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PREFACE



This report-describes part of a comprehensive and continuing pro­


gram of research concerned with advancing the state-of-the-art in remote



-sensing of the environment from aircraft and satellites. The research



is being-carried out for NASA's Lyndon B. Johnson Space Center (JSC), Houston,



Texas, by the Environmental Research Institute of Michigan (ERIM). The



basic objective of this multidisciplinary program is to develop remote



sensing as a practical tool to provide the planner and decision-maker



with extensive information quickly and economically.



Timely information obtained by remote sensing can be important to



such people as the farmer, the city planner, the conservationist, and



others concerned with problems such as crop yield and disease, urban
 


land studies and development, water pollution, and forest management.



The scope of our program includes:



1. 	 Extending the understanding of basic processes.



2. 	 Discovering new applications, developing advanced remote­


sensing systems, and improving automatic data processing



to extract information in a useful form.



3. 	 Assisting in data collection, processing, analysis, and



ground-truth verification.



The 	 research described herein was performed under NASA Contract



NAS9-15476 and covers the period from May 15, 1977 through November 14,



1978. I. Dale Browne/SF3 was the NASA Contract Technical Monitor. The



program was directed by Richard R. Legault, Vice-President of ERIM and



Head of the Infrared & Optics Division, Quentin A. Holmes, Program Manager,
 


and Robert Horvath, Head of the Analysis Department. During a major



portion of the program Richard F. Nalepka was ERIM's Principal Investigator.
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The contract work was divided into several tasks. Work on two tasks



is reported elsewhere--yield forecasting procedures incorporating Landsat



data in Reference 36 and analysis of color image products in Reference 37.



During the final quarter of the contract year, the work carried out



on the remainder of the tasks was focused on the development of a multi­


crop acreage estimation system, Procedure M. This final contract report



describes and evaluates that procedure and the components derived from



the preceding work.



The authors of this report (listed alphabetically) are: R. Cicone,



E. Crist, R. Kauth, P. Lambeck, W. Malila, and W. Richardson. Significant



software support was provided by D. Rice. In addition, the following



members of the ERIM staff contributed to the reported work: R. Balon,.
 


J. Gleason, S. Lindner, B. McCann, J. More, 0. Mykolenko, J. Ott, and



T. Wessling. Consultation provided by E. Jebe, R. Hieber, W. Holsztynski,
 


H. Horwitz, F. Pont, and G. Suits is gratefully acknowledged, and apprecia­


tion is expressed to D. Dickerson for her secretarial support.
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INTRODUCTION



Procedure M is a technique for estimating acreages of multiple crops



based upon remotely sensed data. Procedure M is an embodiment of tech­


niques azd viewpoints developed at ERIM And throughout the research com­


munity during the last'several years under the stimulus of the Large



Area Crop Inventory Experiment'(LACTE).. This report describes the



development and testing of Procedure M as configured for spring wheat and



other spring small grains. LACIE was designed to estimate the production



of wheat. The techniques employed by LACIE were found to reliably estimate



winter wheat and spring small grains. The further estimation of spring



wheat production using Landsat multispectral scanner data, in the face
 


of the spectral similarity of the other spring grains, has been recognized
 


as one of the most difficult problems brought to the fore by the LACIE program.



Before proceeding to the details of Procedure M and its testing, a



broad context for the development of.large-scale remote sensing techniques



is discussed and a perspective of Procedure M is given in terms of that



context and the background of research in agricultural remote sensing.



1.1 GENERAL CONTEXT



The broad class of systems which may be used to affect, control,



or monitor environment can be called environmental management systems.



In the most general terms, an environmental management system consists
 


of an information gathering system, a forecasting system, a decision



making system, and an action taking system, as shown in Figure 1.1



Briefly, an information gathering system obtains data regarding
 


both the current state of the environment and actions that affect the



environment. A forecasting system requests and obtains information from



the information system and, in view of a specific set of planned actions



and a likely set of unplanned actions, produces an objective prediction
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FIGURE 1.1 AN ENVIRONMENTAL MANAGEMENT SYSTEM 
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of the future environmental state. The decision making system hypothe­


sizes a set of planned actions and obtains predictions of the environ­


mental state from the forecasting system. It decides among alternative



sets of actions. The action taking system carries out the planned actions



and reports actions as they occur.



Because of long lead times for technology development, it is natural



to first develop the information gathering component of an environmental



management system, then the forecasting component, and last of all to



create the possibility for coherent planned action by introducing a



decision making system. In developing the information and forecasting



systems it is-wise to consider the characteristics needed when operating



in conjunction with a decision making system. Notably these are accuracy,



objectivity, and timeliness.



By accuracy we mean that the system error distribution must be small



enough that the outputs are useful for decision makers. Practically



speaking this means that any particular system forecasting capability



will be validated by independent test before being accepted as part of



the system, and that the acceptance criteria will be set so that the



system has a high likelihood of performing with useful accuracy. ,



By objectivity we mean, basically, believability. Some of the pro­


cedures which insure objectivity are that the forecasting process is



visible to the decision makers in all essential elements, that the fore­


casts arise from fixed procedures applied to. a data base, that the data
 


base be subject to a rigorous quality assurance procedure, that the



actual quantities forecasted are quantities that will subsequently be



known with accuracy significantly better than the forecast accuracy,



that the system publishes its estimated error distribution along with



its forecasts, and that the system publishes posterior comparisons of



its forecasts with the subsequently known forecasted quantities.



By timeliness we mean that a forecasting system produces regular



predictions of a set of forecasted quantities. In addition, considering
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the way decision making processes usually proceed, the forecasting system



is likely to be called upon to produce special reports-in a near-rTaa-time



mode. This emphasizes a special need for a large, quality assured, data



base, only a sample of which is routinely accessed for regular scheduled



forecasts.



1.2 BACKGROUND IN AGRICULTURAL REMOTE SENSING



An important aspect of the world environment is the state of agri­


culture -- the amount and kind of food products available region by



region throughout the world. For many years there has been a gradual



development by the U.S. Department of Agriculture (USDA) of all aspects



of an environmental management system in the United States regarding



domestic agriculture. Regarding foreign agriculture, only the informa­


tion gathering and forecasting functions have been attempted by the USDA.



In the last several years, remote sensing techniques have been in



the process of being developed to assist significantly in the process of



information gathering, for numerous types of environmental management



problems. The National Aeronautics and Space Administration (NASA) in



particular has supported the development of aircraft and spacecraft



remote sensing instruments and information extraction techniques. ERIM



has been deeply involved in this effort, developing the first airborne



multispectral scanners [1,2] and having a continuous 15-year history of
 


improving instruments and increasing understandings of the underlying



physical processes aid the techniques of processing the data to obtain



the desirable information from it [3-11].



Specific applications to agricultural problems have been initiated



and led by NASA's Johnson Space Center (JSC) over the past decade. One



of these was the Corn Blight Watch Experiment (CBWE) (1970), with air­


borne scanner data and photography [12]. The purpose of the CBWE was



to track the spread of the Southern Corn Leaf Blight northward across



the nation.
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With the launch of the Earth Resources Technology Satellite (now



Landsat) in July of 1972, it became possible to consider the application



of the spaceborne Multispectral Scanner (MSS) data to the task of Crop



Production Forecasting over world or national regions. An early attempt



was the Crop Identification Technology Assessment for Remote Sensing



project (CITARS) [13]. This project involved efforts by the Earth



Observations Division of the Johnson Space Center (JSC), Purdue Uni­


versity's Laboratory for Applications of Remote Sensing (LARS), and



ERIM in an intensive effort to apply then current state-of-the-art infor­


mation extraction techniques in an evaluation of the feasibility of inven­


torying corn and soybeans in Indiana and Illinois.



The possibility of using the Landsat plus collateral data to monitor



the wheat production in the world's major wheat producing regions arose



out of the experience gathered in CITARS and elsewhere, plus the occur­


rence and impact of major wheat crop failures around the world. The Large



Area Crop Inventory Experiment (LACIE) was initiated by NASA and carried



out jointly with the USDA and the National Oceanic and'Atmospheric Admini­


stration (NOAA), to test the feasibility of using Landsat MSS data,



weather data, and historical data to estimate the production of wheat



at.harvest in seven major wheat producing countries [14]. LACIE ran



through three phases -- crop harvest years 1975 through 1977. Currently



in transition year, the feasibility of extending LAGIE technology to the



discrimination among spring small grains and to'the problem of produc­


tion inventory of corn, soybeans, and soft red wheat is being explored.



In each of these exercises, the attempt was to use and evaluate



existing techniques and, in each case, the existing techniques were



found wanting in some respects. That this would be true was recognized



in advance. One of the stated purposes of the LACIE was to "research and



develop alternate approaches and techniques.. .where required to meet



performance goals..." [1]. And indeed there has been substantial



growth in the technology of information extraction during the LACIE



program.



5





ERIM


At JSC, Procedure 1, which embodies a fundamental re-thinking of



the methods of using remotely sensed data in estimation procedures, was



developed and implemented in LACIE by NASA/EOD and Lockheed Electronics



Company (LEC) personnel [16,17]. Among other contributors supported
 


by LACIE are LARS, UCB, and ERIM. LARS provided field measurements data



for the development of detailed insights into the multitemporal-spectral



description of crop canopies, and has advanced the art of sampling design



for remote sensing surveys. The Remote Sensing Program at the University



of California at Berkeley (UCB) has developed advanced techniques of



photointerpretation, sampling designs, and partitioning.



Several of ERIM's tasks have been in developing advanced techniques



for acreage estimation, including preprocessing techniques, training
 


techniques, and unbiased sampling and estimation techniques.



These have been incorporated into Procedure M, a procedure for acreage



estimation of multiple crops which further develops the basic approach



of Procedure 1.



A viewpoint that has been reinforced by the LACIE experience is the



essential need for validation of the estimation procedures. In addition



to its estimated quantities, as stated above, we believe that every fore­


casting or estimation system ought to produce estimates of the error dis­


tribution of its forecasts. We have attempted to follow this philosophy



in the development of'Procedure M. One of the most valuable legacies of



LACIE is a large supply of accurate ground truth information and associated



Landsat data and in-place procedures for continuing to acquire more of it.



Without such data, tests of the types described in this report are impossi­


ble. In our view, real progress in the development of remote sensing is



now fully dependent on such tests.



Section 2 describes Procedure M and its components. Then Section 3



desotibes both overall performance evaluations and component evaluations,
 


while a summary and conclusions are presented in Section 4.
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DESCRIPTION OF PROCEDURE M



Procedure M is a research system fbr performing crop area (proportion)



estimation based on labels assigned-to samples of multispectral scanner



data by ground truth, by analysts, by machine/analyst combination, or by



machine. It can operate in the LACIE Framework and is a multicrop gen­


eralization of the previously developed Procedure B [18,19]. Between



segment selection and final aggregation, the six major steps of the
 


procedure are data preprocessing and selection, spatial feature definition,



data stratification, sampling of entities for labeling, labeling, and



proportion estimation, as shown in Figure 2.1. Each of these steps uses



state-of-the-art techniques. However, the system is modular so that it



can easily be modified, configured for different purposes, or used as



a test bed to evaluate alternative components or groups of components.



The key elements of the two-class Procedure B were used as the basis



for Procedure M, because their functioning is understood and test results



have been good, showing nearly unbiased proportion estimates using



ground truth labels [20]. In generalizing the elements to multiple crops,



a number of improvements were made in the overall design and in various



components and their implementation.



2.1 OVERALL DESCRIPTION OF PROCEDURE M CONFIGURED FOR SPRING WHEAT



Procedure M was configured initially for the problem of inventorying



spring wheat and other small grains, through incorporation of a two-step



procedure for discriminating between (i.e., labeling) spring wheat and



other spring small grains data.* This two-step procedure utilizes analyst



interpretation to distinguish between the 'Spring Small Grain' and 'Other'



classes and a machine algorithm to further distinguish between 'Spring



Wheat' and 'Other Spring Small Grain'.



Spring wheat, spring barley, oats, rye, and triticale were considered


to form the 'Spring' Small Grain' class.
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FIGURE 2.1 BLOCK DIAGRAM FOR PROCEDURE M 
IN LACIE CONTEXT
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2.1.1 	 COMPARISON OF LACIE PROCEDURE 1 AND PROCEDURE M FOR


SPRING WHEAT



At this point in the discussion, it is appropriate to identify the



major similarities and differences between LACIE's Procedure 1 and Pro­


cedure M for spring wheat inventory. Points of comparison are presented



in Table 2.1, both operating in the LACIE framework. The major differences



are that-the Procedure M configuration includes more preprocessing, de­


fines and labels quasi-fields rather than individual pixels, uses a dif­


ferent sampling strategy, incorporates a machine labeler for distinguishing



between spring wheat and other spring small grains, and does not use maxi­


mum likelihood classification to produce the crop proportion estimates.



2.1.2 	 GENERAL DESCRIPTION OF COMPONENTS OF PROCEDURE M FOR


SPRING WHEAT



An overview and general description is given below for each of the



components (modules) of Procedure M as configured and tested for spring



wheat inventory. Details of five of the key components on which sub­


stantial development work was performed during the contract year are



presented later in Section 2.2, while specifics of the configuration



tested are presented in Section 3.1.1 and appendices. The discussion



below follows the sequence of data processing operations in Procedure M



and starts at the point, in LACIE, where sample segments have been allocated



and selected.



The first data operations involve preprocessing to screen, normalize,



and transform the Landsat data for subsequent selection and processing,



as indicated in Table 2.2. The screening operation flags garbled data



and data from clouds, cloud shadow, and water, and computes a haze diag­


nostic 	 parameter. This diagnostic parameter is then used with the spa­


tially 	 varying XSTAR algorithm (discussed more fully in Sections 2.2.5



and 3.2.4) to adjust for variations in atmospheric haze across the scene



and normalize the data to a reference atmospheric condition and reference



sun angle. Correction for the response of different Landsat MSS sensors



also is incorporated. These normalizations increase the stability and



interpretability-of the data and reduce scene-to-scene variability. The
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TABLE 2.1 COMPARISON OF LACIE PROCEDURE 1 AND PROCEDURE M


'FOR SPRING WHEAT



SIMILARITIES



* Use of 5x6-mile LACIE Segments of Landsat Data



* Use of Analyst for Labeling 'Spring Small Grain'


vs. 'Other'



* Labeling of a Sample of Data from Each Segment



MAJOR DIFFERENCES



Function 
 

* Preprocessing 
 

* Entities to 
 

be Labeled 
 

* Sample Selection 
 

for Labeling 
 

* Labeling of 
 

'Spring Wheat'


vs. 'Other Spring
 

Small Grain'



* Proportion 
 
Estimation 
 

LACIE 
 
Procedure 1 
 

Sun Angle Correction 
 

Analyst Screening 
 

Pixels 
 

Fixed Selection 
 
from 209-Dot Grid 
 

Analyst 
 

Maximum Likelihood Ratio 
 
Classification for 
 
Two-Class Strati­

fication, followed


by Bias Correction



Spring Wheat


Procedure M



Sun Angle Correction



Machine Screening



Satellite Calibration



Haze Correction



Tasseled-Cap Data



Transformation



Interiors of Quasi-


Fields



Random Selection from


40 Spectral Strata



Machine Algorithm



Aggregation of Stratified


Sample Estimate
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TABLE 2.2 LANDSAT DATA PREPROCESSING AND SELECTION



Screen to - Exciude Bad Data



or Clouds


Flag Cloud Shadows



Water



- Compute Haze Diagnostic



* Correct for Landsat MSS Sensor Calibration



" Correct for Sun Angle Spatially Varying



XSTAR Algorithm
* Correct for Atmospheric Haze 
 

* Transform Data: Tasseled-Cap Linear Combinations
 


* Select Segments (Analyst) -- Criteria are: 

- Acquisitions Exist for Adequate Separability of Spring



Small Grains from Other Crops



- Acquisitions That Will Provide a Good Definition of the



Field Pattern Present



* Select Acquisitions (Analyst) -- Criteria Include:



- Acquisition(s) at the Dough or Ripening Stage of Wheat 

Development 

- Acquisition(s) Near and After Peak Green Development Stage 

- Other Acquisitions that Provide Good Definition of Field 

Pattern and Spectral Separability of Spring Small Grains 

from Other Crops 

* Select Spectral Features:



- Brightness and Greenness, for Each Selected Acquisition Date
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final preprocessing step is a transformation of the corrected Landsat



channel values to Tasseled-Cap space, using linear combinations [21,22].



The first two combinations or principal directions, Brightness and Green­


ness, contain a majority of the variability and information in the Land­


sat data and have physical meaning.



The other aspect of preprocessing is the selection of data for



processing. As indicated in Table 2.2, this includes selection by the



analyst of segments and acquisitions according to the stated criteria.



Only the Brightness and Greenness spectral features for selected acqui­


sitions are subsequently used in the procedure.



