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SUMMARY 

An efficient method has been developed for the design of propellers of 
minimum induced loss matched to an arbitrary operating point characterized by 
disc loading (thrust or power), air density, shaft speed, fl ight speed, and 
number of blades. A consistent procedure is outl ined to predict the perfor
mance of these propellers under off-design conditions, or to predict the per
formance of propellers of general geometry. These procedures are particularly 
helpful for motorsoarer constructors and propeller builders constrained to 
use unusual powerplants under unusual conditions. The examples discussed 
include a man powered airplane, a hang gl ider with a 7.5 kW (10 hpj 8,000 rpm 
engine, and an airplane-I ike motorsoarer. 

INTRODUCTION 

For wings and propellers al ike, there are spanwise or radial circulation 
distributions which minimize the kinetic energy loss associated with the gener
ation of I ift or thrust. These circulation distributions give rise to simple 
induced velocity distributions which help determine efficient wing or blade 
geometry. Everyone is fami I iar with the ell iptic span loading and the corres
ponding uniform downwash velocity of the vortex sheet shed by a wing of mini
mum induced drag, but not so many are fami I iar with the Betz-Prandtl (ref. I) 
or Goldstein (ref. 2) radial circulation functions and the corresponding uni
form "displacement velocity" of the hel icoidal vortex sheets shed by a propel
ler of minimum induced loss. The purpose of this paper is to demonstrate the 
appl ication of these ideas to geometry determination and performance prediction 
for prope I I ers of motorsoarers and other unusua I aircraft. I have discussed 
some of these ideas in another paper (ref. 3). See Table I for notation used 
in this paper. 

THE DISPLACEMENT VELOCITY 

Consider an elementary hel ical vortex fi lament lying in an hel icoidal 
vortex sheet which forms part of the sl ipstream of a propeller, as shown in 
figure I. The vortex fi lament is constrained to move everywhere perpendicular 
to itself with a velocity ws ' which is the same as th~ local sl ipstream velo
city. If the fi lament hel ix angle is ¢s' the axial velocity of the fi lament 
is Ws cos ¢s and its angular velocity is Ws sin ¢s!rs, where rs is the hel ix 
radius. If we were unaware of the hel ix angular velocity, however, we would 
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suppose that it had only a displacement velocity v' = ws/cos ~s,' in the same 
way that a rotating barber pole has a displacement velocity even though it 
has no axial velocity. 

Betz, in reference I, was the first to show that the condition f9r mini
mum induced loss operation of a propeller (or a windmi I I, for that matter) 
corresponds to radially constant displacement velocity. The axial and swirl 
components of the vortex sheet motion are then given by 

2 w . = v' cos ~ aXial 'l's ( I ) 

(2) 

MOTION OF THE ENTIRE SLIPSTREAM 

Prandt I, in an append i x to reference I, po i nted out that the s I i pstream 
fluid between the vortex sheets moves at a fraction F of the sheet velocity, 
which he evaluated by analogy with the known solution for the flow about an 
infinite array of semi-infinite plates moving perpendicular to themselves with 
velocity v, as shown in figure 2. The plate solution spacing parameter, f, is 
recalculated according to the hel icoidal vortex sheet spacing and the radial 
distance from the outer edges of the sheets: 

f 

Here A is the advance ratio 

/ 
B /A

2 
+ I (I 

2 A 
.!:.) 
R 

A = V/DR = (V/nO)/rr 

(3) 

(4 ) 

and B is the number of blades; sl ipstream distortion is neglected. The corres
ponding average axial and swirl velocities at a certain radius in the sl ip
stream are then 

F v' 2 
~s w axial cos ( I a ) 

w swirl F v' cos ~ sin ~s s 
(2a) 

F (2/rr) -I (e- f ) cos (5 ) 
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THE RADIAL CIRCULATION DISTRIBUTION 

The radial circulation function corresponding to this minimum induced loss 
sl ipstream motion is found by setting the circulation about a sl ipstream tube 
equal to the total vorticity trai led by the blades at the corresponding radius, 
and introducing "I ight loading" approximations: 

