NASA 8- 159926

- (NASR-CR-159926) 24 CONCEFTUAL DESIGN FOR AN N79-—248,92
"INTEGRATED DATA BASE MANAGENENT SYSTEM FOR

BEMOTE SENSING DATA Fipal Report {Business

and Technological Systenms, Inc.) 408 p Onclas .
_HC A18/MF a01 CSCL 05B G3/82 22958

NTF-346F2

BTS;FR-78-65

A CONCEPTUAL DESIGN
FOR AN
INTEGRATED
DATA BASE MANAGEMENT SYSTEM
FOR
REMOTE SENSING DATA

Paul A. Maresca
R. Michael Lefler

BUSINESS AND TECHNOLOGICAL SYSTEMS, INC,
Aerospace Building, Suite 440
10210 Greenbelt Road
Seabrook, Maryland 20801

Final Report
September 1978

Prepared under Contract No. NAS 5-24360

for

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland 20771

ﬁnﬂ"lﬁg)s[tlﬁd. TECHNICAL

INFORMATION SERVICE

S DEPARIMENT OF COMMERGE
v SPRINGFIELD, YA, 22161

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED
FROM THE BEST COPY FURNISHED US BY
THE SPONSORING AGENCY. ALTHOUGH IT
IS RECOGNIZED THAT CERTAIN PORTIONS
ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

FOREWORD

This report was prepared by Business and Technological
Systems, Inc. under Contract No., NAS 5-24360 for the
NASA/Goddard Space Flight Center. The report describes
& conceptual design for a data base management system
to support a wide variety of scientific applications and
résearch activities. Because of the ever increasing
volume of data from science and applications satellites,
both launched and proposed for the 1980's, Goddard Space
Flight Center is entering an era in its data analysis
activities when it becomes necessary to locate, integrate
and process various remotely sensed data in a timely
fashion to achieve their maximum utrilization and obtain
their maximum benefit. It is imperative that state-of-
the~art techniques in data management be applied to the
problem of providing these data to the end user as quickly
and as easily as possible. To that end, this study was
initiated to design an integrated data base management
system which addresses these problems and others.

‘-&
(e

ACKNOWLEDGEMENTS

The authors wish to acknowledge the contributions pro-
vided to the work reported herein by Dr. Johannes G. Moik,
Technical Monitor, Mr. J. P. Gary, Ms. Karen Posey and
Ms. Rita Jamros, all of NASA Goddard Space Flight Center.
The discussion and ideas that were interchanged dufing
weekly meetings between the authors and these members of
the GSFC/Goddard technical staff have influenced all phases
of this design effort. Additionally, the authors would
like to thank Ms. Patricia McKeever, Ms. Francine Knox and
Ms. Elizabeth Hammond for their able and patient assistance
in typing and editing this report.

111

T

B s W

TABLE OF CONTENTS

Page
SECTION 1 - INTRODUCTION.......'iuiiivrrmaannnnnnen. 1-1
Study Requirements.c. ittt 1-1
The Applicability of Existing Data Base Management
o= 1 1-2
The Conceptual Basis for a New System............. 1-4
Advantages of the Design........ouuiiiinnonn., 1-5
Data FormatsS. . i ittt it it i ettt e e 1-¢
Contents of the Design Document................... 1-10
SECTION 2 - SYSTEM OVERVIEW........... ... 2-1
Conceptual Description.. ... it it it oo, 2-1
2.1.1 The Dual System CoOncCept......vvvurernnnnn.. 2-1
2/1.1.1 The Front-EnG.t nnnennns 2-3
2.1.1.2 The Back-End..........iuiiiiimunnvuniny 2-4
2.1.2 The System Environment...........cveuvuvennn 2-7
The Organization of Information................... 2-7
2.2.1 The Logical View of Data.........covvivn.s. 2-7
2.2.1.1 Data BaseS.......i ittt 2-8
2.2.1.2 Tables....., P R 2-9
2.2.1.3 Data FllesS.......uiiiininrinnenenenenns 2-10
2.2.2 The Physical View of Data.....vv v .on.. 2-11
2.2.2.1 The Storage of TableS........vvriurunnn. 2-11
2.2.2.1.1 Sequential Tables.......... e 2-13
2.2.2.1.2 Superstructures on Tables.............. 2-14
2.2.2,1.2.1 B-Tree IndiceS......uitiiimverununnnnnn 2-15
2.2.2.1.2.2 Inverted IndiceS......uovivrimrennennn 2-16
2.2.2.2 The Storage of Data FileS.........ouuon.. 2-17

3.

A

2

TABLE OF CONTENTS (Continued)

Page
The Global Data Base. ur s ennees e, 2-19
2.3.1 System TablesS.....uuvuienuueni 2~20
2.3.1.1 SYSUSER Table. v eeeeseeseeiaeei 2-21
2.3.1.2 SYSGROUP Table. ... eue e 2-22
2.3.1.3 SYSDB Table. . v oo, 2-23
2.3.1.4 SYSDD Table. .t iine e 2-25
2.3.1.5 SYSREL Table. . vt 2-26
2.3.1.6 SYSDOM Table....vuvur o 2-27
2.3.1.7 SYSAUTH Table. ..ot i, 2--28
2.3.1.8 SYSCATL Table .. v i 2-30
2.3.2 The Data File Directory.......ouuvuuuwnnn ... 2-32
System Design ConceptS. ot et 2-34
Backup and ReCOVEIY iuiirv e 2-35
2.5.1 Command Recovery FacilitieS................ 2-35
2.5.2 System Recovery Facilities................. 2-37
SECTION 3 - USING THE INTEGRATED DATA BASE
MANAGEMENT SYSTEM............oouvun... 3-1
Operator Control......... .., 3-1
3.1.1 Operator CommandS.uvom e, 3-2
Accessing the System........covu . 3-3
3.2.1 The Workspace Table........ou'ononunnii. . 3-3
3.2.2 Access from a Remote Terminal.............. 3-5
3.2.2.1 Utility CommandS.......... ... 3-6
3.2.2.2 Data Definition Commands................. 3-7
3.2.2.3 Administrative Commands...........uou..... 3-7
3.2.2.4 Data Manipulation Commands............... 3-3
3.2.2.5 Data File CommandsS...........uoveerunenn.. 3-8
3.2.3 Access Via the Batch Command Reader........ 3-9
3.2.4 Access from an Application Program......... 3~10
3.2.4.1 Data Independence Within an Application
‘ Program................., e 3-13

TABLE OF CONTENTS (Continued)

Page
3.3 The Data Base Administrator................ovun.n. 3-14
3.4 The User CoOmMMUnLItY. ...ttt et e e e 3-1s5
3.4.1 Defining a New User to the System.......... 3-16
3.4.2 Defining a New Group to the System......... 3-17
3.4.3 Controlling Group Membership............... 3-17
3.4.4 Removing a Group fréom the System........... 3-18
3.4.5 Removing a User from the System............ 3-19
3.4.6 Connecting to and Disconnecting from the
SyStem. o . e e 3-1¢
3.4.6.1 An Interactive USer..........uuvueeuunen... - 3-19
3.4.6.2 An Application Program............eeeo... 3-21
3.5 Relational Data Base Control.......oveuunennnn... $3-22
3.5.1 Defining a Data BaSe. mennennnn. 3-23
3.5.2 Specifying a Data Base for Processing...... 3-23
3.9.3 Defining a Data Field......ouo v enun.. 3-26
3.5.4 Defining a Table............. e e e 3~-26
3.5.5 Expanding a Table.........uouoinienannnnn.. 3-27
3.5.6 Creating and Dropping Superstructures for
Tab eSS . . e e 3-28
3.5.7 Controlling Access to a Table.............. 3-21
3.5.7.1 Granting Access RightS.........couvun.... 3-31
3.5.7.2 Revoking Access Rights...........cvv.u.. 3-33
3.5.8 Manipulating Data in a Table............... 3-33
3.5.8.1 Imserting Records into a Table........... 3-36
3.5.8.2 Updating Records in a Table.............. 3-36
3.5.8.3 Deleting Records from a Table............ 3-37
3.5.8.4 Retrieving Records from a Table.......... 3~-38
3.5.9 Removing @ Table.....v'. oo, 3-40
3.5.10 Removing a Data Field.......'ovurrvunnnnnn. 3-40
3.5.11 Removing & Data BaSe. .. .u e eensenennn.. 3-41

TABLE OF CONTENTS (Continued)

3.6 Using the Data File Directory.........oueueuueeen..
3.6.1 Defining a Directory Table........v'euvenr...
3.6.2 Modifying the Data File Directory..........
3.6.3 Retrieving Data from the Data File

Directory. .o it e e
3.7 The Non-Relational Data Base...........vuuumuunen.,
83.7.1 Adding a Data File to the Non-Relational
Data Base...... ittt iie e e e,
3.7.2 Removing a Data File from the Non-
o Relational Data BaSe.........c.ovvviieennnnn.
‘ 3.7.3 Loading a Data File......vueureeenunen.
3.7.4 Unloading a Data File...... .o rumennn..
3.7.5 Invoking Data File Processing Procedures..
3.7.6 Data File/Table CONVersion.................
3.7.7 Data File Processing by Application
Programs. e ..
SECTION 4 - THE INTERACTIVE COMMAND LANGUAGE.......

4.1 Introduction to the Interactive Command Language. .

4.2 Utility CommandS. ns e
L R T
4.2.2 BRIl . ittt e e e e e e,
4.2.3 ATTACH. ... it i e e e e e
4.2.4 UBE. . ittt e e e
4.2.5 PASSWORD.t i i e
4.2.6 MENU. ...ttt e e e e e,
4.2.7 DESCRIBE.....'iiunimint et eenennn.
4.2.7.1 DESCRIBE DATABASE. ..ottt tenenn
4.2.7.2 DESCRIBE TABLE.uiiimeeemnnennnnn.
4.2.7.3 DESCRIBE 8 P

Vit

4.

4.2.7.4 DESCRIBE COMMAND.oiiirrununennanennn
4.2.7.5 DESCRIBE RIGHTS. it enrnieeennn
4.2.7.6 DESCRIBE GROUP....... 't inneennnennn.
Data Definition CommandsS.........coiuvuvnnen... .
4.3.1 DEFINE...... .ttt e it e eeaaaan
4.3.1.1 DEFINE DATABASE........oovrrvereanenenn..
4.3.1.2 DEFINE TABLE...... ittt iitinn i nns
4.3.1.3 DEFINE FIELD.\ 0t iiinminennnennnnn
4.3.1.4 DEFINE USER.ttt iiimnenimnnnnnnn,
4.3.1.5 DEFINE GROUP.iiiitirninmnnnnensnn
4.3.1.6 DEFINE ASSERTION.t it it i, X
4.3.2 REMOVE.ttt ittt e e e e eiee e e
4.3.2.1 REMOVE DATABASE.t iiriieininnnnn..
4,3.2.2 REMOVE TABLE.ttt i,
4.3.2.3 REMOVE FIELD...... ..ttt enrennnannennnnn
4.3.2.4 REMOVE ASSERTION.........ciiiienvnnrnnn.
4.3.2.5 REMOVE USER....... .0t ininnnnnnin
4.3.2.6 REMOVE GROUP....... 00t innrnnnnnneennns
4.3.8 EBEPAND . . i e e e e,
4.3.4 Generating Data Access Superstructures:
INDEX and INVERT...........cvevunn.

4.3.5 DROPINDEX. ... ittt ittt it iee e
Administrative Commands.............oiviiienvn..n.
4.4.1 GRANT . ..t i et e e
4.4.1.1 Granting Rights on Tables.........ooiuvnn..)
4.4.1.2 Granting Rights on Data Bases............
4.4.2 REVOKE.ii ittt ittt entensneennnnnn
4.4.3 INCLUDE. ... ittt ittt nnen e
4.4.4 ERCLUDE. ... ittt netneeenanannens

TABLE OF CONTENTS (Continued)

viil

[3]

9]

TABLE OF CONTENTS (Continued)

Page
Data Manipulation CommandsS.co it veeeneenanens 4-413
4. 0.l SELECT . ittt ittt i e e et e e e 4-44
4.5.1.1 Query-by-Example Syntax.......cooouuiuun.. 4-45
4.5.1.2 Relational Calculus Syntax............... 4-53
4.5.1.3 The Workspace Tablé 4-57
4.5.1.4 Comparing the Two Approaches............. 460
4.5.2 INSERT.. ...ttt ittt eianens 4-63
4.5.3 UPDATE. ... it ittt it en ettt 4-65
4.5.4 DELETE.ttt ittt it ieaanannn 4-66
4.0.0 DISPLAY . ..ttt it ittt e it e e e 4-67
B T G T 3 0 4-69
Data File Commands.ttt venteeeennsonnnen. 4-70
4.6. L COPY . . it it e e e e e e e 4-72
4.6.2 CATALOG. . . ittt ittt ittt ittt i e e 4-74
4.6.3 UNCATALOG. .. vttt it ittt een e 4-75
4d.6.4 LOAD. ...t i e e e e e e e 4-706
4.6.5 UNLOAD.ttt it ittt i ittt eeiannnn 4-79
4.B8.6 KEEP. ... 'ttt ittt 4-80
4.6.7 SCORATCH. ...ttt it ettt e it an e 4-81
4.6.8 PERFORM.ttt sty 4-82
SECTION 5 - THE APPLICATION PROGRAM COMMAND
LANGUAGE. . .. ittt it it e e i v e e 5-1
Introduction to Application Program Command
L oo T = e I 5-1
Issuing '"Interactive" Commands from an Application
Program. e e e e e 5-2
5.2.]1 TUtility CommandsS. iiee vt inenineeenne.n 5-4
9.2.1.1 The ENTER Command.ouovieeernnennnnns 5-4
5.2.1.2 The EXIT Command.cuouriunnrenennn 5-5
5.2.1.3 The ATTACH Command........¢ouivuveeuennen., 5-5

i

TABLE OF CONTENTS (Continued)

Page
5.2.1.4 The USE Command.uuueieueemnennnn. 5-6
5.2.2 Data Manipulation CommandS...........o...... 35-6
5.2.2.1 The SELECT Command.............uveuvuenn. 5-7
5.2.2.2 The INSERT CommanG. . v uu v ennneenennnn. 5-8
5.2.2.3 The UPDATE CommMANG. + v vt v v vt v s e ee e enen e 5-10
9.2.2.4 The DELETE Command.o.uuuiunnnnnens 5-12
5.2.3 Operations which Support "Interactive"

CommandsS.couvu... J 5-13
5.2.3.1 The BIND Command........uoureeermennnennn 5-13
5.2.3.2 The FETCH Command........... e e e 5-14
5.2.3.3 The LOCK Command 5-15
5.2.3.4 The UNLOCK COmMaNG. « v vt v vv v mvnemeeennn.. 5-16
5.2.3.5 The GET Command.ouuinininennennnn 5-17
Data File CommandsS. ¢ et inenmennenennnn 5-19
5.3.1 The COPY Command.couuiiiinnennnnennns 5-20
5.3.2 The IOAD Command.c.ouiiveunuennnnnn. 5-20
3.3.3 The UNLOAD COMMANG. « . v vt vttt eeens e eeenens 5-21
Data File Processing Operations............c.ov.u.. 5-22
5.4.1 Performing a SLICE Operation............... 5-23
5.4.2 Performing a WINDOW Operation.............. 5-24
5.4.3 Performing a SUBSET Operation.............. 5-26
5.4.4 Performing a REGRID Operation.............. 5-27
9.4.5 Performing a MERGE Operation............... 5-28
Examples of the Use of "Interactive" Commands..... 5-29
Commands Which Access Data Files.................. 5-32
5.6.1 The OPEN Command.couutirnuennnnnnnnns 5-33
5.6.2 The CLOSE Command.vuvevirirnnennnnn, ... o-34
5.6.3 The GETHEAD Command.iuvirmennnnen.. 5-34
5.6.4 The GETHIST Command..........evvveuennnnnn. 5-35
9.6.5 The PUTHEAD Command.uv it rsernnnsan. 5-36
5.6.6 The PUTHIST Command...........ovveuerenennen. 5-36

7.1 An Overview of Data File Processing...............

[N o S N e
13 T S TV R X, T

TABLE OF CONTENTS (Continued)

5.6.7 The READ Command.....ouvuiiearennerrnannanes
5.6.8 The WRITE Command.........c.ceiivtninnosannas
5.6.9 The SEARCH Command.coutrvueennverennas
Miscellaneous CommandS. vovieeenmneennnnnnnss
5.7.1 The FORMAT Command........covuermnnnnonnnnnas

SECTION 6 - THE PHYSICAL STORAGE OF TABULAR DATA..

The Tabular Data Storage Area........... e
PhySical PageS. ittt ettt et e et e
Managing Mass Storage. . ..ottt ittt
Buffers and the Buffer Control Table..............
The Structure of Tables.ttt ienneonas
6.5.1 Storing Records on a Physical Page.........
6.5.2 Holes in 2 Page. ... v ittt it
6.5.3 Variable-Sized Records.........civiiivunnan
Access Method Superstructures.............ccceue...

W b

LSO & >R & - T« 2 B & > T) TN ¢ > T > T 3 B 00
L2 e) o> B o B« > T > S o) T o A TN 014
B W N

NN N NN e

SECTION 7 — DATA FILE HANDLING..........ciiuuuenn

B.1 B-Trees.....cciiii ittt onnnnens
B T-T=Th ol o 3 e 1 o) A
Implementation Within the System.........
Enhancements.ot iiiein i
Arguments Against B-Trees..........vo....

Inverted Indices..........ooiimummnnnnnnn.
Description....... ... i,
Logical Pages............ e
Searching an Inverted Index..............
Maintaining Logical Pages................

N |

-3

~1 ~J
(o) B S ' B

TABLE OF CONTENTS (Continued)

The Data File Catalog........ o e e
The Data File Directory. . v v it ieeinnnen.
The Data File Identifier.......u.iiiiiinnnnnnnn
System Standard FormatsS. ...t tee et enenemenn,

~J

.5.1 A System Standard Format for Image Data....

7.5.1.1 The Header Record in an Image Data File..
7.5.1.2 Data Records in an Image Data File.......
7.5.2 A System Standard Format for Gridded Data..
7.5.2.1 The Header Record in a Gridded Data File.
7.5.2.2 Data Records in a Gridded Data File......
7.5.3 A System Standard Format for Cartographic
Data. . e e
7.5.4 MFOrmAat X e
The LOAD and UNLOAD CommandS.oevuenene...

SECTION 8 - SYSTEM INTERNALS. 't iiinnnnnnn

Control Structure ConceptS. .. vv i i ..
Communications Control Structures.........o.o.eueo..
8.2.1 The Remote Terminal Communications List....

8.2.2 The Application Program Communications

4.1 User Control BloCKS. ... o vueneueeennens .

8

83.4.2 Group Extensions.........c.oiiiiiinnnnnnnn.

8.4.3 Authorization Extensions...................

83.4.4 Data Base Control BlockS........\ouniviu...
8.4.5 Data DictLionarieS..........verornonrnnrnin

8.4.6 Relation Control BlockS........oviernennnn

8.4.7 Domain Extensions..........c.iiiiinninn..

it

8-1
8-1
8-~1

O WO W W
O

© © 0w W Y

(Lo ¢ VIR B 4)

TABLE, OF CONTENTS (Continued)

U S . i ittt it et e e e e e e e
8.5.1 The Command QUEUC. ... uu vt vt e senenrnnnns
8.5.2 The Initiafor QuUeue.cuuvevvuennun.
8.5.3 The Wait QUeUE.ttt it iirie ey
8.5.4 The Output Message Queue..........cuunveuen..
8.5.5 The Interactive Terminator Queue...........
8.5.6 The Application Terminator Queuve...........

SECTION 9 - SYSTEM SOFTWARE. i nn.nn
System Architecture......... ...
The System Generation Program.eeeeueeen.
The System Control Programl.ouvveuunnrnneennen.
The Interactive Command ProCesSSOr..........c.evon..
9.4.1 The Interactive Command Input Processor....
9.4.2 The Interactive Command Terminator.........
The Application Program Interface............c.....
9.5.1 The Communication Modules...........vou.n..
9.5.2 The Application Program Command Processor..
9.5.3 The Application Program Command Terminator.
Lo o B o
The Logical Interface. i innninennnnn
The Physical Interface........ovii i,
The Data File ProCesSSOrttt ittt
The Output MesSsage ProCesSSOr.ot nenenn.

Description and Definition..........
Normalizatdon. ...ttt it e et e e e e e e
A.2.1 TFirst Normal FOrm. ... vt e e ee e

xT1T

A.3
A.4
A.S

TABLE OF CONTENTS (Continued)

Page
Relational Operations and Query Languages......... A-9
= o A-12
The Advantages of the Relational Model of Data.... A-13
APPENDIX B - ADDITIONAL TOPICS. ..ttt imeeannn... B-1
Dynamic Memory Allocation......vuverun e, B-1
B.1.1 Approaches to Dynamic Memory Allocation.... B-1
B.1.2 The Fibonacei Buddy Method...........o..... B-3
Data Integrity, Consistency, and Quality.......... B-6
B.2.1 Sources of Erroneous Data.................. B-6
B.2.2 Backup and Restoration: B-7
B.2.2.1 Audit Trails......... ..., B-7
B.2.2.2 Internal Backout ProviSionsS.............. B-8
B.2.3 The Integrity Subsystem.................... B-10
B.2.3.1 Integrity Assertions............0'v'vinu... B-10
A Locking Mechanism to Support Concurrency........ B-14
B.3.1 Problems Introduced by Concurrent ﬁpdates.. B-14
B.3.2 High Level vs. Low Level Locking........... B-16
B.3.3 Granularity.. .o innt e e B-18
B.3.4 A Physical Locking Mechanism............... B-20
B.3.5 Scheduling Strategies...........c.uurvvun. B-24
B.3.68 DeadlocK........r ittt e B-25
Data Compatibility........ .0l ennnnn.. B-26
B.4.1 The Scope of the Problem.........cooovvu... B-26
B.4.2 An Approach to Data Compatibility.......... B-27
System Security.. ... e B-30
The Macro Command Facility..........vueeriuunnnnn. B-33
BIBLIOGRAPHY . . .ttt e e e, 1

iV

4.-]
4-Za
4-2b

4-10a
4--10b

LIST OF ILLUSTRATIONS
Title

Integrated Data Base Management System Dual
System Architecture........... ... iianns

An Example of Workspace Table Handling and
the Concept of Primary and Secondary Data

Sample TablesS.ttt ettt ee s
Sample Retrieval.........ot i iiiinnnnnnnann
Sample Retrieval Using Comparison Operators.
Sample Retrieval Using AND..................
Sample Retrieval Using OR.........c. ...
Sample Retrieval with Cross Referencing.....
Sample Retrieval Illustrating the COUNT

Sample Linearized Retrievals................
Sample Retrievals Using Relational Calculus

Relational Calculus Retrievals Using
Functions in the Target List............ .
Retrieval with Automatic Units Conversion...
Retrieval with Automatic Output Units
87032 v o <Ji e s HOU
Using the Application Program Command
B =g =P =
Linked List of Free Pages...... ... v
Storage of Records Within a Physical Page...
Physical File Structure for Tables..........
Pointer Structure of,a Tabkle................
Splitting a B-Tree Node During Insertion....
A Sample B-Tree of Order 4........c v
A Prefix Tree Compression for Seven Keys....
Projected Pattern of Usage for Typical
Tables in the System (Other than
Directories). ittt e e e e

Page

Figure

6~-8

7-1

T-2a
7-2b

LIST OF ILLUSTRATIONS (Continued)

Title
An Inverted Index......... .. .0 iiiinennnenn.
Flow of Data Through the System.............
Conceptual Layvout of a Two Dimensicnal File,
Conceptual Layout of a Three Dimensional

Stages Mapping a Four Dimensional Grid into
Records in a File. it vn i,
Integrated Data Base Management System

Software Prccesses and Command Flow....... -

Hierarchy of Lockable Units in a Data Base..
Concurrency Support Substructure............
Tables to Suppert Data Compatibility........

Ui .

Table

LIST OF TABLES
Title

System-Generated FormatsS. iivenenre..
Commands Available to Both Interactive
Users and Appliéation Programs.......coe0u.
A Possible Layout of the Header Recora for
Image Data. ... ottt it et ce i etnie e
A Possible Layout of the Header Record for
Gridded Data. ...t ittt
A Possible Layout of the Eeader Record for
Cartographic Data............ ...
Terminology CorrespondeéncesS.........ceeeuwe..
The Fibonmacei Numbers...............ccucuunn.
Count of Numbers in Various Ranges..........
Count of Numbers in Various Ranges for

¥ =F + F

k k-l k—l

2VLL

SECTION 1 -~ INTRODUCTION
1.1 Study Reguirements

This report presents the results of a study to produce
a conceptual design of an Integrated Data Base Management
System to support a variety of applications research activities.
The design was developed so as to be independent of any specific
computer or operating system. Initially, the system would be
required to support applications investigations in weather and
cilimate. Ultimately, it is anticipated that the technology
developed during this study and presented herein will be used
to support applicaticns investigations in hydrology, agriculture
and relatedjearth resources disciplines. Prior to entering into
Fﬁe actual design phase, a sample of the reguirements of po-
tential users of this system were analyzed. These users included
sclentists performing studies in the above named areas as well
as programmers developing applications software in those areas.

Several factors affecting the design of the system were
brought to light during the evaluation of the user requirements.
Foremost among these was the need fq; the system to maintain
information about a large guantity of data gtored mestly on
magnetic tape in a variety of formats. This information must
be maintained by the system in a form such that users can easily
determine what data is available and locate and retrieve sub-
sets of that data without regard for format or physical location.
Because of the research enviromment in which this system would
operate, users must have the ability, not only to locate a)
desired subset of data, but to be able to retrieve that subset
and structure it into a data base to meet their needs.

Once a user bhas located and retrieved the required data, the
system must provide capabilities such that the data can be
manipulated in numerous ways to obtain the desired results.

1-1

These data manipulation operations must provide users with

the ability to access and update data in on-line data bases
organized for random access as well as the ability to perform
meaningful operations on subsets of the sequentially organized
data in the off-line data base on magnetic tape. Thus, it be-
came evident that significant flexibility in accessing, structur-
ing, relating and processing data within the system was necessary

to support the user requirements.

1.2 'The Applicability of Existing Data Base Management Systems

Since there are currently several data base management
systems available for a number of computers, the possibility
.that one of these systems might éatisfy the requirements
of the user community must be considered. The existing
systems represent what might be referred to as the first
generation of data base management systems. Some of these
systems have been available for several years with relatively
little change. Others have appeared in the past few years,
However, all of these systems share the Ffirst generation
characteristics of a centralized data base with centralized
definition and control of that data base. While these
characteristics are desirable under certain circumstances and
can be realized with the system proposed herein, they would
severely hinder users working in the environment described in the
previous subsection. Thus, the system described in this report,
which we feel is representative of the new generation of
data base management systems, stresses a more flexible approach
to data base management wherein the user has considerably more
control over the organization and processing of his information.

As an example of the operational restrictions of the

current generation of data base management systems, consider
a typical scenario for developing a data base. Initially,

1-2

the data base itself must be designed. This is, very often,
a lengthy process in which an individual with extensive know-
ledge of the data base management system, often referred 1o
as the Data Base Administrator, and several of the potential
users are involved. An attempt is made by this group to
define all of the current requirements for system usage that
might affect data base content and. structure and to foresee
future requirements so that they can be included in the data
base when it is initially designed. The reason for this is
that in most systems it is difficult to restructure or extend
a data base once it has been constructed.

Once the data base has been designed, the Data Base
Administrator must code a description of the data base,referred
to in some systems as a schema. This description is coded in
a language, usually unique to the data base management system
being used, referred to as the Data Description Language.

After coding the data base description, it is compiled by =a
program which is a part of the data base management system,
referred to as the Data Description Language Compiler or Schema
Compiler. Often, subschemas must be defined which describe
various subsets of the entire data base for use by specific
users or applications. These too must be compiled. Thus, in
most of the current generation of data base management systems,
users access the same central data base via different subschemas.

Very often, the addition of files, data fields or new
relationships within an existing data base requires the inter-
vention of the Data Base Administrator. Usually, the Data Base
Administrator must modify the data base description or an exist-
ing description of a subset of the data base or create_a new
description of a subset of the data base; all of which will
require some sort of recompilation. Additionally, the Data
Base Administrator might be required to run a utility program
to perform the necessary restructuring or to unload the data
base and then reload it to make the required modifications. All

of this is often a time-consuming and error-prone process.

1-3

It was felt that the procedures outlined in the scenario
above were intolerable in the environment in which this system
would operate and that some new concepts must be applied to
the design of a system which would be responsive to the needs
of the user community. It should also be noted that none of
the existing data base management systems satisfactorily
address the problem of supporting a large off-line data base

consisting of sequential data files.
1.3 The Conceptual Basis for a New System

Because of the need for fiexibility and ease of use,
the relational data model was chosen over the network and
hierarchical data models to represent data stored in on-line
random access data bases. A data model is simply the way in
which a user logically views data. A more thorough discussion
of the relational model as well as the other data models is
provided in Appendix A of this document. Briefly, the
relational data model permits users to logically view a
data base as if it contained one or more flat, two-dimensional
tables. The rows of a table are analogous to records in a
file while the columns are analogous to data fields in those
records. Additionally, the user does not explicitly define
relationships within a relational data base since the system
maintains these relationships based on the contents of the
tables. Thus, the relational data model provides considerable
data independence between the way in which a user logically
views data and the way in which that data is actually stored
and manipulated by the system. Therefore, the relatiomnal data
model can provide the basis for a much more user friendly
interface to the system and can also be the basis for future
research and development into a near-natural language interface
to the system. For these reasons, it was felt that the relational data
model would provide the flexibility necessary to support the
way in which a scientific user communify would use the system.

In addition to the use of the relational data model,
the design employs the concept of dynamic data definition.
That is, relational data bases and the tables that constitute
them can be created and destroyed dynamically via interactive
commands. Additionally, existing tables can be dynamically
expanded by the addition of data fields and special indices
can be created which facilitate access to data stored in
tables.

* While the relational data model provides a basis for the
description of random access data bases stored on-line, it
does not address the problem of managing a large number of
sequential files on magnetic tape and, perhaps, direct access
deyides. To accomplish this, it was felt that a file manage-
ment system was needed. Thus, a dual system concept was evolveéd
with a relational data base management system as a '"front end"
to provide the necessary flexibility and ease cf access to
on-line data bases and a file management system as a "back end!
to provide access to sequential files in the large non-relational
data base. Additionally, techniques are defined whereby infor-
mation can be transferred between the front and back end of
the dual system. It should be noted that although the approach
defined heréin is somewhat unique, each concept is based upon
work currently being done in the field of data base management
or on techniques that have been applied successfully in data
processing for many years.

1.4 Advantages of the Design

By employing the relational data model to describe on-line
data, the user is freed from the necessity of defining
relationships through which data can be accessed. In essence,
the user need not know how the data is physically stored to
access it. The concept of dynamic data definition permits

& user to create on-line random access relational data bases

as necessary to support his requirements. Thus, the time-
consuming processes of data base definition and, perhaps,
restructuring are all but eliminated.

By employing a file management system to support access
to sequential data files in the off-line, non-relational
data base, the advantages of sequential processing can be

realized when necessary.

Two concepts within the design provide the logical inter-
face between the relational data base management system and
the file management system. These are the concepts of a
data file catalog and a data file directory. The Data File
Catalog is an on-line random access table maintained by
the relational data base management system. It provides
2 one -to-one correspondence between a unique file identifier'
assigned by the system and the physical location of a data '
file. Each time a new sequential data file is added to the
off-line non-relational data base,.a record is inserted in
the Data File Catalog which contains the unique identifier
assigned to the new data file and its physical location.

Thus, at any time, given the unique identifier, the system
can locate the corresponding sequential file in the off—line
data base.

While the Data File Catalog provides the system, and
the users, with knowledge of the physical location of a
data file, it does not provide an indication of the contents
of the file. This information is provided by the Data File
Directory. The Data File Directory consists of one or more
random access on-line tables maintained by the relational
data base management system. Each record in a directory
table contains the data file identifier of a single sequential
file in the off-line non-relational data base. Additionally,
the record will contain values for attributes which are

descriptive of the type of data contained in the data file.
Thus, a record in a directory table describes the contents

of a file but not its physical location. Rather than attempt

to define a static directory structure which might be applicable
to all types of data maintained in the off-line data base, a
dynamic structure was chosen whereby additional directory

tables can be added to the Data File Directory as a function of
new data types entered into the off-line data base. By inter-
actively querying the Data File Directory, a user can locate the
data in the off-line non-relational datas base which might be
required to perform a particular study.

One other advantage of providing file management capa-
bilities is that data from existing systems such as AQIPS
and Smips/VICAR can be processed by users of this system.
Naturally, this is important because of the investment already
made in software systems development and data processing.

At this point, it may be helpful to provide some scenarios,
similar to the one above, which illustrate the use of the pPro-
posed system. The first scenario illustrates the use of the
relational data base management system while the second illus-
trates the interactive processing capabilities of thg file
management system.

As in the previous scenario, a data base must be designed
before it is created. However, the design can be performed
by the user who will create the data base since it will be
tailored to the user's requirements. Since the relational
data base management system supports the dynamic expansion of a
data base by adding tables and the expansion of tables by adding
data fields, the user need not try to foresee future requirements;
thus, reducing the time required in the design phase. After -
the design of the data base has been compieted, the user
interactively defines his new data base and the. tables contained

therein, At this point, data may be entered intc the tables

in the new data base. If, at some later time, new tables

must be defined or existing tables must be expanded or removed,
this can be accomplished very simply with interactive

commands.

If the data to be placed in the newly defined data base
is located in the off-line data base, the user could gquery
the Data File Directory to locate the required data. This data
could then be extracted from the off-line data base using the
-interactive commands and placed into the new relaticnzl datsa
base. As indicated previously, this can be done by the
user interactively with no intervention by the Data Base
Administrator. If data are required that are contained in
other on-line relational data bases, the user can extract
that data from those data bases and transfer it to his own
data base using a powerful set of interactive data manipulation

commands .

An alternate scenario can be envisioned if the data
to be processed by the user is contained in the off-line
data base and is not in a form which can be easily manipulated
interactively in a tabular form via the relational data base
management system (e.g., image data). To process such data,
the user could still locate the data required using the
Data File Directory. However, it would not be placed on-line

in tabular form to be accessed randomly but would be loaded on
a direct access device in sequential form and, in the process,

"converted to one of several system standard formats. These for-
mats ‘are discussed briefly below and in more detail in Section 7
of this document. The data can then be processed via
interactive commands in its sequential form. For example,
functions which can be performed include the regridding of

a gridded. data file, the removal of a two-dimensional slice

from a multi-dimensional gridded data file, the overlaying

of two or more gridded data files, the extraction of a

subset of parameters from a gridded data file or the
extraction of a rectangular window from an image or gridded
data file. Additional functions can be added to those defined
above since this facility is implemented via library sub-
routines., The result of processing a sequential data file
with any of these functions is the creation of a new
sequential data file for which an entry is made in the Data
File Catalog.

The preceding scenarios illustrate a powerful interactive
capablility :for processing on-line, random access data in tables
as well as data in sgquential files, However, the system des-
cription also includes an extensive Application Program Command
Language which provides facilities for manipulating data in tables
és well as data in sequential files by application programs.
Extended file manipulation commands for sequential files are
included in the Application Program Command Language which per-
mit the searching of data files, the standard reading and writing
of data files as well as a re-read capability and a re-write
capabllity. Thus, the Application Program Command Language
extends the capability of an application program to process

sequential files.

1.5 Data Formats

As part of the study, the use of a standard format or
formats for sequential data files was investigated. Since
existing data to be included in the off-line data base were
already in such diverse formats and since new data in unknown
formats must be supported in the future, it was determined that
it would not be feasible to define a single format to encompass all
data. Additionally, it was felt that it would not be practical to
require that all data entered into the off-line non-relational
data base be reformatted prior to inclusion. However, it was

felt that the use of standard formats for internal processing
of sequential data by the system would simplify that processing.
Thus, several types of standard formais have been defined;

one for each type of data managed by the system (e.g.,

gridded, image, etc.). New standard formats can bé defined

as new data types are introduced into the system. Methods

have been defined within this document by which sequential

data files in their original format can be converted into

the proper system standard format.
1.6 Contents of the Design Document

The remainder of this document contains the conceptual
description of the system introduced in this section. The
description is detailed and somewhat technical in nature.

It was intended to provide a working basis for the develop-
ment of a data base management system. Sections 2 and 3
provide an overview of the system and its capabilities.
Section 2 provides a system overview from the internals
standpoint, while Section 3 discusses the use of the

system. Section 4 describes, in some detail, the proposed
Interactive Command Language. Both the relational calculus
based language and a Query-By-Example type language are
discussed. It is intended that whatever interactive

command language would be implemented for the system, it
would be user friendly in that it would carry on a dialogue
with the user to assist him in entering commands.

Section 5 contains a description of the Application Program
Command Language. This includes a proposed calling

sequence for each command and a brief description of each of
the arguments. Section 6 describes an approach to storing
tabular data maintained by the relational data base manage-—
ment system. Section 7 discusses the handling of data files
and the use of system standard formats. While this document
does not attempt to defihe in &etail all system standard

formats, it does include examples of some possible standard
formats. Section 8 discusses the system internals which in-
clude the various control structures required to support the
internal architecture of the system. These control structures
consist of control blocks, control block extensions, dictionaries
lists and queues. Section 9 describes the actual system archi-
tecture including the various modules needed to implement a

A

system as conceived of in this document.

Two appendices are included to provide additional infor-
mation, mostly of a theoretical nature, to the reader.
Appendix A describes the concepts on which the relational
data model is based. Appendix B covers additional topies
which are associated with the design and development of such
a éystem. These include data integrity, consistency and
quality, as well as a discussion of backup‘and recovery
techniques and provisions for supporting concurrent access
to data within the system.

1-11

SECTION 2 - SYSTEM OVERVIEW
2.1 Conceptual Description

This section describes the architecture of the Integrated
Data Base Management System. This system is designed to pro-
vide multi-user access to structured and unstructured data.
Structured data is stored in tabular form while unstructured
data is stored in the standard sequential form. Data stored
in tabular form resides on direct access devices and can have
various types of indices associated with it to facilitate
retrieval. Data stored in sequential form are treated as
standard sequential data files and can reside on any device
which supports the sequential organization of information.
The indices which are associated with tables are constructed
as a function of the data contained in the tables and are
referred to generically as ”supersfructures“. Superstructures
provide rapid access to data in tables and a logical ordering

to records in tables.
2.1.1 The Dual System Concept

To support this dichotomy of data structure, a dual system
concept has been employed. The dual system is comprised of
a "front-end" relational data base management system which
manages information in tabular form and a “back-end" data file
processor which manages sequentially organized files. This
design philosophy not only provides the capability of proces-
sing tabular and sequential data but forms the basis for the
development of a distributed data base system. Naturally,
the entire system can be implemented on a single computer.
However, the back-end data file processor could be implemented
on one or more physically separate computers from the one on
which the front end relational data base management system is
implemented. This would allow the user to locate and access

data which are stored at installations that are remote from

BATCH
COMMANDS

T-¢ 8Indtg

Integrated Data Base Management Systenm

Dual System Architecture

ERONT END | BACK END
|
‘ |
APPLICATION |
PROGRAMS]
|
i |
APPLICATION I
PROGRAM |
INTERFACE |
|
}
t [
' |
N T ok !
" L RELATIONAL DATA
fi’ —b f\ :;‘E 4—> DATA BASE FILE
T C AS MANAGEMENT PROCESSOR
R 1
\E, Dg SYSTEM

RELATIONAL
DATA BASES

the central computing facility on which the front-end relational
system is implemented. Figure 2-1 depicts graphically the
dual system architecture of the Integrated Data Base Management
System.

2.1.1.1 The Front End

The front-end will consist of a relational data base
management system with interfaces which support concurrent
access by multiple interactive users and multiple application
programs. The relational system supports a tabular representa-
tion of data. Logically, data can be viewed as one or more
tables with the data fields as columns and the records as

rOows. New rows may be added toc the tab}e and existing rows
may be deleted. Likewise, new columns may be added to the
table and existing columns may be updated. In the relational

system, one or more tables can be organized into a data base.
Each data base maintained by the relational system is indepen-
dent; however, data may be transferred between data bases.
The definition and removal of data bases and tables is a
dynamic process and is under complete control of the users.
Relationships among data in the tables of a data base are
based entirely on data values. No predefinition of data base
structure or access paths is necessary. Thus, data bases can
be created and new tables added dynamically as a function of
the users' requirements. ,
The data required to control the processing of the rela-
tional system is, itself, stored in.tables. Thus, tables
exist which contain information about the users of the system,
the data bases currently maintained by the system, the tables
contained in each of the data bases, the data fields within
each of the data bases and the rights to perform certain opera-
tions on the tables. The system tables are contained in a
system data base referred to as the Gleobal Data Base. The

Giobal Data Base also contains one or more tables which

2-3

constitute the Data File Directory. The Data File Directory
is the vehicle by which users can locate sequential data files,
maintained by the back-end data file processo}, as a function

of their data content. Any number of tables can be created
and included as part of the Data File Directory. The format
of a directory table is not predefined. Normally, a directory

table will contain data fields which represent attributes of

the data files which it cross references.

Another concept of importance is that of ownership.
Ownership of data bases and tables is of primary importance
in determining who is allowed to remove data bases or tables
and who can grant specific access rights to tables. The
Glopéi Data Base is owned by the Data Base Administrator.
Thué, the Data Base Administrator has complete access to all
information in the Global Data Base. All other data bases
maintained by the relational system are owned by users within
the user community. Tables within data bases may be owned by
the owner of the data base or other users. Only the owner ‘of
a table can grant access rights to that table. Thus, the
owner of a table .can grant operational rights to read, update,
insert, and delete records within a table to the entire user
community or various subsets thereof. Likewise, the owner
of a table may revoke any of those granted rights.

2.1.1.2 The Back-End

The back-end will consist of software, referred to as the
Data File Processor, which manages a large non-relatiomnal data
base consisting of sequential data files. Each data file is
assigned a unique data identifier by the system when it is
created. All references to data files in the front-end

relational system are via a data identifier.

When a new data file is entered into the Non-Relational

Data Base, an entry is inserted into a system table, referred
to as the Data File Catalog, which contains, among other
things, the data identifier and the physical location of the
data file. The data file may be physically stored on magnetic
tape or a direct access device which supports the seguential

data organization.

There are several methods which might be emploved to
generate the data identifier. This document does not attempt
to select the best approach, however, two techniques are
mentioned briefly below. The first technique involves the
generation of a random number containing some fixed number of
decimal digits. Thé number would be converted into the
internal alphanumeric code of the machine on which the system
15 implemented (e.g., ASCII, EBCDIC). The converted string
of digits would become the data identifier for the new data
file. This technique would probably require that an attempt
be made to retrieve a record from the Data File Catalog to
verify that the new data identifier is, indeed, unique.
Another technique would be to use the last two digits of the
current year and the three digit day number as the first five
characters of the data identifier. Two or three other
digits, generated using a counter, could be appended to obtain
the entire data identifier. Thus, each day the counter would
be reset to zero and would be incremented each time a new data
file were added to the Non~Relational Data Base. While this
technique does not require access to the Data File Catalog,
it does require that the system maintain a counter which is
not destroyed should the system terminate abnormally and it
places an upper limit on the number of data files that could
be added in a one day period. A wariation of this technique
would simply use an n-digit counter without including date

information.

A data file may exist in two different formats: its

original data file format and a system standard format. It
is anticipated that the Integrated Data Base Management

System will support several system standard formats. For
example, system standard formats might be defined for gridded
data, image data and other data. New system standard formats

can be defined as required by adding new-format conversion
routines to the system library to convert data files from their
original data file format into the new system standard format.
Data file formats are discussed in a subsequent subsection,

but no attempt is made in the document to define in detail a

working set of system standard formats.

To facilitate the manipulation of data files, several
interactive commands are provided which permit users to con-
trol the content and format of the Non-Relational Data Base
and to transform data files into relational tables and
relational tables into data files. Thus, a user could trans-
form a data file into a table, manipulate the data in the
table, combine the data with that of other tables and trans-
form the resulting table into a new data file. Also, a user
could lcad an off-line copy of a data file on magnetic tape
onto a direct access device or unload an on-line copy to an
off-line magnetic tape. Additionally, a user can invoke
library procedures to perform operations, such as regridding,
on a data file or display or plot the contents of a data file.

Additional facilities exist whereby data files can be
accessed or created by application programs. Using applica-
tion program commands, an application program can open and
close data files, read all or a portion of a data file record,
write records into new data files, search a data file record-
by-record for a particular value, rewrite records in a newly
created data file and process any header and history records
which may be associated with a data file.

2.1.2 The System Environment

The structure of the Integrated Data Base Management
System Software described herein can be divided into several
independent tasks that can be performed in an asynchronous
manner. Implementation of this software structure requires
a multi-programming operating system that can support this
form of subtasking. If the system is implemented on a com-
puter whose operating system does not support these features,
some modifications must be made to the internal software
structure, The asynchronous tasks communicate with each
other through information gueues. Each task will be in a
run state only while it has information to process. At all
other fimes, it will be in a wait state. Thus, several com-
mands in various states of completion can be within the system
at any one time. Two other features which facilitate this
software structure are the dynamic allocation of main memory
and operating system facilities which support reentrant coding.
Neither of these features is mandatory to the implementation
0of the system, as described in this document, since both can
be implemented as part of the software system.

2.2 The Organization of Information

Information managed by the Integrated Data Base
Management System can be viewed at two levels: the logical
level and the physical level. At the logical level, informa-
tion is viewed as data bases, tables and data files. At the
physical level, information is viewed as physical pages con-
taining tabular data, keys and pointers and sequential files

containing data records.
2.2.1 The Logical View of Data

The logical view of data is content oriented. That is,

it is not concerned with storage structures, access methods

or access paths but represents the way in which the users view
data. It is important that the user have the ability to
logically structure information in a natural manner.
Certainly, it is desirable that the system impose as few
restrictions on the logical view of data as possible. To
that end, the Integrated Data Base Management System permits
users to logically structure data into one or more tables of
user defined format and to organize tables into one or more
data bases to satisfy the user's requirements. Additionally,
large volumes of data can be stored in data files.

