34+03)	(31+03)	(27+27)	(14-87)		
-140.00	796.72	832+94	827.81	822.54	812.45	-	-
	(52.34)	(25.71)	(23.47)	(20.13)	(13.78)		
-120+00	773.19	806.80	807.20	805.36	800.12	-	-
	(40+43)	(18+63)	(17.32)	(15.05)	(13,80)		
-100+00	748.51	782.26	787.12	789.49	788.31	-	~
	(28.19)	(13.63)	(12.65)	(12.55)	(13.08)		
-80+90	713.35	749.49	758.77	768+22	772.12	773.90	-
	(20.47)	(8.54)	(8.41)	(8.50)	(9,92)	(10+23)	
-60.00	667.59	704.55	719.24	733.52	744.51	747.30	753.57
	(18.36)	(8.73)	(4.36)	(3.75)	(4.48)	(4.63)	(5.82)
-49.00	625.40	660.61	673.55	690.19	704.55	709.07	718.62
	(13+63)	(4.81)	(7.14)	(2.30)	(1.90)	(1+78)	(2.12)
-20.00	578.01	614.34	628.31	645.51	660.94	666.27	677.62
	(11.58)	(4.65)	(3.24)	(2.07)	(1.47)	(1.53)	(1.72)
•00	530.51	566.17	581.51	599.82-	616.31	621.59	634•74
	(10.16)	(5.10)	(3.05)	(2.07)	(1,64)	(1.46)	(1.68)
29.00	482.97	520.25	535+47	554.82	572.44	578+21	591.92
	(8.68)	(3.99)	(2.92)	(1.84)	(1.52)	(1.62)	(1.91)
40.00	436.16	474.10	489.64	510.35	528.76	534.77	549.31
	(7.70)	(3.72)	(2.65)	(1.80)	(1.97)	(1.71)	(1,99)
60.00	388.15	428.11	444.60	466.11	485.40	492.12	507.37
	(6.64)	(3.56)	(2.57)	(1.40)	(1.86)	(1.69)	(1.79)
80.00	-	_	_	419.02	442.26	449.54	465 19
				(8.01)	(1.59)	(1.43)	(2.01)
100-00	_	-	-	376.65	399.42	407-30	423.59
				(1.66)	(1, 38)	(1.52)	(2.17)
120.00	-	-	-	332.44	355.70	364.75	382-24
120400				(1.65)	(1.23)	(1.43)	(1.88)
140.00	-	-	_	286.64	311.39	328.61	339.89
1,0000				11.641	(1.40)	(1.27)	(1.99)
				+1807/	↓ 1 0 7 U /	110211	110/
NOTE: STAND		TTONS APE	GIVEN IN	DADENTUE	SES .		
NUIL. SIANU	AND DEFIK	LICKO MAL	CTACK TH	FARENIBE	0,0.		