Bf == 2'IT rs F VI cos 

r == r 
s 

<P ~ ta n - I (V /0,r) 

,j, sin,j, 
'Ys 'Ys (6) 

(7) 

(8) 

(9) 

The resulting circulation function is conveniently.written in a normal ized form 

Brlf 
2'ITVv' 

(G for Goldstein or Glauert) where 

x == 0,r/V 

( 10) 

(r/R)/A. ( I I ) 

Equation 10 seems too simple to be true. Goldstein, in his doctor's 
thesis (ref. 2), verified its essential correctness, however, for propellers 
operating at low advance ratios or with many blades, where the vortex sheets 
are nearly flat, paral lei, and closely spaced. The Prandtl-Betz and Goldstein 
circulation functions are compared in figure 3. It should be noted that a 
radial plot of G is identical with a radial plot of the ratio of the average 
axial sl ipstream velocity (increment) to the displacement velocity. 

DETERMINATION OF THE DISPLACEMENT VELOCITY 

Fol lowing Goldstein (ref. 2) we relate the displacement velocity to the 
disc loading (thrust or torque) by resolving Joukowsky's law into two orthogo
nal components: 

(d ~) = p str (I - a') fB 
dr L 

( 12a) 

( I 2b) 

Here the subscript "L" means that only the I ift forces are being considered, 
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and a' and a are the swirl and axial components of the induced velocity at the 
I ifting I ines. Retaining the I ight loading assumptions, and taking the induced 
velocities to be half the vortex sheet velocities in the developed sl ipstream, 
we obtain: 

a' 
I v' 

"2 Qr cos ¢s sin 

a 
I VI 2 

- - cos ¢ 2 V s 

¢ ~l(~) s 2 V 

; ~ [~'l/: 
2 

x + I 

The circulation is given by the Betz-Prandtl approximation: 

The blade profi Ie drag contributions to thrust and torque are 

(~~) 0 (~ dL 
¢ 

0 (dT) I - sin -
L dr L x dr 

(' dQ J - + U~-J ~ cos ¢ + 0 [I dQ J - L -rdrL x r dr 0 L dr 

( 13a) 

( I 3b ) 

( 10 restated) 

given by 

( 14a) 

( I 4b ) 

The radial gradients of thrust coefficient, Tc -
cient, Pc = 2P/pV3TIR2, finally may be written as 

2T/PV2TIR2 , and power coeffi-

( I 5a ) 

( I 5b ) 

where t;, - r/R, s VI/V, and 

dI I _ [I _ Dx/LJ d["-4t;,G ( 16) 

dI2 
t;, G [I - D~L)L21+ 

I) 
-= 2 
dt;, 

( 17) 

dJ I 
4 t;, G (I +~xJ d[" - ( 18) 

dJ 2 
(I + ~ x J C2 

2 

I) 
2 t;, G x --a-r- -

+ 
( 19) 
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Equations 16, 17, 18, and 19 can be numerically integrated radially to give 
four integrals 11,12> JI' and J 2 which depend only on A and B and the pre
sumed radial distribution of profi Ie D/L ratio. The displacement velocity 
ratio is then easi Iy found with these integrals and the propeller disc loading: 

l;; = _1_1 [I _ ;; 
212 

(thrust) (2Ga) 

(2Gb) 

Equations 2Ga and 2Gb are the propeller counterpart of the induced angle of 
attack of an ell iptically loaded wing, CLhr(b2/S)' 

I f the prope I I er is to absorb a given amount of power, one ca I cu I ates the 
power coefficient, Pc' and the displacement velocity ratio, l;;, from equation 2 
2Gb; the thrust coefficient and the efficiency are then given by Tc = IIl;;-I2~ 
and n = Tc/Pc ' respectively. The alternate procedure, when the thrust IS spec
ified, is obvious. 

