
NA 

A 

.SA Contractor Report 3120 

Study to Investigate the 
Chemical Stability of Gallium 
Phosphate Oxide/Gallium 
Arsenide Phosphide 

Gordon J. Kuhlmann 

CONTRACT NAS 1- 15 lo 1 
APRIL 1979 



1 TECH LIBRARY KAFB, NM 

NASA Contractor Report 3120 

A Study to Investigate the 
Chemical Stability of Gallium 
Phosphate Oxide/Gallium 
Arsenide Phosphide 

Gordon J. Kuhlmann 
Rockwell International Corporation 
Anaheim, Calzyornia 

Prepared for 
Langley Research Center 
under Contract NASl-15101 

National Aeronautics 
and Space Administration 

Scientific and Technical 
Information Office 

1979 



SUMMARY 

The purpose of this program was to study and determine the chemical sta- 

bility under bias-temperature stress of GaP04/Ga203 insulating and passivating 

layers thermally grown on GaAs,-xPx semiconductors. An additional objective was 
to investigate dielectric fabrication procedures for improving oxide-semicon- 

ductor interface properties. Oxides were thermally grown in dry O2 or steam on 

GaAs,-,P, for phosphorus mole fractions x = 0.4, 0.5, and 0.7. 

The elemental composition of the oxide was examined as a function of depth 

using ion microprobe mass analysis. Results indicate that the layers are arsenic- 

deficient through the bulk of the oxide and arsenic-rich near both the oxide sur- 

face and the oxide-semiconductor interface region. Phosphorus is incorporated 

into the oxide in an approximately uniform manner. 

Capacitance-voltage characteristics of MIS structures displayed the deep 

depletion behavior typically observed with wide bandgap semiconductor devices. 

These characteristics also exhibited hysteresis effects indicative of electron 

trapping at the oxide-semiconductor interface. Post-oxidation annealing of the 
oxides in argon or nitrogen at temperatures near 700°C resulted in reduced C-V 

hysteresis effects and increased dielectric leakage current. These electrical 

effects are accompanied by a loss of arsenic near the surface of the oxide lay- 
ers. Annealing at 45O'C did not result in significant changes in electrical or 

compositional properties. The results of bias-temperature stressing experiments 

indicate that the major instability effects are due to changes in the electron 

trapping behavior. No changes were observed in the ion microprobe profiles fol- 

lowing electrical stressing, indicating that the grown films are chemically 

stable under 'evice operating conditions. 



SECTION I 

INTRODUCTION 

This report describes work performed from September 14, 1977 to March 14, 

1978 on NASA Contract No. NASl-15101. The primary objective of this program 

was to study and determine the chemical stability under bias-temperature stress 

of GaP04/Ga203 insulating and passivation layers thermally grown on GaAs,-xPx 

semiconductors. An additional objective was the improvement and optimization 

of the dielectric fabrication process to produce high-quality oxide layers as 

evidenced primarily by low interface state density and high dielectric strength. 

Surface passivation insulators are used as barriers to environmental 

exposure to improve the stability and performance of semiconductor devices. 

Thermally grown SiO2 has resulted in the highest quality passivation layers in 

the silicon technology; however, limited research has been performed to study 

the effectiveness of thermally grown native insulators as passivation layers 

for III-V compound semiconductors. Although many device applications require 

an extremely low dielectric/semiconductor interface state density, all semi- 

conductor devices benefit from surface passivation insulators which act as a 

barrier to contamination and which decrease junction leakage currents. 

Several material properties of GaAs and the alloy GaAs,-,Px, including 

high electron mobility, large bandgap, and low minority carrier lifetime, make 

these III-V compound semiconductors attractive for high-speed, high-temperature 

device applications. Many of these properties can be optimized for certain 

applications by proper selection of the phosphorus mole fraction, x. Therefore, 

development of a passivating dielectric for GaAsP surfaces will be useful, not 

only in GaAsP devices, but also in ultimately developing a suitable dielectric 

for use in GaAs and other III-V compound semiconductors. 

Several methods have been investigated for forming native dielectrics on 

GaAs. These include thermal oxidation, anodic oxidation, and, recently, plasma 

oxidation. In general, most of these oxides have exhibited inferior electrical 

properties due to dielectric leakage, large interface state densities, and 

charge trapping in the oxide. Oxides grown using the anodic and plasma tech- 

niques require post-oxidation annealing treatments at high temperature for 

stabilization. In addition, these methods are not well suited to large-scale 

device production because of the oxide growth procedure. 
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The major difficulty associated with thermal oxidation is related to 

the high equilibrium vapor pressure of arsenic at elevated temperatures, which 

results in arsenic less and nonstoichiometry at the oxide-semiconductor inter- 
face. Because of this arsenic loss, thermal oxidation of GaAs results primar- 
ily in the formation of crystalline B-Ga203, which does not have suitable 
dielectric and surface passivation characteristics. 

Thermal oxide has previously been grown on GaAsO SP,, S (Reference 1) and 

electrical measurements on these films were used to determine an optimum growth 
process. Coerver (Reference 2) conducted a literature survey to determine the 

possible constituents of the insulator grown at 700°C. This study indicated 

that the only possible solid compounds which can form the dielectric are 

B-Ga203 (gallium oxide), GaP04 (gallium phosphate) and GaAs04 (gallium arsenate). 

Further experiments (Reference 2) indicated that the film is composed of 

(Ga203 + GaP04), or gallium-phosphate-oxide (GPO). These results further 

indicated that gallium phosphate is probably the major molecular constituent. 

Some of the initial electrical results on MOS devices indicated that 

this phosphate-containing thermal oxide might prove more useful for applica- 

tion to III-V compound semiconductor devices than oxides composed mainly of 

crystalline 8-Ga203. Such crystalline oxides result during thermal oxidation 
of GaAs, and are usually not acceptable for device applications because of 

high leakage currents or instabilities. Subsequently, more detailed work 

(Reference 3) indicated that certain electrical instabilities and hysteresis 

effects occurred in GaAsO 5P. 5 MIS capacitors. Therefore, further investi- . . 
gations were indicated to determine if these instability effects were associa- 

ted with chemical changes in the insulator. Also, additional variations in 

the dielectric growth and anneal procedures were needed to improve the oxide 

and interface properties and reduce hysteresis effects. These investigations 

form the basis of this research program. 

Section II of this report describes the procedures used to thermally 

grow a native dielectric on GaAs,-,P,. The fabrication of MIS capacitor 

structures utilizing these thermal oxides as the gate dielectric is also dis- 

cussed in this section. 
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Section III describes the electrical characteristics of MIS capacitors. 

The results of capacitance-versus-voltage and current-versus-voltage 

measurements are presented and related to variations in the fabrication pro- 

cedure. 

The results of ion microprobe analysis of the dielectric composition is 

given in Section IV. A description of this analysis technique and its limit- 

ations is presented in this section. Elemental depth profiles of the dielec- 

tric are then presented and related to growth and anneal variations used in 

the fabrication process. 

The chemical stability of the insulator is examined in Section V by 

comparing electrical characteristics and ion microprobe results both before 

and after bias-temperature stressing of the devices. 

Finally, Section VI summarizes the results and concluding remarks are 

given regarding possible process improvements and the direction of future III-V 

oxide research. 

Use of commercial products or names of manufacturers in this report does 

not constitute official endorsement of such products or manufacturers, either 

expressed or implied, by the National Aeronautics and Space Administration. 
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SECTION II 

DIELECTRIC GROWTH AND MIS CAPACITOR FABRICATION 

This section describes the thermal growth of insulators on GaAs, xPx and 

the procedures for fabricating MIS capacitor structures using these insulators 

as the gate dielectric. The electrical properties of these structures are 

discussed in a later section of this report. 

