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PREFACE

This report.describes part of a comprehensive and continuing pro-
gram of research concerned with advancing the state-cf-the-art in remote
‘sensing of the enviromment from aircraft and satellites. The research
is being-carried out for NASA's Lyndon B. Johnson Space Center (JSC), Houston,
Texas, by the Environmental Research Institute of Michigan (ERIM). The
basic objective of this multidisciplinary program is to develop remote
sensing as a practical tool to provide the planner and decision-maker

with extensive information quickly and economically.

Timely information obtained by remote sedsing can be important to
such people as the farmer, the city plamner, the conservationist, and
others concerned with problems such as crop yield and disease, urban
land studies and development, water pollution, and forest management.

The scope of our program includes:
1. Extending the understanding of basic processes.

2. Discovering new applications, developing advanced remote-
sensing systems, and improving autcmatic data processing

to extract information in a useful form.

3. Assisting in data collection, processing, analysis, and

ground-truth verification.

The research described herein was performed under NASA Contract
NAS9~-15476 and covers the period from May 15, 1977 through November 14,
1978. I. Dale Browne/SF3 was the NASA Contract Technical Monitor. The
program was directed by Richard R. Legault, Vice-President of ERIM and
Head of the Infrared & Optics Division, Quentin A. Holmes, Program Manager,
and Robert Horvath, Head of the Analysis Department. During a major

portion of the program Richard F. Nalepka was ERIM's Principal Investigator.

iid
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The contract work was divided into several tasks. Work on two tasks
is reported elsewhere--yield forecasting procedures incorporating Landsat

data in Reference 36 and analysis of color image products in Reference 37.

During the final quarter of the contract year, the work carried out
on the remainder of the tasks was focused on the development of a multi-
crop acreage estimation system, Procedure M. This final contract report
describes and evaluates that procedure and the components derived from

the preceding work.

The authors of this report (listed alphabetically) are: R. Cicone,
E. Crist, R. Kauth, P. Lambeck, W. Malila, and W. Richardson. Significant
software support was provided by D. Rice. In addition, the following
members of the ERIM staff contributed to the reported work: R. Balon,.
J. Gleason, $. Lindper, B. McCamnn, J. More, 0. Mykolenko, J. Ott, and
T. Wessling. Consultation provided by E., Jebe, R. ﬁieber, W. Holsztynski,
H. Horwitz, F. Pont, and G. Suits is gratefully acknowledged, and apprecia-

tion is expressed to D. Dickerson for her secretarial support.
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1
INTRODUCTION

Procedure M is a technique for estimating écreages of multiple crops
based upon remotely sensed data. Procedure M is an embodiment of tech-
niques and viewpoints developed at ERIM and throughout the research com-
munity during the last’ several years under the stimulus of the Large
Area Crop Inyentory Experiment "(LACIE).. This report describes the
development and testing of Procedure M as configured for spring wheat and
other spring small grains. LACIE was designed to estimate the production
of wheat. The techniques empléyed by LACIE were found to reliably estimate
winter wheat and spring small grains. The further estimation of spring
wheat production using Landsat multispectral scanner data, in the face
of the spectral similarity of the other spring grains, has been recognized

as one of the most difficult problems brought to the fore by the LACIE program.

Before proceeding to the details of Procedure M and its testing, a
broad context for the development of.large-scale remote sensing techniques
is discussed and a perspective of Procedure M is given in terms of that

context and the background of research in agricultural remote sensing.

1.1 GENERAL CONTEXT

The broad class of systems which may be used to affect, control,
or monitor environment can be called environmental management systems.
In the most general terms, an envirommental management system consists
of an information gathering system, a forecasting system, a decision

making system, and an action taking system, as shown in Figure 1.1

Briefly, an information gathering system obtains data regarding
both the current state of the environment and actions that affect the
enviromment. A forecasting system requests and obtains information from
the information system and, in view of a specific set of planned actions

and a likely set of unplanned actions, produces an objective prediction
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of the future environmental state. The decision making system hypothe-

sizes a set of planned actions and obtains predictions of the environ-—
mental state from the forecasting system. It decides among alternative
sets of actions. The action taking system carries out the planned actions

and reports actions as they occur.

Because of long lead times for technology development, it is natural
to first develop the information gafhering component of an envirommental
management system, then the forecasting component, and last of all to
create the possibility for coherent planned action by introducing a
decision making system. In developing the information and forecasting
systems it is wise to consider the characteristics needed when operating
in conjunction with a decision making system. MNotably these are accuracy,

objectivity, and timeliness.

By accﬁracy we mean that the system error distribution must be small
encugh that the outputs are useful for decision makers. Practically
speaking this means that any particular system forecasting capability
will be validated by independent test before being accepted as part of
the system, and that the acceptance criteria will be set so that the

system has a high likelihood of performing with useful accuracy.

By objectivity we mean, basically, believability. Some of the pro-
cedures which insure objectivity are that the forecasting process is
visible to the decision makers in all essential elements, that the fore-
casts arise from fixed procedures applied to a data base, that the data
base be subject to a rigorous quality assurance procedure, that the
actual quantities forecasted are quantities that will subsequently be
known with accuracy significantly better than the forecast accuracy,
that the system publishes its estimated error distribution along with
its forecasts, and that the system publishes posterior comparisons of

its forecasts with the subsequently known forecasted quantities.

By timeliness we mean that a forecasting system produces regular

predictions of a set of forecasted quantities. In addition, considering
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the way decision making processes usually proceed, the forecasting system
is likely to be called upon to proauce special Teports inm a near-real-time
mede. This emphasizes a special qeed for a large, quality assured, data
base, only a sample of which is routinely accessed for regular scheduled

forecasts.

1.2 BACKGROUND IN AGRICULTURAL REMOTE SENSING

An important aspect of the world enviromment is the state of agri-
culture —— the amount and kind of food products available region by
region throughout the world. For many years there has been a gradual
development by the U.S. Department of Agriculture (USDA) of all aspects
of an envirommental management system in the United States regarding
domestic agriculture. Regarding foreign agriculture, only the informa-

tion gathering and forecasting functions have been attempted by the USDA.

In the last several years, remote sensing techniques have been in
the process of being developed to assist significantly in the process of
information gathering, for numerous types of envirommental management
problems. The National Aeronautics and Space Administration (NASA) in
particular has supported the development of aircraft and spacecraft
remote sensing instruments and information extraction techniques. ERIM
has been deeply involved in this effort, developing the first airbormne
multispectral scammers [1,2] and having a continuous 15-year history of
improving instruments and increasing understandings of the underlying
physical processes and the techniques of processing the data to obtain

the desirable information from it [3-11].

Specific applications to agricultural problems have been initiated
and led by NASA's Johnson Space Center (JSC) over the past decade. One
of these was the Corm Blight Watch Experiment (CBWE) (1970}, with air-
borne scanner data and photography [12]. The purpose of the CBWE was

to track the spread of the Southern Corn Leaf Blight northward across

the nation.
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With the launch of the Earth Resources Technology Satellite (now

Landsat) in July of 1972, it became possible to comnsider the application
of the spaceborne Multispectral Scamner (MSS) data to the task of Crop
Production Forecasting over world or national regions. An early attempt
was the Crop Identificaticn Technology Assessment for Remote Sensing
project (CITARS) [131. This project involved efforts by the Earth
Observations Division of the Johnson Space Center (JSC), Purdue Uni-
versity's Laboratory for Applications of Remote Sensing (LARS), and

ERIM in an intensive effort to aﬁply then current state-of-the-art infor-
mation extraction techniques in an evaluation of the feasibility of inven-

torying corn and soybeans in Indiana and Illinois.

The possibility of using the Landsat plus collateral data to monitor
the wheat production iﬁ the world's major wheat producing regions arose
out of the experience gathered in CITARS and elsewhere, plus the occur-
rence and impact of major wheat crop failures around the world, The Large
Area Crop Inventory Experiment (LACIE) was initiated by NASA and carried
out jointiy with the USDA and the National Oceanie and’ Atmospheric Admini-
stration (NOAA), to test the feasibility of using Landsgt MSS data,
weather data, and historical data to estimate the production of wheat
at .harvest in seven major wheat producing countries [14]. LACIE ran
through thfee phases —— crop harvest years 1975 through 1977. (Currently
in transition year, the feasibility of extending LACIE technology to the
discrimination among spring small grains and to’ the problem of produc-

tion inventory of corn, soybeans, and soft red wheat is being explored.

In each of these exercises, the attempt was to use and evaluate
existing techniques and, in each case, the existing techniques were
found wanting in some respects. That this would be true waé recognized
in advance. One of the stated purposes of the LACTE was to "rasearch and
develop alternate approaches and techniques...where required to meet
performance goals..." [15]. And indeed there has been substantial
growth in the technology of information extraction during the LACIE

program.
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At JSC, Procedure 1, which embodies a fundamental re-thinking of
the methods of using remotely sensed data in estimation procedures, was
developed and implemented in LACIE by NASA/EOD and Lockheed Electronics
Company (LEC) personnel [16,17]. Among other contributors supported
by LACIE are LARS, UCB, and ERIM. ;ARS provided field measurements data
for the development of detailed insights into the multitemporal-spectral
descriptién of crop canopies, and has advanced the art of sampling design
for remote sensing surveys. The Remote Sensing Program at the University
of California at Berkeley (UCB) has developed advanced techniques of

photointerpretation, sampling designs, and partitioning.

Several of ERTM's tasks have been in developing advanced techniques
for acreage estimation, including preprocessing techniques, training
techniques, and unbiased sampling and estimation techniques.

These have been incorporated into Procedure M, a procedure for acreage
estimation of multiple crops which further develops the basic approach

of Procedure 1.

A viewpoint that has been reinforced by the LACIE experience is the
essential need for validation of the estimation procedures. In addition
to its estimated quantities, as stated above, we believe that every fore-
casting or estimation system ought to produce estimates of the error dis-
tribution of its forecasts. We have attempted to follow this philosophy
in the development of Procedure M., One of the most valuable legacies of
LACIE is a large supply of accurate ground truth inéormation and associated
Landsat data and in-place procedures for continuing to acquire more of it.
Without such data, tests of the types described in this report are impossi-
ble. 1In our view, real progress in the development of remote sensing is

now fully dependent on such tests.

Section 2 describes Procedure M and its components. Then Section 3
describes both overall performance evaluations and component evaluations,

while a summary and conclusions are presented in Section 4.
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2
DESCRIPTION OF PROCEDURE M

Procedure M is a research system for performing crop area (proportion)
estimation based on labels assigned-to samples of multispectral scanner
data by ground truth, by analysts, by machine/analyst combination, or by
machine. It can operate in the LACIE Framework and is a multicrop gen-
eralization of the previously developed Procedure B [18,19]. Between
segment selection and final aggregation, the six major steps of the
procedure are data preprocessing and selection, spatial feature definition,
data stratification, sampling of entities for labeling, labeling, and
proportion estimation, as shown in Figure 2.1. Each of these steps uses
state-of-the-art techniques. However, the system is modular so that it
can easily be modified, configured for different purposes, or used as

a test bed to evaluate alternative components or groups of componente.

The key elements of the two-class Procedure B were used as the basis
for Procedure M, because their functioning is understood and test results
have been good, showing nearly unbiased proportion estimates using
ground truth labels [20]. In generalizing the elements to multiple crops,
a number of improvements were made in the overall design and in various

components and their implementation.

2.1 OVERALL DESCRIPTION OF PROCEDURE M CONFIGUREP FOR SPRING WHEAT

Procedure M was configured initially for the problem of inventorying
spring wheat and other small grains, through incorporation of a two-step
procedure for discriminating betweern (i.e., labeling) spring wheat and
cther spring small grains datal.:'c This two-step procedure utilizes analyst
interpretation to distinguish between the 'Spring Small Grain' and 'Other'
classes and a machine algorithm ﬁo further distinguish between 'Spring

Wheat' and 'Other Spring Small Grain'.

Spring wheat, spring barley, oats, rye, and triticale were considered
to form the 'Spring Small Grain' class.
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2.1.1 COMPARISON OF LACIE PROCEDURE 1 AND PROCEDURE M FOR
SPRING WHEAT

At this point in the discussion, it is appropriate to identify the
major similarities and differences between LACIE's Procedure 1 and Pro-
cedure M for spring wheat inventory. Points of comparison are presented
in Table 2.1, both operating in the LACIE framework. The major differences
are that -the Procedure M configuration includes more preprocessing, de-
fines and labels quasi-fields rather than individual pixels, uses a dif-
ferent sampling strategy, incorporates a machine labeler for distinguishing
between spring wheat and other spring small grains, and does not use maxi-

mum likelihood classification to produce the crop proportion estimates.

2.1.2 GENERAL DESCRIPTICN OF COMPONENTS OF PROCEDURE M FOR
SPRING WHEAT
An overview and general description is given below for each of the
components (modules) of Procedure M as configured and tested for spring
wheat inventory. Details of five of the key components on which sub-
stantial development work was performed during the contract year are
presented later in Section 2.2, while specifics of the configuration

tested are presented in Section 3.1.1 and appendices. The discussion

below follows the sequence of data processing operations in Procedure M

and starts at the point, in LACYE, where sample segments have been allocated

and selected.

The first data operations involve preprocessing to screem, normalize,
and transform the Landsat data for subsequent selection and processing,
as indicated in Table 2.2. The screening operation flags garbled data
and data from clouds, cloud shadow, and water, and computes a haze diag-
nostic parameter. This diagnostic parameter is then used with the spa-
tially varying XSTAR algorithm (discussed more fully in Sectioms 2.2.5
and 3.2.4) tq adjust for variations in atmospheric haze across the scene
and normalize the data to a reference’atmospheric condition and reference
sun angle. Correction for the response of different Landsat MSS sensors
also is incorporated. These normalizations increase the stability and

interpretability -of the data and veduce scene~to-scene variability. The
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TABLE 2.1 .COMPARISON OF LACTE PROCEDURE 1 AND PROCEDURE M
‘FOR SPRING WHEAT

SIMILARITIES

+ Use of 5x6-mile LACIE Segments of Landsat Data

- Use of Analyst for Labeling 'Spring Small Grain'
vs. 'Other'

- Labeling of a Sample of Data from Each Segment

MAJOR DIFFERENCES

LACIE Spring Wheat
Function Procedure 1 Procedure M

* Preprocessing Sun Angle Correction Sun Angle Correction
Analyst Screening Machine Screening

Satellite Calibration
Haze Correction

Tasseled-Cap Data

Transformation
* Entities to DPixels Interiors of Quasi-
be Labeled Fields
- Sample Selection Fixed Selection Random Selection from
for Labeling from 209-Dot Grid 40 Spectral Strata
- Labeling of Analyst Machine Algorithm
'Spring Wheat'
vs. 'Other Spring
Small Grain'’
» Proportion Maximum Likelihood Ratio Aggregation éf Stratified

Estimation Clagsification for . Semple Estimate
Two-Class Strati- .
fication, followed
by Bias Correction

10
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TABLE 2.2 TLANDSAT DATA PREPROCESSING AND SELECTION

+ Screen to - Exclude Bad Data
or Clouds
Flag Cloud Shadows
Water

~ Compute Haze Diagnostic

. Correct for Landsat MSS Sensor Calibration

. . A
Correct for Sun Angle Spatially Varying

+ Correct for Atmospheric Haze XSTAR Algorithm

- Transform Data: Tasseled-Cap Linear Combinations

Select Segments (Analyst) -— Criteria are:

- Acquisitions Exist for Adequate Separability of Spring
Small Grains from Other Crops

- Acquisitions That Will Provide a Good Definition of the
Field Pattern Present
Select Acquisitions (Analyst) -- Criteria Include:

- Acquisition(s) at the Dough or Ripening Stage of Wheat
Development

- Acquisition{(g) Near and After Peak Green Development Stage

- Other Acquisitions that Provide Good Definition of Field
Pattern and Spectral Separability of Spring Small Grains
from Other Crops

- Select Spectral Features:

- Brightness and Greenness, for Each Selected Acquisition Date

11



Y ehiM

final preprocessing step is a transformation of the corrected Landsat

channel values to Tasseled-Cap space, using linear combinations [21,22].
The first two combinations or principal directions, Brightness and Green-
ness, contain a majority of the variability and information in the Land-

sat data and have physical meaning.

The other aspect of preprocessing is the selection of data for
processing. As indicated in Table 2.2, this includes selection by the
analyst of segments and acquisitions according to the stated eriteria.
Only the Brightness and Greenness spectral features for selected acqui-

sitions are subsequently used in the procedure.

