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CRACK BARRIERS IMPROVE THE MECHANICAL AND THERMAL PROPERTIES

OF NON-METALLIC SINTER MATERIALS

K. H. Gruenthaler*, W. Heinrich*, S. Janes*

and J. Nixdorf*

Ad

1. Introduction

For high temperature applications, ceramic substances are

superior to metals with regard to pressure resistance, creep resist-

ance, and oxidation resistance. The low tensile, bending and shock

resistance and the poor alternating temperature resistance due to

deficient ductility limit the application potentials of ceramic

substances.

/1**

As for all metals, the tensile strength of polycrystalline

ceramic substances is far below that value resulting from the atomic

bonding forces in the crystal lattice. Is is assumed in the theory

of brittle fracture that micro-cracks are present in the material.

The spontaneous crack propagation leading to fracture occurs when the

stored elastic energy becomes greater than the energy needed to form

the break surface. If a is the effective tensile stress and E the

elasticity modulus of the material, then the elastic energy per unit

volume is:

2
U . 2E	 (1)

If by yeff we mean the effective surface fracture energy of all

*
Dept. of Composite Materials of Battelle Institute e-V, Frankfurt/M.,

West Germany.
**Numbers in margin indicate pagination in original foreign text.
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mechanisms affecting crack propagation — primarily the formation of 	 /2

new surfaces (surface energy) and anelastic deformation — then for

the newly formed surface, we have:

A 4 U
Yarr

If C is the length (at the surface) or half length (in the interior)

of the crack, then according to Griffith [1] the critical tensile

stress for crack propagation is:

z c @rr

Tr c

Thus, the tensile strength of brittle materials increases for reduc-

tions in the size of existing cracks and for increases in surface

fracture energy. If the critical tensile stress can be increased by

appropriate means, then the shock resistance and alternating tempera-

ture resistance are improved, since the material is able to absorb a

greater energy or endure a greater self-stress under rapid tempera-

ture change.

The size of the existing lattice faults can be reduced by sur-

face treatment, by reducing the granular size and decreasing the

porosity [2]. The possibilities for increasing tensile strength by

embedding are discussed below.

2. Improving mechanical properties of ceramic

substances by inclusions

The reinforcement of oxide and special ceramics with embedded

fibers in the actual sense through stress transfer encounters signi-

ficant difficulties. The requirement for a reinforcement that the

E-modulus of the fibers must exceed that of the matrix is met only by

a few fibrous materials. In all other cases, reinforcement can only 	 ='

occur when the matrix is prestre c.sed by the fibers which must be re-

leased upon tensile stress of the composite material [3]. The

generation of a preliminary pressure stress on the matrix is pos-

sible when the fibers have a larger thermal elongation coefficient

2

(2)



than the matrix so that after cooling from the fabrication tempera-

ture, the fibers are under tensile stress.

The restrictive prerequisites are: sufficiently large values of

flow limit and E-modulus of the fibers, sufficient thermodynamic

stability of fiber and matrix material under the conditions of manu-

facture of the composite material and a good bonding of the com-

ponents.

Embedding of ductile materials is very promising for crack re-

striction. A crack can be prevented from expansion if it encounters

a material capable of dissipating the existing elastic energy through

energy absorbing mechanisms. In addition to plastic deformation of

the embedded materials, delaminations between the composite components

will increase the surface rupture energy.

When embedding discontinuous fibers, energy is consumed by fric-

tion arising from "pull-out" effects [4]. If Gnf is the fiber ten-

sile strenght, c,_ , the shear strength between fiber and matrix,

Vf/Vfm the fiber vol.-%, and d the fiber diameter, then the maximum

rupture work per surface unit is t51:

G n 24 
Vf	 d z Df

2

(4)

Metallic inclusions improve properties by increasing the surface rup-

ture energy and improve alternating temperature resistance as a re-

sult of their greater thermal conductance [6].

The deve].nbment of Cermet (ceramic-metal composites) has shown

that an improvement in ductility can be attained by metallic inclu-

sions in -, eramic substances C7J.

At Battelle Institute, the effectiveness of crack barriers made /4

of euctile material was studied on the Al 2 03 -niobium system [8].

The composite materials are sufficiently compatible at temperatures

up to 1500° C [g].

3



The following material values are valid for dense Al203 (index m)

and niobium (index f) of 99.9/99.6% purity at a temperature of 5000
C [10]:

a) Tensile strength

Elastic limit of f:	 i1. a 19 kp/uun2

Temsile strength of m: Ca,B,l m 26 k1s/uun2

b) Elastic modulus

Er 11600 kp/mm`
Em 36000 kp/mm2

c) Transverse contraction ratio

/U f n 0,38
/Vm a 0,32

d) Linear thermal elongation coefficient

01r . 7,9.10-6/°c ( between 0 and 1000 0 C)
."m . 6.3-10- 6/0C ( between 0 and 1000 0 C)

e) Thermal conductivity

k  a 0,14 enl/cm n °C
km a 0,026 e°1/cm a °C

Owing to the fact that the thermal elongation coefficient of

Al203 and niobium are approximately equal, a shaped part of this

bonded combination is generally free of eigenstresses.

