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SUMMARY

The method treats wing configurations with trailing vorticity sheets of

arbitrary shape.

Induced angles normal to the wake are analytically formulated.

These, factored by the vorticity in the sheet, form the induced drag integral.
The vorticity is represented as a Fourier series in loading, then the unknown

Fourier coefficients can be determined after specifying the constraint conditions

then minimizing with respect to the Toading Fourier coefficients.

Exact analy-

tical solutions in terms of induced drag influence coefficients can be attained

which define the spanwise Toading with minimized induced

fied constraint condition

c L£an e
15, 1Ur dary

nonplanar wing shape
Closed exact solutions have been obtained for the planar

of 1ift plus wing bending moment about a given wing span

drag, subject to speci-

P Iy ST VPN
Or nunper vl wimnys.

e
wing with the constraints

station. Compared with

a wing with elliptic Toading having the same 1ift and same wing bending moment

about a span station, the induced drag can be of the order 15 percent less for

the wing with the inboard minimized-solution loading.

Example applications of

the theory are made to a biplane, a wing in ground effect, a cruciform wing,

a V-wing, and a planar-wing winglet.

For minimal induced drag the spanwise

loading, relative to elliptic, is outboard for the biplane and is inboard for

'the wing in ground effect and for the planar-wing winglet.

The theory can be

applied to determine the loading for minimal induced drag of wings in formation

flying, banked wings, flying in or near wake, and linked
can be an additional constraint.
mathematically exact equations for downwash and sidewash
sheet having an arbitrary loading distribution.

wingtips. No-roll

A spinoff of the biplane solution provides

about a planar vorticity



INTRODUCTION

Induced drag minimization theory is in a rapid development and use phase.
This is because of widespread interest in performance and structural advances
that possibly may be realized with unconventional aircraft configurations, or
by imposing structural and/or performance constraint conditions. Numerical
solutions of minimization theory have been programmed for computers, which
extends the application range of the theory. Unconventional aircraft include
such configurations as a wing with winglets; a biplane; a tandem wing; a cruci-
form; a V-wing, swept box wing; a strutted wing; a skewed wing; and a nonplanar
wing designed to lessen wing and fuselage bending moments. A structural con-
straint condition can be that the wing bending moment about a given span station
be minimum. A performance constraint condition can be an aircraft flying near
ground, a surface flying vehicle, or an aircraft in a flying formation.

Minimum induced drag solutions for planar wings with different structural
constraint conditions have been developed by several investigators. Dr. L.
Prandtl (ref. 1) in 1933 obtained a solution using the constraint that the
integral of the Tocal bending moment be specified. Compared with an 18.]
percent smaller span wing with elliptic loading, and the same 1ift and constraint
magnitude, the induced drag is 11.1 percent less. In reference 2, the constraint
condition is the wing-root bending moment. The solution for spanwise Toading is
obtained after the induced angle function is determined. Compared with a 25
percent smaller span wing with elliptic loading, and same 1ift and wing-root
bending moment, the induced drag can be 15.6 percent less. In reference 3 the
constraint condition also is the wing-root bending moment and the solution is
somewhat similar to that of reference 2. For approximating wing structural
weight, the integrals of wing shear force and of wing Tocal bending moment are
used as constraint conditions in reference 4. With these two constraints, the
induced drag can be 7.1 percent less when compared to the 13.8 percent smaller
span wing with elliptic loading and same 1ift and constraint magnitude.

Numerical solution vortex-lattice methods for computing the optimum span-
wise loading which results in minimum induced drag, have been developed in
references 5 and 6. These are quite adaptable to complicated nonplanar



configurations. In reference 5, the optimum loading calculation is based on
Munk's theorem III in which conditions are defined on the induced velocity.

In reference 6, the numerical procedure is generalized in terms of constraint
conditions. An application of a nonplanar wing numerical method is made in
reference 7 to the investigation of wing-winglet characteristics. Examples of
nonplanar wing analytical or classical theory solutions for loading are given
in references 8 and 9.

The principal objective of the present study is to develop a generalized
analytical induced drag minimization theory to which aerodynamic and configura-
tion constraint conditions can be imposed. The term generalized implies direct
solutions are possible for arbitrary configurations without having to resort
to complex conformal transformations. Here generalized also means that mini-
mization is done without resort to other induced drag theorems such as Munk's.
Aerodynamic constraint condition examples are, for a given 1ift, for a given
rolling moment, and/or for a given wing bending moment about an arbitrary span
station. Configuration constraints include, multi-wing, wing-wingiet, or
flying near wake of other aircraft. It was found that a generalized theory could
be formulated by expressing the spanwise loading distribution as a Fourier
series in which the Fourier Toading coefficients are unknowns. With constraints
imposed and minimization, equations are evolved in terms of the unknown load-
ing coefficients and induced drag influence coefficients. Solutions of these
equations leads to an analytically exact evaluation of the loading coefficients.
In an age of numerical solutions, available exact solutions provide an accuracy
check. The present theory also serves as such a check for the evolving numeri-
cal minimization methods.

SYMBOLS
A aspect ratio, b2/S
aps A x Fourier coefficient of spanwise loading, equation (1)
b wing span
Cb ratio of wing bending moment coefficient to 1ift coefficient,

Cmbb/CL’ equation (11)

& -



Ln*w

bb

m,n,n*,N

C. of wing with elliptic loading, f]/4n

b
induced drag coefficient, Di/qS, equation (13)

1ift coefficient, L/qS, equation (3)

rolling moment coefficient, L/qSb, equation (78)

wing bending moment coefficient about lateral point > Mbb/qu’
equation (7)

wing chord

average or mean wing chord, S/b

section 1ift coefficient, equation (5)

induced drag

induced drag influence coefficient for planar-wing winglet,

equation (164)

induced drag efficiency factor, equation (15)

induced drag efficiency factor of rolling wing, equation (79)

wing bending moment influence coefficients for planar wing,
equations (9) and (10) '

dimensionless circulation, I/bV, equation (1)

downwash influence coefficient for biplane, equations (67) and (118)

induced drag influence coefficient for biplane, equation (70)
sidewash influence coefficient for biplane, equations (119) and

(B12)

planar wing bending moment constraint parameter of Cb and e,
equations (26) and (37)

planar wing bending moment constraint spanwise loading function,
equation (31)

planar wing bending moment constraint parameter of Nep? equation
(33)

wing 1ift, also, rolling moment

induced normal velocity influence coefficient for wing winglet,
equations (165) and (166)

wing bending moment about span station s

integers in Fourier series for loading and in influence coefficients,
odd only for symmetric Tloading
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induced velocity influence coefficient for cruciform wing,
equation (125)

anuged drag influence coefficient for cruciform wing, equation
128

induced velocity influence coefficient for V-wing, equation (141)
induced drag influence coefficient for V-wing, equation (143)
dynamic pressur‘e,lz-pv2

wing area
spanwise coordinate along nonplanar wing surface
spanwise semispan along nonplanar wing surface

wing bending moment constants, equation (171)

arbitrary constant, proportional to how much wing bending moment
constraint is imposed

1imit condition for t, equation (29)

free stream velocity
induced sidewash, tangent to surface

induced downwash, normal to surface
lateral coordinate, from midspan station
vertical coordinate

induced angle normal to the wake

circulation, also dihedral angle

angle between wings in cruciform, also, dihedral cant angle of
winglet

influence coefficient constants used for evaluating Ino and In]’
equations (B39) and (B40)

dimensionless vertical coordinate, 2Z/b or Z/se

dimensionless lateral coordinate, 2y/b or y/se

span station about which bending moment is taken, equation (6)
span station at which winglet starts, ng = COSd,

semispanwise center of pressure, equals 4Cb when o = /2

air density



) spanwise trigonometric coordinate, cos In

Subscripts

av average

b bending moment

C wing with elliptic loading
m,n,n* series integers

S symbolizes, from vorticity sheet



MINIMIZED INDUCED DRAG OF PLANAR WINGS WITH THE
CONSTRAINTS OF LIFT PLUS WING BENDING MOMENT

Relations between spanwise loading quantities can be established in the
wake or Trefftz plane of the aircraft. Then solutions reduce to two-dimensional
problems and are independent of the chordwise shape of the wing and of how the
loading is developed. Quantities dependent on spanwise loading include, induced
velocity normal to the wake, induced drag, spanwise center of pressure, wing
bending moment, and rolling moment when the loading is antisymmetric. When
constraint conditions are imposed and induced drag is minimized, then from the
relation between loading and induced drag, the optimum spanwise loading can be
evaluated. A simple method for establishing the relationships between the
spanwise loading quantities is by expressing the spanwise loading as a Fourier
series in which the Fourier loading coefficients are unknowns (see eq. 1). This
method permits a manageable, viable, analytical solution, regardless of the
complexity of the configuration or of the constraint conditions. The method
can be demonstrated by showing the solution for a planar wing with simple
constraints. With the constraint that 1ift is specified, then (by eq. 15)

@ 0,

C i = = (a]2 + ) E 2n anz), 55;—-= zf-(Zm am)m>] =0, 6=aysing
that is, the loading for minimum induced drag for a given 1ift is elliptic
loading. Also, for a planar wing with the constraint that rolling moment is
specified, then
C., = E—-(Z a2+ ¥ nal?2)), LI EA-(2 m am)m#2 =0, G = a, sin 2¢

i 2 p=tpe M TR, 4

which is the Toading for minimum induced drag for a given rolling moment.

A

In this section solutions are developed for the constraint conditions of
1ift and wing bending moment about a given span station such as at a wing strut
connection. It can be noted as pointed out in reference 2 that the induced drag
of a wing having a given 1ift and a given spanwise Toad distribution is not
affected by the compressibility of the air at subsonic speeds. At supersonic
speeds an additional drag associated with the formation of waves arises.



Force and Moment Coefficients in Terms of
Fourier Coefficients

,,,,,, PR ~ <5 =

The wing spanwise loading distribution ex p“éSSéd as a Fourier series has
proven to be a versatile analytical tool (see e.g. refs. 10, 11, 12, and 13).
In Fourier series

r c,c -
G(¢) = BV -2 - r . 3, sinng (1)
n=1
where for symmetric loading n is an odd integer, and ¢ is related to span
station by
= 2y/b = cos ¢ (2)
Lift coefficient is
L 1 b/?2 1 L
CL B ag-f pVldy = A den = A fg sin ¢ do (3)
-b/2 -1
then with equation (1), equation (3) becomes
A

CL = 12T—a1 (4)
When CL is known the Toading distribution can be written

c,C a

[ 2A 4 . o n _.
=Z28G6==(sin¢+ I — sin ng) (5)
CLc CL T n=3%"
odd
Wing bending moment coefficient about the span station
Nh = 2‘yb/b = COS ¢b (6)
is
b/2 1 ¢
C = T99-= 1 (y - y.)oVrdy = A (n ~ n.)Gdn = A b(cos - cos
mbb ~ qSb g5 Y = YpleVidy = 54 (n = np/udn =5 ¢ %
y 0
b b
G sin ¢ d¢ (7)



then inserting equation (1) and performing the integration

¢ =ha(f 4 T onf oM (8)
mbb 8 %1 1 n=3 n a;
odd
where
. T .
fi = 2(sin op - §-s1n3¢b - ¢}, CcOs ¢b) | (9)
£ = 1_[ sin (n-2)¢p _ sin (n+2)ép _ 2 cos ¢p sin (n-1)¢p
n n n-2 n+2 n-1

2 cos 9p sin (n+1)¢b]= sin (n-2)%, _ 2sin n %, __ sin §n+2)¢9 (10)
n+l (n-2)(n-1)n = (n-T)n{n+t1) " n{n+t1)(n+2

n-1

2
e o A
o AhEdT (10a)

An important parameter is the ratio of wing bending moment to wing 1ift. From

Wi

- I, =
At ¢ = 3 Fy

the ratio of equations (8) and (4)

C
Cp = —mbb - (fy nf D) (11)

by
L n=3 "MT&
d

where f; and fn are given in equations (9) and (10). When the loading extends
over the semispan, then ¢y = m/2, and Cb is 1/4 of the spanwise center of

pressure, n Then, combining equations (10a) and (11)

cp’
1 n-1
cc 2 a
_ L _ 4 e (-1) “n
Nep - [ C c,y ndn = §%-[1 -3 ] E , T2-A a ] (12)
© odd
Induced drag coefficient is
S b/\zlra—wd -4 ]G dn = 8 1TG sin ¢ d (13)
D, 3 o | P ZT VT2 %y dn =3 Oy ¢ d¢
-b/2 -1 o



where o 1is the downwash angle in the wake given by

w
™
dG_
- 1| do* do* | 1 @ .
% ~ 7 | cos¢*-cos¢ sine - X : n* a . sin n*y (14)

0
Inserting equations (1) and (14) into equation (13) leads to

C, 2 a C 2
C A = L ® ny2 L
D, =4~ f na? =-—/— I n{— = — 15
i 4 n= 1 n A n= 1 (al) mhe (15)
where for symmetrical span loading
e = co] an 2 (]6)
1+ £ n (5—0
n=3 1
odd

Solution for an/al Fourier Spanwise Loading Coefficients

The problem is to evaluate the infinite number of an/al Fourier coefficients
such that the spanwise loading is defined which has minimum induced drag per wing
bending moment about g Minimal combined induced drag and wing bending moment
per unit 1ift can be realized by minimizing the parameter Cb/e. From maxima
and minima theory for a function of many variables, the necessary conditions for
an extreme value are that all the partial derivatives with respect to each
variable be zero. Taking partial derivatives of Cb/e with respect to as/a;,
as/ag, .« .« . . am/al, results in

a(Cb/e) ) 3Cy, Cb

1 __b Je -
a(am/ali T e 3iam/a15 e2 3lam/a1§

The partial derivatives of equations (11) and (16) are

0 (17)

10



B> -

> (18)

sa _ 2m(am/a1) _ ) a_
aa/al_ 622__2ema
m ) n
1+ =z a—)]
n=3 1
odd -

With equation (18), equation (17) becomes

o1}

m m _
mfm+2mcb—1——0

which can be solved for am/al. Then the solution for the Fourier loading coef-
ficient, with m referred to the general n, becomes

a f

= _ .
a; 8‘ﬂ'er

(19)

Equation (19) is in the form of a constant times (—fn). Let t be an arbitrary
number, then the minimization condition is

a
n:_
a t fn (20)
A better parameter for the minimization process is Cbz/e since it indicates
induced-drag bending-moment efficiency. However, the minimization of the term
Cbr/e where r 1is any constant leads to (an/al) = -(r/8ner)fn, that is, a

constant times fn and can be expressed as in equation (20).

Wing Bending Moment Minimized Solution Loading Characteristics

Solution in infinite series. - Equation (20) inserted into equations (5),
(11), (12), (14), and (16) leads to the following spanwise loading characteris-

tics:

11



cc
2 2A 4 . © .
=2=6G==(sin¢ -t I f_sin ng) (21)
CLCav CL ﬁ n=3n
odd
n-1
4 e (-1) °
ncp =3 [1 + 3t b Y fn] (22)
n =3
odd
A 2 t ©
o ==(1 - = 2 nf_ sin ne¢) (23)
CL w oo sing n=3 n
odd
Cobb _ 1
Cb =< I (f; - kt) (24)
L
c 2
_ L _ 1
€= tAC, T ¥ kt2 (25)
i
where
K= F nf? (26)
n =3
odd

where fn is given in equation (10) and f; in equation (9).

A Timit on the magnitude of t. - A 1imit can be defined by the condition
that the spanwise loading remains positive at all span stations. This condition
is satisfied by requiring that the slope of the loading distribution be zero
at the wingtip. Taking the derivative of equation (21) with respect to ¢, settin

to zero, and solving for t at ¢ = 0

ty = ——— (27)

12



where t  is the value of t at which the loading is positive at all span stations.
If t exceeds t; the spanwise Toading becomes negative in the region near the
wing tip. The summation in equation (27) is readily found by expanding n e
From equation (10)

¥ n fn = sin ¢b + %-sin 3 ¢b + %—sin 5 o + ;-sin 7 o +
n=3
odd R -1 -
5 sin 5 ¢p ~ 7 sin 7 LI
- 2 ¢cos ¢ (l-sin 2 ¢, + l-s1'n 4 + l-s1'n 6 +
b'2 b7 % *5 op T
- l-s1'n 4 - l—sin 6 - )
4 % "8 o - -
. 1 i3 ) 2 i3
= sin ¢, + 3 sin 3 ¢, - sin 2 ¢, COS ¢p = 3 sin’¢, (28)
then equation (27) becomes
3 3
t = - = (29)
1 251n3¢b 2(1—nb2)3/2
Solution in closed functions. - The infinite series summations of equations

(22) and (26) converge quite rapidly, however, those of equations (21) and (23)
do not, especially that of equation (23). Summation methods are developed and
presented in appendix A which includes the functional evaluation of the sum-
mations given in equations (21), (22), (23), and (26). Using equations (A60),
(A74), (A87), and (A95) the closed function form of equations (21) through (26)
become

13



where

=1 sy, (Nbtn)? -y 14npn
kO 3(]+2nb)(1 le)*‘mz—yi/zcoh -I—b_l_—nl-
(np=n) 1 1-Npn n_z_] 2 2 3/2
20 > cosh “Tbl_)mf = 3 (] R ) (3])
_ 4
ep ~ 3w (1 - kyt) (32)
where
Ky =2 (1-202) (1 -n2)% +1, 85 cosp1 1o (33)
175 2 b b & b np
A 0, [n|snp
o, =1+t f-
2(3L Sy { 1 [Tr(|n|—nb), Ianan (34)
C
bb 1
2 Y 1
where f; = §-(2 + oy ) (1 - s )¢ - an cos ‘ny (36)
K =5 (1= 6n2 + 3n% + 206 - 6n,% Tn n.2) (37)
C 2
_ L _ 1
® T WAC, T TRkez (38)

The functional behavior as U approaches unity of the coefficients k, ki,
and fi can be made as done in the development of equation (A75).

14




For nb—>1:

k=32 (1 -n)*[1-353+n) (1-n)]
-8 5/2 5 5 > (39)
ki =35 (1 = np) (1+n)* 01 -5 (1 - np)]
= 16 o oV5/2 1 -3 (1.
f1 15 2 (] nb) / [] 28 (1 ﬂb)] J
Solutions in closed functions for "p = 0. - In this case the solution

simplifies. The condition that bending moment is taken about the wing root is
that ny = 0. Then the k, k;, and f; factors simplify considerably. For ng = 0;
k =2/9, k; = 1/6, f; = 4/3. With these values the aerodynamic characteristics
are, for N, = 0

ST A+ ) (- w2)% -t cosht ) (40)
= =0 + =) (1 - -t cosh 40
CLCav - [ 3 n ) T T;TJ
-4 4.t
nep = 37 (1 - %) (41)
%E%=1+t(%-ﬂﬂ) (42)
_ 1 t
C, =3 (1-¢) (43)
e=_177 (44)
1+ §'t
Numerical values of loading characteristics for various np and t. - In this

wing bending moment minimized solution several generalized constants appear.

These include k, ky, and f;. The term k, is a generalized function of the span-
wise coordinate. Values of k, k;, f;, and the ratio k/f, have been computed

from equations (37), (33), and (36) for a range of n, values. These are presented
in table 1. Values of kj determined from equation (31) appear in table 2.

15



The spanwise loading distribution is given in equation (21) in the form of
an infinite series, and in equation (30) in the form of a closed function. It
is of interest to know the magnitude of the loading harmonics, that is, the
factors of sin 3¢, sin 5¢, . . . Values of fn computed from equations (10) and
(10a) are presented in table 3. These data show that the optimized loading is
made up primarily of elliptic loading and the sin 3¢ harmonic, and much less

due to higher harmonics.

The value for t such that the spanwise loading gradient is zero at the wing
tip is t; given by equation (29). For these t = t; values, the aerodynamic
characteristics are listed in table 4. These are computed by use of equations
(32), (34), (35), (38), and table 1. The parameter (Cbz/e)/(Cbzle)c, c denotes
t = 0, is a measure of the induced drag efficiency compared to a wing with
elliptic loading having the bending moment ratio Cbc/cb' The optimized loading
is elliptic when t = 0. The parameter of the induced angle in the wake has a
constant value fromn = 0 to g s then it is a straight line joining the points

at h and at 1.

The bending moment ratio is obtained from equation (35). Then

C
e (45)
b 1 - ?T-t
Solving for t
21 1

For comparison of data it is convenient to keep the parameter Cbc/Cb constant.
Then t is evaluated from equation (46). The aerodynamic characteristics for
CbC/Cb = 1.1, 1.2, and 4/3 are presented in tables 5, 6, and 7. These values
are determined with the t of equation (46) and using equations (32), (34), (35),
(38), and table 1.

16
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The spanwise loading distribution due to the specified conditions on
loading in tables 4 through 7 is obtained by using equation (30) with the listed
ko values in table 2, and t values of tables 4 through 7. Values of spanwise
lToading are presented in table 8. For positive values of t the loading is
inboard of elliptic loading.

For ny > 1, mathematical 1imits need to be taken. With equations (39) and

(29) the terms kit, fit, kt, and kt? can be evaluated and are all zero at n, = 1.