For moderately loaded propellers operating at low advance ratios, 
equations 2Ga or 2Gb may give values of l;; which are large compared to A. 
In this case a second approximation of the radial gradients of thrust and power 
coefficient is given by 

dT 

(~J (cos 
0 

<pJ 
c 4 l;; A G <p - sin """d[" L (2 I ) 

dP 

G [~J (sin 
0 

<pJ 
c 4 l;; E;, ~- <p + L cos (22) 

where 

(23) 

and 

~ = ;(2 + I - (~l;; cos <pJ2 (24) 

Equations 21 and 22 can then be integrated radially to find better values of T 
and Pc appropriate to the value of l;; obtained from equation 2Ga or 2Gb. c 
Fol lowing Theodorsen (ref. 4), one might consider a third level approximation 
in which G(A,8) is recalculated with a "vortex advance ratio", Av = A(I+l;;/2), 
to account for sl ipstream distortion. 
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DETERMINATION OF THE PROPELLER GEOMETRY 

The propeller chord distribution is control led by the choice of lift 
coefficient for the required circulation: 

I W2 W r W 2~Vv' (G) "2 p c c £ = p = P B~ (25 ) 

c 47TA 
This can be written as ~ - B (26) 

Lift coefficients must be chosen with regard to structural constraints on 
thickness-to-chord ratios at inner radii and local Mach numbers at outer radi i; 
also they must be consistent with the OIL ratios that have been used to find s. 
Some consideration must be given to off-design conditions as wei I; for example, 
a propeller designed for cruise can be expected to develop larger I ift coeffi
cient increases at inner radi i than at outer radi i when it is operated at lower 
advance ratios, as in cl imbing fl ight. 

Traditionally propellers have been bui It with flat bottom airfoi I sections 
such as the Clark Y. Considering the large thickness-to-chord ratios needed 
structurally at the inner radi i, and the inherent variation of I ift coefficient 
with camber (proportional to thickness-to-chord ratio), one can design the pro
peller to operate with radially constant zero angle of attack. In this case 
the propeller wi II have constant "true geometric pitch", given by: 

geome ric = A I Pt· [ I) 
Diameter 7T + "2 s , 0.=0 (27) 

Modern computational airfoi I theory (ref. 5) shows that the I ift coefficient 
for Clark Y airfoi Is of varying thickness-to-chord ratio is given by 

c£ = 0.062 + 4.21 (tic) + 0.0971 0.0; 0.07 < f < 0.19 

6 when they are operated at a Reynolds number of I x 10 and a Mach number of 0.2. 

The theory presented so far has assumed uniform flow at fl ight velocity V 
through the propeller disc at vanishingly small values of s. This is not a 
real istic assumption for propellers turned by direct drive piston engines which 
are often quite large compared to the propeller radius. If the axial velocity 
distribution, averaged around the propeller disc at radius r, is given by uV, 
it is customary to "depitch the propeller" (u(t;;l<I) so that the blade angle is 
given by 

(28) 

This has the effect of preserving the prescribed circulation function. 
The performance consequences of propeller-fuselage interaction are considered 
in the next section. 
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PERFORMANCE OF ARBITRARY PROPELLERS 

Unl ike an untwisted el I iptical planform wing, which has el I iptic loading 
over a range of angles of attack, a minimum-induced loss propeller has minimum 
induced loss loading only at its design advance ratio. An arbitrary propeller 
theory is needed to calculate its off-design point performance, or the perfor
mance of any general propeller. The theory given here is a radially graded 
momentum theory I ike Glauert's (refs. 6 and 7), but it wi I I return the design 
performance of a minimum induced loss propeller when appl ied to the design 
conditions and geometry calculated by the methods described before. 

