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SUMMARY

An efficient method has been developed for the design of propelliers of
minimum induced loss matched fo an arbitrary operating point characterized by
disc loading (thrust or power), air density, shaft speed, flight speed, and
number of blades. A consistent procedure is outlined to predict fhe perfor-
mance of these propellers under off-design conditions, or to predict the per-
formance of propellers of general geometry. These procedures are particularly
helpful for motorsoarer constructors and propeller builders constrained to
use unusual powerplants under unusual conditions. The examples discussed
include a man powered airplane, a hang glider with a 7.5 kW (10 hp) 8,000 rpm
engine, and an airplane-I|ike motforsoarer.

INTRODUCT [ON

For wings and propellers alike, there are spanwise or radial circulation
distributions which minimize the kinefic energy loss associated with the gener-
ation of lift or thrust. These circulation distributions give rise to simple
induced velocity distributions which help determine efficient wing or blade
geometry. Everyone is familiar with fhe elliptic span loading and the corres-
ponding uniform downwash velocity of the vortex sheet shed by a wing of mini-
mum induced drag, buf not so many are familiar with the Betz-Prandt!| (ref. 1)
or Goldstein (ref. 2) radial circulation functions and the corresponding uni-
form "displacement velocity" of fthe helicoidal vortex sheets shed by a propel-
ler of minimum induced loss. The purpose of this paper is to demonstrate the
application of these ideas to geometry determination and performance prediction
for propellers of motorsocarers and other unusual aircraft. | have discussed
some of these ideas in another paper (ref. 3). See Table ! for notation used
in This paper.

THE DISPLACEMENT VELOCITY

Consider an elementary helical vortex filtament lying in an helicoidal
vortex sheet which forms part of the slipstream of a propeller, as shown in
figure |I. The vortex filament is constrained to move everywhere perpendicular
to itself with a velocity wg, which is the same as the loca!l slipstream velo-
city. |f the filament helix angle is ¢5, the axial velocity of the filament
is wg cos ¢S and its angular velocity is We sin ¢g/rg, where re¢ is the hel ix
radius. |f we were unaware of the helix angular velocity, however, we would
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suppose that it had only a displacement velocity v' = wg/cos ¢g,- in the same
way that a rotating barber pole has a displacement velocity even though it

has no axial velocity.

Betz, in reference |, was the first to show that the condition for mini-
mum induced loss operation of a propeller (or a windmill, for that matter)
corresponds to radially constant displacement velocity. The axial and swirl
components of the vortex sheet motion are then given by
= y! cos2 ¢ )

w_ .
axial s

= ' H
Wi v' cos ¢S sin ¢S (2)

MOTION OF THE ENTIRE SLIPSTREAM

Prandt!, in an appendix fto reference I, pointed out that the slipstream
fluid between The vortex sheets moves at a fraction F of the sheet velocity,
which he evaluated by analogy with the known solution for the flow about an
infinite array of semi-infinite plates moving perpendicular to themselves with
velocity v, as shown in figure 2. The plate solution spacing parameter, f, is
recalculated according to the helicoidal vortex sheet spacing and the radial
distance from the outer edges of the sheets:

/2
B VAT + _r
f = 5 __TT__'(I ﬁ) (3)
Here A is the advance ratio
A= V/OR = (V/nD)/7 (4)

and B is the number of blades; slipsfream distortion is neglected. The corres-
ponding average axial and swirl velocities at a certain radius in the slip-

stream are then

W= F ' cos? 0 (la)
axial 5
_ _ \ .
LRI F v'! cos ¢S sin ¢S (2a)
-1, ~f
F = (2/m) cos (e ) (5)
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THE RADIAL CIRCULATION DISTRIBUTION

The radial circulation function corresponding to this minimum induced loss
sfipstream motion is found by setting tThe circulation about a slipstream fube
equal fo the fotal vorticity fraiied by the blades at the corresponding radius,

and intfroducing "light loading" approximations:
= ! i
BT 27 e F v'! cos ¢S sin ¢S (6)
2o (7)
s
0, 2 ¢ (8)
o = tan | (V/QP) (9