Then Nep = 4/3n, and e = 1, that is the values for elliptic loading. However,
\hb/ll) A’5/8, and 7(] = Tb)t > 3ﬁ/678(1 = ﬁb)%, as ﬁb -+ ]. ThuS fOP the t Of
equation (29) as g > 1
A A 31vZ  be 8
2c; o (0> T gy, (1)1 - Z:C. 73 (47)
L L 8(1-nb) b

3/2
Since from equation (39), (k/fy) ~ (5/2/6)(1 - nb) / , then t of equation
(46), as ng ~ 1, becomes

c
ta— 32 (. ) (48)
5(]-nb)3/2 bc

where Cb/CbC is a specified value. With the t of equation (48) then, as before,
"ep + 4/3m, e > 1, and aw(l) at Ny = 1 approaches minus infinity. The values
for Ny = 1 are incorporated into tables 1 through 7.

Comparison with Elliptic Loading

A measure of the efficiency of a wing with inboard spanwise loading can be
attained by comparing this wing with a wing having elliptic loading and the
same 1ift and wing bending moment. Since elliptic loading is the most efficient
in terms of induced drag it serves as a good standard for comparison with the
inboard loading characteristics. The induced drag ratio and ratio of aspect

ratios are
. b e A b
i L c c (] S c
= (2 2 E . e 52 (49)
Dic LC b e A SC b

17



where subscript ¢ refers to the wing with elliptic loading. The wing bending
moment coefficient ratio is

O Gan’C M Lc B (50)
Che (Cmb/CL)C Mype L P

for the same 1ift and bending moment, and since for elliptic loading e. = 1,
then equations (49) and (50) reduce to

C
b _ C (
5 _ _PpC 51)
bc Cb
D.
i 1 ,b -
=5 ()7 (52)
Dic ¢ bc

The ratio of aspect ratios depends on S/SC. It can be noted that when these
wing surfaces are the same then friction drag will remain about equal. In
equations (51) and (52), ¢y and e are given in equations (35) and (38),
respectively. The wing bending moment parameter for elliptic loading is
equation (35) with t = 0. Then

fi(n..)
_ bc

Che = Tar (53)
where Nhe = ybc/(bc/z) is the span station of the wing with elliptic Toading at
which wing bending moments are taken. Two conditions on Npe €an be made. These

two moment conditions are pictured as follows:

= . | - !
]

n = My - I P !
e ° 0 npPe ﬁbg be
7z ° yaa
wingtip, for wingtip, for
elliptic Toad- inboard Toading

1ng\\ \\

—
b
2

Y

N o
|
N o+
O
N o ——
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Then for the same A

o

e = b " (54)
c
For these two cases of moment definition, equation (53) becomes
_ fl(nb)
Same ny: Cbc = —m (55)
fl(‘g_ nb)
Same ) : Chc = ————{hr——— (56)
with equations (55), (56), and (35), equation (51) becomes
b 1
Same n.: — = —p—— (57)
b bc 1 - %—-t
1
b
b fl(g— “b)
Same y,: §= = ?;—:9E€—~ (58)
c
Solving for t leads to
Same nb'. t = T(_}T (] - E}—B—) (59)
1 c
b
fi(g= ny,)
1 1\p b
Same yp: t = [T - g b?b (60)
c
where k and f, are given in equations (36) and (37), and in table 1, and
f1({bny/b.) is
b_ -2 b 2 _ (b 2 7% b -1¢b
fl(bc nb) 3 [2 + (bc ”b) 10 (bc le) 1%-2 bc Np cos (B‘(':" ﬂb) (61)
19
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When b/bC is specified then t can be determined from either of equations
(59) or (60) for a given value of ng- With this value of t, induced drag
efficiency, e, is computed from equation (38), induced drag ratio from equation

(52), ep from equation (32), C, from equation (35), and induced velocity is the
wake from
A o 0, |T]|ST] ’
TR e R {f[ b (62)
L c we (Inl-ng)s Inlzng

When t is specified, such as for the condition of wingtip zero-slope
loading of equation (29), then b/bC can be determined from either of equations
(57) or (58). An iteration for b/bC is required in equation (58) when t is

specified.

The data presented in tables 4 through 8 applies also to the case of same
np when comparing this data with that due to elliptic loading. This can be
seen by noting that equations (46) and (59) are identical when Cbc/Cb = b/b..
From the relations of equations (51), (52), and (62), the data of tables 4
through 8 can be written as
Che A b, % . Cp’e b \-p_ Di
e TRl e s () 72=5 (63)

— 5 5 i =
Cb c 2 L bc “we (Cb /e)c e

-

c’lcr

which relations apply when comparing with elliptic loading which has the same

value of Nps Mpe = Mpe

Data for the case of same b is tabulated as a function of b/bC in table
9. A similar table for the case of same Yp is presented in table 10 with
corresponding spanwise loading values given in table 11.
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MINIMIZED INDUCED DRAG OF NONPLANAR WINGS
WITH EITHER THE CONSTRAINT OF LIFT OR OF LIFT
PLUS BENDING MOMENT

In the yz-plane or cross section plane the trailing vorticity system is
assumed to analytically follow the downstream projection of the aft view geo-
metry of the aircraft. Thus a staggered wing biplane will appear as two
planar vorticity sheets separated by a vertical distance. The term nonplanar
means that the vertical position of the vorticity sheet or wake is a function
of the lateral coordinate. Nonplanar can also mean multiple independent
vorticity systems which, however, can influence or interfere with each other.
A flat straight vorticity sheet is the simple planar wing.

The -general approach to a minimization solution is first to analytically
determine the induced angles normal to the wake. These angles factored by
the vorticity in the sheet form the induced drag integral. The vorticity in
the wake is represented as a Fourier series in loading. Then the drag integral
develops into an infinite series in terms of unknown Fourier loading coefficients
and induced drag influence coefficients. Constraint conditions are specified
on the Fourier loading coefficients. Then the induced drag series is minimized
with respect to the Fourier loading coefficients, that is, partial derivatives
are taken with respect to a given a,- Solutions for the Fourier loading coef-
ficients, a,, are obtained from these minimization equations. Constraint
conditions can be as simple as that for a given 1ift, then ay is constant in
the derivative process, or for a given rolling moment, then a, is constant, or
for wing bending moment with a given 1ift, then the induced drag series times
the bending moment series in a, is minimized. Thus, exact analytical solutions
in terms of induced drag influence coefficients can be attained which provide
the spanwise loading for minimized induced drag, subject to specified constraint
conditions, for any nonplanar wing shape or number of wings.

Biplane and Wing in Ground-Effect Solutions

The biplane configuration provides an example for a nonplanar minimization
solution. The wing in ground-effect is the same but with opposite sign of the
vorticity from the Tower wing. Shown on the right are the trailing vorticity
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sheets from wings a and b. The normal induced o wly,Z)y o
NP dr, (y¢,2)

r
downwash at sheet a, due to both trailing vor-  Sheet a -7
. . . Vel N
ticity sheets is Fest b O y l*drb(y],z)
ba/2 T_a_ dy bb/2 fj_PE dy
(y.2) - ] dyi 77 (y-y1) dyy ! (64
R AR I TR T I (7 2. )
a/2 b/2

For the same wing span and vorticity strength, in trignometric coordinates,

equation (64) becomes

™
(cos$;-cose) G (flg 9y (65)

m (cos¢;-cose)?

1
CO0S$1-COSd
0

Oy

where G and cos¢ =n are defined in equations (1) and (2), and ¢ = 2Z/b. The

Fourier series for G from equation (1) is

G(¢) = = a_ sin ngp, G'(¢7) = T n a_ cos ng
n=1 n=1
The first integral is
[ .
1 |'cos nt; d¢; _ sin n¢ (66)
T Ocos¢1-cos¢ sin ¢
and the second integral is defined by
-
1 =1 "(cos¢;-n)cos n¢1 d¢, (67)
noow (cos¢i-n)? + =
JO

where n=cos¢ and I is evaluated in equations (B5) through (B11) in appendix
B. With equations (66) and (67) equation (65) can be reduced to

sin n¢
1 (s1n ¢ In) nan (68)

o
1}
I ™8
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The induced drag coefficient (eq. 13) becomes

_A 1TG o Singde = A" ¥ a_ sinny I (§iﬂﬂfg-+ I1.,) n*a
o Tz 2 n=am ST
0 0 (69)
o
. A/ 7T o ) o0 . .
singdg =5 (5 = na2+ I a L n*a I, singsin n¢do)
R T R I B
0
Define
™
1 . .
Inn* == In* sing¢sin n¢ do¢ (70)
0
then with equation (4) for C.> equation (69) becomes
mA Cpj 1 a_. o a a_ x
© n © n o« n
=—= ¥ n(M"+ ¥ % o0 (71)
CL & n=1 ¥ n=1% n*=] 4 nn*

These 1ift and drag coefficients and aspect ratio are based on wing area and
wing span of one wing only in this equal winged biplane. The Inn*ls represent
induced drag influence coefficients due to a second wake vorticity sheet. The
Inn* integral of equation (70) is evaluated in equations (B25), (B26), (B27),
(B39), and (B40) of -appendix B, also in table 12 for ¢ = 1/2.

For symmetric spanwise loading only odd numbered n and n* apply, then

equation (71) can be written

o+ 21, 4 fn(iﬂ)2+ ¥ (nl, +1.,) R+2 § N %
€ LU N n=3 In ni 4 n=3% n*=3
odd odd odd odd
* an*
n Inn*—a—]_ (72)

Equation (72) applies for a biplane with equal wings. Since Inn* denotes the
influence of one wing on the other, then for a monoplane wing in ground effect
the I's in equation (72) are all preceded by a negative sign. For elliptic
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loading, a, = 0 for n>1, then e’ ! =1 + ZI]] for the wing in a biplane, and
el =1- 2111 for the wing at h/b = /4 above the ground. In ground effect
the ground vortex images are in opposite sense to the vortices of the model.

ap/ay coefficients for minimized induced drag. - Objective is to minimize
equation (72) for a given 1ift but without any other constraint. Following
the procedure leading to equation (17), taking partial derivatives of 1/e

of equation (72) with respect to a3/a], a5/a], C e e am/a], results in
3(1/e) _ %n © an @
a(a_/a;) zm ay talm Iy, + Ly v 2 0 t 3 LR a, te n*i 3n Lon*
odd odd
a a a
n* _ m © n .
a, - 2fm I, + I, +m > + i L 3(m I tni ) a]] (73)

where m is an odd integer greater than one, and the I's are from equation (70)
or appendix B with corresponding subscript integers. For minimal induced drag,
equation (73) is zero, then

n —4 . -—
(mI +nl ) T 0; m=3,5,7, . . .N (74)

jal}
I ™m<Z
a7}

m I]m + Im1 +m 5;—+

where N is an odd integer made large enough to insure accuracy. There are
(N-1)/2 m-equations with (N-1)/2 an/a] unknowns. A simultaneous solution of
these equations leads to evaluation of the an/a] ratios. As an example, for
N=5, equation (74) appears as

43 %5
Slyg * Igp # 3(1+ 2lgg) g+ (Blgg * Slg5) 37= 0
(75)
43 %5
Slys + 15y + (3lgg *+ Slgg) 3o+ 501 + 2gg) 37 = 0

For the wing in ground effect a negative sign must be inserted before the
I values of equations (74) and (75). Examination of equation (74) shows that
minimum induced drag is not attained with elliptic Toading. For elliptic
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loading, ah = 0 for n>1, then equation (74) is not satisfied because m I]m +
Im] is not zero, except when =« where I = 0. With the an/a] ratios known,
then T/e can be determined from equation (72), induced angle in the wake from
equation (68), wing bending moment ratio from equation (11), n__ from equation

cp
(12), and spanwise loading by equation (5).
an/ay coefficients for minimized induced drag and wing bending moment. -
The ratio C /e js minimized as in the development leading to equation (17).
Then

B(Cb/e) - C a('l/e) + _]_ aCb _ O
aiam/a]i b a(am/a1) e a(am/a])

where a(]/e)/a(am/a]) is given in equation (73) and aCb/a(am/a]) is given in
equation (18). With these values, equation (76) becomes

(76)

N an
i (mI_ +n Imn) o tm t fm = 0;
d

Q

m I + I

m
+m —
Tm ml a

Tn=3 ™ 1

m=1,3,5,. . .N (77)

where t is a constant similar to that in equation (20), and fm is given in
equation (10). Equation (77) is equal to equation (74) plus the added term
mt fm' The solution procedure for determining an/a1 is the same as that

of equation (74).

Antisymmetric loading a,/ap coefficients for minimized induced drag. -

The wing rolling moment coefficient is given by

L :

N>

C =

' A" A
_ A : = A
2 = qSb [ Gndn = J G sin 2¢d¢ = g a, (78)

4
4 0
where L is the wing rolling moment, and G is defined in equation (1). With
this CQ and a, relation, equation (69) can be written as

7A C
-i = D-i = l OZO n (_.) + ® —_—
A . 32C,7 "2, - x




For antisymmetric loading only even integer values of n and n* apply. Then

1 oqso..+1 % n(iﬂ-)2 s % (L +2 )Ny iﬂ
er 22 2 n=4a a2 n=a 2n n2 a2 -4 2
even even even
a
o n*
F 4n*Inn* - (80)
even

where e, is a drag efficiency factor for loading due to rolling. The partial
derivative of equation (80) Teads to the equations for minimized induced drag.
Thus,

a(]/er) a N ( ) a
=ml, +2I ,+m—+ £ (mlI _+ nl — =0,
aiam/azi 2m m2 8y =g M mn® a,
even
m=4,6,8 .. .N (81)

which applies to the biplane. For wing in-ground effect the signs of the I's,
are changed.

Example numerical solution with-z=1/2 of biplane and wing ground effect

models. - For N = 9, equation (74) is written as

a

a a a

3113+131+3(1+2133)5f+(3153+5135)5$+(3173+7137)5%+(3193+9139) ? -0 |

a3 65 a7 ag
51]5+15]+(3153+5135)5;+5(1+2155)5;+(5175+7157)5;+(5195+9159)5;-= 0

a3 a5 37 49 r (82)
7I]7+I7]+(3I73+7I37)?(5175+7157)a+7(1+2177)a+(7197+9179); =0

a3 a5 7. 9
91 g*Ig1+(31g3 +9139)5;+(5195*9159)5;+(7197+9I79)a] 9(]+2199)a] =0
where I is given in equation (70) and in appendix B. Using the Inn* or

nn*
= 1/2 given in table 12, equation (82) becomes
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g

a3 65 a7 ag <
-.139103 + 3.348175 —> - .155810 — + .009726 —~ - .004216 —= = 0
a] a1 a] a]
as ag az aq
-.004910 - .155810 = + 5.179748 = - .078668 -~ + .010699 > = 0
63 a5 a7 ag
001489 + .009726 — - .078668 -2 + 7.077076 —- - .044194 —=2 = 0
4 4 a a4
a3 ag az 2
-.003196 — .004216 —> + .010699 —> - .044194 —~ + 9.008733 == = 0 ]
o & 3 4 -

The simultaneous solution of these four linear equations provides the Fourier
loading coefficients. Convergence accuracy can be assessed by also doing the
solution of the top three, top two, and top equations. These are

a a

%3 %5 °7 %9
4 2 2 4
4 eq. solution .041649 .0021796 -.000241 .000370
3 eq. solution .041649 .002197 -.000243
2 eq. solution .041648 .002201 (84)
1 eq. solution .041546
From equation (5), the spanwise loading distribution is
Ct§:v = %—(sin¢ + ) § 5 g?-sin ne) (85)
odd

where a_/a; values are given in equation (84), and ¢ = cos In. This loading
is that for minimum induced drag of a biplane wing with the wings vertically
separated by £ = 1/2. This optimized loading is outboard relative to elliptic
loading.

With the £ = 1/2, Inn* values of table 12, the drag efficiency factor of
equation (72) becomes
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o |—

9 0.2 a3 ag
=1+ .622074 + 1 n (39" £ [-.278206 = - .009820 => + .002979
n=3 1 1 1
odd
a, a; 3, R T~ .24 4. ag
5+ o> (1388175 == - 274717 =+ .019452 -& - 008431 =) + =2
1Y 1 1 1 1 1
ag az 29, ¥y 2y
(.179748 =2 - 157336 - + .021397 =2) + - (.077076 -~ - .088388
3 2 ot I 2
29 49,2 a9
=2) + .008733 (=) - .006391 =] (86)
1 4 a4

where in the £ signs, plus applies for the biplane an/a]'s and minus for the

ground effect an/a]'s.

|~

ncp

The spanwise center of pressure of equation (12) simplifies to

(87)

With the an/a] values of equation (84) used in equations (86) and (87),
the 4 through 1 equation solutions compare as follows:

4 eq. 3 eq. 2 eq. 1 eq. elliptic

sol. sol. sol. sol. loading
1.416271 1.416272 1.416273 1.416294 1.422074 (88)

.434873 .434879 .434885 .434993 .424413

which shows 0.4080 percent less induced drag than that with elliptic loading.

28

The minimum induced drag and root bending moment solution for the biplane
is obtained from the simultaneous solution of the equations of equation (77).
That is, to add mtfn to the left side of equations (82) and (83). For the
wing root case, ny = 0, and using equation (10a)

m=3 4 m=5

o
3
~

s
3

1]
O
~

mtf = Ft = -5rt = zgt = - o=t (89)
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Choosing t = 1, these values are added to equation (83), and its solution
for an/a] results in

a, n=3 n=5 n=7 n=9
= = -.195876 = .031633 = -.012113 = .005932 (90)
]
n-1
and for odd n > 9 an n;? 4(-1) 2 (91)
a, n(n2-4)

where for n > 9, an/a1 is obtained from equation (20). With equation (91)
the following summation is:

. a 2 _

T (Eﬂo = 2.04061 x 107% (92)
n=11 1

odd

Also
1 1 % ah,2
== (_) + t2 I n (—) s N = ) +
€ €eq. (82) n=1 % cp CP eq. (83)
odd
e f o gﬂozj (93)
T n=11 ]
odd

Then with the an/a] values of equation (90) and t = 1

1 _ -
o = 1.613214, nep = -372175
: (94)
e " 1.422074,  n o= 424413
=0
e c. ™ n
C = 1.134410, CEL. ~ P - g76764 (95)
bc Nepe

With equations (49) and (50), for same 1ift and same wing root bending moment

D.
b~ y.140558, - 872038 (96)
bc Dic
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The spanwise loading distribution for these minimized conditions is equation

(5) 1in which the an/a]'s are those given in equations (90) and (91). These
results show the minimum induced drag for a given root bending moment due to

t = 1 inboard loading of a wing in a biplane with ¢z = 1/2. Compared with

the biplane wing with elliptic loading and same 1ift and wing root bending
moment, it has 12.8 percent less induced drag, 14 percent greater wing span,

and spanwise center of pressure is 12.3 percent less, that is loading is inboard.

For ground effect solutions the Inn*ls in equation (82) change sign. This
sign change can be taken into account in equation (83) by replacing the
numbers 3.348175, 5.179748, 7.077076, and 9.008733 by -2.651825, -4.820252,
-6.922924, and -8.991268, respectively. With these numbers substituted into
equation (83), the 4 through 1 equation, simultaneous solutions result in

3 %5 7 %9

a] a] a] a]
4 eq. solution -.052494 .000675 .000136 -.000331
3 eq. solution -.052495 .000676 .000134

2 eq. solution .052495 .000678

1 eq. solution -.052455

where as before in equation (84), excellent convergence is demonstrated. The
an/a]'s of equation (97) inserted into equation (85) gives the optimized span-
wise loading distribution for minimum induced drag of a wing in ground effect
at h/b = z/4 = 1/8 above ground. This optimized loading is inboard relative
to elliptic loading. For elliptic loading, an/a] =0 forn->1.

With the an/a] values of equation (97) used in equations (86) and (87),
the 4 through 1 equation solutions compare as follows:

4 eq. 3 eq. 2 eq. 1 eq. elliptic
sol. sol. sol. sol. loading
% .570628 .570629 .570629 .570630 .577927 (08)
98
"cp .411014 .411008 .411004 .411056 .424413
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which shows 1.2627 percent less induced drag than that with elliptic loading.