The second component detects spatial features in each scene



(Table 2.3). An approximation of the field pattern is defined or ex­


tracted from multitemporal data by using a clustering algorithm (BLOB)



that employs both spectral and spatial variables [23]. A set of BLOB



parameters which is optimized for various times of the growing season



has been established and produces good results, as discussed further in



Sections 2.2.4 and 3.2.3. The-algorithm actually defines quasi-fields



which frequently, but not necessarily, follow farm field boundaries. For



instance, if two adjacent farm fields have the same or similar crops they



may be assigned to the same quasi-field. Conversely, if some spectral



anomaly, such as a bare area, is present within a farm field, two dif­


ferent quasi-fields, one for the bare area and one for the remainder, may



be assigned to it.
 


A key next step in field definition is that of stripping away the



edge pixels from each defined quasi-field. These pixels are the ones



most likely to contain mixtures of two or more different crop types and



are most susceptible to errors induced by spatial misregistration of data



channels acquired on different dates. By eliminating these edge pixels



from calculations of spectral data means and requiring the analyst to



label only quasi-field interiors, we believe that major sources of analyst



labeling errors are likewise removed. It remains only to demarcate for



the analyst those quasi-field interiors that are to be labeled (See the



example in Figure 2.2) and to count the number of pixels in each quasi-field.
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TABLE 2.3 SPATIAL FEATURE DEFINITION



" Apply Spectral/Spatial Clustering


- BLOB Algorithm


- Up to Four Dates: Biostages 1-4


- Brightness and-Greenness Each Date


" Operate on Each Defined Quasi-Field (Blob)



- Count Number of Pixels



- Strip Away Edge Pixels



- Compute Spectral Means



- Display Boundary to Analyst (if selected)



" Results:



- Quasi-Field Interiors Defined for Selection and Labeling



- Effects of Mixture Pixels and Spatial Misregistration


Minimized for Labeling
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Because there may typically be 300 to 500 interiors defined by



BLOB for a LAG-I-segment and because ft is not practical to require the



analyst to label them all, some sampling is required. In Procedure M for



spring wheat, the sample selection process has two stages -- a spectral



stratification followed by sample allocation and selection.



The-spectral stratification process as employed for spring wheat



is summarized in Table 2.4 and discussed more fully in Sections 2.2.3
 


and 3.2.2. In essence, it is a second clustering operation, this time
 


using only the spectral means of field interiors as the items to be



clustered. As noted in Table 2.4, two passes of the ERIM clustering



algorithm are utilized, which is a refinement of the stratification



process used previously in Procedure B. For the spring wheat inventory



problem, it was decided to define 40 spectral strata for each segment,



a number based on prior experience and results with Procedure 1 and



Procedure B. In a multisegment configuration, Procedure M stratifica­


tion could use collateral features as well as spectral features for



stratification.



We also decided to allocate and sample 100 quasi-fields for label­


ing, among the 40 spectral strata (Table 2.5). The number of samples



assigned to each stratum is made proportional to the size (total number



of pixels) of the stratum. An unbiased method for choosing the samples



allocated to each stratum was developed and is described-in Section-2.2.2.
 


The most critical stage in crop inventory procedures is labeling



the crop type of the designated samples (fields or pixels). In the con­


figuration of Procedure M tested and described in this report, a two-step



labeling procedure is followed, as summarized in Table 2.6. In the first
 


step, the analyst labels each designated quasi-field as either 'Spring



Small Grain' or 'Other'. In the second, a machine algorithm operates on



those quasi-fields designated 'Spring Small Grain' by the analyst and



assigns a proportional label among two classes: 'Spring Wheat' or 'Other



Spring Small Grain'. If the acquisition needed to make this determination



is not available, the label 'Unidentifiable Spring Small Grain' is assigned.
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TABLE 2.4 SPECTRAL STRATIFICATION OF SEGMENT



Cluster Quasi-Field Spectral Means to Produce a Specified


Number of Strata (B Clusters)



- Employ ERIM Clustering Algorithm as Follows:



On a First Pass, Adapt Cluster Means



as Clusters Grow



On a Second Pass, Assign Cluster Membership


on Basis of Final leans from First Pass



- Produce 40 Strata -- Number Chosen Based on:



The Design and Experience of Procedure 1



Prior Procedure B Test Results



TABLE 2.5 ALLOCATION AND SAMPLING OF QUASI-FIELDS FOR LABELING



* Allocate 100 Quasi-Fields (Blobs) for Labeling


Among the Strata with Number Proportional to



Stratum Size (Total Number of Pixels)



" Choose the Quasi-Fields Allocated to Each Stratum



in an Unbiased Manner
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TABLE 2.6 LABELING PROCEDURE 

Step 1: 'Spring Small Grain' vs. 'Other' 

- This FunctionOperationally is Performed by an Analyst 

- Ground Truth Was Used in Designating a Quasi-Field 
Label for T & E Purposes (A Quasi-Field was Labeled 
Grain if It was More Than 50% Grain) 

Step 2: 'Spring Wheat' vs. 'Other Spring Small Grain' 

- Machine Algorithm is Automatically Applied to Each 
Quasi-Field Called 'Spring Small Grain' by Analyst 

- - If the Proper Acquisition is Not Available, the 

Quasi-Field is Labeled 'Unidentifiable Spring 
Small Grain' 

- Otherwise, Two Classes are Designated Proportionally: 

Spring Wheat 

Other Spring Small Grain 

Result: Each selected quasi-field is either labeled proportionally 

among the spring small grain classes br else is labeled 100% 
unidentifiable spring small grain or 100% non spring small grain. 
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For the initial testing and evaluation reported herein, ground



observations were used as a substitute for analyst labels in Step 1.



The machine algorithm of Step 2 has the key elements identified in



Table 2.7. It is designed to capitalize on the fact that barley ripens



more rapidly and/or somewhat differently than spring wheat and to detect



the spectral manifestations of this process. Details of this algorithm



are presented in Sections 2.2.1 and 3.2.1.



The final step of Procedure M is to take the crop labels assigned
 


to the selected quasi-fields and use them to compute crop proportion



estimates for the segment. As indicated in Table 2.8, a proportional



label is computed for each spectral stratum, using the'labeled quasi­


fields within it. The stratum proportions are then aggregated to produce



various segment proportion estimates. One is the two-class estimate



represented by the proportion of spring small grains. Another is the



three-class estimate which divides the spring small grains class into



'Spring Wheat' and 'Other Spring Small Grain'. The two-class estimate



will reflect the accuracy of analyst labeling. The three-class estimate



may be unreliable or have high variance if too few of the analyst-labeled



spring small grain fields have suitable acquisitionsfor the machine



labeler to further discriminate among them. A reliability flag will



accompany the estimates.



This concludes the general description of Procedure M for spring



wheat. Details of five key components are presented in Section 2.2.



2.2 DESCRIPTION OF SELECTED COMPONENTS OF PROCEDURE M



Development aspects and characteristics of several key components



of Procedure M, as configured for spring wheat, are described below.



The order of discussion is the reverse of that in the preceding section -­


we begin with the machine labeler and work backwards through the data flow



to the preprocessing phase that performs atmospheric haze correction. In



between, are discussions of the unbiased sampling strategy, spectral strati­


fication, and spatial feature definition.
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TABLE 2.7 ELEMENTS OF MACHINE ALGORITHM FOR DISCRIMINATING 
-AMONG SPRING SMALL GRAINS 

" AReference Profile of Green Development vs. Day of Year


(Day of Peak Greenness is a convenient reference point)



* A Calculation of Crop Calendar Shift for Each Field or Pixel,


Relative to the Reference Profile



* A Characteristic Distance, in the Brightness-Greenness Plane,


fbr Each Date (Values Increase as the Grain Ripens)



.,A Decision Threshold on the Computed Characteristic Distance,


as a Function of Days Since Peak Greenness
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TABLE 2.8 PROPORTION ESTTMATION



" 	 Utilize Quasi-Field (Blob) Labels to Compute a Proportional Label


for Each Spectral Stratum (B Cluster) (Based on Total Pixels)



" 	 Generate Intermediate Segment-Level Proportion Estimates,


Based on the Proportional Libel and Total Number of Pixels


in Each Stratum



-	Spring Wheat



-	Other Spring Small Grain



-	Unidentifiable Spring Small Grain



-	 Other 

Adjust Intermediate Proportion Estimates by Partitioning


Unidentifiable Spring Grains into 'Spring Wheat' and 'Other


Spring Small Grains' in Accordance with Their Raw Proportions


to Produce Final Proportion Estimates for the Segment:



-	 Total Spring Small Grain Proportion 

- Spring Wheat Proportion; Other Spring Small 
Grain Proportion 

Flag Potentially High-Variance Spring Wheat Estimates


(Based on Number of Quasi-Fields in Unidentifiable Spring


Small Grain Class)



- For Our Tests, Only a Total Spring Small Grains 
Estimate was Produced if More Than 50% of the 
Selected 'Spring Small Grain' Quasi-Fields Were 
Labeled 'Unidentifiable' 
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2.2.1 DESCRIPTION OF MACHINE LABELER



While- the-d-iscrimination of spring sma1-1-grains- from other -cover­

types in the spring wheat configuration of Procedure M is carried out 

by analyst interpreters, the finer discrimination of spring wheat from 

other spring small grains is entirely a machine function. This second 

phase, which begins when the analyst has identified those fields in the 

training sample that are spring small grains, is itself a two-step 

process: estimation of crop calendar shift, followed by label assignment. 

2.2.1.1 Estimation of Crop Calendar Shift



Basic Concept. Observed through time, a spring small grains pixel



or field should exhibit a pattern, in Tasseled-Cap Greenness, such as



that represented in Figure 2.3(a). In the absence of system noise or



other outside influences, one could reasonably expect that other spring
 


small grains pixels, observed at identical points in time, would have a



similar appearance if their growth stages were the same. However, a



more common occurrence is illustrated in Figure 2.3(b), where observa­


tions at the same point in time show a high degree of signal variation.



The underlying assumption of crop calendar shift estimation is that



a large part of this variation is the result of differences in stage of



development at the time of observation.* By fitting a model form to



data like those in Figure 2.3(a) (See Figure 2.3(c)), and then shifting



the model form along the day-of-year axis, we find that the sets of



observations, while showing much variability on the day of acquisition,



are in fact different points along a common curve form (Figure 2.3(d)),



differing only in their stage of development at the time of observation.



Conversely, by shifting each set of observations to a common reference



time, within-day signal variablility can be substantially reduced (Figures
 


2.3(e) and (f)). In addition, since previous studies at ERIM [24,25]



We gratefully acknowledge the work of Dr. Gautam Bahdwar of NASA/JSC


in first using spectral.profiles to more closely estimate the stage of


plant development. The shift procedure presented here is an extension



of his work.
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have suggested that effective spring wheat and barley separation can



only be accomplished in-a relatively-narrow day span around the dough



stage of development, application of the crop calendar shift allows for



proper selection of the acquisition to use in the label assignment step.



Figure 2.4 is an example of real data with and without the crop calendar



shift applied.



General Approach. The model form used in Procedure M for spring
 


wheat is illustrated in Figure 2.5. A cross-correlation calculation,



which is independent of differences in overall signal magnitude, is used



as the goodness-of-fit criterion. In order to obtain a stable estimate



of the shift to be applied, at least three acquisitions must fall in the
 


time interval between plant emergence and harvesting, while additional



acquisitions in this range result in a more accurate shift estimation.



It should be noted that a single profile is used for all spring



small grains and all sample segments. A study of differences in shift
 


between more specific (segment or crop) profiles and more general (multi­


segment or all small grains) profiles indicated that, for 85-95% of the



pixels tested, shift differences were within a range attributable to



noise (± 2 days or less). In light of the added complexity introduced



by either trying to adjust the reference profile for each new sample



segment or testing with a different profile for each small grains crop,



it is a significant advantage to be able to use one common profile.
 


Implementation. The actual crop calendar shift estimation in



Procedure M for spring wheat is carried out on two levels: field-by-field



and then pixel-by-pixel. The field-level shift provides an approximation
 


of the final shift for each pixel and also serves to identify those spring



small grain quasi-fields lacking the required number of acquisitions



within the reference time interval. Such fields are labeled 'unidenti­


fiable spring small grains' and are removed from further consideration



by the labeler.
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FIGURE 2.5 GREEN DEVELOPMENT PROFILE MODEL
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At the pixel level, each interior pixel of the given quasi-field



is examined individually, and a fine tuning of the field shift is made.



This second level of shift estimation provides for more accurate estima­


tion of crop development for each pixel and also accommodates differences



in stage of development within a field shape (as when several small fields



are grouped together into one quasi-field by the spectral/spatial cluster­


ing algorithm).



2.2.1.2 Label Assignment



Background. Studies at ERIM over the past two years clearly demon­


strated the marked spectral similarity of the various spring small grains,



even when view multitemporally. However, our tests on both Phase 2 and



Phase 3 LACIE data have also indicated that, in the acquisition most likely



to correspond to the dough stage of plant development, barley tends to be



somewhat more advanced, and spectrally brighter, than spring wheat [24,25].



After heading, barley fields seem to ripen at a faster rate and/or follow



a short-cut in the trajectory illustrated in Figure 2.6 in Brightness-


Greenness space, such that by the dough stage they are farther from the



green arm (a line approximately parallel to the spectral path followed by



developing green vegetation) than are spring wheat fields at the same



point in time. This separability is lost as the fields complete the



ripening process and begin to be harvested, primarily because the signa­


tures at these times are considerably more variable.



By providing an-estimate of the actual stage of development of each



pixel at each acquisition date, the crop calendar shift makes possible



a clearer understanding of the spectral relationship between spring wheat



and barley, and thus a more precise definition of the labeling criterion.



It should be noted that the labelihg criterion we have devised is



based on spring wheat and barley separation. Too few rye or triticale



fields were present in the training data to allow any decision logic to



be established for these crops. Oats, too, occurred with significantly
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lower frequency than spring wheat and barley. In addition, limited 

past work had shown few spectral differences between spring wheat and 

oats [26]. 

Development. Four Phase 3 LACIE blind sites .(1498,1515,1640,1663) were



used to develop the labeling criterion. These sites were chosen based



on the availability of acquisitions in the reference time interval and



around the dough stage of development, as well,as the presence of suffi­


cient numbers of spring wheat and barley pixels to adequately characterize



the behavior of the two crops. Atmospheric corrections were applied using



the spatially varying XSTAR algorithm and a crop calendar shift was esti­


mated for each interior pixel.
 


Examination of Brightness-Greenness scatter plots for each shifted



day of the year after peak Greenness (Day 160 on the reference scale)



suggested that adequate separability could be obtained on Reference



Days 186 through 203. In this day range, optimum linear discriminant



analysis was carried out, using greenness and brightness as the discrimi­


nant variables. The decision lines selected by this process showed a



marked similarity in slope from day to day, differing only in the value



of their y-intercept, and had similar slopes and intercepts from segment



to segment for each day. Accordingly, a reference line was defined



having the same slope as the set of decision lines, and the distance



from that line was used as the discriminant (see Figure 2.7). Optimum



discriminant values were again calculated, using the newly defined dis­


tance, and again the chosen values were very similar from segment to



segment for each day in the chosen range. Further, the mean decision



values for the four segments, when plotted against a time axis, defined



a straight line. Thus the final decision measure, common to all four



segments, was a simple linear function of day of year (after shifting)



and distance from the reference line (see Figure 2.8).



Using this measure on the four segments from which it was developed,



we achieved an average labeling accuracy for spring wheat and barley of



75% to 85%. Table 2.9 gives a segment-by-segment breakdown of the results.
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TABLE 2.9 LABELING RESULTS FOR DEVELOPMENT SEGMENTS



1498 1515 

True 
Spring 
Wheat 

True 
Barley 

True 
Spring 
Wheat 

True 
Barley 

Est. Spring 
Wheat 745 103 

Est. Spring 
Wheat 2125 379 

Est. Barley 229 292 Est. Barley 445 .1975 

Correct 76.5% 73.9% Correct 82.7% 83.9% 

1640 1663



True True


Spring True Spring True


Wheat Barley Wheat Barley



Est. Spring Est. Spring


Wheat 4397 827 Wheat 3624 282



Est. Barley 891 1241 Est. Barley 442 858



Correct 83.2% 60.0% Correct 89.1% 75.2%
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2.2.2 UNBIASED SAMPLING STRATEGY



This section is concerned with how to choose a random sample of



quasi-fields from a stratum in such a way that the percent wheat in the
 


sample is an unbiased estimate of the percent wheat in the stratum.



Although "wheat" plays a role in the discussion, the result applies to



other crops and attributes whether estimated singly or in groups. Also,



the sampled entities are called "fields", for convenience.



At first glance, it would appear that there isn't a problem. Why



do we need to do anything more complicated than draw a simple random
 


sample, that is, we decide on the number k of fields to sample and then,.



giving all samples of k fields equal probability, choose one at random?



The answer is that this simple scheme results in a biased estimate.



To produce an unbiased estimate, we sample the first field with proba­


bility proportional to size and the remaining k-l fields with equal



probability, a technique first described by H. Midzuno in 1951 [27], [28]



and [29].