The second component detects spatial feattres in each scene
(Table 2.3). An approximation of the field pattern is defined or ex-
tracted from multitemporal data by using a clustering algorithm (BLOB)
that employs both spectral and spatial variables [23]. A set of BLOB
parameters which is optimized for various times of the growing season
has been established and produces good results, as discussed further in
Sections 2.2.4 and 3.2.3. The-algorithm actually defines quasi-fields
which frequently, but not necessarily, follow farm field boundaries. For
instance, if two adjacent farm fields have the same or similar crops they
may be assigned to the same quasi-field. Converseiy, if some spectral
anomaly, such as a bare area, is present within a farm field, two dif-
ferent quasi-fields, 5ne for the bare area and one for the remainder, may

be assigned to it.

A key next step in field definition is that of stripping away the
edge pixels from each defined quasi-field. These pixels are the ones
most likely to contain mixtures of two or more different crop types and
are most susceptible to errors induced by spatial misregistration of data
channels acquired on different dates. By eliminating these edge pixels
from caleculations of spectral data means and requiring the analyst to
label only quasi~field interiors, we believe that major sources of amalyst
lébeling errors are likewise removed. It remains only to demarcate for
the analyst those quasi-field interiors that are to be labeled (See the

example in Figure 2.2) and to count the number of pixels in each quasi-field.

12
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Because there may typically be 300 to 500 interiors defined by
BLOB for a LAGCTE segment atid bécause it is not practical to require the
analyst to label them all, some sampling is required. In Procedure M for
spring wheat, the sample selection process has two stages —-— a spectral

stratification followed by sample allocation and selection.

The- spectral stratification process as employed fof spring wheat
is summarized in Table 2.4 and discussed more fully in Sections 2.2.3
and 3.2.2. In essence, it is a second clustering operation, this time
using only the spectral means of field interiors as the items to be
clustered. As noted in Table 2.4, two passes of the ERIM clustering
algorithm are utilized, which is a refinement of the stratification
process used previously in Procedure B, TFor the spring wheat inventory
problem, it was decided to define 40 spectral strata for each segment,
a number based on prior experience and results with Procedure 1 and
Procedure B, In a multisegment configuration, Procedure M stratifica-
tion could use collateral features as well as spectral features for

stratification.

We alsco decided to allocate and sample 100 quasi-fields for label-
ing, among the 40 spectral strata (Table 2.5). The number of samples
assigned to each stratum is made proportional to the size (total number
of pixels) of the stratum. An unbiased method for choosing the samples

allocated to each stratum was developed and is described-in Section 2.2.2.

The most critical stage in crop inventory proéedures is labeling
the crop type of the designated samples (fields or pixels). In the con-
figuration of Procedure M tested and described in this report, a two-step
labeling procedure is followed, as summarized in Table 2.6. In the first
step, the analyst labels each designated quasi-field as either 'Spring
Small Grain' or 'Other'. In the second, a machine algorithm operates on
those quasi-~fields designated 'Spring Small Grain' by the énalyst and
assigns a proportional label among two classes: 'Spring Wheat' ox 'Other
Spring Small Grain'. If the acquisition needed to make this determination

is not available, the label '"Unidentifiable Spring Small Grain' is assigned.

14
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TABLE 2.4 SPECTRAL STRATIFICATION OF SEGMENT

* Cluster Quasi-Field Spectral Means to Produce a Specified
Number of Strata (B Clusters)

— Employ ERIM Clustering Algorithm as Follows:

+ On a First Pass, Adapt Cluster Means
as Clusters Grow

+ On a Second Pass, Assign Cluster Membership
on Basis of Final tleans from First Pass

— Produce 40 Strata —— Number Chosen Based on:

<+ The Design and Experience of Procedure 1

++« Prior Pfocedure B Test Results

TABLE 2.5 ALLOCATION AND SAMPLING OF QUASI-FIELDS FOR LABELING

+ Allocate 100 Quasi-Fields (Blobs)} for Labeling
Among the Strata with Number Proportional to
Stratum Size (Total Number of Pixels)

- Choose the Quasi-Fields Allocated to Each Stratum
in an Unbiased ¥Manner

15
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TABLE 2.6 LABELING PROCEDURE

Step 1: + 'Spring Small Grain' wvs. 'Other’

— This Function.Operationally is Performed by an Analyst

- Ground Truth Was Used in Designating a Quasi-~Field
Label for T & E Purposes (A Quasi-Field was Labeled
Grain if It was More Than 50% Grain)

Step 2: "Spring Wheat' vs. 'Other Spring Small Grain'

~ Machine Algorithm is Automatically Applied to Each
Quasi-Field Called 'Spring Small Grain' by Amalyst

. — If the Proper Acquisition is Not Available, the

Quasi-Field is Labeled 'Unidentifiable Spring
Small Grain'

— Otherwise, Two Classes are Designated Proportionally:

++ Spring Wheat
++ Other Spring Small Grain

Result: Each selected quasi-field is either labeled proportionally
among the spring small grain classes or else is labeled 100%
unidentifiable spring small grain or 100%Z non spring small grain.

16
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For the initial testing and evaluation reported herein, ground

observations were used as a substitute for analyst labels in Step 1.

The machine algorithm of Step 2 has the key elements identified in
Table 2.7. It is designed to capitalize on the fact that barley ripens
more rapidly and/or somewhat differently Fhan spring wheat and to detect
the spectral manifestations of this process. Details of this algorithm

are presented in Sections 2.2.1 and 3.2.1.

The final step of Procedure M is to take the crop labels assigned
to the selected quasi-fields and use them to compute crop proportion
eatimates for the segment. As indicated in Table 2.8, a proportiomal
label is computed for each spectral stratum, using the'labeled quasi-
fields within it. The stratum proportions are then aggregated to produce
various segment proportion estimates. One is the two~class estimate
represented by the proportion of spring small grains. Another is the
three~class estimate which divides the spring small grains class into
'Spring Wheat' and 'Other Spring Small Grain'. The two-class estimate
will reflect the accuracy of analyst labé]ing. The three-class estimate
may be unreliable or have high variance if too few of the analyst—labeled
spring small grain fields have suitable acquisitioms. for the machine
labeler to further discriminate among them. A reliability flag will

accompany the estimates.

This concludes the general description of Procedure M for spring

wheat. Details of five key components are presented in Section 2.2.

2.2 DESCRIPTION OF SELECTED COMPONENTS OF PROCEDURE M

Development aspects and characteristics of several key components
of Procedure M, as configured for spring wheat, are described below.
The order of discussion is the reverse of that in the preceding section —
we begin with the machine labeler and work backwards through the data flow
to the preprocessing phase that performs atmospheric haze correction. In
between, are discussions of the unbiased sampling strategy, spectral strati-

fication, and gpatial feature definitiom.

i7



ERIM

TABLE 2.7 ELEMENTS OF MACHINE ALGORITHM de DISCRIMINATING
-AMONG SPRING SMALL GRAINS

.

A Reference Profile of Green Development vs. Day of Year
(Day of Peak Greenness is a convenient reference point)

- A Calculation of Crop Calendar Shift for Each Field or Pixel,
Relative to the Reference Profile

‘A Characteristic Distance, in the Brightness—Greenness Plane,
for Each Date (Values Increase as the Grain Ripens)

(A Decision Threshold on the Computed Characteristic Distance,
as a Function of Days Since Peak Greenness

18
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TABLE 2,8 PROPORTION ESTIMATION

« Utilize Quasi-Field (Blob) Labels to Compute a Proportiocnal Label
for Each Spectral Stratum (B Cluster) (Based on Total Pixels)

- Generate Intermediate Segment-Level Proportion Estimates,
Based on the Proportional Label and Total Number of Pixels
in Each Stratum

- Spring Wheat
- Other Spring Small Grain

Unidentifiable Spring Small Grain

Other

+ Adjust Intermediate Proportion Estimates by Partitioning
Unidentifiable Spring Grains into 'Spring Wheat' and 'Other
Spring Small Grains' in Accordance with Their Raw Proportions
to Produce Final Proportion Estimates for the Segment:

-~ Total Spring Small Grain Proportion

- Spring Wheat Proportiom; Other Spring Small
Grain Proportion

+ Flag Potentially High-Variance Spring Wheat Estimates
{(Based on Number of Quasi-Fields in Unidentifiable Spring
Small Grain Class)

- For Our Tests, Only a Total Spring Small Grains
Estimate was Produced if More Than 507 of the
‘Selected 'Spring Small Grain' Quasi-Fields Were
Labeled 'Unidentifiable’

i9
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2,2.1 DESCRIPTION OF MACHINE LABELER

While the -discrimination of spring small grains from other -cover
types in the spring wheat configuration of Procedure M is carried out
by analyst interpreters, the finer discrimination of spring wheat from
other spring small grains is entirely a machine function. This second
phase, which begins when the analyst has identified those fields in the
training sample that are spring small grains, is itself a two-step

process: estimation of crop calendar shift, followed by label assignment,

2.2,1.1 Estimation of Crop Calendar Shift

Basic Concept. Observed through time, a spring small grains pixel

or field should exhibit a pattern, in Tasseled-Cap Greenness, such as
that represented in Figure 2.3(a). In the absence of system noise or
other outside influences, one could reasonably expect that other spring
small grains pixels, observed at identical points in time, would have a
similar appearance if their growth stages were the same. However, a
more common occurrence is illustrated in Figure 2.3(b), where observa-

tions at the same point in time show a high degree of signal wvariationm.

The underiying assumption of crop calendar shift estimation is that
a large part of this variation is the result of differences in stage of
development at the time of observation.” By fitting a model form to
data like those in Figure 2.3(a) (See Figure 2.3(c)), and then shifting
the model form along the day-of-year axis, we find that the sets of
observations, while showing much variability on the day of acquisition,
are in fact different points along a common curve form (Figure 2.3(d)),
differing only in their stage éf development at the time of observation.
Conversely, by shifting each set of observations to a common reference
time, within-day signal variablility can be substantially reduced kFigures

2.3(e) and (f)). 1In addition, since previous studies at ERIM [24,25]

“We gratefully acknowledge the work of Dr. Gautam Bahdwar of NASA/JSC
in first using spectral profiles to more closely estimate the stage of
plant development. The shift procedure presented here is an extension
of his work.
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have suggested that effective sprimg wheat and barley separation can

only be accomplished in a relatively narrow day span arcund thé dough
stage of development, application of the crop calendar shift allows for
proper selection of the acquisition to use in the label assignment step.
Figure 2.4 is an example of real data with and without the crop calendar

shift applied.

General Approach. The model form used in Procedure M for spring

wheat is illustrated in Figure 2.5. A cross—correlation calculation,

which is independent of differences in overall signal magnitude, is used
as the goodness—of-fit criterion. 1In order to obtain a stable estimate
of the shift to be applied, at least three acquisitions must fall in the
time interval between plant emergence and harvesting, while additiomal -

acquisitions in this range result in a more accurate shift estimation.

It ghould be noted that a single profile is used for all spring
small grains and all sample segments. A study of differences in shift
between more specific (segment or crop) profiles and more general (multi-
segment or all small grains) profileé indicated that, for 85-95% of the
pixels tested, shift differences were within a range attributable to
noise (+ 2 days or less). In light of the added complexity introduced
by either trying to adjust the reference profile for each new sample
segment or testing with a different profile for each small grains crop,

it is a significant advantage to be able to use one common profile.

Implementation. The actual crop calendar shift estimation in

Procedure M for spring wheat is carried out on two levels: field-by-field
and then pixel-by-pixel. The field-level shift provides an approximation
of the final shift for each pixel and also serves to identify those spring
small grain quasi-fields lacking the required number of acquisitions
within the reference time interval. Such fields are labeled 'unidenti-
fiable spring small grains' and are removed from further consideration

by the labeler.

22
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At the pixel level, each dinterior pixel of the given quasi-field
is examined iﬁdi&idually, and a fine tuning of the field shift is made.
This second level of shift estimation provides for more accurate estima-
tion of crop development for each pixel and also accommodates differences
in stage of development within a field shape (as when several small fields
are grouped together into one quasi-field by the spectral/spatial cluster-

ing algorithm).

2.2.1.2 label Assignment

Background. Studies at ERIM over the past two years clearly demon-
strated the marked spectral similarity of the wvarious spring small grains,
even when view multitemporally. However, our tests on both Phase 2 and
Phase 3 LACIE data have also indicated that, in the acquisition most likely
to correspond to the dough stage of plant development, barley tends to be
somewhat more advanced, and spectrally brighter, than spring wheat [24,25].
After heading, barley fields seem to ripen at a faster rate and/or follow
* a short-cut in the trajectory illustrated in Figure 2.6 in Brightmness-—
Greenness space, such that by the dough stage they are farther from the
green arm (a line approximately parallel to the spectral path followed by
developing green vegetation) than are spring wheat fields at the same
point in time. This separability is lost as the fields complete the
ripening process and begin to be harvested, primarily because the signa-

tures at these times are considerably more variable.

By providing an -estimate of the actual stage of development of each
pixel at each acquisition date, the crop calendar shift makes possible
a clearer understanding of the spectral relationship between spring wheat

and barley, and thus a more precise definition of the labeling criterion.

It should be noted that the labelihg criterion we have devised is
based on spring wheat and barley separation. Too few rye or triticale
fields were present in the training data to allow any decision logic to

be established for these crops. Oats, too, occurred with significantly

25
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FIGURE 2.6 TEMPORAL PATTERN OF SPRING SMALL GRAINS
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lower frequency than spring wheat and barley. In addition, limited
past work had shown few spectral differences between spring wheat and

oats [26].

Development. ¥Four Phase 3 LACIE blind sites (1498,1515,1640,1663) were
used to develop the labeling criterion. These sites were chosen based
on the aéailability of acquisitions in the reference time interval and
around the dough stage of development, as well.as the presence of suffi-
cient numbers of spring wheat and barley pixels to adequately characterize
the behavior of the two crops. Atmospheric corrections were applied using
the spatially varying XSTAR algorithm and a crop calendar shift was esti~

mated for each interior pixel.

Examination of Brightness—-Greenness scatter plots for each shifted
day of the year after peak Greenness (Day 160 on the reference scale)
suggested that adequate separability could be obtained on Reference
Days 186 through 203. Imn this day range, optimum linear discriminant
analysis was carried out, using greenness and brightness as the discrimi-
nant variables. The decision lines selected by this process showed a
marked similarity in‘slope from day to day, differing only in the value
of their y-intercept, and had similar slopes and Intercepts from segment
to segment for each day. Accordingly, a reference line was defined
having the same slope as the set of decision lines, and the distance
from that line was used as the discriminant (see Figure 2.7). Optimum
diseriminant values were again calculated, using the newly defined dis-
tance, and again the chosen values were very simiiar from segment to
segment for each day in the chosen range. Further, the mean decision
values for the four segments, when plotted against a time axis, defined
a straight Iine. Thus the final decision measure, common to all four
segments, was a simple linear function of day of year (after shifting)

and distance from the reference line (see Figure 2.8).

Using this measure on the fowr segments from which it was developed,
we achieved an average labeling accuracy for spring wheat and barley of

75% to 85%. Table 2.9 gives a segment-by-segment breakdown of the results.
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TABLE 2.9 LABELTNG RESULTS FOR DEVELOPMENT SEGMENTS

Est. Spring
Wheat

Est. Barley

Correct

Est. Spring
Wheat

Est. Barley

Correct

1498
True
Spring True
Wheat Barley
745 103
229 292
76.5% 73.9%
1640
True
Spring True
Wheat Barley
4397 827
891 1241
83.2% 60.0%

Est. Spring
Wheat

Est. Barley

Correct

Est. Spring
Wheat

Est. Barley

Correct

30

1515 .
True
Spring True
Wheat Barley
2125 " 379
445 1975
82.7% 83.9%
1663
True
Spring True
Wheat Barley
3624 282
442 858
89.1% 75.2%
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2,2.2 UNBIASED SAMPLING STRATEGY

This section is concerned with how to choose a random sample of
quasi-fields from a stratum in such a way that the percent wheat in the .
sample is an unbiased estimate of the percent wheat in the stratum.”
Although "wheat"'plays.a role in the discussion, the result applies to
other crops and attributes whether estimated singly or in groups. Also,

the sampled entities are called "fields', for convenience.

At first glance, it would appear that there isn't a problem. Why
do we need to do anything more complicated than draw a simple random
sample, that is, we decide on the number k of fields to sample and then,.

giving all samples of k fields equal probabilily, choose one at random?

The answer is that this simple scheme results in a biased estimate.
To produce an unbiased estimate, we sample the first field with proba-
bility proportional to size and the remaining k-1 fields with equal
probability, a technique first described by H. Midzuno in 1951 [27], [28]
and [29].

Because this technique defies intuition and could become a source
of doubt and controversy, a more extended discussion of it tham is pro-

vided by the references will be given here.

Suppose we are sampling k fields from a total of B in the stratum
and that each field, i, has n, pixels and has a proportion Py of wheat.

Then n.p, is the number of wheat pixels in Field i.