The minimum induced drag and root bending moment solution for the wing
in ground effect is obtained by the simultaneous solution of the equations of
equation (83) which is changed by substituting the four numbers listed above
equation (97), and by adding equation (89), t = 1, values with changed signs.
The solution results in

a n=3 n=5 n=7 n=9

gﬂ- = -.357148 = .050279 = -.013734 = .005717 (99)
1

n-1
2

and for odd n > 9 %n ™9 4(-1)

a,  n(nz-a) (100)

These an/a] values are inserted into equation (93) for t = 1, then

-I_ =
e " .826212, nCp .330000
(101)
1 = =
E; = ,577927, nCpC .424413
eC C n.=0 n
el 1.429613, CQ_ qz CP_ _ 777544 (102)
bc "epe

With equations (49) and (50), for same 1ift and same wing root bending moment

o

D_-1.2861001, = .864307 (103)
¢ Dic

The spanwise loading distribution for these minimized conditions is equation
(5) in which the an/a]'s are those given in equations (99) and (100). These
results show the minimum induced drag for a given root bending moment due to
t = 1 inboard loading of a wing in ground effect at h/b = z/4 = 1/8 height.
Compared with the wing in ground effect with elliptic loading and same Tift
and wing root bending moment, it has 13.6% less induced drag, 28.6% greater
wing span, and spanwise center of pressure is 22.2% less.
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The antisymmetric loading solution for minimum induced drag for the
biplane with ¢z = 1/2 is obtained with equation (81) in which the I's are the
even n and n* integer values of Inn* listed in table 12. Then for an N = 6

solution
-.158416 + 4.256811 = - 107350 —> = 0
2 2
] ] (104)
.004993 - .107350 — + 6.121520 -2 = 0
a as

Then 2-equation and T-equation solutions are

a4 a6
2 eq. sol. o .037211, Py -.000163

a2 2 (105)
1 eq. sol. 4 - 037215

a

The induced drag efficiency parameter of equation (80) with even integer
values of n and n* for Inn* of table 12, becomes

a 2 a 2 s a a
%—-= 1+ .215435 + 2(550 4 3(5§) + [-.158416 55-+ .004993 5§-+
r 2 2 2 2
a, o a; o a, a
.128406 (=5 + .060760 (=2)° - .107350 % _& (106)
62 a2 32 a2

where in the + term, the + sign is for biplane, and the - sign is for ground
effect values. Then with equation (105) for

[—

= 1.212487; 1 eq. sol., — = 1.212487 (107)

r r

2 eq. sol.,

mld
D

that is, the same to the sixth decimal place. This is 0.253% less than the
elliptic loading equivalent sin 2¢ loading value which is 1/er = 1.215435.
The spanwise loading is given in equation (1) which for antisymmetric loading

is

= ¥ Msinng (108)
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where from equation (78), a, = 8C2/nA. The spanwise Toading resulting from
inserting an/a2 values of equation (105) into equation (108), is outboard of
the sin 2¢ loading. This minimized induced drag loading is for a biplane with
only antisymmetric loading.

The antisymmetric loading for minimum induced drag for the wing in ground
effect at h/b = z/4 = 1/8 height from ground is obtained with equation (81)
but with sign changes on the I's from table 12.

a4 a6
158416 + 3.743189 —% + ,107350 -2 = 0

a a

a a (109)
~.004993 + .107350 —* + 5.878480 -2 = 0

a a

2 2

a4 a6
2 eq. sol. Foul -.042368, o .001623

a2 2 (110)
1 eq. sol. A - _ 042321

a

2

Using equation (106)
2 eq. sol., L—= .781205; 1 eq. sol., ;—= .781213 (111)
r r

which is 0.428% less than sin 2¢ loading value which is 1/er = .784565. The
spanwise loading is equation (108) with the an/a2 values of equation (110).
This loading is inboard of the sin 2¢ loading.

Unsymmetric spanwise loading is a combination of symmetric and antisymmetric
loading, that is, it includes both odd and even integer values of n and n* in
the loading series. A solution for minimized induced drag starts with equation
(69), written as
_ A
Cp. = 37 (

Di n

) (112)

n ™8

na?+?2 ¥ a S on* I a
1 n =
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Then
aCD

1=12T_A[ma + % (mr o+l )al,m=3,4,5. .. (113)

9 m m
4 n=1 n mn

For a minimized induced drag solution, equation (113) is equal to zero, then
the equations are solved simultaneously to obtain ags s - - . A The coef-
ficients 2, and a, are specified for given values of CL and Cz of equation

(4) and (78). For a single wing, the I's of equation (113) are zero, then

a, = 0 for n > 2, which means that minimal induced drag is with a, sin ¢ and
a, sin 24 lToading combinations.

Flow-Field Solution of a Flat Vorticity Sheet

A spinoff of the biplane drag minimization solution provides mathematically
exact equations for downwash and sidewash about a vorticity sheet having arbi-
trary loading distribution. The downwash at point (y,z) due to the vorticity
sheet is the second integral of equation (64), then

2 d
Y2 vy a1
w-2) =g Gz

-b/2

(114)

where subscript s symbolizes, from sheet. Similarly, the sidewash is the
horizontal component of the induced velocity, that is, z/(y—y1) times the
integrant of equation (114). Thus

b/2 £j—F—-dyl
=L dy;
ve(y,z) = 5 oy )2+ 12 (115)
-b/2

where the Ve is positive in the y-direction. In terms of the dimensionless
coordinates of equations (1) and (2), equations (114) and (115) become

m

=

s - 2 1
V—-(n,c) ) i na. —

(cos¢;-n) cos né; dé,
(cos¢-n)2+ ¢2 (116)
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T

1 cos né; dé,
1 nan 5 (cospy-n)2 + 2 (117)

Ys

_V_' (naC) = -z

1 8

n

where a_ are the Fourier coefficients of loading, given in equation (1). The
integrals of equations (116) and (117) are defined in equations (67) and (B12)
of appendix B, then

W

S _ ©
v - ] E : n In an (118)
v .
vt i E ] nd. a (119)

where for arbitrary values of n and z, In is determined from equations (B5)
through (B11), Jn from equations (B11), (B13), (B14), and (B18) through (B20).
It should be noted that a sign change in n influences the sign on In and Jn

as shown in equations (B6) and (B16).

For n = 1 the loading distribution is elliptic and equations (118) and
(14) can be expressed as a ratio so that

Y g (120)

" ]

where W, is the downwash at the wake and is constant spanwise for elliptic
loading. The elliptic loading solution for wg/w“ is given in the literature,
for example, solutions by conformal transformation in references 10 and 11,
however, it appears as a function in elliptical coordinates. The general
solutions for ws/V and VS/V such as those of equations (118) and (119) were
not found in the literature. Computed values of equation (120) for various

n and ¢ correlate with values in the table on page 150 of reference 11.

Cruciform Wing Solution

The cruciform wing or x-wing is a nonplanar type configuration. An aft
view of this wing and coordinate system is shown on the next page. The induced
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velocity normal to the upper right wing
panel due to the crossing wing with dr.
vorticity is

_ dr .
dwwv = - 5—sin A (121)

. 1 R .
2 = ¢ 2 2 _ = _ 1 _
where r Sy + S, 2 S,/Sy COSY> sin A = (sw Sy cosy) which relations
come from the cosine and sine formulas, respectively. The total normal velocity
along the upper right wing panel is the sum of that induced by the wing on

jtself and equation (121). Thus for the x-wing the induced angle in the wake

is
™ m
1| G'(9;) déy . 1 | (cosycosé;-n) G'(9;) d¢;
0‘w(d’) T C0S$-COSd o (cos¢;-ncosy)2 + n2sinZy (122)
0 0

where the dimensionless terms are

COS$ = n = s/se, G = P/ZseV (123)

With the Fourier series for G in equation (1) and with equation (66), equation
(122) simplifies to

- ¢ (sinng
@, = § ( Sing + Pn) na (124)
n =1
where
m
P - 1 (cosy cos¢;-n) cos n¢; d¢,; (125)
n (cos¢;-ncosy)2 + n2 sin2y

0

This integral is evaluated in equations (C2) through (C8) in appendix C. The
Pn integral is similar to the In jntegral of equation (69). Equation (124)
can be derived directly from equation (68)
by a transformation of the variables. From
the components of ny shown at the right, the

relations for ny and g, are

36



—

ny = N1 COSY = COSY COS¢1, L, = my siny = siny cos¢; : (126)

These values of n, and ¢, are substituted into equation (67) for cos¢; and ¢,

Y
respectively, in the term which factors cos n¢;. Then In of equation (67)
becomes Pn as given in equation (125). This transformation method can be
applied to any two or more spatial arrangements of separate planar vorticity

sheets.

The induced drag expression, derived in a similar manner to that of equa-
tion (69), is

) (127)

O
[}
i
~
™8

n an2 +2 § a T n*P

—
=
]
—
=]

m
I Pn* sing sin n¢ d¢ (128)

where Pn* is given in equation (125), but with n = n*, and n = cos¢. The drag
influence coefficients, Pnn*’ are developed into a recurrence formula in
appendix C, equations (C15) through (C19).

The 1ift coefficient given in equation (4) is with the 1ift normal to the
wing from the aft view. For a cruciform wing or a tilted or rolled wing, the

1ift upwards is a component of the value given in equation (4), then

- _A Y
CL = 5 a; COS 3 (129)

where CL, A, and CD. are based on one wing of the crossed wings of the cruciform,
i
i.e., the 1ift, induced drag, wing area, and width (—se to se), of one of the
two equal wings. Thus
2
A= (2s))
e av’ S ?

L ¢ = _Dl (130)
S? Di S

CL =

O
fa]

For symmetric spanwise loading only odd integers n and n* apply, then
equation (127) with (129) becomes
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D. a a
1 1 1 @ ny 2 o n
=== [T+2P.,, + ¥ n(z=) +2 I (nPy +P )
CL2 e cosz%- 11 n=3 n= 3 In nl ay
odd odd
a ax
+2 ¢ NF g IO 131
n =373 p*= 3 nn* 4 : a3y
odd odd
ap/a; coefficients for minimized induced drag. - Derivatives of equation

(131) are obtained in the same procedure as that leading to equations (73)
and (74). Then

a N a
m n _ . _
mP]m + Pm] +m 5—-+ % (mPnm + ann) ol O;m=3,5,7, . . .N (132)
1 n=3 1
odd

where N is an odd integer. A simultaneous solution of these (N - 1)/2 equations
results in the evaluation of the an/a] ratios. These a, values, through
equation (1), define the spanwise loading distribution for minimum induced

drag for a cruciform wing where the wings are angled Y to each other in the

yz plane. With the an/a1 ratios known, then 1/e can be determined from equa-
tion (131), induced angle in the wake from equation (124), wing bending moment

ratio from equation (11), n.. from equation (12), and spanwise loading from

cp
equations (1) or (5).

an/ay coefficients for minimized induced drag and wing bending moment,
and antisymmetric loading. - The added constraint of minimized wing bending

moment is taken into account identically as done in the derivation of equation

(77). For the cruciform wing solution the Inm's of equation (77) are replaced

by an's. Or the equations are simply, mtfm added to the left side of equation
(132).

An antisymmetric loading solution can be obtained similarly as that lead-
ing to the equation (81), except the I 'S are replaced by P__'s. With a /a,
determined from equation (81), the drag efficiency factor is found from equa-
tion (80) 1in which Inm js substituted by an.
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Cruciform wing with y = 90°. - In a cruciform wing when Yy = 90° there is

no induced normal velocity at one vorticity sheet due to the other. The
solution thus simplifies to the case of a single planar wing banked at an
angle v/2. For the constraint condition of 1ift, the loading is elliptical
along the span, n = s/se.
tion (131), e"1 = 2. For constraint conditions of 1ift and bending moment:
the loading characteristics are the same as those of equations (30) through
(39), except fhat since by equation (129), CL(Y) = CL cos (v/2), then CL is
replaced by 272 C, in equations (35) and (38), then

The CL is given in equation (129), then from equa-

Nw

C. = 2= (f

- -1 = 2
b ~ (f, - kt), e 2 (1 + kt2) (133)

When vy = 90°, the influence coefficients Pn and an should be zero if
there is no normal velocity induced from one vorticity sheet onto the other.
Examination of equations (C2) and (C15) shows that when y = 90°, the Pn and
an are zero for odd integer values of n and m, that is, for symmetric span-
wise loading. For antisymmetrical loading, Pn and an have values and thus
the two wings are not aerodynamically independent of each other.

Flow Field at a v Banked Plane, Induced by a Flat Vorticity Sheet

The cruciform wing solution is also the solution for determining the

flowed field about a banked plane, as wiyfgg
shown at the right. At the polar coor- el (nsv)
dinate point (n,y) the normal velocity ’,\f;
to the y plane is given by the second 17 /";L————n :ll;J
term in equation (124). Thus ,/”
wlnay) Eonba, (134)

The lateral velocity along the y plane is analytically similar to equation
(121), except that it is the cosine component, thus

_dr
dv = 5T cos A
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where by the sine formula, cos A = (svsiny)/r. In dimensionless parameters,
with equation (1), and integrating

vV _ .
V sin vy

iis
] na %_J ( cos$;cos nd; do, (135)
n

COS¢;-nCOSY)2 + n2sin2y

n 18

Since 2 cos¢; cos ng; = cos (n + 1)¢; + cos (n - 1)¢;, then equation (135)

reduces to
vin,y) _ _siny =
v 2 n E 1 n (Jn+1 * Jn—]) a (136)

where the Jn values are given in equations (C11) through (C13). The Pn

values of equation (134) are given in equations (C2) through (C8). Equations
(134) and (136) are exact solution equations for predicting the normal and
tangential induced velocities on a y-banked plane, induced by a flat vorticity
sheet of arbitrary loading distribution, i.e., arbitrary a (see eq. 1).

V-Wing

The V-wing induced angle equation is similar to that of the cruciform wing,
except the spanwise integration for velocity normal to the surface is made
only over the upper wing panels. Then equation (122) becomes

T2 T
=1 G'(®) dé1, 1 (cosycos¢i-n) G'(¢;) do,;
0Lw(d’) Ton 0 COS$j- COS¢ * m (cosei-ncosy) 2 +n?sinZy (137)

w/2
By adding and subtracting the first integral with limits n/2 to w and noting

that the pertinent geometric parameter for the V-wing is the dihedral angle

related to v by
r= %y (138)

then equation (137) becomes

il
_1 G'(%;) do; 1
o (¢) JO Cos¢y - C0S§ T 7 (1 - cos 2r)

m

/2

(cos¢y+n) cosey G'(¢;) do, (139)
(cosg;-n)[(cos¢—ncos 27)2 + nZ sin22r]
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With the G series of equation (1)

(o) = £ (C3ine + Q) n (140)
n=
where
" (coséy+n)
- _ 2 _io cos$,+n) cos¢; cos no; d¢,
Q xS J (cos¢,-n)[{cos¢,-ncos2r)2 +n2sin22r] (141)
/2

Using equation (140), the induced drag equation, derived similarly to
that of equation (69), is
C, = EA-( ¥ on an2 +2 ¥ a $ n*Q ) (142)
i =] n = =

where

Q. x = %— Qn* sin ¢ sin ng d¢ (143)

nn
0
where Qn* is given in equation (141) in which n is replaced by n*, and n = cos¢.

The 1ift coefficient is

C, = %A-a] cos T (144)

= = 2 =
where CL, A, and CDi are based on S zsecav’ A (25e) /S, CL L/qS, CDi

Di/qS. For symmetric spanwise Toading only odd integer n and n* apply, then
equation (142) with (144) becomes

", 1 1 o n o 3
7 “e s U2yt bon(@htez x (n Qg Q) o
odd odd
a a
’ n E 3 5? n*§ 3 " an* EDEJ (148)
odd odd

Recurrence formula for Q, and Qupn*. - To formulate a recurrence formula
for the induced velocity influence coefficient it is simpler to work with Qn

41



in the form

Q= - Ty (146)
where
r’lT
_1 (cos 2T cos®;-n) cos n?,; d?; (147)
9 T (cos¢i-ncos 2T)2% +n2sin?2T
J"T/Z
RE b, gt
- 1 cos n%; d%
"'n "W | CoS$] - n (148)
J"IT/Z

The recurrence formula for 9, and r,are derived in the same manner as detailed

in appendices B and C. Then

F—%—cos 2T - 2n, n =0 + 4n cos 2T q 2(1+2n2)qn

qn+2 = n+_| -

cos 2T + %—n, n=1
+ 4n cos 2T G-1" -2

4 .cos 2T n .
| 7 Gzt cos g+ ysin g, n> )
(149)
Noting that 9. = 9, and G then
q, = -%—cos 2T - n + 4n cos 2T a4y - (1 + 212) dg
(150)
q5 = cos 2T + %—n + 4n cos 2T q, - (3 + 4n2) a4y * 4y cos 2T dg
ro+l = 1, n=20 + 2n Pn = oo (151)
-2 .. Nnm
p Sin 5= n o> 0
r, = 1y r
127"

(152)

_ 2
rp=pténr -y

The induced drag influence coefficient in terms of q and r, is equation
(146) with n = n*, inserted into (143), then

an*= qnn*_ rnn* (153)
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where

[ .
Uop* = %- G+ Sing sin n¢ d¢ (154)
Jo
[
L =-% ro+ Sing sin ng d¢ (155)
JO

Then using the recurrence formulas of equations (149) and (151)

- 2 = =
qn’n*+2 = - €Os 2r , n =1, n*= 0 1 + 2c052r(qn+]’n*+]+qn_]’n*+1)
1 - -
2 s n =2, 0% =0 - 4qnn*_qn+2,n*_qn—2,n*
1 - -
7 €0s 2r , n =1, n¥*= 1 + 2cosZr(qn+],n*_]+qn_],n*_])
1 - -
; Y n-= 2, n*'— ] - qn’n*_z
*
%—%ggj%l-cos ﬂ§£3 n=1, n*>1
1 . n¥yg
— Sin ——, n=2, nt>] 156
| wn* 2 i ( )
Noting that qn,-n* = Qp, and rn,-n* = o then
q., = —l-cos 2r, n = 1 + 2 cos 2r (q +q ) - 2q —lq
n2 n i n+t1,1 "n-1,1 n0 2'n+2,0
1 _ 1
7 s N=21 -59,59 (157)
r = 1 n=1, n*= 0 +r +r -r
ny,n*+1 2° i nt1,n* "n-1,n* "n,n*-1 (158)
—&%;-s1n I%?E, n=1, nf*>]
ro= (L, n=1] +1p AL (159)
nl 4 2 nt1,0 2 'n-1,0
apn/a; coefficients for minimized induced drag. - In equation (145), since

a, represents 1ift, this equation has the constraint condition of 1ift,
that is, induced drag per unit 1ift. The partial derivative of equation (145)
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with respect to am/a] is identically similar to that of equation (73) and (74).
In equation (74) Imn is replaced by an, then

=Y

) Eﬂ.: 0;m=3,5,7. . .N (160)
]

+ nQ

My ¥ Oy * g ¥ ? (mQ mn
d

A simultaneous solution of these equations leads to evaluation of the an/a]

ratios. With the an/a] values known, then the spanwise loading is determined

from equation (5). This is the loading distribution for minimum induced drag

per unit T1ift of the V-wing. Other aerodynamic characteristics are 1/e from

equation (145), induced angle normal to the wake from equation (140), wing

bending moment ratio, Cb cosT', from equation (11), and Nep from equation (12).

The solution for the constraint conditions of 1ift plus bending moment is
obtained from equation (160) which is modified by adding the term mtfm, similar
to that shown in equation (77).

V-wing in ground effect. - When the apex of the V-wing touches ground the
vorticity sheet system including ground images becomes that of the cruciform
wing except the sense of the ground image vorticity is reversed. This can be
taken into account by reversing the sign on the integrals in equation (122)
when integrating along the lower panels of the sheet. Thus

w/2 T T
0‘<¢)=1J G'(¢])d¢1__1_J G (4;) d¢]+]_[
W COS¢; - n T\' C0S$; ~ n L

/2 /2

w/2
(cos 2r cos®;-n) G'(¢;) d®; 1 (cos 2r cos®; - n) G'(%;) d¥;
(cos¢; - n cos 2r)% + n% sin?2lr = (cos¢; -n cos 2T)? + nZ sin22T
m m m
_1 G'(¢y) do; 1 (cos 2r cos?;-n) G'(9;) dd . 2
T COS¢; - n T (cos¢; - n cos 2T)%2 + n? sin22r 7
0 0 - 1T/2
(cos 2r cos®; - n) G'(9;) d&; 2 G'(%,) d¢; (161)
(cos¢; - n cos 2r)2 + n* sin42r ~ n Co0S¢; - n
/2
With G'(¢,) = £ n a_ cos ng¢j, comparing with equation (124), the first
=1
integral of equat on (161), has the term sin n¢/sing, the second integral,
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comparing with equation (125), has the term -P» and the third and fourth
integrals, comparing with equations (146) through (148), has the term 2Q,- Then
equation (161) becomes

(162)

- 2 (sin ng _
a,(¢) r ]( +2Q, - P)na

n sing
The solution for the V-wing in ground effect follows the same procedure as
that for the V-wing, but with the substitution of 2Qn - Pn for Qn’ and 2an* -
Pnn* for an* in equations (141), (142), (145), and (160). The influence
coefficients of Pn and Pnn*’ in which v = 2r, are given in appendix C.

Planar-Wing Winglet Configuration

An aft view of this configuration consists of a flat wing span with wing-
lets at the tips, as shown below.

-1 %
T 1\\ wing]ei;<; 0
Y
""" 1 T L =T ="
-ng 0 n n
"2, /2 : b0

The dihedral cant angle, y, of the winglet is the angle between the extended
wing and the winglet. Theoretical aerodynamic characteristics of the planar-
winglet have been developed in reference 9. The minimization method objective
is to determine the loading distribution along the span extent of the wing and
up the winglet such that induced drag for a given 1ift, and induced drag for

a given root bending moment, are minimum.