Table 9. Average Open-Circuit Voltage After 10¹⁴ electrons/cm²

$\begin{array}{cccccccccccccccccccccccccccccccccccc$			AF	TFR 1_F14	ικις ωκης . Γ/ČΜ★★2	1 MEV FI	۶C	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			N/		DHM+CM (CG STITCO	LC NF	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2	¥ 4 X .02	25 CM	.0 OLLIGG,	¥	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			ŤI	-PD-AG	60 UI.			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			2	LAYER AR	COATING			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			ŇC	· COVERSLT	DF 1			
ELL TEMP. SOLAR INTENSITY (MW/CM*+2) (DE G. C) 5.00 15.00 25.00 50.00 100.00 135.30 $250.$ -150.00 $.84$ 2.65 4.61 9.65 20.12 - - -140.00 $.86$ 2.76 4.74 9.90 20.61 - - -120.00 $.86$ 2.76 4.74 9.90 20.61 - - -120.00 $.87$ 2.83 4.92 10.20 21.02 - - -100.00 $.91$ 2.94 5.08 10.50 21.39 - - -60.00 $.94$ 3.05 5.23 10.74 21.702 - - -60.00 $.94$ 3.05 5.23 10.74 21.702 - - -40.00 1.00 3.21 5.48 11.07 21.75 29.19 - -20.00 1.02 3.28 5.55			SA	MPLE SIZE	. 8			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ELL TEMP.		s	OLAR INTE	NSITY (M	⊎/CM**2]		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(DEG. C)	5.00	15.00	25.00	50.00	100.00	135.30	250.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-160.00	•84	2.65	4.61	9.65	20 • 12	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(+06)	(.20)	(.29)	(.44)	(•58)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-140.00	•86	2.76	4.74	9.90	20.61	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(+06)	(.20)	(+28)	(.38)	(+60)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-120.00	•87	2.83	4.92	10.20	21.02	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(.07)	(.19)	(.26)	(.33)	(.54)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-100.00	•91	2.94	5.08	10.50	21.39	-	 .
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(+07)	(.17)	(.24)	(+28)	(•43)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-80.00	.94	3.05	5.23	10.74	21.70	29.19	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(+07)	(+15)	(.19)	(.25)	(.38)	(44)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-60.00	• 96	3.14	5.35	10.93	22.02	29.36	53.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(.07)	(.14)	(.17)	(.19)	(.34)	(+29)	(1+2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-40+00	1.00	3.21	5.48	11.07	22.31	29.69	52.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(+07)	(.12)	(.15)	(.18)	(+31)	(.30)	(.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-20.00	1.02	3.28	5.55	11.29	22 + 75	29.91	53.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(+06)	(.10)	(.12)	(.17)	(.33)	(+33)	(.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00	1.05	3.36	5.65	11.48	23.02	30.67	53.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(+05)	(.09)	(.12)	(.13)	(.30)	(27)	(.6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.00	1.97	3.42	5.75	11.58	23 28	31.95	54
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(.05)	(.08)	(-09)	(.09)	(-30)	(24)	6.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48.00	1.09	3.48	5-86	11.79	23 - 84	31.47	55.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(.05)	(-06)	(-08)	(.12)	(-46)	(21)	4.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60.00	1.10	3.49	5-88	11.89	24 - 05	31_86	55 (
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(04)	(.04)	(_08)	(.07)	(-42)	f_23}	£.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	80-00		***		11.96	24 - 0.6	31_97	56 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					(_07)	(_29)	(_20)	1.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100-00	-	- ,	-	11.94	24 . 16	31.95	56 (
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*****		•		(-11)	(-46)	(_27)	4 .9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.00	-		-	11 77	23.78	31.75	56.4
	*****			-	1.11)	(.31)	(.35)	£.5
	140.09 /	-	-	-	11.59	23.44	31.42	56.
	740600 ·	-	_	_	£1632	23477	JI+76 6.321	10 e / / 4