The resulting circulation function is conveniently.written in a normalized form

2
BT Fx™ _
2mVv! 2 =6 (10)
+ |
(G for Goldstein or Glauert) where
X = Qr/V = (r/R)/X (11)

Equation 10 seems too simple to be true. Goldstein, in his doctor's
thesis (ref. 2), verified its essential correctness, however, for propeliers
operating at low advance ratios or with many biades, where tThe vortex sheets
are nearly flat, parallel, and closely spaced. The Prandtl|-Betz and Goldstein
circulation functions are compared in figure 3. [If should be noted that a
radial plot of G is identical with a radial plot of fthe ratio of the average
axial slipstream velocity (increment) fo the displacement velocity.

DETERMINATION OF THE DISPLACEMENT VELOCITY

Following Goldstein (ref. 2) we relate the displacement velocity to the
disc loading (thrust or torque) by resolving Joukowsky's law into two orthogo-
nal! components:

-dT _ oo
&?F]L = pQr (Il a') T'B (12a)
LQ.Q. = .
[r dr]L pV (I + a) I'B (12b)

Here the subscript "L" means that only the JifT forces are being considered,
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and a' and a are the swirl and axial components of the induced velocity at the
lifting lines. Retaining the light loading assumptions, and taking the induced
velocities 1o be half the vortex sheet velocities in the developed slipstream,

we obtain:

I v! | fv! I
1= LY SR A
a > OF cos ¢ _ sin ¢S > (V] 5 (13a)
x~ + |
2
_ v 2 ~ I [v! X
a—f—\—/—cos C’)S ?[V]“Z— (13b)
+ 1
The circulation is given by the Betz-Prandt! approximation:
_ [2mvv? (10 restated)
r- [BQ ]G
The blade profile drag contributions to thrust and torque are given by
dT]  _ D| dL _. ~ _ D [dT| |
[F]D‘ [E]d_rs'”d" L[dr]Lx (14a)
L dor _ 4 {bj dt =z, D1 de
[r dr]D * [L] ar ©°° ¢ * L [r dr]L x (140

The radial gradients of thrust coefficient, T, = 2T/pV2ﬂR2, and power coeffi-
cient, P, = ZP/pVBWRz, finally may be wriftten as

dT dI dI
c _ | 2 2
T G z - iz C (15a)
dP dJd dJ
c _ | 2 2
& " aE + Jz z (15b)
where £ = r/R, ¢ = v'/V, and
dI
I _ D/L
v 4 £ G [l - —§~J (16)
dT
2 D/L [
—_ = 2 G |l - —||—=— (17)
-2ee - (]
dJl D
dJ 2
2 _ D X
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Equations 16, 17, 18, and 19 can be numerically integrated radially fo give
four integrals I, l2, Jy, and Jo which depend only on A and B and the pre-
sumed radial distribution of profile D/L ratio. The displacement velocity
ratio is then easily found with these integrals and the propelier disc loading:

| ( aT 1,
z=5— |l =V - (thrust) (20a)
7T, | 2
2 II /
J ( 4P _J )
=55 o+ == - Il (power) (20b)
2\ J ’

Equations 20a and 20b are the propeller Coun+erparT of The induced angle of
attack of an elliptically loaded wing, C /ﬂ(b /S).

[f the propeller is fo absorb a given amount of power, one calculates the
power coefficient, P., and the displacement velocity ratio, g, from equation 2
20b; The thrust coefficient and the efficiency are then given by T, =1 C—Izg
and n = TC/PC, respectively. The alternate procedure, when the thrust Is spec-
ified, is obvious.