Starting Material 

The semiconductor material used in this study was n-type (Te-doped) epi- 

taxial gallium arsenide phosphide (GaAs,-,Px) of <loo> orientation. Material 

of varying phosphorus content (i.e., phosphorus mole fraction, x) was investi- 

gated to determine any major interface effects due to differences in the rela- 

tive arsenic/phosphorus composition of the semiconductor. The mole fractions 

used were x = 0.4, 0.5 and 0.7. Major emphasis, however, was directed toward 

GaAsO 5P. 5, because most previous work had been performed with this particular 

alloy'composition (References 1 and 3). 

The epitaxial layers were grown by chemical vapor deposition on heavily 

doped n-type (p = 0.003 R-cm) gallium arsenide (GaAs) or gallium phosphide 

(Gap) substrates. A region of linearly graded phosphorus composition was grown 

between the GaAs substrate (Gap for x = 0.7) and GaAs,-,P, epitaxial layer. 

The thickness of this region varied from 20 to 50 micrometers, depending on the 

particular growth run. This graded region is included to minimize lattice mis- 

match in the epitaxial layer. However, the remaining mismatch results in dis- 

location arrays and surface structure, as shown in the Normarski contrast photo- 

micrograph of Figure 1 and the surface scan of Figure 2. Although these arrays 

are present on the semiconductor surface, reflection electron diffraction pat- 

terns have indicated that the material is single crystal (Reference 3). 

The impurity concentration of the semiconductor surface was determined 

by capacitance-voltage characterization of Schottky diodes. Donor concentra- 

tions determined from l/CL vs reverse bias voltage plots were in the range of 

1 - 9 x 1016 cmw3. Some implications of lower impurity levels in the epitax- 

ial layer will be discussed in a later section. 

Dielectric Growth 

Prior to introduction into the oxidation furnace, the samples were 

cleaned and degreased in trichloroethane, acetone, and deionized water. This 
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Figure 1. Nomarski Contrast Photomicrograph 

of GaAso.6Po.6 Surface (97X) 

VERT: 100 nm ~lCMKd)/DlV 

Figure 2. Surface Profile of GaAso.6Po.6 

Epitaxial Surface 

6 



procedure was followed by a chemical etch in 5H2S04:H202:H20 at room tempera- 

ture for 5 minutes. This etching step removed approximately 2.5 urn from the 

epitaxial layer (Reference 4). 

Various dielectric growth/anneal ambients and temperatures were investi- 

gated to determine the impact on interface properties. Oxidations were per- 

formed using either dry oxygen at 680°C (flow rate = 0.75 liter per minute) 

or steam at 600°C. Some of the dry oxides were annealed in either argon or 
nitrogen at 68O'C or 450°C. All steam oxides were dried out or annealed in 
dry O2 at 6OO'C for 120 min. Sometimes this annealing was followed by a 
second anneal in either N2 or Ar at 600°C or 450"~. The gas flow rate during 
all annealing steps was one liter per minute. 

Insulator thicknesses were determined by ellipsometry (0 5640 1) or step 

profiling following chemical etching in NH40H and 50H20:H2S04:H202 (Reference 3). 

The region of the insulator near the oxide surface is etched in room tempera- 

ture NH40H at a rate of about 100 nm/min. This etching process stops before 

the oxide layer is completely removed. The thickness of the residual layer 

increases for increasing insulator thickness, and can be removed by a dip etch 

in 50H20:1H2S04:1H202 at room temperature. This procedure appears to remove 
the residual layer by attacking the underlying semiconductor surface. The 

amount of GaAslmx P removed during this step is ~35 A. x 

The growth rate of oxide films grown on GaAsO 6P. 4 and GaAsO 5P. 5 in 

oxygen has been presented elsewhere (References 1 and 5): In general, ' most 

oxide layers in the present study were grown to a final thickness of 2000- 

2500 A. This thickness required a growth time of 18-24 hours at 680°C in dry 

oxygen. A few preliminary experiments were conducted to demonstrate the feas- 

ibility of growing a lower temperature oxide using steam. Table I presents a 

comparison of the oxidation time, temperature and thickness for various films 

grown on GaAs,-, x P in steam and dry O2 during this investigation. 

A discussion of the dielectric composition and the implications of the 

interfacial region will be given in a later section. 

MIS Capacitor Fabrication 

MIS capacitors were formed with aluminum vacuum evaporated through a 

metal shadow mask. The thickness of the aluminum gates were either in the 
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Table I. Comparison of Oxide Growth on GaAsl-xPx in Dry 

Oxygen and Steam 

Substrate Ambient Temp. ("C) Oxidation Time 
(minutes) 

Approx. Oxide Thicknes: 
(nm) 

GaAso.5Po.5 Steam 650°C 90 700 

GaAso.5Po.5 Steam 600°C 45 125 

GaAso.5Po.5 Dry O2 700°C 370 118 

GaAso.5Po.5 Dry O2 680°C 1200 200 

GaAs0.6P0.4 Steam 550°C 60 10 

GaAs0.6P0.4 Steam 550°C 180 41 

GaAso.6Po.4 Steam 550°C 360 200 

GaAs0.6P0.4 Dry O2 680°C 1200 230 

GaAso.3Po.7 Dry O2 680°C 1200 150 

80-200 nm (800-2000 8) range or 1 urn. Thinner aluminum was used for samples 

undergoing ion microprobe analysis, and thicker metal was used for samples 

undergoing various electrical characterization. 

No probe damage effects were noted using the thinner gate metal. Gate 

electrode areas were variable due to mask bowing and shadowing; therefore, the 

area of each device analyzed was measured using a filar microscope attachment. 

Residual oxide formed on the GaAs substrate during oxidation was removed 

by mechanical lapping with 5 urn-alumina. Indium was then soldered onto the 

substrate and pulse-alloyed to form ohmic substrate contacts. A cross-section 

of the completed GaAs l-xPx MIS structure is shown in Figure 3. 

8 

I 



I GATE (ALUMINUM) I 

t 
1000 - 35ooA Ga203iGaPO4 DIELECTRIC 

I 
t 

20 -,50 Ctm GaAsl J', (X = 0.4, 0.5, 0.7) 

t 
20-50 pm 

GaAq .J', 

LINEARLYGRADED REGION 

I ' 
x=0 

-15 MILS GaAs 
I 

I 

I/////////////////////////////‘/~ 
OHMIC CONTACT (INOIUM) 

Figure 3. GaAslmxPx MIS Capacitor Structure 
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SECTION III 

Ga*s,+ x P MIS CAPACITOR ELECTRICAL CHARACTERISTICS 

This section describes the electrical and interface characteristics of 

GaAs,-xPx MIS capacitors fabricated with a thermally grown gate dielectric. 

High-frequency capacitance-versus-voltage characteristics are presented, as 

well as the results of current-versus-voltage measurements. The results of 

bias-temperature stressing on electrical characteristics will be presented and 

related to ion microprobe results in a following section. 

Capacitance-Versus-Voltage and 
Current-Versus-Voltage Characteristics 

The main evaluation of interface characteristics was made through high- 

frequency capacitance-versus-voltage (C-V) measurements. Most measurements 

were performed at a frequency of 1 MHz using a Boonton Model 71A capacitance 

meter. Additional devices were characterized at different frequencies using 

a PAR Model 124 lock-in amplifier. No changes in the C-V characteristics 

(i.e., dispersion or accumulation capacitance values) were observed with 

frequency, as described earlier (Reference 3). This behavior is contrary to 

that reported for most GaAs anodic oxides (References 6 and 7), but similar 

to that reported for GaP anodic oxides (Reference 8). 

Figures 4 through 6 illustrate the type of C-V characte ristics observed 

for GaAso.6P0.4, GaAsO.SPo.S, and GaAsB.3PB.7 MIS structures which had gate 

oxides grown for 20 hours in dry oxygen at 680°C. Included in these figures 

are the characteristics of devices from this same growth run but which under- 

went a post-oxidation argon anneal for 2 hours at 680°C. 