2.2.1.1 Data Bases

' A data base is a collection of tables. New data bases
can be created at any time. ZEach data base has a name _
associated with it whigh must be unique among data base names
known to the system. The creator of a data base becomes its
owner. Within a data base, tables can be created and removed
as necessary. Each data base has a Data Dictionary associated
'with it. The Data Dictionary contains the description of each
data item in the data base. New data items can be defined as
needed to support the creation of new tables in the data base.
Each data base maintained by the system is independent from
all other data bases. ﬁvery interactive user or application
program can be logically attached for processing purposes to one
and only.one data base at any given time. Data can be trans-
ferred between data bases via a Workspace Table; however, a
user attached to one data base cannot access the contents of

another data base.

The system will support a classification scheme for data
bases. When a data base is created, the system classifies
it as a working data base. The classification of a data
base can be changed at any time by the owner of the data base

or the Data Base Administrator. Besides the working data
base class, the Data Base Administrator can define any data
base classification scheme that is meaningful to the user

community.

A special data base, referred to as the Global Data Base,
is maintained by the system. The Global Data Base is owned
by the Data Base Administrator. It contains the system tables,
all directory tables and any other tables that the Data Base
Administrator determines to be of use to the user community.

2.2.1.2 Tables

A table is a logical view of stored data. New tables can
be created at any time. A new table belongs to the data base
to which the user is attached when the table is created.

Each table has a name associated with it which must be unique
among table names in the data base to which it belongs. The
creator of a table becomes its owner. Tables contain zero
or more records which can be visualized as rows in the table.
Each record contains one or more data fields which can be
visualized as columns in the table.

Columns or combinations of columns can have superstructures
defined on them. As currently defined, the system supports
hierarchical indices, referred to as B-trees, and inverted
indices. Superstructures can be defined when a table is
created or after data values have been loaded into it.

Superstructures may be dropped =2t any time. Rows or records

within a table can be added or deleted. Columns or data
fields can be updated or added. A column can not be physically
deleted but can be set to a null value in all TOWS. The

retrieval of data from a table is based entirely on data values
in the table. Retrieval can be restricted to specific rows

or colunmns. Data from several tables can be retrieved Jjointly
into a special table referred to as the Workspace Table.

2-9

A Workspace Table is associated with each user connected

to the system. The Workspace Table is used to contain the
rows and columns that are retrieved from one or more tables as
a ‘result of a data base query operation. The Workspace Table

associated with each user is not contained in any data base.
Since it is not contained in any data base, the Workspace
Table can be used to transport data from one data base to
another. The contents of a Workspace Table can be accessed

only by the user with whom it is associated.

When a table is created, access to it is limited to its
owner and the Data Base Administrator. Either the owner or
the Data Base Administrator can grant rights to perform the
following operations on the table: read, update, insert and
delete. The operational rights can be granted to individual
users, to groups or to the entire user community. Likewise,
only the Data Base Administrator or the owner of a table can
revoke rights that have been granted on the table. Certain
other functions, such as the addition of columns to a table
or the removal of the table from a data base, are limited to
the Data Ease Administrator, the owner of the data base contain-

ing the table or the owner of the table.
2.2.1.3 Data Files

A data file is a collection of records which is treated,
as an entity by the system. Each data file has a unique
identifler, referred to as the data ddentifier, assigned to
it when it is entered into the system. The data identifier
is used to reference the data file as an entity. Data files
can be stored on any on-line device which supports the sequen-
tial organization of data. However, the primary function of
data files is the storing of large quantities of data in an
off-line mode on magnetic tape.

The collection of all data files known to the system is
referred to as the Non-Relational Data Base. The system

2-10

maintains a catalog of all data files in the Non-Relational
Data Base. Existing data files may be added to the Non-
Relational Data Base by simply inserting a new entry into the
Data File Catalog. Likewise, a data file in the Non-
Relational Data Base can be removed by desleting its correspond-
ing entry in the Data File Catalog. When a data file is
entered into the Non-Relational Data Base, it is assigned a
read-only status so that the data file can not be overwritten.

Data files in the Non-Relational Data Base can be accessed
on a record by record basis by application programs.
Application program facilities exist to read or search datsa
files and to write new data files. Using the Interactive
Command language, a data file can be copied from an off-line
device to an on-line device and from an on-line device to an
off-line device. Also, a data file can be transformed into
a iable and a table can be transformed into a data file.

2.2.2 The Physical View of Data

The physical view of data involves the actual storage
mechanisms employed in the system to support the logical view.
Because of the dual system concept on which the logical design
is based, the physical storage facilities must support both
tabular data stored in relational data bases and sequential
data files stored in the Non-Relational Data Base. Thus,
the information space managed by the Integrated Data Base
Management System is partitioned into an area of on-line
storage where tabular data are stored and an area of storage
consisting, for the most part, of magnetic tapes on which

sequential data files are stored.
2.2.2.1 The Storage of Tables

The area in which tabular data are stored must be on-line

and can span multiple packs and multiple direct access devices.

2-11

The mapping of the tabular data storage area to the physical
storage media occurs at system generation time. At any other
time, a utility program can be used to extend this area.

The area in which tables are stored is subdivided into
bages. A page is the basic unit of storage for tabular data
and consists of a fixed size block of data which is transferred
between peripheral storage and main memory by a single I/0
operation. The size of a page is defined at system generation
time and cannot be changed. A page may contain data records
from a table or superstructure records associated with a table
or the page may be part of the free pool of unused pages.

Some portion of the tabular storage area will contain "before!
images- of pages that have been modified by commands in pro-
gress. These "before" images facilitate dynamic restoration
of data bases when a command that was rerforming an update
operation is aborted by the user or terminated prematurely due
to an -I/0 error. A more detailed discussion of "before"
images and dynamic recovery technigues is contained in the
subsection entitled Backup and Recovery in this section.

Some area of main memory is allocated for page buffers.
The size of a single page buffer is the same size as a page
of data in the tabular data storage area. A default value
is specified for the number of page buffers at system genera-
tion time. However, a different value can be specified each
time the system is started. The transfer of pages between
peripheral storage and the page buffers in main memory is
controlled by the Integrated Data Base Management System on
an as needed basis. An algorithm for buffer usage control
is defined in Section 8.

The actual -content and format of a page in the tabular
data storage area depends upon the table to which the page has
been assigned and the function of the page. Each page
assigned to a table will contain either data records, records

2-12

from a hierarchical B-tree index or records from an inverted
index. Each page will contain a prologue which specifies the-
characteristics of the information stored on that page. Each
data record on a data page will, itself, have a prologue con-
taining one bit for each data field in the record. A bit

will have a particular setting to indicate that the correspond-
ing data field contains a data value and the opposite setting
to indicate that the data field contains a null value. A
data field will contain a null value if no wvalue was specified
for it when the data record was inserted intc the table. No
pointers to other records are stored within pages containing
data records from a table. Therefore, superstructures can

be added to or dropped from a table without affecting the

data pages of a table.

2.2.2.1.1 Sequential Tables

A table which has no superstructures associated with it
is referred to as a sequential table. Data records in a
sequential table have the same physical storage structure as
those in tables for which superstructures exist; however,
there are some differences in their processing. Since no
superstructures exist to faclilitate access to a seguential
table, the retrieval, update and deletion of records requires
the sequential searching of the data records and, in some
cases, requires the accessing of every record in the table.
Also, the holes in data pages caused by the deletion of data
records are not reused. All new records inserted in a

sequential table are stored at the logical end of the table.

At any time, a user can create hierarchical B-tree or
inverted indices on a sequential table. Vhen this occurs, the
table ceases to be processed as a sequential table. Whenever pos-
gible, the superstructures are used to facilitate access to data
records in the ftable and any existing holes in data pages
become available for the insertion of new -data records. If

2-13

all superstructures are dropped from a table. the table becomes
a sequential table and is processed as such. Any existing
holes in the data pages of the table become unavailable for

the insertion of new records,

Sequential tables are useful in cases where the contents
of a table are static, all or almost all data records are
retrieved whenever the table is read and the ordering of records
is immaterial or the data records must be retrieved in the
order in which they were inserted. Also, if the number of
data records in a sequential table is such that they can all
be stored on one or two data pages, it may be more efficient
to treat the table as a sequential table rather than create

superstructures for it.
2.2.2.1.2 Superstructures on Tables

The term superstructure is used generically to refer to
any type of indexing scheme for tabular data which is supported
by the Integrated Data Base Management System. Superstructures
are used to reduce the time required to access data records in
a table or to provide a logical ordering of data records in a
table.- The system, as described in this document, supports
two types of indexing for tabular data: +the hierarchical B-

tree index and the inverted index.

Superstructures can be created on single data fields or
multiple data fields in a table. Any data field in a table
can have elther a B-tree or inverted index created on it, but
not both. Both B-tree indices and inverted indices can be
created on multiple data fields. A data field or combination
of data fields on which a superstructure has been created is

referred to as a key field.

Superstructures created for tables are stored on separate
pages from the data records in the table. Superstructures

can be created for tables and dropped from tables dynamically
under user control. The creation and dropping of superstructures
does not affect the data pages of a table. Whenever a table

for which one or more superstructures have been created has a
data record inserted, deleted or updated, all of its super-
structures are modified to reflect the new contents of the

table.

2.2.2.1.2.1 B~-Tree Indices

A B-tree index can exist for any data field or combination
of data fields in a table. A single data field for whiech a B-
tree index exists can not have an inverted index created for it.
However, a data field which forms part of a combination B-tree
key field can, itself, have either a B-tree or inverted index
created for it. Thus, by specifying a single data field as a2
combination B-tree key field, the data field can have, in effect,
both & B-tree and an inverted index created for it.

When a B-tree index is defined for a data field or combina-
tion of data fields, a uniqueness condition can be specified
indicating that no duplicate key values are permitted. If
the insertion or modification of a data record in a table
would cag§e a duplicate key value to be added to a B-tree
index for which the unigqueness condition has been specified,
the operation will be aborted. If the uniqueness condition
is not specified for a B-tree index, duplicate key values will
be permitted.

Each B-tree index consists of one or more index pages
organized in an hierarchical structure sometimes referred to
as a tree structure. Fach index page contalns one Or more
key field values and their associated pointers to lower level
pages in the tree. Pages in the lowest level of the index
contain key values in ascending order and assoclated pointers
to the data records containing the key values.

A B~tree index should be created for data fields that
will contain unique or nearly unique values since there is a
one-to-one correspondence between a key value/pointer pair in
the lowest level of the index and a data record in the table.
The advantage of a B-tree index is that one record or a group
of records can be located in a large table with very few I/0
operations. Also, a B-tree index, as described in this docu-
ment, causes the data records in a table to be logically
ordered on a data field or combination of data fields that
have been specified as a B-tree key field. Thus, data
records can be retrieved from a table in the ascending sequence
of data values in a B-tree key field.

2.2.2.1.2.2 Inverted Indices

An inverted index can exist for any data field or combination
of data fields in a table. A data field for which an inverted
index exists can not have a B-tree index created for it; how-
ever, it can be part of a combination B-tree key field

Each inverted index consists of two parts: a domain
directory and a set of pointer lists. The domain directory
contains one entry for each distincet value found in the data
field on which the inverted index was created. Each entry
in the domain directory consists of a data value and a pointer
to the corresponding pointer list. There 1is one pointer list
associated with each domain directory entry im an inverted
index. Each pointer list contains one or more pointers to
data records in the table which contain the data value in the

associated domain directory entry.

An inverted index should be created for data fields where
the same value will be repeated in several records so that
there is a one-to-many correspondence between a data value in
a domain directory entry and the pointers in the associated
pointer list. The advantage of an inverted index is that 2a
set of data records that contain a specific value can be

2-16

located rapidly without accessing the data records themselves.
Also, boolean operations can be performed easily on data fields
for which an inverted index exists. After locating the domain
directory entries containing the data values of data fields
specified in a boolean expression, the boolean operations are
berformed on the associated pointer lists yielding a resulting
pointer list containing pointers to all data records satisfy-
ing the boolean expression.

2.2.2.2 The Storage of Data Files

A data file is a collection of records organized for
sequential access and terminated by an end-of-file mark. A
data file can contain either data in its internal binary
reﬁresentation or data which has been converted to some
external codg such as ASCII or EBCDIC. Up fo three copies
of a data file can exist simultaneously and be referenced by
the same data identifier. These include an off-line copy on
magnetic tape in its original data file format, an on-line copy
on a direct access device in one of the system standard for-
mats and an off-line copy on magnetic tape in the same system
standard format. Any one or a combination of these forms of
a data file can exist and their physical locaticn be maintained
by the system in the Data File Catalog.)

While it will not be a requirement of the system that
data files be put into a system standard format prior to being
entered into the Non-Relational Data Base, the use of system
standard formats will be encouraged so as to facilitate the
sharing of data among the Integrated Data Base Management
System and other information processing systems. A1l data
files created by application programs using the facilities of
the Integrated Data Base Management System will be in one of
the system standard formats. Also, the loading of a data file
to a direct access device by the system will cause it to be

converted to one of the system standard formats unless it is

2-17

already in such a format. It is anticipated that all data
file processing procedures invoked through the Integrated
Data Base Management System will read and write data files in
a system standard format. The general structure of a data
file in a system standard format includes a header record
which has a fixed format and describes the format of the data
records in the data file, zero or more processing history
records in a free format and one or more data records whose
format is a function of the type of data contained therein

(e.g., gridded, image, text, etc.).

An indication of the format of each copy of a data file
is stored along with its physical location in the Data File
Catalog. During the loading of a data file from magnetic
tape to a direct access device, the format indicator is used
to locate a module, residing in the Integrated Data Base
Management System library, that can be loaded and used to
access the data file. If the off-line copy of a data file
to be loaded is already in one of the system standard formats,
the corresponding input module will perform no format conver-
sion but may perform windowing on the data file causing a data
file with a different data identifier to be created. If the
off-line copy is in its original data file format, it can be
loaded on-line only if an input module corresponding to the
data file format has been placed in the library. If an in-
put module exists for the data file format, any data files
in that format that are loaded on-line will be converted, by
the input module, to a predefined system standard format.
Thus, existing data files can be entered into the Non-
Relational Data Base without first being put into a system
standard format.

Data files can reside on magnetic tapes or direct access
devices. One magnetic tape can contain more than one data
file and a data file can span more than one magnetic tape.
Data files created by application programs or internal

2-18

procedures will be stored, initially, on a direct access device
in one of the system standard formats. If required, the data
file can be unloaded to magnetic tape in the same system stan-
dard format by an application program or interactively.
Data files residing on a direct access device may be stored
in a non-contiguous manner if this facility is supported by
the operating system of the computer on which the Integrated
Data Base Management System is implemented. That is, the
data file may be physically fragmented on the direct access
device but will be treated logically by the system as an
entity. If this facllity is not supported by the operating
system, an alternative approach would be to write new data
files created by application programs or internal procedures
dirgcfly to magnetic tape since it would be difficult for the
sysfem to anticipate the amount of direct access space reguired
to store a new data file so that contiguous space could be

- preallocated. Another option is to have the user specify
the amount of direct access space required for storage of a
new data file. While this might be feasible for cexrtailn types
0f data, such as image data, the reqguirement of preallocating
contiguous direct access space for a data file would lead, in
general, to inefficient use 0f fthe space available for the

storage of data files and should be avoided, if possible.
2.3 The Global Data Base

The Global Data Base is a relational data base which is
automatically defined at system generation time by the System
Generation Program. The Data Base Administrator is the
\owper of the Global Data Base. The Global Data Base con-
tains the system tables which control much of the processing
within the system. The tables which constitute the system
Data File Directory also reside in the Global Data Base.

At any time, the Data Base Administrator can create new
tables in the Global Data Base which are neither system tables

nor directory tables. Presumably, these tables would contain
information of general interest to the user community. The
Global Data Base is structured in the same way as any other
data base within the system. Any operations that can be per-
formed on user defined data bases can be performed on the
Global Data Base. However, access rights which would allow
the tables in the Global Data Base to be modified will be
restricted or controlled by special commands. Also, access
rights which would allow retrieval of certain information

from the system tables may be restricted or controlled by
special commands. Thus, the purpose of the Glocbal Data Base
is to contain system information in a form that is consistent
with that of other information, to provide a repository for
information that is of interest to the entire user community
and to permit the Data Base Administrator to control access

to this information.
2.3.1 System Tables

All system tables are contained within the Global Data
Base. They are automatically defined at system generation
time by the System Generation Program. The system tables are
used to store system control blocks and other system related
information. Special commands are available to the user
communify to define and remove data bases, data fields, and
tables and to grant and revoke access rights to tables.
Additional privilaged commands are available to the Data Base
Administrator to define and remove users from the system,
define and remove user groups and to catalog and uncatalog
data files. These commands ultimately cause one or more
system tables to be modified. Only the Data Base Administrator
is permitted to use the full complement of data manipulation
commands on the system tables. System tables are stored and
accessed in the same way as all other tabular data. Super-
structures are defined for the system tables by the System

Generation Program to facilitate the storage and retrieval of
data records by the Integrated Data Base Management System
software. As the owner of the system tables, the Data Base
Administrator can create additional superstructures on them
to support any additional processing requirements. However,
the Data Base Administrator can not drop any superstructure
defined on a system table by the System Generation Program,
The following subsections describe briefly the contents and
structure of each of the system tables.

2.3.1.1 SYSUSER Table

The SYSUSER table contains one record for each valid user
of the system, including the Data Base Administrator. Each
record in the SYSUSER table contains a User. Control Block.
The User Control Block contains user descriptive information
and is described in Section 8.

_ When a new user is defined to the Integrated Data Base
Management System by the Data Base.Administrator, a User
Control Block is created for the user and is inserted, as a
record, into the SYSUSER table. If an attempt is made “to
add a new user to the system whose user-id will duplicate that
of an existing user, the new user will be rejected because a
unique B-tree index exists on the user-id field of the SYSUSER
table. The B-tree index on the user-id field also provides
a logical ordering by user-id of the records in the SYSUSER
table.

When a user connects to the Integrated Data Base
Management System, the record containing the user's User
Control Block is retrieved from the SYSUSER table. The
record 1s located using the unigue B-tree index created on the
user-id field. When a user is removed from the Integrated
Data Base Management System by the Data Base Administrator,

the record containing the User Control Block for the user is

2-21

located via the B-tree index on the user-id field and the
record is deleted from the SYSUSER table.

2.3.1.2 SYSGROUP Table

The Data Base Administrator can define a group for the
purpose of granting common access rights to all users belong-
ing to the group. The concept of group access rights is
discussed in Section 3. The SYSGROUP table contains one
record for each group defined within the Integrated Data Base
Management System and one record for each user in each group.
Thus, the SYSGROUP table contains two types of records: one
record which defines the existence of a group and zero or
more records which specify the users who belong to that group.
The collection of all records that specify to which groups a
user belongs constitute the Group Extension for that user.
The Group Extension is described in Sectiion 8.

When a new group is defined to the Integrated Data Base
Management System by the Data Base Administrator, a record
containing the name of the group and a blank usér-id field is
inserted‘into the SYSGROUP table. This recoxrd indicates the
existence of the group and is used for verification purposes
whenever a2 user is included in the group. When a user is
included in a group by the Data Base Administrator, a Group
Extension entry is created for the user and is inserted, as a
record, into the SYSGROUP table. ~If an attempt is made to
add a2 new group to the system whose group name will duplicate
that of an existing group or an attempt is made to include a
user in & group to which he already belongs, the request will
be rejected because a unique B-tree index exists on a combina-
tion of the user-id and group-name fields in the SYSGROUP
table. The B-~tree index on the combination of user-id and
group—name also provides both a logical grouping by user-id
and a logical ofdering by user-id and group-name to the records
in the SYSGROUP table.

When a user connects to the Integrated Data Base
Management System, any Group Extension records associated with
the user are retrieved from the SYSGROUP table to form the
user's Group Extension to the User Control Block. The
records are located using an inverted index created on the
user-id field. Each entry in the Group Extension will point
to an Authorization Extension in main storage which specifies
the access rights granted to the group represented by the
entry. For the purpose of determining the user's right to
access tables, these group access rights will be treated as
if they had been granted to the individual user.

When the Data Base Administrator removes a user from a
group, the record corresponding to the specified user and
groﬁp is deleted from the SYSGRQUP table. The record to be
deleted is located via the unigue B-tree index on the combina-
tion of user-id and group-name fields. When the Data Base
Administrator removes a group from the system, all records
containing the specified group-~name are deleted. This includes
the record containing a blank user-id field which defines the
existence of the group and any other records which contain the
user-id of users belonging to the group. The records to be
deleted are located via an inverted index on the group name
field.

2.3.1.3 SYSDB Table

The SYSDB table contains one record for each data base
defined within the Integrated Data Base Management Systen,
including the Global Data Base. Each record in the SYSDB
table contains a Data Base Control Block. The Data Base
Control Block contains information pertaining to the data base
and is described in Section 8.

~ When a new data base is defined to the Integrated Data
Base Management System by a user, a Data Base Control Block

2-23

is created for the data base and 1s inserted, as a record,
into the SYSDB table. If an attempt is made to define a new
data base with a2 data base name which duplicates that of an
existing data base, the new data base will be rejected because
a unigue B-tree index exists on the data~base-name field of
the SYSDB table. The B-tree index on the data-base-name
field also provides a logical ordering by data base name of
the records in the SYSDB table.

If a user connected to the Integrated Data Base
Management System indicates an intent to process information
in a data base whose Data Base Control Block is not resident
in main storage, the record containing the Data Base Control
Block for the data base is retrieved from the SYSDB table.
The record is located using the unique B-tree index created
on the data-base-name field. Additional records associated
with the data base may be loaded from other system tables at
that time. When a data base is removed from the Integrated
Dara Base Management System by a user, the record containing
the Data Base Control Block for the data base is located via
the B-tree index on the data-base-name field and the record
is deleted from the SYSDB table.

Additional superstructures are created on the SYSDB
table by the System Generation Program to facilitate the
retrieval of information about data bases using the DESCRIBE
command which is available to the user community. Inverted
indices are created on the data base classification field,
the date created field and the field containing the user-id
of the owner of the data base. Thus, the DESCRIBE command
can retrieve information about data bases maintained by the
Integrated Data Base Management System as a function of the
data base classification, date created or owner of the data

base.

2.,3.1.4 SYSDD Table

The SYSDD table contains one record for each data field
in each data base defined within the Integrated Data Base
Management System, including the Global Data Base. Each
record in the 3YSDD table contains a Data Dictionary entry
which describes the attributes of the data field which it
defines, The collection of all records that define data
fields in a data base constitutes the Data Dictionary for that

data base. The Data Dictionary is described in Section 8.

When a new data field is defined by a user for an exist-
ing data base, & Data Dictionary entry is created for the
data field and is inserted, as a record, into the SYSDD table.
If 'an attempt is made to define a new data field with a field
name which will duplicate that of an existing data field in
the same data base, the new data field will be rejected
because a unique B-tree index exists on a combination of the
data-base-name and field-name fields in the SYSDD table.

The B-tree index on the combination of data-base-name and
field-name also provides both a logical grouping by data base
and a logical ordering by data base name and field name to the
records in the SYSDD table.

When a user indicates an intent to process information
in a data base whose Data Base Control Block is not resident
in main storage, all Data Dictionary entry records associated
with the data base are retrieved from the SYSDD table to form
the Data Dictionary for the data base. The records are
located usiﬁg an inverted index created on the data-base-name
field. Additional records are loaded from other system
tables at that time, When a data field is removed from a
data base by a user, the record containing the corresponding
Data Dictionary entry is located via the B-tree index on tﬁe
combination of data-base-name and field-name and the record
is deleted from the SYSDD table.

2.3.1.5 SYSREL Table

The SYSREL table contains one record for each table in
each data base defined within the Integrated Data Base
Management System including the system tables in the Global
Data Base. Each record in the SYSREL table contains a
Relational Control Block. The Relation Control Block contains
information pertaining to the table and is deseribed in

Section 8.

When a new table is defined by a user for an existing
data base, a Relation Control Block is created for the table
and is inserted, as a record, into the SYSREL table. If an
attempt is made to define 2 new table with a table name that
will duplicate that of an existing table in the same data
base, tHe new table will be rejected because a unique B-tree
index exists on a combination of the data-base-name and table-
name fields in the SYSREL table. The B-tree index on the
combination of data-base-name and table-name fields also
provides both a logical grouping by data base and a2 logical
ordering by data-base-name and table-name of the records in
the SYSREL table.

When a user indicates an intent to Process information
in a data base whose Data Base Control Block is not resident
in main storage, all records containing Relation Control
Blocks for tables in the data base are read from, the SYSREL
table. The records are located using the unigue B-tree
index created on the data-base-name and table-name fields.
When a table is removed from a data base by a user, the record
containing the Relation Control Block for the table is located
via the B-tree index on the combination of data-base-name and
table-name fields and the record is deleted from the SYSREL
table.

2.3.1.6 SYSDOM Table

The SYSDOM table contains one record for each data field
in each table in each data base defined within the Integrated
Data Base Management System, including system tables in the
Global Data Rase. Each record in the SYSDOM table contains
a Domain Extension entry. Whereas, & Data Dictionary entry
describes the general attributes of a data field, a Domain
Extension entry contains information pertaining to a data
field as it is used in a particular table. The collection
of all records in the SYSDOM table that describe data fields
in a particular table constitutes the Domain Extension for
that table. The Domain Extension for a table is described in
Section 8.

¥hen a new table is defined by a user, the data ﬁ%elds

which make up the table are specified. A Domain Extension
entry is created for sach of the data fields in the table and
is inserted, as a record, into the SYSDOM table. A unique
B-tree index exists on a combination of the data-base-name,
table-name and field-name fields in the SYSDOM table. The
B-tree index provides both a logical grouping by data base

and table and a logical ordering by data-base-name, table-name
and field-name to the records in the SYSDOM table.

When a user indicates an intent to process information
in a data base whose Data Base Control Block is not resident
in main storage, all Domain Extension entry records associated
with tables in the data base are retrieved from the SYSDOM
table to form the Domain Extensions for each of the tables in
the data base. The records are located using the unique
B-tree index created on the combination of data-base-name,
table—name and field-name fields. Additional records are
loaded from other system tables at that time. When a table
is removed from a data base, the Domain Extension entry records
associated with the table are removed from the SYSDOM table.

2-27

The records containing the Domain Extension entries are
"located via the B-tree index on the combination of data-base-
name, table-name and field-name fields and the records are
deleted from the SYSDOM table.

2.3.1.7 SYSAUTH Table

The SYSAUTH table contains one record for each user or
group who has been explicitly authorized by the owner of a
table to perform one or more data manipulation operations on
the table. Records in the SYSAUTH table are used to control
access to tables maintained by the Integrated Data Base
Management System. FEach record in the SYSAUTH table contains
an Authorization Extension entry that indicates which of the
operational rights (READ, INSERT, UPDATE, DELETE) have bheen
expllcf%ly granted to the user or groupon the table identified
in the record. The collection of all records that define
explicit operational rights granted to an individual user or
group constitutes the Authorization Extension for that user
or group. The Authorization Extension is described in Section
8.

When the owner of a table grants one or more operational
rights to an individual user or group, the Authorization
Extension associated with that user or group is checked to
determine if the user or group has been granted righté
previously on the same table. If so, ‘the existing Authorizatio
Extension entry is modified and the corresponding authorization
record in the SYSAUTH table is updated to reflect the new
authorizations. If no authorizations exist for the specified
user or group on the table, an Authorization Extension entry
is created and is inserted, as a record, into the SYSAUTH
table. A unique B-tree index exists on a combination of the
user~id of the user or group-name of the group, the data-
base-name of the data base containing the table and the table-

name fields in the SYSAUTH table. The B-tree index provides
both a logical grouping by data base and table and a logieal
ordering by user-id or group-name, data-base-name and table-
name of the records in the SYSAUTH table.

When a user connects to theAIntegrated Data Base Management..
System, any authorization records associated with the user
are retrieved from the SYSAUTH table to form the Authorization
Extension to the User Control Block. The records are located
using an inverted index created on the user-id field.
Additional authorization records might be retrieved from the
SYSAUTH table to form Authorization Extensions for groups to
which the user belongs; if such Authorization Extensions are
not already resident in main storage. When the owner of a
table revokes one or more operational rights from a user or
group, the authorization record corresponding to the Puser or
group and the table is retrieved and checked to determine if
the user or group will retain any operational rights on the
table. If so, the authorization record is updated to reflect
the reduced authorizations. If no authorizations remain for
the user or group on the table, the corresponding authorization
record is deleted from the SYSAUTH table.

Additional superstructures are created on the SYSAUTH
table by the System Generation Program to facilitate the
deletion of authorization records. Inverted indices are
created on the user-id/group~name field, the data-base—name
field and the table-name field. Thus, all authorization
records associated with an individual user or group can be
located and deleted if the user or group is removed from the sys-
tem by the Data Base Administrator. If a data base is removed,
all authorization records associated with tables in the data
base can be located and deleted. Likewise, if a table is
removed from a data base, all authorization records for the
table can be located and deleted.

M

-29

2.3.1.8 SYSCATL Table

The SYSCATL table contains one record for each data file
maintained by the Integrated Data Base Management System in the
Non-Relational Data Base. The physical location and format
of up to three copies of each data file can be contained in a
single record. Each copy is referenced using the same data
identifier and, while they may not be in the same format,
-their data content will be exactly the same. The three copies
which can exist for a data file include: an off-line copy on
magnetic tape in the original data file format, an on-line
copy on a direct access device in one of the system standard
formats and an off-line copy on magnetic tape in the same
system standard format. Eéch record in the SYSCATL table
will contain a unique data identifier and the physical loca-
tion andformat of each existing copy of the data file. The
form in which the physical location of each copy is specified
may depend upon the operating system requirements for sequen-
tial file handling. Additionally, each record in the SY.SCATL
table will contain the date on which each copy was created or entered
into the Non-Relational Data Base, the date on which each copy was
last accessed, the user-id of the user who created the on-line copy
and a temporary/permanent indicator associated with the on-line
copy. The SYSCATL table is referred to as the Data File Catalog.

When a new data file is entered into the Non-Relationgl
Data Base, a catalog entry is created for the data file and is
inserted, as a record, into the SYSCATL table. The record
will contain the physical location and format of the initial
copy of the data file being cataloged, as well as any other
pertinent .information. The initial copy of the data file
being cataloged may be on-line if it was created by an
application program or internal procedure or off-line if it is
an existing data file on magnetic tape. A unigque data
identifier is created by the Integrated Data Base Management
System for each new data file and a unigque B-tree index is

2-30

created on the data identifier field in the SYSCATL table.

When a data file is to be processed, the data identifier
must be specified. The record containing the catalog entry
corresponding to the data identifier is retrieved from the
SYSCATL table using the unigue B-tree index created on the
data identifier field. The physical location of the data
file is obtained from the retrieved catalog entry so that the
data file can be accessed. When commands are issued which
cause a new copy oOf an existing data file to be created, the
appropriate record in the SYSCATL table is updated with the
physical location and format of the newly created copy of the
data file. When an on-line copy of a data file is created,
it is given a temporary status in its catalog entry and the
user-id of the user creating it is retained. That user or
the Data Base Administrator may issue a command to change the
status of the on-line copy to permanent, in which case the
appropriate record is updated in the SYSCATL table to reflect
the change in status. I+ the user who created the on-line
copy of a data file or the Data Base Administrator issues a
command to scratch the on-line copy from the system, the
appropriate record is updated in SYSCATL table to reflect the
removal of the on-line copy. When a data file is removed
from the Non-Relational Data Base, the record containing the
catalog entry for the data file 1s located wvia the B-tree
index on the data identifier field and the record is deleted
from the SYSCATL table.

Additional superstructures are created on the SYSCATL
table by the System Generation Program to facilitate the
retrieval of information about data files. Inverted indices
are created on several of the data fields in the SYSCATL table.
Thus, information pertaining to data files in the Non-Relational
Data Base can be retrieved as a function of one or more of the
physical attributes of the data file.

2.3.2 The Data File Directory

The Data File Directory consists of one or more tables in
the Global Data Base which provide the user community with a
content based directory to data files in the Non-Relational
Data Base. Unlike the Data File Catalog which maintains a

one-to-one relationship with the data files and contains the
physical attributes of each data file, the Data File Directory
supports a many-to-one relationship with the data files and
contains attribute values of data contained within each data
file. Thus, using the Data File Directory, a data file can
be located as a function of its information content. The
addition of new directory tables to the Data File Directory

- is under complete control of the Data Base Aministrator, as is
the format of each directory table. Thus, with no predefined
structure or format, the Data File Directory can evolve to
meet the changing requirements of the user community and the
varying contents of the Non-Relational Data Base.

. The tables which constitute the Data File Directory can be
referred to collectively as if they were a single table using
the name SYSDIR. Therefore, the retrieving, updating and
deleting of records in the Data File Directory can be per-
formed on an individual directory table by specifying the

~directory table name in the appropriate command or on the
collection of all directory tables specifying the table name SYSDIR.
All data records mﬁst be inserted into a specific directory table.

Since all directory tables are contained in the Global Data
Base, each new directofy table must be defined by the Data
Base Administrator, thereby making the Data Base Administrator
the owner of the directory tables. Presumably, a new directory
table would be defined to suppbrt each type of data maintained
in the Non-Relational Data Base. Since it is likely that
specific groups of users may be more cognizant than the Data

Base Administrator of the handling required for different types
of datas files, the Data Base Administrator might wish to
designate an individual user from each such group as a Data‘
File Admlnﬁstrator, The Data File Administrator, as well as
the Data Base Administrator, would have the power to grant and
revoke access rights to the directory table. To accomplish
this, the Dazta Base Administrator would transfer ownership of
the directory table for & particular type of data to the user
designated as the Data File Administrator for that data. It
should be noted that the access rights to the collection of-all
direcvory tables, referred to as SYSDIR, are the same as the
access rights to the individual directory tables. For example,
if z user were granted the right to delete records in one
directory table but no others, the deletion of records by that
usef via SYSDIR could cause the deletion of records only irom
the directory table for which the user had been granted the

right to delete records.

¥hen a new directory table is defined, one of the data
fields in the table musi be the data identifier. The other
data fields should represent the attributes of the infermation
contained in the data files for which the directory table is
being created. fhen a record is inserted into a directory
table, it must contain 2 non-null value in the data identifier
data field. Other data fields can contain the null value,.
The data identifier is verified using the B-tree index on the
data identifier field in the SYSCATL table, which is the Data
File Catalogz. Thus, ar entry cazn be made in a directory table
cnly for a data file for which an entry already exists in the
Data File Cartalog.

Becanuse =mome data files in the Non-Relational Data Base
can contain several types of data, a directory table can con-
tain more than one record with the same data identifier. In

fact, different directory tables can contain records with the

2-33

same data-identifier; thereby allowing multiple descriptions

of the same data file to exist in the Data File Directory
simultaneously. When a record is deleted from the SYSCATL
table, indicating that the corresponding data file is being
removed from the Non-Relational Data Base, any records in the
Data File Directory containing the data identifier of the data
file are deleted from the directory tables. Thus, no references
to data files that no longer reside in the Non-Relational Data

Base will exist in the Data File Directory.
2.4 Bystem Design Concepts

The system design described in this document relies on a
set ¢f control structures for intrasystem communication and
the management of system processes. The term 'system internals"
is used herein to refer generically to control blocks, control
block extensions, dictionaries, lists and queues and their
relationship to one ancther. The various control structures
have been divided into categories as a function of thelr usage

within the system and are described in detail in Section 8.

All control structures are transient in nature. Transient
cont;ol structures may exist only while a command 1s being
processed or while-'a user is connected to the system or while
a particular data base is being accessed. The control
structures resident in main storage are dependent, for the
most part, on interactive user and application program activity,
thus reducing the main storage requirements of the system. The
main storage required for the transient control structures is
allocated dynamically, as required, and freed when no longer

needed.
The Integrated Data Base Management System software, as

described in Section 9, consists of several asynchronous pro-
cesses or tasks. Thus, the software design assumes the

234

availability of a multitasking operating system with subtask-
ing for implementation. The software preocesses are essen-
tially event driven. That 1s, each software process is in a
non-executing or "wait" state until one or more events on
which it is waiting occurs. At that time, the process beings
executing and continues in the executing or "run' state until
no more work remains for it; at which time, it places itself
into the wait state'again. Communication among the various
asynchronous processes is via the gueues which were mentioned

previously.

The'division of the software into separate asynchronous
processes is based on the various functions which must be per-
formed on a command as it proceeds through the system. Thus,
several commands can be in different stages of processing ati
any one time without delaying each other. When a delay does
occur, the-commands are held in gqueues to await further proces-

sing. ~
2.5 Backup and Recovery

The backup and recovery features of the Integrated Data
Base Management System provide facilities for "backing out! the
effects of a command which terminates prematurely or is aborted
and for recovering the system to a consistent state after a
malfunction. The mechanism for providing both types of back-
up and recovery is considerably different. The backup facili-

ties and the recovery technique for each are described below.
2.5.1 Command Recovery Facilities
The command recovery facility provides the capability of

removing the effects of a command which has not completed
successfully. Only commands which cause the tabular data

storage area to be modified will activate the command recovery
facilities. These include commands that modify superstructures
and system tables as well as those that modify user defined
tables. Commands which only retrieve information from the
tabular data storage area do not invoke the command recovery
facilities since no recovery is required should these commands
fail. The command recovery facilities are designed to provide
protection from intermitent command failure, not from a malfunc-
tion which causes the Integrated Data Base Management System or
the operating system to terminate. Thué, this type of backup
and recovery procedure is controlled by the Integrated Data
Base Management System and is transparent to the user and to the
computer operator. The command recovery facilities consist of
two phases. The first phase is the backup phase and occurs
during command processing. The second phase is the recovery

phase and occurs during command termination.

During command processing, an image is written of each page
in the tabular data storage area that i1s modified. The image,
referred to as a "before" image, is simply a copy of the page
pricr to modification. When, during the processing of a com-
mand, a page is about to be modified, a before image is written
intc the tabular data storage area on the first free page on the
chain of free pages. The page on which the before image was
written is removed from the free page chain and is placed on a
chain of backup pages associated with the command causing the
modification. A page pointer to the first page on the backup
chain for a command is contained in its Command Control Block.
Each new before image page is placed at the beginning of the
backup chain so that the backup chain will be in inverse
chronological order.

When a command which hasmodified the tabular data storage
area is terminated abnormally or is aborted, the effects of
that command on the tabular data storage area must be removed.

A command can be terminated abnormally due to an Input/ Output
error or a hardware or software error. During command termina-
tion, the Application Program Command Terminator or the Inter-
active Command Terminator determines whether or not the com-
mand being terminated completed successfully. If not and the
command has modified the tabular data storage area, the recovery
procedure of the command recovery facilities are invoked. The
recovery procedure uses the page pointer in the Command Control
Block to locate the first before image page in the backup

chain for the command. Each before image page contains the
page number of the page of which it is an image. Using that
bage number, the recovery procedure can replace the existing
page with its before image. If the same page were modified
more "than once by the same command, it may be replaced more
théﬁ once during the recovery procedure; however, the recovery
procedure follows the backup chain from the Command Control
Block replacing pages with their before images as they are
encountered on the chain. Since the chain is in inverse
chronological order, all pages will be recovered in the reverse
crder to that in which the modifications were made; Thus,
leaving all modified pages with their contents prior to execu-
tior of the command. Since tables which are being modified

by & command cannot be accessed by any other command until the
table is released by the terminator, no other command can be

affected by the recovery procedure.

2.5.2 BSystem Recovery Facilities

The system recovery facility provides the capability of
restoring the information in the system to a consistent state
prior to restarting the Integrated Data Base lianagement System
following a malfunction which terminates execution. As in
the command recovery facility, the system recovery facility
consists of two pheses. The first phase involves the genera-
tion of a log file. The second phase involves the recovery

of the system to a consistent state using the Log File.

2-37

The generation of a Log File is a continuous process which
occurs during the execution of the Integrated Data Base
Management System. The log file will be written as a segquential
data set. Normally, the Log File will be written on a magnetic
tape but i1t can be written on any device which supportis the
sequential organigation of data. The Log File contains
before images of all records in the tabular data storage area
that have been added, deleted, or updated; begin-command and
end-command records; both application program and system check-
poirt records and any other information which might provide a
useful audit trail of system activity. Whenever an interactive
or application program command enters the system, a hegin-
command record is written on the Log File. If, during processing,
a command modifies the tabular data storage ares, a beiore
imare of the reéord involved is writien on the Log File.

Whenever a new data file is created by the Data File Processor,
a data file creation record is written on the Log File. When
a command terminates, an end-command record is written on the
Log File.

When a malfunction causes the execution of the Integrated
Date Base Management System to be terminated, the Log File
must be used to recover the system. During the resitgrt pro-
cedure, the operator must identify the Log File to be used.

The Integrated Data Base Management System will position the
Log File at the end of the data set and read it in a backward
mode during the recovery procedure. If a backward read fea-—
+ture is not supported by the operating system, the Log File
will be read in a forward mode, sorted in descending oxder by
time or a counter and written to a new data set prior to enter-
ing the recovery phase. The recovery procedure will retrieve
before images of records from the Log File and restore the
tabular data storage area using these before images. Using
the begin~-command and end-command records, a 1list will be
generated of all commands that have been backed out during the

2~38

recovery procedure and must be reissued. When the recovery
procedure encounters a system checkpoint record on the Log File,
the operator is notified. The operator may terminate the
recovery of the system at that point or he may specify that the
recovery procedure should continue to the next system checkpoint
record. ' When the system has been recovered, it can be restarted
and users may then access the systen.

SECTION 3 ~ USING THE INTEGRATED DATA BASE MANAGEMENT SYSTEM
3.1 Operator Control

The Integrated Data Base Management System is envisioned
as being a single copy, multi-user system which operates con-
tinuously in its own region of main storage. The starting and
stopping of the system will be under the control of the computer
operator, using a set of special operator commands which can be
entered only through the operator's console. Besides being able
to start and stop the Integrated Data Base Management System,
the operator can monitor the system activity and perform a system
recovery operation using other operator commands.

Un@er normal operating conditions, the Integrated Data Base
Management System will be started at the beginning of each opera-
tional day by the operator. Parameters may be entered when the
system is started to control page buffer allocation, the system
checkpoint interval, and other such functions. Occasionally,
the operator may request information on the Integrated Data Base
Management System activity. At the end of each operational day,
the system will be stopped by the operator. Normally, the stopping
of the system will be preceded by a message to 2ll interactive
users to disconnect from the Integrated Data Base Management
System. When the operator issues the command which stops the
system, no more users will be allowed to connect to the Integrated
Data Base Management System. All active users will be allowed to
disconnect from the system before execution is stopped. Under
unusual circumstances, the operator has the capability of aborting
execution of the Integrated Data Base Management System. When
system execution is aborted, no new commands are accepted and all
commands in progress are aborted, thus removing the effects of
the executing commands from the system. The appropriate records
are written to the Log File and the Log File is closed.

When the Integrated Data Base Management System terminates
during execution due to a hardware or software failure, the
operator must perform a system recovery operation. To do so,
the operator issues a command to initiate the recovery operation
and identifies the Log File to be used. The Integrated Data Base
Management System uses the Log File to restore the system,
stopping at each system checkpoint to allow the operator to
terminate the recovery overation. When the recovery operation
has been completed, the Integrated Data Base Management System

is restarted.

3.1.1 Operater Commands

Operator commands are processed by the System Control
Program and are not available to the Data Base Administrator
or the user community. These commands can be issued only by
the computer operator and allow the computer operator to control
the execution of the Integrated Data Base Management System as

described above.

The operator commands include:

START ~ Start the Integrated Data Base Management
System
STOP - BStop the Integrated Data Base Management

System. Allow all active users to disconnect
from the system. Do not allow any new users
1o connect to the systen.

ABORT - $Stop the Integrated Data Base Management
System immediately. Write back modified
buffers to the data bases. Write necessary
checkpoint records to the log file. Do not
accept any new commands.

USERS ~ Display the user-id and processing status
of all active users of the Integrated Data
Base Management System.

3-2

STATS - Display a predefined set of usage statistics
representing current activity of the
Integrated Data Base Management System.

RECOVER - Perform a system recovery operation using
a specified Log File and restart the
Integrated Data Base Management System.

3.2 Accessing the System

The Integrated Data Base Management System is designed to
be a multi-user, multi-access system. Thus, the system can
support concurrent access by several users and provide multiple
modes of access to the users. The system is capable of accept-
ing and processing, concurrently, interactive commands from
several remote terminals, interactive commands from a system
card reader and application program commends from several applica-
tion programs. The following subsections describe the concept
. ©f a Workspace Table to support retrieval and the three modes
O0f access available to a user of the Integrated Data Base
Management System.

3.2.1 The Workspace Table

One Workspace Table is associated with each interactive
user and application program connected to the Integrated Data
Base Management System. A Workspace Table is not contained
within any da'ta base, but is associated directly with the user
or application program. A Relation Control Block for the Work-
space Table isrcreated in main storage when a user or application
program connects to the system and a pointer to the Relation
Control Block is stored in the User Control Block. No Domain
Extension is created for the Workspace Table at the time that
the user or application program connects to fhe system. The
Workspace Table ceases to exist when the user or application
program with whi¢h it is associated disconnects from the
Integrated Data Base Management System.

3-3

At any given time, a Workspace Table i1s in one of three
states. The state of a Workspace Table is a function of the
previous operations performed by the user or application pro-
gram. The state indicator is contained in the User Control
Block for the user with which the Workspace Table is associated.
The Workspace Table states are as follows:

(1) The Workspace Table is empty.

(2) The Workspace Table is not empty and contains data
from the data base to which the user is currently
attached.

{3) The Workspace Table is not empty and contains data
from the data base to which the user was previously
attached. \

Data are placed into the Workspace Table as a result of g
SELECT command. The SELECT command can be issued by an inter-
active user or an application program and retrieves datas from
one or more tables. The SELECT command is discussed in subse-~
guent sections. When a SELECT command is issued, a Domain Ex-
tension is created in main storage for the user’'s Workspace Table
‘and is linked to the Relation Control Block. The entries in the
Deomain Extension correspond to the data fields specified in the
SELECT command. FXach data field must exist in the Data Dictionary
associated with the data base to which the user or application
program is attached when the SELECT command is issued.