Planar-wing winglet aerodynamic characteristics from reference 9. - From

equation (69) of reference 9, the induced drag coefficient of a planar-wing
winglet configuration with symmetric loading is

g-n a_.) (163)

N
na2+ 3 a
z nn* “n*

1 n
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where
n/2
D =2 Ln*w sing sin n¢ d¢ (164)
0

where for ¢0 < ¢ s %

¢ m
L % = .]Z_Tr_ L_ cos n*¢1 dq)l + ]?; L+ coSs n*¢1 dd)l (]65)

0 g

and for 0 < ¢ < g

W—¢O

™
Loky = %;—[ L_cos n*¢; do; + %;—J L0 cos n*¢; do, (166)
bo
where (noting that ng = cos¢0) =0
L= - (cos?®,+n0) (cos$; +cos¢+2ng) (1 - cosy) (167)
+ [(cose-cose)® + 2(cos¢ltn0) (bos¢in0)(1 - cosy)] (cos¢;-cos¢)
L= - (1-2 cos?y) cos$; + cos¢ + 21 (1-cosy) cosy _
0 [(cos¢,-cos¢) cosy - 2ng (T-cosy)]Z + (cos¢i+cos¢)? sin?y

1 .
COS¢; - COS¢ (163)

For the winglet span position of 90 = 5%/32, or ng © .881921, values of
Dnn* had been computed for y = 90°, and 75°, and presented in table II of
reference 9. This table of Dnn* has been reproduced as table 13 in the present

report.

From equations (55) and (59) of reference (9), the 1ift coefficient and wing

root bending moment coefficient are

mAa

_ ™ 2
¢, = ——[1-=(1-cosy) (Ty +

) T -] (169)
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ntl
Aa 2
1 N -
Cmbb = -ig- {}% - i'(] - cosY)nO T] + ] E 3[£ﬁl%a__-- %—(1 - c05y)nO
odd
a4
L v (170)
1
where
T] = ¢ - g sin %0
(171)
T = sin(n-1)%9  sin(nt1)9%g

n n -1 n+1

Equations (163) and (169) are combined to form e™ ! = « ACD /C, %, then
i

1+2 p +§n(ﬁ)z+§(i0 it p )EMI%!h ¥4, n*
LA R s I 11 I | L T B AL
[1 -5 (1-cosy) (T,+ £ T. -]
T 1 n=3 N 34
odd
The ratio of equatidn (170) to (169) leads to
n+1
2 a
1 1 N (-1) ] n
§--§-(1-COSY)n0T]+n§3 oz -7 (1-cosy)nyT ] 7
C, - , odd T (173)
2 n
m[1- = (1-cosy) (T-+z T —)]
iy ] n=3 n a-l
odd

These induced drag, 1ift, and bending moment coefficients and aspect ratio
are based on the extended span of the planar-wing span plus winglet spans,
and on surface area of the planar-wing area plus the winglet areas.

partial derivative of equation (172) with respect to a /ay is
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a(1/e) _ 1 , In 4 4 N
da /a, 5 N 3 {:Zm a, R ML= P n 5 3
[1-5 (O-cosy) (Ty+ 2 T 77)] “odd
n=3 1
odd
(m ﬂ-D +n ﬂ-D ) Eﬂ-+ ﬂ—-(1 -cosy) T [1 -=1(1 - cosy)
T onm mn’ a, ' me Y/t Y
N a
(T, + = T -M] (174)
Vopss 1y
odd
where m = 3, 5, 7, . . .N. The minimization solution is with equation (174)

equal to zero. That is, the quantity within the braces in equation (174) must
equal zero. Then

em g?'+ %'Dml o g_Dlm ¥ ng3 (m & Do * 1 3 D) 5$'+ 7e (1 - cosy)
odd
T -2 -cosy) (T, + ¥ 1 Eﬂ)] = 0, m=3,5,7,. . .N. (175)
m T 1 n=3 "
odd

Equation (175) involves the solution of (N-1)/2 nonlinear simultaneous equations.
It is nonlinear because of e in the last term. A method of solution is to
iterate e with estimates for e computed from equation (172), then equation

(175) can be solved as linear simultaneous equations. With these new values

of an/a1, e is recomputed from equation (172), and the linear solution repeated.
A first estimate for 1/e is that for elliptic loading, then an/a1 =0 forn >1,
Then from equation (172) for elliptic loading

1+%p

1 - ;—(1-c05y) T]]2
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ap/ay coefficients for minimized induced drag and wing root bending

moment. - For this minimization process, equation (76) must be satisfied, thus
aC
o(1/e) . 1 b _
=0 (177)
a(am/a]) er é(am/a]) _ | , _

where the first term is given in equation (174). The partial derivative of
equation (173) with respect to am/a], inserted into equation (177) leads to

a a
fm, 4 4 N & 4 on, 4
2m a; +D o+ m Dyt n§3 (m - Dy ¥ 1 Dmn) a; + = (1 - cosy) T
odd
m+1
(1 - g-(1 - cosy) (T, + g T iﬂ)] + 8t [('1) ’ - l-(1 - cosy) T
T LEBRRY ne3 N A mZ -4 "2 Y/ 'm
odd
N a
c05¢0] [1 - %—(1 - cosy) (T1 + z Tn 5?)] + % (1 - cosy) Tm {'% - %
d
+

N 1 2 a
(] - COSY) T-I COS¢O + n£3 [(TZ)——q- -5 (] - COSY) Tn COS¢O] _a_;]. =
odd

m=3,5,7, .. .N (178)

where t is a constant similar to that developed in equation (20). The solution
of equation (178) with respect to an/a] is the same as that of equation (175),
but with the addition of the t term to the linear solution as e is iterated.

Example numerical solution with g = 57/32. - With the Dnn* for v = 90°,
and Tn’ of tables 13 and 14, inserted into equation (175), this equation simpli-
fies to the numerical form, for m = 3, 5, and 7

49



a3 ag az E I
.001665 + 2.821910 = - .166305 — - .016025 — + .117625 = = Q
as g az E
-.002125 - .166305 —= + 4.908620 — + .099925 — + .126340 == 0 p  (179)
a] a] a] e
aj ag az E
011935 - .016025 —> + .099925 —2 + 7.184340 —% + .076970 = = 0
a a; a; e »
where
a3 35 a7
E = .952165 - .117625 —= - .126340 — - .076970 —- (180)
a] a1 a]

Equation (172) becomes

1.1 [1.03335 + .00333 33 | 00425 5 4 2387 T42.8219] (61—3)2 +
e EZ L' : a : a : a . a,
a a a a a a
4.90862 (—2)2 + 7.18434 (<L)2 - .33261 —= 2 _ 03205 = L +
a a a a a d
1 1 13 13
dpr a
5 37
19985 —> 1] (181)
13
and equation (173) becomes
1 as ag az
C, = = (.30020 + .118533- .135133- .03109 q) (182)

For elliptic loading, equations (176) or (181), and (182) become

l—c = 1.139785, C__ = .100357 (183)
A one equation solution is obtained from the first equation of equation (179),
starting with the e value of equation (183) and iterating until e converges.
Similarly for a two equation solution, but starting with the 1 - eq. solution
of e, etc. The converged three through one equation solutions are Tisted as

follows:
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1 3 5 &7 c

e a, aq a, b
3 eq. solution 1.127466 -.047592 -.028843 -.012991 098846
2 eq. solution 1.128776 -.047542 -.029110 .098826 (184)
1 eq. solution 1.133285  -.045823 .097987

The three equation result is an accurate solution for the wing with a winglet
at 99 = 5#/32, or ng = .881921, with y = 90 degrees. The loading is given by
inserting these an/a1 values into equation (85). This loading is along the
span extent of the wing and up the winglet to the winglet tip. The spanwise
loading for minimum induced drag for a given 1ift is inboard from elliptic
loading, particularly the loading is substantially less over the winglet as
indicated by the negative values of an/a]. Compared with elliptic loading
values the minimized solution has a -1.081 percent smaller e 1, and a -1.506
percent smaller C_ . The e 1 value of 1.127466 is with C>
the combined areas and spans of the planar wing and winglet. When based only

CD , and A based on
.i

on the planar wing area and span, this e 1 value is multiplied by n02, then

e ! = .876926. This means that the addition of two 13.39 percent wing semi-
span winglets at v = 90 degrees, to a planar wing, can reduce e 1 from one or
larger to .877.

The equations for the minimized induced drag and bending moment solution
are given in equation (178). These equations are the same as those of equation
(175) but with an addition of a t term. For 09 = 5n/32, v = 90 degrees, the t
terms to add to equation (179) are

ag a7 I
t (.592669 - .123477 —= - .051120 =%)
a a
1 1
a3 a7
t (-.362955 + .123477 = + .025891 a—) f (185)
1 1
a3 a5
t (-.025992 + .051120 = - .025891 —2)
2, a; J

For t = 1 in equation (185) and adding to equation (179), gives
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a3 a5 az E 7
594334 + 2.82191 —= - .289782 —> - .067145 —~ + .117625 == 0

a] a] a1 e
a3 a5 az E

-.365080 - .042828 —> + 4.90862 — + .125816 — + .126340 = = 0 ) (186)
a] a1 a] e
as ag az E

-.014057 + .035095 > + .074034 —> + 7.18434 -~ + .076970 & = 0
a4 a4 4 J

where E and 1/e are given in equations (180) and (181). In the iteration of e
it is simpler to do a one equation solution of equation (186) for the first
estimate of e. The three equation iterative solution of equation (186) gives

a a a
3 - _.25932, -2 = .03994, L = -.01069
a a a
1 1 1
| (187)
1 _
11,2887, ¢, = .086015

i

where Cb is determined from equation (182). The spanwise loading is gﬁven in
equation (85) which with these a /aj coefficients shows that this loading is
strongly inboard of elliptic loading.

Combining equations (183) and (187), the e and Cb ratios are
e Cb

C—' ——
= 1.13065, C

. = ,85709 (188)
bc

From equations (49) and (50), for the same 1ift and wing root bending moment

S C

2= 25 - 116674 (189)
ec b

D. s 2 e

DL = (sﬁ) e—c = .83058 (190)
ic e

where subscript ¢ denotes a configuration with elliptic loading, and Se is the
semispan of the planar wing plus the span Tength or height of the winglet.
Equations (189) and (190) means that for 49 = 5n/32, v = 90 degrees, if the
wing with the inboard loading of equation (187), has a span length 16.67 per-
cent longer than the wing of elliptic loading, then the induced drag will be
17 percent less, for the same 1ift and the same wing root bending moment.
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RESULTS AND DISCUSSION

In the present theory, minimization solutions are obtained by expressing
the spanwise loading in a Fourier series, determining the induced angle normal
to the wake, formulating the induced drag as a series of products of Fourier
Toading coefficients and induced drag influence coefficients, imposing con-
straint conditions, then minimizing the constraint conditioned induced drag with
respect to the Fourier loading coefficients. This résu]ts in a set of unknown
Fourier loading coefficients with an equal number of equations. The solution
of these simultaneous equations leads to values of the Fourier loading coef-
ficients and thus the loading for minimum induced drag.

Planar Wings

Constraint that either 1ift or rolling moment is specified. - Example

solutions are shown at the beginning of the planar wing chapter. For the
constraint that 1ift is specified the solution is

cc C 2 f

2 = i 1 = __L = = ——1 = 4_

Ccyy mom e b Tape et LG T T g (191)
where sing = (1 - nz)%, i.e., elliptic, and fi is given in equations (9),

(10a), or (36).

For the constraint condition that rolling moment is specified, the solution
for a planar wing is

. 37
- sin 2¢, C, = se. =1, n._ =37 (192)
CJLCaV m ’ D'i A cp 16

L . . . ..
where sin 2¢ = 2n(1 - n2)™, and C, is wing rolling moment coefficient.

Constraints of 1ift and of wing bending moment about nh. - The minimization

solution in terms of infinite series is presented in equations.(21) through
(26). The solution is in terms of a constant, t, which governs the quantity
of the bending moment constraint. When t is zero the solution simplifies to
that of equation (191). An upper 1imit for t is given in equation (29) at
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which point the loading becomes negative at the wing tips when t > t]. Series
summation methods are developed in appendix A so that equations (21) through
(26) can also be represented in terms of closed functions. In terms of closed
functions the planar wing solution of minimized induced drag for a given 1ift
and a given wing bending moment about span station u'e is presented in equations
(30) through (39). For the constraint condition of wing root bending moment,
ny = 0, then equations (30) through (38) simplify to equations (40) through
(44). For ny = 0, equation (41) can be written as t = 6 - 9ﬂncp/2, which
substituted into equations (40) and (44), results in a loading function and
induced drag function which correlate exactly with those presented in reference
2 which is a wing-root bending moment method. Equations (30) through (39)
represent an independent solution as determined by the use of the present
minimization theory, and developed originally without knowledge of the previous
work of references 1 through 4. In terms of n,, equations (30) through (39)
are unique in the literature,

Numerical values of k, k], f], and k0 for various values of n, are
presented in tables 1 and 2. With these constants the loading distribution,
spanwise center of pressure, induced angle in the wake, wing bending moment
parameter, and induced drag efficiency factor, are given in equations (30),
(32), (34), (35) and (38), respectively, for arbitrary values of t. From
equation (30) it can be seen that the loading distribution is elliptic loading
times the factor, 1 - kot. With positive values of t, and since in table 2
Ko
loading will be inboard of elliptic loading. The aerodynamic characteristics
for specified values of t are given in tables 4 through 8. Greater detail is
given in the section 'Numerical values of loading characteristics for various
' and t'. A measure of the efficiency of wings with inboard loading is to
compare induced drag with a wing with elliptic loading having the same Tift
and same wing bending moment. This is done in the section entitled 'Comparison
with E1Tliptic Loading'. Aerodynamic characteristics ratioed to those of the

is negative inboard and positive outboard on the span, then this optimum

wing with elliptic loading, for same nys are presented in table 9. Correspond-
ing spanwise loadings are given in table 8. 1In addition the data of tables 4
through 7 contain some comparisons, that is, the Cbz/e ratios are the same as
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Di/Dic’ and CbC/Cb = b/bc'

Tables 10 and 11 contain data for the condition that wing bending moments
are equal about the same Yp = Ypo SPan station. Since the elliptic loading
span is smaller, then when Yp = Yper the dimensionless coordinates become,
Ny > Npe The smaller ' favors a higher bending moment which means there
must be a larger inboard shift of loading which, in turn, increases induced drag.
The induced drag ratios of table 10 are higher than those of table 9 where
Ny = Npe- Corresponding spanwise loading coefficients are presented in table
11. When b/bc = 1, the loading is elliptic, that is 4(1-n2)%/ﬂ. The loading
for the asterisk marked lines in table 10 is wingtip zero-slope loading pre-
sented at the top of table 8.

Derivation of t for minimal induced drag and wing span. - Shown in the

data of table 9 is a relative decrease of induced drag with increase in wing
span, for wings with constant 1ift and constant wing bending moment. A design
objective could be to get the smallest induced drag for the least increase in
span. That is, to minimize the product of the span ratio and the induced drag
ratio. The product of equations (52) and (57) gives, for same nh

= (1 + kt2) (1 - & 1) (193)
1

where e is from equation (38). Equation (193) is minimized by taking the
partial derivative with respect to t and equating to zero. This produces

1
t=o [1-0 - i—';f)z] (194)
%_= l - 3 T (195)
2f .2
1 _ 2 1 3k \k
-1 +kt2 =3+ -1 - (1 - ?Tz)z] (196)
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M |—

(22 = (1 +kt2) (1 - X p)2 197
ic bc f] ( )

Equations (194) through (197) are valid when the span-drag product of equation
(193) is minimum, and when both wings have the same N -

For the constraint condition of wing-root bending moment, Ny = 0. Then
from equations (36) and (37), or table 1, k = 2/9, and f] = 4/3. Using
equations (193) through (197) gives

C 2

_ - L
t = .41886] e = WACD- = ,962475
! > (198)
b D; b D;
B—-= 1.075049 0 .898987, ) = .966456
c ic c ic J

Using the above t, the spanwise loading distribution, and ep® O
determined from equations (40), (41), (42), and (43), respectively. The values
of equation (198) show that for a wing with the loading of equation (40), with
just a 7.5 percent increase in span, a 10.1 percent decrease in induced drag
can be realized compared to a wing with e]]ibtic loading, with both wings at
same 1ift and same wing root bending moment.

, and Cb’ are

For the constraint condition of wing bending moment about span station,
.2, then k = .176851, f, = .784747, which are obtained from equations (36)

" 1
and (37), or from table 1. Using equations (193) through (197) gives
C2 7
t = .928705 e =L - 867654
. ﬂACD_
! > (199)
b D; b D;
E—-= 1.264693 =— = .720582, 5D = ,911315
c ic c “ic »

Using the above t and U the spanwise loading distribution, and Nep? %y and
C,, are determined from equations (30), (32), (34), and (35), respectively. The
values of equation (199) show that for a wing with the loading of equation (30),
with a 26.47 percent increase in span, a 27.94 percent decrease in induced drag

can be realized compared to a wing with elliptic loading, with both wings at
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the same 1ift and wing bending moment about span station Ny = 2 = e Data
from table 9 for ny = .2 show that with just a 7.5 percent increase in span,
a 11.8 percent decrease in induced drag can be realized.

Nonplanar Wings

Example applications of the minimization theory are made to the config-
urations described as, biplane, wing in ground effect, cruciform wing, V-wing,
V-wing in ground effect, and planar-wing winglet. The biplane solution is
obtained from equation (74). This equation is valid for a biplane with wings
of equal span and same spanwise loading distribution; is independent of stagger;
and is only dependent on height between wings or gap since Inn* is a function
of z. Equation (74) is also valid for the case of a planar wing in ground
effect, provided that Inm is substituted by 'Inm’ and that ¢ = 4h/b, where h
is height from ground. For ¢ = 1/2, the solution for minimum induced drag for
a given 1ift, for the biplane, the loading characteristics are those given in
equations (84) and (88), which show an outboard shift of loading compared with
elliptic. Similarly, for ¢ = 1/2, or h/b = 1/8, for the wing in ground effect,
the loading characteristics are those given in equations (97) and (98), which
show an inboard shift of loading compared with elliptic. For ¢ = 1/2, the
solution for minimum induced drag for a given 1ift and a given wing root bending
moment, for the biplane, the loading characteristics are given in equations (90)
through (96), while for the wing in ground effect, in equations (99) through
(103). Compared to a wing with elliptic loading, the biplane with a 14.1 per-
cent greater span, has 12.8 percent less induced drag, while the wing in ground
effect with 28.6 percent greater span, has 13.6 percent less induced drag.

The minimization theory application to a cruciform wing is similar to
that for the biplane. The primary difference is that the induced drag influence
coefficient, Pnn*’ replaces Inn* of the biplane. Minimized induced drag solu-
tions are obtained from either equation (132) or equation (132) plus mtf s which
are analogous to equations (74) and (77), respectively. The Pnn* integrals are
evaluated in appendix C.

The analyses for a V-wing is the same as that for the cruciform wing except
that the spanwise integrations for the induced velocity influence coefficient
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is for half the wing span. The induced drag influence coefficient is denoted
by an*. Minimized induced drag solutions are obtained from either equation
(160) or equation (160) plus mtf_, which equations are analogous to equations
(74) and (77) with Inn*’ or equation (132) with Pnn*' When the pointed end of
the V-wing touches ground, the vortex sheet plus ground image vorticity resem-
bles in part the cruciform wing (see eq. 161). The solution for the V-wing in
ground effect (V-wing apex touching ground) follows the same procedure as that
for the V-wing, but with the substitution of 2Qn - Pn for Qn’ and 2an* - Pnn*
for an* in equations (141), (142), (145), and (160). The Pn and Pnn* coef-
ficients, in which v = 2r, are given in appendix C.

The planar-wing winglet configuration influence coefficients are derived
in reference 9 and reproduced in the present report in equations (164) through
(168) and in table 13. The minimization solution is obtained from equations
(175) for a given 1ift, and (178) for a given 1ift and a given wing-root bend-
ing moment. The numerical solution for 99 = 5n7/32 (winglets starting at no =
+.88192) with winglets at right angle to the wing, is presented in equation
(184) for the constraint of a given 1ift. This optimized loading is inboard
relative to elliptic lToading, particularly the loading is less than elliptical
over the winglet. Comparing the same planar wing with and without added wing-
lets, the induced drag is 12.3 percent less for the wing with winglets. The
solution with constraints of 1ift and wing-root bending moment is presented in
equation (187). The results show that if a wing-winglet with the optimized
inboard Toading has a span length 16.7 percent longer than that of the wing-
winglet with elliptic loading, then the induced drag will be 17 percent less,
for the same 1ift and wing-root bending moment.

Other Applications of the Analysis

An exact solution for the flow field about a flat vorticity sheet or
planar wake is presented in equations (118) and (119). These equations are
the vertical velocity or downwash, and lateral velocity or sidewash, induced
by a flat vorticity sheet of arbitrary spanwise vorticity or loading distri-
bution. The loading distribution is represented in equation (1) in which the
a, are Fourier loading coefficients which can have arbitrary values. Similarly,
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equations (134) and (136) are presented for predicting the normal and tangential
induced velocities on a y-banked plane, induced by a flat vorticity sheet of
arbitrary loading distribution.