For bending tests, we prepared plates of Al 203 with layered

embedded niobium foils. We use Al 203 powder with an average granu-

lar size of 1 um and 60-um thick noibium foils. The compaction

occurred through pressure sinterization at a temperature of 1500 0 C,

a pressure of 250 kp/mm 2 , and a dwell time of 20 min.

In order to gain information about the adhesion of the bonded	 /5 3

components, the interlaminat shear strength was determined in a
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3-point bending test with shortened support separation. At a sample

thickness to support a separation ratio of 1:3, this value was about

4 kp/mm2.

The bending strength of samples with 25 vol.-% embedded niobium

foils was about 50 kp/mm 2. Al 203 samples without embedded material

exhibit a value of only about 30 kp/mm2.

The increase in bending strength found for Al 203 samples with

embedded niobium foils is explained by an increase in fracture sur-

face energy.

From Figure 1 we see the arrangement of a layered composite

material comprised of Al 203/niobium. Figure 2 shows the ground image

of such a material after applied bending stress.

We see '.he typical crack profile which is distinguished by the

appearance of the crack at the embedded material; energy is consumed

through deformation or through delamination at the embedded material/

matrix interface, and this prevents crack propoagation. The long-

running crack branch perpendicular to the direction of stress is

visible in Figure 3 — showing the ground image of a break zone.

Figures 4 and 5 -- scanning electron microscopic images of break

surfaces. -- illustrate that, in contrast to material without embed-

ding, the layered composite material has stepwide formation of the

break surfaces, since the crack is diverted at the embedded material.

3. Estimation of alternating temperature resistance 	 /9

of the Al 203 -niobium layered composite

An estimation is given below for the influence of embedding on

niobium into Al 203 on alternating temperature resistance. The calcu-

lations are based on use of a plate cooled symmetrically from both

sides.

5	 -
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1.1._- Alternating -temperature_resistance

of dates made of brittle material

When cooling a plate, the grPPtest eignestress occurs in the

surface layers. If the thermal transfer coefficient is large in com-

parison to the internal thermal conductance, then the surfaces of the

plate immediately assume thy: tem-

perature of the coolant, whereas

the interior is still approxl-,-
LA

mately at the initial. temperature. t"T
For a small heat transfer coeffi- 	 ,.	 Am	 •,.

cient, the maximum tensile Stress

Is attained at that time when the

temperature in the middle plain

begins to drop. The lower the

thermal transfer coefficient, the

smaller is the maximum occurring

tensile stress. For crack forma-

tion in the surface layers, the

breaking point must be exceeded

Figure 5. Scanning electron
microscope photograph of the
break surface

If we assume as an approxi-

mation that the material is elasti-

cally deformed in an ideal manner until fracture, and its property

values are constant over the temperature range under consideration,

then for the maximum temperature difference which can be endured

without crack formation we have [11]:

- N fer	 k .005rmax ^ h i ^.	 b h

rmax a 4 ° E	 (1,5-0.5 •xp lt
^A
'►6Tik'•

C7" 	 3.25 It ter 
Or b 

h c0,2
6

It h

04	 e. r	 . 6
max	 m° i
	

(1. 5+	 k ) fer

0.2<b h400
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Here, b is half the plate thickness; h is the heat transfer coeffi-	 /10

cient and k is the thermal conductance; azB is the tensile strength;

E is the elasticity modulus; o is the linear thermal elongation coef-

ficient; u is the transverse contraction ratio of the material.

From the above equations the following thermal stress parameters

are defined for resistance to crack formation:

a) for rapid cooling

i

b) for slow cooling

R2 'iD `^ . K	 (h -! 0 )	 ( 9)

In general, surface cracks do not mean the failure of an alter-

nating-temperature stressed body. Rather, we are interested in those

factors on which resistance to crack propagation leading to complete

destruction will depend.

If K is a geometric factor, then the energy stored upon fracture

of a body stressed by thermal shock is [12):

U n K da0 (! -^U)	 (10)
K

In accordance with Equations (1) and (2), the newly formed energy

upon crack propagation is:

2
A n K 6xD ( I _ ,U)	 ( 11 )

E f'o

If the entire surface A consists of N individual surfaces of size

Ao, i.e.,

A n Ao.N

then we have:
2

Ao n 
K	

Q (t	 u)
(12)
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If Ao becomes as large as the cross-sectional surface of the	 /11

body, then total break occurs. Resistance to break due to thermal

shock is greater as Ao becomes smaller. Accordingly, we define a

thermal stress parameter opposing crack expansion as:

R aa"
7 

dzU j 1 - /u)

From a comparison of thermal stress parameters R1 and R3 , we know

that opposing requirements arise for an increase in resistance to

crack formation and expansion. With regard to alternating tempera-

ture resistance, there is thus an optimum value for the tensile

strength of the material.