As a result of the execution of a SELECT command, records
are retrieved which meet the conditions stated in the WHERE
clause, or its application program equivalent, and are stored
in the Workspace Table. The records will contain only the
data fields specified in the SELECT command. The resulting
Workspace Table is a sequential table. Thus, there are ho super-
structures associated with it. The contents of the Workspace
Table may be displayed or inserted in a permanent table or,
in the case of an application program, retrieved sequentially.

3-4

The, Workspace Table may be referenced in subseguent SELECT
commands. Any Workspace Table which exists when a SELECT command
is executed is always replaced by the new Workspace Table.

If a Workspace Table is created by a user or application
program while attached to one data base, data base 4, and
the user or application program attaches to another data base,
data base B, the Workspace Table created from data base A con-
tinues to exist and is accessible to the user or application
program. Therefore, the Workspace Table can be used to transfer
data from one data base to another.

Y

3.2.2 Access from a Remote Terminal

A~yemote terminal can be any remote transmitting and receiv-
ing device which is supported by the telecommunications monitor
that pérforms the message handling for the Integrated Data
Base Management System. Remote terminal access to the system
is via a simple, yet powerful, interactive command language.
Commands in the interactive command language are logically
grouped into five categories which reflect the functions per-
formed by the commands therein. Each command is identified

by a key wo}d usually followed by one or more clauses.

When processing interactive commands, the system will treat
each line entered from a remote terminal, as a messidge. If,
during the syantactic analysis of a message, the system deter-
mines that the message does not contain a complete command, the
system will suspend processing of the command and await a con-
tinvation in the next message received from the terminal. If

the next message received from the terminal is not the expected

continuation but is a new command, the partially processed com-
mand will be aborted and the new command will not be processed.
A diagnostic message will be returned to the originating terminal

notifying the user of the action taken.

The five categories of commands are described briefly below.
A brief description of the function performed by each command
is included. A more extensive description of each command,

including coﬁmand syntax, is contained in Section 4.
3.2.2.1 Utility Commands

Utility commands provide the user with general support
functions which include connecting to and disconnecting from
the Integrated Data Base Management System, designating a
data base for processing, browsing through data bases,
specifying alias names for tables, changing passwords and
using the menu feature. These commands are available to the

user community without restriction.

The utility commands include:

ENTER — Connect a user to the Integrated Data
Base Management System.

EXIT - Disconnect a user from the Integrated Data
Base Management System.

DESCRIBE -~ Display a textual description of the con-
tents of data bases, tables and fields.

ATTACH - Indicate a user's intent to process informa-
tion in a particular data base.

USE - Establish a one character alias name for
a table.

PASSWORD - Change a password.

MENU -~ Display a list of the available interactive

commands or specify the mode of interactive
processing to be used.

3.2.2.2 Data Definition Commands

Data definition commands provide the user with the capa-
bility of dynamically defining and altering the structure of
data bases, tables and fields managed by the Integrated Data
Base Management System. Also, the user can dynamically con-
trol the superstructures imposed on tables within a data base
that facilitate rapid access to information. Use of these
commands is restricted to the owner of the data base, table or

field being referenced.

The daﬁa definition commands include:

DEFINE

REMOVE

EXPAND
INVERT

INDEX

DROPINDEX

Identify a new data base, table, field,
user or group to the Integrated Data Base
Management System.

Remove a data base, table, field, user or
group from the Integrated Data Base Manage-
ment System.

Add new data fields to an existing table.

Create the required indices such that
an inverted superstructure is placed on
specified fields in a table.

Create a hierarchical B-tree superstructure
on specified fields in a table,

Remove both hierarchical B-tree and in-
verted superstructures from specified
fields in a table.

3.2.2.3 Administrative Commands

Administrative commands provide the user with control over

the state and accessibility of data bases under his purview.

Using administrative commands, users can be added to or removed

from groups and authorization for users to perform certain

operations on data can be granted or revoked. Use of these

commands is restricted to the owner of the data referenced

by the command or the Data Base Administrator.

3-7

The administrative commands include:

GRANT - Authorize individual users, groups or
the entire user community the right to perform

data manipulation operations on tables.

REVOKE - Cancel previously granted authorizations.
INCLUDE - Add a user to a group
EXCLUDE ~ Remove a user from a group

3.2.2.4 Data Manipulation Commands

Data manipulation commands provide the user with access to
records within the relational tables managed by the Integrated
Data Base Management System. Using data manipulation commands,
data can be retrieved from tables based on field values within
each record, new records can be inserted in tables, records
can be deleted from tables, fields within records can be
modified and data can be displayed or printed. Use of
these commands can be restricted by the owner of each table to
a2 specified subset of the user community.

The data manipulation commands incliude:

SELECT - Locate records in one or more tables which
satisfy a specified set of conditions.

INSERT - Add one or more records to a table.

DELETE - Remove one or more records from a table.

UPDATE - Modify fields in one or more records in a
table.

DISPLAY - Display fields from selected records at a

remote terminal.

PRINT Print fields from selected records on a

hardcopy device.

3.2.2.5 Data File Commands

Data file commands provide the user with the capability

of controlling the Non-Relational Data Base. Using data file
commands, new data files can be entered into the Non-Relational
Data Base and existing data files can be removed from it. Data
Files that reside off-line on magnetic tape can be copied to an
on-line file on a direct access device. Likewise, data files
regiding on-line can be copied to an off-line file. TUse of
these commands may be restricted to the Data Base Administrator.

The data file commands include:

CATALQG

Enter a data file into the Non-Relational
Data Base.

UNCATALOG Remove a data file from the Non-Relational

Data Base.

LOAD - Copy an off-line data file to an on-line
direct access device and convert the data
file to & system standard format, if
necessary.

UNLODAD - Copy an on-line data file to an off-line
-magnetic tape.

COPY - Transform non-relatiocnal data files to
tabular form and relational tables to
data file format.

PERFORM - Invoke a procedure from the Integrated
Data Base Management System library to
process data files.

KEEP - Mark a temporary on-~line copy of a data
file as permanent..

SCRATCH - Purge an on-line copy of a data file.

3.2.3 Access Via the Batch Command Reader

The Batch Command Reader refers to a reader task which rlaces
card images read from a system card reader into a data set for re-
trieval by the Interactive Command Input Processor. Commands from
the Batch Command Reader will be treated similarly to those from a remote
terminal. The Remote Terminal Communications List will contain an en-
try for commands entered via the Batch Command Reader. All interactive
commands, except the MENU command which is described in Section 4, are
valid for entry via the Batch Command Reader. Syntax checking of commands
from the Batch Command Reader is the same as that for commands entered

3-9

interactively from 2 remote terminal. Any output resulting from

the processing of a command entered through the system card reader

is directed to a line printer.

Although any interactive command can be entered on cards
via the Batch Command Reader, the primary use of card input
will, most probably, be the entry of commands whose processing
time exceeds that which a user would want to spend at a remote
terminal. These commands might include the COPY command where
the data file or table being copied is large, the INVERT or
INDEX command to create superstructures on existing fables
containing a large number of records and the LOAD or UNLOAD
commands where the data file being moved is also large. Using
+he Batch Command Reader facility, the user can punch the
commands on cards in the same format as they would be entered
on a remote terminal. The first card in the command input
stream must be an ENTER command just as in an interactive
session. The command input stream should be terminated with
an EXIT command; however, an end-of-file card will cause an
EXIT command to be placed on the data set being created i one
was not present in the card deck.

The implementation of the Batch Command Reader facility
will be operating system dependent. Some operating systems
may provide this capability with little or no additional de-
velopment. Others may require special software to be written.
On some systems, it may be impossible to implement this feature.
Thus, the operating system on which the Integrated Data Base
Management System is implemented will determine the feasibility
of inecluding the Batch Command Reader facility.

3.2.4 Accegs from an Application Program
. The Integrated Data Base Management System is accessed from

an application program using the Application Program Command

Language. The Application Program Command Langunage is a languapge

which the programmer uses to cause information to be trans-
ferred between an application program and the Integrated Data
Base Management System. The command language is not a complete
language by itself. It relies on a host language to provide a
framework for it and to provide the procedural capabilities re-
required to manipulate data.

The Application Program Command Language consists of a set
of CALL statements or its equivalent which are incorporated into
a procedural host language program. The command language may be
used with any host language (e.g., FORTRAN, COBOL, PL-1, assembler
language)~that supports a CALL statement. The subroutine name
used in each CALL statement which accesses the Integrated Data
Base Management System will be the same. The command to be ex-
ecuted will be defined by the first argument in the CALL state-
ment argument list. For example:

CALL IDBMS('DELETE',...)

where: IDBMS is the common subroutine name

DELETE is the command to be executed.

The execution of the CALL to the subroutine, IDBMS, will cause
control to be transferred to the Application Program Communication
Module, described in Section Q. The remainder of the argument
list will contain parameters which are relevant to the command

to be executed.

The Application Program Command Language contains a set
of commands for performing operations on tables and a set of
commands for performing operations on data files. The appli-
cation program commands that reference tabular data can in-
clude those commands that were specified for interactive users.
It may be desirable to omit certain interactive commands from

the Application Program Command Language, such as those in

the data definition category and, perhaps, some others:; thus
Preventing application programs from creating and removing
data bases, tables and fields and, perhaps, granting and

revoking access rights. However, nothing in the system design
would prevent these commands from being included in the

Application Program Command Language.

As in the interactive command language, a SELECT command
can be issued by an application program. The SELECT command
will cause records to be placed in the Workspace Table associated
with the application program, but it will not cause records to
be transferred to the application program. An additional commang,
FETCH, is available to retrieve records serially from the Workspace
table. If the Workspace Table is empty when the workspace
retrieval command is issued, a status code so indicating will
be returned to the application program. Otherwise, the system
maintains a logical pointer, referred to as a cursor, which
moves through the Workspace Table as records are accessed.

The executioﬁ of a SELECT command causes the cursor to be set
to the first record in the Workspace Table. The initial
occurrence of the workspace retrieval command causes data to be
retrieved from the first record in the Workspace Table and the
cursor to be moved to the next record in the table. Each sub-
sequent occurrence of the workspace retrieval command causes
data to be retrieved from the record to which the cursor points
and the cursor to be moved to the next record. When the

last record in the Workspace Table is accessed, the cursor is
set to indicate that the end of the table has been encountered.
When the next workspace retrieval command is issued, a status
code will be returned indicating an end-of-table condition

has occurred.

3.2.4.1 Data Independence Within An Application Program

One of the, important concepts for applicatipn programs
is that of data independence. That is, the separation of the
description of data maintained by the Integrated Data Base
Management System from the application programs that process
the data. This allows an application program to be insulated
to a certain extent from changes to the data structure. Data
independence within an application program is established at
the data field level for tabular data. A data field represents
a column within a table. Each command in an application program
which initiates data transfer must specify, by name, the data
fields to be transferred. The order of transfer is inferred
from the order of the data field names in the argument
list in the application program command. During retrieval, the
data field names. are used to extract data field values from
records in tables. During update, the data field names
are used to place data into records.

When accessing tabular data, an application program does
not concern itself with record formats. The system uses
information from the appropriate control structures to de-
termine where the data fields specified in the data field
name list are located in a record. Thus, the order of data
fields in a table is immaterial to an application program.
Therefore, data fields can be repositioned in a table or data
fields not used by an application program can be added or de-
leted from a table without modifying or recompiling the
application program. Alsc, data fields can be transferred
between an application program and a table in any seguence
without regard to their relative position within the actual
table.

3.3 The Data Base Administrator

The administration of the Integrated Data Base Management
System is an important function if the advantages of data base
technology are to be fully exploited. The Data Base
Administrator provides the coordination, perspective and
administration of the system by exercising specific responsi-
bilities. These responsibilities include the definition of
system parameters, controlling the user community, controliling
access to tables in the Global Data Base, the definition of
directory tables, +the definition of new tables in the Global
Data Base and user education and assistance.

The Data Base Administrator will be responsible for specify-
ing system parameters which‘are submitted to the System
Generation Program during the initial system generaticon. Also,
the Data Base Administrator would have the responsibility for
providing gp;delines 1o computer operators for the daily opera-
tion of the system. These would include any system parameters
to be specified when the system is started each day and recovery
procedures to be followed should the Integrated Data Base
Management System malfunction in some manner or terminate pro-

cessing altogether.

The responsibility for entering and removing users from
the system rests solely with the Data Base Administrator. To
control the user community, two privileged commands are avail-
able only to the Data Base Administrator. It ié envisioned
that a user wishing to gain access to the facilities of the
Integrated Data Base Management System would submit a request

to the Data Base Administrator who, upon approval of the request,
would enter the new user into the system using the privileged

command, DEFINE USER. A user-id and password would be speci-
fied for the new user in the command. To delete a user from the
system, the Data Base Administrator would use the privileged
command, REMOVE USER, specifying the appropriate user-id.

The Data Base Administrator, in conjunction with cognizant
users, will define the format of new directory tables to be
entered into the System Directory in the Global Data Base.
Once the format has been defined, the Data Base Administrator
will create the new directory table using the DEFINE DIRECTORY
TABLE command. Since the DIRECTORY option of the DEFINE
TABLE command is valid only for tables being added to the
Global Data Base and since only the Data Base Administrator
can add new tables to the Global Data Base, only the Data Base
Administrator can add new directory tables to the System

Directory. in addition to directory tables, other, non-direc-
tory, tables may be added to the Global Data Base by the Data Base
Administrator at any time. These tables would probably contain

information that is of general interest to the user community.
Since the Date Base Administrator is the owner of the tables con-
tained within the Global Data Base, access to these tables is con-
trolled by the Data Base Administrator. As with tables in any data
base maintained by the system, the GRANT and REVOKE commands
must be used by the Data Base Administrator to control access
to tables in the Global Data Base, including directory tables.

One of the primary responsibilities of the Data Base
Administrator is to provide education and assistance to the
users of the Integrated Data Base Management System. While
it is difficult to specify, at this time, the manner in which
these responsibilities should be carried out, some comments
can be made. The Data Base Administrator or members of his
staff could provide educational seminars for the user com-
minity. These could range from introductory seminars for new
or potential users to seminars covering advanced concepts for
more knowledeable users. The Data Base Administrator—might
distribute, periodically, a newsletter containing timely
information of interest to the user community. Another area
in which the Dataz Base Administrator must play a key role
involves assisting users in entering new types of data into
the Non-Relational Data Base. This requires the definition

of one or more directory tables for the new data type, as
described above, and either writing or assisting a user in

writing a data file input module to process the new data type.
3.4 The User Community

The term "user community'" refers to all valid users of the
Integrated Data Base Management System except the Data Base
Administrator. A valid user of the system 1s one for which
a record exists in the SYSUSER system table. A unique user-
id and a password, which is not necessarily unigue, are
associated with each user. Additionally, a user may be
included in a named group of users who share common access
rights. Certain privileged commands, which are specified in
the following subsections, allow the Data Base Administrator to
control the user community by inserting and deleting records in
the SYSUSER table.

3.4.1 Defining a New User to the System

A potential user cannot connect to the Integrated Data
Base Management System until that user has been defined to the
system by the Data Base Administrator. Prior to defining the
new user to the system, a unigue user-id must be assigned to
the user by the Data Base Administrator. A password, which
does not have to be unique, must be selected by the user or
the Data Base Administrator. After assigning the user-id
and password to the new user, the Data Base Administrator uses
the DEFINE command with the USER option to identify the new
user to the system. This command is a privileged command and
will be accepted only from the Data Base Administrator.
Additionally, the DEFINE USER command may specify one or more
groups in which the new user is to be included for the purpose
of sharing common access rights with other users. The concept
of group access rights is described in the following subsection.

3-16

The execution of the DEFINE command with the USER option
causes a record to be inserted into the SYSUSER system table.
If one or more groups in which the user is to be included has
been specified in the command, corresponding records will be
inserted into the SYSGROUP system table. After the DEFINE
USER command has been successfully processed, the new user

can connect immediately to the Integrated Data Base Management
System.

3.4.2 Defining a New Group to the System

Users can be grouped together for the purpose of sharing
common access rights. Before a user can be included in a
group, the group must be identified to the system. This is
accomplished using a DEFINE command with the GROUP option.

The DEFINE GROUP command specifies the name of the group, which
must be unique among group names already known to the system.
This command is a privileged command and can be issued only by
the Data Base Administrator.

The execution of the DEFINE command with the GROUP option

* causes a record to be inserted into the SYSGROUP system table.

At that time, the group will be empty; that is, the group will
contain no users. Even though the group is emptly, access rights
can be granted to the group as described in a subsequent sub-
section. After successful completion of a DEFINE GROUP command,
new or existing users can be included in the group as described

in the following subsection.

3.4.3 Controlling Group Membership

Essentially, groups are formed to facilitate the granting
and revoking of access rights to tables. As stated previously,
all users in a group have common access rights to a specific
set of tables. Users within a group may have additional

access rights which have been granted to them individually.

3-17

Also, a user may not be a member of any group or may be a

menmber of several groups.

A user can be included in a group in two ways. A new
user can be included in one or more groups via the DEFINE
- USER command when he is initially defined to the system. An
existing user can be included in one or more groups via the
INCLUDE command. The INCLUDE command is a privileged command
and can be issued only by the Data Base Administrator. When
a user is included in a group, a record is inserted in the
SYSGROUP system table.

A user can be removed from one or more groups of which he
is a member via the EXCLUDE command. Like the INCLUDE command,
the EXCLUDE command is a privileged command and can be issued
only by the Data Base Administrator. When a user is removed
from a group, a record is deleted from - the SYSGROUP system

Table.
3.4.4 Removing a Group from the System

An existing group can be removed from the system using
the REMOVE command with the GROUP option. The group to be
removed must be named in the REMOVE GROUP command. This com-
mand does not remove users within the group from the system,
but simply removes any access rights granted to users as a
result of their membership in the group. The group may be
emptﬁ or it may contain one or more users as members. Also,
the group may have zero or more authorization records,
representing access rights granted to the group, stored in the
SYSAUTH system table. The granting and revoking of access
rights to groups and to individual users is discusséd in a

subsequent subsection.

The execution of the REMOVE command with the GROUP option

3-18

causes all records corresponding to members of the group to
be deleted from the SYSGROUP system table. Additionally,
all authorization records that are asscciated with the group
being removed are deleted from the SYSAUTH system table.

3.4.5 Removing a User from the System

An existing user can be removed from the system using the
REMOVE command with the USER option. This command is a
privileged command and can be issued only by the Data Base
Administrator. The user~id of the user to be removed must
be specified in the command. After removal, the user can no
longer connect to the Integrated Data Base Management System.
Alsp,hthe user will be removed from any groups of which he is
a mémber and any authorizations granted to the user, as an
individual, will be revoked. All data bases owned by the
- user will remain intact. They may be removed or their
ownership transferred to another user by the Data Base
Administrator.

The execution of the REMOVE command with the USER option
causes the record corresponding to the user being removed to
be deleted from the SYSUSER system table. All records con-
taining the user-id of the user are deleted from the SYSGROUPD
system table. Also, all authorization records associated
directly with the user are deleted from the SYSAUTH system
table.

3.4.6 Counnecting to and Disconnecting from the System
3.4.6.1 An Interactive User
The first action an interactive user of the Integrated

Data Base Management System must take is to connect to the system

using the ENTER command. A user-id and password must be

3-19

specified in the ENTER command. Only one user can be connected
interactively to the system under a given user-id at any one
time. Thus, if a user is already connected to the system under
the same user-id as is specified in an ENTER command, the command
will be rejected and the user will not be connected to the

system. The same action is taken by the system if the pass-
word is not wvalid for the user-id specified in the ENTER
command. No other commands can be issued by a user until

a valid ENTER command has been processed for that user.

When an ENTER command is received, a check is made to determine
whether or not a user is already connected interactively to the
system under the user-id specified in the command. If not,
the user-id and password are verified. To accomplish this,
an attempt is made to retrieve a record, which is a User
Control Block, from the SYSUSER system table that contains the
user-id speciifiied in the command. If such a record is located, -
it is read into main storage and the password contalned in
the User Control Block is compared with the password specified
in the command. If they are the same, all authorization
records associated with the individual user are retrieved from
the SYSAUTH system table and are stored in the Authorization
Extension to the User Control Block in main storage. All
group records for groups of which the user is a member, if
any, are retrieved from the SYSGROUP system table and are
stored in the Group Extension to the User Control Block in
main storage. Finally, all authorization records for groups
to which the user belongs are retrieved from the SYSAUTH system
table and are stored in the group Authorization Extension in
main storage unless they are already resident therein. Then
control is returned to the user and he is now connected to the
system and attached to the Global Data Base. The concept of
being attached to a data base for processing is discussed in

a subseguent subsection.

When a user has completed an interactive session and wishes

to disconnect from the system, he must issue an EXIT command.
During the execution of the EXIT command, all operations are
performed to terminate processing for the user issuing the
command, Main storage used for control structures which are
associated only with the user being disconnected, such as the
User Control Block, Authorization Extension and Group Extension,
is freed. Additional control structures may be removed from
main storage if they are not required to support other users
connected to the system. Any data contained in the user's
Workspace Table when he disconnects from the system will be
lost.

3.4.6.2 An Application Program

Every application program that uses the services of the
Integrated Data Base Management System must have the
Application Program Communication Module linked to it. The
Application Program Communication Module has a single entry
point and is entered each time that entry point is referenced
in a CALL statement in the application program. The command
to be executed is identified by the first argument in the
calling sequence. The Application Program Communication Module
performs the initial processing of commands prior to invoking
the Cross-Boundary System Routine to communicate with the
Integrated Data Base Management System,

Prior to executing any other CALL statement referencing
the Application Program Communication Mcdule, a CALL statement
must be issued to the Application Program Communication Module
containing the ENTER command as its first argument.

Additional arguments in the calling sequence must contain the
user~id and password of the user running the application
program. This causes the access rights associated with this
execution of the application program to be those of the user
running it. The system places no restrictions on the number

of application programs that can be run simultaneocusly by a
single user and a user can be connected to the system inter-
actively while one or more of his application programs are
executing. Any commands issued by an application program to
access the Integrated Data Base Management System that are
issued prior to a successful ENTER command will be rejected
with the appropriéte status code returned to the application

program.

When an ENTER command is received from an application
program, an attempt is made to retrieve a record, which is a
User Control Block, from the SYSUSER system table that contains
the user-id specified in the calling sequence. If such a
record is located, it is read into main storage and the pass-—
word contained in the User Control Block is compared with the
password specified in the calling sequence. If they are the
same, the authorization records, group records, if any, and
their associated authorization records are processed as des-
cribed above for an interactive user. Finally, a character
is appended to the user-~id in the User Control Block such that
the user-id is unique among those of both interactive users
and application programs currently connected to the system,
thereby permitting simultaneous access by the same user both.
interactively and via one or more application programs.

3.5 Relational Data Base Control

Using the Integrated Data Base Management System, a user
can dynamically construct, extend, manipulate and destroy
relational data bases to meet his changing requirements.
Also, a user has complete coatrol over which users in the
user community can access his data bases and in what mode.
The following subsections discuss the commands available to
manage relational data bases. There is nothing inherent in
the system design which would prevent all of these commands

from being issued by an interactive user or an application
program. However, if desired, certain commands could be

limited to interactive or application program usage, only.
3.5.1 Defining a Data Base

To define 2 new relational data base, a user simply issues
a DEFINE command with the DATABASE option. The name of the
new data base must be included in the command and must be unique
among data base names already known to the system. After
successful processing of the DEFINE DATABASE command, a new-
relational data base will exist that is owned by the user
issuing the command. However, the data base will be empty;
that is, it will contain no tables. The user will be attached
to the newly defined data base.

The execution of the DEFINE command with the DATABASE option
causes a Data Base Control Block to be constructed for the new
data base. The Data Base Control Block is inserted, as a
record, in the SYSDB system table.

3.5.2 Specifying a Data Base for Processing

Every interactive user and application program connected
to the Integrated Data Base Management System always has a
relational data base to which any data manipulation command
or other data related command will be directed. This data
base is referred to as the user's primary data base and the
user is said to be attached to his primary data base. ’More
than one user can be attached to the same data base simultaneously.

As stated previously, when a user connects to the system,
he is automatically attached to the Global Data Base. When an
interactive user issues a DEFINE DATABASE command, he becomes
attached to the newly created data base. During the course of an

interactive session or the execution of an application program,
it may become necessary to access an existing data base

other than the Global Data Base. To accomplish this, the user
simply issues an ATTACH command specifying the name of an exist-
ing data base, which may be the Global Data Base. After
processing of the ATTACH command, the data base named in the
command becomes the user's primary data base. All subsequent
data base related commands will reference that data base until
the user issues another ATTACH command. If no other users were
attached to the data base, the system will load all control
blocks and extensions associated with the data base from the

system fables.

At times,it is necessary for a user to transfer data from
one data base to another. Two facilities within the system
support this requirement. The first is the existance of a
user's Workspace Table which has been discussed previously.
The second.ié the concept of a secondary data base. A user's
secondary data base is simply the data base to which the user
was attached prior to attaching to his primary data base.

The system always retains the identity of each user's secondary
data base. If the user's Workspace Table contains data from
his primary data base and he issues an ATTACH command, the
contents of his Workspace Table remain intaet. The Workspace
Table will contain data from what is then the user's secondary
data base. The contents of the Workspace Table can be placed
in the primary data base, thus allowing the transfer of data
from the secondary data base to the primary data base. If
the user's Workspace Table contains data from his secondary
data base and he issues an ATTACH command, the contents of the
Workspace Table will be lost. Figure 3-1 illustrates the use
of the ATTACH command, the concepts of primary and secondary
data bases and the handling of the contents of a user's
Workspace Table.

gg-¢

Camnnand Primasy DB

ENTER user~1d, password GINAL,

USE 3 TUR S5yshin

STLECT (5.5C9W5,S.INST,5.DATE, 5.01ID)
WIENE §.E8CNAME="N1MBUS-G*
AHD 8. INST="SBUV'*

ATTACH QFONFIMOFTEE OZONTIPROTITE,

INGERE NIMPUSSDUV (W.SCNAME, W, INST, W.DATE, W.DID)
WNE

SFIFCT (NIMNUSSUUV. DI
WHERE, NIMDUSSIUV. DT, > 761110

DISPLAY

ATTACH SOHMDISTURE SOHARHSTYS

DFLETE SFASATSIRR
WHIERE DAL < 760108

ATTACU GLOBAL, GIDBAL,

Flgure 3-1: An Example of Workspace Table Handling and

Sceondary Db Copmrzat
None U=er 1s alinched Lo GIOBAL dala haso,

Madn storape (s oblained for RCD for
Workspace Table W,

Fatablish an ading nome for the Syston
Dirveclory, SYSDIR, in Lhe GLNBAL dala
base.

Workeprace Table (W) is created Trom GUOIWL
data base. D umiﬁ Pxtonslon s qreatoed
for Wo conbaining SCRAME, INST,DATT, and

DID, 8elected records are retrieved fron
the Systom Directory and are stored
sequonlally in “-G'

GIODATL, HUaer Is altached to OZONIFTROFILE dala
hase, "'G is 51111 available to the user.

MY reeords In ¥g ave dnscrted fnte the
NIMIGSRDUY table in the OZONFITOFILE
data ln=e,

New Wonkspoen Table (Wo) s created from
FONEPROFUILE daln Laze. Vg ceases (o
cxist. Pomadn Extension is cretted for
Yo conladning DID. Solected records are
1etvicved from the NIMBUSSBUY Lable nnd
are stoved sequentlally in \\'0.

Yo records are dispinyed at the romte
Lomninnd,

User' s nttached to SOLINOISIURE data hase.
w() fs5 8111 available to the u=er,

Hecored= ave deleted Jrom the SFASATSMN
Lable In the SONOISTURE data bhasoe.

Q7O PROFITE

SOUAOISGIme User is attachod to thoe GLOBAL data base.
Wo coians to exist since the user has becn
delpched from Lhe QZONEPROFILE data base
Frem which W was creatod. Mo

Vorkspaee Tablo currenlly exists.

the Concepl. 0o Primary snd Secondary Dnta Bases

3.5.3 Defining a Data Field

Each data field to be used within a table must be defined
prior to its first appearance ina table definition or expansion
command. A data field will be local to the data base to which
the user is attached when the data field is defined. A data

field can appear in zero or more tables in the data base with
which it is associated.

To define a new data field, a user issues a DEFINE command
with the FIELD option. The name of the new data field must
be included in the command and must be unique among data field
names already defined for the data base with which it is
associated. Additionally, a description of the data field
coﬂsisting of the data type, field length where not implied by
fhe data type and units, where apblicable, must be inecluded
in the ¢éommand. After successful processing of the DEFINE
FIELD command, a new data field will exist in the data base
to which the user was attached when issuing the command. The
new data field can now be used in the definition of new tables

or expansion of existing tables in the data base.

The execution of the DEFINE command with the FIELD option
causes a Data Dictionary entry to be constructed for the new
data field. The Data Dictionary entry is stored in the Data
Dictionary in main storage that is associated with the data
base in which the mew data field is contained. Also, the
Data Dictionary entry is inserted, as a record, in the SYSDD
system table.

3.5.4- Defining a Table

To define a new table, a user issues a DEFINE command with
the TABLE option. The name of the table and the data fields
which constitute the table must be included in the command.

The table name must be unigue among table names already in the
data base in which the table is contained. The data %ields
must have been previously defined within the context of the
data base to which the table is being added. That is, the
Data Dictionary associated with the data base must contain an
entry corresponding to each of the data fields. Af?er success~
ful processing of the DEFINE TABLE command, a new table will’
be contained in the data base to which the user was attached
when the command was issued. A new table can be added to an
empty data base or one which already contains one or more
tables, The user issuiné the DEFINE TABLE command will be
the owner of the new table. The table will be a sequential
table in that- no superstructures will exist for it. The
creation of superstructures is discussed in a subseguent sub-
Section. The new table will be empty; that is, it will
contain no records.

The execution of the DEFINE command with the TABLE option
causes a Relation Control Block to be constructed for the
new table. Also, a Domain Extension containing one entry for
each data field in the table is constructed and linked to the
Relational Control Block. The Relation Control Block is
placed on the chain of Relation Control Blocks for tables con-
tained in the data base. The Relation Control Bloeck is inserted,
as a record, in the SYSREL system table. Each of the Domain
Extension entries are inserted, as records, in the SYSDOM
sysﬁém taﬁle.

3.5.5 Expanding a Table

To append data fields to an existing table, a user simply
issues an EXPAND command. The name -0of the table to be expanded
and the new data fields to be added to the table mist be
included in the command. The table specified in the EXPAND
command must already exist in the data base to which the user

is attached when the command is issued. The data fields

must have been previously defined within the context of the

data base containing the table. That is, the Data Dictionary
associated with the data base must contain an éntry corresponding
to each of the data fields. After successful processing of)
the EXPAND command, the added data fields will be logically
appended to the right side of the table in the order specified

in the command. Superstructures can be created for the added
data fields either individually or in combination with original

data fields or other expansion data fields.

The execution of the EXPAND command causes a Domain
Extension entry to be created for each of the added data
fields. The Domain Extension entries are stored in the
Domain Extension in main storage that is associated with the
expanded table. Each of the new Domain Extension entries is
stored, as a record, in the SYSDOM system table. Existing
records, if-any, in the expanded table are not modified.

A null value will be supplied by the system whenever one of thé
added data fields is retrieved from a record that existed

prior to the table expansion, unless an actual value has been
stored in the added data field during an update operation.
Added data fields will be physically present in records

updated or inserted subsequent to the table expansion.

3.5.6 Creating and Dropping Superstructures for Tables

As stated previously, a newly defined table is considered
to be a sequential table. It will remain as a sequential
table until one or more indices, referred to as superstructures,
are created for it. BSuperstructures may be created when a
table is empty or aifiter it contains records. The creation of
superstructures is more efficient when the table is empty since
the system need modify only the table's Relation Control Block
and Domain Extension. The creation of superstructures after

records have been inserted into a table requires not only the
modification of the Relation Control Block and Domain Extension,
but the reading of each record in the table and the writing

of records which constitute the specified superstructure.-

Two types of superstructures can be created for a table:
an inverted index and a B-tree index. Both types can exist
for a single table. To create a superstructure for a table
a user issues an INVERT or an INDEX command. An INVERT
command creates an inverted index, while an INDEX command
creates a2 B-tree index. Both commands require the name of
the table for which the superstructure is being created and
one or more key fields to be specified. The table named in
the command must already exist in the data base to which the
uéer is attached when the command is issued. Each key field
must contain the name of one or more data fields from the
table and represents an entity for which values will be main-

tained in the appropriate type of superstructure.

If a key field consists of a combination of two .or more
data fields, the key field must be given a unigque name,
A combination key field is specified in the form:
key-name=(field-name-1,field-name-2[,field-name-nj...).
The key name must not duplicate any déta field name in the
table for which the superstructure is being created nor any
other key name already defined for that table. The data
fields which constitute a combination key field need not be
contiguous in the table nor do they have to be specified in
the same order in the key field as in the table. A data field
which has a superstructure created fo} it can be used in a
combination key field. Also, a data field may be used in more
than one combination key field. 1If a key field consists of
only one data field, no key name is required and the data
field name is used directly in the command. A single data
field can not have both a B-tree index and an inverted index

created for it, but it can participate in a combination key

field for both types of superstructures.

The execution of the INVERT and INDEX commands causes
similar actions to take place. For any single data fields
which are declared to be key fields, the corresponding
Domain Extension entries are modified in main storage and
are updated in the SYSDOM system table to reflect the
existence of the specified superstructure. For any combination
key fields, new entries are created in an auxiliary section
of the Domain Extension in main storage and each new entry
is inserted, as a record, in the SYSDOM system table. If
the table for which the superstructures are being created
is not empty, each record in the table is retrieved and the

bproper superstructure is created for each of the key fields.

To remove existing superstruecitures from a table, the user
simply issues the DROPINDEX command. The name of the table
with which the superstructures are associated and the names
of .the key fields which identify the particular superstructures
to be dropped must be included in the command. The DROPINDEX
command removes both B-tree and Inverted indices from a table
for the key fields specified in the command. No ambiguities
arrise since the key name assigned to a combination key field
is unique within a table and is associated with either a
B-tree or Inverted index and a single data field can have only

one type of superstructure created on it.

The execution of a DROPINDEX command causes the follow-
ing action to be taken. For any single data field specified
in the command, the corresponding entry in the primary section
of the Domain Extension is modified to reflect the removal
of the superstructure from that data field and the associated
record in the SYSDOM system table is updated. For any
combination key fields specified in the comﬁénd, the entries

3-30 O -

associlated with that key -field in the auxiliary section of
the Domain Extension are removed from main storage and the
corresponding records are deleted from the SYSDOM system
table. If the superstructures to be dropped are not empty,
all pages coﬁtaining records in those superstructures are
returned to the free page list. A superstructure will be
empty if the table with which it is associated is emply.

3.5.7 Controlling Access to a Table
3.5.7.1 Granting Access Rights

When a new table is created, the user who created it
becomes its owner. Until the owner of =z Table grants access
rights to other users, he is the only member of the user com-
munity who can access data in the table. To permit othexr
members of the user community to access the table, the owner
issues a GRANT command. The Grant command must conta;n three
pieces of information: the access mode or modes for which
rights are being granted, the name of the table on which the
rights are being granted and the individual users or group to
which the rights are being granted.)

A table can be accessed in any one of four access modes.
They are: READ, UPDATE, INSERT, DELETE. One or more of the
previous key words denoting the mode of access being permitted
must be included in the GRANT command. IT all of the access
modes are to be permitted, the access mode list in the GRANT
command can be replaced by the key words ALL RIGHTS. Thus,
the rights being granted can be restricted to a specific subset
of the available access modes or can permit full access to a
table.

The table name specified in the GRANT command identifies
the table for -which access rights are being granted. The

3-31

table must be contained within the data base to which the user
is attached when the command is issued, As stated previously,
the user issuing the GRANT command must be the owner of the table

specified in the -command, the owner of the data base containing

the table or the Data Base Administrator.

The GRANT command must identify, either explicitly or
implicitly, the users to whom the rights are being granted.
Rights can be granted explicitly to individual users by including
their user-ids in the command. Rights can be granted
implicitly to a subset of the user community by specifying the
key word GROUP followed by =z previously defined group name
in the GRANT command. This will have the effect of granting
the specified access rights to all current members of the -
group. Rights can be granted to the entire user community
by specifying the key word PUBLIC instead of a group name Or
a list of user-ids. This causes the specified access rights
to be granted to every user of the Integrated Data Base

Manasgement System.

The execution of a GRANT command which includes either a
group name or individual user-ids will cause one Or more
authorization records to be inserted or updated in the SYSAUTH
system table. If the group, should a group name be specified,
or an individual user, should user-ids be specified, already
possess some access rights to the table named in the command,
the existing authorization record associated with the group or
user and the table is updated to reflect the newly granted
accesg rights. If no access rights to the table exist for
the group or individual users, an authorization entry is created
and inserted ,-as a record, in the SYSAUTH system table.

The execution of a GRANT command which includes the key

~word PUBLIC rather than a group name or individual user-ids,
will cause one or more flags to be set in the Relation Control

3-32

Block associated with the table named in the command. No
authorization records will be inserted or updated in the SYSAUTH
system table. The flags set in the Relation Control Block

will permit any user to access the table in the modes that have
been declared to be PUBLIC without checking the authorizations

associated with that user.

3.5.7.2 Revoking Access Rights

The revocation of existing access rights to a table can be
done only by the user who granted the rights or the Data Base
Administrator. To revoke access rights granted on a table,
the user issues a REVOKE command. The REVOKE command must
contain the access modes for which rights are being revoked
and the name of the table on which they are being revoked.
Additionally, the command can identify the individual users
or group from which the rights are being revoked.

One or more of the access modes can be included in the
REVOKE command or, if rights to all access modes are to be
revoked, the key words ALL RIGHTS can replace the access mode
list. The table named in a command must be a table in the
data base to which the user is attached when the command is
issued. Also, the user issuing the REVOKE command must be

the current owner of the table.

The specification of users, either explicitly or implicitly,
from which access rights are to be revoked, is optional in the
REVOKE command. If no users are identifieﬁ in the command,
all access rights both public and those granted to groups or
individual users, will be revoked for the access modes specified
in the command. Thus,” the owner of the table will become the
only member of the user community who can access the table in
those modes. Optionally, the REVOKE command can include
individual user-ids identifying users from which access rights

are to be revoked or can specify the key word GROUP followed by
a group name to indicate a group from which access rights are
to be revoked or can include the key word PUBLIC. If the key
word PUBLIC is included in the REVOKE command, general access
to the table by the user community in those modes specified in
the command will be inhibited. The access rights associated
with the table in those modes will revert to those rights that
were previously granted to groups or to individual users and

have not since been revcoked.

The execution of a REVOKE command which includes either a
group name or individubl user-ids will cause one or more author-
ization recérds to be deleted from or updated in the SYSAUTH
system table. If the group, should a group name be specified,
or an individual user, should user-ids be specified, possess
access rights to the table named in the command other than
those being revoked, the existing authorization record
associagted with the group or user and the table is updated to
reflect the loss of access rights. If no access rights to
the table beyond those being revoked exist for the group or
individual user, the authorization record is deleted from the
SYSAUTH system table.

The execution of a REVOKE command which includes the key
word PUBLIC rather than a group name or individual user-ids
will cause one or more flags to be reset in the Relation
Control Block associated with the table named in the command.
No authorizatioQ records will be deleted from or updated in
the SYSAUTH system table. Thus, access to the téble in the
modes for which public access has been revoked, will be denied’
to the user community as a whole, but will still be permitted
for users to whom access rights have been granted either
individually or as a member of a group.

The execution of a REVOKE command which dcoes not contain

a clause identifying, either implicitly or explicitly, the
users from which rights are to be revoked may cause one or
more authorization records to be deleted from or updated in
the SYSAUTH system table and one or more flags to be reset in
the Relation Control Block associated with the table named in
the command. Thus, the actions performed are a combination
of those performed when either a group name or indiv;dual
user-ids is specified or the key word PUBLIC is usedlin the
REVOEKE command. This permits the revocation of access rights
to the table for the modes specified without requiring the

knowledge of those users to whom access has been granted.

3.5.8 Manipulating Data in a Table

. There are several commands available to a user of the
Integrated Data Base Management System to manipulate and
exhibit tabular data. These commands permit usefs to in-
sert new records into a table, delete or update existing
records in a table and retrieve data fields from one or more
tables into a Workspace Table. Additionally, commands
are available which transfer data from tables to a printer
or to a remote terminal for display purposes.

Data manipulation commands can bhe performed without
restriction by users upon tables of which they are the
current owners.. Use of these commands by users other than
the owners is controlled by the owner as described in the
previous subsection. The access modes, INSERT, UPDATE and
DELETE, which can be specified in the GRANT and REVOKE
commands control directly a non-owner's ability to perform
insertions, modifications and deletions, respectively, on
a table. The READ access mode controls a non-owner's ability
to retrieve data from a table for the purpose of storing it
in a Workspace Table or for printing or remote terminal

display. Thus, for example, if a user who is not the owner

3-33

of a table were granted READ and UPDATE rights to a table,
he could retrieve data from the table into his Workspace
Table or print or display data from the table and, also,
update existing records in the table, but he could not in-
sert new records into the table or delete existing records
from the table.

3.5.8.1 Inserting Records into a Table

. To add one or more records to a table, a user issues an
INSERT command. The name of the table to which the record
or records are to be added must be included in the command.
The table must be contained within the data base to which the
user 1s attached when the command is issued. Additionzally,
the user issuing the command must be the owner of the table or
must have been granted the right to insert records into the

table.

The record or records to be inserted can be specified
in one of two ways. Either the data values to be stored
in each data field in a new record can be specified expli-
citly in the INSERT command or existing records can be
retrieved from other tables in the data base and inserted
into the table specified in the command. Using either form
of the INSERT command, a null value is stored in each data
field which is not specified in the command.

Each new record is stored in the tabular data storage
area on a physical page that has been allocated to the table
in which the record has been inserted. All superstructures
associated with the table are updated to reflect the ex-
istance of the new record.)

3.5.8.2 Updating Records in a Table

To modify one or more records in a table, a user issues

3-36

an UPDATE command. The name of the table containing the
record or records to be modified must be included in the com-
mand. The table must be contained within the data base to
which the user is attached when the command is issued.
Additionally, the user issuing the command must be the owner
of the table or must have been granted the right to update
records in the table.

The UPDATE command selectively modifies data fields
within existing records in a table. Each data field to be
modified and its new value must be specified as an assignment
statement. The new value may be a constant or a function
which can be used to compute the new value (e.g., FREQ=42.7
or ﬁREQ=1.1*FREQ). The records to be updated are identified
in a WHERE clause which specifies the conditions that must
be.met by a record for it to be selected for modification.
Any superstructures associated with the table that are -
affected by the modification of one or more records, are
updated to reflect the changes in those records.

3.5.8.3 Deleting Records from a Table

To delete one or more records from a table, a usef issues
a DELETE command. The name of the table containing the
record or records to be deleted must be included in the command.
The table must be contained within the data base to which the
user is attached when the command is issued. Additionally,
the user issuing the command must be the owner of the table or
must have been granted the right to delete records from the
table.

The DELETE command removes entire records from a table.
The records to be removed are identified in a WHERE clause
which specifies the conditions that must be met by a record
for it to be deleted. Any superstructures associated with

the table that are affected by the deletion of a record, are
updated to reflect the removal of that record from the table.

3.5.8.4 Retrieving Records from a Table

Records can be retreived from a table for any one of three
purposes: to create a Workspace Table, to display data fields
from the records at a remote terminal or to print data fields
from the records. No matter what the purpose, the user issu~
ing the command must be the owner of any table from which data
is to be retrieved or must have been granted the right to read
each such table,. A specific data manipulation command is
associated with each type of retrieval. These commands are

discussed in the following paragraphs.

The SELECT command is an exceptionally powerful re-
trieval command which provides the capability of rétrieving
data fields from one or more tables in a data base to create
records in the user's Workspace Table. The SELECT command
must include a list of data fields, referred to as the target
list, which defines the record format for the Workspace Table.
The data field names in the target list may have to be -
qualified by a table name if data fields from more than one
table are to be joined in the resulting Workspace Table
(e.g. (TABL1.SC,TAB2.INST,...)). The records to be retrieved
are identified in a WHERE clause which specifies the conditions
that must be met by a record for it to be selected for
retrieval. Only those data fields identified in the target
list are extracted from the records that satisfy the WHERE
clause,

The results of a SELECT command will be zero or more
records contained within a sequential table known as thé
Workspace table. The resulting records in the Workspace
Table may contain all or a subset of the data fields from

3-38

a single table or from multiple tables. The records selected
to create the Workspace Table may have been retrieved from

a single table or from multiple tables. 1In addifion, the
contents of a data field in one table can be used to identify
records to be retrieved from another table. For example,
consider two tables, Tl and T2, both containing data fields,
SC, whose values are drawn from the domain of all spacecraft
names. The following SELECT command will cause records

to be retrieved from table Tl as a Ffunction of spacecraft
names contained in the data field SC in table T2.

SELECT (T1.S8C,T1.INST,...)
WHERE T1.SC=T2.SC...

The current contents of a user's Workspace Table can be
referenced in a SELECT command in the same manner as any
other table. The reserved table name, W , i1s used to refer

to the Workspace Table. After successful execution of a
SELECT command, the previous Workspace Table, if any, will

be replaced.by the new Workspace Table.

The DISPLAY command is used to return the contents of -
one or more data flelds from a single table to a remoté
terminal, If no table is named iﬁ the command, the Workspace
Table is assumed. If a table is named, it must be the
Workspace Table or a table contained within the data base
to which the user is attached when the command is issued.
When the list of data fields to be displayed is omitted
from the command, all data fields in the table are displayed.
Otherwise, only those data fields named in the 1list are
displayed. The data values will be displayed in a predefined
format unless a format specification is included in the

command.