The axial and swirl components of the induced velocity at the blade ele
ments are found by setting the changes of axial and swirl momentum within a 
given annulus of the sl ipstream equal to the axial and torque loading of the 
corresponding blade elements as shown in figure 4: 

where (see figure 4) 

dT 2mp V (u + a) 2FaV "Ci"r-

~ V
2 (u. + aJ(~J 2nr 2 sin c/l 2nr 

~ dQ = 2nrpV (u + a) 2F~ra' 
r dr 

= ~ V2 (u. + a f(~) 2nr 2 sin c/l 2nr 

-I(V (u+a») 
c/l = tan ~ (I - a') 

C 
Y 

Cx = c~ sin c/l + cd cos c/l 

C (29) 
y 

C (30) 
x 

(31 ) 

(32) 

(33) 

In the absence of the propeller, the velocity in the flow field about the 
fuselage or nacel Ie is assumed to be given by an average axial component u and 
an average radial component v at a distance r from the propeller shaft. 
We account for only the axial component 

u = u/V <34 ) 

Equations 29 and 30 can be solved for the induced velocity components in 
terms of the dimensionless thrust and torque loading: 

crC 
a y ~. cr = Bc 

= 4 2 F' - 2nr (35) 
u + a sin c/l 

- a' 

crCx I 

'4 sinc/l cosc/l F 
(36) a' 

291 



Equations simi I iar to these appear in Glauert's article in Durand's "Aerodyna
mic Theory" (ref. 7), with the vortex spacing factor F in the numerator in
stead of the denominator, just as his widow and R. McKinnon Wood left them. 

The induced velocity components are evaluated at each radial station by an 
iterative process outl ined below: 

At each value of ~ the fol lowing are known: 

C A, F, a, S, u· C := cQ,(a), cd := cdCcQ,) , Q, 
Choose al 

Calculate <Pal := S - a l 
Calculate cQ,' cd 

Calculate C , C (eqs. 32 and 33) y x 

Ca leu I ate a and a' (eqs. 35 and 36) 

Calculate ,f, 't'a 
I 

Calculate ¢ 
a l 

if <P - ¢ 
a l a I 

:= tan-I ([ ~~ ~ :;)J 

if <P - <P < 0, a
2 

> a
l a l a I 

Iterate unti I I¢a - ¢a is less than some small quantity. 
n n 

Retain ,f, , C , C a a' 
't'n Yn xn ' n' n 

The wing theory analog of this computation is to suppose that the induced angle 
of attack at any spanw i se stat i on y of a non-e I I i pt i ca I I Y loaded wing of span b 
is given by 

a := 
induced 

I (c/bkQ, 

4 Ii _ (2y/b)2 
(37) 

where c and CQ, are the chord and section I ift coefficient at the same station. 

The quantity /1 - (2y/b)2 vanishes at y := b/2 in the same way that F vanishes 
at r := R, and it may be shown that equation 37 yields ainduced = CL/7T(b 2/S) for 
an el I iptical Iy loaded wing of el I iptic planform. 

The values of ¢, Cy, CX' and a' are then integrated radially to find the 
thrust load and the power absorption of the propeller in the fuselage (or 
nacel Ie) flow field. These may be conveniently written in terms of coeffi
cients based on the shaft speed n (revolutions/sec) 

C = T (D = 2R) 
T 204 pn 

(38) 
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Cp 
P 
3

0
5 

Pn 
(39) 

dCT 3 (I - a'J2 ~3ac 7T 
~- 4 cos cp Y 

(40) 

dCp 7T
4 (I - ,t 4 

~- 4 cos: ~ acx 
(41 ) 

Ihe a', cos cp choice is preferred for numerical precision over the a, sin cP, 
u choice. 

The thrusting propeller 
appreciable axial variation, 
has estimated its value: 

is surrounded by a static pressure field with an 
both upstream and downstream. Koning (ref. 8) 

flp = + T2c (I 
.£ V2 
2 

flP 

e.. V2 
2 

T 
c 

2 

x/R J 
/(x/R)2 + I 

x/R J -

/(x/R)2 + 

downstream; 
tractor propeller 

upstream; 
pusher prope I I er 

(42) 

(43) 

Here x is distance downstream from the propeller. This axial pressure gradient 
causes the propel ler-bearing-fuselage or nacel Ie to have a buoyancy drag given 
by 

flC
O buoyancy S ref 

(44) 

where Sref is the reference area for drag coefficients, £ is the body length, 
and Sb is the body cross section area at the distance xb behind the body nose. 
The net thrust of the prope I I er-body comb i nat i on is then given by, 