For moderately loaded propellers operating at low advance ratios,
equations 20a or 20b may give values of T which are large compared to A.
In this case a second approximation of the radial gradients of fthrust and power
coefficient is given by

T W) D
i =47 AG [V;{cos o - T sin ¢] (21)
dpP \
c _ W . D
& 40 &G [VJ[5|n ¢ + [ cos ¢] (22)
where (
¢ = tan”| %{I + %} (23)
and )
W //2 | 2
v o vX + | - [E-C cos ¢] (24)

Equations 2| and 22 can then be integrated radially to find better values of T
and P. appropriate to the value of ¢ obtained from equation 20a or 20b.
Following Theodorsen (ref. 4), one might consider a third level approximation
in which G(A,B) is recalculated with a "vortex advance ratio", Xv = A(1+z/2),
to account for slipstream distortion.
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DETERMINATION OF THE PROPELLER GEOMETRY

The propeller chord distribution is controlled by the choice of |ift
coefficient for the required circulation:

| 2 _ _ 2wVv!
7pw ccl—pWF—prQ (G) (25)
. . c_4mh G § ~ 4mA G .
This can be written as R~ B /W) c. B ,~——=¢ (26)
£ X2 + 2

Lift coefficients must be chosen with regard to structural constraints on
thickness-to-chord ratios at inner radii and local Mach numbers at outer radii;
also they must be consistent with the D/L ratios that have been used to find z.
Some consideration must be given to off-design conditions as well; for example,
a propeller designed for cruise can be expected fo develop larger [ift coeffi-
cient increases at inner radii than at outer radii when it is operated at lower
advance ratios, as in climbing flight.

Traditionally propellers have been built with flat bottom airfoil sections
such as the Clark Y. Considering the large thickness-to-chord ratios needed
structuraltly at the inner radii, and the inherent variation of |ift coefficient
with camber (proportional fo thickness-to-chord ratio), one can design the pro-
peller to operate with radially constant zero angle of attack. In this case

the propeller will have constant "true geometric pitch", given by:
Pgeomefric !
—m: W}\[I +§C], o =20 (27)

Modern computational airfeil theory (ref. 5) shows that the [ift coefficient
for Clark Y airfoils of varying thickness-to-chord ratio is given by

cq = 0.062 + 4.21(1/c) + 0.0971 a°; 0.07 < = < 0.19
when they are operated at a Reynolds number of [ x IO6 and a Mach number of 0.2.

The theory presented so far has assumed uniform flow at flight velocity V
Through the propeller disc at vanishingly small values of . This is not a
realistic assumption for propellers turned by direct drive piston engines which
are often quite large compared to the propeller radius. |[|f the axial velocity
distribution, averaged around the propeller disc at radius r, is given by uV,
iT is customary to "depitch the propeller" (u(£)<l) so that the blade angle is
given by

B = fan| %%[I . %} r o (28)

This has the effect of preserving the prescribed circulation function.
The performance consequences of propeller-fuselage intferaction are considered

in the next section.
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PERFORMANCE OF ARBITRARY PROPELLERS

Unlike an untwisted elliptical planform wing, which has elliptic loading
over a range of angles of attack, a minimum-induced loss propeller has minimum
induced loss loading only at it+s design advance ratio. An arbitrary propeller
theory is needed to calculate its off-design point performance, or the perfor-
mance of any general propeller. The theory given here is a radially graded
momentum theory like Glauert's (refs. 6 and 7), but it will return the design
performance of a minimum induced loss propeller when applied to the design
conditions and geometry calculated by the methods described before.

The axial and swirl components of the induced velocity at the blade ele-
ments are found by setting the changes of axial and swirl momentum within a
given annulus of the slipstream equa! to the axial and torque loading of the
corresponding blade elements as shown in figure 4:

dT _ —
IF = 2mrpV EP + a) 2FaV
p .2 [u+ a Bc
= = _ — 29)
2 v [sxn [0 [ZWr]Zﬂr Cy (
199~ onrov (T + a) 2Fra
r dr -
_ P 2 fu+ af|Bc
=5 v [ETTTT?r{EﬁFJZWF C>< (30)
where (see figure 4)
_ -Ifv (u+a)
(b = tan [Q_r‘ (I—_a—'—)] (31)
Cy = Cgy cos ¢ - Cq Sin o} (32)
C>< = Cp sin ¢ + Cq cos ¢ (33)

In The absence of the propeller, the velocity in the flow field about the
fuselage or nacelle is assumed to be given by an average axial component u and
an average radial component v at a distance r from the propeller shaft.