The proportion ﬁ of wheat in the sample is

I ap,

kS

Bias that may be introduced by omitting some strata from the aggre-
gation process is discussed in Section 3.1.2.1.
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where the sums are taken over all fields in the sample, The proportion p
of wheat in the sﬁra;um is the same expression except that the sums are
taken over all fields in the stratum. The problem is to find a proba-
bilistic method of selecting the sample 5o that the wheat proportion in

the sample is an unbiased estimate of the wheat proportion in the stratum.

That. the simple random sample is not such a method is shown by the
following example. Suppose we have tﬁree fields, a, b and ¢, in the
stratum, we are sampling just one field, and the ni's and pi's are as
follows:

Field MRy 4Py
a 50 0.6 30
b 20 0.2 4
c 0 01 1

TOTAL 80 35

p is 35/80 = 0.4375. p is 0.6, 0.2 or 0.1 depending on whether
a, b or ¢ is chosen as the sample. According to the simple random
sampling scheme, each of these samples has equal probability, 1/3, of
being chosen. The expected value of'ﬁ is obtained by multiplying the
probability of each sample by ﬁ for that sample and summing. So

p =1 + 1 L _
Ep = 3 X 0.6 -+ 3 X 0.2 + 3 X 6.1 = 0.3

which is # 0.4375. Thus p is a biased estimator of p.

But if we apply the Midzuno technique to this special case where

just one field is chosen, we choose that field with probability pro-
portidnal to size. Then Field a has a probability 50/80 of being
chosen, Field b, 20/80 and Field ¢, 10/80.
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The expected value of p is

50 20 10 _ 35
o X 0.6 + 55x 0.2 + Frx 0.1 = 3

which = p. Thus the Midzuno technique is unbiaged in this example.

The part of the Midzuno technique that strains our intuition is
choosing fields subsequent to the first with equal probability. Let
us see how this technique handles the choice of two fields in our
example. There are three possible samples, (a and b), (a2 and ¢) and
(b and ). The probability of each sample, the wheat proportion in
each sample, and the product of the two for computing E£p are given in

the table below:

Sample Probability

Sample  Sample Probability Wheat Proportion ﬁ X Wheat Proportéon
a and b %% x %—+ %%-x %— (50 x OFE% i ggo x 0.2) %%_g_%
a and c, %%‘x %-+ %%—x %— (50 x O-g% i ééﬂ x 0:1) %%_E_%
b and ¢ %x%.._%gx% (20 x 0.2) + (10 x 0.1) 4+ 1

20 + 10 80 x 2

The sample probability of (a and b} is computed by realizing that
this sample can come about in two ways: either a can be chosen first
with probability 50/80 and b is then chosen with probability 1/2 or b
is chosen first with probability 20/80 and then a is chosen with proba—
bility 1/2.

To get the expected value of ﬁ, we multiply the sample probability
by ﬁ for each sample and sum. The number of pixels in the sample appears
in the denominator of the wheat proportion and in the numerator of the

sample probability. This factor cancels when we multiply the two and we
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are left with the uncluttered expressions in the right hand column. When

this column is summed, we get

€520 +4+1) 35
P = 2 x 80 80

which = p. And so again, the unbiasedness of the Midzuno technique is

exhibited.

An algebraic proof of the unbiasedness of the Midzuno technique,

built on the insights of the previous example, is presented in Appendix A.

We note tha£ in the example just given, we chose a saﬁple with proba-
bility proportional to the size of the sample (i.e., the number of pixels
in the sample): sample (a and b) had probability (50 + 20) x constant;

(2 and ¢),. (50 + 10) x constant; (b and c), (20 + 10} x constant.. This
conclusion holds in general (See Appendix A). Thus we can think of the

Midzuno technique as a random mechanism for selecting a sample of k quasi-

fields with probability proportional to size. A more direct mechanism

would be to enumerate all possible samples, give each a probability pro-
portional to size, compute cumulative probabilities for the sequence of
samples, choose a random number between 0 and 1 and observe at which
sample it falls within the cumulative probabilities. We don't use this
mechanism because as k and B increase it becomes rapidly impractical.

if k=5 and B=150, for example, we would have to compute 590 million
proebabilities. We are forfunate to have a practical mechanism that

achieves the same end.

2.2.3 SPECTRAL STRATIFICATION

In order to increase the efficiency of the sampling of quasi-fields
to be labeled, the population of quasi~fields is split up into strata.
It is well known [30] that if the stratification has some relation to
the attribgte being estimated and if the strata are sampled in proportion

to their size, a more precise estimate is cobtained from the sample.
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In Procedure M the stratification is done by an algorithm BCLUST
which groups together quasi-fields that are spectrally similar for all
the biophases observed. The effect is to concentrate the crops of

interest into a few of the spectral strata.

The first step is to put the quasi-fields of a segment in random
order. Omitted from the list are the so~called "small fields", namely,
those that have no interior pixzels. (An "interior pixel" is ome that
faces pixels from the same quasi-field on all four sides.) The small

quasi—-fields, usually stringy boundary areas between real fields, are
omitted because they are difficult to label and subject to registration

errors. The parameters of the algorithm setting up the quasi-fields are

chosen so that few of the pixels in the segment are in small quasi-fields,

The large quasi-fields are clustered using the multitemporal spectral
mean vectors. The means are computed over the interior pixels only,
because these pixels are less likely to be subject to registration errors
or to mixed spectral responses and they therefore more purely .represent
the crop or material present in the quasi-field. Thus the intent of

stratifying the data according to crop or material is further realized.

The distance measure used in the clustering is

nchan 2 9

i, 373 i

where

X is the data vector (a quasi-field mean)

ey X
1? > “nchan

Ki.s =sey X . is the mean vector of cluster i
14 nchan,i

nchan is the total number of multitemporal spectral channels

di is the distance from the data vector to cluster i

wj is a weight on channel j
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Each new data point x is assigned to the cluster i for which di is
smallest, except that if the minimum di is greater than a parametér T, a
new cluster is created with its mean initially at x. As each point enters
a cluster, it is included in the calculation of the cluster mean by the

updating formula

where n, is the former number of points in cluster i.

The number. of clusters created depends on the weights Wi eevs Wogan

and t. The larger T is in relation to the weights, the smaller the number

of clusters. Appendix B discusses how these parameter values were set.

The present implementation of BCLUST has a provision for repeating
automatically with appropriate changes in T until a desired number of
clusters is achieved. Other options include switches for turning off the
creating and updating capabilities, a provision for seeding clusters with
arbitrary values or with the means from a previous run, the use of a data
transformation matrix rather than merely a set of weights, and a provision
to start with a small value of T and increase it asymptotically to a desired
final wvalue. This last option has the effect of seeding the clusters with
the first data vectors and tends to produce clusters that are more uniform

in size.

BCLUST also has the capability of incorporating collateral informa-
tion into the distance formula when strata are being formed from a pool
of quasi-fields from several segments. The collateral information such
as a moisture index or crop calendar figure, is' a single value for the
whole-segment. This capability of BCLUST ig not used in Procedure M for

spring wheat which operated only on single segments.
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In running BCLUST for Procedure M, we have used the repeated run

option to converge to a desired number of clusters, then used the means

of the converging run as seeds to make another pass through the data

with no ecreating or updating. Wé-have also used the Tasseled Cap channels
Brightness and Greemness, and have set the weights in inverse proportion
to the effective ranges of the variables. The speéific parameters used

are presehted in Appendix B.

2.,2,4 DEFINITION OF SPATIAL FEATURES

An aerial pHotograph of an agricultural area shows that the scene
is divided into areas called fields, usually rectangular or some other
simple shape, within which the color is nominally uniform. A field in
Landsat data is similarly defined: a group of neighboring pixels in
some simple shape whose spectral characteristics are very likely to be

uniform.

Because of the one-acre resolution of Landsat data, it does not
seem possible to reconstruct, without further information, the fields
that would be evident in higher resolution data. But we can define
groups of pixels that we call quasi-fields that have properties similar

to fields, namely that their pixels are spatially close and spectrally

similar.
Several purposes are gerved by such-a definition:

1. TUsing the quasi-field as the unit of analysis rather than
the pixel increases processing efficiency through a data

compression factor of about 30. .

2. Averaging the pixel values over a gquasi-field smooths out

noise in the data.

3. Stripping away the edge pixels of the quasi-field allows
working with the relatively pure interior pixels. Purity
refers neot only to a uniform spectral respomse but also to

the invariance of the associated ground truth, as demonstrated
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in tests on Kansas and North Dakota segments [20,23]. This
purity contributes to the success of labeling techmniques,
whether carried out by humans or by computer programs. It
also contributes to the'érouping of quasi-fields into meaning-

ful strata that reduce sampling error,.

The algorithm used by Procedure M to create quasi-fields is called
BLOB; other possibilities might have been AMOEBA [31] or ECHO [32].
BLOB is a clustering algorithm similar to BCLUST (Section 2.2.3) but
based on the spatial channels, line number and point number, in addition

to the spectral channels.

The distance function for deciding which quasi-field a pixel belongs

to is:
— - 2 —
nchan (X, - X..)2 (L - L.) (P - P.)2
_ hj i i i
dg = v Ty Ty
i=1 i L P
where
Xis eees X o0 s the spectral data vector for a pixel

L is the pixel line number

P is the pixel point number

w

145 ** chhan i is the spectral mean vector of quasi-field i
s .

I is the mean line number of quasi-field 1
P is the mean point number of quasi~field i

nchan dis the mumber of spectral channels

di is the distance from the pixel to quasi-field i

Vj, VL and VP are weights attached to the spectral and

spatial variables in the distance function
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The pixel joins the quasi-field with the smallest di provided that

this value is less than a parameter T. Otherwise the pixel starts a
new quasi-field. The mean vector for a quasi~field is computed from

all the pixels in the quasi-field by an updating formula as in BCLUST.

The numbers Vl, sy Vnchan’ VL, VP and t are parameters of the
algorithm that affect its performance. The larger T is relative to
the others, the larger the quasi-fields are and the fewer there are of
them. Increasing T also reduces the number of quasi-fields with no
interior pixels, fields that are left out of the stratified sampling.

Large values of VL and VP relative to Vl, oo, ¥ a have the effect

of emphagizing the spectral, rather than the_spaggzi, variables , and
may produce guasi-fields that are not very cohesive geographically.
Relatively small values of VL and VP emphasize the spatial variables
and may produce compact guasi-fields that are noft as homogeneous spec—
trally as one would like and may subdivide large fields. Information

regarding the parameters of BLOB are reported in Appendix B.

It is possible that clouds may obscure field patterns. When the
BLOB algorithm is applied to multiple time periods, it is now possible
to avoid data that are cloud covered. This was accomplished by a2 modi-
fication that first excludes any channel data that have been flagged by
the screening process (i.e., using only cloud-free data) in computing di’
and adapting the T distance factor to reflect the use of fewer channels

of information.

The BLOB algorithm allows the use of an alternate distance function
that favors the formation of rectangular fields. When used, the line and
point coordinatgs L and P are rotated by a linear transformation to obtain
% and p that measure in the North-Scuth and East-West directions, respec-
tively. Then the last two terms of the distance function are replaced by

¢-%)" -3

max s
V£ VP

Using this distance function, all points equi-distant from the spatial mean

of a quasi-field form a North-South/East-West rectangle rather than an ellipse.
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2.2.5 ATMOSPHERIC HAZE CORRECTION

An. atmospheric haze correction, preceded by data screening -and
followed by a data transformation (to the Tasseled-Cap linear channel
combinations), forms the preprocessing component of Procedure M. During
the research leading to Procedure M, it became increasingly apparent
that an atmospheric correction algorithm was needed which would compen-
sate not only for large scale (segment-to-segment) atmospheric variations,
but for smaller scale (within segment) variations as well. For this pur-
pose the application of the XSTAR haze correction algorithm [33,34] (which
was developed. during a previous effort) was changed from a global appli-
cation (a fixed correction throughout a segment) to a spatially varying
application (a variable correction within each segment). The resulting

algorithm is called the spatially varying XSTAR haze correction [33].

In principle, the spatially varying XSTAR algorithm calculates its
haze diagnostic within a moving window (which has a 15 pixel diameter
between half amplitude points), using only those pixels which have passed
the sereening procedure, and then applies its correction to the pixel at
the center of the window. However, in the detailed implementation of the
procedure the ‘application of the moving window is quantized as described
below. This quantization reduces the execution time for the procedure on
the computer, with the result that the spatially varying XSTAR procedure
costs slightly less than twice as much to run as the former global XSTAR

procedure cost.

The spatially varying XSTAR procedure follows six steps, as outlined
in Table 2.10. In the first step, the SCREEN procedure [33,34] is applied
to the data to flag pixels (e.g., bad data, dense clouds, cloud shadows,
or water) which are not usable in the haze diagnostic procedure. However,
for the spatially varying XSTAR correction, two of the SCREEN thresholds
.are relaxed somewhat, as described in Reference 35. This allows more
extreme haze concentrations to be diagnosed and corrected than had been

the case previously with the global XSTAR correction (which needed to
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TABLE 2.10 STEPS -IN SPATIALLY VARYING XSTAR HAZE
. CORRECTION PROCEDURE

Screen Data (Using Less Stringent Cloud and Dense Haze Thresholds)

Calculate Mean Signal Values for 5 Line by 5 Pixel RBlocks (Using Only
"Good" Pixels)

Calculate Spatially Smoothed Mean Values for Blocks, Using a Moving
Window Filter

Use Spatial Interpolation/Extrapolation to Estimate Mean Values for
Blocks Which Have an Insufficient Number of Good Pixels

+ Calculate XSTAR Correction Appropriate at Each Block Center

Interpolate XSTAR Correction to Apply to Each Pixel
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exclude pixels within haze concentrations which were not typical of the
majority of the segment to. be .corrected).. The relaxed thresholds. also

help the correction algorithm to track haze variations more accurately.

The second step of the spatially varying haze correction procedure
divides the sceﬁe into 5 line by 5 pixel blocks, and calculates a mean
value for each block, using only signal values from the "good" pixels
within the blocks. ("Good" pixels are those pixels which pass the
SCREEN procedure.) Mean values for blocks with no good pixels or with
fewer good pixels than half the average number of good pixels per block
(truncated to integer form) are not used. For these "unknown" blocks,
mean values are estimated by interpolating or extrapolating from neighbor-

ing block mean values, as described in Steps 3 and & below.

In the third step of the procedure, the mean values of the 5 line
by 5 pixel blocks are smoothed, using a non-recursive moving window
filter. The filter approximates a Gaussian shape, with a 3 block dia-
meter between half amplifude points: In this stage, smoothed mean values
are calculated for all blocks with "known" mean values, and for all
blocks with at least one near neighbor (either aléng-track or across-—
track) which has a "known" mean value. The smoothed mean value is the
weighted average of the available "known'" mean values within the window

of the filter.

Step 4 of the spatially varying XSTAR procedure is used to assign
smoothed mean values te blocks which still have "unknown" mean values
after Step 3. In this step only those blocks which have "unknown" mean
values, but which have at least one near neighbor (either along-track
or across—track) with a smoothed mean value, are assigned smoothed mean
values according to the procedure of Step 3. Step 4 is iterated until

all blocks have smoothed mean values.

In Step 5 of the procedure, the smoothed block mean values are used
as XSTAR haze diagnostics, and the multiplicative and additive correction

factors appropriate for each block center are calculated from them.

42



D ERIN

Finally in Step 6 the wmultiplicative and additive correction factors

caleculated from the block means in Step 5 are interpolated between block
centers (in two dimensions) to determine the appropriate correction

factor for each pixel. These correction factors are then applied pixzel

by pixel. For this step a curvilinear interpolation is used which

employs an approximately Gaussian Interpolation Wéighting function,
described in Reference 35. Pixels which are near the borders of the

scene, so that only ome or two block centers are within the.interpolating
range (+4 lines and +4 pixels) of the pixel, are corrected by interpolating
the correction factors calculated for only those blocks whose centers are

within the interpolating range.

The spatially wvarying XSTAR procedure results im an effective atmos-
pheric haze correction (for Landsat agricqltural MSS data) with a 15 pixel
(v1.2 x 0.9 km) spatial resolution of haze variability. The performance

characteristics of this haze correction are discussed in Section 3.2.4.

"
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3

TEST AND EVALUATION CF PROCEDURE M CONFIGURED FOR SPRING WHEAT

Procedure M utilizes a statistical sampling strategy to inventory
crop acreage. The procedure is constructed in a modular way and was
designed to function within the LACIE framework. This section presents
an evaluation of a spring wheat configuration of Procedure M in estimating
spring small grain and spring wheat acreages in the Northern Great Plains.
The evaluation considers the performance of the overall procedure in
providing acreage estimates (Section 3.1), as well as the performance

of the individual components (modules) that comprise the procedure

(Section 3.2).