With equations (118) and (119), the induced velocities can be predicted
at any point in space. These equations can thus be used to set up the mini-
mization solution for such configurations as multi-wings, wings in formation
flying in arbitrary pattern, and banked wings. The minimization equation for
the V-wing in ground effect is given in equation (162). The V-wing with apex
at the boundary of an open wind tunnel has an identical solution to the
cruciform wing presented in the section Cruciform Wing. The biplane solution
is also the solution for wing flying near a wake, that is, over or under a wake
which has the same loading distribution as that of the wing. The minimum induced
drag solution for a wing under an arbitrarily loaded wake, is obtained by fol-
lowing the procedure in the biplane section. Let the wake Toading be

G, = b b, sin n¢ (200)
n=1
then
. ® sinng ®
o, ) E : STn na + ) E : In n bn (201)

With equation (201), 1/e of the wing becomes

-
v

* bn*
n Inn* E]— (202)

™8

@
—_— = Z

ah,2 W ® n
n (5—) + 2 = T
n 1 =

1 131 n*=1

The an/a] coefficients for minimized induced drag are obtained by taking the

derivative of 1/e with respect to am/a1, and setting equal to zero. This

solution gives
C

L

n w1 ® n

—_ = e e— x n* —_ I * (203)
1 CLonosa by “nn

2]

where the 1ift coefficient ratio is that of the wake loading to that of the
wing. The values of equation (203) in equation (1) give the loading distribution
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of the wing with minimum induced drag, f]ying at a ¢ distance above or below
a wake which has the loading of equation (200). When the wake loading distribu-
tion is elliptic, then bn =0 for n > 1, and equation (203) reduces to

(@]

LI
_21_ (204)

=)

“n W
4 L

[l

which Toading is outboard relative to elliptic loading.

The following two sections contain other applications in greater detail.

Flow Field Solution of a Thin Wing Chordwise Vortex Sheet

Two-dimensional thin wing theory and wake theory are in principle the
same, differing only by coordinate definitions. In equations (114) and (115),
substitute the Tongitudinal coordinate x for y, v for dr/dy], c for b, and

-Ug (x,z) for Vg (y,z). Then

1 (¢ (x-x]) y dx,
W (x,2) = 5— ) kx| V2 7 72 (205)
Y dx
_Z [c 1
us(x.2) = 50 fo (x-x{)2 + 72 (206)

where vy is circulation per unit Tength along the wing chord, related to total
circulation and local Tift coefficient by
1 C
S
0
In terms of dimensionless coordinates, chordwise trigonometric coordinates, and
chordwise Toading represented by a cotangent term plus Fourier series, define

X o, =1 zZ
Z=g=5(1-cose), T 0 (208)

= - %—AC = 2A, cot %—+ 2 3 A, sin ng (209)

%(I—:-
P n 1

515
£0

With equations (208) and (209), equation (205) becomes
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Bt e St o

TT

W_(£,9) [cosg—(]-Zg)]{Ao(1+cose1)+%— b An[tos(n-l)e]-cos(n+1)e]i}de]
gioel .

1 B n=1
™

v T TCose, (T-25) P ¥ 4

(210)

These integrals compare with the integrals of equations (67) or (B1), then

A (1 (211)

We(g,0) _ 1
v A0 (Io * 11) * 10 tn-l - In+1)

2
n

I 8

where In = In (1 - 25, 20). By a similar derivation, noting correspondence

with the Jn integral of equation (B12), equation (206) becomes

US(E,Q) _ 1
S 2 A, (9, ) + g

A (J
v n

1 n

It M8

g - d)]e (212)

where Jn = Jn (1 - 2¢ , 29). These I, and Jn induced velocity influence coef-

ficients are evaluated by substituting
n=1-2¢, and ¢ = 2 (213)

into equations (B7) through (B11), and into equations (B13), (B14) and (B18)
through (B20). With these n and ¢

>

substitutions the p and r values of In and
Jn becomes (from eq. B11)

p=4(g2+@2), r=4[(1-¢)2+ 2] (214)

The dimensionless coordinate ¢ is measured from the Teading edge of the chord-
wise vortex sheet, and o is measured from the sheet.

Equations (211) and (212) represent an exact analytical solution for
induced downwash and induced longitudinal velocity, due to arbitrary chordwise
loading as represented in equation (209). The total longitudinal velocity is

u.(g,q)

=]+ V

(215)

<|c

where V is freestream velocity.
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Formation Flying of Wings with Wingtips Linked

The objective is to 1ink wings together and determine the spanwise loading
such that induced drag is minimum with the constraint conditions that the bend-
ing moments at the wing connections be zero. This is because the term linked
here means hinged and cannot support a '
bending moment. A three wing symmetri-
cal combination shown here, has wings _;

: I - |
T T 1

“n b 1

spanning the distances -1 to “Np> ~Np n
cpb

to ny» and ny to 1. The constraint
condition when no 1ift transfers through the 1link is that the center of pressure
of the outer wing loading, Nepb? be at the midpoint of the np to 1 span.

The minimization of induced drag for a given 1ift and wing bending moment
has already been developed in the present planar wing chapter. These results are
valid for an arbitrary value of t. For this linked wing problem, t must be
determined such that the constraint condition on ncpb is satisfied. The span
position, Nepb? is the sum of b and the ratio of bending moment about ure to

wing 1ift from np to 1. Then

2Cb
cpb b Lb/L
where Lb/L is the fraction of 1ift of the outer wing compared to the total 1ift
of all the wings. Using the relation an/a] = -tfn from equation (20), this

ratio is
1
Ly f”b o w
L -7 =7y -t ¥ hf) (217)
Gd n=3
N odd
-
where
hy = ¢ - sin ¢y cos ¢, ¢p = cos! ny (218)
_sin (n-1)9p sin (n+1)%p
hn = n-1 ) N+ (219)

62



R et

The constraint condition is that "epb = (1 + nb)/2. Then equation (216), with
equation (24) for Cy» and equation (217), leads to

f1 - (1 - ) hy

k- (T-n) 3 hf
n =3
odd

e (220)

where f], fn’ and k are in equations (9), (10), and (37), respectively, or in
tables 1 and 3.

Equation (220) represents the minimized induced drag solution for three
symmetrically linked wings with arbitrary outer wing span. With t determined
for a given s the three-wing aerodynamic characteristics are evaluated from
equations (30) through (38), and the 1ift ratio from equation (217). In the
three-wing problem when 1ift is able or allowed to transfer through the Tinks,
then ncpb can be reduced until the net three-wing optimum loading is elliptical
and net e is unity.

For the case of Ny = 0, the solution reduces to a linked two-wing config-
uration. When ny = 0, then k = 2/9, k] =1/6, f] = 4/3, h] = q/2, hn = 0 for
n > 1, and equation (220) becomes

t = - % (37 - 8) = -1.068583 (221)

then the two-wing aerodynamic characteristics from equations (40) through (44),
and (217) become

C,Q,C _ 3 2 % 2 ~1 1 T
e = ;.[(4 - 2} (1 - n2)% + (37 - 8)n2 cosh T;ﬂﬂ
21 C, = &
n(:p 2 b 8 > (222)
TA = =(3r-9) + 3T (37-8)|n| e = [1+ 4 (3r-8)2]71 = .79761
2C, w 4 n g T '
= -.42478 + 3.35705|n] Ly 4
L ~2 .

Thus, two equal wings flying linked together with the optimal net spanwise
loading in equation (222), with no rolling moments will have 0.6269 as much
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induced drag as when the wings are flying separately with elliptic loading.
CONCLUSIONS

An analytical minimization theory has been developed which is applicable
to complex aircraft nonplanar configurations, with simple or complex constraint
conditions. The application of the theory to many configurations and flow
conditions have proven to be not excessively complicated and show that the
analyses remain mathematically manageable and viable. This is because the
solution method is based on a Fourier series representation which, in effect,
breaks up ultra complex expressions into a sequence of analytically workable
terms. The solution remains analytically exact since a Fourier series can be
carried out to convergence, or final terms can be summed. In the planar wing
minimization solution, the spanwise loading distribution is determined for which
the induced drag is minimum for a given 1ift and wing bending moment about a
given span station. The planar wing solution aerodynamic characteristics are
given in eguations (30) through (38). These equations are unique. They also
provide the solution for three wingtip-linked wings. Minimization solutions
are made for nonplanar type configurations. These show the optimum spanwise
loading for different constraint conditions. In many cases the reduction of
induced drag can be substantial, particularly with either the constraint of
wing bending moment, ground effect, or formation flying. Some of the solutions
show marginal reductions in induced drag, relative to that due to elliptic
loading, but do provide the analytical loading for the minimum.

For two of the simplified cases or conditions, previous theoretical sol-
utions had been obtained by different analyses, which compare exactly with the
present results. These include the planar wing with constraints of 1ift and
wing-root bending moment (nb = 0), and the flow field of a planar vorticity
sheet with elliptic loading distribution. This minimization theory has proved
to be a useful analytical tool for obtaining the exemplary minimization solutions
in the present report. The method can be applied to many other problems of
interest, such as, complex aircraft configurations, wings with arbitrary number
of structural or performance constraint conditions, and optimized pattern for
wings in flying formation.
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APPENDIX A
MATHEMATICS OF TRIGONOMETRIC SUMMATIONS

Algebraic Series

Need to evaluate series summations of series with terms of the type

/N
n{n+a) (n+b)...(n+m) (A1)

where n are odd numbered integers and m are arbitrary numbers. This family
of infinite series begins with the series of tanh ~1Z, thus

- 1+7 73 | 75 s "
17 = 1 LI S, L- L = r L
tanh ‘Z=%Iny—-=2+3-+g+. . .0+ &+
odd
then
o n+a
n z 3 Zﬁ——-= -Za+] + 7% tanh "1z (A2)
odd
Similarly
n-1
© 2 n
LI R A A = y (-1) z
tan 7 = Z 3 + E . e . 7+ Nt 3 -
odd
then
n-1
o 2 n+a
I, (=1) — L = T tan 1z (A3)
odd

The 1/n(n+a) terms summation is obtained by dividing equations (A2) and (A3) by
Z, then integrating from 0 to Z, thus
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©  ntatb 7atbtl  a+b -, 7b 72 Z
nfanmray S - TET T otanh 2 -5 | 7o dzg >
odd
a#0# - (odd integers)
© n+b -1 Z
n=3 n? Z 0
odd
© n+b b b
Z _ b+l JA Z
n£3n—(m~z —-2—-(1+Z)1n(1+Z)+—2——(1-Z)]n(1-Z),
odd
a = -1
n-1
o 2 n+atb a+b+1] atb b a Z
E (_]l Z = [_ Z + z tan -lz - L_ Z_._dé] R
n=3 n(n+a) a + 1 a 1 +72 0
odd
a# 0# - (odd integers)
n-1
o 2 _ntb - Z
5 (-1) JA b+ b | tan 17 -
N3 - [-Z + 7 i dzg ,a=0
odd
n-1

Apply equations (A4) and (A7) for various values of a, leads to

(A7)

(A8)

(A9)

67



o0 Zn+b Zb+] Zb-] Zb—]
nfany Tzt rD I+ 5
odd
(1 -2Z) In (1 - Z) (A10)
o n+b b-1 b+1 b-2
nfs n%n+27 ) z2 i Z3 - Z2 (1 - 72) tanh ~1Z (A1)
odd
n§3n_ﬁw-—2)'= 57— - 5= (1 - 72) tanh "1z (A12)
odd
n-1
o<} 2 n+b b+] b"]
g B R B e
odd
n-t
oo 2 ntb b-1 b+1 b-2
nts3 (-])n(n+g) - Z2 B Z3 * ZZ (1 +172) tan 17 (A14)
odd
n-1
o 2 ntb b+1 b
e (-”n(n—é) =L - (1 +72) tan 12 (A15)
odd

In equations (A6), (A9), (A10), and (A13), let b = 0 then taking derivatives
with respect to 7Z Teads to

0 Zn+b Zb+] )
nf3 o = -3 In(-12%) (A16)
odd

= Z0tb b+l b-T ,
R e L L (A17)
odd
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n-1
w "2 ntb b+1
(-1) Z - 2
n z 3 =T _ > In (1 + Z2) (A18)
odd
n-1
=) 2 n+b b+1 b-1
x (1) Z - L .71 2 :
n=3 n+l 57—+ =5—In (1 + 22) (A19)
odd

© n+b b+1
Z 4 b-1 b-2 -1
o z 3 s -3 -1 + 7 tanh "1z (A20)
odd
) n+b
Z b+2 -
x = 1
n+3 -1 tanh ‘'Z (A21)
odd

The integrations of equations (A4), (A6), (A7), and (A9) result in the following
summations where a and b have values such that no denominator vanishes:

o Zn+a+b+c Za+b+c+1 a+b+c
z = [- + tanh 17 -
n = 3 n(n+a)(n+a+b) (a+1)(a+b+T) a(a+b)
odd
C atb C a Z
Z Z dZ Z b-1 /
a(a+b7[ Tz - E‘J Z (J Tz 42)dz] (A22)
B LT 2 gbrerl 20T L 20
n = 3 n(n-1)(n+b) (b+1)2 b 2(b+T1)
odd
7€ Zb Z
In (1 - 22) + B(b+T) 772 dZ% (A23)
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(1 -2)In (1 -2) -

NIN

%—- (1+2)In(1+2) -

odd
c+] 2 VA
Z In (1-2%) 477 (A24)
2 Z 0
n-1
= (-] ¢ 4ntatbtc 7a*tbtctl a+b+c _ 7€
z = [- + tan 17 -
n =3 n{n+a)(n+at+b) (a+1)(a+b+1) = a(a+b) a(a+b)
odd
b o . a z
AR z b-1 ,f 2% dz
Tz 4 - 5 [Z (| 5558 4] (Az5)
n-1
> (1) 2 gntbtc o1 b+2__ breHl _ 7b+c anl 7 zbtc+]
n=3 n(n-1)(n+b) (b+1)2 b 2(b+7)
odd
) 7C Zb JA
n (1 +2%) + 5557y | Toz3 dzg (A26)
n-1
® 2 .ntb b+1
s (1) ° 7 _ r,bt1 _ob+1 | tan 17 o Z
n 23 n(nT)2 (27" InZ-1 7 4 -7
odd
VA
2
ln_jzhl_l d7] (A27)
0

Series of the type given in equations (A22) through (A27) can be determined
by using these equations or by solution with partial fractions. Thus to

evaluate the example
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n+1
3 n(n-2)(n+1

8

n .
odd

o it

then in equation (A22), a = -2, b = 3, ¢ = 0, hence the summation is

YA
72 Z - Z dZ dZ

[5--5tanh "1Z +% | ==+ | Z2 ( ) dz]
2 2 1-72 Z2(1-72) 0

thus
5 A 72 1 -1 7 72
z _ 12 7.2 o
n=3nn-2Y(n¥1) 3 6 (1 ) ) In (1 - Z)
odd
2
] 2 Z(1+ %—- %—J In (1 + Z) (A28)

By partial fractions,

1 _ 1 1
n(n-2)Y(n+1) = 3n(n-2) ~ 3n{n+1)

then the summation is 1/3 of the difference between equations (A12) and (A10),
and equals that given in equation (A28).

Trigonometric Series

The trigonometric series can be obtained from the aigebraic series by
letting Z be a complex function. That is

Z= e1¢ = cos¢+ i sin ¢
X (A29)
" =e = cos np+ i sin ng
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thus the cosine series is the real part and the sine series the imaginary part
of the algebraic series. The real and the imaginary part of the functions in
the algebraic series are listed as follows where absolute values are taken in
the log terms:

~
In (1 +Z) =1n 2 cos-g + i %

_ 7Y = .i._ﬂi
In (1 -Z) =1n 2 sin 5t ( ETgT-+ 2)
In (1 +7Z2) =1n2cos¢ + 1 ¢

Y (A30)

Tn (1= 122) = 1n 2 sing + i (- 2”¢ + ¢)

-1 = L -1 . m
tanh *Z = % tanh cos¢ + i P
tan "1Z = 7%+ i 4 tanh "! sin¢ .

In addition since dZ/Z = id¢, then with equation (A30)

(22m-] _ ]) Bm
1 m(2m +1)!

-5-

e g

dZ = - +i[ Z(In2+1-1ng) - %

&=

z

e

tanh "1z
m

2m+1]

¢ (A31)

where Bm are Bernoulli's numbers, 1/6, 1/30, 1/42, 1/30, 5/66, 691/2730, 7/6, . .

2m-1 B

tan 17 - (L u i, T
J —=dZ =%z -¢) [In2+1-1n(5-0)]-%_ I, m{2m+T) !
n (A32)
T m+ s T
(5 - ) g
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&

2m-1 ,,2m B
2 27" - 1) "'m  Zm+]
1 g e (as3)

e 8

2 2
[ I (20) 4z = - §+ifpnz-

72
J lD-%—Z—l-dz L (r-6)o+ile (In2=1+T1ng) -
22m-1 Bm

o 2m+1
I mwmy ¢ (A34)

m
Bernoulli's number is related to the Zeta function by the relation

I
Bn ) 22mi$2m%ﬁ+1 z(2m) (A35)
™

where £(2m) is the Zeta function given by

sem) = E 1 (A36)

Form=1, 2, 3, z(2m) = w2/6, 74/90, ©6/945, respectively. With equations
(A35) and (A36)

p2m-1 B ® z(2m e 1

2m+1 . ¢\2m+1
z = I 2 =
L ]m12m+1$! ¢ T oqm 2m+1 (W) kﬂg 1m z ]m12m+1$

()] (37)

By partial fractions, 1/m(2m+1) = 1/m - 2/(2m+1), then the m-summation of
equation (A37) is

B g amt 2= 1 D - ()
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, also

n[1 - (QE)Z] = 1Insin ¢ - In ¢
-I ™

o
z

thus the summation term of equation (A34) simplifies to

2m-1 B
2 mamtl -[1n sinddé+o¢-¢ 1Ind

(2T )T ¢

N8

$In ¢ - ¢ Insing+ 2n5 (L ktanh 1) (A38)
k=17 T

Similarly, the summation terms of equations (A31), (A32), and (A33) are

2m-1 B
(2 - 1) "m 2m+1 _ s Tn 4 s n

)
m(2m+1)! ¢ tan %_ K

z
=1

0 (A39)

19 -1 _¢
tanh o 4k tanh 2nk)

» the summation term of equation (A32) is the same as that of equation (A39)

but with & - ¢ replacing ¢, also

2
L A D W (Y- S A I~ S R PG IO
omtT )1 ¢ - m
m=1 m{
odd
2
k(1 - 29 1 (1 - %%)] (A40)

Example summations of trigonometric series. - With equations (A21), (A29),

and (A30)

74



|%}

n+b
= Z = Zb+2 tanh "1Z = [cos (b+2) ¢ + i sin (b+2) ¢]

1 - o
(7 tanh™ cos ¢ + 1-Z-ﬁ%r)

then since the cosine series is the real part and the sine series the imaginery

part
© cos(ntb)e _ 1 -1 T .
I, on2 > cos (b+2) ¢ tanh™! cos ¢ - aTe7 SN (b+2) ¢ (A1)
odd
© sin(ntb)e _ 1 _. -1 ﬂ |
] p 3 n-? > Sin (b+2) ¢ tanh 1 cos ¢ + ZT%T_ cos (b+2) ¢ (A42)
odd

where an alternative function for tanh ! cos ¢ is -1n tan (¢/2).