Because this technique defies intuition and could become a source



of doubt and controversy, a more extended discussion of it than is pro­


vided by the references will be given here.



Suppose we are sampling k fields from a total of B in the stratum



and that each field, i, has n. pixels and has a proportion p, of wheat.



Then niPi is the number of wheat pixels in Field i.



The proportion p of wheat in the sample is



nip,



n



Bias that may be introduced by omitting some strata from the aggre­


gation process is discussed in Section 3.1.2.1.
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where the sums are taken over all fields in the sample. The proportion p



of wheat in the stratum is the same expression .except that the sums are



taken over all fields in the stratum. The problem is to find a proba­


bilistic method of selecting the'sample so that the wheat proportion in



the sample is an unbiased estimat5 of the wheat proportion in the stratum.



That- the simple random sample is not such a method -is shown by the



following example. Suppose we have three fields, a, b and c, in the



stratum, we are sampling just one field, and the ni's and pi's are as



follows:



Field ni Pi iPi



a 50 0.6 30 

b -20 0.2 4 

c 10 0.1 1 

TOTAL 80 35



p is 35/80 = 0.4375. p is 0.6, 0.2 or 0.1 depending on whether 

a, b or c is chosen as the sample. According to the simple random 

sampling scheme, each of these samples has equal probability, 1/3, of 

being chosen. The expected value of p is obtained by multiplying the 

probability of each sample by p for that sample and summing. So 

p =1 x 0.6 -+ . x 0.2 + ' x 0.1 0.3 
3 3 3 

which is # 0.4375. Thus p is a biased estimator of p. 

But if we apply the Midzuno technique to this special case where



just One field is chosen, we choose that field with probability pro­


portional to size. Then Field a has a probability 50/80 of being



chosen', Field b, 20/80 and Field c, 10/80.
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The expected value of p -is 

50 20 10 35

5-0x 0.6 + -0x 0.2 + -x 0.1 = -
TO 80 80 80



which = p. Thus the Midzuno technique is unbiased in this example.



The part of the Midzuno technique that strains our intuition is



choosing fields subsequent to the first with equal probability. Let



us see how this technique handles the choice of two fields in our



example. There are three possible samples, (a and b), (a and e) and



(b and c). The probability of each sample, the wheat proportion in



each sample, and the product of the two for computing Sp are given in


the table below:



Sample Probability


Sample Sample Probability Wheat Proportion p x Wheat Proportion



a and b 	 50 1 20 1 (50 x 6.6) + (20 x 0.2) 30 + 4 
80 2 80 50 + 20 80 x 2 

50 1 10 1 (50 x 0.6) + (10 x 0.1) 30 + 1 
a and2c, x-+ x 50 + 10 	 80 x 2 

20 1 10 1 (20 x 0.2) + (10 x 0.1) 4 + 1 
80 280 20 + 10 80 x 2 

The sample probability of (a and b) is computed by realizing that



this sample can come about in two ways: either a can be chosen first



with probability 50/80 and b is then chosen with probability 1/2 or b



is chosen first with probability 20/80 and then a is chosen with proba­


bility 1/2.



To get the expected value of p, we multiply the sample probability
 


by p for each sample and sum. The number of pixels in the sample appears
 


in the denominator of the wheat proportion and in the numerator of the



sample probability. This factor cancels when we multiply the two and we
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are left with the uncluttered expressions in the right hand column. When



this column is summed, weget



a - 2 (30 + 4 + 1) = 35


2 x 80 80



which = p. And so again, the unbiasedness of the Midzuno technique is



exhibited.



An algebraic proof of the unbiasedness of the Midzuno technique,



built on the insights of the previous example, is presented in Appendix A.



We note that in the example just given, we chose a sample with proba­


bility proportional to the size of the sample (i.e., the number of pixels



in the sample): sample (a and b) had probability (50 + 20) x constant;



(a and c),. (50 + 10) x constant; (b and c), (20 + 10) x constant.. This



conclusion holds in general (See Appendix A). Thus we can think of the
 


Midzuno technique as a random mechanism for selecting a sample of k quasi­


fields with probability proportional to size. A more direct mechanism



would be to enumerate all possible samples, give each a probability pro­


portional to size, compute cumulative probabilities for the sequence of



samples, choose a random number between 0 and 1 and observe at which



sample it falls within the cumulative probabilities. We don't use this



mechanism because as k and B increase it becomes rapidly impractical.
 


If k=5 and B=150, for example, we would have to compute 590 million



probabilities. We are fortunate to have a practical mechanism that



achieves the same end.



2.2.3 SPECTRAL STRATIFICATION
 


In order to increase the efficiency of the sampling of quasi-fields



to be labeled, the population of quasi-fields is split up into strata.



It is well known [30] that if the stratification has some relation to
 


the attribute being estimated and if the strata are sampled in proportion



to their size, a more precise estimate is obtained from the sample.
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In Procedure M the stratification is done by an algorithm BCLUST



which groups together quasi-fields that are spectrally similar for all



the biophases observed. The effect is to concentrate the crops of



interest into a few of the spectral strata.
 


The first step is to put the quasi-fields of a segment in random
 


order. Omitted from the list are the so-called "small fields", namely,



those that have no interior pixels. (An "interior pixel" is one that
 


faces pixels from the same quasi-field on all four sides.) The small



quasi-fields, usually stringy boundary areas between real fields, are



omitted because they are difficult to label and subject to registration



errors. The parameters of the algorithm setting up the quasi-fields are



chosen so that few of the pixels in the segment are in small quasi-fields.



The large quasi-fields are clustered using the multitemporal spectral



mean vectors. The means are computed over the interior pixels only,



because these pixels are less likely to be subject to registration errors



or to mixed spectral responses and they therefore more purely-represent



the crop or material present in the quasi-field. Thus the intent of



stratifying the data according to crop or material is further realized.



The distance measure used in the clustering is



nchan 2
(A wW.2( -
I j=l J 3 

where



Xl, .... Xnchan is the data vector (a quasi-field mean)



Xli ... Xnchan,i is the mean vector of cluster i

, 
 

nchan is the total number of multitemporal spectral channels



d. is the distance from the data vector to cluster i


1 

w. is a weight on channel j
J
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Each new data point x is assigned to the cluster i for which d. is
1



smallest, except that if the minimum d. is greater fhan a parameter T, a
1



new cluster is created with'its mean initially at x. As each point enters



a cluster, it is included in the calculation of the cluster mean by the



updating formula



n.



new x.' = n. +i old x.i + .+


1 1



where ni is the former number of points in cluster i.



The number. of clusters created depends on the weights w, ..., wnchan



and T. The larger T is in relation to the weights, the smaller the number



of clusters. Appendix B discusses how these parameter values were set.



The present implementation of BCLUST has a provision for repeating



automatically with appropriate changes in T until a desired number of



clusters is achieved. Other options include switches for turning off the



creating and updating capabilities, a provision for seeding clusters with



arbitrary values or with the means from a previous run, the use of a data



transformation matrix rather than merely a set of weights, and a provision



to start with a small value of T and increase it asymptotically to a desired



final value. This last option has the effect of seeding the clusters with



the first data vectors and tends to produce clusters that are more uniform
 


in size.



BCLUST also has the capability of incorporating collateral informa­


tion into the distance formula when strata are being formed from a pool



of quasi-fields from several segments. The collateral information such



as a moisture index or crop calendar figure, is'a single value for the



whole--segment. This capability of BCLUST is not used in Procedure M for



spring wheat which operated only on single segments.
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In running-BCLUST for Procedure M, we have used the repeated run



option to converge to a desired number of clusters, then used the means



of the converging run as seeds to make another pass through the data
 


with no creating or updating. We have also used the Tasseled Cap channels
 


Brightness and Greenness, and have set the weights in inverse proportion



to the effective ranges of the variables." The specific parameters used



are presented in Appendix B.



2.2.4 DEFINITION OF SPATIAL FEATURES



An aerial photograph of an agricultural area shows that the scene



is divided into areas called fields, usually rectangular or some other



simple shape, within which the color is nominally uniform. A field in



Landsat data is similarly defined: a group of neighboring pixels in



some simple shape whose spectral characteristics are very likely to be



uniform.



Because of the one-acre resolution of Landsat data, it does not



seem possible to reconstruct, without further information, the fields



that would be evident in higher resolution data. But we can define



groups of pixels that we call quasi-fields that have properties similar



to fields, namely that their pixels are spatially close and spectrally



similar.



Several purposes are served by such-a definition:



1. 	 Using the quasi-field as the unit of analysis rather than



the pixel increases processing efficiency through a data



compression factor of about 30.



2. 	 Averaging the pixel values over a quasi-field smooths out



noise in the data.



3. 	 Stripping away the edge pixels of the quasi-field allows



working with the relatively pure interior pixels. Purity



refers not only to a uniform spectral response but also to



the 	 invariance of the associated ground truth, as demonstrated
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in tests on Kansas and North Dakota segments [20,23]. This



purity contributes to the success of labeling techniques,



whether carried out by humans, or by computer programs. It



also contributes to the'grouping of quasi-fields into meaning­


ful strata that reduce sampling error.



The algorithm used by Procedure M to create quasi-fields is called



BLOB; other possibilities might have been AMOEBA [31] or ECHO [32].



BLOB is a clustering algorithm similar to BCLUST (Section 2.2.3) but
 


based on the spatial channels, line number and point number, in addition



to the spectral channels. 

The distance function for deciding which quasi-field a pixel belongs 

to is: 

CC .. L-L.) 2 P i) 2 

2 (L - 2 (P 2 
nchan (X _ X 	 i ) 
diY 	 + 
 - + 

' j=l Vt P 

where



il ...,IXnchan is the spectral data vector for a pixel



L is the pixel line number



P is the pixel point number



Xi, ...I Xnchan,i is the spectral mean vector of quasi-field i



T is the mean line number of quasi-field i



P is the mean point number of quasi-field i



nchan is the number of spectral channels



d. is the distance from the pixel to quasi-field i


1 

V VL and VP 	 are weights attached to the spectral and



spatial variables in the distance function
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The pixel joins the quasi-field with the smallest d. provided that



this value is less than a parameter T. Otherwise the pixel starts a



new quasi-field. The mean vector for a quasi-field is computed from



all the pixels in the quasi-field by an updating formula as in BCLUST.



The numbers Vi, ..., Vnchan, VL, V and T are parameters of the



algorithm that affect its performance. The larger T is relative to



the others, the larger the quasi-fields are and the fewer there are of



them. Increasing r also reduces the number of quasi-fields with no



interior pixels, fields that are left out of the stratified sampling.


Large values of VL and Vp relative to V1, ..., Vncha have the effect
n 
 

of emphasizing the spectral, rather than the spatial, variables , and



may produce quasi-fields that are not very cohesive geographically.



Relatively small values of V and Vp emphasize the spatial variables



and may produce compact quasi-fields that are not as homogeneous spec­


trally as one would like and may subdivide large fields. Information



regarding the parameters of BLOB are reported in Appendix B.



It is possible that clouds may obscure field patterns. When the



BLOB algorithm is applied to multiple time periods, it is now possible



to avoid data that are cloud covered. This was accomplished by a modi­


fication that first excludes any channel data that have been flagged by



the screening process (i.e., using only cloud-free data) in computing di,



and adapting the T distance factor to reflect the use of fewer channels



of information.



The BLOB algorithm allows the use of an alternate,distance function



that favors the formation of rectangular fields. When used, the line and



point coordinates I and P are rotated by a linear transformation to obtain



£ and p that measure in the North-South and East-West directions, respec­


tively. Then the last two terms of the distance function are replaced by


K
max ; £) ,' i) 2j 

Using this distance function, all points equi-distant from the spatial mean



of a quasi-field form a North-SouthlEast-West rectangle rather than an ellipse.
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2.2.5 ATMOSPHERIC HAZE CORRECTION 

An.atmospheric- -haze cor-rec-tion, -precede -by data- screening -and 

followed by a data transformation (to the Tasseled-Cap linear channel 


combinations), forms the preprocessing component of Procedure M. During 


the research leading to Procedure M-, it became increasingly apparent 


that an atmospheric correction algorithm was needed which would compen­


sate not only for large scale (segment-to-segment) atmospheric variations, 


but for smaller scale (within segment) variations as well. For this pur­


pose the application of the XSTAR haze correction algorithm [33,34] (which 


was developed-during a previous effort) was changed from a global appli­


cation (a fixed correction throughout a segment) to a spatially varying 


application (a variable correction within each segment). The resulting 


algorithm is called the spatially varying XSTAR haze correction [35]. 


In principle, the spatially varying XSTAR algorithm calculates its



haze diagnostic within a moving window (which has a 15 pixel diameter



between half amplitude points), using only those pixels Which have passed



the screening procedure, and then applies its correction to the pixel at



the center of the window. However, in the detailed implementation of the
 


procedure the'application of the moving window is quantized as described



below. This quantization reduces the execution time for the procedure on



the computer, with the result that the spatially varying XSTAR procedure



costs slightly less than twice as much to run as the former global XSTAR



procedure cost.



The spatially varying XSTAR procedure follows six steps, as outlined



in Table 2.10. In the first step, the SCREEN prbcedure [33,34] is applied



to the data to flag pixels (e.g., bad data, dense clouds, cloud shadows,



or water) which are not usable in the haze diagnostic procedure. However,



for the spatially varying XSTAR correction, two of the SCREEN thresholds



,are relaxed somewhat, as described in Reference 35. This allows more



extreme haze concentrations to be diagnosed and corrected than had been



the case previously with the global XSTAR correction (which needed to
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TABLE 2.10 STEPS IN SPATIALLY VARYING XSTAR HAZE


CORRECTION PROCEDURE



* 
 Screen Data (Using Less Stringent Cloud and Dense Haze Thresholds)



* Calculate Mean Signal Values for 5 Line by 5 Pixel Blocks (Using Only


"Good" Pixels) 

" 	 Calculate Spatially Smoothed Mean Values for Blocks, Using a Moving
 

Window Filter



* 	 Use Spatial Interpolation/Extrapolation to Estimate Mean Values for 
Blocks Which Have an Insufficient Number of Good Pixels 

* 	 Calculate XSTAR Correction Appropriate at Each Block Center 

* 	 Interpolate XSTAR Correction to Apply to Each Pixel 
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exclude pixels within haze concentrations which were not typical of the



majority of the segment to- be corrected)-. The relaxed thresholds.also 

help the correction algorithm to track haze variations more accurately.



The second step of the spatially varying haze correction procedure



divides the scene into 5 line by 5 pixel blocks, and calculates a mean



value for each block, using only signal values from the "good" pixels



within the blocks. ("Good" pixels are those pixels which pass the



SCREEN procedure.) Mean values for blocks with no good pixels or with



fewer good pixels than half the average number of good pixels per block



(truncated to integer form) are not used. For these "unknown" blocks,



mean values are estimated by interpolating or extrapolating from neighbor­


ing block mean values, as described in Steps 3 and 4 below.



In the third step of the procedure, the mean values of the 5 line



by 5 pixel blocks are smoothed, using a non-recursive moving window



filter. The filter approximates a Gaussian shape, with a 3 block dia­


meter between half amplitude points. In this stage, smoothed mean values



are calculated for all blocks with "known" mean values, and for all



blocks with at least one near neighbor (either along-track or across­


track) which has a "known" mean value. The smoothed mean value is the



weighted average of the available "known" mean values within the window



of the filter.



Step 4 of the spatially varying XSTAR procedure is used to assign



smoothed mean values to blocks which still have "unknown" mean values
 


after Step 3. In this step only those blocks which have "unknown" mean



values, but which have at least one near neighbor (either along-track



or actoss-track) with a smoothed mean value, are assigned smoothed mean



values according to the procedure of Step 3. Step 4 is iterated until



all blocks have smoothed mean values.



In Step 5 of the procedure, the smoothed block mean values are used
 


as XSTAR haze diagnostics, and the multiplicative and additive correction



factors appropriate for each block center are calculated from them.
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Finally in Step 6 the multiplicative and additive correction factors



calculated from the block means in Step 5 are interpolated between block



centers (in two dimensions) to determine the appropriate correction



factor for each pixel. These correction factors are then applied pixel



by pixel. For this step a curvilinear interpolation is used which



employs an approximately Gaussian interpolation weighting function,



described in Reference 35. Pixels which are near the borders of the



scene, so that only one or two block centers are within theinterpolating



range (±4 lines and :4 pixels) of the pixel, are corrected by interpolating



the correction factors calculated for only those blocks whose centers are



within the interpolating range.



The spatially varying XSTAR procedure results in an effective atmos­


pheric haze correction (for Landsat agricultural MSS data) with a 15 pixel



(@1.2 x 0.9 km) spatial resolution of haze variability. The performance



characteristics of this haze correction are discussed in Section 3.2.4.
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3 

TEST AND EVALUATION OF PROCEDURE M CONFIGURED FOR SPRING WHEAT



Procedure M utilizes a statistical sampling strategy to inventory



crop acreage. The procedure is constructed in a modular way and was



designed to function within the LACIE framework. This section presents



an evaluation of a spring wheat configuration of Procedure M in estimating



spring small grain and spring wheat acreages in the Northern Great Plains.
 