3.1 TEST AND EVALUATION OF SYSTEM PERFORMANCE

Test and evaluation of Procedure M performance is presented in

three parts —— the experiment design, results, and a summary.

3.1.1 EXPERIMENT DESIGN

The major objective of the evaluation was to gain an understanding,
in a statistical sense, of the overall performance of Procedure M as
configured for spring wheat. That is, the experiment was to characterize
the procedurs's performance in terms of bias and variance of crop pro-
portion estimates. In addition to spring wheat and other spring small
grain estimates, the accuracy of the total spring small grain estimates

were to be evaluated.

The specific software configuration employed to conduct this evalua-
tion is described in Appendices B and C. Experiment parameters are listed
in Table 3.1. U¥ote that both Phase 2 and Phase 3 segments were used.

This was done to evaluate whether the machine labeling procedure for
spring wheat, described in Section 2 and developed using Phase 3 sites,

could be extended to another crop year, represented by the Phase 3 sites.
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TABLE 3.1 EXPERIMENT PARAMETERS

< 26 Northern Great Plains Phase 2 and Phase 3 LACIE Blind Sites

» Up to 7 Acquisitions for Each Site
— 3 or 4 Chosen for Field and Strata Definition

~ 3 or 4 Chosen for Automatic Labeling

&4 Stratification Cases (B Clustexrs —- 1,20,40,60)

- 5 Field Sample Cases (Quasi~Fields or Blobs -~ 40,60,80,100,120)

+ 50 Estimates Per Case (Random Field Sample Replicates)

26,000 Proportion Estimates Total
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The 26 segments chosen for evaluation were selected so that they

would geographically represent the major spring wheat growing regions

in the United States Northern Great Plains (Figure 3.1). The propor—
tions of segments planted to spring small grains vary from about 70%

to near 9%, as is illustrated in Figure 3.2 in which segments are ranked
according to their spring small grain proportioms.” The specific acqui-
sition dates available and used for these segments are listed in

Appendix D.

Procedure M for spring wheat utilizes 100 labeled samples drawn
from 40 spectral strata. This experiment soughﬁ to characterize the
performance of other sampling strategies as well. Unstratified sampling
was carried out in addition to sampling from within 20, 40, and 60 strata
to enable measuring the variance reduction (R factor) due to stratified
sampling. The R factor is a 'measure of the efficiency of stratified

sampling and is defined as:

2

O'mn'
Rmn = 62

In

where
m is thg number of strata
n 1is the number of fields sampled

¢~ 1is the measured variance of the procedure
(over the 50 random field sample replicates)

Gln is the measured variance for the one-stratum
case (i.e., unstratified)

Once samples are drawn, the quasi-fields are labeled. To evaluate
the efficiency of the procedure in terms of its variance characteristics
juxtaposed to the gains that might be achieved in the efficiency of
labeling, sets of 40, 60, 80, 100 and 120 samples were drawn and results

using them were compared.

47



8%

1890\ 41513
@502 . 16 @ ‘ —.\‘J\\;\/_\
01606 D1614 { ‘ ,
1640 }1515
1523 WD 0 1637 3 +
1652 @ 12331663 4| ®1512
1613 ¢ : ne42 .
1927 : MW
1652 e |
@ 1669
© 1498,
SD 1699 '
.
1803 0

[ Fhase 2 Blind Sites
® TPhase 3 Blind Sites

<+ Déveimpmental Sire

FIGURE 3.1 TEST SITE LOCATIONS

TN




D ERIM

¢081
TT81
hOTT
639T

~5T6T

S08T
0cst
6691
008T
8otrT
¢1sl
£26T
909T
89T
Le9T
09T

HT9T
£69T
2991
0n9T
£99T
Zn9t
669T
STST
cTST

100+

-
L 7

jow ] o o)

P~ [ L -

SNIVED TIVHS DNI¥dS %

I} 1. -
] L)

“

201
10+

1

=7
o
Ny

A

SEGMENT NUMBER

FIGURE 3.2 AMOUNT OF.SPRING SMALL GRAIN PER SEGMENT

49



D ERIM

The spring wheat configuration of Procedure M uses the previously

described two-step labeling mechanism. The first step involves analyst
interpretation and labeling of samples as 'Spring Small Grain' or 'Other’.
Ground truth® was used as a substitute for analyst interpreter labels

in this experiment. The second step involves a further discrimination

of the grain samples by the machine labeler. These labels are then

utilized in aggregating a segment spring wheat proportion estimate.

To characterize both bias and variance characteristics of the pro-
cedure, estimates were made by replicating the process of drawing 50 sets

of samples for each combination of stratification and field sampling cases.

3.1.2 SYSTEM PERFORMANCE RESULTS

The results presented in this section consider both portions of the.
two—stage labeling mechanism. First, three aspects of the performance

of the procedure in estimating total spring small grains are presented:
(1) Average performance using 40 strata and 100 labeled samples
(2) Bias due to ignoring certain strata

(3) Parametric evaluation of sampling variance

This analysis évaluates the performance of the two-class procedure with

respect to ground truth labels.

Then, three aspects of the performance of the procedure in estimating
three classes -— spring wheat, other spring small grains, and other —- are

presented:
(1) Average performance using 40 strata and 100 labeled samples
(2) Performance for various partitions of the segments

(3) Parametric evaluation of sampling variance

"Wall-to-wall ground truth provided by JSC and prepared in subpixel
format by Lockheed Electronics Company and ERIM personnel was used.
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This three-class analysis evaluates the performance of the procedure

with the machine labeler. The intent is to show not only areas of
strength but also to make recommendations to improve the spring wheat
labeling accuracy and te evaluate whether the labeling strategy employed

can meet needs in an operational setting.

3.1.2.1 Spring Small Grain Estimates (Two-Class)

Performance Using 40 Strata and 100 Labeled Samplesg. Overall, the

small grain proportion in the 26 LACIE blind sites was 32.3%. The aver-
age estimate made using Procedure M was 34.3%7 — an absolute error of 1.9%
and a relative error of 6%." This estimate is the average of 50 repli-
cates of 100 labeled samples from 40 strata in each of the segments.

There was no statistically significant difference between this estimate
and those derived similarly from other combinations of strata and sample
size, although their variance reductions (sampling efficiencies) were

significantly different.

Figure 3.3 illustrates the accuracy of these average estimates on
an individual segment basis. The average standard deviation about each
of these points was 2.5%, while their RMS error about the 45° line was 3.66
and the R2 about the regression line was 0.987. Overall, the estimates were
accurate with a slight positive bias introduced as the percentage of small

grain in the segment increased.

Bias Due to Tgnoring Certain Strata. Procedure M samples only

quasi-fields with interior pixels. Assuming that the estimate for these
fields is unbiased, the expected bias due to not sampling from the smaller

fields is given by the expression:

N-M

b = X

(PS -B)

"E-T . .
—Er-where E is the estimate and T the true grain proportion.
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P is the crop proportion in the gquasi~fields from

which samples are drawn

P is the crop proportion in the quasi-fields from

which no samples were drawm
N is the total nuwmber of pixels

M is the total number of pixels in the sampled strata

If PS p Pu or if M X N, no significant bias is introduced. The
expected bias in the 26 sample segments was computed to be 1.9% which
is about equal to the absolute error that was measured. Hence Procedure M

was found to be virtually unbiased with respect to the fields that were sampled.

Figure 3.4 provides a.comparison on a segment-by-segment basis
of the expected bias (dashed line) and the measured bias. The segments
are ofdered as in Figure 3.2, With the exceptions of Segments 1652
and 1662, the estimates aqd expectations track closely. The unexpected
bias encountered in Segment 1652 was the result of inadequate ground

truth labels (See footnote in Section 3.1.2).

The bias encountered is well understood to be a functlon predomi-
nantly of ignoring the small-field strata. Three technigues are under
consideration to eliminate this bias. One strategy 1s to increase the
number Qf pixels in quasi-fields having interior pixels. This can be
apcomplished by relaxing the-parameter settings in the BLOB program.*

A second strategy involves a post bias correction algorithm based on a
relationship that may exist between average field size and grain propor-
tions. The third strategy, suited for areas dominated by smaller fields,

is to sample the small—-field stratum directly. What is implied is an
. 8

i

*Currently these parameters are fixed for all segments (See Appendix Bj.
In the Northern Great Plains results, an average of about 70% of each
segment was represented by quasi-fields with interior pixels.
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initial stratifiication of an area into two strata, small fields and

large fields and the employment of sampling strategies suited to each

stratum.

Parametric Evaluation of Sampling Variance, The efficiency of

Procedure M in terms of its variance reduction characteristics is as
eritical to its usefulness as is its bias chawracteristics. In this
section the variance of the spring small grain estimate derived using
Procedure M is discussed. Integral to this procedure is the concept

of stratified sampling. It has been shown that a reduction in variance
can be achieved using a stratified sampling approach [30]. Here,
empirical evidence will be provided to illustrate the degree of sam-—

pling efficiency that can be achieved using Procedure M.

Results of the empirical tests are summarized in Figure 3.5. This
plot illustrates the dependence of the measured variance (represented
by its square root) on the number of labeled samples and the number of

strata. The standard deviation,

A
mn 26 &, "mni
i=1

is plotted versus the number of labeled samples, on a semi-log graph

for eacti of the four strata parameters, where as before,

m = 1, 20, 40, or 60 denotes the number of strata

n = 40, 60, 80, 100, or 120 denotes the number of
laheled samples

Umni denotes the standard deviation of 50 observations

from Segment i using n labeled samples and m strata.
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STANDARD DEVIATION

]: 5% Significance Interval

40 60 80 100 120

Number of Samples

FIGURE 3.5 PROCEDURE M STRATIFIED SAMPLING VARIANCE, SPRING SMALL GRAIN
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The top curve, for one stratum, represents unstratified sampling.

Note that for 20, 40, and 60 strata, the variance encountered is sub-
stantially reduced. The bar labeled '5% Significance Interval' has

length

log vF(1-.05,1274,1274) = log /1.0967. = log(lL.04725)

Any two standard deviation estimates whose vertical distance on the
graph exceeded the length of the bar are significantly different by the
F-test at the 5% level. A dashed line is drawn below the curve for 40
strata at a distance equal to the length of the bar. This shows
geometrically that the curve for 60 strata is not significantly lower

than the one for 40 strata, except for a sample size of 60.

The choice of using 40 .strata in Procedure M for spring wheat
seems to be supported by this analysis. The choice of using 100 labeled
samples is not as good as using 120 labeled samples in the sense that

040 120 1S significantly smaller than o at the 5% level. On the

40,100
other hand, the additional cost of 20 more labels may not be warranted
by the reduction of wvariance gained by using 120 samples, since the

standard deviation is already well below 3% at the segment level.

The R (variance‘reduction) factor presented in Section 3.1.1 also
provides insight into the efficiency of stratified sampling. For
example, a procedure with R = 0.344 would need only 34.47 of the
labeling effort required to obtain the same variance using unstratified
sampling. Table 3.2 provides a matrix of R facfors measured in con-~
ducting this evaluation of Procedure M. Since R is a ratio of sampled

variances, it has an F distribution. Any two variances with

0.9118 < R < 1.0967 (F(.05,1274,1274) to F(.95,1274,1274)

are not significantly different.”

&
Reczll, average estimates were not significantly different, regard-
less of strata or sample settings.
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TABLE 3.2 R FACTOR MATRIX (Reduction of Variance)®

% %
Relative to Unstratified Relative to 40 Strata

A3

8¢

# Strata ) # Samples 40 60 80 100 120 40 60 80 100 120
1 1.0 - 1.0 1.0 1.0 1.0 2.25 2.43 2.65 2,91 2.76
20 0. 49 0.51 0.53 0.52 0.52 1.11 1.24 1.41 1.52 1.44
40 0.44 0.41 0.38 "0.34 0.36 1.0 1.0 1.0 1.0 1.0
60 0.44 0.35 0.37 0.33 0.35 0:87 0.86 0.98 0.97 g.95
%
R factors are defined as follows:
2 2
cm n o‘m n
LT = 2
R > R 02
crl,n ' 40,n

3
“1f 0.9118 < R < 1.0967, then variances resulting from parameter settings
are not significantly different.
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3.1.2.2 Spring Wheat, Other Spring Small Grains Estinmates
{Three Class)

Performance Using 40 Strata and 100 Labeled Samples. The second

stage of the Procedure M labeling process labels the spring small grain
quasi-fields proportionally among spring wheat and other spring small
grain, except when the proper acquisition is missing. Of the 26 seg-—
ments processed, three had égquisition histories inadequate for sepa-
rating the small graing (See last entry in Table 2.9). Hence, spring
wheat estimates were made for 23 segments. The overall results achieved
for these segments appear in Table 3.3. Spring wheat was underestimated
by 2.6%, and other spring small grains were overestimated by 3.8%.
Figures 3.6 and 3.7 illustrate the average estimates on a segment-by-
segment basis. The average standard deviation for a segment was under
2%. The spring wheat estimates made for other combinations of strata
and sample sizes were not significantly different from the estimates

made using 40 strata and 100 samples.

Though these results are encouraging, they do not compare in terms
of accuracy with those achieved in making a total spring small grain
egtimate. The RMS error in these average spring wheat estimates was
8.6% as opposed to 3.7% for all spring grains. The accuracy of the
three—class estimates is closely tied te labeler performance. While
an in-depth evaluation of the labeler will be presented in Section 3.2.1,
a systematic pattern to the measured error does appear in these results

and will be discussed in this section.

Performance for Various Partitions of the Segments. It is of

interest to determine whether the error measured in the spring wheat
estimates is systematic in mature as opposed to vandom.- If systematic,
techniques to improve performance can be explored within a procedural

context. In order to evaluate this possibility, the 23 segments
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) TABLE’3.3 SPRING SMALL GRAIN ESTIMATES USING 40 STRATA
AND 100 LABELED SAMPLES (23 Segments With
50 Replicates Per Segment)

Estimate True ) E-T E-T
(%) (%) (%) T
Spring Wheat 15.4 18.0 -2.6 -0.15
Other Spring

Small Grains 15.5 11.6 3.9 0.33
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FSTIMATED PROPORTION
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FIGURE 3.6 PROCEDURE M SEGMENT ESTIMATES OF SPRING WHEAT
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FIGURE 3.7 PROCEDURE M SEGMENT ESTIMATES OF OTHER SPRING SMALL GRAINS
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processed were partitioned into groupings as follows (Table D.3 in

Appendix D identifies the segments in each category):

No. of
Label Segments Description
Acceptable 23 " Spring wheat estimates made
Deﬁelopmehtal A Phase 3 sites used for labeler
development
Problem.Segmenté 4 Dieplayed poorest results
Phase 2 5 1976 Blind Sites
Phase 3 18 1977 Blind Sites
Red River 8 Developmentsal geographic region

Figure 3.8 illustrates, using scatter diagrams, the performance
attained within partitions in estimating spring wheat acreage. What
is immediately evident is that two of the partitions, Problem Segments
and Phase 2, contribute much of the error in an RMS sense. For both
developmental segments and those located near the same river valley,
accurate spring estimates are achieved. Section 3.2.1 discusses
meteorological conditions that may influence these results in patterns

that at first seem geographic or annual in nature.

Results are displayed numerically for these partitions in Tables
3.4 through 3.7. Note in Table 3.7 that the relative spring wheat
-error in Phase 3 sites is -1.8% as opposed to -32.7% in Phase 2
sites. It is significant that spring wheat‘is largely underestimated.
Four segments labeled Problem Segments exhibit exceptionally poor
spring wheat estimates (Table 3.6) with measured relative error of
~65.6%. On the other hand, the remaining nineteen segments, exhibiting
a relative error of only 3%, estimated a 16.7% spring wheat proportion

given 16.27 actual. This estimate was not significantly different from
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Stratum

Acceptable

Phase 2
Segments

Phase 3
Segments

TABLE 3.4 STRATIFIED THREE-CLASS PERFORMANCE RESULTS, Part 1

Spring Wheat Other Spring Small Graing
No. of Estimate True E-T E-T Estimate True E-T E-T
Segments () (%) (%) T (%) (%) (%) T
23 15.37 17.98 -2.60 -0.145 15.46 11.62 3.84 0.330
5 22.83 33.92 -~11.09 -0.327 24,81 8.99 15.82 1.760
18 13.30 - 13.55 0.25 -0.018 12.86 0.51 0.041

12.35

i
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Stratum
(A) Acceptable
(B) Developmental

A Less B

TABLE 3.5 STRATIFIED THREE-CLASS PERFORMANCE RESULTS, Part 2

Spring Wheat

Other Spring Small Grains .