The C-V characteristics exhibit depletion-type characteristics at room 

temperature as a consequence of the wide bandgap and low minority carrier 

generation rate and/or high dielectric leakage current. 

The hysteresis observed in the C-V curves is similar to that observed 

previously on GaAso.SPo.S (Reference 3), GaAs (Reference 6), and GaP 

(Reference 8) MIS devices. The magnitude of the hysteresis depends on both 

the maximum bias applied during the sweep, and the bias sweep rate. In all of 

the experimental plots presented here, the device was biased at the maximum 

sweep bias (both positive and negative) for two minutes before sweeping or 

re-sweeping. 

10 



6C 

ii 
,o 
u 

5c 

4C 

I I I 

G105-lN15 

GaAs0.6P0.4 
A =2i.3X;;-3 cm2 
t 
Nox~7x1016cm-3 d 

f = 1 MHz 

Swp. rt. = 90 mV/sec 

NO ANNEAL 

-15 -10 -5 0 +5 
VG (VOLTS) 

Figure 4(a). GaAsO . 6P. . 4 MIS C-V Characteristic--Unannealed 



ILLUMINATED 

\ 

20 - 

G105-4A12 

GaAs0.6P0.4 
A = 1.62 X 10m3 cm2 

t = 230 nm 

No*- 7 x 1016 cma3 d 
Swp. rt. = 90 mV/sec 

Ar ANNEAL 

f=lMHz 

I 

i 

<?- 
I 

I I I I 
15 -10 -5 0 +5 

VG (VOLTS) 

Figure 4(b). GaAsO 6P. 4 MIS C-V Characteristic:Ar-Annealed, 68O"C, 2 Hr. . . 



I- 

4f I-’ 
I- 3c 

iz 
,a 
0 

20 

1 10 

t ox = 200nm 

Nd=1.5x1016cm-3 

f = 1 MHz 

Swp. rt. = 90mVk-x 

NO ANNEAL 

I I I I I 
-5 -20 -15 -10 

VG (VOLTS1 

FiGwe 5(a). GaAsO SPo 5 MIS C-V Character . . istic--Unannea 

_J 
0 +5 

ed 



i 

I 

i P 

20 

10 - 

G 105.5A22A 

Ga*so.5Po.5 
A = 2.1 x 10e3cm2 
t ox=200nm 

N ~1 5x 10’6cm-3 d . 
f = 1 MHz 

Swp. rt. = 90 mV/sec 
Ar ANNEAL 

-=+ 

I I I 

-. 

1 
-20 .lO -10 -5 0 +5 

VG (VOL-fs) 

Figure 5(b). GaAsO 5P. 5 MIS C-V Characteristic:Ar-Annealed, 68O"C, 2 Hr. . . 



t ,ox = 150 nm 

f=lMHz 
Swp. rt. = 00 mV/nc 
NO ANNEAL 
Nd = 3.6 x lo“ m3 

Figure 6(a). GaAsO 3P. 7 MIS C-V Characteristic--Unannealed . . 



I 

G105-7All 

Gak0.3Q7 
A=2.37x103cm2 

Lx ‘15Onm 

f=lMHz 
!%vp.t-t.=90 mVhc 
Ar ANNEAL 
Nd = 3.6 II 10“ an9 

VG (VOLTS) 
U 

Figure 6(b). GaAsO 3P. 7 MIS C-V Characteristic:Ar-Annealed, 68O"C, 2 Hr. . . 



Hysteresis Effects -- The hysteretic behavior of these devices is appar- 
rently due to electron injection and trapping in the oxide near the oxide-semi- 

conductor interface. The large amount of hysteresis in MIS devices fabricated 
on widegap semiconductors, such as GaAsl-xPx (1.43 2 Eg 5 2.25 eV for 0 <x < 1), - - 
can be attributed to the fact that the emission rate of the electron traps is 

too low for them to follow the dc voltage variation during the sweep (Reference 

9). Illumination with white microscope light (-10 mW cmm2) removes a large part 

of the hysteresis by increasing the trap emission rate, as shown in Figure 4(b). 

Comparison of Figures 4(a), 5(a) and 6(a) shows that the amount of trap- 

ping induced voltage shifts in the unannealed device does not vary signifi- 
cantly for the various mole fractions. These voltage shifts correspond to 
approximate equivalent trapped charge densities of l-2 x 1012 cmD2 at flatband. 

The major effect of annealing in argon at 680°C is to decrease the amount 

of hysteresis in the C-V characteristics. This decrease is generally accom- 
panied by an increase in the dielectric leakage current, of less than an order 

of magnitude, as shown in Figure 7 for the GaAsO 6P. 4 devices of Figure 4. . . 

Somewhat larger increases in leakage have been noted previously after nitro- 

gen anneal (Reference 3). 

Annealing also reduced the dielectric breakdown strength of the insula- 

tors. Breakdown occurred when the leakage current reached a current density of 

about 1 rnA/cm2. Breakdown measurements were made by "walking-out" the I-V 

characteristic to avoid large transient currents due to trap filling and empty- 
ing. Dielectric breakdown strengths ranged from about 9 x lo5 V/cm for nitro- 

gen annealed oxides to about 2 x lo6 V/cm for unannealed oxides. Ar-annealed 

films had dielectric strengths intermediate to these values. 

Figures 8(a) - (c) illustrate the effect of lower temperature post-oxida- 

tion annealing on the C-V hysteresis. These devices had oxides grown in dry C2 

at 680°C for 26 hours. The growth was then followed by annealing at 450°C for 

30 minutes in either 02, N2, or Ar. There is no significant difference in 

hysteresis between devices with argon and oxygen anneal. Nitrogen annealing, 

however, results in increased oxide leakage current beginning at +2 volts which, 

in turn, results in reduced hysteresis [Figure B(b)]. 
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In an attempt to examine the effects of a lower temperature oxidation on 

interface characteristics, some films were grown at 600°C in steam at atmos- 

pheric pressure. Figure 9 shows the C-V characteristics of a device with an 

insulator which was grown for 225 minutes in steam at 600°C. This growth was 

followed by a drying out process in dry O2 at 6OO'C for 2 hours, and then in 

argon at 600°C for 30 minutes. The magnitude of hysteresis is somewhat larger 

than that for the dry oxides in Figures 4, 5 and 6, but the equivalent trans- 

ferred charge density (Nt = Ci AVFB/qA) remains about 1.2 x 1012 cmW2. 

As will be discussed in the next section, ion microprobe analyses indi- 

cate a loss of arsenic from the surface of the oxide following argon annealing. 

This arsenic may be in the form of As203 which was outdiffusing during the 

growth process. (As203 vapor press. = 1 atm. @ 457°C.) The lower temperature 

anneal would not be expected to result in as much arsenic loss as occurs at 

680°C. No significant changes in the arsenic profile near the oxide-semicon- 

ductor interface is observed with the IMMA. It is in this region that any 

changes in composition are expected to result in measurable changes in trapping 

behavior and C-V hysteresis. It is possible that a crystallization or phase 

transition of arsenic or phosphorus or one of their compounds may be occurring 

at this interface causing changes in trapping behavior. 

Accumulation Capacitance and Dielectric Constant Anomalies -- The C-V 

characteristics shown in Figures 4 and 5 exhibit various inconsistent and anom- 

alous aspects with regard to accumulation capacitance values. All of the devices 

represented by the curves had dielectrics which were grown during the same 

oxidation run. For a more direct comparison, Figure 10 is a C-V characteristic 

of an Ar-annealed GaAso.5Po.5 MIS device also fabricated during the same run 

but which had a higher starting material donor concentration (-9 x 1016 cmm3). 

Comparison of this curve with that of Figure 5(b) indicates a difference in the 

nature of the hysteresis and widely differing "accumulation" capacitance values 

per unit area. Table II surnnarizes the accumulation capacitance and "dielectric 

constant" values obtained from the C-V characteristics of Figures 4, 5 and 9. 