We account for only the axial component

u = u/v (34)
Equations 29 and 30 can be solved for the induced velocity components in

terms of the dimensionless Thrust and torque loading:
oC

= l_ y _I_ g = _B_.(_:_
T+4 A sin2¢ F 2mr (35)
oC
a' | X |
l = a' 4 sing cos¢p F (36
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Equations similiar fo these appear in Glauert's article in Durand's "Aerodyna-
mic Theory" (ref. 7), with The vortex spacing factor F in the numerator in-
stead of the denominator, just as his widow and R. McKinnon Wood left them.

The induced velocity components are evaluated at each radial station by an
iterative process outlined below:

At each value of & the following are known:

g: >\) F; g, B, u,; C,Q, = CQ(G), Cd = Cd(C,Q,)
Choose Q)

Calculate ¢al =B - a

Calculate Cor Sy
Calculate Cy’ C>< (eqs. 32 and 33)

Calculate a and a' (egs. 35 and 36)

B -1 {x (4 + a)
Calculate Cbal = tan [E Tﬁ—)}
Calculate ¢a| - ¢a|
if ¢a - ¢a > 0, a5 < o

! {
if ¢a - ¢a < 0, o, > o
[ I

Iterate until |¢a - ¢a | is less than some small quantity.
n n
Retain¢ , C , C , a_, a!
n® Tyt ox n n
The wing theory analog of this computation is to suppose that the induced angle
of attack at any spanwise station y of a non-elliptically locaded wing of span b
is given by
(c/blc
=1 % (37)

oLinduc:ed 4 >
Y1 - (2y/b)

where ¢ and cq are the chord and section |ift coefficient at the same station.

The quantity VI - (2y/b)2 vanishes at y = b/2 in the same way that F vanishes
at r = R, and it may be shown that equation 37 yields “induced::CL/“(bz/S) for
an elliptically loaded wing of elliptic planform.

The values of ¢, C,, Cy, and a' are then integrated radially to find the
thrust load and the power absorption of the propeller in the fuselage (or
nacelle) flow field. These may be conveniently written in fterms of coeffi-
cients based on the shaft speed n (revolutions/sec)

C, = ! Z (D = 2Z2R) (38)

T pn2D
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_ P
CP = G (39)
pn"D
Cr_ o (1 -a)? 2c (40)
dg 4 |cos ¢ Y
EEE.: Eﬁ. l_:_EL.Z g4gC (41)
d& 4 {cos ¢ X

The a', cos ¢ choice is preferred for numerical precision over the a, sin ¢,
u choice.

The thrusting propeller is surrounded by a static pressure field with an
appreciable axial variation, both upstream and downstream. Koning (ref. 8)
has estimated its value:

T downstream;
_éf% = + 7§- | - x/R ] tractor propeller (42)
7V /(x/RVZ + |
AP TC /R upstream;
v I | + —=———|  pusher propeller (43)
7V V(x/RZ + |

Here x is distance downstream from the propeller. This axial pressure gradient
causes the propeller-bearing-fuselage or nacelle to have a buoyancy drag given
by

ds
ACD = é— fg Lé%ﬂ kﬁfqub (44)
buoyancy ref O %M b

where S_. ¢ is the reference area for drag coefficients, & is the body length,
and 3, is the body cross section area at the distance x, behind the body nose.
The net thrust of the propeller-body combination is then given by,

Sref ACDbuoyancy

CT = CT {I - 5 ] (45)
n TR
while the installed efficiency of the propeller becomes
CTn(ﬂA) CTn(V/nD) s
n = = 46
CP CP
Figure 5 shows an application of the arbitrary propeller theory just des-
cribed to the prediction of the performance of a scale model of a light air-
plane propeller when tested as an "isolated" propeller, and when run at the
nose of a representative fuselage. This theory is computationally more demand-
ing than the design theory presented in the previous section since it requires
extensive estimates of the propeller airfoil section properties at several
radii, a good estimate of The three dimensional flow field surrounding the
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fuselage (or nacelle) at the propeller location, an iteration procedure to de-
termine the induced velocities, and numerical integrations to determine blade
loading and body buoyancy drag in the propeller pressure fileld. Limited ex-
perience with it at M.1.T. shows that it gives reasonable results, and these
are being experimentally confirmed (1979). In common with other radially
graded momentum theories it fails to ftake account of the effect of circulation
at every radial station on the downwash (or "inflow") at a particular station,
but it is made fo be consistent with the induced velocity pattern for a mini-
mum induced loss propeller through Prandtli's analytic vortex spacing velocity
fraction F rather than through tabulated values of Goldstein's circulation
function. The next step up to a "prescribed" or "free'" discrete vortex model
of the "rotor" and its "wake" is much more diffcult.