True E-T E-T

No. of Istimate True E~T E-T Estimate E<T

Segments (%) (%) (%) T (%) (%) (%) T
23 15.37 17.98 -2.60 -0.145 15.46 11.62 3.84  0.248
4 32.30 27.30 5.00 0.183 17.05 19.76 =2.71 -0.137
19 11.81 16.01 -4.20 ~0.262 15.12 9.90 5.22  0.527

i3
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TABLE 3.6 STRATIFIED THREE—CLASS‘PERFORMANCE RESULTS, Part 3

Spring Wheat

No. Estimate True E-T E-T
Stratum Segments (%) (%) (%) T
(A) Acceptable 23 15.37 17.98 =2.60 -0.145
(B) Problem Segments 4 9.05 26.30 -17.25 -0.656
A Less B 19 16.70 16.22 0.48 0.030
A Less B and
Developmental 15 - 12.55 13.27 -0.72 -0.054

Other Spring Small Grains

Estimate True E-T E-T
(% (%) (%) T
15.46 11.62 3.84  0.330
25.26 6.38 '18.88  2.959
13.39 12.72. 0.67 0.053
12,42 10.85 1.57 0.145

b3 {
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- Stratum

(A) Acceptable

(B} Red River. :

Valley

A Tess B

TABLE 3.7 STRATIFIED THREE-CLASS PERFORMANCE RESULTS, Part 4
Spring Wheat Other Spring Small Grains
No. of Estimate True E-T E-T Estimate True E-T E-T
Segments (%) (%) &9 T (%) (%) (%) T
23 15.37 17.98 -2.60 -0.145 15.46 11.62 3.84 0:330
8 24 .74 20,29 4.45 0.219 14.52 17.37 -2.86 -0.197
15 10.38 16.74 -6.36 ~0.380 15.96 8.55 7.41 0.867

I{
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the truth at the 0.05 significance level. Table 3.7 indicates that .more
accurate estimates were made in the vicinity of the developmental

segments 'than otherwise.

Parametric Evaluation of Sampling Variance. The sampling variances

measured for spring wheat estimates are parametrically illustrated in
Figure 3.9. Again, these represent .the aggregated performance with
.50 replicates over the 23 segments, A 5% significance bar is provided,

as in_Figuge 3.5. Recall that since this graph is on a semi-log scale,
this bar can be displaced to.any position om the graph and will encompass
cﬁr%es for sampling parameters whose procedural variances are not signifi-
cantly different. Once again, for a fixed number of labeled samples, the
use of 40 or 60 strata results iﬁ variances are not significantly-different
at the 0.05 level. The variance reduction (R factor) relative to unstrati-

fied sampling using 40 strata-and 100 labeled samples was 0.48,

The variances illustrated by the parametric curves in Figure 3.9
are attributable to the procedure's sampling strategy and estimation
technique, It is of intérest to examine how these variances compare to
those contributed b§ other components such as the labeler. The two
dashed lines appearing at 5.4% and 9.2% illustrate the RMS between~segment
error for the‘spriné wheat estimate of the developmental and other seg-
ments respectively. This clearly displays that the sampling efficiency
of the procedure is well within the limits of accuracy provided by the
labeling mechanism. In other words, the Procedure M framework is

accurate and efficient with respect to the labeling source.

Table 3.8 is provided for completeness and contains summary sta-
tistics on a segment basis of the Procedure M evaluation using 40 strata

and 100 labeled samples.
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FIGURE 3.9 PROCEDURE M STRATIFIED SAMPLING VARTANCE, SPRING WHEAT
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TABLE 3.8 SEGMENT PERFORMANCE RESULTS

40 Strata 100 Labeled Samples 50 Replications

3=-class Procedure M

2-class (Tot. Spring Sm. Grains)’ Raw Spriog Wheat Raw Other Spring Sm, Grains Unknown Spring Sm. Grains

Mean Sampling Expected Mean  Std. Dev. Mean  Std.Dev. Mean Std.Dev.
Sepment Estimate Std.Dev. Bias Truth Estimate of Est. Truth Estimate of Est. Trutl Egtimate of Est, Comment
1104 3.9% 1.7% -0.2% &, 6% 0 % 0% 0.0% 3.9%  1.7% 4, 6% 0 % 0%
1498 29,5 3.0 1.4 28.9 13.3 2.3 8.6 . 16.1 2.7 20,3 0.1 0.2
1512  27.9 1.8 -0.0 29.8 15,6 2.4 10.4 7.4 1.7 19.5 9 1.9
1513 78.7 2.0 6.0 71.6 0.4 0.1  52.3 0.4 0.2 19.3  @8.D 2.0 Rejected
1515 61.9 2.9 2.6 60.6 30.9 3.6 36.8 18.1 2.8 23.8 7.9 2.8
1520 20.6 3.5 1.7 18.4 10.7 2.5 10.4 5.3 1.6 8.0 ' 4.8 1.6
1602  34.8 3.9 -0.1 35.7 22.9 2.8 31.1 7.0 1.5 4.6 2.3
1606  36.6 2.9 3.6 31,9 7.6 2.4 24,5 3.6 1.5 7.5 3.2 Rejected
1614 41.5 3.2 2.8 38.5 16.5 2.5 25.1 20.4 3.0 13.5 .6 1.7
1633  43.8 2.2 3.2 39.7 20.3 3.1 37.2 11.8 1.9 2.5 11.7 3.0
1637  38.8 2.6 2.5 35.0 9.7 1.9 31.9 28.4 2.6 3.2 0.7 0.7
‘1640  52.5 3.2 &4 48.6 35.9 3.2 31.5 15.5 2.1 17.1 1.1 0.8
1662  61.4 3] 5.7 53.5 28.3 3.5 38.7 17.7 2.6 14.8 15.4 3.3
1652 32,6 2.7 0.5 36.5 4.2 1.7 24.7 22.5 2.5 11.8 5.9 1.6
1662 52.7 2.9 5.4 44,9 20.2 2.6 36.8 32,2 2.3 8.1 0.3 0.4
1663  53.4 1.6 3.5 50.2 37.0 2.6 32.3 12.2 2.0 17.9 4.2 1.6
1669 7.4 1.9 -0.9 9.5 0.3 0.3 5.9 7.0 1.9 3.8 0.1 0.3
1631 37.1 2.7 1.7 34.9 16.4 2.4 15.6 20.2 2.3 19,2 0.5 0.6
1699  20.3 1.9 0.1 20.1 0.9 0.7 7.1 18,0 1.9 13.0 1.4 1,1
1800 28.4 2.8 1.6 26.8 1.9 0.9 0.5 26.3 2.8 26.3 0.2 0.3
1803 0.3 0.4 0.2 0.5 0.2 0.2 0.0 0.1 0.3 0.5 0 0
1805 13.1 2.6 -0.9 14.7 3.1 1.2 0.3 9,8 1.3 14,4 0.2 0.4
1811 2.7 1.4 -0.2 2.5 2.2 1.4 0.1 0.5 0.4 2.4 . _0 0
1899  65.3 3.4 5.6 58.9 7.3 1.6 28,6 13.4 2.5 30.3 &4.6) 3.8 Rejected
1913  13.0 2.5 -0.8 14.3 0.8 ¢,8 11.8 11.6 2.4 2.5 0.6 1.0
1927  31.8 2.9 1.6 29.9 11.5 2.4 16.7 15.7 2.3 13.3 46 1.8
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3.1.3 SUMMARY OF SYSTEM PERFORMANCE

Procedure M configured for spring wheat has been parametrically
evaluated using 26 LACIE Phase 2 and Phasze 3 Blipd Sites distributed
across thg Northern Great Plains. Encouraging results were achieved
in estiméting totgl small spring'érain and spriné wheat proportions.
Analysis of results showed that:

1) Procedure M provided accurate total spring small grains

proportion estimates with respect to the source of labels.

2) High variance spring wheat estimates were made at the

segment level.

3) Poor spring wheat results in certain segments were
seemingly systematic in nature and probably related to
aﬁciilary conditions; four segments exhibited poorest results;
the aggregated estimate based on the remaining 19 of 23
segments for which spring wheat estimates were made exhibited
an absolute error of 0.5% and a relative error of only 3Z.
Implying that the spring wheat discriminant function was
accurate when employed within the appropriate stratum (excluding

Phase II and moisture stressed segments —- see Section 3.2.1)

4) Within-segment sampling variance is not a key issue with

this procedure; accurate labeling of samples is critical.

-

This overall evaluation does point to the need for a critical
analysis of the component parts of Procedure M, in particular the spring
wheat labeling mechanism, Section 2.2 provides evaluations of these
components. The overall mechanism and procedural concept is sound,
exhibiting both accurate and efficient estimates of crops. Improvement
in certain components may result in levels of accuracy for spring wheat
estimates that were not, expected, given the problem's degree of diffi-

culty.
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3.2 TEST AND EVALUATION OF COMPONENT PERFORMANCE

In addition to evaluating the overall performance of Procedure M
for spring wheat, the tests and analyses were conducted so that the per-
"formance of individual system components could be evaluated. Evaluations
of four major components —— machiné labeler, stratifiecation, spatial

feature definition, and haze correction —- are presented below.

3.2.1 EVALUATION OF LARELER PERFORMANCE

ot

For purposes of machine labeler evaluaﬁion, 18 segments were used.
This subset excludes the four segments used for development of the
machine labeling criterion. An additional six segments had little or
no spring wheat present. Since, as will be explained later, spring
wheat labeling accuracy served as the primary indicator of labeling
success, these six segments offered little or no additional information
for evaluation, and were therefore excluded. The locations of the

18 remaining segments are shown in Figure 3.10.

3.2.1.1 Results

Overall accuracy of labeling for spring wheat and barléy pixels
was 53%, with 81% of the barley pixels receiving correct labels com-
pared to 457 of the spring wheat pixels. Table 3.9 summarizes the
overall results by crop and vear. (See Appendix E for a segment-by-

segment breakdown of results for the entire test set.)

Figure 3.11, which is a plot of overall accuracy by segment
(ordered according to decreasing small grains percentage), illustrates
the wide variability of results. However, a sub-grouping of the seg-
ments is also suggested by the graph. By dividing the 18 segments into
two groups based on labeling accuracy (greater than 50%, or less than
50%), a clearer understanding of labeler performance can be gained.
Table 3.10 summarizes the labeling accuracy for these two groups,

again by crop and year.

* r a

16 were drawn from the 26 described in Section 3.1. Two additional
segments were available for this evaluation but were not available for
full scale testing due to incomplete wall-to-wall ground truth.
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TABLE 3.9 LABELING ACCURACY FOR SPRING WHEAT
AND BARLEY PIXELS

Phase 2 Phase 3 Total
Spring Wheat 43% 51% 467%
Barley 72% 867 81%

Overall 46% 607 53% ~

TABLE 3.10 LABELING ACCURACY FOR TWO GROUPS OF SEGMENTS

"Good" Segments (> 50% Accuracy) "Bad" ‘Segments (< 50% Accurac

3 Phase 2 Sites 2 Phase 2 Sites

8 Phase 3 Sites 5 Phase 3 Sites
Phase 2 Phase 3 Total Phase 2 Phase 3 Total
Spring Wheat 58% 71% 657% 33% 7% 25%
Barley 71% 80% 77% 747 99% 91%
overall - -— . 58% , - - 34%
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Clearly, the factor that drives the overall accuracy down is the

reduced labeling accuracy for spring wheat pixels. In fact, barley
labeling accuracy actually increased from the greater-than-50% (good)

segments to the less—than-50Z (bad) segments.

Although the labeling criteriom was developed using spring wheat
and barley pixels only, the procedure is meant to label all the small
grains (spring wheat, barley, oats, rye, and triticale). Tor the 28 seg~
ments which comprised the entire data set, there were no triticale pixels
and only a few rye pixels. There were, however, enough oats pixels to
provide an indication of the procedure's success in separating them from

spring wheat pixels. Table 3.11 summarizes the results for oats.

3.2,1.2 Evaluation of Results

As described earlier, the decision criterion for labeling is based
on a distance in Brightness-Greenness space which increases from the
time of heading through the dough stage of development. Since barley
fields have been observed to ripen somewhat faster than spring wheat
fields, a greater distance on any given day in the critical day range

(defined in Section 2.2.1) should indicate a barley pixel.

Consider, however, the result of a localized increase in the rate
of crop development. In this situation, distances on a given day should
tend to be greater than they would be under normal conditions. One should
find, then, that both crops tend to be a greater distance from the ref-
erence line than that selected as the spring wheat/barley discrimination
value. Thus spring wheat pixels would be mistaken for barley pixels,
while barley pixels would be even more likely to be correctly labeled.
This 1s precisely the result we see in Table 3.10, suggesting that the

poor regults were indeed caused by an increase in the crop develpment rate.

While such an increase could be the result of a number of factors,
one of the most likely candidates is environmental stress, and particularly

moisture stress. This stress could take the form of perennially low
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TABLE 3.11 LABFLER RESULTS FOR OATS PIXELS

Overall

Good Segﬁents
Phase 2
Phase 3

Bad Segments
Phase 2
Phase 3

Label Assigned

Spring Wheat

40%

56%
60Z%

'51%

18%
237
27

78

Other Spring Small Grains

60%

447
40%
497%

82%
77%
98%
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moisture (i.e., arid regions) or exceptionally low meisture (i.e., drought).

In either case, however, the effect should be felt over a larger region
than a single segment. If moisture stress is indeed the cause of the
change in development rate, then one would expect to see a geographical

clustering or delineation between good and bad segments.

Although such a separation is not apparent in Phase 2 (perhaps only
because of the low number and limited distfibution of Phase 2 segments
in the test set), the separation is readily apparent for the Phase 3 seg-
ments, as shown in Figure 3.12. Segments located in the southwestern
or western portions of the region, where moisture stress is more likely,
yielded poorer labeler results than those in the less arid portions of
the region. The same geographical trend is evident in the labeling
results for cats. In the northeastern portion of the region (N. Dakota
and Minnesota), oats tended to fall into.the spring wheat class, while
in the southern and western portions (S. Dakota and Montana), cats tended
to fall into the other spring small grains class. Finally, LACIE weather
summaries reported moisture stress for the general region of the bad
segments. Thus we conclude that moisture stress in part of the test
region caused an increase in the rate of crop development, which in

turn resulted in poor spring wheat labeling accuracy.

Since moisture stress should influence the green development profile,
it might be possible to detect such a condition, using-the profile, and
adjust the decision criterion accordingly. ¥For example, the estimated
peak greenness value should indicate the vigor of the field being observed.
Similarly, the rate of decrease in greenness from the peak value to the
value in the critical day range should be an indicator of the rate of
crop development, with a steeper slope indicating a more rapid develop-
ment rate. Preliminary examination of these and other such indicators

is in progress.
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3.2.2 EVALUATION OF SPECTRAL STRATIFICATION

The technique currently’employed to establish spectral strata from
among the set of quasi-fields formed is called BCLUST. This algorithm
is described in Section 2.2.3. 1Its evaluation is discussed in this

section.

BCLUST conducts an unsupervised, multiple-pass clustering of spec-—
tral means of quasi-field interiors to produce a fixed number of spectral
strata. These strata are formed to direct saﬁples in a manner that,
compared to unstratified 'sampling, would reduce the variance of the
estimate made. The success of -this procedure 1s measured by
its ability to group quasi—field means into strata that are all grain
or all non-grain. Ideally only two strata are needed —-- the group of
grain clusters, and the group of other clusters. Such a procedure would
require drawing only one sample to identify which stratum is which. This,

of course, ‘has not been realized.

" The vgriance reduction factor, Rmn’ was earlier defined agd used
in describing the efficiency gained in Procedure M due to stratified
sampling. This R factor was determined using the measured variation of
the procedure. The availability of wall-to-wall ground truth permits
the use of a measure that is closely related to the variance reduction
factor, called the expected variance reduction factor (RE factor).

The RE factor can be used to evaluate the degree of separability real-

izable at any level of stratification. This factor is used to evaluate

the performance of BCLUST and of BLOB.

The expected variance reduction factor, RE’ is defined as follows:

‘f n
i\p,{(1 -P.)
iFl(E—) - +

Rg = P(1 - P)

where
n. the number of pixels in stratum i
i

n the number of pixels in all strata
m 1is the number of strata

P. is the true grain proportion in stratum i
i

P is the true grain proportion in all strata

81



pi

If the RE factor is 0, then the strata are either pure grain or pure
other. If'RE = I the strata are no purer than the segmént as a whole.
This -latter case is equivalent to unstratified sampling; hence sampling
variance is not improved by such stratification. The value RE = 0.5

is approximately equivalent to an 857 average puriﬁy among strata.

Figure 3.13 illustrates the-RE factor of the four strata cases
employed in the evaluation. The use of 20 strata significantly reduces
the RE factor from unity, with further reductions with the employment
of 40 and 60 strata, although the latter two cases track closely.