Table 10. Average Maximum Power Current After 10¹⁴ electrons/cm²

•

original page is Of poor quality

-

		0	CLI DIELE	CTRIC WRA	PAROUND	FC .	
			(CIEN 10E1	1 6766442	. I NET EE		
		N		0000-UN	LO SILICU	14	
		4	2 X 4 X +U	1220 UN			
		1	L-PU-AG				
		2	LAYER AN	CUAIING			
		N N	IU COVERSE	.IUE			
		S	SAMPLE SIZ	E 8			
ELL TEMP.			SOLAR INT	ENSITY (M	¥/CH++2}		
(DEG. C)	5.80	15.00	25.00	50%00	100.00	135.30	250.0
-160-00	525+12	641.08	678.87	706.75	717.37	-	
	(95.47)	(51.74)	(34.65)	(23.86)	(20.07)		
-140-00	527.87	637.87	665.37	693.00	698.12	-	• •
	(91.39)	(42.80)	(35.14)	(25.54)	(19.33)		
-120-08	537.50	632.87	657.00	676.50	680.37	-	-
	(80.41)	(39.14)	(28,22)	(24-63)	(18.37)		
-100-00	550.50	628.37	649-25	660.00	664.12	-	-
100000	(67-08)	(33-55)	(24-24)	(20.95)	(15.98)		
-80-00	553-62	617.87	634-37	644 75	646.50	644.00	_
00000	(55.82)	(27-97)	(23.69)	(18.58)	(16.35)	(15.27)	
-60-80	540-87	596.00	613-75	624.50	628.50	625-50	618.5
00000	(41.40)	(21-85)	(16-81)	(15,22)	(15,28)	(12,82)	(13.37
-40-00	506-12	565.75	576-50	596.87	602.37	598.87	598-1
	(31,93)	(13.34)	(16.08)	(9.51)	(8,90)	(8.79)	(8.71
-20.00	470-87	522.37	539.37	555.87	561.75	568.50	564.1
~20800	(27.47)	(12.96)	(9.13)	(5.03)	(4.80)	(5.32)	(7.04
- 0.0	430.00	473-37	493.50	510.87	523.00	523.50	534.0
000	122.321	(10-34)	(8.11)	16.51)	(3,70)	(4.69)	15.13
20.00	396.75	429.42	447.97	445.42	477.87	480.12	491.9
20400	217 ABY	(9.01)	16.513	40J402 (5 45)	74.191	13 543	4/140
40.00	345 19	104 60	1000 50	420 00	131.60	436 25	144JO
7000	113 101	10 00	402030	420000	(3.70)	(3.33)	16 37
<0.00	130127	363 60	360 12	377 19	300 75	- (J#JJJ) 701 37	403 5
6V+VV	301031	242630	1E 00)	311012	202413	J716J/	403+3
	(12+00)	(8.33)	(3+22)	770 05	747 20	10623/	19+29
80.00	~	-	-	330+23	341.62	200+37	36043
				(8+41) 000 10	12+371	(2+20)	13+82
190-00	-	-	-	592*TS	303+/5	347+15	320+3
				(2+80)	(3+34)	(3±33)	E3=/8
120+00	-	-	-	251.12	264.50	269.25	280+6
				(2.64)	(2.88)	(2.38)	13+85
140.00	-	-	-	208.75	225+00	228.12	238.0
				(2+87)	{2+2/)	(2+47)	€3+07

Table 11. Average Maximum Power Voltage After 10¹⁴ electrons/cm²

		N/ 2	Υ 2 X 4 X •02	UHM-CM C 25 CM	SILICO	¥	
		TI	-PD-AG				
		2	LAYER AR	COATING			
		NC	COVERSLI	DE			
	-	SA	MPLE SIZE	8			
ELL TEMP.		s	OLAR INTE	NSITY (ML	/CH**2)		
(DEG. C)	5.00	15.00	25.00	50.00	100.00	135.30	250.0
-160.00	•44'	1.71	3.14	6.82	14 44	-	-
	(.10)	(.26)	(.34)	(+49)	(.74)		•
-140.00	. 46	1.76	3.16	6.87	14.39	-	-
	(.10)	(.23)	(.34)	(+47)	(.70) [*]		
-120.09	•47	1.80	3.24	6.91	14.30	-	-
	(.10)	(+22)	(.29)	(+43)	(.66)		
-100.00	•51	1.85	3.30	6.93	14.21	-	-
	(.09)	(.19)	(.26)	(.36)	(.57)		
-80.00	•52	1.89	3.32	6.93	14.03	18.80	-
	(+09)	(.17)	(.22)	(.33)	(.51)	(.60).	
-60.00	•52	1.87	3.28	6.83	13.84	18.36	33.3
	(.07)	(.14)	(.18)	(•25)	(.43)	(.43)	(1.14
$-40 \cdot 00$	•51	1.82	3.16	6.61	13.44	17.78	31.6
	(.06)	(+11)	(.16)	(.19)	.(.32)	(.35)	(.59
-20.00	•48	1.72	3.00	6.28	12.78	17.00	30.2
• •	(+05)	(+09)	(.11)	(+14)	(.25)	(+29)	(•58
•00	•45	1.59	2.79	5.86	12.04	16.06	28.6
	(.04)	(+07)	(.09)	(.13)	(.20)	(.20)	(.50
20.00	•41	1.47	2.57	5.39	11.13	14.86	26.7
	(.04)	(.06)	(+07)	(+08)	(.18)	(.18)	(.45
40.00	• 38	1.34	2.36	4 • 95	10.29	13.67	24•7
	(.03)	(.05)	(.06)	(+07)	(+26)	(.16)	€.36
60.00	• 3 3	1.20	2.12	4.48	9.37	12.47	22.5
	(.02)	(.04)	(.05)	(.87)	(.19)	(.18)	¢.40
80.00	-	-	-	3.95	8.36	11.20	20.3
100 00				(+11)	(+13)	(.09)	(+32
100*00	-	-	-	3.45	7.39	9.90	18.2
((•04)	(+19)	(.13)	(42
T50.06	-	-	-	2.95	6.29	8.55	15.8
140 00			t	(+04)	(.12)	(.11)	¢.28
140.00	-	-	-	2.42	5.27	1.17	13.3
				(+U4)	(.09)	(.10)	C • 25