APPLICATIONS

(1) Man powered airplane. Here we redesign the "Gossamer Condor" propeller.
The design conditions, summarized in figure 6, correspond fo climbing flight in
ground effect at an angle of 1°; approximately 30% of the 53.3 N (11.8 Ibs) of
thrust is required to overcome the component of airplane weight along the
flight path. The figure shows the radial variation of profile D/L ratio and
the radial gradients of the integrals I, Io, J|, and Jp. The design thrust
coefficient, To = 0.3175, requires a displacement velocity ratio, ¢ = 0.2671,
which corresponds to a power coefficient, P. = 0.3914, and an efficiency,

n = 0.8113. The powerplant output required is 328 watts (0.44 hp).

Since the displacement velocity ratio is moderately large, it is worth-
while To recalculate the thrust coefficient and the power coefficient using
egs. 21-24. The results are summarized in figure 7, which also compares the
propel ler geometry determined by The methods of this paper with the geometry
actually employed. The agreement of blade angles is very good, especially
when one takes into account the difference between the zero |ift angles of the
Clark Y airfoils assumed in the design calculations and the Stratford pressure
recovery airfoils used on the "Gossamer Condor". In my opinion the propeller
calculated here would be more efficient than the one actually flown.

(2) Powered hang glider. Socarmaster, Inc. supplies a powerpack consisting of
a West Bend (Chrysler) two stroke, single cylinder engine developing 7.46 kW
(10 hp) at 10,000 rpm, a centrifugal clutch, a chain and sprocket reduction
gear, and an extension shaft turning a pusher propeller. This is a suitable
powerplant for hang gliders of 12 m (40 1) span; figure 8 presents the options
available for propellers intended to absorb the engine power at a flight speed
of 13 m/sec (30 mph). The diameter of the direci drive propeller is Iimited
to 690 mm (27 in) by a tip Mach number of 0.85; its efficiency is very poor
because of the excessive disc loading. Gear reductions and larger propellers
lead to progressive improvements in performance. Figure 9 gives the geometry
of the largest propeller considered, a 1372 mm (54 in) diameter propeller
turned at 1946 rpm by a 9:37 sprocket pair driven at 8000 rpm. [+ has 617 mm
(24 in) nominal pitch, and the typical wide root chord - narrow tip chord
geometry of a propeller matched to a low advance ratio; this is in spite of a
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design |ift coefficient of | near the hub and 0.5 at the fip. Soarmaster
supplies two propeller options: a 1067 x 483 mm (42 x 19 in) or an 1118 x 356
mm (44 x 14 in) "laminar" airscrew, . both of fiber reinforced plastic.

Table 2 summarizes the propeller parameters covered in this study: when
two values are given for Te, Pe, and n, the second set corresponds to the
improved velocity polygon geometry corresponding to eqs. 21-24; note the rela-
tively good agreement, even for ¢ values of more than |. Examination of
figure 9 and Table 2 suggests that still larger propellers and larger reduction
ratios would improve climbing performance; this has to be balanced against The
weight penalty and the reduction of ground clearance at the tail.

(3) Motorsoarer. The Ryson ST-100 is a 17.58 m (57.67 ft) span two seated
aircraft, with a flying mass of 748.4 kg (1650 |bs), fitted with a Hoffmann
HO-V-62 propeller of 1.7 m (67 in) diameter. This propeller has a low pitch
setting, a high pitch setting, and can be feathered for glider mode operation.
Figure 10 shows three design points which might be considered in the selection
of such a propeller: sea level climbing performance at 40 m/sec (90 mph);

sea level top speed at about 68 m/sec (152 mph); and cruise at 75% power at
full throttlie at 1981 m (6500 ft+) altitude and 65 m/sec (145 mph). The circled
points show the performance that may reasonably be expected from minimum
induced loss propellers designed for each of these flight conditions by the
methods of the paper.