The level of surface fracture energy 
yeff 

is of decisive import-

ance to the resistance against crack propagation. This can be deter-

mined experimentally from the load-bending diagram in the 3-point

bending test with notched initial crack 113, 14 3.

1.2. - Material values-of-the-layered-composite

81203_n12b1um

For the calculation it is assumed that niobium foils (ifwex f)

comprising a thickness fraction of a : 0.4 are embedded in Al203

(index m). The layers are oriented parallel to the surface. The

material values of the composite are calculated from the values for

the components given in section 2.

a) Tensile strength

Since crack formation for alternating temperature stress

begins at the brittle matrix, it is assumed for the calcu-

lation that the critical tensile stress is determined by

the tensile strength of the matrix. Accordingly,

^y.11l 'w • 6 iara • «L kp(a••'' .

b) Elasticity modulus

Efw • s Ef • (1-6) EM

Efu n 26200 kp/^2

(13)

/12



e) Transverse contraction ratio
/YLM 0 O /Ur ♦ (1 -0) /U.

/U fM ' 0.34

d) Linear thermal elongation coefficient

MIN R A. 46 f f (1-10  KM

"fM - 8,2.10 - /*C

e) Thermal conductivity

As equivalent thermal conductivity of a plate composed of

thin layers of thickness d i and thermal conductivity ki,

we have for the case when the heat flow runs normal to the

layer- [151:

ks ! di	 (14)
y k^

If layers of thermal conductivities k  and k m alternate, then

these can be added together to form layers of thickness d  and dm.

If a and (1-a) are the corresponding thickness fractions in the

plate, then we have:
kr k^

I'm	
(1_0 k1, s nk^	 (15)

A significant increase in thermal conductivity of the composite over

the Al203 matrix is not attained until a high thickness fraction of

niobium foil is present (Figure 6). For a - 0.4, an increase of

50% yields:
kIM n 0,0 39 tnl/Cw • °C.

3.3. Alternating _temperature _resistance _of_the	 /14

Al 2 03 _ni2bium-composite_ with regard_ to

crack formation

Calculation of the alternating tempera.ure resistance proceeds

from Equations (5) to (7) using material data in section 3.2. In

Figure 7, we see the maximum temperature difference which is endured

10



rpe

rM

ip

rp

»

74OWLT him

0.1%

0.1!

0.10

0.00

0.06

404

0.02

%1 0,2 0.1 0.4 0.s 0.0 47 0.1 0.0 1.0

Figure 6. Thermal conductivity
of the layered composite Al 2 03 -

niobium (at 500 ° C) as a func-
tion of the thickness fraction
of niobium for thermal flow
normal to the layers

9.001 ^,n ^Al	 ip 4r	 4/	 4s	 r
tali......-(

Figure 7. Calculated alternat-
ing temperature resistance of
a plate of thickness 2b, made of
Al203 -niobium layered composite

(Ni thickness -% = 0.4) or of
Al 203 as a function of the ther-

mal heat transfer coefficient

without crack formation for Al 2 03 (m) and the layered composite

niobium-Al 203 ( fm) as a function of *.he product bh.

The following cases are considered for the thermal transfer

coefficient h:

11 a 0.2	 c«1/cm2 , °c for immersion in water
Is .0.O3	 cnl/cm- w °c for air moving at high speed

h a g ©.WOO Cwl/em2 . *c for calm air

At a plate thickness rI f 2b a 1 cm, :ie product bh assumes the

following values:

bhi 0,1	 cal/cm a °C

bh_*0.015	 gal/to"0 °C

bit 00,0001	 cal/c. • °C
pRiG^
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The thermal stress parameter for fast or slow cooling results

from Equations (8) and (9) as:

R1m • 59 °C

R ifm ` 79 °C
112m . 1,53 cal/cm a

a2fm s S-7 Cal/Cm a

The drop in E-modulus and the increase in thermal conductivity

are important to the increase in resistance to crack formation aris-

ing from the embedding. We proceeded from the assumption that the

critical tensile stress for crack formation is determined by the 	 /16

tensile strength of the matrix. At a niobium foil thickness-fraction

of 0.4, we calculate an increase in endurable temperature difference

upon immersion in water of a 1-cm-thick plate (bh 1 ) of 57% and for

exposure to flowing air (bh 2 ) of 90%'

UM
___s
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