The PRINT command is used to print the contents of one

http:TI.SC=T2.SC

or more data fields from a single table. The syntax of

the PRINT command is exactly the same as that of the DISPLAY
command except that a title can be specifiedlin the PRINT
command. The title will be printed at the top of the first
rage in the printed output.

3.5.2 Removing a Table

An existing table can be removed from the system using
the REMOVE command with the TABLE option. The table to be
removed must be named in the REMOVE TABLE command. The
table must be contained within the data base to which the
user is attached when the command is issued. Additionally,
the user issuing the command must be the owner of the table
being removed, the owner of the data base containing the
table or the Datra Base Administrator. After successful
processing of the REMOVE TABLE command, the table and any
associated superstructures will be removed from the system.

The execution of the REMOVE command with the TABLE option
causes the data records in the table, if any, to be deleted
and the pages in the tabular data storage area that contained
them to be returned to the free page list. Also, any super-
structure records associated with the table are deleted and
the pages returned to the free page list. The Relation Con-
"trol Block and Domain Extension associated with the table are
removed from main storage and the corresponding records are
deleted from the SYSREL and SYSDOM system tables, respectivelj
Finally, any authorization records corresponding to rights
granted on the table being removed, are deleted from the
SYSAUTH system table.

3.5.10 Removing a Data Field

An existing data field caﬂ be removed from the system
using the REMOVE command with the FIELD option. The data

field to be removed must be named in the REMOVE FIELD
command. The data field must be contained in the Daté
Dictionary associated with the data base to which the user
is attached when the command is issued. Additionally, the
user issuing the command must be the cwner of the data base
containing the data field or the Data Base Administrator.
Also, a data field can not be removed from a data base if
it is currently being used in a table contained in the data
base. After successful processing of the REMOVE FIELD
command, the description of the data field will be removed
from the Data Bictionary and the data field can not be used

in the definition of any new tables in the data base.

The execution of the REMOVE command with the FIELD
option causes the entry for the specified data field to be
removed from the appropriate Data Dictionary in main storage.
The corresponding Data Dictionary entry record is deleted
from the SYSDD system table.

3.5.11 Removing a Data Base

An existing data base can be removed from the system
using the REMOVE command with the DATABASE option. The
data base to be removed must be named in the REMOVE DATABASE
command. The user issuing the command must be the owner of
the data base being removed or the Data Base Administrator.
After successful processing of the REMOVE DATABASE command,
the data base and its Data Dictionary, all tables and their
superstructures and all authorizations associated with tables
in the data base will be removed from the system.

The execution of the REMOVE command with the DATABASE
option causes the data records in all tables contained with-
in the data base to be deleted and the pages that contained
them to be returned to the free page list. Also, any super-

structure records associated with the tables are deleted

and the pages returned to the free bpage list. The Data

Base Control Block and the Data Dictionary associated with.
the data base as well as the Relation Control Bloecks and
Domain Extensions associated with the tables in the dats
base are removed from main storagg. The corresponding
records are deleted from the SYSDB, SYSDD, SYSREL and SYSDOM
system tables. Finaliy, any authorization records corres-
ponding to rights granted or any of the tables in the data
base being removed, are deleted from the SYSAUTH system
table.

3.6 Using the Data File Directory

The Data File Directory consists of one or more tables
contained within the Global Data Base and provides the user
community with the capability of locating data files in the
Non-Relational Data Base as a function of their data content.
The Data File Directory has no predefined structure. That
is, it can contain as many tables as are reguired to reflect
adequately the types of data contained in the Non-Relational Data
Base and each of the tables can be defined so as to best des—
scribe the particular data files to which it refers. Thus,
new directory tables can be defined as necessary, existing
directory tables can be expanded and obsolete directory tables
can be removed from the system.

|

Although each of the tables that constitute the Data File
Directory are independent and can be accessed independently,
the system maintains sufficient information to relate all
directory tables in the Global Data Base such that the& can be
referred to collectively. Thus, each directory table has a
name by which it can be accessed directly while the set of all
directory tables can be referred to collectively using the
table name SYSDIR.

Each record in a directory table contains a data identifier
corresponding to the data file in the Non-Relational Data Base
to which the values of the other data fields in the record
pertain. One record in a directory table contains the attributes
(such as spacecraft, date, time, latitude, longitude, etc.)
that describe the data contained in the data file referenced
by the data identifier in the record. Since a single data
file may contain several logical subfiles whose attribute
values differ (e.g., maps measuring different physical variables
such as rainfall rate, cloud cover, etc. in a single data file),
more than one record in a directory table can point to the
same data file (i.e., contain the same data identifier). For
example, consider a data file that contains measurements of
several physical variables. If a directory .table which ref-
erences that type of data file has only a single data field
to 1lndicate physical variable type, multiple records pointing
to the data file could be stored in the directory table to
reflect the different physical variables measured in the data
file.

3.6.1 Defining a Directory Table

The definition of a new directory table is essentially the
same as the definition of any new table with some exceptions
noted below. As in the definition of any table, a DEFINE com-
mand with the TABLE option is used. However, the key word,
DIRECTORY, must precede the TABLE option when a new directory
table is being defined. Therefore, the command to define a
directory table is DEFINE DIRECTORY TABLE. The command must
include the name of the directory table and the data fields in
the table. The DEFINE DIRECTORY TABLE command is a privileged
command and can be issued only by the Data Base Administrator.
Additionally, this command will be accepted and rreocessed by
the system only if the Data Base Administrator is attached to
the Global Data Base when it is issued. The table name must

be unigue among table names already in the Giobal Data Base and
the data fields must have been previously defined within the
context of the Global Data Base. Unlike other tables, one of
the data fields in every directory table must be the data
identifier field, DID. Thus, every record in a directory

table will point to a data file in the Non-Relational Data

Base, Presumably, the other data fields would represent the
attributes associated with the type of data (e.g., KNIMBUS-~G

SMMR PARM-30 data or LANDSAT image data) for which the directory

table is being created.

After successful processing of the DEFINE DIRECTORY TABLE
command, a new table will be contained in the Global Data Base.
The table will be logically treated by the system as part of
the Data File Directory. It will be accessed, along with the
other tables, whenever the table name SYSDIR is used in a com-
mand. Since the DEFINEJDIRECTORY TABLE command can be issued
only by the Data Base Administrator, he will be the owner of
the new directory table. Subsequently, the Data Base
Administrator may change the ownership of a directory table to

a member of the user community, thus extending control over
the authorization of access rights to that user. It is expected

that the right to retrieve data from a directory table will be
granted to the entire user community while the right to modify
the table will be restricted to a small subset of the user
community or to the Data Base Administrator alone.

As with any table, a new directory table will be, initially,
a sequential table and will be empty. Superstructures can be
defined for a directory table while it is empty or after records
have been entered inFo the table in the same manner as any other
table, A directory table can be expanded by its owner with
the added data fields containing null values in any existing
records until those data fields are updated.

3.6.2 Modifying the Data File Directory

The modification of a directory table is performed by the
same data manipulation commands, INSERT, DELETE and UPDATE,
which are used to modify any table. A directory table could
be modified interactively, via the Batch Command Reader, from
an application program or from any special purpose programs
written to extract information from a data file header to
create one or more directory records describing a new data
file. A directory table can be modified by the Data Base
Administrator, the owner of the directory table if other than
the Data Base Administrator, and any user who has been granted
the appropriate rights.

“New records can be inserted into individual directory
tables only. That is, SYSDIR cannot be specified as the
table into which new records are to be stored by an INSERT com-
mand ., However, the DELETE and UPDATE commands can be used
to modify individual directory tables or the Data File
Directory as a whole. If a DELETE or UPDATE operation is to
be restricted to an individual directory table, the name of

that table should be included in the command. If the operation
is to be performed over the entire Data File Directory, SYSDIR
should be used as the name of the table to be modified. The

modification of the entire Data File Directory is carried out
cn a table by table basis. For each directory table to be
modified, the system determines whether the user issuing the
command has the right to perform the specified operation.

If not, that directory table is not modified. When performing
an UPDATE operation on the entire Data File Directory, the
system determines, for each individual directory table, whether
or not that table contains all of the data fields to be updated.
If not, the system checks the next directory table until all
directory tables have been processed. If a directory table

is encountered which possesses all of the data fields to be

updated, any records in the table that satisfy the WHERE
clause are updated appropriately. As with the UPDATE command,
a DELETE command which specifies SYSDIR as the table to be
modified causes each individual table in the Data File
Directory to be processed. Any record in an individual
directory table which satisfigs the WHERE clause will be
deleted. '

During the modification of a directory table, the data
field containing the data identifier is treated somewhat dif-
ferently from the other data fields. The data field contain-
ing the data idgntifier must not contaln the null value when
& new record is being inserted into a directory table.
Additionally, the data identifier specified in a new record
must match an existing data identifier in the Data File Catalog
which is the SYSCATL system table. During an update operation,
a null value cannot be stored in the data field containing the
data identifier. Also, any new value stored in the data
field containing the data identifier during an UPDATE operation,
will be checked against the Data File Catalog for validity.
Finally, to ensure consistency between the Data File Directory
and the Data File Catalog, whenever a data file is removed
from the Data File Catalog via the UNCATALOG command, all
records containing the corresponding data identifier will beée

deleted from the Data File Directory.
3.6.3 Retrieving Data from the Data File Directory

Retrieving data from a directory table is performed in the
Same manner as retrieving data from any other table in the
system. The SELECT command, DISPLAY command and PRINT command
can be used to retrieve data from individual directory tables
or from the entire Data File Directory. As with other tables,
the SELECT command will place the retrieved records in the
user’'s Workspace Table, the DISPLAY command will exhibit the

retrieved data on the user's remote términal and the PRINT com-
mand will print the retrieved data. Data can be retrieved
froﬁ individual directory tables by specifying the table name
explicitly in the command. - Data can be retrieved from the
entire Data File Directory by specifying SYSDIR in place of

the individual directory table name. When the table name, SYSDIR,
is specified in a retrieval command, each directory table is
checked to determine if all data fields in the target list are
contained within the table. If not, no data is retrieved from
that table and the system checks the next directory table until
all tables in the directory have been checked. If a directory
table is encountered which contains all of the data fields in
the target list, the data fields are retrieved from the records
that satisfy the WHERE clause specified in the command.

For most users, the retrieval oi data from the Data File
Directory will be the initial step in obtaining data for
study purposes. Using one of the retrieval commands, a user
can locate the data files that -possess spacial and temporal as
well as other attributes required for his work. Several ’

retrievals may be required from the Data File Directory to

: locate the required subset of data files in the Non-Relational

Data Base. Once the required data files have been located,
the user may wish to retrieve the records from the Data File
Directory which point to these data files. Using a SELECT
command, the user can retrieve those records and store them in
a table in another data base. In this way, the user can
create his own directory tables. It should be noted that these
directory tables in user data bases are not maintained by the
system as part of the Data File Directory.
3.7 The Non-Relational Data Base
!

The term "Non-Relational Data Base'" refers to all data

files for which an entry exists in the SYSCATL system table,

3~47

which is the Data File Catalog. As discussed in Section 2,

up to three copies of a data file can exist within the system,
simultaneously. The Data File Catalog can retain the location
of an off-line copy of the data file in its original format, an
on-line copy in one of the’system standard formats and an off-
line copy in the same system standard format. Using the
facilities of the interactive command language, a user can
manipulate data files in several ways. New data files can be
cataloged, making them known to the system, and existing data
files can be uncataloged, thus removing them from the system.
Data files can be loadedon-line, placing them in system standard
format or unloaded off-line in the same system standard format.
Procedures, such as regridding or windowing, can be performed
on data files under user control. Additionally, data files
can be converted to tables for processing by the relatioﬁal
front~end and tables can be converted to data files. Also,
application programs can read one or more data files and

create new data files that become part of the Non-Relational

Data Base. All data file commands, except the COPY command,
can be issued while the user or Data Base Administrator is
attached to any data base. The COPY command mustT reference

a table in the data base to which the user issuing the command
is attached. Thus, the ability to locate, manipulate and pro-

cess this large, sequentially organized, data base provides the
Integrated Data Base Management System with considerable power

and flexibility. The use of all of the facilities for handling
data files within the system 1is described in the following

subsections.
3.7.1 Adding a Data File to the Non-Relational Data Base

A new data file can be added to the Non-Helational Data
Base in two ways: by an application program or, interactively,

using the CATALOG command. The creation and processing of
data files by an application program is discussed in a subsequent

3-48

subsection. This subsection deals with the use of the CATALOG
command . The CATALOG command logically enters a data file into
the Non-Relational Data Base by creating a Data File Catalog
entry and inserting it, as a record, into the SYSCATL system
table. The CATALOG command is a privileged command and can

be issued only by the Data Base Administrator and only while
attached to the Global Data Base which contains the system
tables.

Physically, the new data file must reside on a magnetic
tape and should be placed into the tape library reserved for
the Non-~Relational Data Base. The CATALOG command must specify
the physical location of the data file being added. The
representation of the physical location may be system dependent
butj most likely, will consist of a volume serial number, a
file number and a format code. The format code indicates the
format of the records in the data file and identifies the sub-
routine, if one exists, in the system library which is used to
load the data file on-line. If a duplicate volume serial
number, file number and format code already exist in the SYSCATL
system table, the new record is not inserted, but the data
identifier of the matching entry is returned to the user.
Otherwise, the system will assign a unique data identifier to
the data file being added and the new record will be inserted
in the Data File Catalog after which th data file is considered
to be contained within the Non-Relational Data Base.

3.7.2 Removing a Data File from the Non-Relaticnal Data Base

An existing data file can be removed from the non-relational
data base only by the UNCATALOG command. The command must
contain the data identifier of the data file to be removed.

The UNCATALOG command is a privileged command and can be issued
only by the Data Base Administrator and only while attached to
the Global Data Base which contains the system tables.

3-49

The execution of the {UNCATALOG command causes the record
containing the specified data identifier to be deleted from the
SYSCATL system table. Any records in the Data File Directory
in the Global Data Base that contain the data identifier are
deleted from the directory tables. If anon-line copy of the
data file exists, it is deleted and the direct access storage
is freed. Any off-line copies of the data file will continue
to exist but will not be accessible via the Data File Directory
or the Data File Catalog.

3.7.3 Loading a Data File

The action of loading a data- file refers to the transference
0of an off-line data file on magnetic tape to a direct access
device. A data file which has been loaded will always be in
one of the system standard formats while theoff-line data file -
may have been in its original data file format or in the same
system standard format. Thus, the loading process will always
transform a data file to a system standard format, if necessary.
The term'on-line'" will be used to refer to a loaded data file
on a.direct access device. However, the data file is still
sequentially organized and should not be confused with tabular

data.

To transferan-off-line data file on magnetic tape to an
on-line direct access device, the user issues a LOAD command.
The data identifier of the data file to be loaded must be
specified in the command. The execution of the LOAD command
may require that a format conversion routine be loaded from
the system library. The basic purpose of the routine would be
to convert the original data file format of the off-line data
file to a system standard format . However, other operations
could be performed by the load routine. Further parameters required
to control the operation of the load routine would be dependent
upon the particular routine being used and the content of the

data file being loaded. For example, if the load routine had
the capability of extracting a single physical variable from a
data file which contalned several physical variables, it might

be required that the user indicate if physiecal variable selection
is desired and, if so, which physical variables were to be

extracted.

If the loading of a data file causes it to be modified, as
described in the example above, a new data identifier will be
assigned to the loaded data file since its content is different
from that of the original data file. A Data File Catalog’
entry will be created for the loaded data file and will be in-
serted, as a record, in the SYSCATL system table. If the
content of the loaded data file is the same as that of the
original data file, the record in the SYSCATL system table
corresponding to the original data file is updated to reflect
the existance, location and format of the on-line, loaded
data file.

When a data file is placed on a direct access device via
the LOAD command, the on-line data file is marked as a temporary
file. Temporary data files will be periodically scratched from
the on-line environment by a utility program. To prevent an
on-line data file from being scratched, a user must issue a KEEP
command. The data identifier of the data file to be marked
as permanent must be included in the command. The execution of

the KEEP command causes the on-line copy of the data file whose
data identifier is specified in the command to be marked as

permanent. This action does not affect any off-line copies of

the same data file.

There are several reasons why a user might wish to cause 2
data file to be loaded on-line. ©Some data files contain massive
amounts of data and, for these types of data files, the load
operation would perform windowing functions. Thus, by loading

the data file a user can select only the subset of the data in
which he is interested. Additionally, having a data file on-
line will reduce the time required for an application program
to access that data file by eliminating the tape mounting delay.
Many of the procedures which can be invoked via the PERFORM
command will require that input data files be in system standard

format. Therefore, it may be required that a data file be
loaded prior to performing some procedure on it. The PERFORM
command is discussed in a subsequent subsection. Also, prior

to copying a data file to a table, it may be necessary to load
that data file to either reduce the amount of data placed in
the table or to convert a data file, whose original data Ffile -
format is not compatible with the COPY command, into a compatible
system standard format. A discussion of the COPY command is
contained in a2 subsquent subsection.

3.7.4 Unloading a Data File

The unloading of a data file refers to the transference
of a data file on a direct access device to an off-line
magnetic tape. The on-~line data file will be in a system
standard format and no conversion or modification, such as -
windowing, can occur when the off-line data file is created.
Thus, the unloading of a data file produces an off-line cCopy
of the data file in the same system standard format as the
on-line data file. The data identifier associated with the
data file to be unloaded must be specified in the command.
If an on-line copy of the data file does not exist or an off-
line ccpy in system standard format already exists, the command
will not be executed. Otherwise, the data file will be copied
to a magnetic tape in the same system standard format as the
on~line data file and the record corresponding to the data
file in the SYSCATL system table will be updated to reflect
the existance and physical location of the off-line copy of the
data file.

The on-~line copy of the data file will not be affected by
the execution of the UNLOAD command. It will not be scratched
or modified in any way. However, a user can cause an on-line
copy of a data file to be removed from the system at any time
by issuing a SCRATCH command. The data identifier for the
data file whose on-line copy is to be scratched must be included
in the command. If no on-line copy of the data file exists,
no action is taken. Otherwise, the on-line copy of. the speci-
fied data file is scratched, whether or not it has been marked
s temporary or permanent. The SCRATCH command has no effect
on off-line copies of the data file. The execution of the
SCRATCH command frees the direct access space allocated to the
on-line copy of the data file and updates the record correspond-
ing to the data file in the SYSCATL system table to indicate
the removal of the on-line copy. If, when the SCRATCH command
is issued, no off-line copy of the data file either in the
original data file format or in a system standard format,
exists, the command will not be executed since this would cause
the ultimate loss of the data file. In this case, the user
should issue an UNCATALOG command to remove the data file, if

that is what is desired.
3.7.5 Invoking Data File Processing Procedures

The interactive display and manipulation of the contents of
data files is an important feature of the Integrated Data Base
Management System. This facility is invoked via the inter-
active command, PERFORM. The name of the procedure being

invoked must be inecluded in the command.

The execution of the PERFORM command requires that a sub-
routine be loaded from the system library. Any number of
such routines may exist in the system library and new routines
to perform additional procedures can be added at any time.
Thus, the system supports an open-ended facility for the dis-
play and manipulation of data files. Routines could be included

3-53

that display or plot the contents of a data file, perform
regridding operations on a data file, perform windowing,
slicing or splitting operations on a data file or merge several
data files onto a single grid.

Each of the procedures invoked by the PERFCRM com-
mand will use, as input, one or more data files residing on
a direct access device in a system standard format. Any new
data files created by the procedure would be stored on a direct
access device in one of the system standard formats. A new
data identifier would be assigned to the resulting data file
and a Data File Catalog entry would be created for each new
data file and inserted, as a record, in the SYSCATL system
table. Any new data files created.by a performed procedure
would be marked as a temporary file. The concept of temporary
data files and their handling is discussed in the previous
subsection entitled Loading a Data File.

3.7.6 Data File/Table Conversion

Although the Integrated Data Base Management System is
based on the division of data into two types or forms, tabular
data and sequentially organized data files, there are times
when it is convenient for a user to have the capability of
converting data from one form to the other. To provide this
capability, the interactive command language includes a COPY
command which copies data files to tables and tables to data
files performing the necessary conversion of physical data

structure.

To copy an existing data file to a table, the user issues
a COPY command which includes the data identifier of the
data file to be copied and the name of the table into which
the data is to be copied. The table specified in the command
must already exist in the data base to which the user is

http:created.by

attached when the command is issued. The data file identified
in the command may be in a system standard format or its
original data file format. If a system standard format copy
of the data file exists, it will be used as the source of the
data records. No conversion takes place during the copy opera-
tion. Each logical record in the data file is placed in the
tabular data storage area as a record in the specified table.
Thus, data fields in the table should match, in type and length,
those in the data file being copied. Any superstructures defined
on the table are updated as the records are inserted intoc the
table. The table must have been defined prior to issuing the
COPY command, however, the table need not be empty. The execu-
tion of the COPY command which copies an existing data file to
a table does not affect the data file in any way.

To copy a table to a data file, the user also issues a
COPY command which specifies only the name of the table to be
copied. The table must exist in the data base to which the
user is attached when the command is issued. The executilon
of the COPY command to copy a table to a data file causes the
table to be read sequentially, whether or not any superstructures
exist for it. Only data records in the tsble, not super-
structure records, are copied to the new data file. The data
records in the table are written to a new data file on a
direct access device in a system standard format. The system
assigns a data identifier to the newly created data file.

A Data File Catalog entry is created for the data file and is
inserted, as a record, in the SYSCATL system table. The
execution of a COPY command which copies a table to a data
file does not affect the contents of the table in any way.

3.7.7 Data File Processing by Application Programs
The Application Program Command Language contains commands

that manipulate not only tabular data but data files, as well.

3-55

All application program commands are issued via a CALL state-
ment which uses the same subroutine name. For example pur-
poses only, we have used IDBMS as the subroutine name. The
first argument will be the application program command to be
executed (e.g., SELECT, OPEN, READ), The remaining arguments
will be a function of the command being issued. Section 5
describes the Application Program Command Language and includes

the argument list for each command.

Several of the interactive commands from the data file
cztegory can be issued from an application program. These
include COPY, LOAD and UNLOAD. However, a number of addi-
tional commands are available to an application program for
the processing of data files. These commands permit the open-
ing and closing of data files, the reading and writing of data
records in a data file, the reading and writing of header
and processing history records, the searching of 2 data file
for a particular string and the retrievel of format information
pertaining to the data file from the Data File Catalog. These

commands are discussed briefly below.

The OPEN command logically connectis a data file to an
application program. The argument 1list contains the mode
in which the application program will access the data file.
The available modes are INPUT, OUTPUT and OUTIN. The first
two access modes are self-explanatory. The third, OUTIN,
indicates that the data file will be created by the applica-
tion program and then modified by the application program.
If the file is being opened in the INPUT mode, the argument
list must specify the data identifier of the data file to be
opened. If the data file is being opened in the OUTPUT or
OUTIN mode, the system will assign a data ideptifier to the
data file to be created and will return it to the application
program via the data identifier argument. The OPEN command
will also perform all operating system dependent apen
functions for the data file.

The CLOSE command logically disconnects a data file from
an application program. The argument list must specify the
data identifier of the data file to be closed. If the
access mode assoclated with the data file being closed is .
OUTPUT or OUTIK and the data file was written successfully,
a Data File Catalog entry is created and inserted, as a
record, in the SYSCATL system table to reflect the existance
and physical location of the new data file. The CLOSE command

also performs all operating system dependent close functions
for the datz file.

The READ command retrieves into 2 work area withain an applica-
tion program, all or part of a data record from a data file.
The_daia identifier of the data file to be accessed must be
speéified in the argument list. If 2 portion of the logical
record 1s 10 be retrieved, the starting byte locztion and the
-length of the portion to be retrieved must zlso be specified
ir the argument list. The READ command includes, in its
argument list, a logical record number which allows the datsa

file to be positioned to a specific logical record for retrieval.

The WRITE command writes a new logical data record into
a data file. The data identifier for the dataz file must be
included in the argument list. As in the READ command, a
logical record number can be ineluded in the argument list of
the WRITE command to position a data file to an existing record
such that it can be overwritten. The overwriting of records
in a data file is permitted only if the file was opened in the
OUTIR access mode and has not been closed in the interim. The
WRITE command permits all or a portion of a logical record to
be written. If a new record is being written and only a
portion of that record is specified in the argument list, the
remainder of the record will contain binary zeros. If an
existing record is being overwritten, only the poertion of the
record specified in the argument list is overwritten while any
other fields in the existing record are retained.

3-57

The SEARCH command permits the scanning of data files to
locate a particular string of characters. As in the READ and
WRITE commands, a logical record number can be specified to
position the data file prior to beginning the search. The
argument list must contain the start byte and length of the
string to be checked in each logical record. Also, the argu-
ment list must contain one of the relational operators, EQ,
NE, LT, LE, GT or GE, indicating the type of comparison to be
made. Finally, the argument list must point to a2 work area
containing a string which is to be compared with the string
retrieved from each logical record in the data file. During
the execution of the SEARCH command, a string of characters
defined by the start byte and the length specified in the
argument list is retrieved from each data record read,and is
compared with the string in the work area using the relational
operator. When the relation condition is true or an end-of-
file is encountered, the execution of the SEARCH command is
terminated. If a match occurs prior to the end-of-iile con-
dition, the logical record number of the matching record is
returned to the application program. A READ command specify-
ing that logical record number can be used to retrieve data

from the record.

The GET command permits an application program to retrieve
recbrds from a table based on the logical ascenaing seguence
imposed on a table by a B-tree index. Each time that an appli-
cation program issues a GET command, data fields from the record
containing the next highest key value in the specified B-tree
index are returned to the application program. To facilitate
the traversal of a B-tree index, each such index has a cursor
associated with it. These cursors are maintained by the system
and move independently through their associated B-tree %ndex
whenever a GET command is issued referencing the key field on
which it is created. An additional feature of the GET command
is the ability to specify the starting point in the key sequence
at which retrieval should begin.

3-58

Two other commands are associated with the use of the GET
command. They are the LOCK and UNLOCK commands. Since the GET
command uses a B-tree index to determine which record in a table
to retrieve, no modifications to that table or the B-tree index
can be permitted. Thus, an application program must issue a
LOCK command for a table prior to issuing any GET commands refer-
encing that table. The LOCK command can also be used at any
time that an application program requires control over a table.
This could occur prior to modifications of the table as well as
pricr to issuing GET commands. When issued, the LOCK command
prohibits any interactive user or application program from
modifying the table if the READ mode is specified in the command
or, if the MODIFY mode is specified, it prohibits all access to
the table. The UNLOCK command simply releases control over a
tabie which was established by a previous LOCK command.

The FORMAT command permits an application program to
retrieve information from the Data File Catalog concerning
the existance of off-line and on-line copies of a data file
and their associated formats. The data identifier of the
data file for which the information is to be obtained must be
included in the argument list. The system will return to
the application program an indication of whether or not an
off-line copy of the data file exists in its original data
file format, whether an on-line copy exists in a system
standard format and whether an off-line copy also exists in
system standard format. Also, it will indicate in which
system standard format or data file format a copy exists.

Four other commands, GETHEAD, PUTHEAD, GETHIST and PUTHIST,
are available to read and write header records and processing
history records, respectively, for data files in system standard
format. Each of these commands must include the data
identifier of the data file which is being accessed by the
command. Additionally, the argument list must reference a
work area which contains either the header record or history

3-59

record to be written for output or a work area into which the

header or history record can be placed for input.

SECTION 4 -~ THE INTERACTIVE COMMAND LANGUAGE
4.1 Introduction to the Interactive Command Language

The Integrated Data Base Management System commands avail-
able to an interactive user (i.e., commands other than the
Operator commands) may be divided into five categories: data
definition commands, data manipulation commands, administrative
commands, utility commands, and file operations. This section
describes the syntax and briefly discusses the function of these
commands on a category-by-category basis. While nothing in
the design of the Interactive Datsa Base Management System would
preclude having every command described in this chapter made
avallable for use by application brograms, consideration of
projected user requirements suggests that certain commands
available for interactive users would be superfluous for applica-
tion programs. Therefore, certain commands will be restricted
for interactive use only. Moreover, since certain commands
will be restricted to specific classes of users, the discussion
of the function (or "semantics") of these commands will include
a statement of the restrictions, if any, on the uée of these
commands.

It should be emphasized that this is not intended to be a
substitute for a detailed users' manunal, and the discussions
of semantics are correspondingly brief. In particular, the
reader will find more detailed discussions of file operations
in Section 7, Data File Processing.

The notation used for describing the syntax of these
interactive commands owes much to the CODASYL Data Base Task
Group Report5 and to the Backus Normal Form notation used to

describe Algol 602§ The following rules apply:

¢ Key words are indicated with capital letters.

¢ Generic terms are indicated by lower case letters and

are included in angled brackets (<,>). Generic terms

4-1

are replaced with appropriate values when the format
is used. The use of subscripts on generic terms is
not meant to imply different generic terms, but rather
that the values used when replacing the generic terms
will normally be different (see example at bottom of

rage).

Example: 1If 'BTS100' is a user-id and 'ALPHA' is a password
then ENTER BTS100, ALPHA is an instance of ithe for-
mat ENTER <user-id>,<password>.

¢ Square brackets ([,]) indicate optional alternatives.
At most one, but possibly none, of the alternatives

"may be present.

Example: MENU, MENU ON, and MENU OFF are valid instances of

the format -
‘ yEnu | OF
OFF

e Braces ({,}) indicate mandatory alternatives.
Precisely one alternative must be present.

e Vertical placement and vertical lines are beth used to
indicate alternatives. 1

OoN
Example: MENU [ON|OFF] is equivalent to MENU
QFF
8 An ellipsis (...) indicates that repetition is permit-
ted. The portion of the format to be repeated is

determined by the open bracket or brace ([or {) which

matches the closed bracket or brace (] or }) immediately

to the left of the ellipsis.

Example: If XYZ1, XYZ2, and XYZ3 are data file identifiers
then LOAD XYZ1l,XYZ2,XYZ3 is an instance of
LOAD <file—id1>[,<file—id2>]...

4-2

¢ The special symbol '"::=" means "is defined to be". It
is used to break up what Would otherwise be a very
complicated definition into simpler and easier to grasp
parts.

¢ Other punctuation marks such as commas and asterisks
must be present, as shown. ,

¢ Key words and generic items must be separated by blanks
or punctuation marks when the command is entered into
the system.

Example: ENTERBTS100,ALPHA is an unacceptable instance of

the format ENTER <user-id>,<password>. However,
both ENTER BTS100,ALPHA and ENTER BTS100, ALPHA are
valid.

4.2 Utility Commands

Utility commands will perform a variety of necessary

Services for interactive users. Al) of these commands will

be availaple to dnj'interactive user without restriction, and

certain of these commands shall furthermore be available to

application
will be:

ENTER

EXIT

" ATTACH

DESCRIBE

USE

MENU

PASSWORD

programs as well. The seven utility commands

Connect the user to the Integrated Data Base
Management System.

Disconnect the user from the system.

Designate a particular data base for informa-

tion processing.

Display a textual description of data entities,
commands, user authorizations, or group member-
ships.

Establish a one-character or two-character alias
for a table.

Display a menu of interactive commands or
toggle from full menu display mode to menu

suppressed mode or vice versa.

Change passwords.

4.2.1 ENTER

A user will connect to the Integrated Data Base Management
System with the ENTER command, whose syntax is described below:

ENTER <user-id>,<password>

where the password must be correct for the indicated user
before the system will process the command. The password will
be selected by the user, and -- due to the manner of encipher-
ing it when the password is stored internally -- not even the
DBA will be able to learn the password except by communicating
with the user or expending an inordinate amount of time and
effort. This is intended to provide a user with a certain

measure of security.

After successful execution of an ENTER command the user
W111 always be attached to the Global data base.

4.2.2 EXIT

A user will exit from the Integrated Data Base Management
System by keying in the single key word:

EXIT

When the user issues an EXIT command, any alias names established
for tables via USE commands {see Section 4.2.4) will be erased
and the contents of the user's Workspace Table will be

deleted.

4.2.3 ATTACH

A user may leave one data base and begin processing data
in another data base via the ATTACH command. The syntax of
the ATTACH command will be:

ATTACH [TO1 <data base name>

Subsequent commands which refer to tables or fields will be
presumed 1o reference entities of the specified data base.
However, an ATTACH will be accepted only if the user -- or
some user group to which the user belongs -- has access rights
to the specified data base.

Successful execution of an ATTACH command will not change
any alias names established while the user was previously
connected to some other data base. However, the user will
not be permitted to reference those tables until re-attached
to the data base where the asliases apply. Nor will successful
execution of an ATTACH change the contents of the workspace
table. Therefore, the workspace table can provide a convenient
mechanism for transportation of data between different data
hases.

4.2.4 TUSE
The syntax of the USE command will be:

USE <a1ias]>[,<a1iasz>]... FOR <table name>

where aliases will be one or two alphanumeric characters with
the first character restricted to be alphabetic (e.g., S, SC,
83, ete.). This command will specify short aliases for
tables, and the user may then substitute the alias for the table
name in any command in which the table name is required.
This will have two benefits:
:(f) the number of keystrokes required to enter a command
will be reduced, and
(2) at least one alias will be required when a table is
cross reiferenced against itself in the performance
of a retrieval using the relational calculus syntax*.

A user will be permitted to have more than one alias name
on a single table, and the same alias name may be applied To
different tables provided the tables reside in different data
bases. However, any given alias can be used on at most one
table in any given data base at any time. Thus, if a given
alias is bound to a table in some data base and 2 user issues
a new USE command binding that alias to a differént table in
the same data base, then the old binding will be overwritten
by the new binding.

There will be one important restriction on the use of alias
names, By convention, the name "W" will always refer to the
user's "Worskpace' Table*, The user will not be reguired to
make this binding formally (with a USE command) and may not
redefine W.

* See the description of the SELECT command in Section 4.5.1.

Detaching from a data base will not alter the alias name
bindings established by the user for that data base, and the
same set of alias bindings will be in effect when the user
reattaches to that data base. Upon EXIT from the system,
however, all alias name bindings will be destroyed.

4.2.5 DPASSWORD

Users may wish to alter their passwords for reasons of
security, or the DBA may be called upon to reset the password
of some useri The mechanism for changing passwords will be
the PASSWORD command:

PASSWORD [FOR <user-id>]=<password>

Barring a system crash necessitating data .base recovery and
restart, the new password for the user will be in effect the
next time the user issues an ENTER command.

Only the DBA will Qe allowed to use the PASSWORD command
with the FOR clause. The DBA may find it necessary to issue
such a command if a user fdrgets his password, or if it
becomes necessary to deny access to the system temporarily
for some user and the DBA does not wish to take the drastie
step of issuing a REMOVE on that user.

The PASSWORD command will not be available to applica-

tion programs.

4.2.6 MENU
The syntax of the MENU command will be:

ON
MENU
OFF

When a user enters the Integrated Data Base Management
System through an interactive remote terminal, the system will
inquire whether he or she wishes to work in "full menu dis-
play" mode or "menu suppressed" mode, that is, whether the user
wishes to have a menu of interactive commands displayed between

transactions, or whether menu displays are to be inhibited.

If the user is working in full menu display mode then the
only form of the MENU command which the system will accept
will be MENU OFF, which will toggle the user into menu suppres-
sed mode. If the user is working in menu suppressed mode,
then he or she can issue a MENU ON command to toggle into full
menu display mode, or the user will be permitted to input
MENU with no qualifier to get a menu listed without switching
out of menu suppressed mode.

4.2.7 DESCRIBE

DESCRIBE will be a multipurpose command used to pass
information from the Integrated Data Base Management System
back to a user. The syntax of a DESCRIBE command will be:

DATABASE| [<entity name1>[,<entity name2>]...
TABLE *

FIELD WHERE <qualtification>

COMMAND {<command name>|TYPE=<category>}
GROUP <group name> '

RIGHTS [FOR <user—1d1>[,<user-id2>}...]

DESCRIBE

where %he entity name is a data base name (if the command is
DESCRIBE DATABASE), a table name (for DESCRIBE TABLE)}, or the
name of a field in the Data Dictionary (for DESCRIBE FIELD).

As may be inferred from the above syntactic description, a user
will be able to request information about data bases, tables
within a data base, the contents of a data dictionary, svstem
commands, and user groups. Also, a user may inquire about

the extent of his or her data access rights. Each of these
six variants are described in greater detail below.

The DESCRIBE command is not available to application
programs.

4.2.7.1 DESCRIBE DATABASE

The DESCRIBE DATABASE command will cause the Integrated
Data Base Management System to output the following information

Tor each data base specified by the user:
(1) data base name

*(2) data base owner
(3) type (working vs. applications)

4-12

(4) creation date
(5) short textual description.

This is a minimal set of items of information, and the DBA may
elect to define even more fields in a data base control block
and, if so, these fields would surely also be listed. For
example, the DBA may choose to define meaningful classes of
data bases, so that the data base class would be output as
well as the five items specified above.

The user will be able to specify one or more particular
data bases by name, or the user can fetch a listing of all
the data bases managed by the system by using the asterisk
("x"Y option. A third approach will be to specify a subset
of the data bases through use of a WHERE clause and some qualifica-
tion. The syntax of a WHERE clause and qualification are
spelled out in greater detail in the subsection of this report
devoted to the SELECT command but, basically, a qualification
is a Boolean combination of predicates, and in this case the
predicates will attach values to the fore-mentioned items of
information in the data base control block. For example, a
user may wish to see a description of all working data bases
owned by BTS100, and do so with the command:

DESCRIBE DATABASE WHERE OWNER=BTS100 AND TYPE=WORKING

Other fields which might occur in a qualification predicate
are creation date and class (if defined by the DBA).

It is important to note that a user will not have to be
attached to any particular data base to issue a DESCRIBE

DATABASE command, and that issuing a DESCRIBE DATABASE command
will not transfer the user from his or her current data

base.

4.2.7.2 DESCRIBE TABLE

A user will be able to retreive detailed descriptions of
tables and data bases to which he or she is attached T by
issuing a DESCRIBE TABLE command.
by the user the system will respond by listing:

(1) table name
(2) table owner

(3) creation date

(4) access
(5) access
(8) access
(7) access
(8) a list

control for
control for
control for
control for

READ

INSERT
UPDATE
DELETE

of domains by name

For each table specified

(public,
(public,
(public,
(public,

private,
private,
private,

private,

or
or
or
or

restricted)
restricted)
restricted)
restricted)

(9) for each domain, the field in the data dictionary to

which it corresponds and assertions, if any

(L0) a list of search keys and superstructures.

The user will be able to specify a list of tables by name, or

may ask for all tables in the data base with the asterisk option,

Oor may use a WHERE clause and qualification.

Fields available

for use in predicates would inelude -- but not be limited to —-

owner, creation date, access control status, and the names of

one or more domains.

4.2.7.3 DESCRIBE FIELD

A user can examine the contents of the Data Dictionary for

the data base to which he or she is attached'’ by means of the
DESCRIBE FIELD command.
the system would list the following data:

TTo maintain system securit

For each field specified by the user

Yy, system tables such as SYSDOM,

SYSUSER, SYSCATL, and others will be invisible to the user
and shall not be described to the user even if the user is

.attached to the Global Data Base.
TTAgain, certain fields .of the Global Data Dictio

blocked from user knowledge.

4-14

nary would be

http:fields.of

(1) field name

(2) type

{(3) size

{(4) units (if present).

Again, the user will be able to specify one or more
particular fields by name, or may cause the entire Data
Dictionary to be listed (with the asterisk option), or may
use a WHERE clause and dualification to specify a subset of the
Data Dictionary implicitly.

4.2.7.4 DESCRIBE COMMAND

The DESCRIBE command with the COMMAND option is similar to
the "HELP" command of other interactive, user-friendly systems.
The DESCRIBE COMMAND command will not be available through the
system's Batch Command Reader.

The user will be able to name a specific command (e.g.,
DESCRIBE COMMAND INDEX) or may request details on a2ll of the
commands in a particular category (e.g., DESCRIBE COMMAND TYPE=
UTILITY). The system will respond by giving the syntax and
a brief description of the function for the command(s) speci-
fisd by the user. The Integrated Data Base Management .

System will be selective in what it outputs -~ there is
obviously no need fo tell the user about ENTER, for example,
nor will the user be given any information on commrands avail-
able for the DBA's use only. Thus, use of the USER clause and
GROUP clause will not be explained if the user asks about
DEFINE or REMOVE, nor will the system inform users about
CATALOG, UNCATALOG, INCLUDE, EXCLUDE, or the GROUP clause for
the DESCRIBE command. If it should happen that a user does
regquest information about one of these restricted commands,
the system will respond by stating that the command in gues-
tion is restricted to use by the DBA only.

4.2.7.5 DESCRIBE RIGHTS

The RIGHTS clause of the DESCRIBE command will allow a
user to discover what his or her data acess rights are.
The system will respond to the DESCRIBE RIGHTS command by list-
ing all the data access rights authorized to that user directly,
then listing all the rights indirectly authorized to the user
by group membership on a group-by-group basis. (A more
thorough discussion of precisely what those rights are may be
found in the subsection devoted to the GRANT command.)

Only the DBA will be permitted to use the DESCRIBE RIGHTS
command with the FOR clause. This variation of the DESCRIBE
RIGHTS. command is designed to give The DBA the ability to
determine the data access rights for users of the system.

4.2.7.6 DESCRIBE GROUP

The DBA will also be able to examine the membership of
and access rights authorized to particular groups by the
DESCRIBE GROUP command. The output will be a listing of the
users belonging to the group, sorted by user-id, and a listing
of the data authorizations granted to the group on the whole,
sorted on table within data base.

4.3 Data Definition Commands

The six data definition commands will allow interactive
users of the Integrated Data Base Management System to create
and remove data bases, tables, and fields; to alter table lay-
outs; to specify data validation tests; and to define access
method superstructures on fields of a table to facilitate
rapid data retrieval. The Data Base Administrator may also
use data definition commands to introduce new users to the
system, to remove inactive users, and to define user groups.

The commands will bhe:

DEFINE ~ Identify new data bases, new fields, new tables,
new users, new user groups, and data valida-

tion tests to the system.

REMOVE - HRemove inactive users, -obsolete user groups,
unused fields, tables, or even whole data bases

irom the system.
EXPAND - Append one or more columns to an existing table.
INDEX - Establish hierarchical index superstructures

on given fields or combinations of fields in a

table.

INVERT - Create inverted file indices for a given field

or combination of fields.

DROPINDEX Delete index superstructures (both hierarchical

and inverted) from specified tables.

Most of these commands will be restricted with respect to the
list of users who may apply them in any given situation. These
restrictions will be specified in greater detail in the follow-
ing exposition.

None of these commands will be available through the
Applications Program Interface, although, again, this is a
philosophical point rather than a requirement of the system

design or proposed implementation.

4-18

4.3.1 DEFINE

DEFINE is to be a multipurpose command used to introduce
a variety of entities to the Integrated Data Base Management
System. The syntax of a DEFINE command will be:

/DATABASE <data base clause>
[DIRECTORY] TABLE <table clause>
FIELD <field clause>:
DEF INE ASSERTION <data validation clause>
USER <user clause>
GROUP <group clause>

To avoild the confusion which can be caused by overwhelming
detail, each of the six variants is discussed in a separate
subsection, below.

4.3.1.1 DEFINE DATABASE

The syntax of a DEFINE command with the DATABASE clause
will be:

DEFINE DATABASE <data base name>

where the specified data base name must not duplicate the name
of some already-existing data base. Any user will be able to
define a data base, thereby becoming its owner. A user who
issues a DEFINE DATABASE command will implicitly become
attached to the new data base for the purpose of further

processing,
4,.3.1.2 DEFINE TABLE

The syntax for a DEFINE command with the TABLE clause will

4-19

be:

DEFINE [DIRECTORY] TABLE <table name>{<field def'n1>[,<f1e1d def'n2>]...)

where

<field name>
<field def'n> ::=
<field name]>=<f1e1d name2>

If the field definition is in the first form, a single field
name, then that name must be in the data bases's Data Dictionary.
If the field definition is in the second form then the second
field ﬁame (on the right hand side of the equals sign) must be
in the Data Dictionary while the first field name (on the left
side of the equals sign) should not be in the Data Dictionary.
Field definitions in the second form will allow the user to
attach‘his or her own names to pre-defined fields (e.g., X=LON,
Y=LAT). This will be an absolutely necessary feature for the
case when two columns of the table span the same domain of
valpes and are defined in terms of the same field (e.g.,
START-DATE=DATE, END-DATE=DATE).

Although the order of fields within a table is not significant
for information retrieval purposes, the order in which the
field definitions are listed in the table clause will define
the internal sequence in which they will be stored by the
Integrated Data Base Managements System's Physical Interface.

A user may not DEFINE a new table in a data base unless
attached to that data base. The right to DEFINE tables will
be limited to the DBA, the owner of the data base, and such
users as the data base owner permits (see the GRANT command, in
a later subsection). The user who defines the new table will
become its -owner. To avoid confliet with alias names (see

Section 4.2.4) a table name must be three or more characters
long.

Only the DBA may DEFINE a DIRECTORY TABLE, and a DIRECTORY
TABLE can only be created in the Global Data Base. Such
tables will differ from normal tables in that they will auto-
matically become a part of the special virtual table, SYSDIR,
which references data files cataloged in the non-relational
portion of the system.

4.3.1.3 DEFINE FIELD

The mechanism for entering data field names into a data
base's Data Dictionary will be the DEFINE command with the
FIELD clause. Its syntax will be:

DEFINE FIELD <field name>[TYPE=]<type>,[SIZE=]<size>[,[UNITS=]<units>]

The order of type, size, and units (if present) will not be
significant if the key words TYPE, SIZE, and UNITS, respectively,
are used, but when the key words are not used then they must

be in the sequence specified above. All key words should be

present or none should bhe used.

The type parameter may take on any one of five values: REAL,
ALPHANUMERIC, INTEGER, LOGICAL, or DECIMAL* (the system will
accept any reasonable abbreviation beginning with R, A, I, L, or
D, respectively). The size parameter will indicate the size
of this field in bytes. An integer field size must not exceed
the number of bytes per word on the machine where this system
is implemented, and a floating point field must be precisely

one or two times the word size. The Integrated Data Base

*Short for "packed decimal' and available only if supported
by the machine on which the Integrated Data Base Management
System is implemented.