With equations (A12), (A29), and (A30)

n+b .
w Z - _1 i s 1 .
S Ign(-2) T 2 cos (b+1) ¢ +  sin (b*1) ¢ - > (cos b ¢ + i sin b ¢)
odd

- i g 1 ~1 s T
(1 =cos 2¢ -1 sin?2 ¢)(2 tanh™ ! cos ¢ + i ETET)

o cos(n+tb)¢ _ cos(bt1)y _ sing . - .
n Z 3 n(n-2) ? 5 [sin (b+1) ¢ tanh ! cos ¢ + ar
odd
cos (b+1) ¢] (A43)
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then

76

« sin(ntb)¢ _ sin(b+1)¢ . sing - o
- s (b+l tanh S ¢ -
n E 3 n(n-2 2 > [cos ( ) ¢ tan cos ¢ ?TET
odd
sin (b+1) ¢] (aa)

1

With equation (A28) divided by Z 2, and equations (A29) and (A30)

1 1
e} 3

1 1 1 1
o ARG 77 7TR-7t -1 2 777+ 7
IR =1 (325 Rl e S Rl - S L LD A
odd
- i
(271 + 5 - 5) In (1 +2)
=]§cos%—%sin%(sin2 %+1‘%s1’n ¢)[1n251’n% +

(%—- ] - %—cos %—(cos2 %—— i %—sin Y[In 2 cos %—+

letting ¢ = ¢/2, the trigonometric summations become

b cos(2n-1)o = _ €OS _ _md _ cins 6 -2sin3 ¢+ sin2 ¢ cos ¢ In 2
= 3n(n-2)(n+17 3 6|0 3

odd

3

sin ¢ - 99%—9- Tn 2 cos ¢ (A45)

5 sin(2n-1)o _ _ sing _ _m¢ sin2 ¢ cos ¢ - L cos 3 ¢ + sin ¢ C0s2 ¢
n = gn(n=2)(n+T) 3 2f¢] 3

odd

03

In 2 cos ¢ - S5+ 1n 2 sin ¢ (A46)



Spanwise Loading Distribution

This loading function is given in equation (21) and contains the summation

s fpsinng (A47)
n=3
odd
Substituting equation (10) into equation (A47) results in
o . . @ sin(n-2)¢p sin n¢ _ sin(n+2)%p sin n ¢ _
; z 3fn sin n ¢ . E 3[ n(n-2) n(n+2)
odd odd
2 cos®p sin(n=1)%p sin n ¢ 2 cos®p sin{n+1)®p sin n ¢ -
" S ] (A48)

n(n-1)

The first term within the brackets, by trigonometric identities can be written

as
sin (n - 2)¢b sinn ¢ = %—cos [ne¢ - (n - 2)¢b] —-% cos [n¢ + (n - 2)¢b]
= %-cos b, COS (n - 1) w_+%—sin v, sin (n - 1) w_-»%-cos y_cos (n - 1)y,
—ﬂ% sin y_ sin (n -1) y, (A49)
where y, and y_ are defined as
N T P T T (A50)

Apply equation (A49) to equations (A43) and (A44) with b = -1, results in
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8

3s1'n nr-]2')]‘1_>2 sinn ¢ _ %_ [cos Yy, - cos y_ + g— sin (w_l_ - Jw_|) +

sin y,_ sin y_ (tanh™! cos y_ - tanh™! cos y, )] (A51)

n

Q. lilmMm

odd

The second term in equation (A48) is of the form obtained from equation

(A11). In trigonometric summation it becomes

©» cos(n+b)¢ _ cos(b-1)¢ _ cos(b+t1)¢ _ sing 0 _

I () 2 Tt 2 [ gprcos (b-1) 9+

odd

sin (b - 1) ¢ tanh™! cos ¢] (A52)
©» sin(n+b)¢ _ sin(b-1)¢ sin(b+1)¢ sing T . _ _

o I n(n+2) 2 3 2 [ﬂfﬁs”‘ (b - 1) 0

odd

cos (b - 1) ¢ tanh™! cos 4] (A53)

The sine product is expanded as before, but with b = 1, then the second term

summation of equation (A48) becomes

sin(nt2)¢p sinn ¢ _ 1 4 .3
NG = g [-cos y, + cos y_+ 3 sin 5 (y, +v_)

sin %— (v, - v_) - %—sin (v = |v_|) + siny,_ sin y_ (tanh™! cos y_ +

tanh™1 cos y,)] (A54)

The third term in equation (A48) is of the form of equation (A6), then
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o cos(n+b)¢ _ T .d 1 ¢ s ,
> T3 = cos (b+ 1) ¢ - sin 5 cos (b+ %) ¢ +sin(b+1) ¢
o E (e ¢ 2 2 2
odd '
1 . . .
-cos (b + 50 ¢ cos %-1n 2 cos %-+ sin (b + %J ¢ sin %— In 2 sin %- (A55)
2 Sr","r(]‘_’;” = sin (b+ 1) ¢-§|‘—‘2Tsin%sin (b+2) ¢ -Fcos (b+1)¢
n =3 ¢
odd
-sin (b + %J ¢ COoS %—1n 2 cos %—— cos (b + %J ¢ sin %—1n 2 sin %— (A56)
The sine product is expanded in terms of n —-%, then with b = -%—in equations

(A55) and (A56) the third term of equation (A48) becomes

= sin(n-1)¢p sin n¢ _ cos ¢b ,"¥- .o
-2 cosd>bn E , n(n-T) 5 [(!¢_l - v_ - ¥,) sin 5
odd
v_
vy oy v_ v, v_ cos »—
oS »— - (m - ¢_ - y,) sin 5~ C0S 5— + 2 c0S 5~ Ccos — In — 5 -
w+ CGS é—
. ¢+ . w_ sin 2—
2 sin 7= sin §—-1n — ] (A57)
sin §:

Similarly the fourth term in equation (A48) is developed as

- i +] i ¢ . .1
2 cosey, 7 SIMETLULFIONG - €055 [2 sin (u, + v} sin 3 (v, - v) -
odd
Ww_ ; w_ ¢+ . ¢+ ¢_
OFF—T - ¥_ - y,) sin 7~ COS »— + (m = y_ - y,) sin 7= €0S »— + 2
- Y- . Y4
¥ v COS »— ¥ b sin 2+
cos §i-cos 57'1" 2__ 2 sin §i-sin 5= In 2 ] (A58)
cos %i- sin %1
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where y, and y_ are defined in equation (A50).

The desired summation of equation (A48) is obtained by adding together
equations (A51), (A54), (A57), and (A58). Thus

5 fn sin n¢ = - §lﬂ_$h_(] + 2 cos? ¢b) sing + %—(cos ¢, + cos $)?2

n=3 3
odd
- in ¢ i -
tanh™1 ?12 Cgss$g gbs 5t %-(cos ¢p - oS )2 tanh”}
sin ¢p sin ¢ (A59)

1 - cos ¢p COS ¢

where from equations (2) and (6), n = cos ¢, N, = COS ¢p. Using hyperbolic

function identities, equation (A59) in terms of n and "y becomes

. 1 * €
fosinng = -z (1+2n72) (1 - nb2)2 (1 - n2)" 4+ %'(”b + n)2cosh?

n 3

[ TN I O T

odd
14#np n , 1 - 1-

+ = - 2 1 nb n
Tagral * 2 (ny, - n)2 cosh TEE?HT

The condition of wing bending moment taken about the midspan 1is Ny = 0, then

(A60)

equation (A60) reduces to

; -l 2yiy 2 -1 1
3fn sin n¢ 3 (1 - n2)* + n2 cosh i (A61)

[ I

n
odd

When either equation (A59) or (A60) is substituted into equation (21) the loading
distribution becomes a closed function for any value of span station h about

which bending moment is taken.
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The k~Factor Summation

Combining equations (26) and (10) results in

® 2 w sin?(n-2)¢p + sin?(n+2)¢p _ 2sin(n-2)¢psin(n+2)%p
k T z 3 o=, z 3 n(n-2)2 n(n+2)2 n(n-2)(n+2)

odd odd _ '

sin(n-2)9psin(n-1)%p  sin{n+1)9psin(n+2)?p sin(n-2)%psin(n+1)%y
4eosoy, [- n(n-z?(n-1) } n(n+2) (n+1) * n(n-2) (n+1)
in(n-1)%psin(n+2)¢ 2sin(n-1)9psin(n+1)9p , sin?(n-1)%, .

* S1n(n(nzl?(n+é) )‘bi * 4C0$2¢b [- n(n-1)(n+1) * n(n-1)2
sin2(n+1)¢ 2
_nTrFrT)’Z_b} (A62)

-

The summations are obtained by using equations (A22) through (A24) with the trig-
nometric relations given in equations (A29) through (A34). An example the sixth
term in equation (A62) has the form of the summation example of equation (A45).

By trigonometric identity

sin (n - 2) o sin (n + 1) by = %—cos 3¢b - %—cos (2n - 1) 2 (A63)
then the desired summation is %—cos 3¢b times equation (A45) in which ¢ = 0,

minus %—times equation (A45) in which ¢ = dp- Thus

sin(n-2)épsin(n+1)é, _ %b

w . . 2 _. 1

> - = = sin 3¢, + 5 sin3¢y, - = sin%¢, cos ¢, - %
nz3 nin-2)(n+l) 6 b " T2 b ™3 b b ™2
odd

. X 1
sin?¢, cos¢, In sing, + & cos3¢y Tn cos¢y (A64)

This mathematical procedure is used to develop the other summations of equation
(A62). The results are listed as follows:
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1

—

© sin?(n-2)¢y _ w 1 1 o 1 .5 2
LI, n(n-z g (0 - 7 sin 4¢,) - 7 sin?p - 5 sin?g cos2¢, In
odd
tang, (65)
o sin?(nt2)ép _ 1 1 so 1 50 2
) p 3———ﬁ§ﬁ;§%fb- 5 (¢b 7 sin 4¢b) + g sin?¢y - 5 sinZp cos?y Tn
odd
tan¢b + %€_+ cos]g¢h _ cos42¢b (R66)
5 = sin(n-2)¢psin(n+2)¢p _ 1 5 2 _— - 5
2n E ; n(n-2)(n+2) 5 (1 - 4 cos ¢b) sinZ¢, + sin®¢ cos?¢, In
odd
tang, (A67)
_ 2 sin(n-2)¢psin(n-1)¢p , sin(n+l)épsin(n+2)¢p _ 1 _. .
I n(n-2)(n-1y n(n+1) (n+2) g S1nZ¢), sindg +
odd
sin2¢ cos ¢p Tn sing, + cos3¢b Tn cos¢, (A68)
© sin(n-1)¢psin(n+2)ép _ 9 _. T3 1 .05 2
] p ; n(noTY(n+2) - ¢ sin 3¢ - 5 sinde  + 5 sin ¢bcos¢b(§—-
odd
n sin¢b)+ 16-cos3¢b n cosey (A69)
o = sin(n-1)%psin(n+1 )¢ _ . > . >
2n E 5 n(n-TY(nH1 sin¢y 1n sing, - cos?¢y Tn cosé (A70)
odd



© sin?(n-1)9%p _ i T L 1 .0 . 1
i E 3 nn-1Z  ~ ~ 2 t 7 ¢, - g sin 2¢b - o Sin“gy Tn singy - »
odd
cosz¢b In oSy (A77)
© 5in2(n+1)%p ¢b2 m T . 1 .2 1 . 1
5 ; N2 S 2 - 7 ¢p + g sin 2¢p - E'S1n2¢b - §-s1n2¢b In sing, - 7
n=
odd
2
cos?¢, In cos¢, (A72)

Then by equation (A62) the k factor is the sum of equations (A65) through
(A67), plus 4 oS¢y times the sum of equations (A68), (A64), and (A69), plus

4 cosz¢b times the sum of equations (A70) through (A72). Thus with an extensive

reduction the k factor simplifies to

2 . .
k = 5 (sinbo_ - 3 sinZ¢, cos2¢, - 6 cos*yy In cos2¢,) (A73)

Since Np = COS¢, k can be written as

k=5(1-6n2+3n"+2n6-6n"1nn2) (A74)

The functional behavior of k as N 1 can be assessed by expanding the

k factor in terms of 1 - Np- Then

(n=1)! (1-ny)" ]

16 6 3
k=" (0 =mp)* [V -5 (0 -m) + 75 (1 -np)2 + 36 ()T

n 3

3
odd
(A75)
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It can be seen that k decreases rapdily as np approaches unity and remains

positive. The summation terms are quite small. When an analytical summation
of this series is made, equation (A75) converts back to equation (A74).

Spanwise Center of Pressure, Nep

The ep of the spanwise loading distribution of equation (21) is given in

equation (22) which contains the summation

n-1 n-1
-3 % illl—g_.f = % :ii:llji [ sin(n-2)9p _ sin(n+2)¢p _
n=3 nz-4 'n -3 nz-4 n(n-2) n{n+2)
odd odd
2 cosepsin(n-1)¢p , 2 cosépsin{n+l)op:
n%n-]) * n(n+T) ] (A76)

These summations are obtained by expanding the n? - 4 term in partial fractions,

as

- 3 -
-k )

Yy
With equation (A77) the individual summations of equation (A76) appear as those
of equations (A25) through (A27), which can be converted to trigonometric series
by application of equations (A29) through (A34). The first summation by using
equation (A25) with a = -2, b =c¢ =0, 1is

1 - 1

(-1) % sin(n-2)¢p _ r,1 “17 4 1
n(n-2)2 - Imag. (- gz + g tan 17 + 755 tan iZ-5

t -1z . | - .
[_Jﬂljz__ dz) = %3-(2¢b + sin 2¢b) - 7 singp - %—cos%b tanh ! singy, (A78)
The other summations are as follows:
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=
[}
—

(-1)

~~ N

n-2)(n+2)
1 2 "1
g COs%¢, cos 2¢b tanh

n-1

e (1) 2
n{n-2)(n+2)

-—

LE 2 ~1
7z €0s%¢, cos 2¢b tanh

n-1

3 n(n+2)2

odd

n

1 os2 "1
COS¢p - 7 COS“¢y tanh

i -2)¢ . : ;
sin(n-2)¢p _ _ %§-51n¢b - 7 sing, cos?¢, + T singy cosdgy -

sin(n+2) %y _

e (1) 2 sin(n+2)9p _

n-1
= (1) 2 sin(n-1)%

n- 3 n(n-2)(n-1)
odd

n-1
2 (1) % sin(n-1)¢p
n o= 3 n(n-1)(n+2)
odd

1 os3 1 ogq
3 C0s%¢y tanh singy

sin¢b

12

sin¢b

oh
6

1

(A79)

sing, + g-sin¢b c052¢b - %—Sin¢b cos3¢y -

(A80)

T

. 4 . :
+ 36 STnep * g sine, costey, - g sing,

(A81)

T .
7 singy (A82)

- T%—sin¢b - %-sin¢b c052¢b + %—sin¢b Cos¢y +

(A83)
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n-1
2 sin(n+1)¢p _ _ fg
n(n-2)(n+1) 6

-3
n=3
odd
cos¢y * %’C052¢b tanh™% sing,
n-1

2 (1) 2 sin(n+1)9p _ _ f9.+ T sing, -
n=3 n(n+1)(n+2) 2 4 ¢b

odd

T .
+ TZ— s1n¢b +

LU 2 - i
g Sing, cos?¢y - = sing,

(A84)

1 (A85)

3 Sing, cos¢,

The fn summation term of equation (A76) is 3/4 times the sum of equations

(A78) through (A81), plus 1.5 cos¢, times the sum of equations (A82) through

Then, defining k; as follows:

(A85).
n-1
WP I € D I PO [N SN VNP
1 = - ) E ; 28 n = " g Sinéy * 77 sindey + 7 cos*g, tan sing,
odd
(A86)
In terms of N = COSéyp, ki is
ki = l.(] 2 2) (1= n2)%+ L 4 cosn1 1o (A87)
17 % 2 "b "b & b !

Induced Downwash Angle in the Wake

The equation for induced angle is given in equation (23) which contains

the summation
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1 . _ 1 ® sin(n-2)¢p sin n¢ , sin(n+2)¢p sin n¢

- = nf_ sin n¢ = — r [~ + +
sing n 3 N sing n=3 n-2 nt2

odd

[= S (o 1

odd

2cos®p sin{n-1)¢y sin n¢ 2cosPp sin(n+t1)Pp sin né
n-1 B n+1 ] (A88)

where fn js defined in equation (10). By trigonometric identities the general

sine product is formulated as
1 . . 1
COS C¢p COS ny_ - % sin c¢ sin ny_ - 5 COS Coy

—

sin (n + c)¢b sin np = >
cos ny, + %—sin Coy, sin ny, (A89)

where y_ and y, are defined in equation (A50). With ¢ = -2 in equation (A89),
the first summation of equation (A88) can be evaluated by using equations (A41)

and (A42) in which b = 0, and ¢ equals y_or y _. Then

sin(n-2)¢p sin n¢ _ w 1 b . 1 -1 -1
=~ = + sin 2¢ - tanh lcosy tanh
3 n-2 8( ] ) 4( -

n

o Il g

odd
cosy, ) cos 2¢ (A90)

Equation (A20) can be made into trigonmetric series by using the relations

of equations (A29) and (A30). Thus
1

n+b
b 3Zn+2 = - %-cos (b+1)¢ - cos (b~1)¢ - Z%gT-sin (b-2) +5
n:
odd
cos (b - 2)¢ tanh ! cos¢ +1 [~ %—sin (b+ 1)¢ - sin (b - 1)¢ + Z%%T
cos (b - 2)¢ + %-sin (b - 2)¢ tanh™! cos¢] (A91)
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[P - S S A ~ o3 . Aara ~Yiran Y] A v
1s of cos (n + b)o and sin (ll + b)y are given by the real
io 1

e
part and the imaginary part, respectively, of equation (A91). With c =2 in
equation (A89) and using equation (A91), the second summation of equation

where the summatio

-

(A88) becomes

© sin(n+2)%p sinnp _ 4 .. 3 : ™ Yo . 1
) E ; e 3 sind¢, sing - g (1 + TE?T) sin 2 ¢+ 7
odd
(tanh™! cosy_ - tanh ! cosy.) cos 2¢ (A92)

In similar procedures, working with equations (16A), (17A), and (89A), the
third and fourth summations of equation (88A) are evaluated as

© sin(n-1)¢p sin nep _ 1 . m v . 1

) E 5 - 5 ¢, Sing + g (1 + TEtTJ sing + z cos¢ n
odd

sinw+

siny (A93)
= sin(n+1)%p sin ng _ . , 1 . T L

) E ; o sing, cos¢y sing - 5 ¢, sing + g (1 + Tizjr)

odd

1 sinw+

sing - 7 cos¢ In g (R94)

The required summation is the sum of equations (A90) and (A92), plus
2c0s¢ times the sum of equations (A93) and (A94), then all divided by sing,
thus
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st A
o -

~ egmmnm

1
sing n=3
odd

(coss - cosg,) = f1 - & (1 + D ) (n - np) (A95)
b 1°2 T T b

where f; is defined in equation (9). Shown in equation (A95) is a linear
variation with spanwise coordinate n for n 2 Np> and is a constant with

n for n < ye That is, the induced downwash in the wake is constant inboard
of Mg then varies linearly with n at span stations outboard of ue

=] . i ¢"¢
£ nf sinng = § (2 + cos2e,) sing, - 26, cosgy - § (1 + T%ET$T)
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APPENDIX B
EVALUATION OF In AND Inn* INTEGRALS

Integral of Equation (67)

The In integral is

- (cosgi;-n)2 + 2

™
1= %_J (cos$;-n) cos n¢; dé, (81)

This integral was originally evaluated, for arbitrary integer n, in reference
14 in terms of a recurrence formula of a related integral. Here a simpler
In recurrence formula will be developed. From trigonometric identities

cos(n + 2)¢; = 2 cos 2¢; cos ne; - cos{n - 2)¢; (B2)

then integrating as in equation (B1)

(B3)

m™
I - g_J cos 2¢; (cos¢;-n) cos né; dé; _
n-2

nt2 7 (cos¢y-n)2 + 2

In the integrant, cos 2¢; can be divided by the denominator, and noting that

2 cos$1€0Ss ney = cos (n+ 1)¢; + cos (n - 1)1, then

™
Iy = %—{ {%(c05¢1-n) cos n¢; + 2n(cos¢;-n)[cos(nt1)é;+ cos(n-T)¢;] _
0 (cos¢ -n)2 + g2
(1+2n2+222) (cos¢1-n)cos noy
(cos¢1-n)2 + 2 dty - Iy (B4)

Then the recurrence formula for In is

In+2 = [2’ n = ]] _ [4n’ : ; 8] + 4q In+.| - 2{1+2n2+ 272) In + 4n

0, n#1 0, L (B5)
n-1 n-2
Examination of equation (B1) shows
I, = In’ In(-n) = In(n) for odd n, In(-n) = —In(n) for even n  (B6)
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that is, In is symmetric with n for odd n and antisymmetric for even n. Then
from equation (B5)

5 12 =-2n + 4q I] - (1 + 202 + 272) I0 (B7)
I;=2+4y I, - (3 + 4n2 + 472) I] + 4n I0 (B8)
where based on the work in reference 14, I0 and I1 are
1 1
_ % _(14n) B
1, = ( Q) P (1 nllr (B9)
[(p=r=)2 - 4717
-1 -1
I. =1 . (=ntn?+z2) p7=- (n+n?4g2) 72 _ 1+ I.-
L 5, 552 % 0
[(p=r?)2 - 4173
1 1
N I
z2(p +r2 ) (B10)
L 1 i
[(p™r?) - 417
where
p=(1-n)2+¢2
(B11)
r=(1+n)2+¢2=p+ 4y

Equations (B5) through (B11) gives the evaluation of the I integral of
equation (B1) for all values of n, ¢, and n. Another method is, to define

m
= l COS n¢, d¢1
In =7 (cos¢,-n)2 + 2 (B12)
0

From reference 14

1 1
5y T
JO B Lp L s L (B13)
[(p=r=)2 - 4]7
b B
dy = (B14)
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Using a trigonometric identity, equation (B1) can be written

m

[ = 1 [cos(n+1)¢,+cos(n-1)d;-2ncos nd;] dé;

n 2r ) (cos¢;-n)2 + 2
then

=1

I=5 (g - 209 +J, 1) (B15)
Since

J-n = Jn; Jn(—n) = -Jn(n) for odd n; Jn(-n) = Jn(n) for even n  (B16)

that is, Jn is antisymmetric with n for odd n and symmetric for even n.
Then

(B17)

Equation (B2) can be used to establish a recurrence formula for Jn in a manner
similar to that for In. Then

= = - 240,2 _
I [4, n o] *4n J 4 q-2(142n24202)d #4n J -, 5 (B18)
O, n# 0O
then
Jy, =2+ 4n 3 - (1+ 202 + 2c2) 4 (B19)
Jy = 4nJd, - (3 +4n? + 4g2) 3y + 4n I, (B20)
Combining equation (B15) for n = 1, and equation (B19) gives
I =1 +ndy - (n2+52) Jg=1+ nlj-22J, (B21)

Inserting equations (B13) and (B14) into equations (B17) and (B21) leads to
the IO and I] values of equations (B9) and (B10). The Jn recurrence formula
of equation (B18), together with equations (B11), (B13), and (B14) provide
an evaluation of the J type of integral (eq. B12) for arbitrary n, z, and n.
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With Jn known, a second method, by applying (B15), is available for evaluat-

ing In'
Integral of Equation (70)
The I, integral is
1 (" .
Inn* = ;—jo In* sing sin n¢ d¢ (B22)

where In* is that in equation (B1) with n = n*. Examination of equation
(B22), taking into account the symmetric and antisymmetric characteristics
of In* in equation (B6), shows

| =0; 1 = -1 I

On* -n,n* =1

nn*>  “n,-n* nn*>

(B23)

I 0

n odd, n* even 03 In even, n* odd ~

which means that Inn* has a value only when n and n* are both odd, or n and
n* are both even integers.