BCLUST strata purity is ultimately limited to the purity of the set

of quasi~fields. - The associated RE factors for BLOB are listed in
Table 3.12 and plotted as the bottom 1line in Figure 3.13. TIn examining
the BLOB RE factor, keep in mind that it is not a linear measure of
purity as a function of the grain proportion, p. As p approaches zero,
RE will increase disproportionally due to the defining ratio expression.
Hence the RE factors of the segments at the right hand side of Figure
3.13 are somewhat inflated. The Ry factor of Segment 1632 is large

for a different reason that is further discussed in Section 3.1.2.

Figure 3.13 illustrates, as well, that unless limited by available
crop separability, additional reduction of this factor can be realized.
The employment and evaluation of other stratification strategies is

suggested, at least as a basis of comparison.

3.2.3 EVALUATION OF SPATTAL FEATURE DEFINITTON

An integral component of Procedure M is the definition of spatial
features that we call quasi-fields. Quasi-fields are used as labeling
and sampling targets, In addition, scene stratification, described in
Section 2.2.3-is based on an unsupervised clustering of the spectral
means of quasi-fields. Procedure M for spring wheat employs the BLOB
algorithm, described in Section 2.2.4, to structure quasi-fields. A
discussion and evaluation of the performance of BLOB in Procedure M is

presented in this section.
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TABLE 3.12 BLOB PERFORMANCE STATISTICS

Quasi-Fields

A

Number % of Grain Rg Factor  pyurity

With Segment - Propor- T Int. Int. Exp.

Segment Number Interiors Covered tion Pixels Pixels  Bias
1513 1195 378 78.9 71.60 0.022 99.4 5.99
1515 1074 474 80.0 60.58 ‘ 0.064 97.6 2.61
1899 1756 415 69.8 58.87 0.043 98.4 5.57
1642 1181 452 81.2 53.45 0.155 95.2 5.73
1663 1760 455 66.5 50.17 0.026 98.8 3.48
1640 1437 488 74.7 48.63 0.114 96.0 4.35
1662 1021 451 83.7 44.89 0.161 94.4 4,39
1633 1163 401 79.9 39.67 0.076 97.2 3.21
1614 1307 445 71.9 38.53 0.253 91.1 2.76
1652 1209 427 76.5 36.49 0.353 85.4 0.51
1602 1320 395 60.2 35.66 0.188 93.9 -0.08
1637 1296 474 79.5 35.04 0.102 96.4 2.54
1681 1248 477 78.6 34.87 0.071 97.2 1.65
1606 1927 455 63.1 31.89 0.107 96.1 3.60
1927 993 442 84.0 29.94 0.099 96.6 1.61
1512 1319 449 72.2 29.83 0.120 96,0 -0.02
1498 1027 470 81.5 28.90 0.136 95.3 1.42
1800 1233 510 79.7 26.76 0.109 96.4 1.58
1699 697 358 89.5 20.08 0.082 97.6 0.13
1520 1466 472 70.8 18.42 0.137 96.1 1.72
1805 1241 461 78.6 14,73 0.333 94.0 -0.89
1913 979 382 77.6 14.29 0.206 96.7 -0.82
1669 414 251 94.9 9.54 0.442 95.7 -0.89
1104 605 320 89.0 4,61 ¢.101 98.3 -0.24
1811 1574 478 72.4 2.46 0.115 98.7 0.23
1803 866 342 86.2 0.51 0.389 99.0 -0.23

Average 429 77.7% 96.3%
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A quasi-field is a set of spatially contiguous pixels that may or

may not correspond to a real farm field. A quasi-field is comprised of
interior pixels and edge pixels. An interior pixel is one whose four
strong neighbors are in the same quasi-field. Procedure M samples from,
and bases its estimate only on, the set of quasi-~fields with interior
pixels. Fields comprised of only ;dge pixels thus form a stratum that

is not saﬁpled.

On the average 429 quasi-fields with interior pixels were formed
by the BLOB algorithm in each of the 26 segments used in the procedural
evaluation. This stratum covered 78% of each segment on the average,
with 227 not being sampled. Table 3.12 presents information about the

performance of BLOB on a segment-by-segment basis. Elaboration follows.

The major criterion to be used in evaluating BLOB performance is
whether the quasi-fields formed properly represent the contiguous areas
of spring small grain and other classes. Since a subset of quasi~fields
formed in a segment are used as labeling targets, it is important to
evaluate how these structures are visually presented to the analyst
interpreters, and to determine what advantages may arise in labeling .
quasi-fields rather than dots (as in LACIE Procedure 1).

Figure 3.14 is a typical map of the interior of quasi-fields, produced
in Montana Segment 1929. In a region where strip cropping is practiced,
field structure is strikingly apparent and road boundaries are visible.
Sixty of these quasi-fields have been outlined to illustrate a set of
labeling targets that could be presented to an analyst. Nearly all of
these quasi-fields are associated with real fields. Mixture pixels are
not singled out as targets, though small fields containing only one

interior pixel do appear.

Several measures of BLOB performance have been utilized. One
measure, the RE factor, is related to the minimum variance that a sub-
sequent sampling procedure can expect to achieve. The RE factors for

quasi-field interiors are listed in Table 3.12. The RE factor is related
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to the percent purity measure also listed in Table 3.12. Over all seg-

ments, the interiors of quasi-fields formed were found to be 86.3% pure,
that is, only 3.7% of the time were they found to be a mixture of spring
small grain and other. Figure 3.15.illustrates the purity factor for
each segment. -Quasi-field edge pixels dbviously were more mixed than
interior pixels.* Interiors, which would operatioﬁally be used as label-
ing targets, were found to be composed of a single crop class of interest.
This makes feasible the assignment of single class, rather than propor-
tional, labels to fields. In addition it is conjectured that the elimi-
nation of any need to label mixture pixels makes the task of labeling

quasi~fields a feasible one, more so than that of dot labeling.

3.2.4 EVALUATION OF ATMOSPHERIC HAZE CORRECTION

During the development of the spatially wvarying XSTAR haze correction
procedure, attention was focused on computational cost as well as haze
correction performance as criteria for evaluating the algorithm. The
computational cost was observed to be primarily a function of the block
size used to quantize the moving window aspects of the procedure. This
relation between computational cost and block size is illustrated in
Figure 3.16. We had expected that, while the computational cost would
increase as the block size was decreased, the performance should imncrease
with decreasing Window'size until the moving window became too small to
provide a statistically representative haze diagnostic for the procedure.
What we observed with respect to performance, however, is shown in
Figure 3.17. Although the figure does not indicate performance for
windows smaller than 15 lines by 15 pixels (measured betweén half ampli-

tude points), in general we observed no evidence that the performance

*Segment 1652 is the only segment whose apparent interior purity
was less than 90%. It was found that the ground truth used to label
many of the strip fields in the segment did not distinguish between
individual grain and other strips, whereas the BLOB algorithm often
could separate the two. The evaluation programs assumed that any blob
labeled 'Strip' was 507 grain and 50% other, resulting in an artificially
lowér- average purity.
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leveled off as the window size decreased bélow the 15 x 15 size. We
decided that the 15 x 15 window size was the smallest practical size for
the window, however, because a smaller window would have required a block
size smaller than 5 % 5 for proper performance, and the computational cost

began teo increase dramatically for block sizes smaller than 5 x 5.

Since the spatially varying haze correction procedure applies a dif-
ferent correction to each pixel, performance has been evaluated by measuring
the pixel by pixel differences between approximzately equivalent scenesg
(consecutive day Landsat acquisitions) before and after correction. The
alternative would have been to use ground reflectance measurements from
representative scenes to establish an NEAp (Noige Equivalent Change in
Reflectance) performance figure; however, present reflectance data are
too sparse to provide a proper evaluation of the spatially varying nature
of the algorithm. On the other hand, one inherent limitation in using
pixel by pixel differences between haze corrected consecutive day scenes
as a measure of preprocessing performance is that distortions introduced
to both scenes in an equivalent way (e.g., due to misleading haze diag-
nostics from non-vegetated portions of the scene) are not measured. How-
ever, an approximate assessment of these distortions can be made by
looking for areas of abnormal contrast in a corrected image. In general
the corrected images have been found to exhibit only minor distortions
of this sort, while the beneficial aspects of the correction are dra-
matically apparent in images wherever non-uniform haze is present. Thus,
the performance of the spatially varying haze correction has been sta-
tistically measured by calculating the root-mean-squared Euclidean dis-
tance between registered pixels in consecutive day Landsat data before
and after correction. (This performance measure uses only pixels which
have passed the screening procedure on both days of a consecutive day
acquisition.) Qome example results of this type are presented in
Table 3.13 for three scenes in which significant spatial haze wvaria-
tions were apparent on one or both days. '~ The RMS error figures in this

table include Yerror" contributions from some effects other than haze
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TABLE 3.13 RMS ERROR IN REMOVING DIFFERENCES IN CONSECUTIVE-DAY
DATA (IN LANDSAT COUNTS)

Untrans- .
formed (UT) Global XSTAR Spatially Varying XSTAR
RMS RMS Improvement .RMS Imprdvement
Error Erxor Over UT Error Over UT
Segment #1619 11.7% 10.1* 13.5% 9.1 21.7%
77175-6
Segment #1640 13.7 11.3 17.7% 9.8 28,8%
77139-40
Segment #1927 16.2 ‘11.5 29,.1%~ 9.3 42.8%
77193-4

* - )
Non-atmospheric effects set a lower bound of 3 to 6 counts on this

BMS error figure, depending on the scene being processed.
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variations. These other effects include bidirectional effects in crop
appearance (due to an approximate 6° change in view angle from one day

to the other), misregistrations of pixels between acquisitions (which
were minimized, but could not be completely removed), and quantization
effects (due to the digital nature of the data). These other effects

set a lower bound of approximately é to 6 counts on the RMS error figure,
depending on the scene belng processed. For scenes with uniform haze con-
ditions, the spatially varying XS?AR performance is equivalent to the
global XSTAR performance which has been reported previously [33]. For
scenes with non~uniform haze conditions, the spatially varying XSTAR
performance is a significant improvement over that of the global pro-
cedure, as indicated in Teble 3.13. We estimate, based on tests over
numerous consecutive day acquisitions [33], that the XSTAR haze correc-
tion approximately doubles the amount of dazta which is amenable to signa-

ture extension.or multisegment training applications.
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4
SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

4.1 SUMMARY

Procedure M, an objective multicrop area inventory procedure, has
been defined. It is a modular system with state-of-the-art components
which is readily modified or configured for different applications. In
the LACIE context, Procedure M's major differences from LACIE Procedure 1
are: (a) additional preprocessing to correct for atmospheric haze varia-
tions and to perform other normalizations and transformations, (b) defini-
tion and use of more strata, {(c) definition, selection, and labeling of
quasi-field interiors in the scene instead of labeling individual pixels,
and (d) proportion estimation without maximum likelihood classification.
Procedure M evolved from, and incorporates developments and understanding
gained from, a series of supporting research and technology tasks that
have been pursued at ERIM, as well as other organizations in JSC's SRT

community.

Procedure M was configured for spring wheat inventory by including
a two-step labeling process. TFirst, an analyst labels each sampled quasi-
field as either 'Spring Small Grain' or 'Other'. Then a machine labeler
refines the label of the 'Spring Small Grain’ samples, assigning either
a proportional label between 'Spring Wheat' and 'Other Spring Small Grain'
or the label 'Unidentifiable Sprimg Small Grain'. The machine labeler
makes use of a temporal profile of the Greemness component of Landsat data
to estimate crop calendar shifts and detects the less rapid maturation or

brightening of wheat.
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4.2 CONCLUSTONS

Exfengive tests of the spring wheat configuration of Procedure M
were made using Landsat data from 26 LACIE blind test sites in North
Dakota, South Dakota, Minnesota, and Montana -- five from Phase 2
(Summer 1976) and the remainder from Phase 3 (Summer 1977). The tests
were designed to assess both the bias and variance of the procedure's
performance in estimating crop areas, by use of 50 repliéates (estimates
using different selections of quasijfields for'labeling) for each test
case. In addition to testing the configuration's design of 40 spectral
strata and 100 samples for labeling, 19 other combinations of strata

and samples were tested.

Accurate two-class (spring small grains vs. other) proportion esti-
mates were achieved in tests using ground truth labels as a substitute
for analyst labels. Only a slight absolute. bias (<2%) was observed and
this was found to be primarily due to not sampling those (small) quasi-
fields which.are without interior pixels. -The use of 40 spectral strata
and labeling of 100 quasi-fields provided low-variance proportion esti-
mates (standard deviation, ¢ = 2.5%). The average reduction of variance
factor was 0.34 for the procedure.' Use of more strata or more samples

does not appear to be warranted.

Encouraging but less accurate three-class (spring wheat, other
spring small grains, and other) performance was found when results were
aggregated over the 23 segments. for which proper acquisitions were
available. The absolute bias was relatively low (-2.6% for spring wheat
and +3.8% for other spring small grains) and the variance attributable
to sampling was about the same as for two classes. On the other hand,
segment-to-segment variance, largely attributable to labeling errors,
was much larger (o = 9.2%). In analyzing these results, systematic
spring wheat errors were noted for certain subsets of segments. The
fixed decision rule employed by the machine labeler wag developed using
four Phase 3 sites. Spring wheat errors were greatest for Phase 3 sites

to the far West and Southwest of the development sites and for twe of the
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five Phase 2 sites. Nineteen of the twenty-three segments were found

to be in a stratum in which it was reasonable to employ the gpring wheat
discriminant developed on four segments. The absolute error of the
spring wheat estimate in this stratum was less than 0.5% with a relative

error of 3%.

Moisture stress is a likely cause of many of the spring wheat label-
ing errors. Moisture stress accelerates the rate of maturation of grains,
the characteristic being used in the labeler. Indications of moisture
stress were found in collateral data for those Phase 3 areas where per-—
formance was poorest, leading to hopes that an improved machine labeler

can be developed in the future.

In developing Procedure M we gained understanding and incorporated
improvements in other system components besides the labeler. An unbiased
procedure fox sampling quasi-fields for labeling was developed and improve-
ments were made in our spectral stratification procedure. Increased know-
ledge of the BLOB algorithm led to the development of a standard parameter
set for use in wheat inventory, as well as a method for maintaining field
definition in spite of cloud-covered data. Also, haze correction pro-
cedures were improved by the development and implementation of a version

that applies a spatially varying correction.

4.3 RECOMMENDATIONS

It is recommended that Procedure M tests be expanded to include
analyst labeling of quasi-fields, a step that has not yet been tested.
In addition, efforts to develop a moisture stress indicator should be
undertaken and the mechanism, when developed, should be incorporated
into the machine labeler to allow appropriate localized adjustment of
the spring wheat decision rule. Continued development of machine label-

ing techniques for these and other crops is recommended.
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Tt is also recommended that efforts be addressed to possible improve-—
ments in other componeénts 6f Procédure M. 'The bids caused by not sampling
edge pixels and small fields should be analyzed and corrected. Additional
improvements in the spectral stratification technique can be expected to
further reduce the sampling variance. TFinally, the application of Pro—
cedure M to additional crops, such as corn and soybeans in segments
acquired during the 1978 season, and performance evaluation are recom-

mended.

As was mentioned earlier, JSC's Procedure 1 is an initial impleﬁen—
tation of a statistical.sampling viewpoint applied to the spectral domain
of remotely sensed data. Procedure M carries this development further in
several important respects; by the use of state-of-the—art preprocessing,
normalization and feature extraction techniques based on a physical inter-
pretation of Landsat MSS data; by extending the spectral stratification
concept with multiple strata to produce improved sampling efficiency; by
using an unbiased technique of cluster sampling; by providing natural
(field-l1like) labeling targets; and by automatic labeling applied to an
especially difficult discrimination problem, spring wheat from other
spring small grains. As mentioned above, further development in these
various component areas is recommended. In addition, in the longer term,
further synthesis of classification and sampling viewpoints, and research
toward that goal is recommended. Procedure M is one realization of a
flexible, modular, and efficient testbed which can be used to test ad-

vanced procedures which will derive from such a synthesis.
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APPENDIX A
PROOF OF UNBIASEDNESS OF MIDZUNO SAMPLING TECHNIQUE

The Midzuno sampling technique .is described and illustrated by
example in Section 2.2.2. This appendix presents both an algebraic

proof of its upnbiasedness and an empirical demonstration.

A.1 ALGEBRAIC PROCF
We suppose that
5 is a sample of k fields® to be chosen

B is the number of fields in the stratum

n, is the number of pixels in the ith field
Ps is the proportion of wheat in the ith field
N 1is the total number of pixels in the stratum

We will prove that the proportion of wheat in the sample

} n.p,
jeg T T
] o,

ieS

is an unbiased estimate of the proportion of wheat in the stratum

) n4Pg
i & stratum
N

We first show that, as in the example, the technique chooses a
sample with probability proportional to the size of the sample (i.e.,

the number of pixels in the‘sample).