Management System will retain a table of acceptable unit names
and abbreviations; use of a unit name (or abbreviation) for
the units parameter which is not in that table will cause the

command to be rejected.

Only the DBA or the data base's owner will be allowed to
DEFINE fields.

4.3.1.4 DEFINE USER

The Data Base Administrator will introduce new users to
the Integrated Data Base Management System through the DEFINE
command with the USER clause. The syntax is shown below:

DEFINE USER <user-id>,<password>[,GROUPS=<gr0up1>[,<group2>]...]

. This will create a new entry in the SYSUSER system table for
a2 user with the given user-id and password, and will include
the new user in the indicated groups.

4.3.1.5 DEFINE GROUP

One useful feature of the Integrated Data Base Management
System will be the ability of the DBA to establish "user
groups'. These groups will exist for purposes of authorizing
data access rights to sets of users engaged in the same or
similar projects without specifically enumerating that list
of users. The mechanism for establishing a group will be
the DEFINE command with the GROUP clause, and its syntax will
be:

DEFINE GROUP <group name>

Note that this command will merely introduce a group to
the system and will not assign any users to that group.

Users will be included in a group by a DEFINE USER command or

an INCLUDE command (described in a later subsection).
4.3.1.6 DEFINE ASSERTION

An important funcition of any data bhase management system
is protection of the quality of the data it manages. The
Integrated Data Base Management System will make provision for
limited, automatic data validation tests to be specified by
authorized users to maintain the semantic integrity of its
data. The normal mechanism in & relational data base manage-
ment system for defining and applying these data validation
tests is the "integrity assertion" -- a statement about the
data in a table which is expected to be true unless one or
more records 1is incorrect. A more thorough discussion of the
theory and use of integrity assertions may be found in Appendix
B, These data validation tests will be established by the
DEFINE command with the ASSERTION clause, and its syntax will
be:

DEFINE [SOFT] ASSERTION <assertion name> ON <table name>:<predicate>

where the predicate will be a true/false test of the form:

¢

[OLD <field name1>] [*] [+]
<field name.><relationship> [G0 03]
1 <field name,> / -

The ci‘s represent arbitrary floating point or integer constants
and the relationship tests will be indicated by the keywords LT,
LE, BQ, GE, GT, and NE, or by the signs <,=, and >. In

other words, a predicate will test the relationship of the

values of a field against a constant (e.g., TEMP>-273.16) or
agéinst a function of another field (e.g., START-DATE LE END-DATE),

http:TEMP>-273.16

or a function of its former value during an update (e.g.,
AGE GT OLD AGE). The complexity of a function will be limited
to:

(1) the field name itself (preceded by the keyword "OLD"
if the same field as on the left side of the predicate),
(2) a field times or divided by a constant,
(3) a field plus or minus a counstant, or
(4) a field times or divided by one constant and plus or

minus another constant.

A "soft" assertion will not block a transaction from being
processed, but will merely output a warning message when an
update or insertion causes it to be violated. The default
will be to block the particular transaction which violated
the assertion, although the system shall process other updates
. 0r insertions which are wvalid. If an update is blocked by a
viclated data validétion assertion then the system will print
out (1) the (unupdated) record, (2) the field which was to
have been changed, (3) the new value that field would have had,
and (4) the assertion which was violated. When an insertion
is blocked by a violated assertion then the Integrated Data
Base Management System will list (1) the rejected record and
(2) the assertion(s) which were violated.

It is anticipated that assertions will normally be defined
for a table at the time the table is defined and before any
data has been inserted. However, the Integrated Data Base
Management System will accept new assertions being established
on nonempty tables. When that happens, the system will list
the records already in the table which violate the assertion
and give the user the choice between keeping the assertion
(and thereby deleting the records) or keeping the records
(and thereby implicitly removing the assertion). If there
are no records already in the table which violate the asser-
tion then the assertion will always be accepted.

4-24

The right to establish an assertion will be limited to the
DBA, the data base owner, and the owner of the table on which
the assertion is to be established.

4.3.2 REMOVE

Anything which can be identified to the Integrated Data
Base Management System by a DEFINE command may be removed from
the system by a REMOVE command. The syntax of a REMOVE com-

mand will be:

DATABASE <data base name>

TABLE <table name>
| FIELD <field name>
REMOVE .
ASSERTION <assertion name> FROM <table name>
USER <user-id>[, <user-id>]
GROUP <group name>[,<group name>]...

The ramifications of each of the six variations of the REMOVE
command —- corresponding to the six variations of DEFINE -- are

discussed in greater detail below.

4.3.2.1 REMOVE DATABASE

Only the DBA or the owner of a data base will be allowed
to REMOVE it from the system, and that individual must be
attached to the data base before issuing the command. After
a REMOVE DATABASE has been issued, no new user will be permitted
to access that data base, but users already attached to the
data base will be permitted to complete their information pro-
cessing before the data base is destroyed.

4.3.2.2 REMOVE TABLE

A user must be attached to the data base which contains
the table to be removed before a REMOVE TABLE command will be
accepted by the system and, moreover, the user who lssues the
REMOVE TABLE command must be either the DBA, the data base
owner, or the owner of the table.

As with the REMOVE DATABASE command, once a REMOVE TABLE
command has been issued and accepted no new users will be
permitted to access the table although transactions: already
accessing the table will be permitted to complete before the
table is destroyed.

4.3.2.3 REMOVE FIELD

A REMOVE FIELD command will delete a field name from a
data base's Data Dictionary. A REMOVE FIELD command will be
accepted only if issued by the DBA or the data base owner
while attached to the appropriate data base, and even then the
system will refuse to execute the command unless no table in
the data base includes that field.

4,.3.2.4 REMOVE ASSERTION

Only the individuals who can DEFINE an assertion will be
allowed to REMOVE it (i.e., the DBA, the data base owner, or
the table owner) and they must be attached to the data base
containing the table to do so. Assertion removal is post-
poned if there is an insertion or update in progress at the
time a REMOVE ASSERTION command is issued, to prevent anomalies
from arising when some portion of the transaction is rejected
for violating the assertion in queétion while other portions
of the transaction (executed after the REMOVE ASSERTION has
been issued) are accepted despite violating that data valida-
tion check.

4.3.2.5 REMOVE USER

The Data Base Administrator (and only the DBA) will be
able to REMOVE a user from the system with a REMOVE USER com-
mand. If the user in question is currently active at the
time the REMOVE USER is issued, then the effect of that com-
mand will be delayed until he or she performs an EXIT from

the systemn. (In such a case, the DBA will be notified by a

printed message.)
4,.3.2.6 REMOVE GROUP

Only %he DBA will be allowed to establish a user group,
and only the DBA will be permitted to issue a REMOVE GROUP com-
mand. It should be noted that the REMOVE GROUP command will
merely dissolve the group(s); it will not cause the removal of

any member of that group from the system.

Performance of a REMOVE GROUP will take place immediately
upon receipt of the command by the system. However, if any
user should be accessing a table at the time the REMOVE GROUP
is issued and that user received the authorization to access
that table or its data base only through membership in the
group being removed, then that transaction will be permitted

to go to completion.

4.3.3 EXPAND

The EXPAND command will permit a gualified user to add one
or more fields to an existing table. The syntax of an EXPAND

command is shown below:

EXPAND <table name>- [BY] (<field def‘n1>[,<fie1d def'n2>]...)

where the fields are defined as described in the DEFINE TABLE
- subsection. For storage purposes, these new fields will be
added to the end of the table. Only the DBA, the data base
owner, and the owner of the table will have the right to
EXPAND a table, and expansion will be the only alteration to
the iayout of a table (o{her than total removal) supported by
the system.

After an EXPAND is executed on a table, the records already
stored in the table will be treated as having "null" values
for the new fields. Unlike most data base management systems,
however, when the Integrated Data Base Management System per-
forms an EXPAND it will not cause any immediate alteration of
existing records. Consequently, an EXPAND will be quite

inexpensive to perform in this system.

4.3.4 Generating Data Access Superstructures: INDEX and INVERT

Access method superstructures to facilitate rapid and
efficient data retrieval may be placed on tables by the INDEX
and INVERT commands, which have the syntax:

INVERT
<table name> [ON] <key1>[,<key2>]...
INDEX [UNIQUE] _

where

<field name>
<key> ::=
<key name>= (<field name]>[,<fie1d name2>]...)

That is, 2 superstructure key may be a single given field of
the table or may be formed by concatenating more than one
field into a combined key.

The INDEX command will establish hierarchical index strue-
tures* on the specified fields or combinations of fields and
INVERT will establish inverted file indices on the specified
fields or combinations of fields. Hierarchicazl indices are
useful when the values of the search keys are unigue, or nearly
unigue, and inverted file indices facilitate rapid data access
when a given value of a search key defines a set of records.
Since the type of index superstructures created by INVERT and
INDEX are useful in such different contexts, the system will
not support both a hierarchical and an inverted index on the
same Iield or on identical combinations of fields.

If a sequence of fields is combined to make a single search
key, then the same index used for that key also facilitates
rapid access of any leading subsequence of fields. For

*gpecifically, B-trees.

example, if a table T has the fields A, B, and C, then the
index established by the command

INDEX T ON K=(A,B,C)

will also serve to effect rapid access for A alone or for

A and B combined. Therefore, the Integrated Data Base
Management System will ignore requests for identical types of
indices on leading subsequences of combined field search keys,
although it shall accept requests to establish different types
of indices for leading subsequences and any type of index
request for non-leading subsequences. Hence, the following
commands are compatible with the INDEX command above:

INVERT T ON A,K1=(A,B)
INDEX T ON B,C,K2=(B,C)

The optional UNIQUE qualifier on the INDEX command will
mean that duplicate values of the specified search key(s) are
not permitted. If a transaction such as an insexrtion or up-
date would cause this requirement to be violated, then that
transaction will be blccked and an appropriate error message
will be output to the user.

Although access method superstructures will normally be
generated at the time the table is created, the Integrated
Data Base Management System will support the establishment of
both types of indices on pre-existing, non-empty tables. In
the case where an INDEX UNIQUE command is issued against a
tabhle with duplicate values for that search key the system
will respond by listing the erroneous records and the user
may elect to delete the duplicates or to rescind the

command.

As with EXPAND, use of the INDEX and INVERT commands will

be limited to the DBA, the data base owner, and the owner of
the table, and the individual issuing the command must be
attached to the data base which contains the table.

4.3.5 DROPINDEX

The rapid access sup€rstructures created through the INDEX
and INVERT commands may be dropped from a table through the

use of the DROPINDEX command. The syntax of a DROPINDEX com-
mand will be:

DROPINDEX <key name1>[,<key name2>]...FR0M <table name>

where the key names may be single fields or may be the key
names attached to combinations of fields when the index was
created. Since the same field ~- or key -- may not have

both a hierarchical superstructure and an inverted file super-
struc%ure simultaneocusly, the DROPINDEX command can be, and
shéll be, used to drop both kinds of indices.

Only someone with the authorization to generate a super-
structure (i.e., the DBA, the data base owner, and the table
owner) will be allowed to issue a DROPINDEX command, and only
when attached to the appropriate data base.

4.4 Administrative Commands

The four administrative commands will provide users
in an administrative position (i.e., the DBA and owners of
data bases and tables) with control over the state and/or
accessibility of entities under their purview. The adminis-

trative commands will be:

GRANT - Authorize users or user groups the right
to access and/or modify data.

REVOKE - Cancel previously granted rights.

INCLUDE - Add a2 user tTo a user group.

EXCLUDE - Remove a user from a user group.

None of these commands will be available to an application

program.

4.4.1 GRANT

The syntax of the GRANT command is depicted below:

<table rights> ON <table name> <user id1>[,<u5er-id2>]...

GRANT TC)GROUP <group name>

<data base rights> PUBLIC

i

When a new table or data base is.created by a DEFINE command
the right to access its contents will be strictly limited

to its owner (that is, its creator) and to the DBA and (in
thg case of the creation of a new table) the data base owner.
The GRANT command is designed to make it possible for the
DBA or the owner of the data base or table to make its contents
available to a wider circle of users. The authorization
may Bé extended to all users of the Integrated Data Base
Management System through the key word "PUBLIC", or the
authorization may be restricted to a particular collection
of users, either named explicitly or identified implicitly
through membership in some user group. Since different

key words will be used to distinguish rights associated with
tables from rights associated with data bases, these two
topics are discussed separately below.

4.4.1.1 Granting Rights on Tables

The following key words will be associated with table
rights: READ, INSERT, UPDATE, and DELETE which will have
their obvious interpretations, plus ALL RIGHTS, which will
refer to all four rights simultaneously. It will be pos-
sible for the owner of the table or the DBA to GRANT any
combination of the four access ;}ghts (listed in any order)

H

or ALL RIGHTS, to the whole community of data bases users,

or any particular user group, or any explicitly-listed

users. Neither the table's owner nor the DBA will need

to GRANT rights to himself since the Integrated Data Base
Management System will always assume that the table owner has
all four access rights on his own table, while the DBA will
always have all rights to everything.

The system will reject a SELECT command from any user
unless that user has READ rights on all tables referenced
by the SELECT, Nor will the system accept an INSERT,
UPDATE, or DELETE command from a user unless he or she
has the appropriate right on the table being edited, plus
READ rights on all other table referenced by the command.
The user may hold these rights explicitly, by having been
named in a GRANT command on that table, or the user may
hold these rights implicitly, by belonging to the approp-
riate user group or if the rights are PUBLIC.

Although ownership of a table is a privilege, rather than
a right, the GRANT command may also be used by the DBA to
change the ownership of a table. The syntax for a GRANT of
OWNERSHIP will be:

GRANT OWNERSHIP ON <table name> TO <user-id>

By issuing a GRANT OWNERSHIP command,the DBA will be taking
ownership of the table away from the former owner and assign-
ing it to @& new owner. One side effect of this command will
be that the former owner will no longer have full access rights
to the data in the table unless (1) he belongs to one or more
groups which have been granted all access rights on the table
or (2) he is or has previously been explicitly granted ALL
RIGHTS on the table. In other words, a former owner of a
table will become just another user as far as that table is
concerned once the privilege of ownership has been removed.

4-36

4.4.1.2 Granting Rights on Data Bases

There will be two rights associated with data bases:
ACCESS and MODIFY. As with tables, it will be possible
for the data base owner or the DBA to issue either right
separately or to issue them jointly with the "ALL RIGHTS"
key word, and these rights may be authorized to the entire
user community, to a specific user group, or explicitly to
individual .users.

A user will not be permitted to ATTACH to a data base
without having ACCESS authorization for that data base.
Once attached, he or she will be forbidden to issue a
DEFINE*, INSERT, UPDATE, or DELETE command unless authorized
thé right to MODIFY the contents of the data base. Note
that 2 user may well have READ rights on some table in the
data base and yet be blocked from retrieving the data in
that table by not having been authorized to ACCESS the data
base. Similarly, some particular user might have, for
example, UPDATE rights on a table in a data base and yet
would not be able to perform an update on the table if
he or she lacks MODIFY rights on the data base itself.

Just as the DBA will be able to transfer the privilege
of ownership of a table, so the DBA will have the ability to
transfer the privilege of ownership of an entire data base to
another user. The syntax for a GRANT of data base ownership
will be:

GRANT OWNERSHIP TO <user-id>

The DBA will be required to be attached to the data base

*Except for DEFINE DATABASE. It should be noted that by
logical extension this also forbids all other commands in
the data definition and administrative categories.

in question before changing its ownership, and hence the data
base need not be named in the GRANT OWNERSHIP command. Again,
the status of the former ovwner of the data base will be no
different from the status of any other user after the privilege
of ownership has been granted to the new owner, and the former
owner may not even retain ACCESS or MODIFY rights on the data
base unless implicitly (via group membership) or explicitly
granted those rights. However, the former owner of a data
base will retain ownership of any tables in the dgpa base for

which he or she is the listed owner.

4.4.2 REVOKE

Access authorizations which have been granted may be
revoked. The syntax for a REVOKE command is:

<tabTe rights> ON <table> [PUBLIC I
REVOKE [FROM <user—1dT>[,<user—id2>]...]
<data base rights> GROUP <group name> |

where the table rights are READ, INSERT, UPDATE, and DELETE
and the data base rights are ACCESS and MODIFY (i.e., the
same rights which may be authorized to a user by a GRANT
command). Since ownerless tables and data bases are not
permitted, there is no REVOKE OWNERSHIP command correspond-
ing to the GRANT OWNERSHIP command -- the GRANT of OWNERSHIP
implicitly revokes the former owner's ownership.

Rights may only be revoked from users or user groups
which have explicitly been given those rights. For example,
suppose users A, B, and C constitute group X. It is mnot
permissible to GRANT rights to users A, B, and C (explicitly)
and then to REVOKE them from Group X or to GRANT to group X and
then REVOKE from A, B, and C (listed explicitly), even though
the collection of users which constitutes group X and the list
of users A, B, and C are one and the same. Nor is it permissible
to GRANT some rights to group X and then REVOKE them from user
A unless those rights were explicitly granted to user A, as
well. Similarly, it is not permissible to GRANT some rights
on a table or data base to PUBLIC and then REVOKE those rights
from a specific user unless the rights were granted explicitly

to that user.

If a REVOKE command is issued without specifying from whom
the rights named in the command are to be taken (i.e., no FROM

clause), then those rights named will revert to "owner only"
status and none but the table owner and the DBA will have
those rights on the table.

4-40

4.4.3 INCLUDE

It will be the responsibility of the Data Base Admin-
istrator to assign users to user groups. This will be
accomplished by the INCLUDE command, whose syntax will be:

INCLUDE <user-1d1>[,<user-id2>]...IN [GROUP] <group name>

The group named in the INCLUDE command will have to
have been previously created by a DEFINE command with the
GROUP clause. Each of the users included in the group
will be implicitly authorized all data access rights
explicitly authorized to the entire group. 4 given user
may be included in more than one user group, but the
syétem will regard the user's rights granted through the
group membership as belonging to the user and not just to
the group. That is, if group X has READ rights on table
S but not table T and group Y has READ rights on T but not
S , a user belonging to both groups may simultaneously
read both tables, even though neither group's set of rights

are sufficient alone for the transaction.

4.4.4 EXCLUDE

Users will be removed from user groups by the EXCLUDE
command. The syntax of an EXCLUDE command will be:

EXCLUDE <user—id1>[,<user-id2>]...FROM [GROUP] <group name>

If it happens that a user being removed from a group is
concurrently accessing some data where his or her authori-
zation to access that data comes sclely from membership
in the group, then the system will permit the transaction
to complete itself before detaching the user from the group.

4.5 Data Manipulation Commands

The six commands in the data manipulation category will
provide a user with the ability to retrieve information
from tables, to edit a table, and to view the contents of
tables and the results of data retrievals. This category
of commands, taken together, will constitute the data sub-
language (or, in relational datz model Jargon, the 'query
language") for the system. These data manipulation commands

are:

SELECT - Retrieve data from one or more tables.

INSERT -~ Add new records to an existing table, updating

‘ indices as needed.

UPDATE - Edit one or more existing records in a given
table, updating indices as needed.

DELETE - Remove one or more records from a given table,
updating indices as needed.

DISPLAY -~ List the contents of a table or the results of
a retrieval on a user's terminal.

PRINT - List the contents of a table or the results of

a retrieval on a line printer.

None of .these commands will be restricted, except insofaras

the data base to which the user is attached must contain all
tables referenced by his command and the user must have authoriza-
tion to perform whatever operation on the tables he or she requests.
All of these commands (except DISPLAY, for obvious reasons)

will be available for use by application programs.

4.5.1 SELECT

SELECT is perhaps the most important command in the
entire Integrated Data Base Management System interactive
command language, as it is the mechanism by which data is
retrieved and cross referenced from one or more tables in
a given data base. There will be two syntaxes for the
SELECT command, as depicted below:

{[FROM <table 11st>]<temp1ate]>[;<temp1ate2>]...’

SELECT #
(<target list>) WHERE <qualification>

The first syntax is based on the Query-by-Example retrieval
language onthﬁO and the second is founded on the relational
calculus-based Quel language devised by Stonebraker, et. a1.37
The first non-blank character after the keyword "SELECT" will
tell the command interpretor whether to expect the Query-by-
Example syntax (if it is alphabetic) or whether to expect the
relational calculus syntax (if that character is a left (open)
parenthesis). Since a user may be constrained to issue one

Oor more carriage returns while entering a single SELECT
command into the system, a special character ("#") will be

used to terminate the command.

The results of a SELECT retrieval will be placed in
the user's special '"workspace table" (always indicated by
its alias, W). Before a SELECT command will be accepted from
a user, he or she must be attached to the appropriate data
base and have READ authorization for every table referenced
by the command. Upon completion of a SELECT command the
system will output the number of records instantiated in W
as a result of the SELECT, plus an explanation of what went

wrong if no records are retrieved. This expf%nation will be

in the form of a status word if the SELECT was input from an

application program.

The sample table layouts depicted in Figure 4-1 will be
used to illustrate the concepts and syntax of Query-by-Example

and relgtional calculus.

Since they merit considerable attention in their own
right, the operation of the Workspzce Table and the syntax
of a template, a2 target list, and a qualification are dealt
with in greater detalil below.

_4.5.1.1 Query-by~Example Syntax

Query-by-Example is designed for interactive users working
in a conversational mode. The user requests a table by name,
the sygtem responds by displaying a skeleton of the table (i.e.,
table name, column headings, column outlines), and the user
provides a query "template' by filling in the appropriate rows
of the sample table with an example answer. It is not possible
to describe "templates" for interactive Query-by-Example since
much of what the user enters must be based on interaction with
the system. In-each example response input by the user,
there will be two types of entries:

(1) "example elements', which - in this system - WillF
be preceded by an asterisk’, and

(2) T"constant elements', which are not starred.

The example elements represent hypothetical answers, but the
system will ftreat them as variable names and it would not

be wrong for the user to input a variable name of his or

her choosing that bears no relationship to a typical data

item in the corggsponding field. Example elements for

TA reader who is familiar with Querv-by-Example as .published
by Zloof will notice a number of minor differences between that
syntax and this. The changes are in part due to data character-
istics and in part designed to accomodate non-graphics terminals.

4-45

IMAGE-DATE (alias: D)

IMAGE-TID

DATE

TIME TOP-LAT

BOTTOM-LAT

LEFT-LON

RIGHT-LO:

EVENT (alias:

E)

NAME

CLASS

STARTnDATEI END-DATE | START-LAT

START-LON | END-LAT

END-LO:

Figure 4-1: Sample Tables 4

which the user is interested in seeing the results should
have an "S" for ("SELECT") in front of their asterisk.-
Figure 4-2a shows how a Query-by-Example style query might
be input for names and dates of all hurricanes in the EVENT
table and figure 4-2b illustrates the similar query for
hurricanes which occurred in 1977 (dates will be presumed
to be day, month, and year in DDMMYY form). Note that in
figure 4-2b it is necessary to use comparison operators to

gualify the constant elements.

A user may key in multiple rows (hence the need for
the special end-of-query mark, "#", instead of a carriage
return to terminate a retrieval) to form Boolean sums or
products of simpler gueries. Use of the same example elements
in %he rows represent an AND and different example elements
represent a Boolean OR. Figure 4-3 illlustrates an alternative
formulation for the query in figure 4-2b, using an AND

N
3

operation™ Figure 4-4 shows a retrieval involving an OR.
Not every example element heed be selected out of a
table. Another use for example elements is to cross re-
ference two tables over fields whose values are derived from
a common domain. Figure 4-5 illustrates this use (note the
use of a semi-colon to inform the system when the user has

completed the input of sample queries for one table).

Finally, Query-by-Example will provide a number of
standard "aggregate functions™ whose values are computed
over an entire column of a table. These functions will be
MIN, MAX, AVG, SUM, COUNT, and SDEV (for standard deviation).
They will be preceded by an asterisk and placed after the
S (if present) but before the example element. The range of

each aggregate function will be the entire columm to which

,TT Mathematically speaking the two queries are different,
but practically speaking, given the extent of the hurricane
season, they are eguivalent.

4-47

QUERY 1:

SELECT FROM E

EVENT

Retrieve name and date for all hurricanes.

NAME | CLASS

START-DATE

END-DATE [START-LAT

START-LON |END-LAT

!

S*AGNES:HURRICANE S*010772

£
i

QUERY 2:

SELECT FROM E

EVENT

Figure 4-2a:

S*010772

i i

Sample Retrieval

Retrieve names of all hurricanes in 1977.

NAME

CLASS

START-DATE

END-DATE | START-LAT

END-1

Lo
7

Figure 4-2b:

i [
S*AGNES HURRICANE§ >010177 '<311277

~

START-LON |END-LAT

Sample Retrieval Using

Comparison Operators

QUERY 2 (again): Retrieve names of 211 hurricanes in 1977.
SELECT FROM E

EVENT
NAME CLASS START-DATE |END-DATE |START-LAT| START-LON |END-LAT | END-LON

lS*AGNES HURRICANE' s010177

S*AGNES HURRICANE * <311277) i

i

Figure 4-3: Sample Retrieval Using AND

QUERY 3: BRetrieve names and starting locations of all
hurricanes or tropical storms since 1276

SELECT FROM E

- EVENT

NANE CLASS START—DATE[END-DATE START-LAT | START-LON |EXD-LAT | END-LON
‘S*¥AGNES HURRICANE >311276 < S*xX1 S*Y1
S*BRUCE TROP-STORM >311276 S% X2 S*Y2

[H
i !
i

l e

Figure 4-4: Sample Retrieval Using OR

QUERY 4:

Retrieve data file id's for all images which are

likely to show the formation of Hurricane Agnes

SELECT FROM E,D

EVENT
NAME CLASS START-DATE |END-DATE |START-LAT| START-LON |END-LAT| ERD-1
IAGNES EURRICANE *010072 i *X *Y '
IMAGE-DATA)
DID DATE TIME TOP~-LAT BOTTOM-LAT LEFT-LON RIGHT-LON
S*XYZ | *010772 >*X <X <*Y >*y
|
o . \ i
Figure 4~5: Sample Retrieval With

Cross Referencing

it is applied, counting duplicate values.if necessary. The
user will be able to restrict the function to apply to

unique data items by inserting the qualifier "*UNIQUE" between
the function name and the example element. Figure 4-6
illustrates the use of the COUNT function.

The templates in a Query-by-Example retrieval may be
linearized so that the necessity for system output to,the
user may be eliminated. This will be necessary when the
SELECT command is issued via the Batch Command Reader facility
or from an application program, and may be useful when a
very knowledgable user is constrained to work with a slow
terminai or when operating system response time is slow.
The_sﬁstem will expect the linearized Query-by-Example mode
if fhe first non~blank character after the key word "SELECT"
is alphabetic, but the key word "FROM" is not present. In

linearized Query-by-Example each template will have the form:

<template>::=<table name>(<r0w1>)[<row2>)]...

where each row represents a row the user would have entered in
the interactive Query-by-Example syntax. The syntax of rows

is defined to be:

<row>::=<column entry]>[,<co]umn entry2>]...

<column entry>::=<column name><operator><value>

The value part, of course, will correspond to whatever the
user would have keyed in for that column in the interactive
version of the query, except that column entries with null
value fields should not be present. The relational operator
will normally be an equals sign, unless the ">" oOr "< com-
parison operators would have been used in the query. Column
entries need not be in order since they are explicitly

http:values.if

QUERY 5: Count the number of hurricanes in the data base

SELECT FROM E

EVENT

NAME CLASS 000

S*COUNT*AGNES HURRICANES

Figure 4-6: Sample Retrieval Illustrating
the COUNT Function

identified by name.

Figure 4-7 illustrates sample queries 1 through 5 using

the linearized Query-by-Example notation.

4.5.1.2 Relationzl Calculus Syntax

As stated earlier, the syntax of a gquery using the

relational caleculus will be:

SELECT (<target 1ist>) WHERE <qualification> #

The syntax for an entry in the target list is illustrated
below: -

<data field name>
<target list entry>::=
<result field name>=<function>

where the function may be a data field, an aggregate function
of a data field (e.g., MIN, MAX, AVG), or an arithmetic com-
bination of data fields and/or aggregate functions. The data
fields named in a target list entry must appear in one or more
tables in the data base. To avoid possible ambiguity, a data
field name must be qualified by the name (or alias) of the
table to which it belongs. Consequently the syntax of a data
field name used in a relational calculus query will be:

<data field name>::=<table name>,<field name>

The names of result fields need not be in the data base's Data
Dictionary, as they will only exist with respect to the user's
Workspace Table, W. Moreover, the system will compute type,
size, and unit parameters for the result fields named in the

QUERY 1: Retrieve name and date for all hurricanes.

SELECT E(NAME = S*AGNES, CLASS = HURRICANE,
START-DATE = S*010772, END-DATE = S*Q10772)#

QUERY 2: Retrieve names of all hurricanes in 1977.

HURRICANE, START-DATE > 010177)
HURRICANE, START-DATE < 311277)#

SELECT E(NAME
{NAME

S*AGNES, CLASS
S*AGNES, CLASS

]
i

QUERY 3: Retrieve names and starting locations of all

hurricanes or topical storms since 1976.

SELECT E(NAME = S*AGNES, CLASS = HURRICANE, START-DATE > 311276,
START-LAT = S*X1, START-LON = S*Y1)
(NAME = S*BRUCE, CLASS = TROP-STORM, START-DATE > 311276,
START-LAT = S*X2, START-LON = S*Y2) #

QUERY 4: Retrieve data file id's for all images which are
likely to show the formation of Hurricane Agnes.

SELECT E{CLASS = HURRICANE, NAME = AGNES, START-DATE = *010772,
START-LAT = *X, START-LON = *Y);
D(DATE = *010772, TOP-LAT > *X, BOTTOM-LAT < *X,
LEFT-LON < *Y, RIGHT-LON > *Y) #

QUERY 5: Count the number of hurricanes in the dats base.

SELECT E(NAME = S*COUNT*AGNES, CLASS = HURRICANE) #

Figure 4-7: Sample Linearized Retrievals.

target list based on the data fields and mathematical trans-
formations in the functions which define the result fields, so
that there will be no requirement for the user to define these
fields in advance.

The qualification will be a Boolean combination of true/
false predicates, and the syntax of the Boolean expression
will be:

[.
(<Boolean exp>)
<predicate>

<Boolean exp>::=<N0T<Boolean exp> d

AND
<Boolean exp> <Boolean exp>
OR

while the syntax of a predicate will be:
<predicate>::=<data field name><operat6r><va1ue>

The valid operators will be the six key words LT, LE, ER, GE,
GT, and NE, plus the characters >,=, and <. A value may be a
constant of the appropriate type, another data field, or a func-
tion of another data field. l

Figure 4-8 depicts sample data retrievals using the

relational calculus syntax.

As mentioned above, both the right-hand side of a target
list entry and the right-hand side of a gualification predicate
may include arithmetic functions of fields (e.g., AREA=
D .DELTAX*D.DELTAY) and/or library functions. The Integrated
Data Base Managemeni System will provide both aggregate functions
defined on whole columns of a table and non-aggregate functions

defined with respect to single data items. The aggregate

QUERY 6: Retrieve the names of all tropical storms
Since 1976.

SELECT (E.NAME) WHERE E.START-DATE GE 010177
AND E.CLASS = TROP-STORM #

QUERY 7: Retrieve name and formation date for all hurricanes
' or tropical storms formed in the northern hemisphere
sSince 1976.

SELECT (E.NAME, FORMATION=E.START-DATE)
WHERE (E.CLASS = TROP-STORM OR E.CLASS = HURRICANE)
AND E.START-LAT > 0 #

QUERY 8: Retrieve data file id's for all images which may

cover the formation of hurricane Alice.

SELECT (D.DID) WHERE D.TOP-LAT GE E.START-LAT
AND D.BOTTOM-LAT LE E.START-LAT
AND D.LEFT-LON GE E.START-LON
AND D.RIGHT-LON LE E.START-LON
AND D.DATE = E.START-DATE
AND E.CLASS = HURRICANE
AND E.NAME = ALICE#

Figure 4-8: Sample Retrievals Using Relational

Calculus Syntax

functions which will be provided are MIN, MAX, SUM, AVG, COUNT,
and SDEV. Aggregate functions may not be nested.‘ The non-
aggregates shall include the standard Fortran library functions
such as SQRT, SIN, COS, ATAN, ALOG, and EXP (but not MIN, MAX,
AMIN, or AMAX, to avoid confusion). Type—conversion Fortran
functions (e.g., IFIX, FLOAT, DBLE, INT, etc) will not be sup-
ported -- any necessary data type conversions will be handled
automatically and transparently by the system itself. In
addition, the system will provide certain specialized non-
aggregate functions for unusual cases which can be expected to
recur with some frequency. Typical functions might be SDIST,
for example, to compute the spherical distance between tTwo
points on the earth's surface, and DURATN, to caleculate the
difference between two calendar dates. Non-aggregate functions
will be permitted to be nested inside each other and inside
agegregate functions. Figure 4-9 illustrates the use of func-
tions inside queries. Where applicable, the Boolean expression
in the'qualification can be replaced by an asterisk to indicate
that the data manipulation operation is to be performed on all
records of the referenced table (e.g.,'WHERE *).

4.5.1.3 The Workspace Table

There will be precisely one Workspace Table, W, associated
with each active user on the system. By convention, W will
be empty when a user signs onto the system, and will be des-
troyed when that user issues an EXIT command from the system.
will have no pre-defined fields and no special access super-
structures, nor will W be considered to be a part of any
particular data base. Thus when a user detaches from one
da.ta base and attaches to another the contents of W will
be undisturbed, and therefore W will constitute 2 mechanism
for the transportation of data from one data base to another.

The contents of W will be generated by a SELECT

W

QUERY 9: Determine the average duration of hurricanes occuring
since 1872.

SELECT (AVDUR = AVG(DURATN(E.START-DATE, E.END-DATE)))
WHERE E.CLASS EQ HURRICANE AND E.START-DATE GE 010173#

QUERY 10: Retrieve the data file id's and area of all images
which lie along a line running from 30°N latitude
and 75°W longitude with an azimuth of 45°, terminat-
ing at 72°W longitude, for October 4, 1876.

(Assume latitudes, longitudes, and azimuths ex-
pressed in radians and that west longitudes are

negative.)

SELECT (D.DID, AREA = SDIST(D.TOP-LAT,D.LEFT-LON,D.BOTTOM-LAT,D.LEFT-LON)
* SDIST(D.TOP-LAT,D.LEFT-LON,D.TOP-LAT,D.RIGHT-LON))
WHERE D.TOP-LAT GE .5236 + TAN(.7854)*(D.LEFT-LON + 1.309)
AND D.BOTTOM-LAT LE .5236 + TAN(.7854)*({D.RIGHT-LON + 1.309)
AND D.RIGHT-LON LE ~1.2566
AND D.DATE = 041076 #

[Note: Retrieval is based on the fact that a line with a
positive slope intersects a rectangle if and only if it lies
between two lines with the same slope which intersect the
rectangle at its uppe@ left and lower right corners,
respectively.]

Figure 4-9: Relational Calculus Retrievals
Using Functions in the Target
List

command. As records are retrieved from a data bhase they
will be entered into W , and the sequence of fields, their
names, and their definitions will be implicitly created by
the system to correspond to the fields in the records being
retrieved. If W should. happen to be non-empty at the time
a new SELECT is issued, then its former contents will be -
overwritten and lost, and the previous field definition for
W will be replaced by one which reflects the format of

the new records. Hence it follows that the workspéce table
may have a variety of different field definitions during

a single user session, depending on the number of SELECT
commands issued by the user and the specific data requested
each time.

A particular user's workspace table will be associated
ulth that user personally, and will be inaccessible to all
other active users -- including the DBA. A user will always
have the right to insert records into or delete records
from his or her workspace table, even if lacking MODIFY
rights on the database to which he or she is attached.
Aside from that, however, the user will be free to treat
his or her workspace table as if it were a part of any
data base to which he or she is attached. That is, re-~
trievals may be made against W itself, and other tables
may be cross referenced against data stored in W . More-
over W may be used as a source of data for insertions and
deletions on other tables in the data base. The only
particular restriction of which the user must be aware is
that the system will not permit an INSERT command into W
if W is empty --an empty workspace can be filled only by
a SELECT command.

4.5.1,4 Comparing the Two Approaches

Both the Query-by-Example approach to information retrieval
and the relational calculus have been demonstrated to be
"relationally complete," that is, any relational operation
which can be performed on a relational data base can also be
performed using either of these two approaches. Why then,
have two different methods to do the same thing? The answer
lies in the words '"user convenience" as each of these two
approaches provides a user with certain niceties that are

unavailable in the other,

The major advantage of the relational calculus-based
approach is the ability to put functions of one or more
fields in the target list and on ‘the right-hand side of a
qualification predicate. This makes the relational calculus
exceedingly powerful, particularly with respect to a scien-
tifically-oriented data base.

Query-by-Example, however, has a variety of advantages
over the relationalcalculus. In the interactive mode, for
one thing, Query-by-Example is very user friendly. A study
of this pointsshas, in fact, demonstrated that Query-by-Example
compares very well with other query languages for relational
data bases, most especially with respect to ease of learning
and user retention. Since one goal of this proposed data base
management system is ease of use for casual, infreguent,
and/or minimially experienced users, this point argues very
strongly for'supplying Query-by-Example as a retrieval language.
A second point, also noted in the study, is that Query-by-Example
is "behaviorally extendable' in the sense that a novice need
only learn a small part of the language to write successful
queries and can build on his or her knowledge as reﬁuired.
However, from the point of view of an information retrieval
language for a scientific (as opposed to business) data base

perhaps the most important advantage of Query-by-Example
concerns data units. Consider the example table describing
satellite orbits depicted below

SATELLITE-ORBIT

NAME | LAUNCH-DATE | TIME | SEMIMAJOR-AXIS [ECCENTRICITY |MEAN-ANOMOLY] INCLINATION

J

—

“~ | PERIGEE JASCENSION

and let us suppose that semimajor axis is récorded in kilometers.

But the user may wish to frame his or her request in terms of
earth radil and not know (or be willing to take the time to
ca;cuiate) the appropriate conversion factor. By inputting
the query with units attached, as depicted in Figure 4-10a,
the system could perform the conversion itself. Similarly,
as in 4-10b, the units could be attached to the example
elemeﬁt for automated conversion on output elements. It is
possible to extend the relational calculus by attaching units
to numerical guantities in the gualification, but it is not
easy-to see how to do the same for entries in the target list.
Granted, nothing prevents suitable conversion functions from
being established for the relational calculus approach, but
the user would be forced to pay a penalty in burden on the

memory'and complexity of the resultant retrievals.

QUERY 11: Retrieve all satellites in high orbit t>4 earth
radii).

SELECT FROM SATELLITE-ORBIT

- SATELLITE--ORBIT

NAME LAUNCH-DATE | TIME | SEMIMAJOR-AXTS ECCENTRICITY

gs*TIRos >4 RADII

I

'

Figure 4-10a: Retrieval with Automatic Units

Conversion

QUERY 12: BRetrieve name, launch date, and radius of 211

satellites in ecircular orbit.
SELECT FROM SATELLITE-QORBIT

SATELLITE-ORBIT

NAME LAUNCH-DATE TIME SEMIMAJOR-AXIS ECCENTRICITY

S*TIROS . S*¥010475 S5*10 RADII 0

Figure 4-10b: Retrieval with Automatic
Output Units Conversion

4.5.2 INSERT

Like SELECT, the INSERT command will have two distinct
syntaxes, as shown below:

INSERT[INTOl<table name>

(<record]>)[,(<record2>)]... l
(<target T1ist>) WHERE <qualification> j

where:
<record>::=<assignment>],<assignment>]...
<assignment>::=<field name>=<constant>

One special constant will be the key word NULL, which will
‘represent a null value for the corresponding field of the table.
Alphanumeric constants, other than the key word NULL, must be
enclosed in apostrophes. A user-- provided he or she has INSERT
rights on the particular table and MODIFY authorization for

the data base which contains that table (see GRANT) —-— will
have the option to spell out the new records to be added to

the table, or may generate the new records to be added to the
table by retrieving data from and cross referencing other tables
in the data base*, The latter approach will be equivalent to
a SELECT using relational calculus syntax (see Section 4.5.1.2),
except that the records retrieved will be placed in the speci-
fied table, rather than the Workspace Table.

Again, it should be noted that a special character ("#")
must terminate this command, as the user may be forced to

input one or more carriage returns before completion of the
full command input sequence.

* Including the user's Workspace Table.

The table which receives the records may be the Workspace
Table, W, except that the system will not accept an INSERT into
W unless W is nonempty. Inserting into an empty Workspace
Table can only take place via a SELECT command.

4.5.3 TUPDATE

There will be only one syntax for the UPDATE command,
- as depicted below:

UPDATE <table name> (<change]>[,<change2>]...) WHERE <qualification> #

. where the changes indicate the way fields in records are to
be modified and have the form:

<constant>
<change>::=<field name> =
<function>

A constant appearing on the right hand side of =z change should
agree with the definition of the field in type, and any function
must, of course, be a function of the field being changed (e.g.,
ALTITUDE=ALTITUDE - 50.3). The syntax of a qualification is
defined in Section 4.5.1.2.

In the case where the gualification consists of an asterisk
rether than a boolean expression, the Integrated Data Base Manage-
ment System will apply the changes to 211 records in the table.
Note that, whether a hoolean qualification is input or not, a
special character ("#") must be used to terminate the command.

Again, users must have authorization to UPDATE the particular
table and to MODIFY the data base which contains it before the
system will accept an UPDATE command from them. Moreover, if
the WHERE clause references another table then the user must have
READ rights on that table.

Updates will not be accepted for the Workspace Table.

4-65

4.5.4 DELETE

The syntax of the DELETE command is:

DELETE [FROM] <table name> WHERE <qualification> %

where the syntax of a qualification is described in Section 4.5.1.2.
Like SELECT, INSERT, and UPDATE, the DELETE command has to be
terminated by a special character ('"#") as the entire command

may span multiple lines of input. A null gualification will

cause the entire contents of the table to be deleted, although

the table itself will remain (albeit in an empty state).

A user will have to have been granted DELETE authorization
on the specified table, MODIFY authorization on the data base
which contains it, and READ authorization on any additional
tables referenced in the gqualification, except, of course, that
he or she may always DELETE from W 4if W is nonempty (but the
requirement for READ authorizations on the other tables must

still be observed).

4.5.5 DISPLAY
The DISPLAY command will be used to list the contents of a

table (including the workspace table) at an interactive user's
terminal. The syntax of a DISPLAY command will be:

DISPLAY [<table name>][(<target 1ist>}][FORMAT=(<format>)]

where the syntax of a target list is described in Section 4.5.1.2
and the syntax of a format will be identical to the format
specifications inside a Fortran format statement. That is,

<format>::=<specification;>[,<specification,>]...

and

'<string>'

<integer>H§string> .
X
I<integer>

<specification>::=([<integer>](F \

E}<integer>s<integer>
D
A<integer>

T<integer> ’

The default for output table name will be the workspace table,

W, but the user may specify any table in the data base to which
he or she is currently attached. The user will also be permitted
to specify a target list, so that only certain columns of the
table are shown, and the default will be to list the entire
record for each record in the table. Finally, the Integrated
Data Base Management System will allow the user to input any
valid Fortran output format for listing the table, or else the
user can let the system select its own format specifications,

based on the type and size of each field to be displayed. The
choice of format specifications for fields will be by table
lookup (& typical table, assuming four bytes per word is
depicted below). Columns will be evenly spaced, with the
spacing chosen to make the output readable. The system will
output blanks for fields which are null.

TYPE SIZE FORMAT
alphanumeric n An

real 4 E12.7

real 8 516.10
integer 1 14
integer 2 16
integer 3 18
integer 4 112

i logical 1 ; A%

TABLE 4-1: System-Generated Formats

Note that a special character will not be needed to
terminate this command, and that a user may specify a table
other than his or her workspace table only if the user has a
READ authorization on that table.

There is one important caveat : the user should be aware
that executing a DISPLAY on a table other than the user's work-

space table may lock out other users' insertions, updates, and
deletions for a considerable span of wall clock time and thus
this feature should be avoided except on small tables or tables

with low usage.

*Will print 'TRUE' or 'FALSE'.

4.5.6 PRINT

The Print command is similar to DISPLAY, except that the
output will be directed to a line printer, and not to an inter-
active terminal.. The syntax of a PRINT command will be:

TITLE <title>
PRINT
[<table name>][<target 1ist>)][FORMAT=(<format>)]

where target list is described in Section 4.5.1.2 and format in 4.3.5.
Again, a user will have the option of specifying any table in
the data base to which he or she is attached (and for which he
or she“has READ authorization) or — by default — having the
sysfem list the contents of the user's workspace table. More-
over, the user will further retain the option of singling out
-certain columns for listing versus having all columns listed,
and of specifying an output format versus allowing the Inte-
grated Data Base Management system to choose its own format.
However, a user will also be able to use a PRINT command to
output a title to be placed on the printer listing. The
system itself will cenier the title.

4.6 Data File Commands

Not all of the data managed by the Integrated Data Base
Management‘System will be stored in tables. Indeed, one of the
most important functions of this system will be to provide its
users with efficient and convenient access to data files main-
tained on tape or stored on-line. A more unified treatment of
the way in which the Integrated Data Base Managemént System

-

provides access to the data files may be found in Section 7,

Data File Processing. This subsection will merely present the

syntax and function of the eight file operations available to

an ‘interactive user, which will be:

COPY - Insert records from a data file dinto a

table or vice versa.

Insert a new data file into the system

CATALOG
catalog.

UNCATALUOG - Purge a catalog entry.

LOAD - Create an on-line data file in (a) system
standard format from a data file on tape.

UNLOAD - Create a backup copy on tape of an on-line
data file.
KEEP - Mark a temporary on-line data file for

permanent saving.
SCRATCH ~ Purge an on-line copy of a data file.

PERFORM ~ Manipulate the contents of a data file

via loadable library routines.

The operation of these eight commands is governed by the
following set of principles:

(1) Each data file is identified by a unique data file
identifier (did).

(2) All on-line files will be stored in a self-describing
' standard format.

(3) All data files are read-only, and may be purged, but

not edited in place or overwritten.

(4) All data files known to the system will have an entry
~ in the system -catalog.’