The dielectric constant values determined for the more heavily doped material 

agree with values obtained previously (Reference 3) and is in the range 

reported for many dielectrics grown on GaAs and GaP (Reference 7 and 8) 
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Device No. 

4Nl5 

4A12 

5HA22 

5N15 

5A22A 

Table II. Comparison of Accumulation Capacitance and Dielectric 

Constants Deduced from C-V Characteristics 

for Dry Oxidation 

1 

Substrate Nrj(cf3) Anneal 

GaAs0.6P0.4 7 x lo'.6 No 

GaAs0.6P0.4 7 x lo16 Argon 

GaAso.5Po.5 9 x 1016 Argon 

GaAso.5Po.5 1.5 x 1016 No 

GaAso.5Po.5 1.5 x 1016 Argon 

toxh) Ci/ NVcm2) 

230 2.5 x lO-8 

230 2.65 x 1O-8 

200 2.86 x lO-8 

200 1.79 x lo-B 

200 1.01 x 1o-8 

% 

6.50 

6.89 

6.46 

4.04 

2.29 



with similar impurity levels. The more lightly doped semiconductor; however, 

yields dielectric constants that are only about 60 percent of those for the 

more heavily doped material in the unannealed case, and about 35 percent for 

the annealed case. 

The anomalous cr values for lightly doped GaAsO 5P. 5 were investigated . . 
further by examining the C-V and I-V of the Schottky diodes used for deter- 

mining impurity levels in the epitaxial layers. Figure 11 shows Schottky 

current-voltage characteristics for the n-type GaAsO 5P. 5 diodes. The forward . . 
and reverse characteristics for the lightly doped material both indicate 

reverse-biased diode behavior. In addition, the capacitance of the lightly 

doped diodes saturated at a value of 2.73 x 10m8 F/cm2 in the positive (forward) 

bias portion of the C-V characteristic. This behavior suggests the presence 

of a fixed capacitance in series with the diode. When this capacitance is 

subtracted from the measured accumulation capacitance of Device No. 5N15 in 

Table II, a dielectric constant of 11.77 is calculated, much higher than that 

for the heavily doped devices. It is apparent that there is no simple explana- 

tion for these results. 

Anomalous intrinsic or p- layers have been previously observed between 

n- GaAs epitaxial layers grown on n+ GaAs substrates (Reference ll), and were 

attributed to autodoping of an amphoteric impurity such as silicon during 

growth, or to stress-induced changes. It is possible that either or both of 

these phenomena may be responsible for the present results. 

The decrease in the Ci/A value for lighter doped.GaAsO 5P. 5 devices 

undergoing post-oxidation annealing is not understood. No change in oxide 

thickness is noted following annealing. In many cases, annealing anodic 

oxides on GaAs about 450°C results in arsenic loss and densification of the 

film, which would tend to increase the insulator capacitance (assuming no 

significant change in ~~ as arsenic is lost). This cannot explain the present 

case [Figures 5(a) and (b)] for GaAsO 5Pu 5, where Ci decreases after anneal- 

ing. It is possible that a change in-the dielectric constant could occur with 

the loss of arsenic, but is not expected to be as significant as shown in 

Table II. It is apparent that this phenomenon requires further investigation 

before more definitive answers can be given. 
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Interface State Density Determination -- Attempting to determine the 
"fast" interface state density in GaAs l-xPx MIS devices which exhibit hyster- 
etic deep depletion C-V characteristics of the type described above presents 

many difficulties. Traditional analyses used for Si02-Si MOS devices, such as 

differential capacitance, quasi-static, and ac conductance, each may possess 
severe limitations or total inapplicability when applied to these widegap MIS 

structures. 

A previous analysis of GaAso.5Po.5 MIS structures using the ac conduct- 

ance technique yielded ambiguous results (Reference 3), as it has previously 

with GaAs MIS devices (Reference 12). The quasi-static C-V method is probably 

also inapplicable to these devices because of the requirement for very low 

insulator leakage current and the existence of thermal equilibrium conditions 

in the semiconductor. Such is not the case for the present devices, where 

equilibrium conditions apparently do not exist due to low generation rates 

and/or moderate dielectric leakage. 

The differential C-V (Terman, Reference 13) method is the most com- 

monly used technique for analyzing III-V compound semiconductor MIS devices 

at the present time. Because of the moderate-to-high interface state values 

usually measured (2 5 x 10" cmv2 eV-') for these devices the Terman method 

appears to provide adequate accuracy for analysis. In the present case, 

however, there is the additional complication of injection-type hysteresis, 

due to slow oxide traps, which can affect the determination of the "fast" 

state density. With this limitation in mind, however, the Terman method can 

provide a basis for comparing the properties of compound semiconductor-oxide 

interfaces as new analysis methods and knowledge develops. This method was 

applied to the GaAs,-, x P MIS C-V characteristics (positive-going sweep) using 

ideal curves generated neglecting the contribution of minority carriers. This 
approach results in "state" values of 5-9 x 10" cmm2 eV-1 for unannealed 

GaAso.5Po.5 devices and l-3 x 1012 cmD2 eV-' for unannealed GaAsO 6P. 4 devices. . . 
The comparison between the ideal characteristic and the initial 

negative-going sweep of the annealed GaAsO 6P. 4 device of Figure 4(b) is . . 
shown in Figure 12(a). The fit is very good in the accumulation region in 

this case. Analysis of the depletion portion of the characteristic results 

in "state" values of 1.7 x 10" cmm2-eV -1 , uniformly distributed in energy. 
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The experimental C-V characteristics of several annealed and lightly- 

doped devices could not be fitted in the accumulation regime to ideal curves 

of various doping levels. Figure 12(b) shows a comparison of the positive- 

going sweep of Figure 4(b) with the ideal characteristic. The increased slope 

(AC/AV) of the experimental curve in the region of the curve near accumulation 

could be resulting from dielectric leakage current which causes a departure 

from the ideal assumption of no leakage. Another possible reason for this type 
of characteristic is that the semiconductor surface potential is being "pinned", 

resulting in the somewhat lower constant capacitance with gate voltage. [It is 
noteworthy that the initial negative sweep can be repeated after the device is 

illuminated or undergoes B-T stressing (see Section V)]. 

If the characteristic of Figure 12(b) is analyzed in the depletion 

regime a uniform state density of 1.7 x 10" cmM2-eV-' again results. It 

should be pointed out that these values are in the range where the Terman 

analysis begins toi result in limitations in accuracy. 

The major precautions that should be taken when attempting to interpret 

the results presented above is that the term "fast" interface state in the 

Si-Si02 technology probably cannot be analogously applied to III-V structures 

which have significant slow oxide-trapping effects. With this in mind, the 

C-V analysis appears to be useful in providing a semiquantitative comparison 

of the effects of annealing on interface characteristics. It is apparent that 
much additional effort is needed to provide adequate quantitative interface 

analysis techniques for widegap MIS devices. 
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SECTION IV 

SECONDARY-ION MASS SPECTROMETRY TO DETERMINE 
DIELECTRIC COMPOSITION AND STABILITY 

The use of secondary ion mass spectrometry to determine the elemental com- 

position of the dielectric is described in this section. A discussion of the 

various features and limitations of this technique is given, followed by experi- 

mental depth profiles of GaAs, xPx MIS structures. The chemical stability of the 
structures after various bias-temperature stress ~reaiXWltS will be discussed in 

the following section. 