The evaluation considers the performance of the overall procedure in



providing acreage estimates (Section 3.1), as well as the performance



of the individual components (modules) that comprise the procedure



(Section 3.2).



3.1 TEST AND EVALUATION OF SYSTEH PERFOP4ANCE



Test and evaluation of Procedure M performance is presented in



three parts -- the experiment design, results, and a sumary.



3.1.1 EXPERIMENT DESIGN



The major objective of the evaluation was to gain an understanding,



in a statistical sense, of the overall performance of Procedure M as



configured for spring wheat. That is, the experiment was to characterize



the procedure's performance in terms of bias and variance of crop pro­


portion estimates. In addition to spring wheat and other spring small



grain estimates, the accuracy of the total spring small grain estimates



were to be evaluated.



The specific software configuration employed to conduct this evalua­


tion is described in Appendices B and C. Experiment parameters are listed



in Table 3.1. Note that both Phase 2 and Phase 3 segments were used.



This was done to evaluate whether the machine labeling procedure for



spring wheat, described in Section 2 and developed using Phase 3 sites,



could be extended to another crop year, represented by the Phase 3 sites.
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TABLE 3. 1 EXPERI4ENT PARAMETERS 

26 Northern Great Plains Phase 2 and Phase 3 LACIE Blind Sites



* Up to 7 Acquisitions for Each Site 

- 3 or 4 Chosen for Field and Strata Definition



- 3 or 4 Chosen for Automatic Labeling



4 Stratification Cases (B Clusters -- 1,20,40,60)



5 Field Sample Cases (Quasi-Fields or Blobs -- 40,60,80,100,120)



* 50 Estimates Per Case (Random Field Sample Replicates)



* 26,000 Proportion Estimates Total
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The 26 segments chosen for evaluation were selected so that they



would geographically represent the major spring wheat growing regions



in the United States Northern Great Plains (Figure 3.1). The propor­


tions of segments planted to spring small grains vary from about 70%



to near 9%, as is illustrated in Figure 3.2 in which segments are ranked
 


according to their spring small grain proportions.' The specific acqui­


sition dates available and used for these segments are listed in



Appendix D.



Procedure M for spring wheat utilizes 100 labeled samples drawn



from 40 spectral strata. This experiment sought to characterize the



performance of other sampling strategies as well. Unstratified sampling



was carried out in addition to sampling from within 20, 40, and 60 strata



to enable measuring the variance reduction (R factor) due to stratified



sampling. The R factor is ameasure of the efficiency of stratified



sampling and is defined as:



2 

R -m 

inn 2
Oln



where



m is the number of strata



n is the number of fields sampled
 


2


a is the measured variance of the procedure



(over the 50 random field sample replicates)



2


aln is the measured variance for the one-stratum



case 
 (i.e., unstratified)



Once samples are drawn, the quasi-fields are labeled. To evaluate



the efficiency of the procedure in terms of its variance characteristics



juxtaposed to the gains that might be achieved in the efficiency of



labeling, sets of 40, 60, 80, 100 and 120 samples were drawn and results



using them were compared.
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The spring wheat configuration of Procedure M uses the previously



described two-step labeling mechanism. The first step involves analyst
 


interpretation and labeling of samples as 'pringSSmal Crain" or 'Other".



Ground truth- was used as a substitute for analyst interpreter labels



in this experiment. The second step involves a further discrimination



of the grain samples by the machine labeler. These labels are then



utilized in aggregating a segment spring wheat proportion estimate.



To characterize both bias and variance characteristics of the pro­


cedure, estimates were made by replicating the process of drawing 50 sets



of samples for each combination of stratification and field sampling cases.



3.1.2 SYSTEM PERFORMANCE RESULTS



The results presented in this section consider both portions of the.



two-stage labeling mechanism. First, three aspects of the performance



of the procedure in estimating total spring small grains are presented:



(1) Average performance using 40 strata and 100 labeled samples



(2) Bias due to ignoring certain strata



(3) Parametric evaluation of sampling variance



This analysis evaluates the performance of the 'two-class procedure with



respect to gr6und truth labels.
 


Then, three aspects of the performance of the procedure in estimating



three classes -- spring wheat, other spring small grains, and other -- are



presented:



(1) Average performance using 40 strata and 100 labeled samples



(2) Performance for various partitions of the segments



(3) Parametric evaluation of sampling variance



Wall-to-wall ground truth provided by JSC and prepared in subpixel


format by Lockheed Electronics Company and ERIM personnel was used.
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This three-class analysis evaluates the performance of the procedure



with the machine labeler. The intent is to show not only areas of



strength but also to make recommendations to improve the spring wheat



labeling accuracy and to evaluate whether the labeling strategy employed



can meet needs in an operational setting.



3.1.2.1 Spring Small Grain Estimates (Two-Class)



Performance Using 40 Strata and 100 Labeled Samples. Overall, the



small grain proportion in the 26 LACIE blind sites was 32.3%. The aver­


age estimate made using Procedure M was 34.3% -- an absolute error of 1.9%



and a relative error of 6%.* This estimate is the average of 50 repli­


cates of 100 labeled samples from 40 strata in each of the segments.



There was no statistically significant difference between this estimate



and those derived similarly from other combinations of strata and sample



size, although their variance reductions (sampling efficiencies) were
 


significantly different.
 


Figure 3.3 illustrates the accuracy of these average estimates on



an individual segment basis. The average standard deviation about each



of these points was 2.5%, while their RMS error about the 450 line was 3.66



and the R2 about the regression line was 0.987. Overall, the estimates were



accurate with a slight positive bias introduced as the percentage of small
 


grain in the segment increased.



Bias Due to Ignoring Certain Strata. Procedure M samples only



quasi-fields with interior pixels. Assuming that the estimate for these



fields is unbiased, the expected bias due to not sampling from the smaller



fields is given by the expression:



N- N-P)

N S u



b = M (Ps - Pu


E-T



Twhere E is the estimate and T the true grain proportion.
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where



PS is the crop proportion in the quasi-fields from 

which samples are drawn



Pu is the crop proportion in the quasi-fields from



which no samples were drawn



N is the total number of pixels



M is the total number of pixels in the sampled strata



If Ps P or if M ! N, no significant bias is introduced. The
S U 

expected bias in the 26 sample segments was computed to be 1.9% which



is about equal to the absolute error that was measured. Hence Procedure M



was found to be virtually unbiased with respect to the fields that were sampled.



Figure 3.4 pr6vides a comparison on a segment-by-segment basis



of the expected-bias (dashed line) and the measured bias. The segments



are ordered as in Figure 3.2. With the exceptions of Segments 1652



and 1662, the estimates and expectations track closely. The unexpected



bias encountered in Segment 1652 was the result of inadequate ground



truth labels (See footnote in Section 3.1.2).



The bias encountered is well understood to be a function predomi­


nantly of ignoring the small-field strata. Three techniques are under



consideration to eliminate this bias. One strategy is to increase the



number of pixels in quasi-fields-having interior pixels. This can be



accomplished by relaxing the parameter settings in the BLOB program.*



A second strategy involves a post bias correction algorithm based on a



relationship that may exist between average field size and grain propor­


tions. The third strategy, suited for areas dominated by smaller fields,



is to sample the small-field stratum directly. What is implied is an



*Currently these parameters are fixed for all segments (See Appendix B).



In the Northern Great Plains results, an average of about 70% of each



segment was represented by quasi-fields with interior pixels.
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initial stratification of an area into two strata, small fields and



large fields and the employment of sampling strategies suited to each



stratum.



Parametric Evaluation of Sampling Variance. The efficiency of



Procedure M in terms of its variance reduction characteristics is as



critical to its usefulness as is its bias characteristics. In this



section the variance of the spring small grain estimate derived using



Procedure M is discussed. Integral to this procedure is the concept



of stratified sampling. It has been shown that a reduction in variance



can be achieved using a stratified sampling approach [30]. Here,



empirical evidence will be provided to illustrate the degree of sam­


pling efficiency that can be achieved using Procedure M.



Results of the empirical tests are summarized in Figure 3.5. This



plot illustrates the dependence of the measured variance (represented
 


by its square root) on the number of labeled samples and the number of



strata. The standard deviation,



262i



is plotted versus the number of labeled samples, on a semi-log graph



for eac& of the four strata parameters,.where as before,



m = 	 1, 20, 40, or 60 denotes the number of strata



n 	 40, 60, 80, 100, or 120 denotes the number of



labeled samples



o denotes the standard deviation of 50 observations
mni 

from Segment i using n labeled samples and m strata.
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The top curve, for one stratum, represents unstratified sampling.



Note that for 20, 40, and 60 strata, the variance encountered is sub­


stantially reduced. The bar labeled '5% Significance Interval' has



length



log VF(1-.05,1274,1274) = log . 0.967,= log(1.04725) 

Any two standard deviation estimates whose vertical distance on the



graph exceeded the length of the bar are significantly different by the



F-test at the 5% level. A dashed line is drawn below the curve for 40



strata at a distance equal to the length of the bar. This shows



geometrically that the curve for 60 strata is not significantly lower



than the one for 40 strata, except for a sample size of 60.



The choice of using 40 strata in Procedure M for spring wheat



seems to le supported by this analysis. The choice of using 100 labeled



samples is not as good as using 120 labeled samples in the sense that



040,120 is significantly smaller than a40,100 at the 5% level. On the
 


other hand, the additional cost of 20 more labels may not be warranted



by the reduction of variance gained by using 120 samples, since the



standard deviation is already well below 3% at the segment level.



The R (variance reduction) factor presented in Section 3.1.1 also



provides insight into the efficiency of stratified sampling. For



example, a procedure with R = 0.344 would need only 34.4% of the
 


labeling effort required to obtain the same variance using unstratified



sampling. Table 3.2 provides a matrix of R factors measured in con­


ducting this evaluation of Procedure M. Since R is a ratio of sampled



variances, it has an F distribution. Any two variances with



0.9118 < R < 1.0967 (F(.05,1274,1274) to F(.95,1274,1274)



are not significantly different.*



Recall, average estimates were not significantly different, regard­

less of strata or sample settings.
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TABLE 3.2 R FACTOR MATRIX (Reduction of Variance)** 


Relative to Unstratified* Relative to 40 Strata* 


Strata ## Samples 40 60 80 100 120 40 60 80 100 120 


1 1.0­ 1.0 1.0 1.0 1.0 2.25 2.43 2.65 2.91 2.76 
20 0'.49 0.51 0.53 0.52 0.52 1.11 1.24 1.41 1.52 1.44 

40 0.44 0.41 0.38 0.34 0.36 1.0 1.0 1.0 1.0 1.0 
60 0.44 0.35 0.37 0.33 0.35 0.87 0.86 0.98 0.97 0.95 

R factors are defined as follows: 
co 

R'= 

2 

mPn
2 
l,n 

a 
R= 

2 
a 
m,n 
2 
40,n 

If 0.9118 < R < 1.0967, then variances resulting from parameter settings 

are not significantly different. 




3.1.2.2 	 Spring Wheat, Other Spring Small Grains Estimates


(Three Class)



Performance Using 40 Strata and 100 Labeled Samples. The second



stage of the Procedure M labeling .process labels the spring small grain



quasi-fields proportionally among spring wheat and other spring small



grain, except when the proper acquisition is missing. Of the 26 seg­


ments processed, three had acquisition histories inadequate for sepa­


rating the small grains (See last entry in Table 2.9). Hence, spring



wheat estimates were made for 23 segments. The overall results achieved



for these segments appear in Table 3.3. Spring wheat was underestimated



by 2.6%, and other spring small grains were overestimated by 3.8%.



Figures 3.6 and 3.7 illustrate the average estimates on a segment-by­


segment basis. The average standard deviation for a segment was under



2%. The spring wheat estimates made for other combinations of strata



and sample sizes were not significantly different from the estimates



made using 40 strata and 100 samples.



Though these results are encouraging, they do not compare in terms



of accuracy with those achieved in making a total spring small grain



estimate. The RMS error in these average spring wheat estimates was



8.6% as opposed to 3.7% for all spring grains. The accuracy of the
 


three-class estimates is closely tied to labeler performance. While



an in-depth evaluation of the labeler will be presented in Section 3.2.1,



a systematic pattern to the measured error does appear in these results



and will be discussed in this section.



Performance for Various Partitions of the Segments. It is of



interest 	 to determine whether the error measured in the spring wheat



estimates is systematic in nature as opposed to random.- If systematic,



techniques to improve performance can be explored within a procedural



context. In order to evaluate this possibility, the 23 segments
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* 	 TABLE' 3.3 SPRING SMALL GRAIN ESTIMATES USING 40 STRATA 
AND 100 LABELED SAMPLES (23 Segments With 

50 Replicates Per Segment)



Estimate True E-T E-T 


(%) (%) (M) T 

Spring Wheat 15.4 18.0 -2.6 -0.15 


Other Spring 

Small Grains 15.5 11.6 3.9 0.33 
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FIGURE 3.6 PROCEDURE M SEGMENT ESTIMATES OF SPRING WHEAT 
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processed were partitioned into groupings as follows (Table D.3 in



Appendix D identifies the segments in each category):



No. of


Label Segments Description



Acceptable 23 Spring wheat estimates made



Developmental 4 Phase 3 sites used for labeler


development



Problem Segments 4 Displayed poorest results



Phase 2 5 1976 Blind Sites



Phase 3 18 1977 Blind Sites



Red River 8 Developmental geographic region



Figure 3.8 illustrates, using scatter diagrams, the performance



attained within partitions in estimating spring wheat acreage. What



is immediately evident is that two of the partitions, Problem Segments



and Phase 2, contribute much of the error in an RMS sense. For both
 


developmental segments and those located near the same river valley,



accurate spring estimates are achieved. Section 3.2.1 discusses



meteorological conditions that may influence these results in patterns



that at first seem geographic or annual in nature.



Results are displayed numerically for these partitions in Tables



3.4 through 3.7. Note in Table 3.7 that the relative spring wheat



.error in Phase 3 sites is -1.8% as opposed to -32.7% in Phase 2



sites. It is significant that spring wheat is largely underestimated.



Four segments labeled Problem Segments exhibit exceptionally poor
 


spring wheat estimates (Table 3.6) with measured relative error of



-65.6%. On the other hand, the remaining nineteen segments, exhibiting



a relative error of only 3%, estimated a 16.7% spring wheat proportion



given 16.2% actual. This estimate was not significantly different from
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TABLE 3.4 STRATIFIED THREE-CLASS PERFORMANCE RESULTS, Part 1 

Stratum 

No. of 
Segments 

Estimate 
(%) 

Spring Wheat 

True E-T 
(%0) (%) 

E-T 
T 

Other Spring Small Grains 

Estimate True E-T E-T 

(M) (%) (%) T 

Acceptable 23 15.37 17.98 -2.60 -0.145 15.46 11.62 3.84 0.330 

Phase 2 
Segments 5 22.83 33.92 -11.09 -0.327 24.81 8.99 15.82 1.760 

LA 

Phase 3 
Segments 18 13.30 13.55 0.25 -0.018 12.86 12.35 0.51 0.041 



TABLE 3.5 STRATIFIED THREE-CLASS PERFORMANCE RESULTS, Part 2 

Stratum 

(A) Acceptable 

No. of 
Segments 

23 

Estimate 

(%) 

15.37 

Spring Wheat 

True E-T 
(%) (%) 

17.98 -2.60 

E-T 

T 

-O.f45 

Other Spring Small Grains 

Estimate True E-T E7T 
(%) (%) (%) T 

15.46 11.62 3.84 0.448 

a (B) Developmental 

A Less B 

4 

19 

32.30 

11.81 

27.30 

16.01 

5.00 

-4.20 

0.183 

-0.262 

17.05 

15.12 

19.76 

9.90 

-2.71 

5.22 

-0.137 

0.527 



TABLE 3.6 STRATIFIED THREE-CLASS PERFORMANCE RESULTS, Part 3 

a, 

No. of 

Stratum Segments 

(A) Acceptable 23 

(B) Problem Segments 4 

A Less B 19 

Estimate 
(%) 

15.37 

9.05 

16.70 

Spring Wheat 

True E-T 
(%) () 

17.98 -2.60 

26.30 -17.25 

16.22 0.48 

E-T 
-

-0.145 

-0.656 

0.030 

Other Spring Small Grains 

Estimate True E-T E-T 

(%) (%) (%) T 

15.46 11.62 3.,84 0.330 

25.26 6.38 '18.88 2.959 

13.39 12.72. 0.67 0.053 

A Less B and 
Developmental 15 12.55 13.27 -0.72 -0.054 12.42 10.85 1.57 0.145 



TABLE 3.7 STRATIFIED THREE-CLASS PERFORMANCE RESULTS, Part 4 

Stratum 

(A) Acceptable 

No. of 
Segments 

23 

Estimate 
(%) 

15.37 

Spring Wheat 

True E-T 
(%) (%) 

17.98 -2.60 

E-T 
T 

-0.145 

Other Spring Small Grains 

Estimate True E-T E-T 
(%) () (%) -T 

15.46 11.62 3.84 0330 

O (B) Red River., 
Valley 

A Less B 

8 

15 

24.74 

10.38 

20.29 

16.74 

4.45 

-6.36 

0.219 

-0.380 

14.52 

15.96 

17.37 

8.55 

-2.86 

7.41 

-0;197 

0,867 



the truth at the 0.05 significance level. Table 3.7 indicates that.more



accurate estimates were made in the vicinity of the developmental



segments'than otherwise.