C = C I _ ref buoyancy 
( 

S flCO 

T T R2 n 7T 

whi Ie the instal led efficiency of the propeller becomes 

n = 
C

T 
(V/nO) 

n 

(45) 

(46) 

Figure 5 shows an appl ication of the arbitrary propeller theory just des
cribed to the prediction of the performance of a scale model of a I ight air
plane propeller when tested as an "isolated" propeller, and when run at the 
nose of a representative fuselage. This theory is computationally more demand
ing than the design theory presented in the previous section since it requires 
extensive estimates of the propeller airfoi I section properties at several 
radi i, a good estimate of the three dimensional flow field surrounding the 
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fuselage (or nacel Ie) at the propeller location, an iteration procedure to de
termine the induced velocities, and numerical integrations to determine blade 
loading and body buoyancy drag in the propeller pressure field. Limited ex
perience with it at M. I.T. shows that it gives reasonable results, and these 
are being experimentally confirmed (1979). In common with other radially 
graded momentum theories it fai Is to take account of the effect of circulation 
at every radial station on the downwash (or "inflow") at a particular station, 
but it is made to be consistent with the induced velocity pattern for a mini
mum induced loss propeller through Prandtl 's analytic vortex spacing velocity 
fraction F rather than through tabulated values of Goldstein's circulation 
function. The next step up to a "prescribed" or "free" discrete vortex model 
of the "rotor" and its "wake" is much more diffcult. 

APPLICATIONS 

(I) Man powered airplane. Here we redesign the "Gossamer Condor" propeller. 
The design conditions, summarized in figure 6, correspond to cl imbing fl ight in 
ground effect at an angle of 1°; approximately 30% of the 53.3 N (11.8 Ibs) of 
thrust is required to overcome the component of airplane weight along the 
fl ight path. The figure shows the radial variation of profi Ie D/L ratio and 
the radial gradients of the integrals I I, 12, J I' and J2. The design thrust 
coefficient, Tc = 0.3175, requires a displacement velocity ratio, s = 0.2671, 
which corresponds to a power coefficient, Pc = 0.3914, and an efficiency, 
n = 0.8113. The powerplant output required is 328 watts (0.44 hp). 

Since the displacement velocity ratio is moderately large, it is worth
whi Ie to recalculate the thrust coefficient and the power coefficient using 
eqs. 21-24. The results are summarized in figure 7, which also compares the 
propeller geometry determined by the methods of this paper with the geometry 
actually employed. The agreement of blade angles is very good, especially 
when one takes into account the difference between the zero I ift angles of the 
Clark Y airfoi Is assumed in the design calculations and the Stratford pressure 
recovery airfoi Is used on the "Gossamer Condor". In my opinion the propeller 
calculated here would be more efficient than the one actually flown. 

(2) Powered hang gl ider. Soarmaster, Inc. suppl ies a powerpack consisting of 
a West Bend (Chrysler) two stroke, single cyl inder engine developing 7.46 kW 
(10 hp) at 10,000 rpm, a centrifugal clutch, a chain and sprocket reduction 
gear, and an extension shaft turning a pusher propeller. This is a suitable 
powerplant for hang gl iders of 12 m (40 ft) span; figure 8 presents the options 
avai lable for propellers intended to absorb the engine power at a fl ight speed 
of 13 m/sec (30 mph). The diameter of the direct drive propeller is limited 
to 690 mm (27 in) by a tip Mach number of 0.85; its efficiency is very poor 
because of the excessive disc loading. Gear reductions and larger propellers 
lead to progressive improvements in performance. Figure 9 gives the geometry 
of the largest propeller considered, a 1372 mm (54 in) diameter propeller 
turned at 1946 rpm by a 9:37 sprocket pair driven at 8000 rpm. It has 617 mm 
(24 in) nominal pitch, and the typical wide root chord - narrow tip chord 
geometry of a propeller matched to a low advance ratio; this is in spite of a 

294 



design I ift coefficient of I near the hub and 0.5 at the tip. Soarmaster 
suppl ies two propeller options: a 1067 x 483 mm (42 x 19 in) or an I I 18 x 356 
mm (44 x 14 in) "laminar" airscrew,. both of fiber reinforced plastic. 