Secondary Ion Mass Spectrometry 

In the Secondary Ion Mass Spectrometry (SIMS) technique (Reference 14), a 

beam of energetic (l-20 keV) ions bombards the sample. The interaction of these 

ions with the solid results in the ejection of substrate atoms and molecules 

in both neutral and charged states from the first few monolayers [typically 

<2 nm (20 A)]. The charged particles sputtered from this surface region are 

then mass and charge analyzed and finally detected. Through high sensitivity 

mass spectrometric techniques, SIMS has achieved much higher detection sensi- 

tivities than all other surface analytical techniques, with detection limits 

<101' atoms/cm3 possible for many different element/matrix combinations. In 

addition, depth concentration profiling of trace constituents with depth resolu- 

tions ~50 i has also added to the interest in SIMS. 

Several models utilizing various physical mechanisms have been proposed 

to explain the general trends of secondary ion emission. While these models 

have enjoyed varying degrees of success, there is, at present, no single theo- 

retical treatment to accurately predict the ionization probability of an ele- 

ment in any matrix. Therefore, quantitative or semi-quantitative SIMS has 

relied on the analysis of standards which have been characterized by other 

analytical methods. Even when basing quantitation of an unknown sample on 

results obtained on standards, there are other limiting aspects. These limita- 

tions are discussed below. 

Limitations to Quantitative SIMS 

The effects limiting quantitative SIMS analysis can generally be classed 

as follows: (1) secondary ion yield differences, (2) masking of secondary ion 

species by undesired ionic species, and (3) incident ion effects. These effects 

are discussed briefly in the following paragraphs. 
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Secondary Ion Yield Effects -- The major factors influencing ion yield 
are the electronic and chemical properties of the sample surface, which are due 

to the basic characteristics of the matrix, and the equilibrium concentration of 

absorbed active species (including implanted primary ion beam species). The 

ratio of the secondary ion yield of a given element relative to that of another 

element present in the same matrix can exceed 104. In general, however, this 

spread in relative yield decreases as the matrix changes from a metallic character 

to an oxide or insulator. The use of a reactive primary ion beam (particularly 

oxygen) can also alter the characteristics of the matrix to enhance ion y+elds. 

These secondary ion yield differences are more important than ion sputtering 

rate differences between the different matrix elements. Sputtering rates typic- 
ally differ by less than a factor of ten, and this difference decreases with 

increasing primary beam energy. 

Secondary Ion Species Interferences -- Because SIMS detection is basic- 

ally a measurement of the mass to charge ratio, and because there are several 

different molecular ionic species which may possibly have the same mass/charge 

ratio as the element or molecule of interest, it is possible to sometimes 

obtain erroneous results through mass interference. Fortunately, the abundance 

of molecular species falls off rapidly as the number of particles in combina- 

tion increases. Also, some idea of the sample composition is generally known, 

prior to SIMS analysis, so that possible interferences can be inferred, before 

a detailed analysis is carried out. 

Incident Ion Effects -- Several characteristics of the incident ion beam 

can directly or indirectly influence secondary ion emission. These character- 

istics include beam energy, mass and angle of incidence, primary ion current 

density, and the chemical nature of the incident ions. 

The energy, mass, and angle of incidence control the collision cascade in 

the surface layer of the solid sample. The principle energy effect is on ion 

yield. In general, higher beam energies result in greater ion yield. For 

energies above a few keV, this effect saturates and yield is constant for 

increasing energy. In addition to yield effects, the beam energy will also 

determine subsurface layer mixing and matrix effects and the depth of the 

incident ion implant zone. Subsurface mixing and matrix effects are important 

in depth profiling where a significant ion dose is deposited in order to 

achieve a relatively high sputtering rate. If a chemically reactive beam such 
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as oxygen is used this high implanted dose (> 1015 ions/cm') can alter the 

matrix and enhance positive ion yield. The depth (energy) of the implanted 
ions will then determine when this enhancement effect stabilizes. Stabiliza- 

tion generally occurs at a depth of Rp + 2AR , where R is the projected ion 
P P 

mean range and AR is the standard deviation of the mean range. 
P 

This effect 

will be discussed later in relation to the present study. 

In addition to effects related to chemical interaction of the primary 

beam with the substrate matrix, differential "knock-in" effects can occur for 

sufficiently high beam energy and mass. Because of differences in cross sections 

certain atoms can be knocked deeper into the substrate than others. "Knock-in" 

effects can play an important role in interface profiling. The "knock-in" 

effect is, in general, more prevalent for higher incident beam energies and 

masses. 

Quantitative analysis using SIMS has generally not been successful 

because of the limitations discussed above. However, the technique is attract- 

ive for qualitative analysis and for observation of relative changes in the 

composition of solids, as in the present study. 

Ion Microprobe Mass Analysis 

Ion Microprobe Mass Analysis (IMMA) is basically the same as secondary 

ion mass spectrometry. The ion microprobe utilizes a smaller diameter primary 

ion beam of higher energy than generally used in most SIMS instruments. These 

features allow the capability for rapid measurement of depth profiles in micro- 

area regions of the sample of interest. 

The instrument used in the present investigation* is schematically illus- 

trated in Figure 13. The ions used to bombard the sample are generated in a 

hollow cathode duoplasmatron ion source which is capable of producing ions of 

a variety of different gases. The primary magnet is used to mass separate the 

primary ion beam to ensure that only a single ion species bombards the sample. 

A set of electrostatic deflection plates just below the magnet guide the beam 

through apertures to electrostatic condenser lenses. These lenses successively 

demagnify and focus the beam to spot sizes ranging from 2 to 500 urn in dia- 

meter. 
------------ 
*ARL Ion Microprobe Mass Analyzer, operated by the Aerospace Corp., El Segundo, 
California. 
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After bombardment of the sample, the sputtered ions are collected and 

analyzed in a double-focusing magnetic mass spectrometer. The mass-analyzed 
ion beams are detected with a high-gain Daly-type device which permits single 

counting of both positive and negative ions. The resolved ion signals can be 
read as count rates or as direct currents on a chart recorder. 

In addition to fixed point bombardment the incident ion beam can be 

swept in a raster over a selected area of the sample using sweeping plates in 

the primary lens column. By synchronization of the beam sweep with the sweep 

of a CRT display a direct ion intensity image of the analyzed area can be 

viewed. 

One of the major advantages of the IMMA over conventional SIMS is its use 

of electronic aperturing to eliminate crater wall effects during depth profil- 

ing. These effects are shown in Figure 14. In a stationary focused ion beam, 

the ion current density incident on the sample is not constant over the beam 

diameter, resulting in nonuniform layer removal. If the detection area for 

secondary ions exceeds the total beam area, contributing ions from the crater 

edges will distort the profile. To eliminate this effect, the focused ion beam 

is electronically swept over an area large enough to provide a uniform current 

density in the central region. The secondary ion detection system is then 

gated to accept ions only when the primary beam is within this selected window 

of uniform current density. In the instrument used for this study, the central 

window area comprised about 16 percent of the total raster area. 

Ion Beam Species, Enerqy and Primary 
Ion Beam Current 

For the experiments reported here, the primary ion beam used was 360;. 

The anode potential was 20 kV and the sample potential was maintained at 1.5 kV. 

Subtracting the sample bias from the primary accelerating bias, and dividing 

the energy between the two oxygen atoms results in an equivalent energy of 

9.25 keV for each "O+ ion. As mentioned previously, use of a reactive beam 

results in higher positive secondary ion yields. This particular oxygen iso- 

tope (i.e., l'O+) was used because of the interest in determining the oxygen 

profile in the dielectric region of the MIS structures. The use of 160t or "06 

as a primary beam would result in interference effects during the detection of 

160+ secondary ions from the sample. 
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The primary ion beam currents used for the IMMA are typically 10 nA for 

depth profiling and 1 nA for surface analysis and ion image displays. For the 

particular matrices (thin film insulators and semiconductors), beam energy, 

and analysis areas used here, these current densities result in sputtering 

rates of the order of 0.17 nm/sec (-.lOO W/min.) for profiling and 0.02 nm/sec 

(-10 8/min.) for surface scans. 