The CATALOG and UNCATALOG commands will be restricted to the
- DBA, and KEEP and SCRATCH will be restricted to the owner of
the on-line copy of the. data file and the DBA. All other
commands will be unrestricted, and available to any user.
These file operations will be viewed by the system as being
functions of the system 'back end'", as opposed to commands in
the other groups which will be operations on the "front end".
Hence, the user —- though forced by convention to be attached
to some data base -- need not be attached to any particular data
base to request a file operation, except the COPY operation.
Three of the above commands -;‘COPY, LOAD, and UNLOAD —-

will be available for use by applications programs.

4.6.1 COPY
The syntax of a COPY command is depicted below:

<table name>

COoPY
<did> TO <table name>

Although the function of this command (copying the contents of

a table into a data file versus copying the contents of a data

file into a table) will be symmetrical, the syntax will not.

This lack of symmetry is explained by the fact that when a

table is copied to a data file the system creates a new on-

line file with a new data file identifier to receive the records

from the table, while in the reverse case, when data coming in
“from a data file (on- or off-line) the table which receives

those records must have been pre-defined. -

When a COPY command is used to copy records from a table
to a file, the system will display or print* the new data file
id. The primary side effect of this command is that null
fields are replaced with zero (if numeric) or filled with
bilanks (if alphabetic).

There are three important conditions which must be met before
the system will accept a COPY command from a file into a table.
The first of these, as expressed above, is that the table which
receives the records must have been predefined. It need not
be empty, however, and the new reccerds will merely be appended
to the end of the table. The second condition is that the
sequence of fields in the table must agree in type, size, and
number with the sequence of fields in a record of the file.

*Depending on whether the command is input from an interactive
terminal or the Bgich Command Reader, respectively.

Finally, the data file must be recognized as having tabular-
like data, as opposed to image data or profile data, for example.
This is due to the fact that the sequence of records in, say,

an image file will bear a relationship to one another Lased

on their order while, by definition, the order of records in

a table is meaningless. Tabular operations take no cognizance,
then, of the particular order of records in a table, but this
order cannot be ignored for other types of data.

4.6.2 CATALOG

The DBA can enter tape files into the Integrated Data Base
Management System's Data File Catalog (SYSCATL system table)
with the CATALOG command. The syntax of a CATALOG command
will bhe:

CATALOG (<Tile entry]>)[,(<fi1e entry2>]...

where
<file entry>::=<reel number>,<file number>,<format code>

The system will verify that each entry is unique and, if so,

the system will assign the file a unique data file identifier
<did>, make the entry in the catalog, and output the <did> to
the DBA. If, however, the file entry duplicates a previous
entry, then the system will merely return the pre-existing <did>.

The uniqueness of a file entry depends on all three com-
ponents of the entry, and not just the reel number and file
number. Therefore, if one physical file contains multiple
logical data files, then the separate logical files may be
indicated with different format codes.

‘Only the DBA will have the authority to issue a CATALOG
command . It should be noted that the DBA will also have to
execute one or more INSERT commands into the system directory

tables to reflect the new entries in the catalog.

4.6.3 UNCATALOG

The DBA may purge catalog entries by using the UNCATALOG
command. The syntax of an UNCATALOG command will be:

UNCATALOG <did,>[,<did,>]...

Not only will the catalog entry be wiped out for each <did> named
in an UNCATALOG command, but on-line copies of those files

will also be purged and records referencing those <did>'s will

be deleted from the system directory tables. However, the

tape file itself will be untouched, and any records in tables
belonging to local data bases which reference that <«dids> will
also remain as they were before the UNCATALOG command was

issued.

Only the DBA may issue an UNCATALOG command. With respect
to an on-line file being purged as a side effect of the
UNCATALOG command, the same rules apply as for the SCRATCH
command. That is, if an application program has opened that

file then it will not be erased until it has been closed.

4.6.4 LOAD

The function of the LOAD command will be to create an on-
line data file by copying (and perhaps reformatting) a cataloged
tape file (or portion of a tape file). The syntax of a LOAD

command will be:

LOAD [<operat10n]>(<parameter 1ist]>)[,<0peration2>(<parameter Iist2>)]...]<did>

where the valid operations will be SLICE, WINDOW, and SUBSET,
and the parameters to be specified will depend upon the

operation.

The effect of a LOAD command will be to create an on-line
file in a self-descriptive system standard format. Where no
operaticn is specified, the entire tape file will be brought
on-line and reformatted, if necessary, to conform with the
appropriate system standard format. In such a case, the
data file id for the 6n—line copy and the off-iine copy will

be the sanme.

The SLICE operation is designed to create subfiles from
data files representingmulti-dimensional grids. Such a file
can have up to five dimensions, corresponding to the standard
horizontal and vertical (x and y) axes on the ground, an
altitude (z) axis, a time (t) axis, and a wavelength axis (X).
The SLICE operation will permit the user to take a 2-D "slice"
along any pair of axes represented in the file. The para-~
meter list, then, will be the pair of axes through which the
SLICE is to be taken, plus a set of equations fixing the
remaining axes. The BNF syntax description for a parameter
list for SLICE is:

<parameter 1ist>::=<axis]>,<axisz>,<eq‘n]>[,<eq‘n2>]...

where
<eq'n>::=<axis>=<constant>
<axis>::=X|Y|Z]|T|L

An error message will be output and the command aborted if any
of the specified axes are not present in the gridded data file

- 0 - . - J
or if an axis is left unspecified..

A WINDOW operation will only be performable on a two
dimensional file (e.g., adigitized image or digitized cartographic
terraln elevation model). The WINDOW operation will cause a
recﬁaﬂgulaf subarea to be selected from the specified data
file and copied into an on-line file. The user will have to
specify four parameters: starting and ending line number and
start i.ng and ending column number, all specified relative to the first
data point in the first record as (1, 1). The pair of line
numbers and pair of column numbers may be in any order, but the

user shall be reguired to specify both line numbers before
specifying either column number. Zero starting values (line

or column) will be the same as a one, and values greater than
the number of lines or size of a line, respectively, will pe
rounded down to the appropriate value. However, starting
values which are greater than the number of lines or size of

a line will cause an error message to be returned and the com-
mand to bhe aborted.

It is anticipated that most data files will contain
observed values for more than one physical variable at each
observation point. By using the SUBSET operation a user will
be able to create an on-line file which contains any non-empty
subset of those wvariables. The parameter list for a SUBSET
operation will be a list of names of physical variables, and
the size of the list will be permitted to vary from command

to command. 1f the user should happen to specify a physical
variable not represented in the specified file, or if the
system fails To recognize one or more of the physical variable
names, then the system will abort the command and return an

error message.

As indicated by the syntax, these three operations may be
combined in any order in a single LOAD command, if the user so
desires. However, the use of one or more operations with a
LOAD command will cause a new data file to be created, so that
the systemwill have to generate a new data file id and assign it
to the new data file. Whenever an on-line file is created,
whether it is a new data file or a direct copy from tape, the
user issuing the LOAD command will become the owner of the file.
Anyone will be able to access the file, but only the owner (or
the DBA) will be allowed to issue an explicit purge on it.
However, unless marked "permanent" by the DBA ¢or its owner, any
on-line file will be classed by the sysitem as "temporary' and-
automatically purged a specified number of days after its last

access.

4.6.5 TUNLOAD

The syntax of an UNLOAD command will be:

UNLOAD <did]>[,<did2>]...

The UNLOAD command will create back-up tape copies in system stan-
dard format for each on-line data file listed in the command
(unless the Integrated Data Base Management System determines

that a back up tape file already exists for the specified on-

line file). Anyone may UNLOAD an on~line file.

4.6.6 KEEP

The role of the KEEP command will be to take a temporary
on~line file and mark it permanent. The syntax of a KEEP

command will be:

KEEP <did1>[,<did2>]...

Anyone may issue a KEEP command, but with privilege comes
responsibility and hence the user who issues a KEEP command

will become the owner of the kept file.

KEEP commands will apply only to temporary on-line files,
and KEEP commands issued for permanent files will be rejected

by the system.

4.6.7 SCRATCH

The SCRATCH command will cause on-line files to_be purged
from mass storage. The syntax of a SCRATCH command will be:

SCRATCH <did >[,<did2>]...

1

Only the owner of an on-line file or the DBA may SCRATCH that
file, zand then only if the file is marked temporary or a tape
version exists. An on-line file shall not be purged if it

has been marked permanent and no back-up tape copy exists -- it
will be necessary for the user to UNLOAD that file before issu-
ing the SCRATCH or else an UNCATALOG will have to be used.

‘A SCRATCH command will affect only the on-line file unless
the file is temporary and no tape copy exists, in which case the
entire catalog entry will be deleted. In no case will tables
in tﬂe front end of ithe system be affected by a SCRATCH command.

4.6.8 PERFORM

The syntax of a PERFORM command will be:

N

‘SLICE
WINDOW
SUBSETL(<parameter list>) [ON] <did>
PERFORM REGRID
WITH
MERGE <did1> <did2>

where parameter lists have been defined in Section 4.6.4 or are
described below. Any data files specified in a PERFORM command
must be on-line files in a system standard format, and the
result of executing a PERFORM command will be a new, "temporary"
on-line data file, also in system standard format. The system
will display or print the data file id (did) for this new file,
and the owner of the new file will be the user who issued the
PERFORM command. As per system convention, the execution of

a PERFORM command will not cause any change to occur to the in-
put file(s) specified in the command sequence.

The SLICE, WINDOW, and SUBSET operations have been des-
cribed in the subsection of this report which discusses the
LOAD command. The REGRID operation will map observation points
from one multi-dimensional grid coordinate system onto another
grid coordinate system, interpolating new data values at each
observation point as necessary. The new coordinate system
must be derivable from the old coordinate system strictly by
a translation of origin and a change of scale. For an n-
dimensional coordinate system (nz2) there will be 2n para-
meters in the parameter list. The first n parameters will
be scaling factors (each strictly greater than zero) by which
the corresponding coordinate axis is to be multiplied to

-generate new grid spacings, and the second n parameters will
be translation parameters which will dietate how the origin

of the original coordinate system is to be shifted along each

axls to generate the new origin. There are five possible
coordinate axes: x and y (on the ground), =z (altitude),
t (time),and A (wavelength). Any subset of two or more

0f these might be present in the original file, but the order
of axes will always be presumed to obey the transitive order-

ing sequence t before x before v before =z before A

The MERGE operation will cause two data files to be merged
into a single data file. A number of preconditions must be
met before the system will accept a PERFORM MERGE command:

(1) The two coordinate systems must have the Same number

and type of coordinates (except for wavelength, as dis-
cussed below),

(2) The grid spacing along all axes must be the same for
both grids.

(3) For purposes of a MERGE operation, observations along
each hyperplane defined by a fixed waveléngth (X)) will
be treated as observations of a single physical variable.

(4) The areal coverage along the x and y axes must

overlap.

(5) If there is a t axis in the files' coordinate system,

then the time periods must zlso overlap.

If the origin and termination of the axes for both grids are not
the same, the merged data file will contain a grid consigting only
of the overlapping portions of the original grid. The observa-
tions at each grid point in the new data file will be formed by
concatenating the observations from the first data file with those
in the second data file.

4-83

The five file operations presented in this subsection con-
Sstitute a minimal and not necessarily complete set of operations.
The Integrated Data Base Management System has been designed to
permit additional operations to be added (e.g., histogramming)

at a future date.

SECTION 5 - THE APPLICATION PROGRAM COMMAND LANGUAGE
5.1 Introduction to Application Program Command Processing

The Application Program Command Language is the method by
which .an application program communicates with the Integrated
Data Base Management System. It permits an application pro-
gram to access tabular data as well as data files, The
Application Program Command Language is not a2 complete language
by itself. It relies on a host language to provide a frame-
work for it and to provide the procedural capabilities required
to manipulate datsa. The command language consisis of a set of
CALL statements or its eguivalent which are incorporated into

2 precedural host language program. The command language may
be used with any host language (e.g., FORTRAN, COBOL, PL-1,
ALC) that supports a CALL statement. A single entry point or

subreoutine name is used for all application program commands.
The CALL statement will have a variazble length argument list as
a function of the command being issued. The firsti two argu-
ments in every application program are the command itself (e.g.,
'SELECT', 'READ') and an integer variable which, upon return
from the Integrated Data Base Management System, will contain
the status associated with the executicn of the command.

To an application program, the Integrated Data Base
Management system appears to be the single subroutine, IDBMS.
To the Integrated Data Base Management System, an applicatfon
program will appear to be a special type of user with its own
User Control Block and its own Workspace Table. Between an
application program and the system will be the Application
Program Interface, which will create a Command Control Blcck
for the application program command and place it on the proper
gueue for processing.

The Application Prcgram Cemmand Language contains several
commands which are also included in the Interactive Command

5-1

Language, described in Section 4. However, after analysis of
projected user requirements, several commands from the
Interactive Command Language were omitted from the Application
Program Command Language. These include commands to define
and remove data bases, tables, fields, users and groups and
commands to grant and revoke .access rights as well as others.
It should be noted that nothing in the design of the Integrated
Data Base Management System would preclude those commands
which were omitted from being included in the Application
Program Command Language. The set of commands available to
an application program will include only a subset of the com-
mands available to interactive users, as detailed in Table 5-1.
It should be noted that the data file processing operations
such as REGRID, SLICE, etc. initiated interactively via the
PERFORM command are available to application programs directly
as part of the Application Program Command Language. Also,
an application program will have available to it an additional
set of commands which are not available to interactive users.
This section provides an overview of how an application pro-
gram interacts with the system, describes the calling sequence
for issuing "interactive" commands through the Application '
Program Interface, and describes the calling sequence for and
function of the remaining commands. Since most of these
special commands access data files in the Non-Relational Data
Base, the reader is expected to be familiar with Section 7,
Data File Handling, as well as Section 4, The Inferactive

Commzud Language.

5.2 Issuing "Interactive" Commands from an Application Program

As stated previously, only a subset of the Interactive
Command Language is included in the Application Program
Command Language. Table 5-1 lists the interactive commands
which can be issued by an application program and the follow-
ing subsections describe the calling sequence for each of

UTILITY COMMANDS
ENTER
EXIT
ATTACH
JSE

DATA MANTPULATION COMMANDS
SELECT
INSERT
UPDATE
DELETE

DATA FILE COMMANDS
COPY
LOAD.
UNLOAD
DATA FILE PROCESSING OPERATIONS (PERFORM)
SLICE
WINDOW
SUBSET
REGRID
MERGE

Table 5-1: Commands Available to Both Interactive

Users and Application Programs

c|)1
d5]

these commands as well as additional commands which support
them. The result of issuing any of these commands by an
application program is the same as if they were entered inter-
actively. Thus, the description of each of these commands in
Section 4 is applicable and will not be repeated here.

5.2.1 Utility Commands

Interactive commands from the category of Utility Commands
which can be issued by an application program are described

below.
5.2.1.1 The ENTER Command

' The ENTER command connects an application program to the
Integrated Data Base Management System. This command must be
issued by an application program prior to issuing any other
command in the Application Program Command Language. It is

coded as follows:

%

CALL IDBMS('ENTER',<status>,<program-id>.<user-id>,<password>)
where:

¢ <status> is a binary integer variable which, upon return
from the Integrated Data Base Management System, will
contain an integer value indicating whether or not the
command was executed successfully. A status code of
zero indicates successful execution of the command. A
positive status code indicates unsuccessful execution of
the command. The value of the positive integer defines
the error condition which caused the unsuccessful execu-—
tion.

¢ <program-id> is an alphanumeric literal or variable
which uniquely identifies the application program which
is attempting to connect to the Integrated Data Base
Management System. The program-id is analagous to the
user-id associated with each valid user of the system.

54

o <user-id> is an alphanumeric literal or wvariable which
identifies the user running the application program.
During this execution of the application program, it
will assume the access rights associated with the user
running the program.

¢ <password> is an alphanumeric literal or wvariable contaign
ing the password of the user identified by the <user-id>
argument.

5.2.1.2 The EXIT Command

The EXIT command disconnects an application program from
the Integrated Data Base Management System. This command
should be issued by any application program which has connected
to the system via the ENTER command. During EXIT command pro-
cessing, the system will close any data files for which no
CLOSE command was issued by the application.program and reset
all locks on tables which have not been explicitly reset by an
UNLOCK command. The EXIT command is coded as follows:

CALL IDBMS('EXIT',<status>)
where <status> is as previously defined.
5.2.1.3 The ATTACH Command

The ATTACH command indicates the intent of the application

program to access the specified data base. It is coded as
follows:

CALL IDBMS('ATTACH",<status>,<data base name>)
where <status> is as previously defined and:

¢ <data base name> is an alphanumeric literal or variable
which contains the name of the data base to which the
application program is to be attached. After successful
completion of this command, the specified data base will

be the application program's primary data base and any
subsequent data manipulation or COPY commands issued by
the application program prior to another ATTACH command
will access that data base,.

5.2.1.4 The USE Command

The USE command permits a one or two character alias name

to be specified for a table. It is coded as follows:
CALL IDBMS('USE',<status>,<alias name>,<table name>)
where <status> is as previously defined and:

¢ ~<alias name> is an alphanumeric literal or wvariable
which specifies a one or two character aiias that can
be used in place of the name of the table specified in

the <table name> argument. The alias name can be used
in subsegquent commands wherever the associated table
name can validly be used. The alias name remains until

"it is assigned to another table or until thé application
program terminates.

¢ <table name> is an alphanumeric literal or variable which
contains the name of the table for which the alias is
being established.

5.2.2 Data Manipulation Commands

Interactive commands from the category of Data Manipulation
Commands are described in this subsection. These commands
permit an application program to manipulate tabular data in much
the same way as an interactive user can. All of the commands
in this category contain one or more arguments in their calling
sequence which is a variable length string. By including
these strings, the calling sequence is simplified considerably
and causes the argument list to resemble the interactive com-
mand syntax. To facilitate the use of variable length strings,
each such string must be terminated with the special symbcol #.
Some examples of the use of these variable length strings is

5-6

illustrated in a subsequent subsection.

5.2.2.1 The SELECT Command

The SELECT Command retrieves data from one or more tables
and places it in the Workspace Table associated with the applica-
tion program. The tables referenced by the SELECT command
must be contained in the data base named in the most recent
ATTACH command issued by the application program. The SELECT

command is coded as follows:

CALL IDBMS('SELECT',<status>,<record no>,<target list string>,
<qualification string>)

where <status> 1s as previously defined and:

¢ <record no> is a binary integer wvariable which, upon
return from the Integrated Data Base Management System,
will contain the number of records which have been placed
in the Workspace Table as a result of the execution of

this SELECT command. This argument may contain zero
upon return, if no records were placed in the Workspace
Table.

¢ <target list string> is an alphanumeric literal or variable
which defines the data fields for which values are to be

retrieved from existing tables. This argument is exactly
the same as the target list specified in the interactive
SELECT command described in Section 4. It defines the

data fields which constitute the Workspace Table con-
structed as a result of the execution of the SELECT com-
mand. The target list string must be terminated by the

)

special character #,

¢ <gualification string> is an alphanumeric literal or
variable which specifies the conditions that must be met
by a record for it to be selected for retrieval. This
argument is exactly the same as the gualification speci-
fied in the WHERE clause of the interactive SELECT com-
mand described in Section 4 except that application pro-
gram variable names can be used as well as constants in
the relation conditions (e.g., X EQ 2 could be replaced
by X EQ V1 where V1 is an application program variable
which has been set to 2 by another application program
statement). The concept of using variable names in the
gualification string will be discussed in more detail in

the description of the BIND command in a subsequent subsec-
tion. The gqualification string must be terminated by
the special character #.

5.2.2.2 The INSERT Command

The INSERT command adds one or more new records to a table.
There are two forms of the INSERT command: one which permits
a single record to be inserted directly into a table by supply-
ing values for the data fields within the argument list and a
second which will operate in a manner similar to the SELECT
command in that data will be retrieved from one or more tables
and the resulting records will be added to the table named in
the argument list rather than being placed in the Workspace
Table.- All tables referenced by the INSERT command must be
contained in the data base named in the most recent ATTACH

command issued by the application program.

The implementation of two different types of INSERT com-~
mands reguires that the Application Program Communication
Module, IDBMS, be capable of recognizing two different argument
lists. The "record' option, where data field values are
specified expliecitly in the argument list, requires only a
<record string> argument, whereas the 'selection” option requires
both a <target list string> and a <qualification string> argument
There are several technigues for handling this problem and the
choice of one over the other may be operating system dependent.
For example, if each compiler supported by the operating system
marks the last argument in an argument list, the Application
Program Communication Module can detect the shorter argument
list of the "“record" option. If the compilers do not mark
the last argument, the <record no> argument could be set to a
negative value by the application program prior to issuing the
INSERT command to indicate the "record" option and a non-nega-
tive value to indicate the 'selection' option or vice versa.

Alternatively, open and close parentheses could be used in the

5-8

<record string> argument to distinguish it from the

<target list string> argument which would not contain parentheses,
thereby defining the type of INSERT command being issued (e.g.,
F(X=1,Y=2)F"1). The description of the arguments below assumes
that the compilers support variable length argument lists by
marking the last argument in the list. The two forms of the
INSERT command are coded as follows:

"record" option

CALL IDBMS('INSERT',<status>,<record no>,<table name>,<record string>)

where <status> is as previously defined and:

¢ <record no> is a binary integer variable which, upon
return from the Integrated Data Base Management System,
will contain the integer value one if the record defined
in the <record string> argument was successfully added to
the table named in the <table name>. Otherwise, the
integer value zero will be returned.

¢ <table name> is an alphanumeric literal or variable which
contains the name of the table to which the record is to
be added.

¢ <record string> is an alphanumeric literal or variable
which defines the values to be assigned to data fields in
the record to be added. This argument is exactly the"
same as the record which can be specified in the inter--
active INSERT command described in Section 4 except that
application program variable names can be used as well as
constants. The data fields named in this argument must
be data fields in the table specified in the <table name>
argument. Any data fields which are not assigned a
specific value will contain a null value in the added
record. The record string consists of one or more assign-
ment statements separated by commas. The record string
must be terminated by the special character #. The form
of the assignment statement is:

<constant> 1
<assignment statement>::=<data field name>=
<program variable name>

where <program variable name> must be a variable defined in
the application program and used in a preceding BIND

command.

"'selection" option

CALL IDBMS({'INSERT',<status>,<record no>,<table name>,<target list string>,
<qualification string>)

where <status> is as previously defined and:

¢ <record no> is a binary integer wvariable which, upon
return from the Integrated Data Base Management System,
will contain the number of records which have been added
to the table named in the <table name> argument as a
result of the execution of this INSERT command. This
argument may contain zero upon return if no records were

added to the table.

¢ <table name> is an alphanumeric literal or variable which
contains the name of the table to which the records are
toe be added.

o <target list string> is an alphanumeric literal or wvariable
which defines the data fields in the table specified in
the <table name> argument for which data values are to be
retrieved from the records satisfying the criteria stated
in the <qualification string> argument. This argument
is exactly the same as the target list which can be speci-
fied in the interactive INSERT command described in

Section 4. Any data fields in the table specified in the
<table name> argument which are not included in this argu-
ment will contain a null value in all added records. The

target list string must be terminated by the special
character #.

e <qualification. string> is an alphanumeric literal or
variable which specifies the conditions that must be met
by a record for it to be retrieved and used to construct
a new record to be added to the table specified in the
<table name> argument. The syntax of the

_ <qualification string> argument is the same as that for
the SELECT command described in a previous subsection.

5.2.2.3 The UPDATE Command

The UPDATE command modifies one or more data fields in one

5-10

Or more records in a table. A1l tables referenced by the
UPDATE command must be contained in the data base named in the
most recent ATTACH command issued by the application program.
The UPDATE command is coded as follows:

CALL IDBMS('UPDATE',<status>,<record no>,<téb1e name>,<change 1ist string>,
<qualification string>)

where <status> 1s as previously defined and:

e <record no> is a binary integer variable which, upon
return from the Integrated Data Base Management system,
will contain the number of records which have been modi-
fied as a result of the execution of this UPDATE command,
This argument may contain zero upon return if no records
were modified.

e <table name> is an alphanumeric literal or wvariable which
contains the name of the table in which the records are
t0 be modified.

¢ <change list string> is an alphanumeric literal or
variable which defines the data fields to be modified and
the new values which are to be assigned to them. This
argument is exactly the same as the change which can be
specified in the interactive UPDATE command described in °
Section 4 except that application program variable names
can be used as well as constants and functions. The
data fields named in this argument must be data fields in
the table specified in the <table name> argument. The
change list string consists of one or more assignment
statements separated by commas. The change list string
must be terminated by the special character #. The
form of the <change 1list string> argument is:

<change 1ist string>::='<assignment statement]>[,<assignment statement2>}...#‘

.

<constant>
<assignment statement>::=<data field name>={<function>

<program variable name>

where <program variable name> must be a variable defined in
the application program and used in a preceding BIND
command.

¢ <gualification string> 1is an alphanumeric literal or
variable which specifies the conditions that must be met
by a record for it to be modified. The syntax of the
<qualification string> argument is the same as that for
the SELECT command described in a previous subsection.

5.2.2.4 The DELETE Command

The DELETE command deletes one or more records from a table.
The table referenced by the DELETE command must be contained in
the dats base nzemed in the most recent ATTACH command issued by
the application program. The DELETE command is coded as fol-
lows:®

CALL IDBMS('DELETE',<status>,<record no>,<table name>,<qualification string>)
where <status> is as previously defined and:

e <record no> is a binary integer variable which, upon
return from the Integrated Data Base Management System,
will contain the number of records which have been deleted
as a result of the execution of this DELETE command.

This argument may contain zero upon return if no records
were deleted.

* <table name> is an alphanumeric literal or variable which
contains the name of the table from which the records are
to he deleted.

¢ <gualification string> is an slphanumexric literal, or
variable which specifies the conditions that must be met
by a record for it to be deleted. The syntax of the
<gualification string> argument 1is the same ag that for
the SELECT command described in a previous subsection.

5-12

5.2.3 Operations which Support "Interactive" Commands

There are several commands which can be issued by an applica-
tion program that provide additional tabular data handling or
support capabilities but are not available to interactive users.
These commands are required in an application program because
of the procedural environment in which an application pro-

gram operates. Each of these commands is described below.
5.2.3.1 The BIND Command

The BIND command permitvs the Integrated Data Base
Management System to recognize a program variable name and to
associate that program variable with its proper location in
the main storage allocated to the application program. After
being named in a BIND command, a program variable can be used
in an alphanumeric string argument in an "interactive" type com-
mand wherever a constant could be validly used. Thus, program
variables can be used in <gualification string>,<change list string>
and <record string> arguments in the data manipulation commands
described in the preceding subsections. The BIND command is

coded as follows:
CALL IDBMS(*BIND',<status>,<program variable name>,<program variable>)
where <status> is as previously defined and:

¢ <program variable name> 1is an alphanumeric literal or
variable which contains the name of the program variable
as it will appear in an alphanpumeric string argument in
a subsequent command. While the program variable name
will represent the program variable in string type argu-
ments in subsequent commands, they need not match (e.g.,
'"LATITUDE' ,LAT where LATITUDE would be used in string
arguments to represent the program variable LAT).

13

w
l

® <program variable> is a variable which is defined and
assigned values within the application program. Whenever
the program variable name specified in the preceding argu-
ment is encountered in an alphanumeric string argument,
the Integrated Data Base Management System will substitute
the location of the program variable and will use the
current value stored at that location during its processing.

5.2.3.2 The FETCH Command

The FETCH command retrieves data values from a record in
the Workspace Table and makes them available to the application
program for processing. The data fields named in the command
must be data fields defined for the Workspace Table by the
most recent SELECT command issued by the application program.
The first FETCH command following a SELECT command will cause
values of the specified data fields to be retrieved from the
first record in the Workspace Table and to be placed into the
. specified work area within the application program. Subseguent
FETCE commands will retrieve data from the next record in turn
until all records in the Workspace Table have been accessed.
Bach SELECT command issued by an application program will cause
subsequent FETCH commands to begin accessing records in the
Workspace Table at the first record. The FETCH command 1is
coded as follows:

CALL IDBMS('FETCH',<status>,<target list string>,<work area>)

where :

¢ <status> 1s a binary integer wvariable which, upon return
from the Integrated Data Base Management System, will
contain an integer value indicating whether or not the
command was executed successfully. As in the <status>
argument in other commands, a code of zero indicates suc-
cessful execution while a positive code indicates unsuc-
cessful execution and defines the error condition.
However, for the FETCH command, a negative status code
may be returned indicating an end-of-table condition.

¢ <target list string> is an alphanumeric literal or
variable which defines the data fields in the Workspace
Table for which values are to be retrieved and returned
to the application program in the work ares. The data
field names in the <target list string> argument must be
separated by commas. The order of the data field names
will determine the order in which the corresponding data
values will be stored in the work area. The target list

L

string must be terminated by the special character #.

¢ <work area> is a variable which defines a contiguous area
of main storage into which data values from the Workspace
Table will be stored. The work area must be large
enough to contain the data values corresponding to the
data fields specified in the <target list string> argument.

5.2.3.3 The LOCK Command

The LOCK command permits an application program to gain
processing control over a table. The table specified in the
LOCK command must be contained in the data base named in the
most recent ATTACH command issued by the application program.
Two modes Bf processing control are available to an application
program: read and modify. If an application program specifies
a read mode lock for a table, other application programs and
interactive users can read the contents of the table but can not
modify them. If an application program specifies a modify
mode lock for a table, no other application programs or inter-
active users can access the contents of the table in any way.
Once a lock is set by an application program, it can be reset
only by the UNLOCK command, by the EXIT command or if the applica-
tion program terminates abnormally prior to issuing either of

these commands. The LOCK command'is coded as follows:
CALL IDBMS('LOCK',<status>,<table name>,<mode>)
where <status> is as previously defined and:

¢ <table name> is an alphanumeric literal or variable which
contains the name of the table for which the lock is to
be set.

¢ <mode> is an alphabetic literal or variable which defines the

type of lock to be set. The <mode> argument has only
two valid values: READ and MODIFY, There meanings are

as follows:

READ -

MODIFY -

the application program intends to read the con-

tents of the table. No other user should be
prermitted to update the contents of the table
while this lock is active. If another applica-

tion program already has set a READ lock on the
table, this READ lock will also be set on the
table. If another application program has set
a MODIFY lock on the table, this READ lock will
be rejected.

the application program intends to modify the
contents of the table. No other user should
be permitted to access the contents of the
table in any way. If another application
program already has set either a READ or MODIFY
lock on the table, this MODIFY lock will be
rejected. Ifno lock of any kind has been set
on the table, this MODIFY lock will be set on
the table.

5.2.3.4 The UNLOCK Command

The UNLOCK command releases processing control over a table

LOCK command.

which was established by the application program via a previous
The table referenced by the UNLOCK command must
be contained in the data base named in the most recent ATTACH
command issued by the application program. This command resets
both READ and MODIFY locks, whichever type of lock had been
last set for the
command is coded as follows:

table by the application program. The UNLOCK

CALL IDBMS({'UNLOCK',<status>,<table name>)

where <status> is as previously defined and:

¢ <table name> 1is an alphanumeric literal or variable
which contains the name of the table for which the lock
is to be reset.

5.2.3.5 The GET Command

The GET command retrieves data values from a record in a
table in a data base and makes them available to the application
program for processing. The table referenced by the GET com-
mand must be contained in the data base named in the most recent
ATTACH command issued by the application program. The GET com-
mand follows the logical ascending sequence imposed on the table
by a B-tree index to determine which record should be accessed.
The particular B-tree index to be used, should more than one
exist for a table, is defined by specifying its associated key
name in the argument list of the command. If no B-tree indices
exist for a table, the GET command can not be used to retrieve
data from that table.

To support the GET command, the Integrated Data Base
Management System maintains a cursor for each B-tree key field
such that access to records in the table through a B-tree index
can be based on the current position of the cursor. A cursor
is a logical pointer which moves through a table following the
logical seqguence imposed by the B-tree index with which it is
associated. A cursor may be set at the record in a table
which is associated with the lowest key value in the B-tree
index or at any other record by specifying the key value
associated with that record in the argument list of the GET
command. Each time a GET command is issued, the specified
data values are retrieved from the record containing the next
highest key value and the cursor associated with the B-tree
index being used is logically positioned by the system to the
record accessed. - All cursors associated with B-tree indices
for a table are independent from one anofher. Thus, a GET
command which causes one cursor to move will not change the posi-
tion of any other cursor.

Since the GET command retrieves records from a table based

5~-17

on a cursors set on a B~tree index, no updates to the associated
table which might modify the B~tree index can be permitted
while an application program is issuing GET commands. Thus,
before an application program issues a GET command to access a
table, a LOCK command must have been successfully executed by
the gpplication for that table. The lock mode specified in
the LOCK command can be either READ or MODIFY, but need only

be READ to disallow updates to the table. After all GET com-
mands have been issued for the table, the UNLOCK command should
be issued. If a table named in a GET command has not been
locked by the application program issuing it, the GET command

will be rejected.
The GET command is coded as follows:

CALL IDBMS('GET',<status>,<table name>,<key name>,<key area>,
<target 1ist string>,<work area>)

where:

¢ <status> is a binary integer variable which, upon return
from the Integrated Data Base Management System, will
contain .an integer value indicating whether or not the
command was executed successfully. As in the <status>
argument in other commands, a code of zero indicates suc-
cessful execution while a positive code indicates unsuc—
cessiul execution and defines the error condition.
However, for the GET command, a negative status code may
be returned indicating an end-of-table condition.
Additionally, the <status> argument is used to indicate
that this GET command will set a starting point for
retrieval of records via the B-tree index. When the
status contains a negative value upon issuing the GET
command, the contents of the key area will be used to
set the cursor associated with the B-tree index identi-~
fied by the <key name>.

e <table name> is an alphanumeric literal or variable which
contains the name of the table from which data values are
to be retrieved.

¢ <key name> 1s an alphanumeric literal or variable which
defines the B-tree index whose cursor is to be used to

determine from which record the data fields specified in
the <target list siring> argument will be retrieved.

The key name must have been previously specified inter-
actively in an INDEX command which created a B-tree index
on the table named in the <table name> argﬁment.

<key area> 1s a variable which defines a contiguous area

of main storage into which the values associated with the
key field specified in the <key name> argument will be
stored. Should the <key name> argument represent z combina-
tion key field, values from each of the fields which con-
stitute the combination key field will be stored in the

key aresa. Additionally, the <key area> argument is used
to establish a starting point for retrieval within the
specified B-tree index. If the <status> argument con-

tains a negative value, the contents of the key area will
be used to set the starting point for retrieval in that

the record accessed will be the one with a matching key

or, 1f no matching key exists, the one with the next highest
key. The cursor associated with the specified B-tree
index will be logically positioned at the accessed record
and subsequent GET commands will retrieve records with the
next higher key in the B-tree index.

<target 1list string> is an alphanumeric literal or variable
which defines the data fields in the table named in the
<table name> argument for whiech values are to be retrieved
and returned to the application program in the work area.

The data field names in the <target list string> argument
must be separated by commas. The order of the data
field;names will determine the order in which the correspond-
ing data values will be stored in the work area. The

target list string must be terminated by the special charac-
ter #.

<work area> is a variable which defines a contiguous area
of main storage into which data values from the table
specified in the <table name> argument will be stored.
The work area must be large enough to contain the data
values corresponding to the data fields specified in the
<target list string> argument.

5.3 Data File Commands

Interactive commands in this category permit an application

program to move entire data files from an off-line to an on-
line storage device and to create a backup on magnetic tape
of an on-line data file. Additionally, an application program

5-19

can transform a table to 2 data file and a data file to a table.
Each of the commands which can be issued by an application pro-

gram are described below.
5.3.1 The COPY Command

The COPY command permits an application program to transiorm
a table to a data file and a data file to a table. The direction
of transformation is controlled by the contents of the <did>
argument. The COPY command is coded as follows:

CALL IDBMS{'COPY',<status>,<did>,<tabie name>}

where <status> is as previougly defined and:

e <did> is a variable containing either the identifier of the
data file which is to be transformed into a table or spaces
(blanks), which indicate that the table is to be trans-
formed into a new data file. If a new data file is to be
created from the contents of the table, upon return from
the Integrated Data Base Management System, the <«did>
argument will contain the identifier assigned to the newly
created data file.

¢ <table name> is an alphanumeric literal or variable which
contains the name of the table which will receive the con-
tents of the data file or from which the new data file is
to be created.

5.3.2 The LOAD Command

The LOAD command permits an appliecation program to create
an on-line data file in system standard format from a data file
on magnetic tape. For a discussion of system standard formats,
see Section 7, Data File Handling. If the contents of the one-
line data file are exactly the same as that of the off-line
data file, they will have the same data identifier. If the
contents of the two data files are different after loading, 2
new data identifier is aésigned to the on~line data file.

The LOAD command is coded as follows:

5-20

CALL IDBMS('LOAD',<status>,<o0ld did>,<new did>,<parameter arrays>) -
where <status> is as previously defined and:

¢ <0ld did> is a variable containing the identifier of the off~
line data file on magnetic tape which is to be copied
on-line. The data file will be converted to one of the
system standard formats during the loading process, if
necessary.

© <new did> is a variable which, upon return from the
Integrated Data Base Management System, may contain the
data identifier of a new on-line data file in system
standard format if it contains,’ in some form, a subfile
of the original off-line data file. If the original data
file is copied on-line in its entirety, no new data
identifier is assigned to it and the <new did> argument
will contain spaces (blanks) upon return to the applica-
tion program. If some operation is performed during
loading, as defined by the <parameter array> argument,
that causes the contents of the on-line data file to be
different from those of the off-line data file, a new data
identifier will be assigned to the on-line data file by
the system and will be returned in the <new did> argument.

) <parameter array> 1s 2 one-dimensional array variable
whose values will be a function of the data file being
copied on-line. The parameter values will control the
leading in that they will permit window and subset opera-
tions to be performed as the data file is being loaded.
See Section 4, The Interactive Command Language, for a
more thorough discussion of the parameters required to
control a LOAD operation.

5.3.3 The UNLOAD Command

The UNLOAD command permits an application program to

create a backup copy on magnetic tape of an on-line data file.

The UNLOAD command is coded as follows:
CALL IDBMS{'UNLOAD',<status>,<did>)

where <status> and <did> are as previously defined.

5-21

5.4 Data File Processing Operations

There will be (at least) five operations which will
manipulate whole data files. These operations will be avail-
able to interactive users via the PERFORM command, but they
will be more directly available to application programs.

These operations will take one or two data files, plus certain
parameters, as input and create a new data file as output.

The input data file(s) must have been loaded on-line before-
hand either interactively or by the application program. The
new data file will also be an on-line file in system standard
format. It will be marked as a temporary data file and will be
opened as a side effect of its creation and will be closed
before control is returned to the application program. The
data identifier assigned to the newly created data file will
be returned to the application program. The new data file

can be opened and read by the applicetion program but cannot

be overwritten.

The five operations will be:

SLICE Create a new data file by taking a two-

}

dimensional slice of a multi-dimensional
gridded file.

WINDOW Create a new data file by extracting a rect-

angular subarea from an image, cartographic,
or two-dimensional gridded file.

SUBSET Create a new data file by extracting only a
specified subset of physical variables from
the original file.

REGRID Create a new data file by interpolating the

data from a gridded file in one coordinate

system into a new coordinate system.

MERGE Form a single file by merging the data from

two other files.

A precise desceription of the above operations may be found in

Section 4, The Interactive Command Language.

5.4.1 Performing a SLICE Operation

The slice operation creates a new data file from an exist-
ing data file by taking two dimensions from the n-dimensional
grid (n > 2) of the original data file. The two dimensions to be
extracted are defined within the argument list along with the
remaining n - 2 dimensions and an array of constants which, to-
gether, define a set of n - 2 equations of the form DIMENSION =
CONSTANT . Each equation defines a hyperplane through one of
the remaining axes, the intersection of which defines the
two-dimensional plane (slice) with the desired set of axes.

The SLICE operation is coded as follows:

CALL IDBMS{'SLICE',<status>,<0ld did>,<new did>,<axis array>,<constant array>)
where <status> is as previously defined and:

e <0ld did> is a variable containing the data identifier assoc-
iated with the existing multi-dimensional gridded data file
from which a two dimensional slice is to be extracted.

¢ <new did> is a variable which, upon return from the Integrated
Data Base Management System, will contain the data identifier
of the two-dimensional gridded data file created as a result
"of the SLICE operation. ’

¢ <axis array> is a one-dimensional array variable whose
values define the axes of the grid from which the slice
is to be taken. The acceptable values for the elements
are X, Y, Z, T and L which represent the two earth
coordinates, altitude, time and wavelength, respectively.
The first two elements of this array must be the two axes
of the extracted slice while the remaining n - 2 elements
are the remaining axes of the grid. They must match,
one-for-one, the n - 2 constants specified in the
<constant array> argument.

e <constant array> is a one-dimensional floating point array
variable whose values must match the axes in the 3Td
through nth slements of the <axis array> argument to form
the equations which define the hyperplanes..

5.4.2 Performing a WINDOW Operation

The WINDOW operation extracts a rectangular subarea
from an existing data file to create a new data file. The
input data file can be an image file, a cartographic terrain
elevation model or a two-dimensional gridded file. The new
data file created by the WINDOW operation will be of the
same type as the original. For the purpose of performing
a WINDOW operation, a data file appears to contain records
numbered from 1 to N where N is the number of records in the
data file. Each record in the data file appears to contain
fixed length fields (e.g., pixels) numbered from 1 to M
where M is the number of fields in each record. The length
of a field is defined in the header record for all system
standard formatted data files. Thus, the WINDOW operation is
performed by specifying beginning and ending record numbers
‘and field numbers to define the subarea. In addition to
providing the capability of extracting a contiguous subarea
from an existing data file, the WINDOW operation also permits
sampling of the entire data file or a subarea to create a
new data file. By specifyving a record step size, Jj, which
is greater than one, every jth record can be selected within
'any'defined subarea. Similarly, by specifying a field step
size, k, which is greater than one, every kth field can be
extracted from each selected record to create the new data
file. The WINDOW operation is coded as follows:

CALL .IDBMS('WINDOW',<status>,<old did>,<new did>,<1St record>,<last records,

<record step size>,<1St field>,<last field>,<field step size>)

where <status>,<old did> and <new did> are as previously

defined and:

e <15t record> is a binary integer variable whose value
indicates the first record from which data fields will
be extracted to form the subarea. If it contains zero,

the subarea will begin with the first data record in the
data file. 1If the <15 record> argument contains a
positive integer, i , the subarea will begin with the
ith data record in the data file. If the first record
exceeds the number of records in the data file, the
WINDOW operation will be rejected.

<last record> is a binary integer variable whose value
indicates the last record from which data fields will
be extracted to form the subarea. If it contains zero,
the last data record in the data file will be the last
record in the subarea. If the <last record> argument
contains a positive integer, i , the subarea will end
with the ith data record in the data file. If the last
record exceeds the number of records in the data file,
the last data record in the data file will he the last
record in the subarea. If the first record exceeds the
last record, the WINDOW operation will be rejected.

<record step size> is a binary integer variable whose value
indicates the sampling interval to be used for data
records to create the subarea. If it is zero. all records
beginning with the record specified in the <15% record>
argument and ending with the record specified in the

<last record> argument will be used to create the subarea.
If the <record step size> contains a positive integer, j,
only every jt record beginning with the record specified
in the <1St record> argumen:t will be used. The last
record used will be the jth record not exceeding the
record specified in the <last record> argument.

<1Stfield> is a binary integer variable whose value in-
dicates the first field in each data record to be ex-
tracted to form the subarea. If it contains zero, the
subarea will begin with the first field in each selected
data record. If the <1St field> argument contains a
positive integer, i , the subarea will begin with the ith
field in each selected data record. If the first field
exceeds the number of fields in the data records, the
WINDOW operation will be rejected.

<last field> is a binary integer variable whose value
indicates the last field in each data record to be ex-
tracted to form the subarea. If it contains zero, the
last field in each selected data record will be the

last field in each record in the subarea. If the

<last field> argument contains a positive integer, i ,
the ith field in each selected data record will be the
last field in each record in the subarea. If the last
field exceeds the number of fields in the data records,
the last field in each data record will be the last fleld
in each record in the subarea. If the first field ex-
ceeds the last field, the WINDOW operation will be rejected.

¢ <field step size> is a binary integer variable whose
value indicates the sampling interval to be used for
fields to create the subarea. If it is zero, all fields
beginning with the field specified in the <15t field>
argument and ending with the field specified in the
<last field> argument will be extracted from the selected
records to create the subarea. If the <field step size>
argument contains a positive integer, k, only every
kB fie1d will be extracted from every selected record
beginning with the field specified in the <15t field>
argument. Thg last field used in each selected record
will be the kP field not exceeding the field specified
in the <last field> argument.

9.4.3 DPerforming a SUBSET Operation

The SUBSET operation extracts the value of one or more
physical variables at each point in a data file containing
gridded data to create a new data file. The input data file
must contain data on an n-dimensional (n = 2, 3, or 4) grid.
The new data file will contain data on the same grid
as the original data file. The SUBSET operation permits
specific variables to be extracted from the original data
file based on their relative position in the vector of data
values at each point in the grid. As an example, consider a
three~dimensional gridded data file (the dimensionality of a
gridded data file is defined in its header record) where the
three dimensions are longitude, latitude and altitude. At
each grid point, a vector exists which contains values of
wind velocity, wind direction, temperature and pressure in
that order. To create a new data file containing only tempera-
ture and pressure data at each grid point, the integer array
defined by the <variable array> argument must contain 3 and 4,
indicating that the third and fourth data values in the vector
at each grid point are to be extracted. The resulting data
file will contain the same longitude, latitude and altitude at
each grid point contained in the original file as well as the
temperature and pressure values at each grid point. The SUBSET
operation is coded as follows:

CALL IDBMS('SUBSET',<status>,<old did>,<new did>,<variable arrays>)

where <status>,<o0ld did> and <new did> are as previocusly
defined and:

o <variable array> 1is a one-dimensional .binary integer
array variable whose values indicate the relative
position in the vector at each grid point from which
variables are to be extracted. The array identified
by the <variable array> argument must be dimensioned
at least one greater than the number of variables to be
extracted at each grid point. Each element of the
array must contain a positive integer indicating the
relative position in the grid point vector of the variable
to be extracted. The element immediately following the
last element in the array which defines the relative
position of variables to be extracted, must contain
zero as an array terminator.