Parametric Evaluation of Sampling Variance. The sampling variances



measured for spring wheat estimates are parametrically illustrated in



Figure 3.9. Again, these represent .the aggregated performance with



.50 replicates over the 23 segments, A 5% significance bar is provided,



as in Figure 3.5. Recall that since this graph is on a semi-log scale,



this bar can be displaced to.any position on the graph and will encompass



curves for sampling parameters whose procedural variances are not signifi­


cantly different. Once again, for a fixed number of labeled samples, the



use of 40 or 60 strata results in variances are not significantly different



at the 0.05 level. The variance reduction (R factor) relative to unstrati­


fied sampling using 40 strata-and 100 labeled samples was 0.48.



The variances illustrated by the parametric curves in Figure 3.9



are attributable to the procedureTs sampling strategy and estimation



technique. It is of interest to examine how these variances compare to



those contributed by other components such as the labeler. The two



dashed lines appearing at 5.4% and 9.2% illustrate the RMS between-segment



error for the spring wheat estimate of the developmental and other seg­


ments respectively. This clearly displays that the sampling efficiency



of the procedure is well within the limi-ts of accuracy provided by the



labeling mechanism. In other words, the Procedure M framework is



accurate and efficient with respect to the labeling source.



Table 3.8 is provided for completeness and contains summary sta­


tistics on a segment basis of the Procedure M evaluation using 40 strata



and 100 labeled samples.
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TABLE 3.8 SEGMENT PERFORMANCE RESULTS __ 

40 Strata 100 Labeled Samples 50 Replications 

3-class Procedure M 

2-class (Tot. Spring Sm. Grains)' Raw Spring wheat Raw Other Spring Sm. Grains Unknown Spring Sm. Grains 

Sepment 
Mean 

Estimate 
Sampling Expected 
Std.Dev. Bias Truth 

Mean 
Estimate 

Std. Dev. 
of Est. Truth 

Mean 
Estimate 

Std.Dev. 
of Est. Truth 

Mean 
Estimate 

Std.Dev. 
of Est. Comment 

1104 
1498 
1512 
1513 
1515 
1520 
1602 
1606 
1614 
1633 
1637 

'1640 
1642 
1652 
1662 
1663 
1669 
1681 
1699 
1800 
1803 
1805 
1811 
1899 
1913 
1927 

3.9% 
29.5 
27.9 
78.7 
61.9 
20.6 
34.8 
36.6 
41.5 
43.8 
38.8 
52.5 
61.4 
32.6 
52.7 
53.4 
7.4 

37.1 
20.3 
28.4 
0.3 

13.1 
2.7 
65.3 
13.0 
31.8 

1.7% 
3.0 
1.8 
2.0 
2.9 
3.5 
3.9 
2.9 
3.2 
2.2 
2.6 
3.2 
3.1 
2.7 
2.9 
1.6 
1.9 
2.7 
1.9 
2.8 
0.4 
2.6 
1.4 
3.4 
2.5 
2.9 

-0.2% 
1.4 

-0.0 
6.0 
2.6 
1.7 

-0.1 
3.6 
2.8 
3.2 
2.5 
4.4 
5.7 
0.5 
5.4 
3.5 

-0.9 
1.7 
0.1 
1.6 
0.2 

-0.9 
-0.2 
5.6 

-0.8 
1.6 

4.6% 
28.9 
29.8 
71.6 
60.6 
18.4 
35.7 
31.9 
38.5 
39.7 
35.0 
48.6 
53.5 
36.5 
44.9 
50.2 
9.5 

34.9 
20.1 
26.8 
0.5 

14.7 
2.5 
58.9 
14.3 
29.9 

0 % 
13.3 
15.6 
0.4 

30.9 
10.7 
22,9 
7.6 

16.5 
20.3 

9.7 
35.9 
28.3 
4.2 

20.2 
37.0 
0.3 

16.4 
0.9 
1.9 
0,2
3.1 
2.2 
7.3 
0,8 

11.5 

0 % 
2.3 
2.4 
0:1 
3.6 
2.5 
2.8 
2.4 
2.5 
3.1 
1.9 
3.2 
3.5 
1.7 
2.6 
2.6 
0.3 
2.4 
0.7 
0.9 
0.2 
1.2 
1.4 
1.6 
0,8 
2.4 

0.0% 
8.6 . 

10.4 
52.3 
36.8 
10.4 
31.1 
24.5 
25.1 
37.2 
31.9 
31.5 
38.7 
24.7 
36.8 
32.3 
5.9 

15.6 
7.1 
0.5 
0.0 
0.3 
0.1 
28.6 
11.8 
16.7 

3.9% 
16.1 
7.4 
0.4 

18.1 
5.3 
7.0 
3.6 

20.4 
11.8 
28.4 
15.5 
17.7 
22.5 
32.2 
12.2 
7.0 

20.2 
18.0 
26.3 
0.1 
9.8 
0.5 

13.4 
11.6 
15.7 

1.7% 
2.7 
1.7 
0.2 
2.8 
1.6 
1.5 
1.5 
3.0 
1.9 
2.6 
2.1 
2.6 
2.5 
2.3 
2.0 
1.9 
2,3 
1.9 
2,8 
0.3 
1.3 
0,4 
2.5 
2.4 
2,3 

4.6% 
20.3 
19.5 
19.3 
23.8 

8.0 
4.6 
7.5 

13.5 
2.5 
3.2 

17.1 
14.8 
11.8 

8.1 
17.9 
3.8 

19.2 
13.0 
26.3 
0.5 

14.4 
2.4 

30 3 
2.5 

13.3 

0 % 
0.1 

, 
Q 
P 

4.6 

5 

11.7 
0.7 
1.1 

15.4 
5.9 
0.3 
4.2 
0.1 
0.5 
1.4 
0.2 
0 
0.2 

,Q. 
4.6 
.6 

.4.6 

0 % 
0.2 
1.9 
2.0 
2.8 
1.6 
2.3 
3.2 

3.0 
0.7 
0.8 
3.3 
1.6 
0.4 
1.6 
0.3 
0.6 
1,1 
0.3 
0 

0.4 
0 

3.8 
1.0 
1.8 

Rejected 

Rejected 
eje1c7 

Rejected 



3.1.3 SUMMARY OF SYSTEM PERFORMANCE



Procedure M configured for spring wheat has been parametrically
 


evaluated using 26 LACIE Phase 2 and Phase 3 Blind Sites distributed



across the Northern Great Plains. Encouraging results were achieved



in estimating total small spring grain and spring wheat proportions.



Analysis of results showed that:



1) 	 Procedure M provided accurate total spring small grains



proportion estimates with respect to the source of labels.



2) 	High variance spring wheat estimates were made at the
 


segment level.



3) 	 Poor spring wheat results in certain segments were
 


seemingly systematic in nature and probably related to



ancillary conditions; four segments exhibited poorest results;



the aggregated estimate based on the remaining 19 of 23



segments for which spring wheat estimates were made exhibited



an absolute error of 0.5% and a relative error of only 3%.



Implying that the spring wheat discriminant function was



accurate when employed within the appropriate stratum (excluding



Phase II and moisture stressed segments -- see Section 3.2.1)
 


4) 	 Within-segment sampling variance is not a key issue with



this procedure; accurate labeling of samples is critical.



This overall evaluation does point to the need for a critical



analysis of the component parts of Procedure M, in particular the spring



wheat labeling mechanism. Section 2.2 provides evaluations of these



components. The overall mechanism and procedural concept is sound,



exhibiting both accurate and efficient estimates of crops. Improvement



in certain components may result in levels of accuracy for spring wheat



estimates that were notexpected, given the problem's degree of diffi­


culty.
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3.2 TEST AND EVALUATION OF COMPONENT PERFORMANCE



In addition to evaluating the overall performance of Procedure M



for spring wheat, the tests and analyses were conducted so that the per­


"formance of individual system components could be evaluated. Evaluations



of four major components -- machine labeler, stratification, spatial



feature definition, and haze correction -- are presented below.



3.2.1 EVALUATION OF LABELER PERFORMANCE



For purposes of machine labeler evaluation, 18 segments were used.



This subset excludes the four segments used for development of the
 


machine labeling criterion. An additional six segments had little or



no spring wheat present. Since, as will be explained later, spring



wheat labeling accuracy served as the primary indicator of labeling



success, these six segments offered little or no additional information



for evaluation, and were therefore excluded. The locations of the
 


13 remaining segments are shown in Figure 3.10.



3.2.1.1 Results



Overall accuracy of labeling for spring wheat and barley pixels



was 53%, with 81% of the barley pixels receiving correct labels com­


pared to 45% of the spring wheat pixels. Table 3.9 summarizes the



overall results by crop and year. (See Appendix E for a segment-by­


segment breakdown of results for the entire test set.)



Figure 3.11, which is a plot of overall accuracy by segment



(ordered according to decreasing small grains percentage), illustrates



the wide variability of results. However, a sub-grouping of the seg­


ments is also suggested by the graph. By dividing the 18 segments into



two groups based on labeling accuracy (greater than 50%, or less than
 


50%), a clearer understanding of labeler performance can be gained.



Table 3.10 summarizes the labeling accuracy for these two groups,



again by crop and year.



16 were drawn from the 26 described in Section 3.1. 
 Two additional



segments were available for this evaluation but were not available for


full scale testing due to incomplete wall-to-wall ground truth.



73





* 1929 1 B
 


1602 16 01614



1625 f16371 151


16520 
 R33a16634.12

1913 6 1927 642


i 1669 
 1681* 01520 

1498+ 
1699


4:. 

t Phase 2 Blind Sites 

* Phase 3 Blind Sites 

Developmental Sites



LOCATION OF SITES USED IN LABELER PERFORMANCE ANALYSIS

FIGURE 3.10 
 

http:R33a16634.12


4IERIM



TABLE 3.9 LABELING ACCURACY FOR SPRING WHEAT


AND BARLEY PIXELS



Phase 2 Phase 3 Total



Spring Wheat 43% 51% 46%



Barley 72% 86% 81%



Overall 46% 60% 53%,



LABELING ACCURACY FOR TWO GROUPS OF SEGMENTS
TABLE 3.10 


' "-Bad" Segments (< 50% Accurac
"Good
 Segments (> 50% Accuracy) 


2 Phase 2 Sites
3 Phase 2 Sites 
 
5 Phase 3 Sites
8 Phase 3 Sites 

Phase 2
 Phase 3 TotalTotal
Phase 2 Phase 3 
 

58% 71% 
 7% 25%
65% 33%
Spring Wheat 

99% 91%
80% 77%
 74%
71%
Barley 

-- 34%68%
Overall 
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Clearly, the factor that drives the overall accuracy down is the



reduced labeling accuracy for spring wheat pixels. In fact, barley



labeling accuracy actually increased from the greater-than-50% (good)



segments to the less-than-50% (bad) segments.



Although the labeling criterion was developed using spring wheat



and barley pixels only, the procedure is meant to label all the small



grains (spring wheat, barley, oats, rye, and triticale). For the 28 seg­


ments which comprised the entire data set, there were no triticale pixels



and only a few rye pixels. There were, however, enough oats pixels to



provide an indication of the procedure's success in separating them from



spring wheat pixels. Table 3.11 summarizes the results for oats.



3.2.1.2 Evaluation of Results



As described earlier, the decision criterion for labeling is based



on a distance in Brightness-Greenness space which increases from the



time of heading through the dough stage of development. Since barley



fields have been observed to ripen somewhat faster than spring wheat



fields, a greater distance on any given day in the critical day range



(defined in Section 2.2.1) should indicate a barley pixel.



Consider, however, the result of a localized increase in the rate



of crop development. In this situation, distances on a given day should



tend to be greater than they would be under normal conditions. One should



find, then, that both crops tend to be a greater distance from the ref­


erence line than that selected as the spring wheat/barley discrimination



value. Thus spring wheat pixels would be mistaken for barley pixels,



while barley pixels would be even more likely to be correctly labeled.



This is precisely the result we see in Table 3.10, suggesting that the



poor results were indeed caused by an increase in the crop develpment rate.



While such an increase could be the result of a number of factors,



one of the most likely candidates is environmental stress, and particularly



moisture stress. This stress could take the form of perennially low
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TABLE 3.11 
 

Overall 
 

Good Segments 
 

Phase 2 
 

Phase 3 
 

Bad Segments 
 

Phase'2 
 

Phase 3 
 

LABELER RESULTS FOR OATS PIXELS



Label Assigned



Spring Wheat 
 

40% 
 

56% 
 

60% 
 

51% 
 

18% 
 

23% 
 

2% 
 

Other Skring Small a



60%



44%



40%



49%



82%



77%



98%
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moisture (i.e., arid regions) or exceptionally low moisture (i.e., drought).



In either case, however, the effect should be felt over a larger region
 


than a single segment. If moisture stress is indeed the cause of the



change in development rate, then one would expect to see a geographical



clustering or delineation between good and bad segments.



Although such a separation is not apparent in Phase 2 (perhaps only



because of the low number and limited distribution of Phase 2 segments



in the test set), the separation is readily apparent for the Phase 3 seg­


ments, as shown in Figure 3.12. Segments located in the southwestern



or western portions of the region, where moisture stress is more likely,



yielded poorer labeler results than those in the less arid portions of



the region. The same geographical trend is evident in the labeling



results for oats. In the northeastern portion of the region (N. Dakota



and Minnesota), oats tended to fall into-the spring wheat class, while



in the southern and western portions (S. Dakota and Montana), oats tended



to fall into the other spring small grains class. Finally, LACIE weather



summaries reported moisture stress for the general region of the bad



segments. Thus we conclude that moisture stress in part of the test



region caused an increase in the rate of crop development, which in
 


turn resulted in poor spring wheat labeling accuracy.



Since moisture stress should influence the green development profile,



it might be possible to detect such a condition, using the profile, and



adjust the decision criterion accordingly. For example, the estimated



peak greenness value should indicate the vigor of the field being observed.



Similarly, the rate of decrease in greenness from the peak value to the



value in the critical day range should be an indicator of the rate of



crop development, with a steeper slope indicating a more rapid develop­


ment rate. Preliminary examination of these and other such indicators



is in progress.
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3.2.2 EVALUATION OF SPECTRAL STRATIFICATION



The technique currently'employed to establish spectral strata from



among the set of quasi-fields formed is called BCLUST. This algorithm



is described in Section 2.2.3. Its evaluation is discussed in this



section.



BCLUST conducts an unsupervised, multiple-pass clustering of spec­


tral means of quasi-field interiors to produce a fixed number of spectral



strata. These strata are formed to direct samples in a manner that,



compared to unstratified 'sampling, would reduce the variance of the



estimate made. The success of-this procedure is measured by



its ability to group quasi-field means into strata that are all grain



or all non-grain. Ideally only two strata are needed -- the'group of



grain clusters, and the group of other clusters. Such a procedure would
 


require drawing only one sample to identify which stratum is which. This,



of course,has not been realized. .



The variance reduction factor, R, was earlier defined and used



in describing the efficiency gained in Procedure M due to stratified



sampling. This R factor was determined using the measured variation of



the procedure. The availability of wall-to-wall ground truth permits
 


the use of a measure that is closely related to the variance reduction



factor, called the expected variance reduction factor (RE factor).



The RE factor can be used to evaluate the degree of separability real­


izable at any level of stratification. This factor is used to evaluate



the performance of BCLUST and of BLOB.



The expected variance reduction factor, RE' is defined as follows:



m 

- p pY
Z("I-rPl 
E P(l - P) 

where



n. the number of pixels in stratum i


I 
n the number of pixels in all strata


m is the number of strata



P. is the true grain proportion in stratum i


I 

P is the true grain proportion in all strata
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If the RE factor is 0, then the strata are either pure grain or pure



other. If R: 1 the strata ar -or purer tha-n the segment as a whole. 

This-latter case is equivalent to unstratified sampling; hence sampling



variance is not improved by such stratification. The value RE = 0.5



is approximately equivalent to an 85% average purity among strata.



Figure 3.13 illustrates the-RE factor of the four strata cases
 


employed in the evaluation. The use of 20 strata significantly reduces



the RE factor from unity, with further reductions with the employment



of 40 and 60 strata, although the latter two cases track closely.



BCLUST strata purity is ultimately limited to the purity of the set



of quasi:-fields. -The associated RE factors for BLOB are listed in



Table 3.12 and plotted as the bottom line in Figure 3.13. In examining



the BLOB RE factor, keep in mind that it is not a linear measure of



purity as a function of the grain proportion, p. As p approaches zero,



RE will increase disproportionally due to the defining ratio expression.