Compositional Analysis of Oxides 
Grown on GaAsl-,Px 

Dry Oxide Composition -- Figure 15 is an ion microprobe depth profile 

of the secondary ion count rate versus sputtering time for an oxide grown on 

GaAsO 5P. 5 in dry O2 at 700°C for 370 minutes. This profile is uncorrected . . 
for sputter rate and ion yield differences between the elements; however, 

several general observations regarding the behavior of the phosphorus and 

arsenic during oxidation can be made. 

The similarity between the phosphorus and oxygen profiles in the bulk 

of the oxide in the bulk of the oxide indicates the probability of a chemi- 

cally bonded compound, such as GaP04. Other possible phosphorus compounds, 

such as P205, are not expected to be present in the film because of their 

volatility at the growth temperature. This rise in the phosphorus counts 
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near the oxide surface may be due to the increase in ion yield due to the 

implanted leOt ions, as discussed earlier. This effect is more clearly demon- 
strated in the IMMA profile of the GaAsO 5P. 5 starting material shown in 

Figure 16, where equilibrium of the sputtered ion yield is reached at about 

200 sec. (-450 i). This depth corresponds approximately to the value 

[Rp + 2ARp], discussed earlier, for oxygen. 

The behavior of arsenic in the oxide of Figure 15 is similar to that 

observed in oxides grown on GaAs. The rise in As counts near the surface of 
the oxide is similar to that noted with plasma-grown oxides on GaAs (Reference 

15). The major portion of the oxide is arsenic-deficient, and there is appar- 

ently an arsenic-rich region near the oxide-semiconductor interface. It can- 
not be concluded simply from the raw count data that an arsenic-rich region is 

present because of possible matrix and sputtering yield effects. Obtaining 

more quantitative results requires the use of sample standards of similar com- 

position to the unknown to obtain the appropriate sensitivity factors to be 

used for reduction of the raw count data. 

A preliminary attempt was made to semi-quantify the data of Figure 15 

using an internal standards method. In this method, counts of a standard 

sample of a "known" composition (in this case the GaAsO 5P. 5 starting mat- . . 
erial) are used to generate sensitivity factors which are then applied to 

the data from the unknown sample (oxidized GaAsO 5P. 5). Figure 17 shows . 
the results when applied to the oxidized GaAsO 5P0 5'data of Figure 15. 

Unfortunately, the GaAsoS5Po.5 standard chosen-in this case had a residual 

surface oxide layer which resulted in sensitivity factors which did not 

truly represent a pure GaAsoS5PoS5 matrix. The effect of this discrepancy 

is shown in the region of the profile corresponding to the bulk of semi- 

conductor, where the gallium concentration is too high relative to the 

phosphorus and arsenic levels. The oxide-semiconductor interface region 

appears to be arsenic-rich in that the arsenic level is above the gallium 

level. As mentioned earlier, ion yields are matrix-dependent and applying 

sensitivity factors determined for the semiconductor to the oxide matrix, as 

was done here, may not result in precisely accurate concentration profiles. 

Therefore, it should be kept in mind that Figure 17 represents only a pre- 

llminary attempt at semi-quantifying IMMA data, and that further 
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improvements in the analysis will be possible when the IMMA data can be 

correlated with that obtained by other methods, such as Auger and X-ray photo- 
electron spectroscopy. 

Annealina Effects -- As discussed in the section on electrical character- 

istics, post-oxidation annealing generally results in a reduction of hysteresis 

in the capacitance-voltage characteristics and an increase in the dielectric 

leakage current. To examine if these effects are due to a change in the oxide 

elemental composition, IMMA profiles were obtained for annealed and unannealed 

samples. Figures 18(a) and (b) are GaAsO 6P. 4 profiles from the same wafers 

as the HIS capacitors whose C-V characteristics are shown in Figures 4(a) and 

(b). The general shape of the profiles are similar to each other and to the 

GaAsO 5P. 5 profile of Figure 15, However, comparison of the arsenic profiles . . 
in Figure 18 shows that a definite drop in the surface region peak occurs for 

the annealed oxide. The slight drop in the interface region peak is probably 

due to a slight decrease in the sputtering rate (avg. sputtering rates: 1 fi/sec 

and 1.13 l/set). Profiles of GaAso.6Po.4 and GaAso.5Po.5 MIS structures show 

similar surface arsenic loss (see the following section), without any changes 

in the interface arsenic peak. 

The arsenic loss near the surface is probably due to the volatilization 

of arsenic oxide (As203 vapor press. = 1 atm. @ 457'C) which was outdiffusing 

during the growth process. This depletion is apparently related to the increase 

in leakage current and the decrease in hysteresis illustrated in Figure 4. How- 

ever, it is expected that only major changes in composition or chemical bonding 

in the oxide-semiconductor interface region would resu1.t in measurable changes 

in trapping behavior and hysteresis. It is possible that other analytical 

techniques, such as x-ray photoelectron spectroscopy (XPS) may be able to 

detect changes in bonding structure which may be resulting in changes in trap- 

ping characteristics. 

Steam Oxide Composition -- As discussed earlier, methods were investi- 

gated for obtaining lower temperature oxides to examine the effect on both 
the electrical characteristics of MIS devices and the insulator COmpOSitiOn. 

Figure 19 shows the IMMA profile of the same oxide whose MIS C-V character- 

istic is shown in Figure 9. The oxide was grown in steam at 600°C for 225 
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minutes, and was followed by a drying process in 02 for 2 hours at 600°C and 

argon anneal at 6OO'C for 3!l minutes. 

The same general features exist in the IMMA profile of both the steam 

and dry oxides; however, the phosphorus and oxygen profiles appear to be more 

uniformly distributed through the bulk of the oxide grown in steam. No change 

was noted in either the C-V characteristics or the IMMA profile for an 

unannealed steam oxide grown at the same time as that in Figure 19. 

Visual examination indicates that the surfaces of the 600°C steam oxides 

are somewhat less heterogeneous and structured than those of the higher tempera- 

ture dry oxides. Reflection electron diffraction patterns tend to confirm this 

by showing only a faint non-oriented polycrystalline pattern, as shown in 

Figure 20. 

It was observed during the etching of the steam oxide step used for 

thickness measurements that the residual layer left after etching in NH40H (see 

Section II) contained crystal-like areas, as shown in Figure 21(a). Figures 

21(b) through (f) are ion micrographs for the various elements expected to be 

present. Only the phosphorus counts appear to show significant intensity at 

regions corresponding to the crystallites. These results are somewhat ambigu- 

ous, however, because the "O+ (probe ion) scan shows darker regions corres- 

ponding to the crystallites. This result indicates a difference in matrix 

effects of the "crystallites" from the field of the residual layer, possibly 

due to their vertical structure, which could cause varying ion yields. Without 

geometric and matrix effects the probe ion scan should be uniform. 

The uniformity of the arsenic scan indicates that.the crystal-shaped 

regions are not crystalline As, as might be expected based on previous studies 

of thermal oxides grown on GaAs (Reference 16). The high "P' intensity shown 

in Figure 21(d) cannot be correlated with increased 160t counts. A strong cor- 

relation might have indicated the presence of GaP04 crystallites at the inter- 

face. Such a result would not be unexpected, because a metastable phase inver- 

sion of Gap04 occurs at 616°C (Reference 17). This phase inversion probability 

coupled with the fact that no large crystallite structure was observed in the 

interface region of the dry oxides suggest that different crystalline phases may 

exist in the steam and dry oxides. Therefore, further studies of this interest- 

ing phenomenon and lower temperature steam oxidation processes, in general, are 

indicated. 
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Figure 20. Reflection Electron Dlffractlon Patterns of Oxidized 
GaAs0.5P0.5 Surface 
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(a) Optical Photomicrograph (247X) 

b) 6yGa' Ion Micrograph (250X) 

Figure 21. Interface Region of GaAsO 5P. 5 Steam Oxide . . 
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Figure 21. Interface Region of GaAsO 5P. 5 Steam Oxide . . 
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(e) 160t Ion Micrograph (250X) 

(f) '*O+ Ion Micrograph (250X) 

Figure 21. Interface Region of GaAs0,5P0S5 Steam Oxide 
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SECTION V 

DIELECTRIC CHEMICAL AND ELECTRICAL STABILITY 

This section describes the effects of bias and temperature stressing 

on both the electrical characteristics and ion microprobe depth profiles of 

GaAs,-xP, MIS structures. The results of these measurements are correlated 
and some comments are made regarding the stability of the oxides thermally 

grown on GaAs,-xPx. 