The sample § of k fields is chosen in one of k distinct ways depending

on which field, i, is chosen first. Tke probability of one of the ways is

* .
In Procedure M for spring wheat, quasi-fields or blobs are the
entities sampled and labeled.
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n,
1

x L
¥ y ;B=l>
k-1

because the first field is chosen with probability ni/N,‘proportional
to size, and the remaining k-1 fields are chosen with equal probability
from among the (i:i) such subsets. Thus the-subset of k-1 fields that
complete S is chosen with precbability 1/(i:i) . When the k terms of

the sample probability are added up, one term for each way, the result

I =,
jes T B-1
N k=1/ °?

and thus the sample probability is proportional to the size of the sample

is

(as measured in pixels).

The sample extimate p is

} n.p,
jes * 7T
T a

ies 1

The expected value of p is obtained by multiplying the sample proba-
bility by 5 and summing over all possible samples. In symbols

L my L omypg

~ ie§ ieS

Ep = 2 31
all samples § ( z n.
of k fields L jeg T

As in the example, the number of pixels in the sample E ni'cancels out

. ie3
of numerator and denominator.
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We are left with

Y n,p.
all samples §  dieS i
Eis = of size k

B-1
N k—l)

Any one field, i, will occur in exactly (E:i) samples because the

other fields in the sample can be chosen in that many ways. A term n.p,
will cccur in the numerator that many times, once for each possible

sample in which Field i occurs. Thus the numerator is

B
(B—l) Z n.p.
k-1/ .=, 7171
i=1

and hence

=p Q.E.D.

A.2 DEMONSTRATION

A FORTRAN program was written to try out the Midzuno technique and
compare it with simple random sampling. We defined a stratum with seven

quasi-fields as follows:

Number of Pixels Percent Wheat
5 10
10 20
20 30
40 40
70 60
100 : 75
150 90
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It works out that there is exactly 70% wheat in the stratum. We ran

the program choosing subsets of three fields, first with 400 then with

10,000 replications.

The results were as follows:

Sample Stand.

Scheme Replications Mean True . Dev. -t Significance
Simple 400 65.6 70.0 16.0 ~5.50 0.0000001
Midzuno 400 69.2 70.0 13.2 -1.25 0.21
Midzuno 10,000 69.9 70.0 0.34

12.5 -0.95

+

Using the conventional 0.05 level for determining whether a bias is

significant, we found that the simple sampling'scheme was significantly

biased and the Midzuno scheme was not.

The simple scheme had a significantly larger variance than the

Midzuno scheme as judged by an F test.

significant at the (.00l level.
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APPENDIX B
PARAMETER VALUES OF BCLUST AND BLOB

B.1 BCLUST PARAMETER VALUES

The distance function used im BCLUST (See Section 2.2.3) is defined

as

where

x 1s the data wvector

%, is the mean vector of Cluster i

nchan is the number of multispectral channels

w is a set of weights

ceey W
1° > "nchan

If the distance to the closest cluster is greater than T, a new cluster

is formed with its mean at x.

W and T are parameters of the algorithm. Each setting

1° ***? Ynchan
of the parameters produces a different result. The question is, which

setting to use?

We observe that if w cens ij and T are all multiplied by the

l >
same constant, the algorithm is unchanged. We note that if T is incne%sed,
the number of clusters formed decreases (or may stay the same) and vice

versa.

Our performance measure for setting parameters is the R factor (See
Section 3.1.1) which measures the purity of the clusters. A clustering
that purely separates the crops of interest has an R factor of 0, whereas
one that produces a constant proportion in all clusters has an R factor
of 1. Thus the smaller the R factor, the better the score of the para-

meter setting.
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A complication is that the R factor tends to go down as the number
of clusters goes up. Therefore to make the parameter runs comparable,

the number of clusters must be held fixed.

The following experiment was run to obtain a reasonably good set

of weights w ceey W . BCLUST was run in a multisegment mode on

1’ nchan
nine segments in Kansas. Winter wheat was the crop of interest. There
were six data channels —— the Tasseled Cap variables Brightness and

Greenness in each of the first three biophases.

The starting point of the search of six—dimensional space was a
set of weights in inverse proportion to the ranges of the values of the
variables. TFor each setting of the weights, BCLUST was run repeatedly
with comverging values of T until just 90 clusters were obtained. Then
the R factor for the 90-cluster run was recorded as the score for that
set of weights. The search pattern was to follow the path of steepest

descent to a setting of the weights with the smallest R factor.

Tt happened that the optimal setting was formed at the starting
point. Any change in weight in-any'variable or likely combination of

variables resulted in a higher R factor. The values of the weights at

the optimal setting are given in Table B.l, Physically speaking, these
values are no surprise. In Biophase 1, the fields are predominantly bare
so0il, which has a greater wvariation in Brightness than green vegetation.
Hence a small weight (inversely proportiongl to the éffective range) is
placed on Brightness, Phase 1. In Biophases 2 and 3, crop development
results in greater variation in ;he Greenness direction and hence smaller

weights than for Greenness, Phase 1.

As for the parameter 1, it is usuail& determined by the number of
clusters wanted. BCLUST has the capability of making repeated runs with
éppropriate changes in 7 until the wanted number of clusters is cbtained

(with .a little leeway).
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TABLE B.1 OPTIMAL BCLUST WEIGHTS DETERMINED fOR WINTER WHEAT
ESTIMATTON IN NINE SEGMENTS IN KANSAS

Tasseled-—Cap

’ *

Channel - Biophase - Weight
Brightness 1 - 0.6
Greenness 1 1.3
Brightness ’ 2 0.8
Greenness 2 1.0
Brightness 3 ’ 0.7
Greenness 3 ’ 1.0

Weights are in inverse proportion to the effective rénges
of the wvariables.
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The number of clusters, im turn, is chosen with regard to sampling

considerations. It would be a mistake t5 have @mote clusters (strata)
than the size of the sample of quasi-fields to be labeled because then
some clusters would not be sampled at all, possibly leading to considera-
ble bias. An equal number of clusters and sampled quasi-fields is not
too satisiactqrygeither because the large clusters cannot be awarded
increased sample size. In general, sampling proportionate -to the size

of the cluster produces efficient sampling.

So the number of clusters ought to be small enoughhto allow sampling
approximately in proportion to size. If such sampling leaves out some
small clusters, then éhe total of thelr pixels should be small encugh
not to introduce significant bias. Within this constraint, the number
of clusters should be as large as possible, because the greater the

number of clusters, the purer they are with respect to the ground truth.

B.2 PARAMETER VALUES OF BLOB

A form of BLOB's distance function {See Section 2.2.4) that favors

rectangular fields is defined as

nchan (x.'— E:i)z (& - T.)z (p - 5£)2

. v, v v
j=1 i L P

where

x is the spectral data vector of a pixel

Ei is the spectral mean vector of Quasi-Field i

% and p are the pixel line and point numbers rotated
to measure distance north-south and east-west

£i and Eﬁ are the mean rotated line and point numbers
for Quasi-Field i

nchan 1is the number of spectral channels

v » v, and vP are weights

1° **"* Vnchan %
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Tf the distance from the pixel to the closest quasi-field is greater
than 1, a new quasi-field is formed with its spectral mean at x and its

line and point coordinates at L and p.

" The pattern of quasi-fields depends upon what values of the para-~

meters v s Vg vP and T are set. A set of parameters suitable

ey V
1’ * "nchan
for the problem of estimating winter wheat.in Kansas was determined as
follows.

First, the spectral weights v., ..., V were obtained from the
1 nchan

corresponding weights determined for BCLUST by observing that 1/vj plays

the same role in the BLOB distance measure that sz plays in the BCLUST

distance measure, So Vis vy Vo pan VeTe set proportional to the opti-
mal values
1 ' 1
T s e 5
Y1 ¥achan

Next, the rotated line and point variances, v, and VP, were set

in relation to each other so that the line standard deviation #vg and
the point standard deviation va represented the same geographical dis-
tance. This ratio is not 1:1 because Landsat pikels are not square.

Allowing for rotation and squaring, it turhs out that vp/vl = 1.736.

The next question was to find a balance between spatial and spectral
weights that would produce good quasi-fields. Larger values of v, and vP
relative to the other v's emphasize the spectral homogeneity of the
clusters; smaller values, the spatial. The criterion of goodness was

defined as the expected variance reduction factor, RE’

=}

i
]Z_E_Pi (-2

Ry = P (- P)
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P, is the proportion of wheat in Quasi~Field i

g

n, is the number of pixels in Quasi—Field‘i

EN

is the éverall wheat. proportion in the segment

n  is the number of pixéls in the segment

The purity of the quasi-fields with respect to the ground truth is measured

by how small the RE factor is.

To find a suitable balance, we-held the spectral weights constant

and compared the R, factor for-three sets of spatial weights, small,

E
medium and large. (We do not restrict ourselves by this strategy because
raising all the v's and decreasing T by the same factor leaves the algo-
rithm unchanged.) The comparison was made for eight segments and is

shown in Figure B.l.

The general result is that the RE factor is quite stable for all
three settings. The vertical scale has been stretched to show any trend
in the curves. To decide on a parameter setting, we choose one that

these gentle trends indicate is optimal.

The worst case, Segment 1165, has a minimum in the middle but most

of the segments and the average trend indicate a lower setting. A setting

£

of v, = 3.46 and vp = 6.0, midway between the two lower setting, was chosen.
A good setting for the parameter T is harder to specify. Some con-—

siderations in setting T are that when T is increased,
1) the quasi-fields are larger.
2} there are fewer quasi-fields.

3) the R, factor increases (because the larger the quasi-
fields, the less pure they are likely to be).

4) there are fewer "small quasi-~fields'" (those with no
interior pixels) which are left out of the stratified
sampling,
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l61'
-5"
|L] -+
=)
[+
31
) V_g‘ = 2. 439 ll-
23 Vo= 35 ° 8.5 ich

FIGURE B.1 QUASI-FIELD RE FACTOR FOR THREE SETS OF SPATIAL WEIéHTS
: AND EIGHT SEGMENTS IN KANSAS
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The choice of 1 depends on the balance we wish te strike between
considerations (3) and (4). On thé o6né hand, we would like the quasi-
field interiors to be as pure as possible so that we aren't trying éo
label a mixture of crops. On the other hand, we don't want to leave out
of the sampling many small guasi-fields and thereby. incur a substantial
bias. A thorough job of choosing T would require the trial of several
values, observation of th;a percentage of pixels in small fields, measure-
ment of the bias incurred by omitting the small fields {when ground truth

is available) and calculation of the RE factor for quasi-field interiors.

For our study of Kansas segments, we chose a constant value (22.0)
of T that made the number of large quasi-fields roughly equal to the

number of fields. This value was associated with the "medium" setting

%
settings, we chose T for each segment that produced about the same number

of v, and vp. To obtain comparable results for the "small" and "large"

of quasi-fields as were obtained with T = 22.0 at the medium setting.
When a setting halfway between medium and small was chosen, a corre-

sponding T {(23.2) was. defined.

The BLOB parameters used in the Kansas and North Dakota tests are
given in Table B.2. The BLOB statistics resulting from this choice are
given in Table B.3. A comparison of BLOB statistics for two values of T

was made on a North Dakota segment and is shown in Table B.4,

In Table B.3, we observe that the largest bias incurred by leaving
out small quasi-fields is found in the segment with the largest percentage
(35%) of pixels in small quasi~fields. We also observe that the percent
wheat in the small quasi-fields is highly wvariable —— mot at all a repre-
sentative sample for estimating wheat in the segment. In Kansas, the
small quasi-fields overestimated wheat but in North Dakota, the reverse

is true, as shown by Segment 1663 (Table B.4) and by several other North

Dakota segments.
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TABLE B.2 BLOB PARAMETERS USED IN KANSAS AND NORTH DAKOTA TESTS

Tasseled-Cap

Channel Biophase i
Brightness - 1 25.0
Greenness 1 5.3
Brightness 2 14.0
Greenness 2 9.0
Brightness 3 18.4
Greenness 3 9.0
Brightness 4 21.2
Greenness 4 ) 8.1
Number of v v

Channels Used % p T
2 10.38  18.0 7.73
4 5.19 9.0 15.47
6 3.46 6.0 23.2
8 2.59 4.5 30.9
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TABLE B.3 KANSAS BLOB STATISTICS

% Wheat % Pixels R Factor

Large Small Small Quasi-
Quasi- Quasi- Quasi- Field
Segment % Wheat Fields Fields Fields Interiors
1020 26.1 24.0 43.2 11 0.04
1035 17.7 17.5 18.3 23 0.19
1041 14.4 14.3 15.3 13 0.21
1163 9.3 8.0 13.7 24 0.28
1165 7.1 6.2 8.9 31 0.20
1167 10.1 7.0 15.7 35 0.18
1851 22.8 20.4 33.6 18 0.16
1852 23.4 24.6 15.6 14 0.14
1860 26.1 26.2 25.1 15 . 0.15
1861 34.9 34.4 42.5 7 0.09
1865 28.5 26.6 34.5 24 0.09
1886 29.7 29.9 28.4 15 0.17
1887 11.4 10.2 17.8 16 0.17
Average 20.18 19.17 24,05 19 0.16
Average Bias . -1.0 3.9
Average Absolute Erxor i.l 5.5
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TABLE B.4 COMPARISON OF BLOB STATISTICS FOR SEGMENT 1663, N. D.,
USING TWO VALUES OF <

Time Period Used

2 and 3

T
No. of big quasi-fields

% pixels in big quasi-fields

% wheat bias using big quasi-fields
R factor for quasi-field interiors

L/

= purity for quasi-field interiors

2, 3 and 4

T
No. of big quasi-fielids

# pixels in big quasi-fields

# wheat bias using bipg quasi~fields
R factor for quasi-field interdors
% purity for quasi-field interiors

1, 2, 3 and 4

T
No. of big quasi-fields

% pixels in big quasi-~fields

% wheat bias using big quasi-fields
R factor for quasi-field interiors

% purity for gquasi-field interiors
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Usudl <t Bigger T
15.47 22.1
463 381
81.4 90.4
2.3 1.1
0.108 0.137
92.6 91.9
23.2 33.2
501 434
78.7 87.5
2,2 1.2
0.076 0.109
93.7 93.1
30.9 44,2
502 52
74.0 85.2
2.4 1.3
0.045 0.067
94.1 93.8
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Table B.4 illustrates the dilemma of choosing a value.of 7. The 1T
used in our tests. is. in the "usual -t" -columm and values of T half again
as large in the "bigger 1" column. In terms of reduction of variance
(R factor) the usual T is-superior. But the bigger T, with its halving
of the number of pixels in small quasi-fields, cuts the bias in half.
The question is, which is worse, a slight increase in bias .or a slight

decrease in purity? We don't have a definite answer to this question.
Another perspective on purity is provided by the "% purity" figure.
This is defined by

) Py

o

where

P, dis the proportion of the majority crop in the interiors
of Quagi-Field i

n, is the number of pixels in Quasi-Field i
The sum is taken over all large Quasi-Fields i in the segment

If all quasi-field interiors were pure, the % purity score would be 100.
If there are only twe categories, wheat and non-wheat, the Z purity score
cannot fall below P or 1-P, whichever is larger. The difference in purity

scores is very slighf.

The 1%Z average absolute bias -in the Kansas fésults would seem accept-
ably small Ey most standards indicating that a -sound value of T was used.
This judgment is based on the assumption that the bias would be overshadowed
by other larger errors in the system. Whether this bias can be safely
reduced by raising t depends on how the labeling accuracy varies with the
purity of the quasi-field interiors, a relationship that has not been

measured, though further investigation of this is warranted.
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APPENDIX C
PROCEDURE M.FLOW CHARTS

This appendix desecribes the major program flow of Procedure M.
Software flow charts are presented in Table C.1 and program descriptions

in Table C.2.