Figure !l shows how a compromise propeller may be designed which will
give nearly this performance at two of these points. The displacement veloci-
ties are calculated assuming minimum induced loss loading and a somewhat pessi-
mistic radial distribution of D/L ratio. Blade |ift coefficients are assigned
at £ = 0.3 and £ = 0.7 so that the blade chord to radius ratio, c¢/R, as given
by equation 26, is the same for both flight conditions. The ¢/R ratio is then
calculated at other radii, assuming a linear radial variation of cy.
Reasonable assumptions are then made about the radial variation of thickness
to chord ratio, t/c, to give the radial variation of blade angle {(eq. 28).

The compromise ¢/R ratio and blade twist, AR, are then chosen to minimize
di fferences between the two conditions. |In general, highly loaded, low
advance ratio flight conditions demand high |ift coefficients near the hub
Betz (ref. 9) was of the opinion that Coriolis forces within the rotating
blade boundary layer favored such a distribution.

REFERENCES

I. Betz, Albert (with an appendix by Ludwig Prandt!): Schraubenpropeller mit
geringstem Energieverlust (Screw propellers with Minimum Energy Loss).
Goettingen Reports, 1919.

2. Coldstein, Sidney: On the Vortex Theory of Screw Propellers. Proceedings
of the Royal Society, 1929 (his doctor's thesis).

295



TS re—@O-+-T00

296

N

Larrabee, E. Eugune: Practical Design of Minimum Induced Loss Propellers.
SAE preprint for the April 1979 Business Aircraft Meeting and Exposition,
Wichita, Kansas.

Theodorsen, Theodore: Theory of Propellers. McGraw-Hill Book Company, Inc.
1948.

Smetana, Frederick O., et al.: Light Aircraft Lift, Drag, and Moment Pre-
diction - A Review and Analysis. NASA Contractor's Report CR-2523,

Glauert, H.: Elements of Aerofoil and Airscrew Theory. Cambridge, 1926.

Glauert, H.: Airplane Propellers. Div. L, Vol |V of Durand's "Aerodynamic
Theory" Springer Verlag 1935; also Dover reprint.

Koning, C.: Influence of the Propeller on Other Parts of the Airplane
Structure. Division M, Vol IV ibid.

Betz, Albert: Hoechsauftrieb von Fluegeln an umlaufenden Raedern (Maximum
Lift of Blades on Running Rotors). Flugwissenschaft 9 (1961) Heft 4/5
Seiten 97-99.

TABLE |
SYMBOLS AND NOTATION (follows Glauert; ref. 8)

axial component of induced velocity (m/sec)
rotational (swirl) component of induced velocity (m/sec)
number of blades

wing span (m)

blade chord (m)

section (profile) drag coefficient

section (profile) lift coefficient

wing lift coefficient

power coefficient (Cp = P/on-D2)

thrust coefficient (Cp = T/pn2D%)

blade element torque load coefficient

blade element +hrust load coefficient

drag; also propeltier diameter (m)

stipstream velocity fraction (eq. 5)

vortex sheet spacing parameter (eq. 3)

circulation radial distribution function (egs. 10,11)
thrust loading integrals (egs. 16,17)

1,J2 power loading integrals (egs. 18,19)

[ift
revolutions per second
shaft power (kW)



power coefficient (P = 2P/p V3wR2)