A recurrence formula for Inn* can be made by making the integration of
equation (B22) on equation (B5). Then

m
21 2, n* =1 4 cos$, n* = 0 _
In,n*+2 = ?J {[0’ n* # ]:l - [0 , n* # 0} + 4In*+-| CO0S¢
0

2(1 + 2z2 + 2 cos?4) Ixt &1, | cosé - In*-Z}' sing sin n¢ d¢ (B24)

Inserting the trigonometric identities
2 sin ng cos¢ = sin (n+ 1)¢ + sin (n - 1)¢
4 sin n¢ cos?¢p =2 sin ng + sin (n + 2)¢ + sin (n - 2)¢

into equation (B24), then the integrations can be made in terms of I-values with
lower n* integers, which is a recurrence formula. The recurrence formula for

i
Inn* S
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The Inn

[1, n=T1,n*=11 _[1,n=2,n"=0], 5 N
n*+2 0, n#1, n* # 1 O, n#2, n*#0 n+1,n*+]
2
n-1,n*+1 4(1 +22) Inn* In+2,n* n-2,n* * 21n+1,n*-1 * 21n-],n*—]
|
n,n*-2 (B25)

+ terms for low values of n and n* are obtained from equation (B25) by

taking into account the Inn* identity relations given in equation (B23). Thus

letting n* be zero in equation (B25) results in

In2 -

Toe =

Ipo =

Iyp =

Letting

In3 -

103 =

I3

I33

1 [1,n=2 1 1 R
_ [} _ 2 2 2
2 [(J, n # 2] Yl gt g 20 e Tes 077 Tnezo
o= 1 odd,2 = O  (B26)
21 2 1
7t 2lgpr2l-2(14+e2) 05 1y
21, +21,.-2(1+2) I, -+ 1. L1
517 %3] 57144072 '6072 20 b

n* be one in equation (B25) results in

- 2 - -
}] t 2l oty () - In-2,1+21n+1,o+élln-1,o

[1, n =
0, n#
IOO - I23 - In even,3 0
1+ 2Dy, - 4 (1402)1 - Iy + 2L, \(B27)
2lgp + 2pp - (5HAL2)I5y - Tgy - Iyq + 20,0 + 215,
J

For higher values of n*, equation (B25) is used directly, without the bracketed

terms since n* is greater than one.
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With the recurrence formula of equation (B25) the Inn* terms can be
evaluated to very large values of n*. However, as can be seen in equations
(B26) and (B27), the recurrence formula starts with a low value of n*,
namely n* = 0 and 1. Needed are evaluations of InO and In]'

For n << 1, by binomial theory, the radicals of equations (B13) and (B14)
can be expanded into a power series of n, then

_ 1 1 . 3 ]
= — + (= - 2 2 + (2 - 2 4 b4 .
"o |§|(1+C2)% [+ G- %) (1+c2) (5 - 3¢ ) (1+c7)
(?_6 i _gj t? + ;_5 t? - z8) (3372)°] (B28)
- 1 n 1 2 n_\3 3.9, . N e
T v "
o |z| (1+z2)* [rgz * (7 - %) (1+c2) + (g -5+ 3 (1—220 +
(5 15 2 4 15 4 4 6 n 7 s
672 ° gt - 4c%) (71229 ] (829)

The influence coefficients I, and I] are obtained by combining equations (B28)

0
and (B29) with equations (B17) and (B21). Thus
13
IO = Iz, n’ (B30)
r=1
odd
where
= ——élbiL__ = ___:EQL__. 15 _ 522 + %)
(1+422) (1+z2) (B31)

= ___:lEl___(§__ 22) o = ___:Jjj____(35 105 2, %l.cu _ 6)

C _—— -
o) Tyt 0 8 /

and Zgs Ly1s and zy3 are determined from the simultaneous solution of three
equations, at n = .8, .9, and .95 of

7
n9zq + n11€1] + n13C]3 = Iy(n) - E z,n (B32)
d
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where Io(n) is given in equation (B9).

The inverse of equation (B32) for

n=.8, .9, and .95, is
_ 29241 2100-8) 53104 81p(-9)  gogaq 8To(.95)
t9 = 7785 .87 629 ~ .99 ' 3885 .59
_13700 210t-8) 61700 21o{-9) 4400 41¢(-95) (833)
‘11 77357 .89 629 .99 777~ .959 (
_ 8000 “T0{+8) 40000 2T0(+9) 32000 2T¢(-95)
137357 T .8 T 629 .99 777 959 B
where
7 r
Blgln) = Ign) = gy (834)
r‘ =
odd
And for I]
12
I; = & (B35)
r=20
even
where
P | -l 155
CO (-]+ 2)1/2 ? C4 (-I+ 2)9/2 (8 2 = )
E (B36)
_ -3¢t ~ -z 35 35 2 7 L
Ty = ’ Cr = 1 (— - a t 5 )
2 " S (1eee)? 6 (];i;%‘?VZ 6~ 4 2
_ 29241 21108 53104 817(-9) gagqq 01;(.95)
“g " 1785 .88 629 ~ .9¢ 3885 958
_13700 A11(-8) 61700 A11(49)  4gq00 211(.95) (837)
“10 T~ 357 — .8¢ 629 ~ .g¢ 777 .958 ’
_ 8000 “110-8) 40000 811(-9) 32900 217 (-95)
%12 7 3B7 .88 629 .98 777~ .958
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——r

where

- 6 r
ALi(n) = T;(n) - = ¢ (B38)
r=20
even
For evaluating I o and In]’ equations (B30) and (B35) are inserted into
equation (B22). Since n = cos¢, and sing sin ng = 0.5 [cos(n-1)¢ - cos

(n+1)¢], then

o
=3
<o

n= n= n B n=
L1 c3 | 1 Zs | 5 7 |7
o = 7 []’2J+4 2|t e 2| it | 2|t
1 1 7
K g4 37 4
1 3
15 °© | 320 6
i i
52
F n=" [ n=| B n= | (B39)
Zo {21 zi1 |33 z13 | 429
T | T8 2] * T3 |76 2| *F | 15se 2
3 165 143
5 ¢ Tozg: ¢ To26> 4
27 55 429
256> O 512 6 7096° ©
1 11 13
32> 8 256 > 8 256 > 8
1 5 65
s 10 575 > 10 o3gs 10
ha -l _:I_- ]2 3 ]2
| T024° J 1024°
1
| 7096”14 |

where the brackets indicate that a value exists at the cited n, but is zero
for any other n integer. The .'s for odd r are given in equations (B31) and

(B33).

Similarly, with equations (B35) and (B22)
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e [2 7] e V] e[0T o [0
1.3 3.3 3 3
-33_’51 %’5
1,7
|32 7
ta TZL- ?=~ f 4 21 nT- + 212 33 n;‘ .
i | e T | 256 7 | 512
7 3 2% 3 T
G s 200§
125 7 s 7 vz 7
_3%—3 1 | Stage 11
o7 19 |

where cr's for even r are given in equations (B36) and (B37).

Numerical example of Ipp* for ¢ = 1/2. - An application of the equations
for evaluating I . leads to the following values: From equations (B31) and (B36)

nn
¢y = -.357771 ty = 552786 ]
Ly = -.286217 ¢, = -.429325
] ’ (B41)

ts = -.100748 tq = -.228973

c; = .042497 cg = -.025645 J

From equations (B9) and (B10)

I5(.8) = -.442322 I,(.8) = .199389

I,(.9) = -.529048 I;(.9) = .100090 (B42)
I5(.95) = -.569635 1,(.95) = .051389

Using the z's of equation (B41)
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7 6
z Crnr X crnr
n r=1 n r=20
odd even (B43)
.8 -.456861 .8 .177508
.9 -.569810 .9 .041175
.95 -.633557 .95 -.040031

By equations (B34) and (B38) the AIO(n) and AI](n) terms are given by the
differences between the values of equations (B42) and (B43). Then with
equations (B33) and (B37)

tg = 075149 tg = 051299
zy = 107226 Ty = -191347 (B44)
ty5 = --086553 £y, = --105817

With the Z, values established in equations (B41) and (B44) the InO
and In1 coefficients are determined from equations (B39) and (B40). These
coefficients are listed in the first two columns of table 12. 1In table 12
the Inn* for n* > 1 are determined from the recurrence formula of equations
(B25) through (B27).

99



APPENDIX C
EVALUATION OF Pn AND Pnn* INTEGRALS

Integral of Equation (125)

The recurrence formula of equation (125) is obtained in a similar manner
as done for In in appendix B. With equation (B2), equation (125) becomes

(€1)

n-2

m
p - 2| cos 24, (cosycos¢i-n) cos n déy _
(cos¢i-n cosy)2 + n2 sin2y

In the integrant, cos 2¢; can be divided by the denominator, and noting that
2 cos¢; cos ney = cos(n+1)¢;+ cos(n-1)¢;, equation (C1) becomes

P .o=|-4n,n=0 + 4n cosy P, - 2(1 + 2n2) P_ + 4n cosy
2l Cosy, n o= 1 ntl n (c2)
0, n>1 Pr-1 7 Paco

which is the recurrence formula for Pn. Examination of equation (125) shows

P, = Pn’ Pn(-n) = Pn(n) for odd n, Pn(-n) = —Pn(n) for even n  (C3)

Then from equation (C2)

Py = -2n + 4n cosy Py - (1 + 2n2) Py (c4)

Py = 2 cosy + 4n cosy Py - (3 + 4n2) P] + 4n cosy Po (c5)
where

Py = cosy J; - n J (C6)

Py = cosy + n cos2y Jy - n? cosy J (C7)

where JO and J] are given in equations (B13) and (B14), respectively, but with
the parameters ncosy for n and nsiny for ¢ in p and r of equation (B11). Then

1 - 2 ncosy + n2

o
1}

(c8)
1T + 2 ncosy + n2

-
]
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Equations (C6) and (C7) are derived from a parameter similarity with the JO
and J, integrals. Thus

m ™
p = COSY _ cos¢; do, _n d¢,
0 I (cos¢1-ncosy)Z + n2sinZy " 7 (cos¢;-ncosy)2 + n2sin2y
0

(C9)

which comparing with the Jn integral of equation (B12) results in

PO = COSy J1 (ncosy, nsiny) - n Jg (ncosy, nsiny)

that is, these J's are functions of ncosy and nsiny rather than the n and ¢
of equation (B12). Equation (C7) is derived in a similar fashion.

In terms of the ncosy, nsiny parameters the Jn integral is

m
-1 cos nd; dé;
In Jo (cos¢i-ncosy)2 + n2 sin2y (C10)

Using the equation (B2) relation, a recurrence formula can be developed, thus

Inez = [g: " 8] + 4n cosy 3,1 - 2(1 + 2n2) 3+ 4n cosy J -3,
(c11)

Since J_ = J,» then
Jy = 2 + 4ncosy dy - (1 + 2n2) J, (c12)
Jy = 4n cosy J, - (3 + 4n2) Iy + 4n cosy J, (C13)

where JO and J] are given in equations (B13) and (B14) in which p and r are
those in equation (C8).

When n and ¢ are replaced by ncosy and nsiny in equations (B18) through
(B20), then equations (C11) through (C13) are reproduced or checked. Equation
(125) can be written as

'{COSY [cos(n+1)¢; + c05(n-1)¢1] - ncos n¢yp de)
' “(cos¢;-ncosy)2 + n2 sinZy

_.l
v
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-1
Py =7 (Jgq COSY - 20 +J ;1 cosy) (C14)

Equation (C14) provides a second method (to eq. C2) for evaluating Pn'

Integral of Equation (128)

The recurrence formula for Pnn* is made by making the integration of
equation (128) on equation (C2) in which n is replaced by n*. Then in a
derivation similar to that Teading to equation (B25), the recurrence formula

is

* 2 cosy (Pn+1, w1t Py, 1) Ph, n*-2
(C15)
where the brackets indicate that this term is zero for values of n and n*

other than those listed. The relations of equation (B23) apply also to‘Pnn*'
Then from equation (C15)

.l 21 1

Pha = [- g n=2] + 2 cosy (P q #P 4 1) - 2P g - 5P s o= 2P o0 ]

Poz = P12 = Ph=odd,2 = O r (C16)
- 1 1

P22 =-53 + 2 cosy (P3.| + P”) - 2P20 -3 P40 J

N
P3 = Lcosy,n=1]+2 COSY(Pn+],2+Pn-],2)"5Pn1'Pn+2,]'Pn—2,1+2 COSY(Pn+],O+Pn-1,O)

Pro =P, =P 0 (C17)

03 23 n=even,3 _

P., = cosy + 2 cosy P22 - 4P]]-P3] + 2 cosy on

13

Values of PnO and Pn] are needed to start this recurrence formula. From
equations (128), (C6), and (C7)
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Pno

O S|

T
Jo (cosy J]—JO cos¢) sing sin n¢ do

(C18)

P 0

00 ~ 'n=o0dd,0

where the zero values result because the term inside the parenthesis is anti-
symmetric about ¢ = n/2, so when sin n¢ is symmetric, the integral is zero.

P

nl

PO] - Pn=even,0 =0

T
[%—cosY, n=1] + %;—{ (cos 2y J]-COSY Jocos¢) sin 2¢ sin n¢ d¢
0 (C19)

where as before the term inside the parenthesis is antisymmetric. These inte-
grals can be evaluated by the expansion method used in appendix B, or by a
quadrature formula given in reference 15, which has

(T

| Fo)do = e [ T(og) + 5§ Flogyy) + ]
0 u

f(¢u)] (c20)

M
)
where M is an odd integer and ¢, = un/(M+1). The integrant of equation (C18)
is symmetric about ¢ = w/2 when n is even, also it is zero at ¢ = n/2. Then

with equation (C20), equation (C18) becomes

=
L

P =

n=even 2 5
n0 T 2

) . . C2
) ](COSY Jy -, cos¢u) sing sin ne (c21)
where JO and J, of equations (B13) and (B14) are evaluated with the p and r of
equation (C8) at n = cos¢u.

The integrant in equation (C19) is symmetric when n is odd, also it is
zero at ¢ = w/2. Then with equation (C20),equation (C19) becomes

=

n=odd -]

P = [%—cosY, n=1] + ﬁ%T

(cos 2y Jy - cosy Jg cos¢u) sin 26, sin no,
(c22)
where as before, ¢u = pn/(M+1), and JO and J] are evaluated with n = cos¢u

1M
—

u

in equation (C8).
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TABLE 1. - CONSTANTS OF PLANAR WING

MINIMIZATION SOLUTION

nb k kl fl %

0 2/9 1/6 4/3 1/6
.05 .218893 .165424 1.181253 .185306
.10 .209570 .161760 1.039157 .201673
.15 .195126 . 155839 .907010 .215131
.20 .176851 .147886 .784747 .225361
.25 .156042 .138175 .672280 .232109
.30 .133952 .127012 .569493 .235213
.40 .090328 .101679 .392358 .230218
.5 .053025 .074704 .251841 .210548
.6 .025900 .048928 .145912 177501
7 .009611 .026977 .071919 .133638
.8 .002196 .010978 .026398 .083197
.9 .000157 .002159 .004719 .033267
.0 0 0 0 0




L0l

TABLE 2. - SPANWISE FUNCTION, ko’ OF PLANAR WING
MINIMIZATION SOLUTION

1
0 .2 % 4 .6 .8 .9 .96 1
n b ‘
| !
0 -1/3 .239745 .059810 .161042 .406024 .534748 .613552 2/3
.05 .325360 .238882 .060532 .159478 .403914 .532429 .611122 .664168
.10 .308364 .236111 .062646 .154815 .397606 .525492 .603852 .656692
.15 .286239 .230808 .065990 .147144 .387168 .513998 .591800 .644294
2 .261029 .221316 .070279 .136621 .372713 .498050 .575063 .627069
.3 .206572 .183739 .079716 .107996 .332454 .453424 .528138 .578723
! .152579 .139061 .083345 .071782 .278779 .393352 .464721 .513248
b .103773 .096063 .066443 .032844 .214672 .320444 .387268 .433013
) . 063166 .059116 .044010 .001076 . 144553 .238432 .299239 .341333
.8 .012386 .011761 .009496 -.003586 .020040 .071386 .113089 . 144000
1.0 0 0 0 0 0 0 0 0




g0l

TABLE 3. - FOURIER SERIES COEFFICIENTS, fn x 10
OF THE SPANWISE LOADING OF EQUATION (21)

*
n
b
0 0 .05 .10 .15 .20 .40 .60 .80
3 .6667 2.6500 2.6005 2.5192 2.4080 1.7245 .8738 .2074
5 -.3810 -.3710 -.3418 -.2951 -.2339 .0690 .2347 .1220
7 .1270 .1199 .0996 .0684 .0303 -.0966 -.0423 .0453
9 .0577 .0515 -.0366 -.0150 .0090 .0444 -.0269 .0003
11 L0311 .0266 .0147 -.0013 .0166 -.0079 0167 .0105
13 .0186 .0149 -.0053 .0063 .0151 -.0080 .0040 .0047
15 L0121 .0089 .0011 -.0072 .0114 .0070 -.0077 .0021
17 .0083 .0055 . 0009 .0066 .0077 -.0056 .0010 .0030
19 .0059 .0035 -.0018 -.0055 .0045 .0005 .0034 .0012
21 . 0044 .0022 .0016 .0043 .0021 .0024 -.0019 .0023
23 .0033 .0014 -.0022 -, 0031 .0003 -.0028 -.0011 .0008
25 . 0026 . 0008 .0020 .0021 .0007 .0015 .0016 .0005
27 .0020 . 0005 -.0018 -.0012 .0013 .0001 0 .0007
29 .0016 .0002 .0016 .0006 .0014 -.0011 -.0010 .0003
31 .0013 0 -.0013 -.0001 .0013 .0011 .0005 .0005
33 .0011 . 0001 .0011 -.0003 .0010 -.0005 .0005 .0002
35 .0009 .0002 -.0009 .0005 .0007 ~.0002 -.0005 .0002
37 .0008 .0002 .0007 -.0006 .0003 . 0006 -.0001 .0003
39 .0007 .0002 -.0005 .0006 0 -.0005 .0004 0
41 . 0006 . 0003 .0003 -.0006 .0002 .0002 -.0001 .0002
43 .0005 .0003 -.0002 .0005 .0003 .0002 -.0003 .0001
45 . 0004 .0003 .0001 -.0004 .0004 -.0004 .0002 .0001
47 . 0004 . 0003 0 .0003 .0004 .0003 .0001 .0001
49 .0003 . 0003 -.0001 -.0002 .0003 -.0001 -.0002 0
51 .0003 .0002 .0001 .0001 .0002 -.0001 0 .0001
* At = 0.
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TABLE 4. - AERCDYNAMIC CHARACTERISTICS OF WING WITH
WINGTIP ZERO-SLOPE LOADING

T T T
‘ | A |
, 7 . 2 2

n, ! t=t) n f L C X0 | e b 02 Cbz/e “be
bl eq. (29) o ! - ' € (Cy2/e), Ch

i | o<n<ng n=1

| J
0 3/2 .31831 ! 3 -1.71239 79577 L 2/3 .94989 .84375 4/3
.05 1.50564 .31871 2.77854 -1.71506 67774 66835 .68727 77779 1.38697
.10 1.52278 .31987 2.58241 -1.72315 .57298 .67296 .43785 71342 1.44322
.15 1.55209 .32176 2.40776 -1.73687 48077 .68025 .33979 .65224 1.50128
.20 1.59472 .32432 7.25145 -1.75652 -40005 68977 .23202 .59496 1.56101
.25 1.65247 .32751 2.11082 -1.78262 .32979 7012 .15510 .54193 1.62220
.30 1.72794 .33127 1.98405 -1.81589 .26900 71431 .10130 .49323 1.68473
.40 1.94837 .34033 1.76446 -1.90813 17218 .74466 -03981 .40838 1.81340
5 2.30940 L3519 1.58160 -2.04600 .10296 .77954 .01360 .33859 1.94643
.6 2.92969 .36358 1.42743 -2.25408 .05573 .81813 .00380 .23158 2.08343
.7 4.11847 .37726 1.29620 -2.58537 .02573 .85983 .00077 .23511 2.22812
.8 6.94444 .39206 1.18332 -3.18000 .00887 .90424 .00009 .19722 2.36830
.9 18.11177 .40782 1.08547 -4.60451 .00149 .95102 .00000 .16608 2.51588
.0 - 42441 1 o 0 1 0 .14063 2.66667
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TABLE 5.