The procedure is coded primarily in XTRAN, an extended Fortran
compiler developed at ERIM. ERIM's QLINE data processing system pro-—
vides the software operating enviromment, Currently, the software is
configured for use on an AMDAHL 470/V6 operating under the Michigan
Terminal System (MTS). '
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INPUT

GT File
in

" Subpixel
Format

Phase 1:

PROGRAMS

ILEC

CONVRT

IUNIV

MERGE

SCREEN

PFEAT

TABLE C.1 SOFTWARE FLOW CHARTS

Data Preparation and Screening

. QUTEUT

OUNIV

116

Pixel
Data

Integer
Format

A. N x 4 Data Channels
B. 7 Ground Truth Channels
C. N SCREEY Channels
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Phase 2:

TABLE C.1 SOFTWARE FLOW CHARTS (Cont'd)

INFUT

External Effects Correction and Quasi-Field Definition

PROGRAMS . OUTRUT

Pixel
Data

Haze
iagnosti

JUNIV

v

XSTAR

All
Blobs

Big
———p—> Blobs

Ground
Truth

BMAP

£ Blob
Maps

OMSS

[
L

Pixel y T Mixed
Data Integer and

117

Real Format

A. N x 4 TASCAYPPED Data

B. 7 Ground Truth Chapnels

C. N SCREEN Channels

D., 2 BLOB Channels
_FE._1 STRIE Channel
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TABLE C.1 SOFTWARE}FLQW‘ CHARTS (Cont'd)

Phase 3: Strata Definition

INPUT * PROGRAMS ) QUTPUT

) FILE
Big BLOB i
File
BCLUST
Strata
BLIST

Summaries
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TABLE C.1 SOFTIWARE FLOW CHARTS (Cont'd)

OUTPUT

Phase 4: Labeling and Estimation
INPUT PROGRAMS
D
Pixel
Data THss,
Big BLOB >
File

Strata
Summaries

Ground
Truth
File

—— | PROCM

Results

for A
—P> Statistical

TWO WAY

0MSS

Analysis

In Mixed
Integer and
Real Yormat

Pixel
Data

119

v

A. N x 4 Data Channels

B. 7 GT Chaunels

¢. X SCREEN Channels

D. 2 BLOB Channels

E. 1 STRIP Channel

F. 1 SHIFT Channel

G. 1 Classification Channel
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CONVRT

MERGE

SCREEN

PFEAT

XSTAR

TASCAP

FLDS15

BLOB

STRIP

TABLE C.2 DESCRIPTION OF MODULES AND SUBROUTINES
USED IN PROCEDURE M

Converts Lockheed sub-pixel ground truth codes to pixel
format. Input is Lockheed, one chanmnel, six sub-pixel
ground truth. Output is 7 channels of ground truth with
ERIM codes. Channel number 1 is ground truth code for
whole pixel. If all six sub-pixels have the same code,
then the whole pixel is given that code. If not, a zero
is assigned to that pixel. Channels 2 - 7 are the 6 sub-
pixel codes.

Merges data, i.e., pixel data with ground truth, as needed
for machine processing. Output is 211 needed data in
one file.

Flag bad data, clouds, shadows, etc. Input is merged data
file. Output is same file with added screen channels, one
added channel per acquisition of data.

Calculate spatially varying haze diagnostics which are needed
for haze correction algorithm (XSTAR). Input is merged data
file with screen channels. Output is a separate file con-
taining haze diagnostics.

To apply a spatially varying haze correction to Landsat data.

Input is merged data file with screen channels and. the output

file from PFEAT. Output is merged data file with pixel values
corrected for haze.

Performs a Tasselled Cap Transformation on Landsat 2 data.
Input is merged data file. Output is merged data file with
transformed data values.

To correct ground truth labels coded for 15 visited fields.
Input is merged data files. Output is same files with some
ground truth codes corrected.

To group pixels into clusters that are spectrally, homogeneous,
and spatially contiguous. Input is merged data file. Ouput
is same file with 2 BLOB channels added. These channels
contain the blob number that each pixel is assigned,

Strips off all boundary pixels around each blob. Input is
data file with BLOB channels. OQutput is same file with
strip channel added. Each exterior pixel is flagged with a
1 in the strip channel,

120



D ERIM.

TABLE C.2 DESCRIPTION OF MODULES AND SUBROUTINES
USED IN PROCEDURE M (Cont'd)

COMPRS

To compute signatures of MSS data where polygons (blobs) are
encoded in extra channels (e.g., bleb number), Input is data
file with blob and strip channels. Output consists of 3 files;
(a) Means of all blobs, (b) Means of blobs with at least one
interior pixel called Big Blobs, (c) Ground truth tables.:

BCLUST

To group blobs into spectrally similar strata. Input, Big
blob file, and ground truth tables from COMPRS. OQutput is
cluster means and other associated inférmation.

‘To provide information for selecting training blobs and
calculate crop percentage estimates. Input is file from
BCLUST, Output cluster (STRATA) summaries.

BLIST

PROCM

Carries out labelling- and proportion estimation as a

part of a small grains estimation procedure. PROCM call 9
subroutines, 4 of which (PBREAD, ALLQC, BLBSEL, ESTIM) are
in a package called: AUTO. The following is a brief
description of each subroutines:

ALLOC -~ Allocates training blobs.
BLBSEL ~ Selects training blobs.

CLASIF - Carries out spring wheat vs other small
’ grains classification.

ESTIM - Computes proportion estimate.
GTREAD - Creates blob labels from ground truth tables.

PBREAD - Reads in necessary information for allocation,
) selection, and estimation routines.

SHFBLB - Carrigs out field shift on blob means.
SHFPIX - Carries out pixél-by-pixel shift.

TIME ~ MIS subroutine to provide date and time
information.

Input is merged data file with Blob and strip chammnels, plus
Big Blob and ground truth files from COMPRS, and STRATA
summary from BLIST. Output is file for statistical analysis
and the data file with 2 added channels: (a) Shift channel,
(b) Classification channel.

TWOWAY ~ To produce a twoway table for comparison of the occurrence of

specified values in to-tape channels.’ Input is data file
with added channels from PROCM, Output is the table.
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TRUTH
GTREAD
GTSNIF

BSTUFF

MXMPY
MOVER

UNTASS

GAMMA

XCOEFF

SATCOR

SUNCOR
TASSEL
UNCOR

PCILE

TABLE C.2 DESCRIPTION OF MODULES AND SUBROUTINES
_ USED IN PROCEDURE M (Cont'd)

-MISCELLANEOUS SUBROUTINES
To produce ground truth tables from Lockheed or ERIM
ground truth tables, Called by "COMFRSY,

To read ground-truth produced by "TRUTH". Called by
"PROCM" and "BSTUFEY.

To read header record of ground truth tables and pass
information through common.

Stand alone routine to provide diagnostic information
about blobs.

To multiply matrices.
To move data from one array to another.

Perform inverse Tasselled Cap Transformatiom.
Called by "XSTAR" and "PFEAT".

To calculate gamma for "XSTAR".

To calculate multiplicative and additive coefficients for
"XSTAR". .

To return diagonal matrix and additive vector for transforming
Landsat data to Landsat 2 LACIE segment calibration. Called
by "SCREEN".

Perform cosine sun angle correction on 4 x 4 multiplicative
transformation matrix. Called by "SCREEN", '

Perform tasselled cap rotation 4 x 4 multiplicative
transformation matrix. Called by "SCREEN". ’

To undo cosine sun angle correction performed by ""SUNCOR",
Called by "PFEAT".

Computes percentile points of histograms., Used for computing

certain scene parameters in PFEAT, such as the mean of the
green arm, the mean of soils, etc.
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VPROD

RANSUB

ZERO

TABLE C.2 DESCRIPTION OF MODULES AND SUBROUTINES
USED IN PROCEDURE M (Cont'd)

MISCELLANECUS SUBROUTINES

System subroutine to produce random numbers.

Computes for a vector the rank of each number in the
vector. It is used-to order a listing of clusters in
BCLUST according to size,

Computes the inner product of two vectors. Use in
BCLUST.

Generates- a random subset of the integers 1, ..., N.
Used to get a random sample of blobs in BLBSEL,

(The first blob is chosen with probability proportional
to size. The others are chosen with equal probability
by calling RANSUB.)

To zero arrays, written in IBM 370 Assembler language.
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TABLE C.2 DESCRIPTION OF MODULES AND SUBROUTINES
USED IN PROCEDURE M (Cont'd)

1/0 FORMAT SERVICE ROUTINES (FSR's)

TUNIV  ~  TImput routine to read universal formatted tapes -or files.

ILEC -  Modification of IUNiv;- use:d to read Lockheed ground truth
data tapes.

OUNIV -  Output routine, writes universal outpu't‘to tapes or files,

IMSS ~ Input routine to read multispectral formatted data files,

OMSS —  Output routine to write multispectral fc;rmatted data files.

ILFILE -  Imput routine to rea;d COMPRS output fiies.
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APPENDIX D
DATA BASE FOR TESTING AND EVALUATING PROCEDURE M

Twenty-three Phase 3 and five Phase 2 LACIE blind sites were
initially selected for the testing of Procedure M.‘ Acquisitions for
each blind site were chosen to best represent the grow;ng season of

.spring small grains. The acquisitions for each gite'were merged into

28 channels of data according to the list in Table D.1.

The grognd truth for each site was merged on a pixel-by-pixel
basis with the acquisition data, forming the ﬁgxt seven channels. The
ground truth codes were converted from the subpixel ground truth codes
produced by LEC to an alternative code and format. Each set of six sub-
pixels was inter-compared; if all codes were the same, the appropriate
value was placed in Chanmnel 29, otherwise a zero was dnserted to indi-
cate that the pixel was not pure. Channels 30 through 35 contain ground
truth codes for each subpixel. One channel pe;: acquisition was added

(Channels 36-42) to flag data that were rejected by the SCREEW algorithm.

0f the acquisitions available, those listed in Table D.2 were used
for clustering and stratifying the data. Segment partitions that were

evaluated in Section 2 are listed in Table D.3.
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TABLE D.1 SEGMENTS SELECTED AND PREPARED FOR ANALYSES-

Site

1104
1498
1512
1513
1515
1520
1602
1606
1625
1640
1652
1663
1669
1681
1581
1699
1800
1803
1805
isn
1899
1913
1927
1827
1929

Site

1614
1633
1637
1642
1662

(State)

(Momt)
(sD)
(Minn)
(Minn) T
{Minn)
(Minn)
(¥D)
{ND)
(¥D})
{ND)
(¥D)
(¥D)
(sD)

(sp)

(SD}**
{sm)
{(sp)
(sb)
(sD)
{5D)
(¥D)
o)
ND
(ND)**
(Mont)T

{State)

()
(MD)
(D)
(8p)
(3D}

of zeros were merged to keep the files uniform.

PHASE 3
Channels
I-4 5.8 9-12  13-16  17-20  21-24  25-28
128 146 164 182 199 zero*® 236
120 zero 157 174 193 210 zero
120 zero 156 174 193 zero zZero
zero 14D 157 175 193 zero ZEero
zero zeroc 157 175 193 zero Zero
120 zero 156 174 192 zero zero
125 143 zero 179 197 216 zero
125 143 zero 179 197 zero Zero
125 143 zero i79 197 zero 233
121 140 zero 175 193 211 229
125 143 zero 179 ; 197 . zero 233
121 139 157 175 193 21} 229
125 143 161 179 197 215 Zero
120 139 156 174 192 210 Zero
120 139 157 175 193 210 zero
zera 140 158 176 194 zero 230
120 zero 156 174 192 210 Zero
123 142 159 178 195 213 zaro
ZEYO . 2ero 158 176 193 211 zero
120 138 157 174 192 210 Zero
- 122 140 157 175 193 " ozere Zaro
125 143 161 179 197 215 233
122 140 158 176 194 zero 230
121 140 157 175 193 - zero 230
129 147 Zero 184 201 220 zero
PHASE 2
Channels
i-4 5-8 9-12 13-16 17-20 21-24 25-28
129 zero* zero 183 201 ° 219 Zero
128 147 zero 182 201 Zero 237
129 147 zero 182 201 219 237
127 145 163 182 199 zero 236
127 145 163 zero 199 217 236

* I}
Zereo indicates that no acquisitieon was available, and four channels

*% ‘ .
For two segments, consecutive-day coverage permitted the merging
of two substantially different sets of acquisitions.

1

Two sites were eliminated from analysis due te inadequate grounc

truth codes designated for strip fields which dominated the scene.
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TABLE D.2 ACQUISITIONS USED FOR SPATIAL FEATURE
DEFINITION AND STRATIFICATION

PHASE 3 "SITES

Site Acguisition Dates

1104 146 182 199 236
1498 120 182 193 210
1512 156 174 193

1513 157 175 193

1515 157 175 193

1520 120 174 192 .

1602 143 179 197 216
1606 143 179 197

1625 143 179 197 233
1640 140 175 193 211
1652 143 179 197 233
1663 139 175 193 211
1669 143 i79 197 215
1681 139 174 192 210
1681 139 175 193 210
1699 140 176 194 230
1800 120 174 192 210
1803 123 159 178 195
1805 158 176 193 211
1811 138 174 192 210
1899 140 157 175 193
1913 143 179 197 215
1927 140 176 194 230
1927 140 175 193 230

1929 147 184 201 220

PHASE 2 SITES

Site Acguisition Dates

1614 12¢ 183 201 219
1633 147 182 201 237
1637 147 182 201 219
1642 145 163 199 236
1662 145 163 199 217
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“TABLE D.3 SEGMENT PARTITIONS

Problem
Phase 3 Phase 2 Developmental Segments Red River

1669 1614 1498 1637 ) 1498
1681 1633 1515 1652 1512
1699 1637 1640 ) 1662 1515
1800 1642 1663 1913 1520
1803 1662 ) 1640
1805 1663
1811 1681
1913 ’ 1927
1927
1513
1606
1899
1104
1498
1512
1515
1520
1602
1640
1652
1663
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APPENDIX E
SEGMENT-BY~SEGMENT LABELER RESULTS

PHASE 3. SEGMENTS wITH oD LQﬁELING ACCURACY ( > S0% )

SPRING WHEAT RARLEY BOTH 0ATS
SEGMENT  NUMBER % RIGHT  NUMBER % RIGHT  NUMBER % RIGHT KUMBER X RIGHT
1512 429 72.5 448 83,5 . 877 70,5 - 244 22.1
1520 392 7.4 35 " AH,& a7 73.8 i70 30,6
1602 660 8a,0 4b 50.0 706 79,9 50 aB.0
1606 113 72.6 ?c 27.3 135 65,2 20 20,0
1625 294 7645 12 91,7 304 TOT7,1 ie S50.0
1681 1009 56,9 2n6 97.6 1255 63,6 1007 | 647,
1899 162 72.2 499 BY.4 ta1 79,1 ¢ 0.0

1927 t1ie 75.2 a0 88,7 1492 78,6 223 211

PHASE 2 SEGMENTS WITH GDOD LABELING ACCURACY ( > S0% )

SPRING WHEAT RARLEY T BOTH OATS
SEGMENT  NUMBER % RIGHT  NUMBER % RIGHT  NUMBER % RIGHT  NUMBER % RIGNT
1614 86f - 52,0 266 90,2 1127 61,0 104 59,6
1633 1284 60,7 87 88,5 1371 62,5 1289 39,5
leu2 1074 S58.7 3565 s5i.8 1439 56,9 1159 39,4

PHASE 3 SFGMENTS WITH panR LABELING ACEURACY ( < 50% )

SPRING WHEAT BARLEY BOTH DATS

SEGHENT NUMRFR %X RIGHT HNUMBER % RIGHT NUMBER % RIGHTY NUMBER % RIGHT
1652 255 15,9 8 37,5 263 17,5 0 a0
1669 . 1%6 1.3 38 100, 0 194 20,6 36 97 .2
1699 623 7.7 300 99,0 923 37,4 561 9.5
1913 424 10,1 17 100,0 a41 .13.6 a2 G543
1929 S17 0.2 3n2 100.0 819 37,0 57 B2.5

PHASE 2 SEGMENTS WITH PDOR LABELING ACCURACY { < 5¢0% )

SPRING WHEAT - BARLEY BOTH OATS
SEGMENT NUMRER % RIGHT NIMBER % RIGHT HUMBER % RIGHT NUMBER %4 RIGHT
1637 1895 24,4 né 91,3 1941 26,0 19490 75.48
1662 2902 38,3 290 71,4 3192 41,% 298 86,6
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SEGMENT
1498
1515
le6dg
1663

SEGMENT
104
1513
1800
1603
1605 |
1811

SEGHMENTS USED TO DEVFLOP MACHWINE LABELING CRITERION

SPRING WHEAT BARLEY BOTH OATS
NUMBER % RIGHT  NUMBER ¥ RIGHT NUMBER X RIGHT  NUMBER X
619 b&,1 204 76,0 823 68,5 902
1278 82,9 933 84,2 2211 83,5 49
2022 84,9 863 71,0 2885 HO 8 0
1263 94,3 549 7i.4 1812 87,4 207

SEGMENTS NOT USED IN LABELER PERFORMANCE ANALYSIS

RIGHT
6.7
18,4
0,0
39,6

SPRING WHEAT BARLEY BOTH ATS

NUMBER % RIGHT  NUMBER % RIGHT  NUMBFR X RIGHT  NUMBER ¥ RIGHT

n 9,0 155 100,0 155 109,08 141 10g,0

1 100,0 15 100.0 15 100,0 0 n,0

18 27.R 376 97.1 194 93,9 13560 95,6

0 0,0 0- 0.0 0 0.0 [ 0.0

12 8,3 9 100.0 21 47 .6 5A9 85,1

1 100,0 e . 0.0 1 100.0 108 18,5
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