Table 12. Average Maximum Power After 10^{1,4} electrons/cm²

		- 0	CLI DIELE	CTRIC WRA	PAROUND		
		Ā	FTER 1.E1	4 E/CM**2	1 MEV EL	EC	
		N	/P 2	онм-см	CG SILICO	N	
		2	X4X.0	225 CM		-	
		. т	I-PD-AG				
		2	LAYER AR	COATING			
		N	OF COVERSL	IDE	-		
		S	AMPLE SIZ	F 8			
CELL TEMP.			SGLAR INT	ENSITY (M	₩/СМ**2)		
(DEG. C)	5.00	15.00	25.00	50.00	190.00	135.30	250.00
-160.00	•4898	•6017	•6696	•7393	•7972	-	-
	(.0827)	(.0798)	(+0681)	(.0529)	(.0373)		
-140.00	.5130	.6256	•6822	•7482	•7969	-	
	(.0880)	(+0771)	(.0700)	(+0493)	(.0330)		
-120 + 00	• 5424	•6541	•7056	•7573	•7941	-	-
	(.0902)	(0744)	(.0579)	(.0431)	(.0285)		
-100.00	•5837	•6837	•7267	•7628	•7892	-	-
	(.0941)	(.0654)	(.0513)	(.0352)	(.0255)		
-80.00	•6254	•7165	•7463	•7733	•7856	•7860	-
	(.0885)	(0604)	(.0456)	(.0339)	(.0228)	(.0196)	
-60.00	•6540	•7460	•7675	•7875	•7937	•7898	•7618
	(.0816)	(.0506)	(.0419)	(.0297)	(•0212)	(.0179)	(.0215)
-40.00	•6795	•7691	•7800	•8000	 •8025	•7966	•7466
	(.0740)	(.0436)	(.0348)	(.0244)	(.0182)	(.0152)	(.0113)
-20.00	•6813	•7584	•7805	•7996	•7991	•7979	•7464
	(.0660)	(+0374)	(.0279)	(.0197)	(.0120)	(.0136)	(.0108)
•00	•6840	•7527	•7730	•7901	•7927	•7874	•7491
	(.0600)	(.0315)	(.0240)	(.0200)	(.0117)	(.0098)	(.0088)
20.00	•6776	•7419	•7590	•7716	•7766	•7701	•7251
	(.0500)	(.0286)	(.0200)	(.0143)	(.0113)	(.0076)	(.0076)
40.00	•6688	•7273	•7442	7541	•7553	•7470	•7077
	(.0420)	(.0256)	(.0183)	(.0128)	(.0148)	(.0081)	(+0077)
60.00	.6505	•7072	•7212	•7319	•7322	•7234	•6842
	(.9387)	(.0219)	(.0168)	(.0129)	(.0097)	(.0088)	(.0077)
80.00	-	-	-	•7041	•7018	•6948	. 6616
				<pre>{•0116}</pre>	(.0086)	(.0075)	(.0067)
100.90	-	-	-	•6736	.6741	•6638	•6380
				(.0084)	(.0123)	(.0094)	(.0082)
120.00	-	-	-	•6429	•6343	•6284	•6063
				(.0082)	(.0078)	(.0080)	(.0087)
140.00	-	-	-	.6023	•6001	• 59 0 9	•5718
				(.0088)	(.0076)	(.0087)	(.0082)
NOTE: STANE	ARD DEVIA	TIONS ARE	GIVEN IN	PARENTHE	SES •	·	•