Hence the RE factors of the segments at the right hand side of Figure



3.13 are somewhat inflated. The RE factor of Segment 1652 is large



for a different reason that is further discussed in Section 3.1.2.



Figure 3.13 illustrates, as well, that unless limited by available



crop separability, additional reduction of this factor can be realized.



The employment and evaluation of other stratification strategies is



suggested, at least as a basis of comparison.



3.2.3 EVALUATION OF SPATIAL FEATURE DEFINITION



An integral component of Procedure M is the definition of spatial



features that we call quasi-fields. Quasi-fields are used as labeling



and sampling targets. In addition, scene stratification, described in



Section 2.2,3,is based on an unsupervised clustering of the spectral



means of quasi-fields. Procedure M for spring wheat employs the BLOB



algorithm, described in Section 2.2.4, to structure quasi-fields. A



discussion and evaluation of the performance of BLOB in Procedure M is
 


presented in this section.
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TABLE 3.12 BLOB PERFORMANCE STATISTICS



Quasi-Fields % 

Number % of Grain RE Factor Purity 
With Segment- Propor- Int. Int. Exp. 

Segment Number Interiors Covered tion Pixels Pixels Bias 

1513 1195 378 7.8.9 71.60 0.022 99.4 5.99 

1515 1074 474 80.0 60.58 0.064 97.6 2.61 

1899 1756 415 69.8 58.87 0.043 98.4 5.57 

1642 1181 452 81.2 53.45 0.155 95.2 5.73 

1663 1760 455 66.5 50.17 0.026 98.8 3.48 

1640 1437 488 74.7 48.63 0.114 96.0 4.35 

1662 1021 451 83.7 44.89 0.161 94.4 4.39 

1633 1163 401 79.9 39.67 0.076 97.2 3.21 

1614 1307 445 71.9 38.53 0.253 91.1 2.76 

1652 1209 427 76.5 36.49 0.353 85.4 0.51 

1602 1820 395 60.2 35.66 0.188 93.9 -0.08 

1637 1296 474 79.5 35.04 0.102 96.4 2.54 

1681 1248 477 78.6 34.87 0.071 97.2 1.65 

1606 1927 455 63.1 31.89 0.107 96.1 3.60 

1927 993 442 84.0 29.94 0.099 96.6 1.61 

1512 1319 449 72.2 29.83 0.120 96.0 -0.02 

1498 1027 470 81.5 28.90 0.136 95.3 1.42 

1800 1233 510 79.7 26.76 0.109 96.4 1.58 

1699 697 358 89.5 20.08 0.082 97.6 0.13 

1520 1466 472 70.8 18.42 0.137 96.1 1.72 

1805 1241 461 78.6 14.73 0.333 94.0 -0.89 

1913 979 382 77.6 14.29 0.206 96.7 -0.82 

1669 414' 251 94.9 9.54 0.442 95.7 -0.89 

1104 605 320 89.0 4.61 0.101 98.3 -0.24 

1811 1574 478 72.4 2.46 0.115 98.7 0.23 

1803 866 342 86.2 0.51 0.389 99.0 -0.23 

Average 429 77.7% 96.3% 
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A quasi-field is a set of spatially contiguous pixels that may or



may not correspond to a real farm field. A quasi-field is comprised of



interior pixels and edge pixels. An interior pixel is one whose four



strong neighbors are in the same quasi-field. Procedure M samples from,



and bases its estimate only on, the set of quasi-fields with interior



pixels. Fields comprised of only edge pixels thus form a stratum that



is not sampled.
 


On the average 429 quasi-fields with interior pixels were formed



by the BLOB algorithm in each of the 26 segments used in the procedural



evaluation. This stratum covered 78% of each segment on the average,



with 22% not being sampled. Table 3.12 presents information about the



performance of BLOB on a segment-by-segment basis. Elaboration follows.



The major criterion to be used in evaluating BLOB performance is



whether the quasi-fields formed properly represent the contiguous areas



of spring small grain and other classes. Since a subset of quasi-fields



formed in a segment are used as labeling targets, it is important to



evaluate how these structures are visually presented to the analyst
 


interpreters, and to determine what advantages may arise in labeling,



quasi-fields rather than dots (as in LACIE Procedure 1).



Figure 3.14 is a typical map of the interior of quasi-fields, produced



in Montana Segment 1929. In a region where strip cropping is practiced,



field structure is stiikingly apparent and road boundaries are visible.



Sixty of these quasi-fields have been outlined to illustrate a set of



labeling targets that could be presented to an analyst. Nearly all of



these quasi-fields are associated with real fields. Mixture pixels are



not singled out as targets, though small fields containing only one
 


interior pixel do appear.



Several measures of BLOB performance have been utilized. One



measure, the RE factor, is related to the minimum variance that a sub­


sequent sampling procedure can expect to achieve. The RE factors for



quasi-field interiors are listed in Table 3.12. The RE factor is related
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to the percent purity measure also listed in Table 3.12. Over all seg­


ments, the interiors of quasi-fields formed were found to be 96.3% pure,



that is, only 3.7% of the time were they found to be a mixture of spring



small grain and other. Figure 3.15.illustrates the purity factor for



each segment. -Quasi-field edge pixels dbviously were more mixed than



interior pixels. Interiors, which would operationally be used as label­


ing targets, were found to be composed of a single crop class of interest.



This makes feasible the assignment of single qlass, rather than propor­


tional, labels to fields. In addition it is conjectured that the elimi­


nation of any need to label mixture pixels makes the task of labeling



quasi-fields a feasible one, more so than that of dot labeling.



3.2.4 EVALUATION OF ATMOSPHERIC HAZE CORRECTION
 


During the development of the spatially varying XSTAR haze correction



procedure, attention was focused on computational cost as well as haze



correction performance as criteria for evaluating the algorithm. The



computational cost was observed to be primarily a function of the block



size used to quantize the moving window aspects of the procedure. This



relation between computational cost and block size is illustrated in



Figure 3.16. We had expected that, while the computational cost would



increase as the block size was decreased, the performance should increase



with decreasing window size until the moving window became too small to



provide a statistically representative haze diagnostic for the procedure.



What we observed with respect to performance, however, is shown in



Figure 3.17. Although the figure does not indicate performance for



windows smaller than 15 lines by 15 pixels (measured between half ampli­


tude points), in general we observed no evidence that the performance



Segment 1652 is the only segment whose apparent interior purity



was less than 90%. It was found that the ground truth used to label


many of the strip fields in the segment did not distinguish between



individual grain and other strips, whereas the BLOB algorithm often



could separate the two. The evaluation programs assumed that any blob


labeled 'Strip' was 50% grain and 50% other, resulting in an artificially



lower-average purity.
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leveled off as the window size decreased below the 15 x 15 size. We



decided that the 15 x 15 window size was the smallest practical size for



the window, however, because a smaller window would have required a block



size smaller than 5 x 5 for proper performance, and the computational cost



began to increase dramatically for block sizes smaller than 5 x 5.



Since the spatially varying haze correction procedure applies a dif­


ferent correction to each pixel, performance has been evaluated by measuring
 


the pixel by pixel differences between approximately equivalent scenes



(consecutive day Landsat acquisitions) before and after correction. The



alternative would have been to use ground reflectance measurements from



representative scenes to establish an NEAp (Noise Equivalent Change in



Reflectance) performance figure; however, present reflectance data are



too sparse to provide a proper evaluation of the spatially varying nature



of the algorithm. On the other hand, one inherent limitation in using



pixel by pixel differences between haze corrected consecutive day scenes



as a measure of preprocessing performance is that distortions introduced



to both scenes in an equivalent way (e.g., due to misleading haze diag­


nostics from non-vegetated portions of the scene) are not measured. How­


ever, an approximate assessment of these distortions can be made by



looking for areas of abnormal contrast in a corrected image. In general



the corrected images have been found to exhibit only minor distortions



of this sort, while the beneficial aspects of the correction are dra­


matically apparent in images wherever non-uniform haze is present. Thus,



the performance of the spatially varying haze correction has been sta­


tistically measured by calculating the root-mean-squared Euclidean dis­


tance between registered pixels in consecutive day Landsat data before



and after correction. (This performance measure uses only pixels which



have passed the screening procedure on both days of a consecutive day



acquisition.) Some example results of this type are presented in



Table 3.13 for three scenes in which significant spatial haze varia­


tions were apparent on one or both-days." The RMS error figures in this



table include "error" contributions from some effects other than haze
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TABLE 3.13 RMS ERROR IN REMOVING DIFFERENCES IN CONSECUTIVE-DAY


DATA (IN LANDSAT COUNTS)



Untrans­

formed (UT) Global XSTAR Spatially Varying XSTAR



RMS RMS Improvement RMS Improvement


Error Error Over UT Error Over UT



Segment #1619' 11.7* 10.1* 13.5% 9.1 21.7%


77175-6



Segment #1640 13.7 11.3 17.7% 9.8 28.8%


77139-40



Segment #1927 16.2 11.5 29.1%_ 9.3 42.8%


77193-4



Non-atmospheric effects set a lower bound of 3 to 6 counts on this


RMS error figure, depending on the scene being processed.
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variations. These other effects include bidirectional effects in crop



appearance (due to an approximate 60 change in view angle from one day



to the other), misregistrations of pixels between acquisitions (which



were minimized, but could not be completely removed), and quantization



effents (due to the digital nature of the data). These other effects



set a lower bound of approximately 3 to 6 counts on the 1US error figure,



dependingon the scene being processed. For scenes with uniform haze con­


ditions, the spatially varying XSTAR performance is equivalent to the



global XSTAR performance which has been reported previously [33]. For



scenes with non-uniform haze conditions, the spatially varying XSTAR



performance is a significant improvement over that of the global pro­


cedure, as indicated in Table 3.13. We estimate, based on tests over



numerous consecutive day acquisitions [33], that the XSTAR haze correc­


tion approximately doubles the amount of data which is amenable to signa­


ture extension.or multisegment training applications.
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4 
SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS



4.1 SUMMARY



Procedure M, an objective multicrop area inventory procedure, has



been defined. It is a modular system with state-of-the-art components



which is readily modified or configured for different applications. In



the LACIE context, Procedure M's major differences from LACIE Procedure 1



are: (a) additional preprocessing to correct for atmospheric haze varia­


tions and to perform other normalizations and transformations, (b) defini­


tion and use of more strata, (c) definition, selection, and labeling of



quasi-field interiors in the scene instead of labeling individual pixels,



and (d) proportion estimation without maximum likelihood classification.



Procedure M evolved from, and incorporates developments and understanding



gained from, a series of supporting research and technology tasks that



have been pursued at ERIM, as well as other organizations in JSC's SRT



community.



Procedure M was configured for spring wheat inventory by including



a two-step labeling process. First, an analyst labels each sampled quasi­


field as either 'Spring Small Grain' or 'Other'. Then a machine labeler



refines the label of the 'Spring Small Grain' samples, assigning either



a proportional label between 'Spring Wheat' and 'Other Spring Small Grain'



or the label 'Unidentifiable Spring Small Grain'. The machine labeler



makes use of a temporal profile of the Greenness component of Landsat data



to estimate crop calendar shifts and detects the less rapid maturation or



brightening of wheat.
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4.2 CONCLUSIONS



Extensive tests of the spring wheat configuration of Procedure M



were made using Landsat data from 26 LACIE blind test sites in North



Dakota, South Dakota, Minnesota, and Montana -- five from Phase 2
 


(Summer 1976) and the remainder from Phase 3 (Summer 1977). The tests



were designed to assess both the bias and variance of the procedure's



performance in estimating crop areas, by use of 50 replicates (estimates



using different selections of quasi-fields for labeling) for each test



case. In addition to testing the configuration's design of 40 spectral



strata and 100 samples for labeling, 19 other combinations of strata



and samples were tested.



Accurate two-class (spring small grains vs. other) proportion esti­


mates were achieved in tests using ground truth labels as a substitute



for analyst labels. Only a slight absolute,bias (<2%) was observed and



this was found to be primarily due to not sampling those (small) quasi­


fields which.are without interior pixels. -The use of 40 spectral strata



and labeling of 100 quasi-fields provided low-variance proportion esti­


mates (standard deviation, a = 2.5%). The average reduction of variance



factor was 0.34 for the procedure. Use of more strata or more samples



does not appear to be warranted.



Encouraging but less accurate three-class (spring wheat, other



spring small grains, and other) performance was found when results were



aggregated over the 23 segments-for which proper acquisitions were



available. The absolute bias was relatively low (-2.6% for spring wheat



and +3.8% for other spring small grains) and the variance attributable



to sampling was about the same as for two classes. On the other hand,



segment to-segment variance, largely attributable to labeling errors,



was much larger (a = 9.2%). In analyzing these results, systematic



spring wheat errors were noted for certain subsets of segments. The



fixed decision rule employed by the machine labeler was developed using



four Phase 3 sites. Spring wheat errors were greatest for Phase 3 sites



to the far West and Southwest of the development sites and for two of the
 


96





SRIM



five Phase 2 sites. Nineteen of the twenty-three segments were found



to be in a stratum in which it was reasonable to employ the spring wheat



discriminant developed on four segments. The absolute error of the



spring wheat estimate in this stratum was less than 0.5% with a relative



error of 3%.



Moisture stress is a likely cause of many of the spring wheat label­


ing errors. Moisture stress accelerates the rate of maturation of grains,



the characteristic being used in the labeler. Indications of moisture



stress were found in collateral data for those Phase 3 areas where per­


formance was poorest, leading to hopes that an improved machine labeler



can be developed in the future.



In developing Procedure M we gained understanding and incorporated



improvements in other system components besides the labeler. An unbiased
 


procedure for sampling quasi-fields for labeling was developed and improve­


ments were made in our spectral stratification procedure. Increased know­


ledge of the BLOB algorithm led to the development of a standard parameter



set for use in wheat inventory, as well as a method for maintaining field



definition in spite of cloud-covered data. Also, haze correction pro­


cedures were improved by the development and implementation of a version



that applies a spatially varying correction.



4.3 RECOMMENDATIONS



It is recommended that Procedure M tests be expanded to include



analyst labeling of quasi-fields, a step that has not yet been tested.



In addition, efforts to develop a moisture stress indicator should be



undertaken and the mechanism, when developed, should be incorporated



into the machine labeler to allow appropriate localized adjustment of



the spring wheat decision rule. Continued development of machine label­


ing techniques for these and other crops is recommended.
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It is also recommended that efforts be addressed to possible improve­


ments in o-thet domponents Jf Pfodcdure M- The bias caus-ed by nt -sampling



edge pixels and small fields should be analyzed and corrected. Additional



improvements in the spectral stratification technique can be expected to



further reduce the sampling variance. Finally, the application of ?ro­


cedure M to additional crops, such a corn and soybeans in segments



acquired during the 1978 season, and performance evaluation are recom­


mended.



As was mentioned earlier, JSC's Procedure 1 is an initial implemen­


tation of a statistical sampling viewpoint applied to the spectral domain



of remotely sensed data. Procedure M carries this development further in



several important respects; by the use of state-of-the-art preprocessing,



normalization and feature extraction techniques based on a physical inter­


pretation of Landsat MSS data; by extending the spectral stratification



concept with multiple strata to produce improved sampling efficiency;,by



using an unbiased technique of cluster sampling; by providing natural



(field-like) labeling targets; and by automatic labeling applied to an



especially difficult discrimination problem, spring wheat from other



spring small grains. As mentioned above, further development in these



various component areas is recommended. In addition, in the longer term,
 


further synthesis of classification and sampling viewpoints, and research



toward that goal is recommended. Procedure M is one realization of a



flexible, modular, and efficient testbed which can be used to test ad­


vanced procedures'which will derive from such a synthesis.
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APPENDIX A



PROOF OF UNBIASEDNESS OF MIDZUNO SAMPLING TECHNIQUE
 


The Midzuno sampling techniqueis described and illustrated by



example in Section 2.2.2. This appendix presents both an algebraic



proof of its unbiasedness and an empirical demonstration.



A.1 ALGEBRAIC PROOF



We suppose that



S is a sample of k fields* to be chosen
 


B is the number of fields in the stratum
 


n. is the number of pixels in the ith field



Pi is the proportion of wheat in the ith field



N is the total number of pixels in the stratum



We will prove that the proportion of wheat in the sample



niP i



isS


In.P



icS



is an unbiased estimate of the proportion of wheat in the stratum



X niPi



i E stratum



N



We first show that, as in the example, the technique chooses a



sample with probability proportional to the size of the sample (i.e.,



the number of pixels in the sample).



The sample S of k fields is chosen in one of k distinct ways depending
 


on which field, i, is chosen first. The probability of one of the ways is



In Procedure M for spring wheat, quasi-fields or blobs are the


entities sampled and labeled.



99





ERIM



n. 

k-1 

because the first field is chosen with probability ni/N, 'proportional



to size, and the remaining'k-i fields are chosen with equal probability 

from among the B-i) such subsets. Thus the--subset of k-i fields that 

complete S is chosen with probability ii(k-i When the k terms of 

the sample probability are added up, one term for each way, the result 

is 

i/ B-1 
N Qz 

and thus the sample probability is proportional to the size of the sample



(as measured in pixels).