5.4.4 Performing a REGRID Operation

The REGRID operation creates a new gridded data file from
anh existing éridded data file., A scale factor and/or a
translation can be applied to, the existing grid points to
obtain the new grid poinis while one of several interpolation
schemes can be used to obtain the values of the variables at
each of the new grid points. Separate scaling factors and
translations can be applied to each axis in the coordinate
system of the original gridded data file. An array is used
in the argument list to contain both the scaling factors and
the translations.: The number of entries in each array will
depend upon the number of coordinate axes (not comsidering
wavelength as an axis) in the grid (the number and type of
axes for a gridded data file are defined in its header record).
The ith entry in each array will correspond to the ith axis of
the multi-dimensional grid, where the order of the axes is
defined by the following total ordering:

T « X <Y < %

5-27

As an example, consider a three-dimensional gridded data file
where the three dimensions, or axes, are time (T), longitude
(X) and latitude (Y). Then the first element in both the
scale factor and translation arrays would contain the scaling
factor and translation, respectively, to be applied to the T
axis (time), the second elementis would contain the scaling
factor and translation for the X axis (longitude) while the
third elements would contain the scaling factor and transla-
tion for the Y axis (latitude). Note, that no dummy elements
need be supplied for the non-existent Z axis. The REGRID
operation is coded as follows:

CALL IDBMS{'REGRID',<status>,<0ld did>,<new did>,<scale factor array>,

<translation array>,<interpolation indicator>)

where <gstatus>,<old did> and <new did> are as previously

defined and:

¢« <scale factor array> is a one-dimensional binary floating

point array variable whose values define the scaling
factor for each of the dimensions or axes of the grid.
The scale factor array must contain one scale factor

for each axis of the grid contained in the data file.
Each scale factor must be greater than zero. A scale
factor of one indicates no scaling of the grid points
along the corresponding axis.

e <translation array> is a one-dimensional binary floating
point array variable whose values define the offset of
the origin of the new grid from that of the original
grid. The translation array must contain one translation
value for each axis of the grid contained in the data
file. A translation value of zero indicates no ftrans-
lation for the corresponding axis.

¢ <interpolation indicator> is a binary integer variable
whose value indicates the interpolation scheme (e.g.,

linear, cubic spline, etc.) to be used to obtain the values
of the variables at the new grid points.

5.4.5 Performing a MERGE Operation

The MERGE operation combines the contents of two gridded

data files into a single, new gridded data file. Both of the
input data files must be in system standard format and must be
defined over the same grid. That is, both grids should be
defined with respect to the same set of coordinate axes.
Additionally, the grid spacing for all axes must be the same
for both grids. If the origin and termination of the axes

for both grids do not match, the merged data file will contain
a grid consisting only of the overlapping portions of the
original grids. If no portion of the two input grids overlap,
the MERGE operation will be aborted. The vector of data
values at each grid point in the new data file will be formed
by concatenating the values from the corresponding grid

point in the first data file with those from the correspond-
ing grid point ir the second data file. The MERGE operation
is coded as follows:

CALL IDBMS('MERGE',<status>,<old d1d1>,<o1d did,>, <new did>)
where <status> and <new did> are as previously defined and:

¢ <o0ld didy> is a variable containing the identifier of
one of the input data files which must be a gridded
data file.

¢ <0ld didg> is a variable containing the identifier of
the second input data file which must be a gridded data
file. The data identifier contained in the <old dids>
argument must be different from that in the <old didjy>
argument.

5.5 Examples of the Use of "Interactive! Commands

As an example of the use of "interactive' commands and
supporting operations in an application program, consider
a table named EVENT with data fields NAME, CLASS, STRTDATE,
ENDDATE, STARTLAT, STARTLON, ENDLAT, ENDLON and STRENGTH
which describes.a series of storms under study. The EVENT
table is contained within a data base named STORMS. Also,

OO0

c

C

REAL*E PGMIDsUSERIDDBNAME«ALTIASsTABLESDIDYDATE (2) s BLANKS
INTEGER RECNOSSTATUS
DATA DBNAME/YSTORMS1 /s TABLE/ *EVENT t/s ALIAS/YEt/sKEY/ 'NAME ¢ /5
#BLANKS/¢ t/4pPGMID/*TEST Y/
READ USER=-ID AND PASSWORD OF USER RUNNWING PROGRAM AND
START AND DATES FOR RETRIEVAL
READ(5s51D) USERIDsPASSWDsDATE

10 FORMAT (A6+1XeAL /1 2A6)

CONNECT TO THE INTEGRATED DATA BASE MANAGEMENT SYSTEM
CaLL IDBMS('ENTER'+STATUS+PGMID+USERIDsPASSWD)
IF(STATUS.GT.0) GO TO 9000

RIND START AND END DATE NAMES TO DATE ARRAY FOR USE IN STRINGS
CablL IOBMS(*BIND?tsSTATUS *SDATE ¢t s DATE(1))
IF(STATUSGT.0)Y GO TO S000
Calll IDBMS(YBIND*sSTATUSs 'EDATE TsDATE(2))
IF(STATUS.GT.0) GO TO 9000

ATTACH TO STORMS DATA RASE FOR PROCESSING
Caly IOBMS(*tATTACH'+STATUSsDBNAME)

IF (STaTUS.GT.0)Y GO TO 9000

ASSIGN ALTAS NAMEsEs TO EVENT TABIE IN STORMS DATA BASE
CALL IDBMS(tUSE®,STATUSsALIASTABLE)

IF(STATUS.6T.0) GO TO 9000

RETRIEVE DATA FIELDS FRUM EVENT TaABLE INTO WORKSPACE TABLE
CALL IDBMS({'SELECT'+STATUSSRECNO tE . NAME ¢ ELSTRENGTHR &

¥ TELSTRTDATE GT 770531 AND E.ENDDATE LT 770901#1)
IF (STATUSGTL.0) GO TO 9000

CALL SUBROUTINE TO READ AND PRINT ANY DATA IN WORKSPACE TABLE
IF(RECNDO.GT.0) CaALL WORKRD

READ EVENT TABLE SEQUENTTALLY USING INDEX ON NAME FIELD
ChlLL SECRC(TAELEWKEY)

ADD NEW RECORD TO EVENT TABLE
CALL IDBMS(fINSERT'sSTATUSHKECNOs TABLE s *NAME=DORAs CLASS=HURR,

¥ STRTDATE=SDATE+ENDDATE=EDATEsSTARTLAT=20.5+ENDLAT=41.7+
* STARTLON=300+ENDLON=309,7=1)
IF(STATUS.GT.G) GO TO 9000

COPY CURRENT CONTENTS OF EVENT TanLE TO & DATA FILF

SET DATA IDENTIFIER (DIU) TO BLAMKS TO INDICATE COPY

FROM TABLE TO NEW DATA FILE
DID=BLANKS
CALL IDBMS ('COPY 1 sSTATUSsDIDsTAELE)

IF(STATUS.GT.0) GO TO 9000
DISCONNECT FROM THE INTEGRATED DATA SASF MANAGEMENT SYSTEM

999G CALL IDBMS{tEXIT*s+STATUS)

IF(STATUS:GT.0) WRITE(6+9010) STATUS
STOP
ERROR HANDLER

9000 WRITE(6+9010) STATUS
9010 FORMAT('0's10Xy*IDRMS ERROR - STATUS CODE = 1,14)

GO TOQ 9999
EnD

Figure 5-1: Using the Application Program Command Language

5-30

http:STARTLON=300,ENDLON=J09.7n

SUBROJTINE WORKRD
DIMENSTION NANME (3)
INTEGEER STATUS
LOGTICAL#] WKAREA(1S)
EOUTVALENCE (INAME (1) s wKAREA(L)) o (STREN(WKAREA (13})
C RETRIEVE DATA FROM WUPKSPACE TABLE
18 Calyl JOBMS (*FETCHY s STATUS s 'NAME «STRENGTHR Y s WKAREA)
IF(STATUS) 9999520+90U0
23 WRITE{(6+30) NAMESTREN
30 FURMAT{'0' 46X+ 3A45635%nt)
GJ TO 10
C ERROR HANDLER
200D WRITE(A:G010) STATUS
010 FORMAT(t0ts]10XetFETCH ERROR - STA4TUS CODE = te14)
9996 RETURN

E i)

SUERCLTINE SEGFD{TARLE +KEY)
DIMENSINN NAME (3)
REAL#E TABLEGKEY
INTEGER STATUS
LOGICELL~1 WKAREA{2U)
EWUTVALENCE (CLASSYRKAMEA (1Y) s (SLATsWKAREA(S)) ¢ (ELATswWKARCZA{DQ)) &
 (SLONeWKAREA(13) } « (ELONewKAREA(IT)
C LOCK EVENT TABLE PRIOR [0 SEQUENTTAL RETZIEVAL
Call IDNBMS{ILOCK P +3TATUSTABLE«tREAD!)
IF{(STATUS.GT.O) GO TQ S000
C SET KEY RETURN ARGUMENT TO BINARY ZLROS aND STATUS NEGATIVE ToO-
C START READING AT RECURD IN EVENT TASLE CONTAINING LOWEST NAME
DD 10 T=143
NAME (1) =0
10 CONTINUE
STATUS=~1
C RETRIEVE FIELDS FROM RECORL IN EVENT TABLE WITH NEXT HIGHEST NAME
€0 CaLL IDBMS{'GET'+STATUS«TABLEsKEYsNAME s *CLASSsSTARTLAT «ENDLAT s
STARTLONSENDLON# ' s WKAREA)
IF {(STATUS) 9999+30+9000
30 WRITE(6440) NAME«CLASSsSLATsSLOMSELATELON
40 FORMAT('01410Xs3A4s3X1AL92(5Xs2(F6,242X)))
GU 70 20
C ERROR HANDLER
9000 WRITE(6+4%010) STATUS
T 9010 FORMAT(+0%s10Xe ! IDEBMS ERROR - STATUS CODE = t414)
C UNLOCK EVENT TABLE
9999 CALL TDBMS('UNLOCK!'STATUSTABLE)
IF(STATUS.GT,.0) WRITE(6+49010) STATUS
RETURN
EnD

Figure 5-1 (Continued): Using the Application Program Command

Language
5-31

the EVENT table has a B-tree index associated with it which
has been defined on the data field NAME. Excerpts from an
application program which accesses the EVENT table are shown

in Figure 5-1.
5.6 Commands Which Access Data Files

The Application Program Command Language contains several
commands which are available only to application programs (and
not to interactive users). These commands provide an appli-
cation program with the ability to access and create data files.

The nine commands in this category are:

OPEN - open an existing data file for input or a new
’ data file for output.
CLOSE - close a data file.
READ - copy a data record (or portion thereof) into
’ an indicated work area.

WRITE - output a daﬁa record (or portion theregf) Ifrom
an indicated work area.

SEARCH - scan a data file record-by-record to locate a
specific character string.

GETHEAD - fetch the header record from a data file in
system standard format.

PUTHEAD - output a header record to a new data file.

GETHIST - fetch a history record from a data file in
system standard format.

PUTHIST - output a history record to a new data file.

The last four commands will not be accepted by the Integrated
Data Base Management System unless the data file referenced by
the operation is known to be in a system standard format. The
following subsections describe each of the commands for handling
data files and gives the calling sequence for each.

9.6.1 The OPEN Command

The OPEN command logically connects a data file to an
application program for processing. If the <access mode>
argument indicates that a new data file is to be created, the
resultant file will always be a temporary on-line file, regard-
less of the format. The owner of this file will be taken
from the user-id in the ENTER command by which the application
program became connected to the system. If an OPEN is issued
against a data file which has not been loaded on-line and for
which no system standard format version exists then the QOPEN
operation shall be aborted. The OPEN ccommand is coded as
follows:

CALL IDBMS('OPEN',<status>,<did>,<format>,<access mode>)
where <status> is as previously defined and:

¢ <did> is a variable which contains the identifier of the
data file (if an existing file) or else will receive the
identifier assigned to the file (if a new file is being
created).

¢ <format> is an alphanumeric variable whose contents define
the system standard format in which a new data file is to
be written or which receives the format type of an existing
data file which is to be read.

¢ <access mode> is an alphabetic literal or variable which
defines the way in which the application program intends
to access the data file being opened. The <access mode>
argument has three valid values: INPUT, QUTPUT and OUTIN.
Their meanings are as follows:

INPUT -~ The application program intends to read an
existing data file identified by the data
identifier specified in the <did> argument.
The format of the existing data file will be
returned in the <format> argument.

OUTPUT ~ The application program intends to create a
new data file. The format in which the new
data file is to be written is defined by the
<format> argument. The data identifier

assigned to the new data file by the system
will be returned in the <did> argument.

OUTIN - The application program intends to create a2 new
data file and also modify the new data file.
The <format> and <did> arguments are processed
as described for the OUTPUT mode.

5.6.2 The CLOSE Command

The CLOSE command logically disconnects a data file from
an application program. If the data file being closed is a
new dats file, an entry is created for ithe data file and is
inserted in the Data File Catalog. The CLOSE command is coded

as follows:
CALL IDBMS{'CLOSE',<status>,<did>)
where <status> and <did> -are as previously defined.
5.6.3 The‘GETHEAD Command

‘The GETHEAD command causes a header record from a data
file in one of the system standard formats to be retrieved
and returned to the application program. The GETHEAD command
can be issued at any time fcllowing an OPEN command for the
data file and preceding a CLOSE command. However, if the
GETHEAD command follows one or more GETHIST or READ commands,
the data file is repositioned by the system at the physical
beginning of the data file prior to attempting to read the
header record. The GETHEAD command will be rejected if the
data file is not in one of the system standard formats. The
GETHEAD command is coded as follows:

CALL IDBMS('GETHEAD',<status>,<did>,<work area>)

where <status> and <did» are as previously defined and:

<work area> is a variable which defines a contiguous
area of main storage within the application program
into which the header record will be stored. The work
area must be large enough to contain the entire header
record.

5.6.4 The GETHIST Command

The GETHIST command causes a processing history record ‘

from a data file in one of the system standard formats to

be retrieved and returned to the application program. The
initial GETHIST command issued for a data file will return
the first processing history record, if any exist, to the
application program. Subseguent GETHIST commands will return
succeeding processing history records to the application
program in the order in which they appear in the data file.
If a GETHIST command follows a READ command, the system

will position the data file to the second record before
'attempting to retrieve the processing history record. It is
not necessary that any GETHIST commands be issued by an
application program. It is possible for an application pro-
gram to open a data file that is in svstem standard format,
process the data file and close it without ever retrieving a
processing history record. The GETHIST command will be re-—
jected if the data file is not in one of the system standard
formats. The GETHIST command is coded as follows:

CALL IDBMS('GETHIST',<status>,<did>,<work areas)

t

where <did> and <work area> are as previously defined and:

¢ <status> is a binary integer variable which, upon return

from the Integrated Data Base Management System, will
contain an integer value indicating whether or not the
command was executed successfully. As in the <status»>
argument for other commands, a code of zero indicates
successful execution while a positive code indicates
unsuccessful execution and defines the error condition.
However, for the GETHIST command, a negative status

code may be returned indicating the end of the processing
history records has been encountered. A negative status
code value will be returned for the first GETHIST
command issued if the data file contains no processing

history records.
9.6 .5 The PUTHEAD Command

The PUTHEAD command causes a header record to be written
on a new data file. A PUTHEAD command must be issued prior
to issuing a PUTHIST or WRITE command for the data file.
Subsequent PUTHEAD commands can be issued by the application
program. They will overwrite the existing header record if
this capability is supported by the operating system for the
peripheral storage device on which the data file is being
written. The PUTHEAD command is coded as follows:

CALL IDBMS('PUTHEAD',<status>,<did>,<work area>)
where <status> and <did> are as previously defined and:

¢ <Work area> is a variable which defines 2a contiguous
area of main storage within the application program.
Prior to issuing the PUTHEAD command, the header record

must be constructed in the work aresa.
9.6.6 The PUTHIST Command

The PUTHIST command causes a processing history record
to be written on a new data file. Unlike the PUTHEAD command,
all processing history records must be written before a single
data record is written, and any PUTHIST commands issued after
a WRITE command will be rejected by the system. Each PUTHIST
command will cause precisely one processing history record
to be writiten on the data file, immediately after the previous
history record. The PUTHIST command is coded as follows:

CALL IDBMS('PUTHIST',<status>,<did>,<work areas)

where <status> and <did> are as previously defined and:

¢ <work area> is a variable which defines a contiguous
area of main storage within the application program.
Prior to issuing the PUTHIST command, the processing
history record must be constructed by the application
program in the work area. Alternatively, the work area
might be one which was specified in a previous GETHIST
command thus causing the transfer of an exsiting pro-
cessing history record from an existing data file to a
new data file.

5.6.7 The READ Command

The READ command causes a data record, or portion there-
of, from & data file to be retrieved and returned to the
application program. The READ command need not be preceded
by‘either a GETHEAD or GETHIST command. It can be issued
for data files in one of the system standard formats or in
their original data file format. To an application program,
the data records in a data file appear to be numbered se-
quentially from 1 to N where N is the number of dats records
in the data file. The data record retrieved by a READ

" command is a function of the integer value placed in the
<record no> argument described below. All or any part, of
the retrieved record can be returned to the application pro-
gram. This is controlled by the <start> and <length> argu-
meﬁts described below. The READ command is coded as follows:

CALL IDBMS('READ',<status>,<did>,<record no>,<start>,<length>,<work area>)
where <did> is as previously defined and:

¢ <status> is a binary integer variable which, upon return
from the Integrated Data Base Management System, will
contain an integer value indicating whether or not the
command was executed successfully. As in the <status>
argument in other commands, a code of zZero indicates suc-
cessful execution while a positive code indicates unsuc-
cessful execution and defines the error condition.

However, for the READ command, a negative status code may
be returned if, in an attempt to position the data file
to the data record specified by the <record no> argument,
the end-of-file is encountered.

<record no> is a binary integer wvariable whose value
indicates the relative position of the data record to

be retrieved from the data file. If it contains zero,
the record retrieved will be the data record immediately
following the last data record retrieved, except for the
initial READ command, in which case, the first datz record
in the data file will be retrieved. If the <record no>
argument contains a positive integer, the data file

will be positioned, either forward or backward, to that
data record prior to retrieving the data record. A
negative value in the <record no> argument will cause the
READ command to be rejected.

<gstart> is a binary integer variable which indicates
the first byte in the retrieved data record that is to
be returned to the application program. If the <start>
argument contains zero, the first byte returned in

the work area will be the first byte in the retrieved
record. If it contains a positive integer, i, the
first byte returned in the work area will be the ith
byte in the data record. If the start byte exceeds

the number of bytes in the data record, the READ comm-
and will be rejected.

<length> is a binary integer variable which indicates
the number of bytes to be returned to the application
program. If the <length> argument contains zero, the
remainder of the retrieved record, beginning with the
start byte, is returned. If the length plus the start
byte exceeds the length of the data record, the portion
of the data record beginning with the start byte and
going to the end of the record will be returned.

<work area> is a variable which defines a contiguous
area of main storage within the application program

into which the retrieved data record, or portion thereof,
is stored. The portion of the data record returned in
the work area is defined by the <start> and <length>
arguments. The size of the work area must be greater
than or equal to the number of bytes specified by the
<length> argument unless it is zero. 1In which case,

its size must be greater than or equal to

(record length - <start> + 1),

5-38

5.6.8 The WRITE Command

The WRITE command causes a data record, or portion
thereof, to be written to a new data file. The initial
WRITE command issued by an application program must be pre-
ceded by a PUTHEAD command but need not be preceded by any
PUTHIST commands. However, if any processing history records
are to be placed in the new data file, they must all be
written, using the PUTHIST command, before the first WRITE
command is issued. As with the READ command, the data
records in a new data file appear to be numbered sequentially
from 1 to N where N is the number of data records written at any
given time during the execution of the application program.
The placement ‘of the data record to be written is a function
of tﬁe integer value placed in the <record no> argument
described below. Thus, existing data records can be overwritten
by a WRITE command. However, this can only occur for a data
file which is in the process of being created by the appli-
cation program and only prior to the first CLOSE command
issued by the application program. All or any part,of a
data record can be written to a datz file. Any portion of
a new data record which is not provided by the application
program will contain binary zeros when the data record is
blaced in the data file. Any portion of an existing data
record which is being overwritten and is not provided by the
application program will contain the original contents of the
existing data record. The portion of a data record trans-
ferred from an application program by a WRITE command is
controlled by the <start> and <length> arguments described

below. The WRITE command is coded as follows:
CALL IDBMS({'WRITE',<status>,<did>,<record no>,<start>,<length>, <work areas)

where <status> and <did> are as previously defined and:

5-39

<recoxrd no> 1s a binary integer variable whose value
indicates the relative position in the data file where
the data record, or portion thereof, is to be written.

If it contains zero, the record written will immedi-
ately follow the last command written, except for

the initial WRITE command, in which case, the record
written will immediately follow the header record or

the last processing history record. A zero in the
<record no> argument may cause an existing data record to
be overwritten if a preceding WRITE command positioned
the data file such that sequential writing of data
records would cause existing data records to be over-
written. If the <record no> argument contains a positive
integer which is greater than N+1, the WRITE command will
be rejected. If it contains a positive integer less

than or egual to N, the existing data record at that
relative position in the data file will be overwritten.

<start> is a binary integer wvariable which indicates the
first byte in the data record into which data from the
application program is to be stored. If the <start:

argument contains zero, the first bvte in the work area
will be stored in the first byte of the data record.

If it contains a positive integer, i , the first byte
in the work area will be stored in the ith byte of

the data record. If the start byte exceeds the number
of bytes in the data record, the WRITE command will be
rejected.

<length> is a binary integer variable which indicates

the number of bytes to be stored in the data record.

If the <length> argument contains zero, data is stored

in the remainder of the record, beginning with the start
byte. If the length plus the start byte exceeds the
length of the data record, data are stored in that portion
of the record beginning with the start byte and going

to the end of the record,

<work area> is a variable which defines a contiguous area
of main storage within the application program from
which data are transferred to a data record. The portion
of the data record to which the contents of the work aresz
are transferred is defined by the <start> and <length>
arguments. The data to be transferred must be placed
into the work area by the application program prior to
issuing the WRITE command. The size of the work area
must be greater than or equal to the number of bytes
specified by the <length> argument, unless it is =zero.

In which case, its size must be greater than or equal

to (record length - <start> + 1).

5.6.9 The SEARCH Command

The SEARCH command initiates a record-by-record scan
of a data file, or portion thereof, to locate particular data
values. The SEARCH command need not be preceded by any other
command except an OPEN command for the data file to be searched.
The SEARCE command scans only data records and can be issued
for data files in one of the system standard formats or in
their original data file format. As with the READ and WRITE
commands, the data records in a data file appear to be
numbered sequentially from 1 to N where N is the number of
data records in the data file. The SEARCH operation will
begin with the record immediately following that designated
in the- <record no> argument. FEach data record will be
retrieved in turn and the portion of the retrieved record
defined by the <start> and <length> arguments will be compared,
as defined by the <comparison operator> argument, with the
‘contents of the work area. When the result of ﬁhe comparison
is true, the SEARCH operationwill terminate and the record
number of the record satisfving ﬁhe comparison will be returned
in the <record no> argument. It should be noted that the
same contiguous string of bytes from each data record retrieved
will be used in the comparison, as determined by the <start>
and <length> arguments. For example, if the <start> argument
contains 6 and the <length> argument contains 4, then bytes
6, 7, 8 and 9 (and only those bytes) from each record will bhe
compared with the contents of the work area. The SEARCH
command is coded as follows:

CALL IDBMS{'SEARCH',<status>,<did>,<record no>,<start>,<length>,

<comparison operators>,<work areas)

where <dig> is as previously defined and:

<status> 1s a binary integer variable which, upon return
from the Integrated Data Base Management System, will
contain an integer value indicating whether or not the
command was executed successfully. As in the <status>
argument in other commands, a code of zero indicates
successful execution while a positive code indicates
unsuccessful execution, and defines the error condition.
However, for the SEARCH command, a negative status code
will be returned if an end-of-file was encountered
before a data record was found for which the comparison
was true,

<record no> is a binary integer variable whose value in-
dicates the relative position of the data record after
which the SEARCH operation will begin. If it contains
zero, the SEARCH operation will begin with the first
data record in the data file. If it contains one, the
SEARCH operation will begin with the second record

and so on. If a data record is found for which the
comparison is true, the record number of that record
will be returned in the <record no> argument. Since
the SEARCH operation begins with the data record imme-
diately following that specified by the input value of
the <record no> argument, a search can be continued
following a successful comparison by using the wvalue
returned in the <record no> argument as the input value
for the next SEARCH command., If an end-of-file ‘is
encountered during the SERACH operation, the contents
of the <record no> argument will not be modified.

<start> is a binary integer variable which indicates

the first byte in each data record that is to be compared
with the contents of the work area in the application
program. If the <start> argument contains zero, the
comparison will begin with the first byte in each data
record. If it contains a positive integer, i , the first
byte that is compared is the ith byte in each data
record. If the start byte exceeds the number of bytes

in each data record, the SEARCH command will be rejected.

<length> is a binary integer variable which indicates the
number of bytes in each data record to be compared. If
the <length> argument contains zero the remainder of

each record, beginning with the start byte, is compared
with the contents of the work area. If the length plus
the start byte exceeds the length of each data record,
the portion of each data record beginning with the start
byte and going to the end of the record will be compared.

<comparison operator> is a two byte alphabetic literal
or variable which defines the comparison operation to
be performed between that poriton of each retrieved

data record defined by the <start> and <length> arguments
and the contents of the work area in the application program.

The valid comparison operators are EQ, NE, LT, LE, GT
and GE.

¢ <work area> is a variable which defines a contiguous
area of main storage within the application program
whose contents are compared with all or a portion of
the contents of each retrieved data record. The data
to be compared must be placed into the work area by
the application program prior to issuing the SEARCH
command. The size of the work area must be greater than
or egual to the number of bytes specified by the <length>
argument, unless it is zZero. In which case, its size
must be greater than or equal to
(record length - <start> + 1).

9.7 Miscellaneous Commands

Commands in this category do not fit easily into any of
the previous categories of commands. Currently, only one
command is included in this category, the FORMAT command.
Bowever, other commands may be added to this category as

required.

5.7.1 The FORMAT Command

The FORMAT command permits an application program to
determine which copies of a data file currently exist and in
what format. By accessing the Data File Catalog, this
command will indicate whether or not an original off-line
version of the data file exists and, if s0, in what format;
whether or not an on-line version exists and, if so, in what
system standard format; and whether or not an off-line, backup
version exists in system standard format. The FORMAT command
is coded as follows:

CALL IDBMS('FORMAT',<status>,<did>,<original copy>,<on-line copy>,
<backup copy>)

where <status> and <did> are as previously defined and:

<original copy> is a variable which, upon return from
the Integrated Data Base Management System, will contain
an indication of whether or not an original copy of the
data file exists on magnetic tape and, if so, in what
format. IFf no such copy exists, spaces (blanks) will

be returned. Otherwise, a character string indicating
the original data file format in which the tape file
exists will be returned.

<on-line copy> is a wvariable which, upon return from the
Integrated Data Base Management System, will contain

an indication of whether or not a copy of the data file
in system standard format exists on a direct access
device and, if so, in which system standard format. If
no such copy exists, spaces (blanks) will be returned.
Otherwise, a character string indicating the system
standard format (e.g., gridded, image, etc.) in which the
on-line copy exists will be returned.

<backup copyv> is a variable which, upon return from the
Integrated Data Base Management System, will contain an
indication of whether or not a copy of the data file in
system standard format exists on magnetic tape and, if
so, in what format. If no such copy exists, spaces
(blanks) will be returned. Otherwise, a character string
indicating the system standard format in which the backun
copy exists will be returned. If both an on-line copy
and a backup copy exist, the returned contents of this
argument will match that of the <on-line copy> argument,
since both copies must be in the same system standard
format.

SECTION 6 - THE PHYSICAL STORAGE OF TABULAR DATA

6.1 The Tabular Data Storage Area

All data managed by the "front end" of the Integrated Data
Base Management System will be logically organized into tables.
These tables may have one or more indices associated with them.
All tables and indices maintained by the relational front end
of the system must be stored on one or more direct access
devices (drums, disks, data cells, etc.)}. All direct access
space which has been allocated and initialized at system
generation time for the storage of tables and their associated
indices is referred to as the tabular data storage area. The
tabular data storage area 1is subdivided into physical pages
and a page map is constructed at system generation time which
relates physical pages to a specific direct access device.

6.2 DPhysical Pages

The basic unit of storage for data managed by the "front
end" of the Integrated Data Base Management System will be the
physical page -- a fixed size block of bytes capable of being
rolled into or out of main memory with a single I/0 command.

In certain computers (e.g., DEC's PDP-11) the physical page
size is predetermined by the machine architecture. Where
there are no constraints imposed by the mainframe architecture
itself, the main considerations in choosing a physical page
size are (1) that there should be an integral number of pages
per track on the direct access device and (2) if the direct access
device is such that a track is divided into sectors, there
should be an integral number of sectors per page. Within
these two constraints, the normal desire will be to make the
physical page size as large as possible to cut down I/0
requests during record-at-a-time processing. However, it must
be recognized by the system implementors that when the page
size is too large the number of physical pages which can reside
in main memory simultaneously will be limited and that this

can lead to thrashing* problems for multiple users. Notice
that the size of the physical page is determined solely by hard-
ware considerations and not by data-related considerations,

such as typical record size.

Physical pages will be associated with a unique physical
page id identifying its location on disk. There are two
approaches which can be used: -

(1) Assign consecutive numbers to physical page locations
following some order and use an auxiliary table or
system function to map physical page id's into direct
access device addresses (and, incidentally, to do some
checking for validity).

(2) Create a physical page id directly from the address,
for example, by concatenating disk pack number, cylinder

number, track number, and sector number, if used.

A choice between these two alternatives will have to be made
at Implementation time. The primary tradeoff will be between
number of bytes required to store a physidal page id vs. extra
time and core required for page id decoding, and these cannot
be analyzed until machine and on-line mass storage specifica-

tions are known.

One physical page id which will not be used is =zero. Iif,
in the humbering scheme, it makes sense to have a "zero-th" page,
that page will be reserved for system-use only and will not be
used to hold data. Hence, a physical page id of zero can be
used as a "null pointer™ to indicate the end of a linked 1list.

6.3 Managing Mass Storage

Depending upon the sophistication of the operating system
on which this system 1s implemented, it may or may not be

*"Thrashing' describes a condition where throughput has degenerated
due to a higher demand for pages in core than can be accommodated.

6-2

advantageous to make use of the machine's own file handing
system to manage mass storage. By far and away the easiest
approach would be to have each relation implemented as a single
on~line file, where the files are maintained by the machine's
operating system. Such a file would be constrained by the DBMS
software to grow or shrink one physical page at a time, and an
addressing scheme based on physical page id within file would
have to be designed. This in turn would have an impact on the

numbering scheme for selecting physical page id's.

In the absence of precise knowledge as to the operating
system under which the DBMS will be implemented, the conserva-
tive decision is to assume that the DBMS will have to handle
its own disk management. The DBMS can view the physical pages
as being of two types: free or in use. Those pages which
are in use are linked to a Relation Control Block and those
which are free are also chained together in a last-in-first-
out singly-linked list, as depicted in Figure 6-1. To
reserve a free page, the system simply removes the first page
from the chain, while liberatang a given page merely reguires
saving a link to the first free page and changing the head
pointer to point to this new page. The system will have to
be initialized during system generation by linking all pages
in the tabular data storage area together.

6.4 Buffers and the Buffer Control Table

The existence of fixed-size physical pages requires fixed-
size buffers in main memory to hold these pages. These buf-
fers will be managed by a buffer control table. There will
be one entry in the table for each buffer in main memory and
each entry will contain the following fields:

(1) page number - the physical page id of the page in this
buffer.

e—

HEAD POINTER
{(in core)

i g .

J

FIRST FREE PHYSICAL PAGE

I
§

v

SECOND FREE PHYSICAL PAGE

o0

¥

LAST FREE PHYSICAL PAGE

Figure 6-1: Linked List of Free Pages

(2) update flag - indicates whether the contents of the

page have been altered.

(3) hold flag -~ indicates whether the user expects to have
further need of this page or not.

(4) LRU counter - used to identify the least-recently used

physical page in main memory.

(3) user id - of the user currently accessing this page.

When an active user wishes to access a physical page, the
system begins by searching the buffer control table to deter-
mine whether that page is already in core. If so, then the
user turns on the "hold" flag and begins processing immediately.
If notr, then the system must select a buffer and roll the
desired page into that buffer. The first choice for a buffer
is one which is empty (an unlikely event after the first few
seconds the system is up). If there are no empty buffers,

‘ then the system must select one of the buffers and prepare it
for use. The selection criteria (counting empty buffers as

a '"zero-th" level) is:

(1) hold flag off, update flag off (00)
(2) hold flag off, update flag on {(01)
(3) update flag off, hold flag on {(10)
(4) both flags on (11)

The buffer which fits into the lowest numerical category is
selected. Where two or more buffers tie as candidates for
swap-out, then the least-recently used among the candidates

is chosen. For example, if there is more than one buffer

in category two but no empty buffers and no buffers in category
one, then the 1east4fecently used buffer in category two is
chosen. There is, however, one caveat -- no buffer should be
swapped out 1f its user id matches that of the user request-
ing 2 page and its hold flag is on.

The LRU counter works as follows. The system stores a
master counter. Every time a buffer is accessed,tﬁis master
counter is incremented and conied into the LRU counter for that
buffer. Then, the least-recently used page is that page with
the smallest counter. If the master counter overflows then
remedial action may be taken, e.g., divide all counters, in-
cluding the master counter, by two. This would be more rapid
than subtraction (since it can be done by right shifting each
counter one bit) although counter adjustment will normally occur

about twice as often.
6.5 The Structure of Tables
6.5.1 Storing Records on a Physical Page

There is one basic rule which guides the entire design of
the physical file structure: no record shall be split across
physical page boundaries. One immediate consequence of this
rule is that a certain amount of space at the end of a physical
page might be wasted -- space left over which is too small to
contain another record and which, therefore, is unusable.

This wasted space is referred to as "internal fragmentation”
and 1t can be a significant overhead factor when records are
large relative to the size of a physical page. However, an
approach which allowed records to be split across page bound-
aries would cause a considerable increase in processing time
(since some records would require Iwo page accesses to be read)
and in the complexity of the software. Since the wasted frag-
ment must always be smaller than the size of a record, when
records are reasonably small relative to the page size the
gains in decreased complexity and computation time are ample

-

compensation for the wasted space.

Another corollary of,the above rule is that the physical
page size will impose a systemic upper bound on the size of a

record. Records which are too large to fit on a single page
must be redefined by the user to make them fit ' (this may result
in the user splitting his table into two or more tables).

Notice that this test would be performed by the system at the
time the table is defined and before physical pages are allocated
for record storage or an entry is inserted in the SYSREL table.

The first several bytes in a physical page will be reserved
for pointers, two of which are used to chain all of the data
prages of an on-line file into a doubly-linked list. The RCB
will have the physical page id of the first data page in the
list and the final page in the list, and each data page will
have the physical page id of its predecessor and successor in
the list. The forward pointers facilitate look-ahead buffer-
ing when processing the file on a record-by-record basis.

When a data page is brought into core, the system can retrieve
the page id of the next page in the chain from the forward

page pointer, locate a page buffer, and overlap bringing in the
next page with processing the current one.

The records are stored in the remainder of a page following
the pointers. Each record will be preceded by a bit map show-
ing which fields in the record are null. The record itseldf
will be stored beginning at the next byte boundary after the
bit map. Within a bit map a zero will indicate a null field
and a one will indicate a non-null field. Since a string of
n ones represents the integer (2"-1). the test for no null

fields is straightforward.

Figures 6-2a and 6-2b depict record storage within a
physical page and the linked list structure of a table,
respectively.

e — —

bit maﬁé

=5

Record

Pointers

Record

b

LA

Record
#n

NN

Figure 6-2a: Storage of Records Within a Physical Page

(unusable))ﬁf)

Figure G6-Zb:

2 Physical Page

Domain
.

Extension
o lst 3
" Physical Page
; ,
b nd

KT

Last Physical Page

Physical File Structure for Tables

5.5.2 Holes in a Page

The presence of a bit map associated with each record makes
it an easy matter to delete a record merely by setting the bit
map to all zeros. This creates a "hole" inside a data page,
which can be filled during a later insert operation. To save
time locating these holes they will be chained tdgether in a
linked list within a page, and pages with holes in them will
be placed on a last-in-first-out, doubly-linked list. Note
that the order of pages in the list of pages with holes in them
will not necessarily correspond to tﬁe sequence of pages in the

data page list.

) Tﬁe within-page list of holes will be ordered on ascend-
ing location within the page. This will permit the system to
collapse adjacent holes into a single large hole ﬁsing standard
‘dynamip core allocation algorithms.* Since space within a hole
is not otherwise being used, the first couple of bytes can be use
to hold the size of the hole and a pointer to the next hole in
the chain.

The use of a doubly-linked list makes it relatively easy
to delete a page from the list. This can happen in two ways:
(1) the last hole in the page has been filled by an insertion
or (2) the only record in a page has been deleted.

If we assume that insertions take place only in the first
rage in the list of pages with holes in them then the double-
linked list is slightly inferior to using a singly-linked list.
However, deleting an empty page from the list can come anywhere
in the list and would be guite expensive without the existence
of a back pointer to the page's predecessor (this is why the
regular list of data pages is also double~linked, since the
empty page must be deleted from that list as well).

* - ¥
Specifically, Algorithms A and B in section 2.5 of KnutHK{

6-9

Figure 6-3 depicts the pointer structure within a table.
Note that the RCB needs pointers to both ends of the primary
list of data pages since new pages must be added to the end of
the 1ist, while the list of pages with holes needs only a head

pointer.
6.5.3 Variable-Sized Records

The physical page structure described in this section can
be adapted for use with variable-sized records (provided that
the records are shorter than a physical page). There will be

four major differences:

(1) The size of the wasted fragment at the end of a page
will vary, and will normally wind up being treated‘as
a hole.

(2) The size of holes will be more wvariable.

(3) Insertions will often require multiple probes into the
list of pages with holes.

(4) Record size, as well as the bit map, must be stored in
the record header.

However, the main outline of the data structure, algorithms

for maintaining the two lists of pages, and even the algorithms
for maintaining the within-page list of holes can be used
unaltered.

6.6 Access Method Superstructures

6.6.1 B-Trees

6.6.1.1 Description

The use of tree-structured indices with two-way decision

nodes (i.e., binary trees) appears to have been invented in the

6-10

Pointer to
Last Physical

e \\ER\\
{

Pointer to Srd
Page with a -~
Hole

Pointer to next-
to-last Physical
Page with a hole

-&‘—_—"hﬁﬁ‘"‘*~—-———b- Extension

Domain

(in core)

with a Hole

o]

O

}/ﬁ//— Pointer to ISt Physical Page

o

[}

ISt Physical Page

2nd Physical
g Page
o

f
| holel
1 ? //.'/f'
b / ~_ pnd Page
;><L with a hole
& =] d
e Physical Page

P A

r/_\’\
o o]

W

N\
AN
\\\\

1St Page with

a hole

D

0

]

\\)

Last Physical Page

Figure 5-3: Pointer

\“~Last Page with a hole

Structure of a Table

1950's*. More recently this notion has been generalized to
three-way decision nodes and from these to m-way decisionsl.
An m-way decision tree is called a "B-tree" and it is formally

defined as follows:

(1) Every node has m or fewer sons.
(2) Every node - except the root and the leaves - has

at least sons.

VS

(3) All leaves are on the same level and have no sons.
(4) The root has at least 2 sons (unless it is a leaf).
(5) A non-leaf node with k sons has k-1 keys.

A node with Jj+1 pointers Po’ Pl’ ce e Pj and J keys
Kl < K2 < ,., . < Kj can be depicted as:
PO Kl P1 LZ P2 < kj Pj

To search for a key K 1in the above node, simply test K

against Ki for i =1, 2, ..., 3. 1If K= Ki then we are
done, otherwise if K < Ki search for K 1in the node whose
address 1s Pi—l . Finally, if X > Kj go search the node
whose address is Pj . If the above node is a leaf, so that

the pointers are null, then either ' X will equal Ki for

scme 1 or else K is not in the file.

B-tree indices lend themselves to large paged files where
both the index and the file must be stored on a direct access
device. B-trees are quite efficient for search purposes, since the
number of disk accesses required to locate a key will be less than or
equal to the number of levels in the tree. A worst case
analysis of the maximum number of levels L in an m-ary tree

TF
A history can be found in section 6.2.2 of Knuth21.

6-12

as a function of the number of records'(N) and -m 1is only

moderately difficult to compute:z1

L <1+ (logzN—l)/(logam—l)

In other words, with m as small as 32 (=2°) it is possible
to locate a single record out of two million with at most

five disk accesses,.

Not only are B-trees efficient for searching, they are
also easy to update. Inserting a new key and pointer into a
less than full node is a simple matter of shifting keys and
pointers already 'in the node to perserve the ordering of the
keys. If the node is full (i.e., the node contains m-1 keys)
then the node must be split to make room for the new key and
pointer. Let K' be the middle key of the m keys (counting
the new one). Then an unused node P' is fetched and all
keys and pointers to the right of K' are moved into P' and
K' and P' are inserted into the father of P . This pro-
cedure is illustrated in figure 6-4 for m egqual to seven.
If P has no father (i.e., P is the root), then in order to
accomodate the split node a new root containing P , K' , and
P' must be created (hence the exception to rule 1 described
in rule 4). This adds a level to the tree. It can be shown21

that the likelihood of any split is less than 2/(m-2).

Deletions are only slightly more difficult than insertions.
When a node falls below the minimum size due to a deletion ‘
the first step is to examine the node's right brother. If that
node is above the minimum, then keys and pointers can be taken
from that node to balance the two. If there is no right
brother, or if the right brother is also of minimum size, then

try to take some keys and pointers from the left brother. If

6-13

P. K, P, K, P, K, P, K

171722 73 "3

P4 K5 P5 K6 P6

0 4

Insert (K , P)
new’' new

where K. <K <K STEP 1: Split Node
1 new 2

. [~
0 K3 Py Kpow Prew %2 Po :jfﬁj)/
g

o
W]
b=
=~
J
J1sN
bt
(94}
o]
1
=
[6))]
o
[6)]

STEP 2: Insert into Father

~

\

Po X1 P1 Znew FPrew K2 P2 @
Pg Xy Py K5 P5 K5 Py //

Figure 6-4: Splitting a B-Tree Node During Insertion

\

that also is impossible, then this node and one brother should
be collapsed into a single node and the appropriate key and
pointer deleted from the father.

6.6.1.2 Implementation Within the System

The concept of B-trees as outlined within the preceding
section will be extended for use within the Integrated Data
Base Management System. Specifically, the following conditions
will be added to the five which define B-tree structures:

(6) Leaf nodes will contain entries of the form (K,T),
where T is the record identifier for the record
whose key is K . The maximum number of entries in
a leaf may be different from m , though the con-
straint that a node must always be at least half
full will be observed. No pointers (excepi record
id's) will be stored in leaves.

(7) DNorecordid's will be stored in non-leaf nodes, ang
therefore a search cannot terminate until a2 leaf
is reached.

(8) The keys stored. in non-leaf nodes will be the value
of the largest key on any leaf which is a descendant

of that node.
(9) Leaves will be linked together so as to preserve an

ascending key sequence.

Figure 6 -5 depicts a B-tree of order four (i.e., at most three
keys per node), where the leaves (not depicted) hold five keys
apiece and the keys are the integers 1-90. Notice that the
maximum key on each leaf (i.e., every integer between 1 and 90
divisible by &) is repeated on precisely one non-leaf (or branch)
node with the exception of the maximum key value (90 in this
case). Fetching the record id for key X 1is done by walking
down the tree following the same search procedure as described

6-15

Pointer to leaf

with keys 1-5 \@\\\h*
e

]

Pointer to leaf |l5
with keys 16-20 -2 |

w b b

Pointer to leaf
with keys 21-25 0 |

Pointer to leaf Jé”?éz/

with keys 31-35

Pointer to leaf e,
with keys 36-40 10

. A
N &

Pointer to leaf
with keys 66-~70

~3
=

N/
N

gy
/w
]

Pointer to leaf ——e—" 2|
with keys 86-90)

Figure 6-5: A Sample B-Tree :of Order 4

6-16

NN

previously until the leaf where K is stored has been located,
then searching the leaf with a binary or sequential search.
Notice that the test for going to node Pi—i must be changed
from strict inequality to " < Y, but that if X is found in

a2 branch node then its position in the leaf will be known in
advance. This revised B-tree structure is similar to IBM's

VSAM acecess method,]‘9 but the two methods are not identical.

The insertion algorithm outlined in the rreceeding sub-
section must also be modified. The first stage is a search
to locate the leaf node where the key and record id are to be
inserted. If this leaf is full then split it (keep track of
which half the key and record id belong in), then insert this
new entry. If this key is the largest one on its page, make
the‘appropriate change in the father. If a split occurred
then insert the largest key from the left half and the address
of the right half into the father using the normal insertion
algorithm described previously. Deletion of a key and record
id entry from this modified B-tree structure is almost precisely
identical to the normal deletion procedure, except that an
additional test must be added to handle the case where a leaf
is still sufficiently full after the deletion to not warrant
shifting of entries, but where the entry deleted is the last
one on the leaf. 1In such a case the copy of that key in the
father (or more remote ancestor) must be altered. This is not
necessarily as complicated as it may seem, since one need
only test for equality of a kev match on the way down from
the root, and save the node where the match occurred.