Bias-Temperature Stressing Experiments: C-V and IMMA Results 

Figures 22(a) and (b) show the capacitance-voltage characteristics of an 

Ar-annealed GaAsO.5PO.5 MIS device before and after bias-temperature (B-T) 
stressing with positive and negative gate fields, respectively. 

The magnitudes of the stress voltages used for these tests were chosen 

so that dielectric leakage currents were not significant enough to cause oxide 

breakdown problems. The stress temperature and time correspond to those com- 

monly used in assessing the reliability and stability of MOS type semiconductor 

devices. As seen in Figure 22(a), the major effect of the positive B-T stress 

is a positive shift of about 2 volts, indicating possible electron injection 

and trapping. A reduction in hysteresis is also observed. The negative B-T 

stress has only a slight effect on the C-V characteristic, as shown in Figure 

22(b). The rise in the capacitance at large negative voltage is not under- 

stood, but may be due to surface conduction. The corresponding ion microprobe 

depth profiles of these devices are shown in Figures 23(a) through (c). There 
are no noticeable changes in the IMMA profiles following stressing. 

The "wide" aluminum-oxide interfaces of Figure 23 illustrate some of 

the knock-in effects of the IMMA technique described in the last section. The 

slightly higher aluminum count level towards the semiconductor bulk for the 

pre-stressed device of Figure 23(a) is not of significance, because this 

represents the noise level for this particular element. 

Bias-temperature stressing effects on both unannealed and annealed 

lightly doped material were investigated. Figures 24(a) through (d) show the 

C-V characteristics of unannealed and Ar-annealed GaAsO 5P. 5 MIS devices 

before and after undergoing positive and negative B-T stressing. The unannealed 

devices again show reduced hysteresis after both the positive and negative 
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stressing. The annealed devices show no major changes in the magnitude of the 

hysteresis, but only small shifts of the curves in the positive direction. 

The IRMA profiles corresponding to the characteristics of Figure 24 
are shown in Figures 25(a) through (f). Comparison of the profiles for the 
unannealed samples IFigures 25(a) - (c)J shows that there are no major changes 
caused by the stressing. The increase in the aluminum count starting at about 

1400 sec. in Figure 25(a) may have been due to a temporary error in the data 

reduction scheme, but no anomalies are observed for the other elements. 

Profiles of the Ar-annealed samples [Figures 25(d) - (f)] show some 

variations in the leading edge of the phosphorus profiles for the different 

stressing conditions. These variations probably are not of significance 

because they were not observed on the other samples [Figures 23(a) - (c)l and 

Figures 25(a) - (c)l. There is a very slight reduction in the maximum count 

level of the arsenic peak nearest the oxide surface for the positive voltage 

stressed sample relative to the unstressed sample. It is believed that this 

reduction is due more to a slightly lower sputtering rate than to a real change 

in the elemental composition caused by the stressing conditions. 

Although the bias-temperature stressing conditions used here do not 

cause any significant changes in the elemental oxide profiles, a comparison of 

the profiles for the annealed and unannealed devices shows that the maximum 

level of the surface arsenic peak is lower relative to the leading edge of the 

phosphorus peak for the annealed samples. This behavior is consistent with 

that demonstrated by the profiles in Figure 18 for GaAsO 6P. 4 dry oxides. . . 

The Ar-annealed profiles of Figures 23 and 25(d) - (f) for the heavily 

and more lightly-doped structures displayed the same general features (i.e., 

a low-level surface and high-level interface arsenic peak). However, the 

rather broad constant arsenic level in the central portion of the oxides of 

Figure 23 is distinctly different compared to the well-defined minimum in 

Figures 25(d) - (f). This difference is not understood, since all oxides were 

grown during the same oxidation run, and differences in the impurity level are 

not expected to result in changes in the thermal oxidation kinetics. However, 

the impurity doping levels do affect the kinetics of GaAs anodic oxidation. 

Such compositional differences may be able to partially account for the anom- 

alies in electrical characteristics described earlier (Section IV). 

57 



ul 
co 

G1055N15 

f=lMHz 

A Y l.Q~lO-~crn~ 
N,, = 1.5 x 1016 cm3 

t ox = 200nm 

Swp. Rt.: QO mV/sec 

Post B-T: +4V 
25ooc 
20 min. 

Figure 24(a). GaAsO 5P. 5 MJS C-V Characteristic Before and After 

Positi& B-T Stress (Unannealed) 



ui 
W 

I- 

> 

G105-5N17 

f=lMHz 

G105-5N17 

f=lMHz 

A 1 9 x 10e3 cm2 

N = ;5x 1016cm3 d . 

t ox Y 200nm 

Post B-T: -15V 
25ooc 
20 min. 

L I I I I I 
-20 -15 -10 -6 0 +4 

VG (volts) 

Figure 24(b). GaAsO SPO 5 C-V Characteristic Before and After 

Negative-B-T Stress (Unannealed) 



I I I I I 
I 

G105-5A21 

f = 1 MHz 

A N 2.1 x 10s3 cm2 

N = 1 5 x 1016 cm3 d . 

t ox = 2Mlnm 

Swp. Rt.: 90 mV/sec 

Ar ANNEAL 
Pre B-T 

I I 

Figure 24(c). GaAsO SPO S MIS C-V Characteristic Before and After 

Positi& B-T Stress (Ar-Annealed) 



GlC6-5A22A 

f = 1 MHz 

A Y 2.1 x 10e3 cm2 

Nd (r 1.5 x 1016 cmS3 

t ox = 200nm 

Swp. At.: 90 mV/sec 

Ar ANNEAL 

I I I I I 
-20 -15 -10 -6 0 +4 

VG (volts) 

Figure 24(d). GaAsO 5P0 5 MIS C-V Characteristic Before and After 

Negatiie B:T Stress (Ar-Annealed) 



Time (set) 

v 4 
A =f+L 
0 =P 
0 =m 

0 =cIs 

Nll 

68O"C, 02, 20 hr. 

Nd = 1.5 x 1016 cmw3 

Figure 25(a). IMMA Profile of Llnannealed GaAsO 5P. 5 MIS 

Device Before B-T Stressing . ' 



l- -i 

Time (set) 

Figure 25(b). IMMA Profile of Unannealed GaAsO 5P. S MIS Device . . 
Following Positive B-T Stress 

w = 0 
A =& 
0 = P 
0 = 6R 
0 =fE 
Wl5 

B-T: +4V 

250°C 
20 min. 

Nd = 1.5 x 1OJ6 cm-3 



Time (set) 

Figure 25(c). IMMA Profile of Unannealed GaAso 5P. 5 MIS Device 
. . 

Following Negative B-T Stress 

v = 0 
* =fk 
0 = P 
0 =GB 
0 =fs 
SN17 

B-T: -15v 

250°C 

20 min. 

Nd q 1.5 x 1016 cmm3 



6 

- 
J+ -57ooA fl 

Time (set) 

Figure 25(d). ItWJ Profile of Ar-Annedled GaAsO 5P. 5 . . 
MIS Device Before B-T Stressing 

v = 0 
A Z fu 

0 = P 
Cl= GFI 
0 =F\s 
sct2) 

680°C, 02, 20 hr. 

68O"C, Ar, 2 hr. 