The sample extimate p is
 


Xnip,



isS 12 

n.
isS 1 

The expected value of is obtained by multiplying the sample proba­

bility by p and summing over all possible samples. In symbols 

I n. nnP i 

is
i -1 

all samples N (B) n 
of k fields k- i n 

As in the example, the number of pixels in the sample X n. cancels out


ieS


of numerator and denominator. 
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We are left with



np 
all samples S isS 

= of size k 

N B-1
N k_ ,



Any one field, i, will occur in exactly samples because the



other fields in the sample can be chosen in that many ways. A term nipi



will occur in the numerator that many times, once for each possible



sample in which Field i occurs. Thus the numerator is



(k-1)B1 In
B

i 
i=1 


and hence



B 
niP i 

= N p Q.E.D. 

A.2 DEMONSTRATION



A FORTRAN program was written to try out the Midzuno technique and



compare it with simple random sampling. We defined a stratum with seven



quasi-fields as follows:



Number of Pixels Percent Wheat



5 10 
10 20 
20 30 
40 40 
70 60 

100 75 
150 90 
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It works out that there is exactly 70% wheat in the stratum. We ran



the program choosing subsets of three fields, first with 400 then with



10,000 replications. The results were as follows:



Sample Stand.


Scheme Replications Mean True Dev. t Significance



Simple 400 65.6 70.0 16.0 -5.50 0.0000001



Midzuno 400 69.2 70.0 13.2 -1.25 0.21



Midzuno 10,000 69.9 70.0 12.5 -0.95 0.34



Using the conventional 0.05 level for determining whether a bias is



significant, we found that the simple sampling scheme was significantly



biased and the Midzuno scheme was not.
 


The simple scheme had a significantly larger variance than the



Midzuno scheme as judged by an F test. The variance ratio of 1.45 was



significant at the 0.001 level.
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APPENDIX B



PARAMETER VALUES OF BCLUST AND BLOB



B.1 BCLUST PARAMETER VALUES



The distance function used in BCLUST (See Section 2.2.3) is defined



as



nehan W ( x j Xj i )jl . ­

j
j-1l 

where



x is the data vector


x. is the mean vector of Cluster i


1



nchan is the number of multispectral channels



Wl, ..., wnchan is a set of weights



If the distance to the closest cluster is greater than T, a new cluster



is formed with its mean at x.



Wl, ..., Wnchan and T are parameters of the algorithm. Each setting



of the parameters produces a different result. The question is, which



setting to use?



2 2
We observe that if w1 , ... , w. and t are all multiplied by the 

same constant, the algorithm is unchanged. We note that if T is increased, 

the number of clusters formed decreases (or may stay the same) and vice 

versa. 

Our performance measure for setting parameters is the R factor (See



Section 3.1.1) which measures the purity of the clusters. A clustering



that purely separates the crops of interest has an R factor of 0, whereas
 


one that produces a constant proportion in all clusters has an R factor



of 1. Thus the smaller the R factor, the better the score of the para­


meter setting.
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A complication is that the R factor tends to go down as the number



of clusters goes up. Therefore to make the parameter runs comparable,



the number of clusters must be held fixed.



The following experiment was run to obtain a reasonably good set



of weights wi, ..., Wnchan BCLUST was run in a multisegment mode on

. 
 

nine segments in Kansas. Winter wheat was the crop of interest. There



were six data channels -- the Tasseled Cap variables Brightness and



Greenness in each of the first three biophases.



The starting point of the search of six-dimensional space was a
 


set of weights in inverse proportion to the ranges of the values of the



variables. For each setting of the weights, BCLUST was run repeatedly



with converging values of T until just 90 clusters were obtained. Then



the R factor for the 90-cluster run was recorded as the score for that



set of weights. The search pattern was to follow the path of steepest



descent to a setting of the weights with the smallest R factor.



It happened that the optimal setting was formed at the starting



point. Any change in weight in any variable or likely combination of



variables resulted in a higher R factor. The values of the weights at
 


the optimal setting are given in Table B.1. Physically speaking, these



values are no surprise. In Biophase 1, the fields are predominantly bare



soil, which has a greater variation in Brightness than green vegetation.



Hence a small weight (inversely proportional to the effective range) is



placed on Brightness, Phase 1. In Biophases 2 and 3, crop development



results in greater variation in the Greenness direction and hence smaller



weights than for Greenness, Phase 1.



As for the'parameter T, it is usually determined by the number of 

clusters wanted. BCLUST has the capability of making repeated runs with 

appropriate changes in T until the wanted number of clusters is obtained 

(with a little leeway). 
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TABLE B.1 OPTIMAL BCLUST WEIGHTS DETERMINED FOR WINTER WHEAT
 

ESTIMATION IN NINE SEGMENTS IN KANSAS



Tasseled-Cap ,


Channel Biophase Weight



Brightness I - 0.6 

Greenness 1 1.3



Brightness 2 0.8



Greenness 2 1.0



Brightness 3 0.7



Greenness 3 1.0



Weights are in inverse proportion to the effective ranges


of the variables.
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The number of clusters, in turn, is chosen with regard to sampling



considerations. It would be a miftake t6 haVe more clusters (strata-)­


than the size of the sample of quasi-fields to be labeled because then



some clusters would not be sampled at all, possibly leading to considera­


ble bias. An equal number of clusters and sampled quasi-fields is no.t



too satisfactory either because the large clusters cannot be awarded



increased sample size. In general, sampling proportionate-to the size
 


of the cluster produces efficient'sampling.



So the number of clusters ought to be small enough to allow sampling



approximately in proportion to size. If such sampling leaves out some



small clusters, then the total of their pixels should be small enough



not to introduce significant bias. Within this constraint, the number



of clusters should be as large as possible, because the greater the



number of clusters, the purer they are with respect to the ground truth.



B. 2 PARAMETER VALUES OF BLOB 

A form of BLOB's distance function (See Section 2.2.4) that favors



rectangular fields is defined as



nchan (x
.
- x 3.)2j 1. 	 x. + - i)j=l 
	 max v-- vI
Lj

 2]­


where



x is the spectral data vector of a pixel


x. is the spectral mean vector of Quasi-Field i



1 

£ and p 	 are the pixel line and point numbers rotated


to measure distance north-south and east-west



i and pi 	 are the mean rotated line and point numbers


for Quasi-Field i



nchan is 	 the number of spectral channels



Vl, ..., 	 Vnchan, v and vp are weights
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If the distance from the pixel to the closest quasi-field is greater



than T, a new quasi-field is formed with its spectral mean at x and its



line and point coordinates at Z and p.



The pattern of quasi-fields depends upon what values of the para­

meters vi, ., Vnchan'~ VP"vand T are set.' A set'of parameters suitable 

for the pioblem of estimating winter wheat-in Kansas was determined as 

follows. 

First, the spectral weights vl, ..., Vnchan were obtained from the



corresponding weights determined for BCLUST by observing that 1/v. plays 
2 

the same role in the BLOB distance measure that w. plays in the BCLUST 


distance measure. So vl, ... , Vnchan were set proportional to the opti­

mal values 


1 1 
2''' 2



W1 Wnchan



Next, the rotated line and point variances, vP and vp, were set



in relation to each other so that the line standard deviation VE£ and



the point standard deviation vv represented the same geographical dis­
p


This ratio is not 1:1 because Landsat pixels are not square.
tance. 


Allowing for rotation and squaring, it tfrhs out that vp/v, = 1.736.



The next question was to find a balance between spatial and spectral



weights that would produce good quasi-fields. Larger values of v. and vp



relative to the other v's emphasize the spectral homogeneity of the
 


clusters; smaller values, the spatial. 
 The criterion of goodness was
 

defined as the expected variance reduction factor, RE ,



n,



Pi )
*n i (l -


E P (l - P)
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where



P. 	 is the proportion of wheat in Quasi-Field i



is the number of pixels in Quasi-Field i
ni 
 

P is the overall wheat.proportion in the segment



n is the number of pixels in the segment



The purity of the quasi-fields with respect to the ground truth is measured



by how small the R factor is.



To find a suitable balance, we-held the spectral weights constant



and compared the RE factor for-three sets of spatial weights, small,



medium and large. (We do not restrict ourselves by this strategy because



raising all the v's and decreasing T by the same factor leaves the algo­


rithm unchanged.) The comparison was made for eight segments and is



shown in Figure B.I.



The general result is that the RE factor is quite stable for all



three settings. The vertical scale has been stretched to show any trend



in the curves. To decide on a parameter setting, we choose one that



these gentle trends indicate is optimal.



The worst case, Segment 1165, has a minimum in the middle but most



of the segments and the average trend indicate a lower setting. A setting



of vX = 3.46 and vp 6.0, midway between the two lower setting, was chosen.
 


A good setting for the parameter T is harder to specify. Some con­

si'derations in setting T are that when T is increased, 

1) 	 the quasi-fields are larger.



2) 	 there are fewer quasi-fields.



3) 	 the RE factor increases (because the larger the quasi­


fields, the less pure they are likely to be).



4) 	 there are fewer "small quasi-fields" (those with no


interior'pixels) which are left out of the stratified


sampling.



108





,6 

.5 -1165. 

1886 

.4 

.3 

* -

1041' 

1851 
AVEA 

1035 

1852 

1865 
1020­

.2 
v,= 
vVp 

'2, 

3.5 
4.9 

8.5 
ill 

19, 

FIGURE B. 1 QUASI-FIELD 

AND 

RE FACTOR FOR THREE SETS 

EIGHT SEGMENTS IN KAIISAS 

OF SPATIAL WEIGHTS 

109 




'RIM



The choice of T depends on the balance we wish to strike between



-considerations 3) and C4)-. -Oh -th 6fie -hand,we woura 'like the quasi­

field interiors to be as pure as possible so that we aren't trying to



label a mixture of crops. On the other hand, we don't want to leave out



of the sampling many small quasi-fields and thereby incur a substantial



bias. A thorough job of choosing T would require the trial of several



values, observation of the percentage of pixels in small fields, measure­


ment of the bias incurred by omitting the small fields (when ground truth



is available) and calculation of the RE factor for quasi-field interiors.
 


For our study of Kansas segments, we chose a constant value (22.0)



of r that made the number of large quasi-fields roughly equal to the



number of fields. This value was associated with the "medium" setting



of v% and vp. To obtain comparable results for the "small" and "large"

91 p 

settings, we chose f for each segment that produced about the same number



of quasi-fields as were obtained with T = 22.0 at the medium setting.



When a setting halfway between medium and small was chosen, a corre­


sponding T (23.2) was,defined.



The BLOB parameters used in the Kansas and North Dakota tests are



given in Table B.2. The BLOB statistics resulting from this choice are



given in Table B.3. A comparison of BLOB statistics for two values of T



was made on a North Dakota segment and is shown in Table B.4.



In Table B.3, we observe that the largest bias incurred by leaving
 


out small quasi-fields is found in the segment with the largest percentage



(35%) of pixels in small quasi-fields. We also observe that the percent



wheat in the small quasi-fields is highly variable -- not at all a repre­


sentative sample for estimating wheat in the segment. In Kansas, the



small quasi-fields overestimated wheat but in North Dakota, the reverse



is true, as shown by Segment 1663 (Table B.4) and by several other North



Dakota segments.
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TABLE B.2 BLOB PARAMETERS USED IN KANSAS AND NORTH DAKOTA TESTS



Tasseled-Cap


Channel 
 

Brightness 
 

Greenness 
 

Brightness 
 

Greenness 
 

Brightness 
 

Greenness 
 

Brightness 
 

Greenness 
 

Number of


Channels Used 
 

2 
 

4 
 

6 
 

8 
 

Biophase 
 

1 
 

1 
 

2 
 

2 
 

3 
 

3 
 

4 
 

4 
 

v29 
 

10.38 
 

5.19 
 

3.46 
 

2.59 
 

-v 
 

18.0 
 

9.0 
 

6.0 
 

4.5 
 

_



25.0



5.3



14.0



9.0



18.4



9.0



21.2



8.1



T



7.73



15.47



23.2



30.9
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TABLE B.3 KANSAS BLOB STATISTICS



% Wheat % Pixels R Factor



Large Small Small Quasi-

Quasi- Quasi- Quasi- Field



Segment % Wheat Fields Fields Fields Interiors



1020 26.1 24.0 43.2 11 0.04



1035 17.7 17.5 18.3 23 0.19



1041 14.4 14.3 15.3 13 0.21



1163 9.3 8.0 13.7 24 0.28



1165 7.1 6.2 8.9 31 0.20



1167 10.1 7.0 15.7 35 0.18



1851 22.8 20.4 33.6 18 0.16



1852 23.4 24.6 15.6 14 0.14



1860 26.1 26.2 25.1 15 0.15



1861 34.9 34.4 42.5 7 0.09



1865 28.5 26.6 34.5 24 0.09



1886 29.7 29.9 28.4 15 0.17



1887 11.4 10.2 17.8 16 0.17



Average 20.18 19.17 24.05 19 0.16



Average Bias -1.0 3.9



Average Absolute Error 1.1 5.5
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TABLE B.4 COMPARISON OF BLOB STATISTICS FOR SEGMENT 1663, N. D., 
USING TWO VALUES OF T 

Time Period Used Usudl T Bigger T 

2 and 3



T 15.47 22.1


No. of big quasi-fields 463 381


% pixels in big quasi-fields 81.4 90.4


% wheat bias using big quasi-fields 2.3 1.1


R factor for quasi-field interiors 0.108 0.137


% purity for quasi-field interiors 92.6 91.9



2, 3 and 4



T 23.2 33.2


No. of big quasi-fields 501 434 
% pixels in big quasi-fields 78.7 87.5 
% wheat bias using big quasi-fields 2.2 1.2 
R factor for quasi-field interiors 0.076 0.109 
% purity for quasi-field interiors 93.7 93.1 

1, 2, 3 and 4 

30.9 44.2


No. of big quasi-fields 502 452


% pixels in big quasi-fields 74.0 85.2


% wheat bias using big quasi-fields 2.4 1.3


R factor for quasi-field interiors 0.045 0.067


% purity for quasi-field interiors 94.1 93.8
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Table B.4 illustrates the dilemma of choosing a value of T. The T



used in our tests--is.in- the 'usual " -column-andvales cf' T half again 

as large in the "bigger T" column. In terms of reduction of variance 

(R factor) the usual T is superior. But the bigger T, with its halving



of the number of pixels in small quasi-fields, cuts the bias in half.



The question is, which is worse, a slight increase in bias.or a slight



decrease in purity? We don't have a definite answer to this question.



Another perspective on purity is provided by the "% purity" figure.



This is defined by



Z n.p. 

n. 

where



P. 	 is the proportion of the majority crop in the interiors


of Quasi-Field i



n. 	 is the number of pixels in Quasi-Field i


The sum is taken over all large Quasi-Fields i in the segment



If all quasi-field interiors were pure, the % purity score would be 100.



If there are only two categories, wheat and non-wheat, the % purity score



cannot fall below P or 1-P, whichever is larger. The difference in purity



scores is very slight.



The 1% average absolute bias-in the Kansas results would seem accept­

ably small by most standards indicating that a-sound value of T was used. 

This judgment is based on the assumption that the bias would be overshadowed



by other larger errors in the system. Whether this bias can be safely



reduced by raising T depends on how the labeling accuracy varies with the



purity of the quasi-field interiors; a relationship that has not been
 


measured, though further investigation of this is warranted.
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APPENDIX C



PROCEDURE M,FLOW CHARTS



This appendix describes the major program flow of Procedure M.



Software flow charts are presented in Table C.1 and program descriptions



in Table C.2.



The procedure is coded primarily in XTRAN, an extended Fortran



compiler developed at ERIM. ERIM's QLINE data processing system pro­


vides the software operating environment, Currently, the software is



configured for use on an AMDAHL 470/V6 operating under the Michigan



Terminal System (MTS).
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TABLE C.1 SOFTWARE FLOW CHARTS 

Phase 1: Data Preparation and Screening 

INPUT PROGRAMS OUTPUT 

Subplxel
Format 

- ILEC 

CONVRT 

I-N 
Pixel IUNIV MERGE 
Data . 
Files 

SCREEN 

Haze 

OUNIV 

Pixel 
UData 

Integer 
Format 

A. N x 4 Data Channels 
B. 7 Ground Truth Channels 
C. N SCREEN Channels 
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TABLE C.1 SOFTWARE FLOW CHARTS (Cont'd)



External Effects Correction and Quasi-Field Definition
Phase 2: 
 

OUTPUT
PROGREISINPUT 

Pixel


Data



XSTARHaze 
 
iagnostl. 