- AERODYNAMIC CHARACTERISTICS OF WING WITH

(Cbc/Cb) = 1.1 LOADING

5o Cp? | Cple
ny t ncp L Cbxlo e A x10 -(————)—Cbz/e -
eq. (46) osnsny n=1
0 6/11 .38583 1.72727 ,01368 .96458 .93798 .99192 .88109
. .45077 .39347 1.46843 .19389 .75176 .95916 .58921 .86164
.2 .40339 .39909 1.31656 .30272 .56771 .97203 .33157 .85023
3 .38650 .40358 1.22011 .37016 L41199 .98038 .17313 .84298
4 .39488 .40737 1.15494 .41060 .28384 .98611 .08170 .83809
.6 .51216 .41378 1.07473 43113 .10556 .99325 .01122 .83206
.8 1.09270 .41932 1.02885 .34228 .01910 .99738 .00037 .82861
1.0 © .42441 1 ~c0 0 0 0 .82645
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TABLE 6. - AERODYNAMIC CHARACTERISTICS OF WING WITH

(CbC/Cb) = 1.2 LOADING

A
an
2C w 2 2
n ¢ " L €, x10 e b o2l 78
eq. (46) Osnsny n=] € (Cbz/ejc
0 1 .35368 2.33333 -.80826 .88419 .81818 . 95553 .84877
1 .82642 .36768 1.85878 -.47787 .68911 .87479 .54284 .79384
.2 .73955 .37800 1.58036 -.27834 .52040 .91180 .29701 .76162
.3 .70858 .38622 1.40353 -.15471 .37766 .93698 .15222 74115
4 .72395 .39317 1.28405 -.08568 .26019 .95480 .07090 .72732
.6 .93896 40491 1.13701 -.04293 .09676 .97768 .00958 .71030
.8 2.00328 .41508 1.05288 -.20581 .01751 .99126 .00031 .70057
1.0 o .42441% 1 -® 0 1 0 .69444
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TABLE 7.

- AERODYNAMIC CHARACTERISTICS OF WING WITH

(Cpe/Cp) = 4/3 LOADING

TA
2C %w .2 €, 2/e
t L C,x10 e L 4102 b
b ep b e (C.2/e)
eq. (46) o< n= b c
snsny 1
0 3/2 .31831 3 -1.71239 .79577 2/3 .94989 .84375
.05 1.34912 .32969 2.59365 -1.43281 .70501 .71510 .69506 .78661
10 1.23963 .33931 2.28817 -1.21680 .62020 .75641 .50852 .74365
.15 1.16208 .34755 2.05402 -1.04915 .54133 .79145 .37026 71072
.20 1.10932 .35479 1.87054 - 91751 .46836 .82126 .26710 .68492
.25 1.07708 .36125 1.72410 - .81371 .40124 .84672 .19014 .66433
.30 1.06287 .36712 1.60530 - .73207 .33989 .86857 .13301 .64762
.40 1.08593 .37755 1.42607 - .62085 .23417 .90374 .06068 .62242
.5 1.18738 .38677 1.29903 - .56610 . 15031 .93044 .02428 .60455
.6 1.40844 .39517 1.20551 - .56439 .08709 .95113 .00797 .59140
i 1.87073 .40299 1.13454 - .62858 .04292 .96746 .00190 .58142
.8 3.00492 .41041 1.07932 ~ .80872 .01575 . 98055 .00025 .57366
.9 7.51495 41753 1.03546 -1.32543 .00282 .99121 .00001 .56749
.0 o .4244] 1 -0 0 1 0 .56250
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TABLE 8. - SPANWISE LOADING DISTRIBUTION, Czc/CLcav’ OF WING
WITH SPECIFIED CONDITION OF LOADING*
Wingtip zero~sltope loading
0 .2 .4 .6 .8 .9 .96
0 3/2 1.90986 1.69614 1.27164 .77254 .29867 .10982 .02840
1 1.52278 | 1.87112 1.69605 1.27827 .77846 .30140 .11088 .02869
2 1.59472 | 1.80325 1.68781 1.29773 .79667 .30988 11419 .02957
4 1.94837 | 1.65175 1.58552 1.35644 .87613 .34900 .12965 .03371
6 2.92969 | 1.50886 1.46357 1.31740 | 1.01538 44042 .16731 .04397
8 6.94444 | 1.38276 1.34940 1.24390 | 1.04396 .65763 .27986 .07653
elliptic load-
ing, either t=0| 1.27324 1.24751 1.16694 1.01859 | .76394 .55499 .35651
or nb=1
J
(Cbc/Cb) = 4/3 loading
0 3/2 1.90986 1.69614 1.27164 77254 .29867 .10982 .02840
1 1.23963 | 1.75994 1.61265 1.25757 .82311 .38741 .19346 .08964
2 1.710933 | 1.64193 1.55380 1.25792 .86422 .44808 .24836 .12908
.4 1.08593 | 1.48420 1.43590 1.27256 .93919 .53267 .31793 .17659
.6 1.40844 | 1.38651 1.35138 1.23928 | 1.01705 .60841 .36862 .20625
.8~J 3.00492 | 1.32063 1.29160 1.20024 | 1.02957 71794 .43594 .23536
(Cbc/cb) = 1.2 loading
U 1 1.69765 1.54660 1.23674 .85456 .45376 .25821 13777
. .82642 | 1.59771 1.49094 1.22736 .88827 .51292 .31397 .17860
.2 .73955 | 1.51903 1.45170 1.22760 .91568 .55337 .35057 .20489
.3 .70858 { 1.45961 1.40993 1.23286 . 94065 .58398 .37668 .22309
4 .72395 | 1.41388 1.37311 1.23735 . 96566 .60976 .39695 .23657
.6 .93896 | 1.34876 1.31676 1:21516 | 1.01756 .66025 .43074 .25634
ghl 2.00328 | 1.30483 1.27691 1.18914 | 1.02591 .73327 .47562 .27574
(Cbc/Cb) = 1.1 loading
Ow 6/11 1.50474 ] 1.41065 1.20501 .92912 .59475 .39311 .23720
. 45077 | 1.45022 1.38029 1.19990 .94751 .62702 .42353 .25947
.2 40339 | 1.40731 1.35889 1.20003 .96246 .64908 .44349 .27381
.3 38650 | 1.37489 1.33611 1.20290 .97608 .66578 .45773 .28373
.4 39488 | 1.34995 1.31602 1.20535 .98972 .67985 .46879 .29108
.6 51216 | 1.31443 1.28529 1.19325 | 1.01803 .70739 .48722 .30187
.8 1.09270 | 1.29047 1.26335 1.17905 | 1.02258 .74722 .51170 .31245

* Equation (63) and table 9 apply when comparing with elliptic loading with same

g values.
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Cbx10

1.11688
1.06103
1.01051
. 96458
.92264
.88419
.84883
.79577
.66315
.53052
.87046
.82693
.78756
.75176
.71907
.68911
.57298
.51683
.41347
.65735
.62448
.59474
.56771
.54303
.52040
.46258
.40005
.31224
. 32866
.31223
.29736
.28384
.27150
.26019
.22302
.17218
.15611
.12222
11611
.11058
.10556
.10097
.09676

~ COMPARISON OF AERODYNAMIC CHARACTERISTICS DUE

ELLIPTIC LOADING OF EQUAL LIFT AND BENDING MOMENT
FOR BENDING MOMENTS AT THE SAME Ny = Npe NORMAL -

1.13259
1
.92348
.88109
.85906
.84877
.84480
.84375
.83008
.75000
1.12385
1
.91763
.86164
.82243
.79384
.71342
.67367
.57204
1.11872
1

.91419
.85023
.80094
.76162
.67712
.59496
.46764
1.11326
1
.91053
.83809
.77807
.72732
.58119
.40838
.35652
1.11056
1
.90872
.83206
.76672
.71030
.43578

TABLE 9.
TO OPTIMIZED SPANWISE LOADING WITH THAT DUE TO
IZED SPAN STATION
n .
b brhe ! e
= = t ncp
Nbe Cbc/cb eq. (59) 0snsny n=1
0 .95 -.31579 .44675 .64149 1.74075
1.00 0 .424417 1 1
1.05 .28571 .40420 | 1.25256 .43842
1.10 .54545 .38583 | 1.42750 .01131
1.15 .78261 .36905 | 1.54516 | -.31392
1.20 1.00000 .35368 | 1.62037 | -.56129
1.25 1.20000 .33953 | 1.66400 | -.74874
* 4/3 3/2 .31831 1.68750 | -.96322
1.60 2.25000 .26526 | 1.56250 (-1.19867
2.00 3 .21221 1.25000 |-1.10619
1 .95 -.26097 .43656 .80754 | 1.62515
1.00 0 .42441 1 1
1.05 .23612 .40820 | 1.12958 .52404
1.10 .45077 .39347 | 1.21358 .16024
1.15 .64676 .38001 1.26434 | -.11841
1.20 .82642 .36768 | 1.29082 | -.33185
* 1.44322 | 1.52278 .31987 | 1.23982 | -.82729
1.60 1.85945 .29676 | 1.14541 -.90828
2.00 2.47926 .25420 .89409 | -.85840
.2 .95 -.23354 .43907 .90496 | 1.55533
1.00 0 .42441 1 1
1.05 .21130 41115 | 1.05743 .57575
1.10 .40339 .39909 | 1.08807 .25018
1.15 .57878 .38809 | 1.09958 | -.00033
1.20 .73955 .37800 | 1.09747 | -.19329
1.35 1.15042 .35221 1.04405 | -.54240
* 1.56101 1.59472 .32432 .92396 | -.72084
2.00 2.21866 .28516 .68527 | -.70875
.4 .95 -.22862 .43428 | 1.00864 | 1.48613
1.00 0 .42441 1 1
1.05 .20684 .41549 .98064 .62700
1.10 .39488 .40737 .95450 .33934
1.15 .56657 .39996 .92423 .11670
1.20 .72395 .39317 .89170 | -.05950
1.40 1.24106 .37086 .75864 | -.43490
* 1.81340 | 1.94837 .34033 .53657 | -.58026
2.00 2.17185 .33069 .46304 | -.56043
.6 .95 -.29651 .43057 1.06009 | 1.47296
1.00 0 .42441 1 1
1.05 .26827 .41884 .94253 .63675
1.10 .51216 .41378 .88821 .35631
1.15 .73484 .40915 .83722 .13898
1.20 . 93896 .40491 .78959 | -.02981
1.60 2.11266 .38054 .51104 | -.52601
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TABLE 9. - Continued.

b/bc a /o D

- w “we .
- t ncp Cbx10 e _D___1_
bc’ “b eq. (59) osnsny n=1 ic
2.08343 2.92969 .36358 .32886 -.51929 .05573 .81813 .28158
.95 -.63261 42736 | 1.08953 1.52995 .02211 .99912 1.10706
1.00 0 .42441 1 1 .02101 1 1
1.05 .57236 .42175 .92073 .59454 .02001 .99928 .90768
1.10 1.09270 .41932 .85029 .28288 .01910 .99738 .82861
1.15 1.56778 41711 .78744 .04259 .01827 .99463 .76023
1.20 2.00328 .41508 73117 -.14292 .01751 .99126 .70057
1.60 4.50737 .40341 .48358 -.66917 .01313 .95729 .40806
2.36830 6.94444 .39206 .21097 -.56696 .00887 .90424 .19722
S PN PO [P

* Values for wingtip zero-slope loading, t of equation (29).
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TABLE 10. - COMPARISON OF AERODYNAMIC CHARACTERISTICS DUE TO OPTIMIZED SPANWISE
LOADING WITH THAT DUE TO ELLIPTIC LOADING OF EQUAL LIFT AND BENDING
MOMENT FOR BENDING MOMENTS AT THE SAME y, = Ybe SPAN STATION

b | b/b
_ "¢ o /o D.
- - t Ncp Wowe C,x10 e 5 !
bonpe/b| Cpo/Cy eq. (60) vznn, o i
0 Same values as those in table 9 for Ny = 0.
.1 .95 -.33009 .44708 .72796 1.76210 .88198 .97767 1.13334
1.00 0 .42441 1 1 .82693 1 1
1.05 .29820 .40394 1.18810 .42334 .77720 .98170 .92393
1.10 .56887 .38536 1.31499 -.01429 .73206 .93649 .88250
1.15 .81558 .36842 1.39699 -.34668 .69092 .87765 .86155
1.20 1.04134 .35292 1.44592 -.59876 .65327 .81483 .85226
* 1.32306 1.52278 .31987 1.47525 -.98439 .57298 .67296 .84889
1.6 2.32882 .26453 1.33594 | -1.23617 .43856 .46804 .83460
2.0 3.08624 .21253 1.05177 | -1.12976 .31224 .33376 .74903
.2 .95 -.37441 .44791 .78247 1.82513 .67717 .97581 1.13550
1.00 0 .42441 1 1 .62448 1 1
1.06 .33663 .40328 1.14664 .37926 5771 . 98035 .92521
1.10 .64065 .38420 1.24194 -.08874 .53432 .93233 .88643
1.15 .91632 .36690 1.29987 -.44149 .49552 .87071 .86842
1.20 1.16718 .35116 1.33051 -.70659 .46022 .80585 .86175
* 1.29721 1.59472 .32432 | 1.33796} -1.04383 .40005 .68977 .86154
1.6 2.56054 .26370 1.17554 | -1.33827 .26413 .46307 .84356
2.0 3.32803 .21553 .902921 -1.18815 .15611 .33798 .73969
4 .95 -.60668 .45059 .84428 2.11139 .35584 .96782 1.14487
1.00 0 .42441 1 1 .31223 1 1
1.05 .53345 .40139 1.09687 .18483 .27388 .97494 .93034
1.10 1.00378 .38110 1.15193 ~-.41177 .24008 .91658 .90166
1.15 1.41938 .36316 1.17725 -.84580 .21020 .84604 .89375
1.20 1.78725 .34729 1.18142( -1.15809 .18376 .77608 .89481
* 1.22396 1.94837 .34033 1.1778241 -1.27372 .17218 .74466 .89641
1.6 3.56422 .27060 .93689 -1.68748 .05603 .46566 .83887
2.0 4.,19758 .24327 .66174| -1.31633 .01050 .38587 .64789
2.5 4.34371 .23697 .43269 -.87735 0 .36978 .43269
.6 .95 -1.44623 .45445 .87421 2.88793 . 14592 . 94861 1.16806
1.00 0 42441 1 1 11611 1 1
1.05 1.20278 .39944 1.06621 -.30472 .09133 .96388 .94101
1.10 2.19802 .37877 1.09150( -1.19123 .07081 .88879 .92986
* 1.14423 2.92969 .36358 1.09029| -1.72164 .05573 .81813 .93358
1.15 3.01594 .36179 1.08889 -1.77684 .05396 .80933 .93428
1.20 3.68188 .34796 1.06752| -2.14552 .04023 .74013 .93827
1.40 5.21515 .31612 .89845| -2.44520 .00863 .58671 .86960
5/3 5.63377 .30742 .655931 -1.89273 0 .54883 .65594
.8 .95 -7.85059 .46099 .87840( 6.34397 .03472 .88079 1.25800
1.00 0 .42441 1 1 .02101 1 1
1.05 5.43663 .39908 1.03720( -2.06115 .01150 .93905 .96590
* 1.06860 6.94444 .39206 1.03627 | -2.78482 .00887 .90424 .96847
1.10 8.94496 .38274 1.02159{ -3.62327 .00537 .85055 .97166
1.15 10.94770 .37341 .97467F -4.22658 .00187 .79164 .95516
1.25 12.01966 .36841 .84307 1 -3.99032 0 .75915 .84305

* VYalues for wingtip zero-slope loading, t of equation (29).
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TABLE 11. - SPANWISE LOADING DISTRIBUTION*, CEC/C

FOR CONDITIONS OF TABLE 10

Lcav’

0 2 .4 6 .8 .9 .96
(b/bc) = 1.20 loading
e -
.1 1.04134 1.68209 1.55424 1.24307 .85438 .44764 .25129 .13233
.21 1.16718 1.66115 1.56977 1.26267 .85617 .43161 .23237 1722
.41 1.78725 1.62045 1.55757 1.34077 .88791 .38331 .16482 .06040
;E_J 3.68188 J 1.56936 1.51905 1.35603 | 1.01456 .35735 .06778 .03628
(b/bc) = 1.15 loading
.1 .81558 1.59345 1.48775 1.22657 .88998 .51621 .31713 .18093
2 .91632 1.57778 1.50051 1.24209 .89108 .50304 .30171 . 16865
.41 1.41938 1.54898 1.49375 1.30499 .91481 .46166 .24513 .12135
.6 | 3.01594 1.51580 1.46993 1.32183 | 1.01529 .43089 .15590 .03476
.8 110.94770 1.44589 1.40814 1.28826 | 1.05858 .59634 .12126 .08487
(b/bc) = 1.10 loading
. .56887 1.49659 1.41508 1.20853 .92888 .59115 .38908 .23404
.2 . 64065 1.48616 1.42440 1.21948 .92944 .58153 .37791 .22516
.4 [ 1.00378 1.46824 1.42165 1.26457 .94520 .55017 .33586 .19020
.6 1 2.719802 1.45002 1.40961 1.27983 | 1.01618 .52122 .26413 .12202
.8 L_8'94496 1.41430 1.37876 1.26607 | 1.05126 .62700 .20060 .00413
(b/bc) = 1.05 loading
.1 .29820 1.39032 1.33535 1.18874 .97157 .67337 .46802 .29231
.2 .33663 1.38512 1.34046 1.719455 .97175 .66809 .46194 .28749
.4 .53345 1.37687 1.34006 1.21883 . 97959 .65033 .43854 .26813
.6 1 1.20278 1.36997 1.33622 1.22871 1.01727 .63112 .39583 .22819
.8 | 5.43663 1.35898 1.32728 1.22719 | 1.03845 .68071 .33960 .13732
* The Toadings for Ny = 0, and for wingtip zero-slope loading with b/bC
of table 10, are the same as those in table 8.
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TABLE 12. - I_., INDUCED DRAG INFLUENCE COEFFICIENT FOR ¢=1/2, FROM APPENDIX B
n NI 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 .211037 0 -.023182 0 .000442
2 ~.126495 0 107717 0 ~.019769 0
3 0 . 069557 0 .058029 0 .013710
4 ~.017041 0 .039669 0 .032101 0
5 0 .002698 0 -.022936 0 .017975
6 .002017 0 .001243 0 _.013384 0
7 0 .001782 0 .001958 0 007837
8 .000806 0 .001031 0 .001766 0
9 0 .000244 0 .000516 0 .001378
10 ~.000008 0 .000026 0 .000243 0
1 0 .000049 0 _.000025 0 . 000066
12 ~.000037 0 .000023 0 _.000037 0
13 0 .000013 0 .000006 0 .000079
14 ~.000005 0 .000006 0 .000022 0
15 0 0 0 .000020 0 .000013
16 0 0 .000003 0 .000031 0
17 0 0 0 . 000005 0 .000036
n*
] 6 7 8 9
0 0 0 0 0
1 0 .000042 0 _.000382
2 .000418 0 .000639 0
3 0 .000550 0 ~. 000640
i ~. 008969 0 . 000549 0
5 0 .005641 0 .000423
6 .010127 0 .003581 0
7 0 .005505 0 ~.002419
8 ~.004694 0 .002362 0
9 0 .003203 | 0 .000485
10 .000900 0 .002706 0
1 0 .000371 0 -.002310
12 ~.000118 0 .000040 0
13 0 .000337 0 .000077
14 ~. 000190 0 .000506 0
15 0 .000391 0 -




TABLE 13. - n*g— Dnn* INDUCED DRAG INFLUENCE COEFFICIENTS OF PLANAR-WING

WINGLET WITH ¢, = 57/32, FOR EQUATIONS (172) AND (175), (DATA FROM TABLE

II OF REF. 9)
Y n*
1 3 5 7 9 11

deg n
90 1 .03335 .00666 ~.00167 -.01243 -.06192 -.10534
3 -.00333 -.17809 -.16927 -.05646 -.02895 -.06658
5 -.00258 -.16334 -.09138 .08085 .11343 .03307
7 .03630 .02441 .11900 .18434 .11512  -.00789
9 .03156 .12523 17174 .08391 -.03334 -.07625
11 -.02442 .06277 .04171  -.11282 -.16338 -.02769
75 1 .02254 .01464 .00887 -.00752 -.04600 -.06860
3 -.02833 -.11801 -.09743 -.03368 -.02510 -.04331
5 -.02362 -.10743 -.05579 .05572 .06810 .01018
7 .02184 .01044 .07264 .11569 .06939 -.01221
9 .01822 .08039 .10960 .04817 -.02089 -.03748
11 -.01661 .04548 .02751  -.07520 -.09798 -.00506
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TABLE 14. - Tho WING ROOT BENDING MOMENT/LIFT

INFLUENCE COEFFICIENTS OF EQUATION (1771)

b 1 3 5 7 9 11
5m/32 .075139  .184765 .198455  .120903  .009690 -.066188
/4 .285398 1/2 1/6 -1/6 -1/10 1/10
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