Table 2 summarizes the propeller parameters covered in this study: when 
two values are given for Tc, Pc, and n, the second set corresponds to the 
improved velocity polygon geometry corresponding to eqs. 21-24; note the rela
tively good agreement, even for ~ values of more than I. Examination of 
figure 9 and Table 2 suggests that sti II larger propellers and larger reduction 
ratios would improve cl imbing performance; this has to be balanced against the 
weight penalty and the reduction of ground clearance at the tai I. 

(3) Motorsoarer. The Ryson ST-IOO is a 17.58 m (57.67 ft) span two seated 
aircraft, with a flying mass of 748.4 kg (1650 Ibs), fitted with a Hoffmann 
HO-V-62 propeller of 1.7 m (67 in) diameter. This propeller has a low pitch 
setting, a high pitch setting, and can be feathered for gl ider mode operation. 
Figure 10 shows three design points which might be considered in the selection 
of such a propeller: sea level cl imbing performance at 40 m/sec (90 mph); 
sea level top speed at about 68 m/sec (152 mph); and cruise at 75% power at 
ful I throttle at 1981 m (6500 ft) altitude and 65 m/sec (145 mph). The circled 
points show the performance that may reasonably be expected from minimum 
induced loss propellers designed for each of these fl ight conditions by the 
methods of the paper. 

Figure I I shows how a compromise propeller may be designed which wi I I 
give nearly this performance at two of these points. The displacement veloci
ties are calculated assuming minimum induced loss loading and a somewhat pessi
mistic radial distribution of OIL ratio. Blade I ift coefficients are assigned 
at ~ = 0.3 and ~ = 0.7 so that the blade chord to radius ratio, c/R, as given 
by equation 26, is the same for both fl ight conditions. The c/R ratio is then 
calculated at other radi i, assuming a I inear radial variation of c£. 
Reasonable assumptions are then made about the radial variation of thickness 
to chord ratio, tic, to give the radial variation of blade angle (eq. 28). 
The compromise c/R ratio and blade twist, 66, are then chosen to minimize 
differences between the two conditions. In general, highly loaded, low 
advance ratio fl ight conditions demand high I ift coefficients near the hub 
Betz (ref. 9) was of the opinion that Coriol is forces within the rotating 
blade boundary layer favored such a distribution. 
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J I , J 2 
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TABLE I 

SYMBOLS AND NOTATION (fol lows Glauert; ref. 8) 

axial component of induced velocity (m/sec) 
rotational (swirl) component of induced velocity (m/sec) 
number of blades 
wing span (m) 
blade chord (m) 
section (profi Ie) drag coefficient 
section (profi Ie) I ift coefficient 
wing I ift coefficient 
power coefficient (C :: P/pn 3D5) 
thrust coefficient (8T :: T/pn 2D4) 
blade element torque load coefficient 
blade element thrust load coefficient 
drag; also propeller diameter (m) 
sl ipstream velocity fraction (eq. 5) 
vortex sheet spacing parameter (eq. 3) 
circulation radial distribution function (eqs. 10, II) 
thrust loading integrals (eqs. 16,17) 
power loading integrals (eqs. 18,19) 
lift 
revolutions per second 
shaft power (kW) 