A 4PCAP 

ELDS 15 

BLOB 

STRIPAll


Blobs 

Big 

COMPRSBlobs



0255Pixel In basxed 
Data Integer and 

Real Format 

A. N x 4 TASCAPPED Data 
B. 7 Ground Truth Channels 
C. N SCREENl Channels 
D. 2 BLOB Channels 
F.. IIRItPShannie 
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TABLE C.1 SOFTWARE FLW CHARTS (Cont'd) 

Phase 3: Strata Definition



INPUT - PROGRAMS OUTPUT 

-ILVILEBig BLOB



File



Ground-


Truth


from


COHORS 
 BCLUST



Strata 
BLIST Sumaries
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TABLE C.1 SOFTWARE FLOW CHARTS (Cont'd)



Phase 4: Labeling and Estimation



INT PROGRS OUTPUT



Pixel "MSS 
Data 

Big BLOB 

File Results 
for 

PROM Statistical 

strataAnalysis 

Suwoaries) 

Ground 
Truth 

File TW WAY 

( e In Mixed 
Integer and 

D Real Fomat 

0MSS 

A. N x 4 Data Channels 
B. 7 GT Channels 
C. N SCREEN Channels 
D. 2 BLOB Channels 
E. 1 STRIP Channel 
F. 1 SHIFT Channel 
G. 1 Classification Channel 
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DESCRIPTION OF MODULES AND SUBROUTINES
TABLE C.2 

USED IN PROCEDURE M



CONVRT - Converts Lockheed sub-pixel ground truth codes to pixel 
format. Input is Lockheed, one channel, six sub-pixel 
ground truth. Output is 7 channels of ground truth with 
ERIM codes. Channel number 1 is ground truth code for 
whole pixel. If all six sub-pixels have the same code, 
then the whole pixel is given that code. If not, a zero 
is assigned to that pixel. Channels 2 - 7 are the 6 sub­
pixel codes. 

MERGE - Merges data, i.e., pixel data with ground truth, as needed 
for machine processing. Output is all needed data in 
one file. 

SCREEN - Flag bad data, clouds, shadows, etc. Input is merged data 
file. Output is same file with added screen channels, one 
added channel per acquisition of data. 

PFEAT 	 Calculate spatially varying haze diagnostics which are needed


for haze correction algorithm (XSTAR). Input is merged data


file with screen channels. Output is a separate file con­

taining haze diagnostics.
 


XSTAR 	 To apply a spatially varying haze correction to Landsat data.


Input is merged.data file with screen channels and.the output


file from PFEAT. Output is merged data file with pixel values


corrected for haze.



TASCAP - Performs a Tasselled Cap Transformation on Landsat 2 data. 
Input is merged data file. Output is merged data file with 
transformed data values. 

FLDS15 - To correct ground truth labels coded for 15 visited fields.


Input is merged data files. Output is same files with some


ground truth codes corrected.



BLOB - To group pixels into clusters that are spectrally, homogeneous, 
and spatially contiguous. Input is merged data file. Ouput 
is same file with 2 BLOB channels added. These channels 
contain the blob number that each pixel is assigned.



STRIP 	 Strips off all boundary pixels around each blob. Input is


data file with BLOB channels. Output is same file with


strip channel added. Each exterior pixel is flagged with a


I in the strip channel.
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TABLE C"2 DESCRIPTION OF MODULES AND SUBROUTINES 
USED IN PROCEDURE M (Cont'd) 

COMPRS To compute signatures of MSS data where polygons (blobs) are 
encoded in extra channeis (e.g., blob number). Input is data 
file with blob and strip channels. Output consists of 3 files; 
(a) Means of all blobs, (b) Means of blobs with at least one 
interior pixel called Big Blobs, (c) Ground truth tables.' 

BCLUST To group blobs into spectrally similar strata. 
blob file, and ground truth tables from COMPRS. 
cluster means and other associated inf6rmation. 

Input, Big 
Output is 

BLIST - To provide information for selecting training blobs and 
calculate crop percentage estimates. Input is file from 
BCLUST, Output cluster (STRATA) summaries. 

PROCM - Carries out labelling and proportion estimation as a 
part of a small grains estimation procedure. PROCM call 9 
subroutines, 4 of which (PBREAD, ALLOC, BLBSEL, ESTIM) are 
in a package called AUTO. The following is a brief 
description of each subroutines: 

ALLOC - Allocates training blobs. 

BLBSEL - Selects training blobs. 

CLASIF -Carries out spring wheat vs other small 
grains classification. 

ESTIM 

GTREAD 

- Computes proportion estimate. 

- Creates blob labels from ground truth tables. 

PBREAD 

SHFBLB 

- Reads in necessary information for allocation, 
selection, and estimation routines. 

- Carries out field shift on blob means. 

SHFPIX 

TIlE 

- Carries out pixdl-by-pixel shift. 

- MTS subroutine to provide date and time 
information. 

Input is merged data file with Blob and strip channels, plus 
Big Blob and ground truth files from COMPRS, and STRATA 
summary from BLIST. Output is file for statistical analysis 
and the data file with 2 added channels: (a) Shift channel, 
(b) Classification channel. 

TWOWAY - To produce a twoway table for comparison of the occurrence of 
specified'values in to-tape channels., Input is data file 
with added channels from PROOM. Output is the table. 
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TABLE C.2 DESCRIPTION OF MODULES AND SUBROUTINES 

USED IN PROCEDURE M (Cont'd) 

MISCELLANEOUS SUBROUTINES 

TRUTH - To produce ground truth tables from Lockheed or ERIM 

ground truth tables. Called by "COMPRS". 

GTREAD - To read 
"PROCM" 

ground truth produced by 
and "BSTUFF". 

"TRUTH". Called by 

GTSNIF - To read header record of ground truth tables and pass 
information through common. 

BSTUFF - Stand alone routine to provide diagnostic information 

about blobs. 

MXMPY - To multiply matrices. 

MOVER - To move data from one array to another. 

UNTASS - Perform inverse Tasselled Cap Transformation. 
Called by "XSTAR" and "PFEAT". 

GAMMA - To calculate gamma for "XSTAR". 

XCOEFF - To calculate multiplicative and additive coefficients for 

"XSTAR". 

SATCOR - To return diagonal matrix and additive vector for transforming 
Landsat data to Landsat 2 LACIE segment calibration. Called 

by "SCREEN". 

SUNCOR - Perform cosine sun angle correction on 4 x 4 multiplicative 

transformation matrix. Called by "SCREEN". 

TASSEL - Perform tasselled cap rotation 4 x 4 multiplicative 

transformation matrix. Called by "SCREEN". 

UNCOR - To undo cosine sun angle correction performed by "SUNCOR". 
Called by "PFEAT". 

PCILE - Computes percentile points of histograms. 
certain scene parameters in PFEAT,- such as 
green arm, the mean of soils, etc. 

Used for computing 
the mean of the 
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TABLE C.2 DESCRIPTION 'OF MODULES AND SUBROUTINES 
USED IN PROCEDURE M (Cont'd) 

MISCELLANEOUS SUBROUTINES 

URAND - System subroutine to produce random numbers. 

RANKP - Computes for a vector the rank of each number in the 
vector. It is used-to order a listing of clusters in 
BCLUST according to size. 

VPROD - Computes the inner product of two vectors. 
BCLUST. 

Use in 

RANSUB Generates-a random subset of the integers 1, ... , N. 
Used to get a random sample of blobs in BLBSEL. 
(The first blob is chosen with probability proportional 
to size. The others are chosen with equal probability 
by calling RANSUB.) 

ZERO To zero arrays, written in IBM 370 Assembler language. 
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TABLE C.2 DESCRIPTION OF MODULES AND SUBROUTINES 
USED IN PROCEDURE M (Cont'd) 

I/0 FORMAT SERVICE ROUTINES (FSR's) 

IUNIV 

ILEC 

OUNIV 

IMSS 

OMSS 

ILFILE 

-

-

-

-

-

-

Input routine to read universal formatted tapes -or files. 

Modification of IUNIV, used to read Lockheed ground truth 
data tapes. 

Output routine, writes universal output to tapes or files. 

Input routine to read multispectral formatted data files. 

Output routine to write multispectral formatted data files. 

Input routine to read COMPRS output files. 
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APPENDIX D



DATA BASE FOR TESTING AND EVALUATING PROCEDURE M



Twenty-three Phase 3 and five Phase 2 LACIE blind,sites were



initially selected for the testing of Procedure M. Acquisitions for



each blind site were chosen to best represent the growing season of



spring small grains. The acquisitions for each site were merged into



28 channels of data according to the list in Table D.Il.



The ground truth for each site was merged on a pixel-by-pixel



basis with the acquisition data, forming the next seven channels. The



ground truth codes were converted from the subpixel ground truth codes



produced by LEC to an alternative code and format. Each set of six sub­


pixels was inter-compared; if all codes were the same, the appropriate



value was placed in Channel 29, otherwise a zero was -inserted to indi­


cate that the pixel was not pure. Channels 30 through 35 contain ground



truth codes for each subpixel. One channel per acquisition was added
 


(Channels 36-42) to flag data that were rejected by the SCREEN algorithm.



Of the acquisitions available, those listed in Table D.2 were used



for clustering and stratifying the data. Segment partitions that were



evaluated in Section 2 are listed in Table D.3.
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TABLE D.1 SEGMENTS SELECTED AND YREPARED FOR ANALYSIS-

PHASE 3 

Channels 

Site (state) f-4 5-8 9-12 13-16 17-20 21-24 25-28 

1104 (Mont) 
1498 (SD) 

128 
120 

146 
zero 

.164 
157 

182 
174 

199 
193 

zero* 
210 

236 
zero 

1512 (Minn) 
1513 (Minn) t 

120 
zero 

zero 
140 

156 
157 

174 
175 

193 
193 

zero 
zero 

zero 
zero 

1515 (Minn) zero zero 157 175 193 zero zero 
1520 (Minn) 120 zero 156 174 192 zero zero 
1602 (ND) 
1606 (ND) 
1625 (ND) 

125 
125 
125 

143 
143 
143 

zero 
zero 
zero 

179 
179 
179 

197 
197 
197 

216 
zero 
zero 

zero 
zero 
233 

1640 
1652 

(ND) 
(ND) 

121 
125 

140 
143 

zero 
zero 

175 
179 * 

193 
197 . 

211 
zero 

229 
233 

1663 (NrD) 121 139 157 175 193 211 229 
1669 (SD) 125 143 161 179 197 215 zero 
1681 "(SD) 120 139 156 174 192 210 zero 
1681 (SD}** 120 139 157 175 193 210 zero 
1699 (SD) zero 140 158 176 194 zero 230 
1800 (SD) 120 zero 156 174 192 210 zero 
1803 (SD) 
1805 (SD) 

123 
zero. 

142 
zero 

159 
158 

178 
176 

195 
193 

213 
211 

zero 
zero 

1811 (SD) 120 138 157 174 192 210 zero 
1899 (ND) 
1913 (ND) 
1927 (ND) 

122 
125 
122 

140 
143 
140 

157 
161 
158 

175 
179 
176 

193 
197 
194 

zero 
215 
zero 

zero 
233 
230 

1927 (ND)** 121 140 157 175 193 - zero 230 
1929 (Mont)t 129 147 zero 184 201 220 zero 

PHASE 2 

Channels



Site (State) 1-4 5-8 9-12 13-16 17-20 21-24 25-28 

1614 (ND) 129 zero* zero 183 201' 219 zero 
1633 (ND) 128 147 zero 182 201 zero 237 
1637 (ND) 129 147 zero 182 201 219 237 
1642 (ND) 127 145 163 182 199 zero 236 
1662 (ND) 127 145 163 zero 199 217 236 

Zero indicates that no acquisition was available, and four channels


of zeros were merged to keep the files uniform.



For two segments, consecutive-day coverage permitted the merging


of two substantially different sets of acquisitions.



tTwo sites were eliminated from analysis due to inadequate grounc



truth codes designated for strip fields which dominated the scene.
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TABLE D.2 ACQUISITIONS USED FOR SPATIAL FEATURE


DEFINITION AND STRATIFICATION 

PHASE 3-ITES 

Site Acquisition Dates 

1104 146 182. 199 236 
1498 120 182 193 210 

1512 156 174 193 
1513 157 175 193 
1515 157 175 193 

1520 120 174 192 
1602 143 179 '197 216 

1606 143 179 197 
1625 143 179 197 233 
1640 140 175 193 211 

1652 143 179 197 233 
1663 139 175 193 211 

1669 143 179 197 215 
1681 139 174 192 210 
1681 139 175 193 210 
1699 140 176 194 230 

1800 120 174 192 210 
1803 123 159 178 195 
1805 158 176 193 211 
1811 138 174 192 210 
1899 140 157 175 193 

1913 143 179 197 215 

1927 140 176 194 230 
1927 140 175 193 230 

1929 147 184 201 220 

PHASE 2 SITES 

Site Acquisition Dates 

1614 129 183 201 219 
1633 147 182 201 237 
1637 147 182 201 219 
1642 145 163 199 236 
1662 145 163 199 217 

127 



TABLE D.M3 SEOMENT PARTITIONS 

Problem


Phase 3 Phase 2 Developmental Segments Red River



1669 1614 1498 1637 1498


1681 1633 1515 1652 1512


1699 1637 1640 1662 1515


1800 1642 1663 1913 1520


1803 1662 
 1640


1805 1663


1811 
 1681


1913 
 1927


1927


1513


1606


1899


1104


1498


1512


1515


1520


1602


1640


1652


1663
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APPENDIX E



SEGMENT-BY-SEGMENT LABELER RESULTS



PHASE 3 SEGMENTS WITH GOOD LABELING ACCURACY C > 50% 

SPRING WHEkT BARLEY BOTH' OATS 
SEGMENT NUMBER % RIGHT NUMBER % RIGHT NUMBER % RIG4T NUMBER % RIGhT 

1512 129 72.5 4118- 68.5 - 877 70.5 244 22.1 
1520 392 7P.4 35 Bb.b 427 73.8 170 30.6 
1602 660 82.0 46 s0o.0 706 79,. 50 b8.() 
1bOb 113 72.6 ?L 27.3 135 65.2 20 20.0 
1625 294 76.5 12 91.7 306 77,1 12 50.0 
1681 1049 56, 206 97.6 1255 63.6 1007 6o.7 
1899 162 72.? 49q 81'. 661 79.1 0 0O


1927 1112 75.2 380 88.7 1492 78,6 223 21.1



PHASE 2 SEGMENTS WITH GOOD LABELING ACCURACY ( > 50Z



SPRING WHEAT BARLEY BOTH OATS 
SEGMENT NUMBER % RIGHT NUMBER % RIGHT NUMBER % RIGHT NUMBER % RIGHT

1614 861 52.0 266 90.2 1127 61.0 104 59.6 
1633 1284 60.7 87 88.5 1371 62.5 1289 39.5 
1642 07 58.7 365 518 1439 56,9 1159 39.6



PHASE 3 SEGMENTS WITH POOR LABELING ACCURACY ( < 50%



SPRING WHEAT BARLEY BOTH OATS 
SEGMENT NUMRFR % RTGHT NUMBER % RIGHT NUMBER % RIGHT NUMBER % RIGHT 

1652 ?55 1.9 a 37.5 263 17,5 0 0.0 
1669 .156 1.3 38 00O.0 194 20,6 36 97.2 
1699 6>3 7.7 300 99,0 923 37.4 561 99.5 
1913 424 10.1 17 100.0 441 .13.6 82 96.3 
1929 517 0.2 302 100.0 819 37.0 57 82.5



PHASE 2 SEGMENTS WITH POOR LABELING ACCURACY C < 50% ) 

SPRING WHEAT - BARLEY BOTH OATS 
SEGMENT NUIPER % RIGHT NIMBER % RIGHT NUMBER % RIGHT NUMBER % RIGHT 

1637 1895 2a.1 16 91.3 1941 26,0 1940 75.8 
1662 2902 38.3 290 71.4 3192 41,3 298 86.6 
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SEGMENTS USED TO DEVFLOP MACKI.E LABELING CRIIRION



SPRING WHEAT BARLEY BOTH OATS


SEGMENT NUMBER 
 % RIGHT NUMBER % RIGHT NUMBER 
 % RIGHT NUMOER X RIGHT 

1498 619 66.t 204 76.0 823 - 68.5 902 66.7 
1515 1278 82.9 933 84.2 2211 83.5 L19 18,4

1640 2022 84.q 863 71.0 2885 80.8 0 0.0


1663 1263 94.3 549 71.4 181 87.4 207 3Q.6



SEGMENTS NOT USED IN LABELER PERFORMANCE ANALYSIS



SPRING WHEAT BARLEY BoTH OATS 
SEGMENT NUMBER % RIGHT NUMBER Z RIGHT NUMBFR X RIGHT NUMBER X RIGHT 

1104 n 0.0 15S 100.0 1)5 I0.0 161 100,0
1513 1 100.0 I5 100.0 16 100.0 0 ).0
1800 18 27.8 376 97.1 3q4 93.9 !36o 95.6


1803 0 0.0 0­ 0.0 0 0.0 0 0.0 
1805. 12 8.3 9 100.0 21 417,6 589 85.1 
1811 1 100.0 0 0.0 1 100.0 108 18.5 
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