Table 13. Average Curve Factor After 10¹⁴ electrons/cm²

Table 14.	Average AMO	Efficiency	After	10 ¹⁴	electrons/cm ²

		2 T 2 N 0 S	X 4 X .02 -PD-AG LAYER AR COVERSLI MPLE SIZE	25 CM COATING DE 8			
FIT TEND				NOTTY ON	1/58++01		
(DEG. C)	5.00	15.00	25.00	58.00	199.00	135.30	250.0
-160.00	8.84	11.40	12.56	13.65	14.44	-	_
	(2.04)	(1.70)	(1.36)	(.98)	(.74)		
-140.00	9+10	11.76	12.64	13.74	14.39	-	-
	(2.08)	(1.56)	(1.35)	(.94)	(.70)		
-120.00	9.41	11.98	12.95	13.81	14.30	-	-
	(1.97)	(1.47)	(1.14)	(.85)	(.66)		
-108.00	10.11	12.36	13.21	13.86	14.21	-	-
	(1.88)	(1.28)	(1.03)	(.73)	(.57)		
-80.00	18.49	12.58	13.28	13.86	14.03	13.89	-
	(1.71)	(1.11)	(.88)	(+66)	(.51)	(.44)	
-65.00	10.38	12.50	13.13	13.65	13.84	13.57	13.3
	(1.44)	(.94)	(.73)	(.50)	(.43)	(.32)	6.46
-40.00	10.13	12.13	12.65	13.22	13.44	13.14	12.6
	(1.27)	(.71)	(.63)	(.38)	(.32)	(.25)	(.24
-28+88	9.65	11.44	11.98	12.55	1278	12.57	12.1
	(1.06)	(.58)	(.45)	(+28)	(.25)	(.22)	(.23
•00	5.02	10.61	11.16	11.73	12.94	11.87	11 4
	(.88)	(48)	(.37)	(+25)	(.20)	(.15)	(.20
20.85	8.28	9.79	10.38	10.79	11.13	10.98	10.7
20000	(.71)	(41)	(.25)	(-16)	(-18)	(-13)	2.18
40.08	7.55	8.94	9.44	9,91	10.29	19-10	9,0
	(.56)	(.33)	(.23)	(.14)	(.26)	(.12)	6.15
68.00	5.55	8.00	8.48	8.97	9.37	9.22	9.1
00000	(.43)	(-27)	(21)	(-13)	(-19)	(13)	£.14
80.00	-	-	-	7.90	8,36	8-28	8.1
00400				(.22)	6.13)	1-061	6.13
100.00	_	-	_	6.91	7.39	7.30	7.4
100100	_			6.071	(.19)	C.101	(• 2
128.00	-	-	-	5.91	6.29	6-32	6.7
120.00				1.071	. 121	6.083	4.11
140.00	-	_	_	4.017	5.27	5.30	
140000	-	-	-	T C T	J + 2 1		U 4 0

Figure A-1. Solar Cell

Figure A-2. Test Plate

Figure A-3. Solar Cell Characterization Facility

Figure A-4. Solar Cell Environmental Test Chamber

NASA-JPL-Coml., L.A., Calif.

PUBLICATION 78-15, VOLUME V