Pc 
Q 
R 
r 
S 
T 
Tc 
u 
uV 
v 
v 
V' 
W 
w 
Ws 
X 

y 

a 
B 
r 
1'; 

n 
A 
t;, 
p 
o 
cjl 
S"il 

Gear 

power coefficient (Pc:: 2P/pV3rrR2) 
propeller shaft torque (Nm) 
propeller tip radius (m) 
propeller general radius (m) 
wing plan or fuselage cross section area (m2 ) 
thrust (N) 
thrust coefficient (Tc :: 2T/pV2rrR2) 
axial velocity of fuselage flow field at r (m/sec) 
average axial velocity at r (m/sec) 
flight velocity (m/sec) 
radial velocity of fuselage flow field at r (m/sec) 
displacement velocity (m/sec); see fiS. 1+ + 
resultant velocity at blade element+(W ~ V + ~~ + w)(m/sec) 
induced velocity at blade element (w = aV + a'S"ilr) (m/sec) 
sl ipstream velocity (incremental )(m/sec) 
velocity ratio (x :: S"ilr/V) 
spanwise location (m) 

section angle of attack (rad); aO (degrees) 
section blade setting angle (rad); BO (degrees) 
circulation (m2/sec) 
displacement velocity ratio (s = v'/V) 
efficiency (n = Tc/Pc = (V/nD)CT/Cp) 
advance ratio (A = V/S"ilR) 
radius ratio (t;, :: r/R) 
air density (kg/m3 ) 
blade sol idity (0:: Bc/2nrl 
hel ix angle (rad); cjl B - a 
shaft speed (rad/sec) 

POWERED HANG GLIDER PROPELLERS 
V = 13.41 m/sec (30 mph) 

TABLE 2 

7.457 kW (10 hpj @ 8000 engine rpm 
p = 1.225 kg/m3 (760 mm Hg, 15°C) 

2R pitch 
Pc 1'; Tc Ratio n diameter m 

I: I 0.690 13.500 2.544 4.650 0.344 0.356 

9:27 1.000 6.426 1.778 2.888 0.449 0.507 

9:27 1.219 4.323 1.283 2.179 0.504 0.361 
3.881 ----- 2.103 0.541 

9:37 1.372 3.348 I. 151 1.840 0.550 0.450 
3.145 ----- 1.821 0.579 

nA I 
0.146 

0.288 

0.220 

0.301 

297 



298 

f7G / VO/?TE X SIIEET AfOT/ON 
/if/NIh/fiAt I/vOUCEiJiOSS PROPELLFR 

w ax,a! 
, z,tf 

=< II" cos ~ 
oJ' 

W-swiy! ;::; v 'cosd. silt ~ 
T; s 

176 2 PI?ANOTl..S 

s 

00 

..... , 
,. I \ 

I ;:-Lr'COS¢ sin¢> 
\ 
I 
I 

{i) f~ n-(n 
o tr 

2 -f( -f) r= ~ cos e 

00 



FIG. 3 RADIAL CIRCULATION DIST/1/BUT/OJ/S 
/IIIIN/frfUAf INDUCED LOSS PROPE.L1.Ei!S 
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/76 4 RADIALLY 6 RAlJEfJ AlOA1£AlTUAf THEORY 
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FIG. 5 RADIALLY GRADEO AlO;H£NTLJA4 TJlEORY 
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f7G. 7 PROPELLER 6EOMETRY 
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f7G. 9 PROPELLER GEOMETRY 
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/76. f/ CQUPROA1ISE :PROPELLER GFO"w£7RY 
~><s""ON ST - 100 #fO TOI2.SCN9RFR. 

:} = O./S 
--- CLIMB 

-'- C.l?ulS"E" 
• 60 \ 

0.2 1:. ; 0./0 \. -t9:::- . _ It: 
,8 1\\ 

~ /'/. ---=®, ...... ,. 
R . . ...... ,\ 

/ ~ 40" \ \ \ 
0 \ 

\ . 
\ \. , , 

"- 240· 
f ........ '0. ...... -\ , 

,/ . , 
~ ..... .......... 

~ " - ~O· " ---. -0 ...... '0 -~ "- '-
-- .... -. --+ -~~ L1;3 

~ -;t ---
'\ (8.2-

" ...... 
0 0 '~ I 

r -( r -::::::..-
0 0.5 ~ 

a R 0.5 '"'-1. 

303 