Nd = 1.5 x 1016 cmw3 



Time (Set) 

Figure 25(e). IMMA Profile of Ar-Annealed GaAsO 5P. 5 MIS Device 
. . 

Following Positive B-T Stressing 

v = 0 
* =fk 
0 = P 
cl =G6j 
0 =fE 
54421 

B-T: t4V 

250°C 

20 min. 
Nd = 1.5 x 1016 cmD3 



w I + -6OOO# 

Time (set) 

Figure 25(f). IMMA Profile of Ar-Annealed GaAsO 5P. 5 MIS Device 
. . 

Following Negative B-T Stressing 

v = 0 
A =& 

0 =P 
0 =m 
0 =FIs 
m22fl 

B-T: -15v 

250°C 

20 min. 

Nd = 1.5 x 1016 cmm3 



GaAsO 6P. 4 MIS devices also exhibited reduced hysteresis following B-T . . 
stress, lower surface arsenic levels for annealed devices, and no IMMA profile 

changes for stressed devices. Examples Of GaAs0.6P0.4 MIS C-V characteristics 

and IMMA profiles are shown in Figures 26 and 27(a) - (c). The post-bias- 

temperature-stressed C-V curve in Figure 26 exhibits a reduction in capacitance 

from that of the unstressed curve. This effect was observed in certain cases 

on both GaAso.6Po.4 and GaAs0.5P0.5 devices. The reduction may be due to 

changes in the properties of the dielectric with stressing, or to a contact 

problem, although manipulation of the device with the probe could not restore 

the original capacitance values. In any case, the depth profiles do not show 

shifts that would indicate a change in the dielectric composition. 

Additional Bias-Temperature 
Stressing Effects 

Dielectric Leakage -- As mentioned in a previous section, reduced 

hysteresis in C-V characteristics is generally accompanied by a slight increase 

in dielectric leakage. Figure 28 shows the effect of a positive B-T stress on 

the current-voltage characteristics of an unannealed GaAsO 5P. 5 device. . . 
Figure 29 is the corresponding C-V characteristic of the same structure. It 

is seen that the slight increase in leakage current is associated with a slight 

reduction in C-V hysteresis. However, the physical change responsible for 

these effects are apparently too subtle for detection in the ion microprobe, as 

mentioned earlier. 

Mobile Ion Contamination -- The major effects of stressing which have 

been observed suggest possible changes in the electron trapping properties of 

the oxide-semiconductor interface region as being responsible for changes in 

the electrical characteristics. 

To determine if mobile ions are a major factor in device stability, 

some devices were purposely contaminated with a saturated salt water solution 

to introduce sodium ions to the oxide surface. The devices were then stressed 

and the resulting C-V characteristics showed no difference from those of 

uncontaminated devices. These results indicate that the major stability factor 

for these present devices is probably electron trapping effects. Ions other 

than sodium may result in detectable instability effects, however. 
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SECTION YI 

SUMMARY AND CONCLUDING REMARKS 

This section summarizes the major results of this program and some com- 

ments are then made regarding the usefulness of the dielectric fabrication pro- 

cesses and analytical techniques used in this work to the GaAs/GaAsl-xPx 

technology, in particular, and III-V MOS technology, in general. 

MIS Capacitor Electrical 
Characteristics and Dielectric Composition 

The results of this program have shown that the thermal oxidation of the 

alloy GaAs,-, x P produces films which are generally arsenic-deficient. The ion 

microprobe profiles indicate that phosphorus is incorporated into the oxide 

during growth. Although the IMMA cannot detect the presence of the gallium 
phosphate molecule, due to low ion sensitivity at this high molecular mass 

(amu 164 and 166 for 6yGaP04 and " GaP04, respectively), it is the most likely 

phoiphorus-containing compound in the oxide. Recent results using x-ray 

photoelectron spectroscopy (Reference 18) indicate that Gap04 is the primary 

GaP thermal oxidation product, in agreement with early results (Reference 19). 

The application of XPS techniques to the oxides on GaAsl-xPx should provide 
more definitive chemical bonding information. 

The usefulness of the ion microprobe in examining the oxide composition 

is somewhat limited, in that it cannot provide unambiguous molecular and chem- 

ical information, due to the high masses of interest and masking by species 

of the same mass numbers which results from reactions of the primary ion beam 

with the sample (e.g., 71GaAs1*0 and 6yGaP1604 are both amu 164). However, 

the use of an inert beam would probably not result in any additional informa- 

tion due to decreased secondary ion yield. The IMMA measurements, in con- 

junction with other techniques, such as Auger and XPS could provide more 

detailed information which can be related to electrical characteristics. The 

present work has shown, however, that the ion microprobe is adequate for 

determining relative changes in the oxide composition resulting from fabri- 

cation variations and electrical stressing. 

Comparison of both the electrical characteristics and the elemental 

oxide profiles demonstrates the important role of arsenic in determining the 

ultimate electrical properties of MIS devices utilizing this phosphorus- 

containing dielectric. High-temperature annealing results in arsenic' loss from 
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the oxide surface. Annealing also changes the oxide electrical properties, 

resulting in reduced C-Y hysteresis and slightly increased dielectric leak- 

age current. 

Argon annealing appears to substantially improve the interface propert- 

ies, as evidenced by the reduced C-Y hysteresis and decreased "apparent" inter- 

face state densities. However, analysis of the interface properties of these 

devices using techniques traditionally used for SiO2-Si devices are probably 

inconclusive, as discussed earlier in this report and recently by Kohn and 

Hartnagel (Reference 20). 

The chemical stability of the oxides under various stressing conditions 

used to assess the reliability of semiconductor devices is promising. Estab- 

lishment of the basic chemical stability of the films will allow their further 

optimization for device application. 

Based on the preliminary steam oxide results, it appears that lower- 

temperature oxidation and annealing processes are required to minimize or 

eliminate the arsenic loss and maintain stoichiometry in the films. The lower 

temperature steam oxidation processes should be investigated further. Such a 

low temperature thermal process, in conjunction with low temperature reactive 

(H2) annealing may minimize both the arsenic loss from the oxide and the 

electron traps at the oxide-semiconductor interface region. In addition, 

other recent low-temperature oxidation processes, such as plasma or high pres- 

sure steam, may offer promising results. 

Applications of GaAs l-xPx Dielectric Development 

to Future III-V Compound Semiconductor Devices 

Because of the wide interest in the many possible device applications 

of binary, ternary, and quaternary III-V compound semiconductors, it is natural 

to examine the usefulness of the results of this program to future device 

development. 

The importance of arsenic in determining oxide electrical properites 

has been shown previously for films grown on gallium arsenide. The present 

work has shown that the presence of an additional element available for 

reaction during the oxidation process can result In a thermally grown oxide 

with dielectric properties which are somewhat improved over those of thermal 
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oxides on GaAs using the same open tube growth procedures. However, the 

numerous and competing oxidation reactions still result in films with less 

than optimum characteristics. 

A recent systematic study of the low-temperature thermal oxidation of 

binary III-Y compounds [Reference 211 has indicated that the phosphate-oxide 

grown on GaP is the most promising, because it is oxidized perfectly (i.e., 

stoichiometric). However, the arsenides (GaAs) and antimonides (GaSb and 

InSb) had a non-oxidized group V layer at the oxide-semiconductor interface. 

With ternary and quaternary III-V compounds the situation is compli- 

cated because of the additional oxidation products which are possible. The 

desirability of forming amorphous layers to obtain a dielectric with good 

electrical properties requires knowledge and control of the chemical bonding 

between the compounds which form during growth. Knowledge of the growth 

kinetics and chemistry requires further study, as does the development of 

other experimental techniques for forming the oxides. Controlling the vola- 

tile reaction products, such as As203, by using lower temperature processes is 

probably a key to controlling the growth kinetics and obtaining satisfactory 
electrical properties for III-V compound MOS devices. 
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