Pe
Q propeller shaft torque (Nm)
R propeller tip radius (m)
r propeller general radius (m)
S wing plan or fuselage cross section area (m?)
T Thrust (N)
Te thrust coefficient (To = 2T/oV21RZ)
u axial vetocity of fuselage flow field at r (m/sec)
uV average axial velocity at r (m/sec)
v flight velocity (m/sec)
v radial velocity of fuselage flow field at r (m/sec)
v! displacement velocity (m/sec); see fig. 1 N
W resultant velocity at blade element (W = V + ﬁ; + w)(m/sec)
W induced velocity at blade element (w = aV + a'Qr)(m/sec)
We slipstream velocity (incremental){m/sec)
X velocity ratio (x = Qr/V)
% spanwise location (m)
o section angle of attack (rad); a° (degrees)
B section blade setting angle (rad); B°® (degrees)
r circulation (m/sec)
C displacement velocity ratio (g = v'/V)
n efficiency (n = Te/Pe = (V/nD)CT/Cp)
A advance ratio (A = V/QR)
3 radius ratio (£ = r/R)
o air density (kg/m3)
o blade solidity (o = Bc/27r)
¢ helix angle (rad); ¢ = B - o
Q shaft speed (rad/sec)
TABLE 2

POWERED HANG GLIDER PROPELLERS

V = 13,4} m/sec (30 mph)

7.457 kW (10 hp) @ 8000 engine rpm

o = 1.225 kg/m3 (760 mm Hg, 15°C)
Gear 2R piftch
Ratio m Pe 5 Te n diameter ™
(S 0.690 13.500 2.544 4.650 0.344 0.356 0.146
9:27 1.000 6.426 1.778 2.888 0.449 0.507 0.288
9:27 [.219 4,323 1.283 2.179 0.504 0.361 0.220

3.881 | —=—=—~- 2.103 0.541
9:37 1.372 3.348 {.151 |.840 0.550 0.450 0.301
3.145 e 1.821 0.579
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16 1 VORTEX SHEET MOTION
MINIMUN INDUCED LOS5 FPROPEILER

’ 2
= U (05
wax/a/ ’é

’ .
Wewiv? = vcos;ésmgé
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6. 3 RADAL CIRCULATION DISTRIBUTIONS

MINIMUM INDUCED LOSS PROZELERS

B/

/]

B[ = 271'/‘/_'U"(a.r¢:/n¢

BQ/_’ _ sz oy = (2r
2TV e x3+q ? - —'[7:
BETZ w. PRANOTL

FlG 4 f4DALLY GRADED HOMNTUM THEORY
INOUCED VELOCITY CALCULATION

VAR
e or  _a 1o o
’/ “[\l ar a+a £ sin‘p F7
—‘{l—°) T 140 a1 G 1
Y N/ rar T (a4 singcosp F
/ — Bce
1N _u = Z2£
¢ @A 1+a
\(/* ¢~_-/8—d =l"anl[gT' 1_31}
') c N V] alV
@l o C, = _
N der\ay YT oS - g
£ 5ing + <y Cos &
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F16.5 RADUALLY GRADED MOMENTUM THEORY
2 scare mccauLEy 1160

o7 r

G

oa5

CAlculaTioNs FY
PeTEe DUNBECK

/SOLATED

~—— GROSS | p/17
e 7\ Boor

F16. & PROPELLER DESIGN FUNCTIONS

{1

MAN DOWERED A/RPLANE

B=2 A=0227 R =1.905m (6.25 F*)

V=5 m/sec (11.2 mph)

@ = 11.52 rad /sec (110 rpm)

T =533N (11.8 lbs; [ °climb)
P = 1178 kg/m?

i = dL/dE I, =12125
ig = al [dg I, = 0.0668

Jq = d«];/dg J; = 13157
o TARME = 05626

Te = 03175 —» $=0 2671
R =03914% m=0613

wA[1+5] = 0.6




F7G. 7 PROPELLER GEOMETRY

L £ MAN POWERED AleRAbE
®

o ' ' : ! o.5 !

V1N

7 = 0.3167 v = 0.8204

=02671 7 2
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FIG. 9 FPROPELLER GEOMETRY
POWERED HANG GLIDER
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F1G. 10 POSS/BLE DLSIGN POINT PERFORMANCE
RYSON ST-100 MOTORSOARER.
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F7G. 17 COMPROMISE PROPFLLER GFOMETRY
' RYSON ST-100 AOTORSOARER
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