6.6.1.3 Enhancements

There are a number of minor improvements which can be made
to the basic B-tree structure to enhance performance. For
example, some gains could be made by goiqg to a binary search
on key values (since keys in a node are in sorted order). An
alternative approach would be to use data compaction schemes.
Consider the set of keys ROBERT, ROBERTS, ROBERTSON, ROBEY,
ROBIN, ROBINETTE, ROBINSON. With four byvtes per pointer and

6-17

nine bytes per key it will require a total of eighfy-eight

bytes to store these keys and their eight pointers. But a
number of different compaction schemes can cut this dramatically.
For example, one could use one byte to hold the length of the
preceeding key to be duplicated, another byte to hold the

number of bytes for the remainder of this key, then the remainder
of the key itself. The above seven keys could be compressed into:

0 € ROBERT — ROBERT

6 1 8 — (ROBERT)S

7 2 ON — (ROBERTS)ON
4 1 Y — (ROBE)Y

3 2 IN —_— (ROB)IN

5 4 ETTE S (ROBIN)ETTE
5 3 SON S (ROBIN)SON

The total storage required would be 33 bvtes for the keys plus
32 bytes for the pointers, or 65 bytes all together. Another
possible compaction scheme would place the keys into a tree

form (figure 6~6) and then linearize the trée with parenthesized

notation:
(ROB(E(RT(*) (S(*)(ON)))(Y))(IN(*)(ETTE)(SON)))

This scheme would require only 22 bytes for the keys, plus
space for the begin-end subtree marks. Further analysis of
data characteristics would have to be made before specific
recommendations on whether to implement key compaction and, if
so, what scheme{(s) to use could be made. Key compaction would
have three major impacts upon "B-tree structure':

(1) Binary search could no longer be used.

(2) The maximum number of keys per page would no longer
be fixed (i.e., it could vary from page to page).

(3) Extra execution time would be required to unpack the
keys and the software to handle searches and in-

sertions would be more complex.

6-18

Figure 6-6: A Prefix Tree Compression for Seven Keys
(Heavy Line Indicates “ROBERTS")

6-19

it has been noted that there is no a priori need for a fixed
value of m -- the same insertion, deletion, and search algo-
rithms can be used with the more nebulous rule that each node
(other than the root) in the tree should be at least half
full. The advantages of key compression would be that fewer
pages would be needed to store the same set of keys and this
could cuite possibly result in fewer levels in the tree (i.e.,
fewer disk accesses to locate a specific entry). A simulation
study24addresses the impact of key compaction on an access
methed superstructure (VSAM) similar to the one proposed here.

McCreight25 2lso discusses algorithms for handling variable-

sized andjpr compacted keys.

One particular drawback of B-trees is the possibility that
the root will be very small -- it can, after all. have as few L
as two pointers and a single search key. Yhen this happens
an extra disk access can be reguired just to make z binary
decision. This can be avoided by resisting node splitting
for the root. One method for doing this is a variant oi the
B-tree called the B*-tree, which resists node splitting at
211 levels by preferring to balance nodes between brotherg
(i.e., passing nodes off to brothers of the overfilled node)
and splitting only when the brothers are full. In B*-trees
the number of sons range between m and 2/3 m, however this does
not necessarily deal with the problems of the root --a node
which by definition has no brothers. Shneidermangisuggests
allowing the root node to have an overflow page (using Py to
point to the overflow node). In such a scheme the root would
not split until it had 2m sons. Tf such a tree has L levels
and the root has m+n sons, then the probability that a search
would require L disk accesses is —2— while the probability

m+n
that a search would take L+1 disk accesses is —%— . By
m+n
contrast, 1f the root had been split after the m+1St inser-
tion into the root, then all of the searches would take L+1

disk accesses.

6.6.1.4 Arguments Against B-Trees

1? compared B-trees

A recent article by Stonebraker and Held
rather unfavorably to ISAM-like, static tree-structured indices.
It is felt that their analysis is incomplete and that
many of the arguments advanced by Stonebraker and Held simply
do not apply in the anticipated operating environment for the
proposed Integrated Data Base Management System. Specifically,
Stonebraker and Held are supposing that the files (tables) will
have precisely one key and be indexed with precisely one tree
structure. The system being designed makes no such suppositions,
and needs a file structure capable of handling =zero, one, two,

an arbitrary number of tree~structured keys. Moreover,
Stonebraker and Held further suppose that the records can be
input initially to the system in sorted sequential order
so that the leaves will have their entries in sorted sequential
order. . By contrast the entries for records in the system
being designed will most certainly not come in initially in
sorted sequential order. This is one of the true beauties of
B-trees. If the leaves are accessed one by one from left-most
leaf to right-most, it will be seen that the eniries are in
sorted sequential order, yet when the entries are inserted it
never takes more than m-2 compares and m-2 physical shifts

of entries. (Moreover, the sum of shifts and compares is m-1).

Another assumption of the Stonebraker and Held article
which will not necessarily hold in the operating environment
of the proposed Integrated Data Base Management System is that
insertions will come into the system at a steady pace after
the initial file creation. Instead,z situation such as depicted
in figure 6-7 can be expected. Stonebraker and Held argue
that even though later insertions must go into overflow areas,
reducing search efficiency, it will be possible to justify
periodic file reorganization. It is not clear that the expected

QUERY VOLUME

-~

.--.-
T AWy pew . AEE mave Gm W g,

: TIME

Initial

Creation Reads: — e s —_—r —
Deletes:
Inserts:

Figure 6-7: Projected Pattern of Usage for Typical Tables in the
System (Other than Directories)

pattern of inserts/deletes in the proposed environment will

justify the cost of reorganization.

The presence of overflow pagés in the static tree structure
advocate& by Stonebraker and Held are its Achilles heel. Their
article compares minimum number of levels for static vs. dyﬁamic
tree-structured indices, but what should be compared are ex-

pected number of disk accesses for the one against the other,
6.6.2 Inverted Indices

6.6.2.1 Description

Hierarchical data structures (B-trees, binary trees) are
quite useful for efficient retrieval of data where the relation-
ship between distinct key vaiues and individual reccrds 1s 1:1,
or nearly so. However, when the ratio of distinct key values
to separate records is l:n for n somewhat greater than one,
then a2 set-oriented data structure is more useful. One cof the
most efficient data structures for set-oriented indexing

operations is the inverted file.

An inverted index for a search key of a table consists

of two parts: a domain directory, with omne entry for each

distinect value the search key adopts in this particular table
and & set of index tables, one for each entry in the domain

directory. An inverted index is depicted in Figure 6-8.

Each entry in the domain directory consists of a search key
value and a pointer to an index table which contains a list of
record id's of records in the table which have that value for
the specified key. For example, to locate all records with

the value "C" in a specified data field, one locates the entry
corresponding to C in the domain directory and thereby dis-
covers the address of a list of all record id's of records which
have the value of C for that data field (i.e., record numbers
2, 7, 8, and 9). ° '

FILE

INDEX
TABLES

DOMAIN

Tl

10
11

15

9
12
19

20

13
18

DIRECTORY

186
21

An Inverted Index

Figure 6-8:

6-24

Inverted indices are particularly useful for retrieving
records satisfying multiple constraints. Suppose, for
example, records satisfying a combined query for LAT = 50°
AND LON = 90° and SENSOR = MSS were requested, where LAT, LON,
and SENSOR have inverted indices, This can be satisfied by
looking up the value 50 in the domain directory for LAT and
retrieving those record id's, looking up the value 90 in the
domain directory for LON and intersecting that set of record
id's with the first set (i.e., the set of record id's for LAT
= 50), and finally retrieving the record id's where SENSOR =

MSS and intersecting the sets one more time.
6.6.2.2 Logical Pages

It is not difficult to reconcile the concept of a physical
page with the requirements for data record storage and for
tree-structured indices. It is much more diffieult to link
the concept of a fixed-size physical page with the highly
variable-sized- domain directories and index tables. A domain
directory might have only three or four entries (e.g., space-
craft name and launch date in a table containing information
on active spacecraft) or it might have hundreds of entries.
Similarly, an index table might have only a few record id's
{the minimum is one record id since unused key values are
deleted from the domain directory) or it might have thousands
of record id's. The mechanism to decouple the variable-sized
tables from the fixed physical pages is the logical page. As
its name implies the logical page is a logical, rather than
physical, entity. Logical pages are variable-sized and do

not have a fixed physical address.

Logical pages are accessed through a logical-to~physical
map. A logical-to-physical map is a table whose entries have
the following fields:

(1) logical page number

(2) physical page number

(3) base address

(4) size

(5) old size

(6) continuation logical page

Given a logical page to locate, one begins by searching the
logical-to-physical map for that page's entry. The location

of the logical page is specified by a base address within a
pPhysical page, where the base address points just ahead of the
page's true location. Thus to reference the ith byte in
logical page, one adds i to the base address in the indicated

physical page.

It may happen that a logical page is larger than a physical
page. In such a case the logical page is split, and the over-
flow is assigned to a new logical page whose number is then

stored in the "continuation" slot in the map.

6.6.2.3 BSearching an Inverted Index

All of the data structures associated with an inverted index -
the domain directory and the index tables —-- are stored on
separate logical pages. The pointer field for an entry in a
domain extension which has a B-tree index will contain a physical
bage number, representing the root node. The pointer field for
an entry in the domain extension which has an inverted index
will be a logical page number, representing the logical page
which contains the domain directory. Each domain extension
must have its own logical-to-physical map, or the overhead
for searching the map will be prohibitive.

Index tables will hold only recordid's, in sorted order.

Strictly speaking, there is no need for sorting the index

tables, but intersecting two sets of record id's will be made
much more efficient if they are known to be sorted. The entries
in a domain directory will be in two parts: a search key value
and a logical page number. Since the size of a field will vary
from field to field, it follows that these entries will vary in
size from domain directory to domain directory. Regardless of
entry size, however, these entries will be sorted on search key
value. At this point it is possible to describe algorithms for
searching an inverted index.

There are two types of searches to consider -- searches
which locate all records for which a giveh search key takes on a
single, specific value, and searches which locate records where
the key falls within a specified range of values. The Integrated
Data Base Management System treats the former type of search
as a special case of the latter, where the upper bound of the
range coincides with the lower bound. The search begins by
locating the first entry in the domain directory such that the
key value in the index is greater than or equal to the lower
bound of the range and less than or equal to the upper bound of
the range. The corresponding index (logical) page is then
‘retrieved and its 1list of record id's is extracted. Since the
domain directory is presumed to be sorted, the search continues
by examining the next entry in the domain directory and either
(1) terminating the search if the value of that entry exceeds
the upper bound of the range, or (2) retrieving the corresponding
index page, adding those recordid's to the set of recordid's
already extracted, and then continuing to the next entry

in the domain directory to repeat this cycle.
6.6.2.4 Maintaining Logical Pages

Deleting a record id, T, with search key value, V, from an
inverted index begins with a search for V in the domain direc-—

tory +to retrieve the index page corresponding to V. Either T
is in that page or it is not, and if it is present then it is

6-27

removed, the index page is compacted, and the size of the index
page in the logical-to-physical map is decremented. If T is
the only entry in the index table then the entire entry for
that page in the logical-to-physical map must be deleted and
the entry for V deleted from the domain directory.

Inserting record id T with key value V is slightly more
complex since (1) V may or may not already be in the domain
directory, and (2) inserting T into an index table or V into a
domain directory may cause overflow past the end of a2 physical
bage or onto another logical page. If V is a new value then
the first step is to create an entry for another logical page
(the index table to correspond to V) in the logical-to-physical
map. If there is enough free space in the physical page that
contains the domain directory to hold both T and V, then the
new logical page will be placed on the same physical page as
the domain directory (to minimize physical page accesses in
later séarches). If an overflow occurs then there are three

cases to consider:

(1) There is sufficient free space elsewhere in the page
to accomodate the overflow entry, in which case the
logical pages on that physical page are reshuffled

20 section 2.2).

using Garwick's algorithm (Knuth

(2) The physical page is full, but there are multiple
logical pages on this physical page, in which case
the overflowing logical page is shifted to a new
prhysical page.

(3) The physical page is full and this is the only logical
page thereon, in which case the overflow is passed to
a continuation page, if one exists, or else a contin-

uation logical page is begun on a new physical page.

Special care must be taken if the inserted entry comes at the
end of a logical page that has a continuation page, since
it is important to maintain the relationship that the last
entry in any given page is lower in the collating sequence

than the first entry in the continuation page.

6-29

SECTION 7 - DATA FILE HANDLING

7.1 An Overview of Data File Processing

The Integrated Data Base Management System will main-
tain two different classes of data -— tabular data, stored
in tables set up under user control and managed by what is,
effectively, a relational data base management system, and
"non-tabular' data files managed by a portion of the system
which 1s, in effect, a file management system. The relational
portion of the Integrated Data Base Management System is
normally referred to as the "front end" of the system, while
the on-line and off-line data files and the file management
software are collectively referred to as the "back end."

It is presumed that the offi-line data files will contain
remotely-sensed and directly-sensed data about the earth and
its environment. The remotely-sensed weather and climatel5
data shall certainly include level three data files and may
well include level two data files. Nothing in the system's
design precludes the inclusion of level one data files, and a
decision on whether to include level one and two data files
will have to be made by the Data Base Administrator in accor-

dance with the needs of the user community.

Tape files will be introduced to the system by the
CATALOG command, which is an interactive command restricted to
use by the Data Base Administrator only. Each tape file
will be identified by its location (e.g., reel number,
physical file number) and by a format code. The Integrated
Data Base Management System will respond by examining its
Data File Catalog to determine whether this file duplicates
another cataloged file and, if not, then the system will
assign a unigue data file identifier (did) to that file,
output the did to the DBA, and enter the file into the Data

File Catalog. However, this process will merely make the file
known to the system. Before the system can make the file
known to the user community it will be necessary for the DBA

to make cone or more entries for that file in the Data File
Directory in the Global Data Base.

Once the data file has been cataloged znd inserted into
the appropriate directory tables by the'DBA, a user will have
the ability to retrieve sets of did's representing files of
interest to him or her by querying a particular directory
table or by querying all the directory tables at once.

The latter can be aécomplished by querying the special
table name "SYSDIR " which can be imagined to be a single,
comprehensive table implicitly defined to be the unicn of
all directory tables projected over common columns.* Note
that SYSDIR will be a virtual table and will not physically

exist.

Interactive users will not be allowed to access data
files directly from tape. A necessary intermediate step
will be for the files to be copied on-line with the LOAD
command. The on-line files created by a LOAD command will
always be in one of the system standard formats, which is
a special Tile Tformat with a fixed-length header, zero or
more fixed-length processing history records, and then the
data records themselves. The header will contain a code
telling the system (and user application programs) how to
interpret the remainder of the header, and the remainder
of the header will inform the system (and user application
programs) how to interpret the remainder of the data. A
user need not LOAD an entire data file if interested in only
a portion of the file. It is proposed that the system support
three types of subfile-creating operations in conjunction
with a LOAD: &SLICE, SUBSET and WINDOW. In certain types

*The union and projection operations are defined in Appendix A.

7-2

of files a data observation point can be viewed as a node
in a multi-dimensional grid, where the dimensions include
not only the x and y coordinates on the ground, but
also altitude (z) , time (t), and/or wavelength ()

The SLICE operation will take a 2-D slice through such a file,
Since each observation point in a data file may contain
observations for more than one physical variable, the

SUBSET operation will exist to permit taking only a subset
of the physical variables recorded in the file. Finally,
the WINDOW operation will cause only a rectangular subarea
cf a two dimensional file, such as a sliced grid, an image,
a cartographic Terrain elevaticn model, etc., to be loaded.
If 2 data file is loaded on-line without manipulation then
it will retain its original identifier, while a new did

must be issued if one or more operations cause a subfile

to be loaded (since the contents oi the on-line and off-line
files would be different).

Once a data file is on-line, an interactive user may,
if the contents of the file represent tabular data, COPY
the on-1line file into a pre-defined table in the front end
of the system. Alternatively, the user may choose to mani-
pulate the files further with a PERFORM command. FPresent
prlans call for five operations to be performable: the
SLICE, SUBSET, and WINDOW operations described above, plus
a REGRID operation to cause the grid system of a multi-
dimensional gridded file to be redefined and the data
observations interpolated to fit the new grid, plus a MERGE
operation to merge two data files (provided they are defined
with respect to the same axes and represent overlapping
areaé}. The result of a successful PERFORM will be a new
on-line data file (in a system standard format) with its
own did. This is in accordance with the principle that
all data files maintained by the system shall be read only.

As indicated abeove, certain operations are applicable only to
specific types of data files. For example, the MERGE operation
can be performed on gridded data files but not image or carto-

graphic data files.

Unless converted to permanent status by a KEEP command,
all on-line files will be classed as temporary and will
be automatically purged from the on-line mass storage by
the system some fixed span of days after the last access.
A temporary on-line data file may be purged soconer than that
with a SCRATCH command, but a SCRATCH will not be permitted
on a permanent data file unless it has been backed up to
Tape with an UNLOAD command beforehand. Also; the DBA may
purge zll on-line and off-line copies of any file with an
UNCATALOG command.

Except for data files (e.g., level two GARP reports
from NOAA15
interactive user will not be able to access data in data
files directly. Matters will be rather different with an
application program, which will be able to OPEN and CLOSE
data files, READ and WRITE data records, and GET and PUT
header and processing history records, as well as issuing
LOAD, UNLOAD, and COPY commands and performing file mani-

) which are reasonable to COPY into tables, an

pulations. An application program may OPEN a file in

input mode or output mode (in the case of the latter the
system will generate a new did), and also in "“direct" mode

or 'system standard mode." 1In system standard mode the

files being opened must be in system standard format, and will
be presumed to have a header record and could have one or more
history records as well, while in direct mode the files are
expected to not be in é&stem standard format. A file opened in
input/system standard mode may be an on-line data file or

a2 backed-up tape copy of an on-~line file (if the on-line

file has been unloaded and scratched). A file opened in

-4

New Data Tapes

) Off-Line Data Base
\ [—— e e e —
[Original Data Backup
{\ I Tapes Files
\|||I"

|
| \ e -
N HT T
} \\ LOAD
| \ *
l \
\ |
_____ v\ :
:" "]I \ UNLOAD
| \
| | N Z/
Directory Tables < p
l L_______‘." (\§ On-Line E::::\
< | |Dpata File Data
N SYSDIR | lCatalog |———F PERFORM

TR #y \

SELECT File Operations OPEN,

CLOSE
READ, GET
—#’*’—ﬂ__ﬂ__ {% YRITL, PUT
I~
: Application
Programs

Interactive Users

Figure 7-1: Flow of Data Through the System

input/direct mode will always be read from tape in the
original data file format. Files opened in output/system
standard mode will be on-line files in system standard format
while files cpened in output/direct mode will be on-line files
in a special format* In either case the output file will

be assigned a new data file identifier by the system when

it is opened and the new file will become read-only when

closed.

Figure 7-1 illustrates data paths within the system.
The interactive data file processing commands are described
in greater detail in section 4.6, and file operations
available through the system to an application program are
described in section 5. The remainder of this section will
cover the topics of the Data File Catalog, the Data File
Directory, and system standard formats in greater detail.

7.2 The Data File Catalog

The Data File Catalog will be a system table named
SYSCATL. Like the other system tables (e.g., SYSREL, SYSUSER,
SYSDB) the SYSCATL table will reside in the Global Data
Base and will be invisible to normal users, Records may be
ingserted into this table by the DBA using the CATALOG
command or by the system when a user creates a new on-line
file. Records in the catalog will change only in response
to commands such as LOAD, UNLOAD, KEEP, SCRATCH, etc.,
and cannot be edited by the DBA using INSERT, UPDATE, or
DELETE commands. This is because changes may very well
have non-obvious side effects and may require a certain
amount of .collateral processing.

The most important field in the SYSCATL table will

be the one which contains the data file identifier. Since

* Described in Section 7.5.4.

virtually all references against the catalog will be based
on the did, a hierarchical (B-tree) index superstructure

will be established on that field, and, moreover, it will

be a "unique" index. That is, the software shall be prepared
to test for duplicate entries, and to reject an insertion
which would create a duplicate value for that field. Null
did's will never be accepted.

The remazining fields can be partitioned into three
groups representing data about the original off-line tape
file, data about the on-line version of the file, if any,
and data about the off-line back-up copy of the file, if
any, respectively. 1f any field in a particular group is
null then all in that group must be null. Anv group, or
even any pailr of groups may be null at any given time, though
it. will not be possible for all groups to be.empty, since
that would mean that the file does not exist at all.

The fields of the group describing the original tape
file will include:

(1) reel number, or some means of identifying the
tape on which it resides

(2) £ile number, or some means of identifying which
(physical) file on that tape contains this data
file

(3) format code

There may or may not be additional fields in this group,
depending upon the specific characteristics of the tape file
I1/0 system of the computer on which this system is implemented.
Since the system will check for duplicate data files when it
inserts a new entry into the catalog it will be useful to
maintain a hierarchical index on a combined key formed by
concatenating the reel number and file number. This index

need not be unique, however, since a given physical data file
may well contain more than one logical subfile. An example of
this situation would be NIMBUS-G SMMR MAP-LO tapes, where a
single six-day file contains five frames and each frame con-
tains two Mercator map matrices. Thus, there are fifteen
logical subfiles of potential interest which could be derived
from a single physical MAP-LO file*. The individual logical
files could be distinguished from one another by having dif-
ferent format codes.

Note that this group may well be null -- if the data
file in guestion happened to be created by the LOAD command
with a subfile operation or a PERFORM command or if the
file was created by an application program.

The fields of the group describing the on-line version
of the data file will include:

(1) name or disk address of the on-line copy of the
data file

(2) owner of the on-line copy

(3} temporary/permanent flag

(4) date last accessed

(3) format code

The existence of the name/address field deﬁends upon imple-
mentation details and may, under certain circumstances, be
superfluous. For example, if it is decided to use an
alphanumeric character string for the did's, and if the
operating system under which the Integrated Data Base Manage-
ment System is implemented has a good file management sub-
system, then one implementation approach for managing on-
line data files would be to create a file name from the

did, open a disk file under that name using the operating

* Each Mercator map could be a logical subfile and each frame
could be a logical subfile.

7-8

system, and then copy the tape file into the disk file using
normal operating system utilities.

The owner of an on-line file will be the user who
loaded it onto disk, unless a KEEP command is later issued,
in which case the user who wants the file kept would assume
ownership of the file. Only the owner of the file or the
DBA may SCRATCH it, although anyone may access it. If it
appears likely that disk space will become a problem then
it may be useful from the DBA's point of view to invert
the catalog table on the owner field, so that the DBA could
efficiently determine which users were making the heaviest
demands on disk storage.

Finally, the fields describing the back-up tape copy
of the file will duplicate the first group, to some extent:

(1) reel number, or some means of identifying the
tape on which it resides

(2) file number, or some means of identifying which
file on that tape contains the data

(3) <format code

The only difference between the two groups is that the
format code for this version of the file will necessarily
represent a system standard format. ©Notice that this

field is not superfluous since it is possible to imagine a
sequence of operatons which leaves this the only non-null
group of the three (e.g., a PERFORM creating the file, a
later UNLOAD, then a SCRATCH) and it will be more difficult
and time-consuming to access the header of a tape file in
system standard format than to access the header of a disk
file.

7.3 The Data File Directory

The purpose of the Data File Catalog is to provide
the system with the information it needs to respond to
interactive and application program data file processing
commands. It will be the function of the directory tables,
which constitute the Data File Directory, to provide in-
formation to the user commuunity - about the logical contents
of data files managed by the system. Whereas the Data File
Catalog will be invisible to users (other than the DBA),
the Data File Directory, which is also contained in the
Global Data Base, will be known and visible to all users.

. vThere will be a number of directory tables, perhaps as
many as one directory table for each class of data file -
entered into the back end of the system (e.g., one directory
table for SMMR PARM files, one directory table for SMMR
MAP files, one directory table for LAKDSAT images, etc.).
The number, content, and layout of these tables will be
under the control of the DBA, who will be the only user
authorized to issue a DEFINE DIRECTORY TABLE command, the
only user with INSERT, UPDATE, or DELETE rights against
these tables, and, for that mat%er, the only user with
MODIFY rights against the Global Data Base. It will be
the responsibility of the DBA to tailor the definitions of
the directory tables to suit the needs of the user community.

With one exception, the Integrated Data Base Manage-
ment System will treat directory tables just like any other
table maintained and managed by the system. The DBA will
be able to issue EXPAND commands, INDEX commands, INVERT
commands, etc., on directory tables as well as being able
to issue INSERT commands and DELETE commands as necessary
to reflect the changing contents of the Non-Relational Data
Base. The exception to this rule is that all directory

tables shall implicitly become a part of the virtual overall
directory table, SYSDIR. SYSDIR will be a table which users
will be able to query, but which will not physically exist.
(The term for this type of table in relational data model
Jjargon is "view.'") While updates and deletes can be made
against SYSDIR, causing modifications to be made to the under-
lying directory tables, the insertion of new records into the
Data File Directory can only be made by inserting the records

into the underlying, physically existing, directory tables.

Nothing in this section should be construed to imply
that the only legitimate directory tables in the system will
be tﬁe ones set up by the DBA in the Global Data Base.
In point of fact, users may ——.indeed, users are encouraged
to -- set up their own directory tables in applications or
working data bases. These directory tables may well include
files which are not included in SYSDIR, files which have
been created via PERFORM commands, for example, in response
to specific application requirements. However, such directory
tables will not be part of SYSDIR.

If a file is purged from the system via an UNCATALOG
command, then any record in any directory table which references
that file will automatically be deleted as well. This
feature will be in addition to the ability of the DBA to
issue DELETE commands against the directory tables without
altering the Data File Catalog. However, automatic directory
deletion will not occur as a function of a SCRATCH command
(unless the SCRATCH command results in the file being purged),
nor will this feature be extended to tables which are not
part of SYSDIR. Presumably, the DBA will not be purging files
which are actively in use so that the overhead of testing
all tables in all data bases for references to files being
purged would be wasted effort.

7.4 The Data PFile Identifier

The 1link between the front end, or relational, portion
of the Integrated Data Base Management System and the back
end will be the data file identifier, or "did." Each did
will uniquely distinguish a data file managed by the
back end of the system, and each reference to a data file
in the front end of the system will be via the did.

There are a number of methods which might be employed
to generate unique did's, and this document will not attempt
to choose between them at this point since 'best' almost
certainly will depend to some extent on the characteristics
of. the machine(s) and operating system(s) on which the Inte-
grated Data Base Management System 1s implemented*. However,

three general approaches can be described:

(1) use a random number generator to generate a random
number between 0 and 1, then convert this random
number to a string of digits or alphanumerics

(2) concatenate the year and (Julian) date to create
the first five characters of an identifier, then
append two or three more digits as a counter (so
that 7819432 is the thirty-second did generated
on July 13, 1978))

(3) Kkeep a universal counter and increment it each
time another did was requested by the system for
a new data file

All three of the above approaches have good points and bad
points. The random number generator approach would work well
if the back end was, in fact, implemented on a separate

¥The reader should bear in mind the fact that the "dual
system' design of the Integrated Data Base Management
System would permit its being implemented on more than one
computer.

computer. 1In that case the Data File Catalog table,
SYSCATL, probably would be moved from the Global Data Base
to the data file processing software, thereby allowing the
introduction of scatter storage techniques. That is, it
would be possible to take advantage of the uniqueness of

the did field and the fact that virtually all references to
catalog entries would be via the did to '"hash' the catalog
on the did field, thereby reducing the average number of
disk accesses to retrieve an entry in SYSCATL. However,
when the system is implemented on a single computer then the
increased software complexity to support scatter storage
access methods for one specific table would likely outweigh
the search efficiency advantages. A drawback of the random
number approach is that there is no guarantee that the did's
s0 generated are, in fact, unigue. The non-uniqueness of

2 given identifier would be detected when the new entry was
inserted into the catalog, and this would necessitate the

generation of another random identifier.

The two counter-based approaches can guarantee unigue-
ness, and while their ability to function efficiently with
scatter storage techniques would depend upcon the effectiveness
of the hash function, these deterministic approaches would
be quite efficient when used with the table storage manage-
ment and look-up techniques used in the front end of the
system (see Section 6), particularly when a series of data
files was entered all at once. The main drawback of these
counter-based approaches is that the updated counter must
be saved on a non-volatile storage medium every time a
new entry is made in the catalog, or else this approach
would be highly vulnerable to a system crash.

Just as there is more than one reasonable approach
to generating data file identifiers, so there is more

than one reasonable format for the did's. Should they be
numeric id's, all digits? Or alphanumeric? How many
characters? Again, resolution of this issue must await
actual implementation of the system on some machine, since
most of the tradeoffs cannot be properly evaluated without
knowledge of which machine the system will be implemented

on.

Another consideration in defining the format of an
identifier is the need for detecting mistakes made by users
when entering did's to the system. The most common such
mistake is a transposition of characters, and the standard
defense against this is the check digit. If a did is com-
posed of n characters (alphanumeric or digits) then n-1
of them would perform the function of identifying the file
while the nth character would be uniquely determined as
a runction of the previous n-l1 <characters and their relative
order. 1If the check function is well chosen, then the system
can detect erroneous input characters (5 for S, 2 for Z,

1l for I, zero for 0) or the correct characters out of order
by computing the proper check oharactér for the n-1
identifying characters of the given input did and comparing
it with the given check character. If they agree then the
did will be accepted, and if they disagree then the input
did must be wrong. Of course a double error or triple error
may make it past this test, but some double and triple errors
will still be detected and the overhead for detecting all
double and triple errors would be more expensive than the

likely gains.
7.5 System Standard Formats

As described earlier, all data files which are loaded
on-line from tape will be reformatted to conform with the

relevant system standard format for the type of data con-
tained in the file. There are a number of advantages to
this convention:

(1) It facilitates the development of software inter-
faces between the Integraied Data Base Management
System and other applications systems at Goddard
Space Flight Center.

(2) It facilitates the implementation of data mani-
pulation modules internal to the system (e.g.,
the modules which carry out the REGRID or SLICE
operations of the PERFORM command).

(3) It simplifies the task of writing application
programs which will make use of the data files,
particularly if data files of the same type but

from different or unknown sources are to be used.

There will be a number of system standard formats, one
for each major broad category of data file. That is, there
could be one system standard format for image data, one system
standard format for cartographic data, one system standard
format for uniformly gridded data (i.e., where the data ob-
servation can be viewed as occurring at a lattice point of
a multi-dimensional network), one system standard format
for chain-coded contour plots, etc. System standard formats
will be alike in that each file in system standard format
will include a fixed-size header record, zero or more fixed-
size history records, and some number of data records, where
the length and number of data records will depend upon the
data itself. Header records will include a code describing
which type of data is contained in the file (i.e., which
system standard format the file is in), and the remainder
of the header will describe how the data records are to be

interpreted. How the remainder of the header is to be
interpreted will depend upon the format code.

This document shall not attempt to define the number
and layout of all system standard formats which will be
included in the final version of .the Integrated Data Base
Management System. Instead, the remainder of this section
shall concentrate on describing what certain, selected
system standard formats might lcok like. In the final
implementation the fields and/or their type, size (in bytes),
and units (if any) may well change from what is written
here, but any changes will presumably be minimal. Since
the number of bytes needed to store the information in a
header will vary from format type to format type while the
size of a header record shall be fixed, some headers will
have to be padded with blanks. The following format
descriptions will ignore this padding.

7.5.1 A System Standard Format for Image Data

A system standard format for image data must, at =2
minimum, be compatible with the data record layout and header
record formats for image files used by systems at the
Goddard Space Flight Center which handle image data such as
201Ps2 and SMIPS/VICAR??, Compatibility, as it is used here,
means that the data record format for image data files in
system standard format should agree with the data record
layouts normally handled by AOIPS and SMIPS/VICAR, and that
the fields in an AOIPS header or SMIPS/VICAR label record
should be available in the system standard format header
or else derivable by a software interface routine.

7.5.1.1 The Header Record in an Image Data File

Table 7-1 illustrates a possible layout for a header
record, based on the fields included in the Image Des-
cription portion of an AOIPS image label and a SMIPS/VICAR
label. The order, type, and/or size of the data fields
listed in that table are particularly dependent upon im-
plementation details when the system is developed. For
example, the size o0f a data file identifier (did) is not

yet finalized. All fields are integer unless otherwise
noted.

The first six fields shown in table 7-1 (above the
dashed line) will probably be included in all system standard
formats. The remaining fields of the header are designed to
preserve header information if the image file is entered
into the Non-Relational Data BRase from AQIPS aﬁd later,
prerhaps after some manipulation, is passed back To AQIPS.

Not every AOQIPS image description field is duplicated in

an image header, however, since certain fields will be
superfluous given the data storage conventions. For example,
secondary records would not be stored within the image file
but would be saved in some number of history records. '
Likewise, by convention, there will be no top edge, bottom
edge, left edge or right edge fill, so that words 35 through
38 of the AOCIPS image label will be superfluous.

7.5.1.2 Data Records in an Image Data File

One record of an image file in system standard format
will contain precisely one row (line) of the image matrix.
Each pixel will occupy one or more bytes but will always.
occupy an integral number of bytes. There will be no
"empty" records or lines with non-grey scale data in an

image file in system standard format, although there may

-17

=]

field
format code
history count
record size
record count
blocking
did

meaning
system standard format code
number of history records
size of a data record in bytes
number of data records
blocking factor
data file id for this image

hame
parent
master
year

month

day)
hours
minutes
seconds
fractions
sensor
generation
no. images
pixel size
sig. bits
storage

orbit no.

center lat.
center lon.
sun el.

resolution

zoom info.

16

R R VAN (LI S T (G R G T T)

ol s

user-assigned name of scene (alpha)
did or name of parent image (alpha)*
reel and file id of master image

date and time (alphanumeric)

fractions of a second {(real)
sensor name (alphanumeric)
generation of image (master = ()
number of images, if multi-image
number of bytes per pixel

number of significant bits per pixel
storage code (BSQ,BIL,BIP) (alpha)
number of orbit on which image was
recorded

latitude of frame center

longitude of frame cente?

sun elevation

spatial resolution of each pixel
AOIPS image related master/parent

zoom relationship information

Table 7-1: A Possible Layout of the Header Record for Image Data

*k
In bytes.

All sizes are tentative.

**Field equals zero if no parent (i.e., if this image is a master).

be some pixels which are only used for padding out a record
if this system is implemented on a word-oriented, rather
than byte-oriented computer,

It would be decirable to standardize pixel storage for a
multi-image data file. The AOIPS and SMIPS/VICAR systems are
oriented towards the band sequential format (BSQ) for multi-
images, and it may, therefore, be correct for the Integrated
Data Base Management System to standardize on band sequential
format as well. Other possibilities are band interleaved by

th th

line (BIL), where the record containing the i line éf the j

band would follow the record containing the ith line of the
_j—lst band (for Jj > 1), and band interleaved by pixel (BIP),
where the k'O pixel in line i of band j follcws the k%
pixel of line 1 in band j-1. Certain SMIPS/VICAR programs
(e.g., BAYES, KARLOV) can accept line interleaved (BIL) multi-
images and both systems have provision for indicating BIL and
BIP formats in their respective image headers. Conseguently
it may be useful -- if not in initial versions of the system
then perhaps in later enhancements -~ to have the system support
all three formats for multi-image data files.

/
7.5.2 A System Standard Format for Gridded Data

" Certain level three data files can be viewed as re-
presenting multi-dimensibnal grids, where the dimensions
are & subset of the x,y, and =z spatial dimensions, plus the
temporal (t) dimension and a wavelength (A) dimension. Such
files are presumed to possess at least two dimensions, and
possibly all five. For purposes of the Integrated Data
Base Management System's internal processing, the obgervations
taken at a fixed wavelength shall be treated as observations
of a single physical variable. The exception to this rule
will be the SLICE operation, which will treat wavelength as
a fifth dimension.

7~19

For expository purposes, the remaining four dimensions
shall be regarded as having the following ordering: t be-

fore x before y before =z . Therefore, when the conceptual
layout of an n-dimensional grid is described (n = 1,2, 3
or 4) the first, second, ..., nth dimensions will be uniquely

determined by the above ordering. Thus, if n equals two
and the grid has =z and t axes, then the "first dimension"
will be t and the second will be =z . Similarly, a three
dimensional grid with =x, y, and 2 axes will have x as
its first dimension, y as its second dimension, and 2z as
the third (rather than some permutation such as =z, %, y or

y} ZJ X)‘
7.5.2.1 The Header Record in a Gridded Data File

Table 7-2Z shows a possible layout for a header record
for gridded data. The latitude, longitude, altitude, and
date provide the initial y, x, z, and t coordinates,
respectively, for the first lattice point in the first record.
The maximum time coordinate will be the initial date and time
plus (n.-1)-4t , and, similarly, the maximum altitude will be
the initial altitude plus (nZ—l)-Az . Computation of maximum
latitude and longitude will be rather more complicated since

the azimuth, if any, must be factored in.

Four byte and eight byte fields below the dashed line
will be type real and one byte and two byte fields will be
integer, unless otherwise indicated. Units for at, ax |,
4y , and Az will have to be established at implementation
time, as will the reference for altitude. These units will
probably be fixed and will not vary from file to file.
Otherwise, extra fields would be needed in the header to show
which units were used for each delta (A) field.

http:nz-l).Az

field size* meaning

format code 1l system standard format code

history count 1 number cf history records

record size 2 size of a data record in bytes

record count 2 number of data records

blocking 2 blocking factor

did 4 data file id for this file

vear 2

month 2 /

day- 2

hours 2 date and time (alphanumeric)

minutes 2

seconds 2

latitude 8 latitude of first observation point in radians
longitude 8 longitude.” " " " " "
azimuth 8 azimuth in radians clockwise from North
altitude 4 altitude of first observation in meters
At 4 spacing along +t axis

Ax 4 " 1 X "

Ay 4 mo n oy A

bz 4 " " Z "

ny 1 number of observations along 1t axis
L 1 " " " " X "

oy L e e .o
Z

L 1 " n " per lattice point

point size 1 size of a lattice point in bytes

Al 4 first wavelength

12 4 second wavelength

inobs 4 last Wévelength

Table 7-2: A Possible Layout of the Header Record for Gridded Data

*In bytes. All sizes tentative.

7-21

7.5.2.2 Data Records in a Gridded Data File

¥When n equals two, the grid can be visualized as a
rectangular area as depicted in figure 7-2a, and each
lattice point will have four neighbors (eicept for those
on the boundary of the area). Each lattice point will be
assumed to have observations for one or more physical variables,
and the same set of physical variables are measured at
each lattice point. When such a grid is stored in a system
standard format file, each record will contain the observa-
tions for a fixed value of the first dimension, and for
each given value of the first dimension (for which there is
data) there will be precisely one record in the file, In
othef words, each record in the file will correspond to oOne
column of the grid. Within the file the records will be
ordered on increasing value for the first dimension, and
within a record all observation for a given lattice point
willibe stored together and the lattice points will be
ordered on increasing value of the second dimension.

Three-dimensicnal files may be viewed as a parallele-
piped with rectangular sides, as depicted in figure 7-2b.
To wvisualize the way in which lattice points from a three-
dimensional grid are mapped into records, imagine the grid
being sliced into-a stack of two-dimensional grids along
the first dimension. The resulting two-dimensional grids
are then handled as described above. Thus, any pair of
lattice points in a record from a three dimensional gridded
file have the same values for the coordinates of their first
two dimensions, and they vary only according to their.third

dimension.

Four dimensions are hard to visualize, but since the
four dimensions in this case must be t, x, y, and =z then

one way to view a four dimensional grid is as a time-ordered

2nd

Dimension

1St Dimension

Figure 7-2a: Conceptual Layout of a Two Dimensional File

rd
3
Dimension

nd
2

Dimension

st

1 Dimension

Figure 7-2b: Conceptual Layout of a Three Dimensional File

/

4th Dimension (time)-

rigure 7-2¢: Conceptual Layout of a Four Dimensional File

sequence of three dimensional grids, as depicted in figure
7-2¢. This suggests the way in which the data can be
mapped into records, namely, all lattice points in a given
record fixed with respect to t, x, and y coordinates,
and records ordered on ascending values of y within =x
within t . Figure 7-3 illustrates the process for con-
verting the storage problems of an n-dimensional grid into
n-1 dimensions for n=4, 3, 2, and figure 7-3 depicts the

layout of records in a file for n=4.

Note that this arrangement is consistent with the
view of wavelength as a fifth dimension, provided the
observations stored at a lattice point are ordered in

ircreasing value of X

Finally, there is the special case when n=1 . In
that. case there would be one observation point per record,
unless the size of an observation point was very small, in

which case there would be one record in the file.
7.5.3 A Systiem Standard Format for Cartographic Data

Digitized terrain elevation models may be viewed as
two-dimensional grids, with a ground elevation value at
each lattice point. This suggests that the data for such
a file could be stored as if it were a conventional two- -
dimensional gridded file, that is, each record will have
the elevation data for a fixed X- coordinate and ascending
values of the y coordinate. However, it would not be
sufficient to treat a cartographic data file as a conventional
gridded data file since the cartographic data may be any
one of a variety of map projections and this information
must be present in the header. On the other hand, barring a

natural or manmade catastrophe, the elevation value for a

Ll

SO

S\ NN N
MY » TR o=
Q * ﬁ
: ” A
t P

DRIV

—

obs.1 obs.2
7-25

Stages for Mapping 2 Four Dimensional

Grid into Records in a File

Figure 7-3:

given location on the earth's surface is likely to be
constant with respect to time (at least for spans of time
less than a century) and thus the date fields would be
superfluous.

Table 7-3 shows one way in which a header could be
established for a cartographic data file. The header
establishes the coordinates of the first point in the
first record (lower left corner), but how these coordinates
are established (and hence how the fields of the header
are to be intgrpreted) will depend upon the projection code.
If the data is in a tangent plane projection then the
coordinates will be specified as an =x offset and y offset
in meters on the ground relative to a Cartesian coordinate
system whose origin is at the point of tangency and whose
¥y axis is aligned with some specified azimuth*. For a
tangent plane projection, the "zone" field would be ignored,
the latitude and longitude fields would be the coordinates
of the point of tangency, the azimuth would specify the
azimuth of the. Cartesian coordinate system for the file,
and the lower left x and lower left y are the x-offset
and y-offset of the lower left corner of the file from the
point of tangency. If the data is in the normal Mercator projection
then rows will be lines of constant latitude and columns
(records) will be lines of constant longitude. Here the
zone, azimuth, lower left =x and lower left y fields
would all be zero, and latitude and longitude would represent
the latitude and longitude of the lower left corner.

In a Universal Transverse Mercator (UTM) projection, the
coordinates of the lower left corner are specified by the UTM
zone and UTM easting and northing. For a UTM projection, the
latitude, longitude, and azimutb would all be zero and the
easting and northing would be stored in lower left x and
lower left v¥. Finally, for a Lambert projection only lower
left x and lower left y would be used. The units for

E 3

Except, of course, if the latitude is + 90°, in which case
(a) longitude and azimuth are superfluous and (b) the projec-
tion must be a polar stereographic projection.

field

format code
history count
record size
record count
blocking

did

projection code
zZone
latitude

longitude

azimuth
lower left x
lower left vy
AX

Ay

z—offset

00

L - =N v’

meaning

system standard format code
number of history records

size of a data record in bytes
number of data records
blocking factor

data file id for this file

map projection for this file
UTM zone (if UTM projection)

latitude of file in radians N
latitude

longitude of file in radians E
longitude

azimuth of file's coordinate system

coordinates of file's lower left
corner ’

spacing between columns

spacing between rows

offset applied to each data point*x*

Table 7-~3: A Possible Layout of the Header Record

for Cartographic Data

*In bytes.

** Permits elevation data to be positive.

All sizes are tentative.

The z-offset

will be subtracted from each elevation value in the

file.

Ax and Ay will also depend upon the projection.
All fields after "zone" in Table 7-3 will be type real.
7.5.4 "Format X"

There will be one special 'system standard format"
which will not be descriptive of the logical contents of
the file. This format, provisionally designated "Format X',

will be used in the following two circumstances:

(1) The system does not know the format of the
tape file or knows the format of the tape file
but does not know how to translate the file
into a system standard format (i.e., a LOAD routine
has not been written to handle files in that
format). ‘

(2) An application program is creating a file in
"direct" mode (i.e., not in a system standard
format).

Basically, Format X consists of a header record, followed
by a record-by-record copy of the tape file.* The header
itself will be gquite minimal, and will contain only the
first six fields (twelve bytes) common to all system
standard header records. If the record size field in a
Format X header is zero, then the records in the data file
will be variable length.

7.6 The LOAD and UNLOAD Commands

The data tapes to be managed by the "back end" of the
Integrated Data Base Management System will exist in a
variety of different tape formats, but, fortunately, not

an infinite variety of tape formats. That is, the format

*Nothing would prevent a user from writing history records to
a data file in Format X, but analysis of user requirements
suggests that such will be rare.

T_0Q

specifications for the data tapes entered into the Non-
Relational Data Base will be known in advance and presumably
have been formally documented. Each such tape format will
be mapped into a unique system standard format during =z
LOAD, although the mapping will not be one-to-one and there
will be somewhat fewer system standard formats than tape

formats.

The foregoing analysis permits the function of the

LOAD command to be specified as follows:

(1) Given the data file identifier of the tape file
to be loaded, look up that file in the Data TFile
Catalog and determine whether it is already on-line
or whether it is backed up in a system standard
fTormat*.

(2) 1If not on-line and not backed up then retrieve
reel number, file number, and format code.

(3) Open the file and simultaneously determine the
system standard format into which the
file is to be translated.

(4) Create the on-line file record by record. Con-
struct the header record while so doing.

(5) After all records in the data file have been
written to direct access storage, write the header
record over a dummy header record written prior
to writing the first data record.

Rather than attempt to write one large LOAD module
to handle all possible tape formats, there will be a
number of LOAD routines, each routine handling a small
number of different tape formats (possibly one tape format
per routine). Each of these separate conversion routines
will probably be implemented as a co-routine and would

therefore cperate independently of the rest of tThe system

* If backed up in Format X then it will be necessary to de-
termine whether a conversion routine has been added to the
system since the most recent LOAD.

7-29

until completion of the LOAD. Benefits of a co-routine

approach would include the following:

(1) Memory requirements for I/0 buffers would not
impinge upon memory requirements for the re-
mainder of the system. Hence, the number of
LOAD commands which could 'be processed con-
currently would not be limited by the main storage
allocated to the data base managerent system.

(2) The co-routines could take over I/0 message
handling with interactive users, relieving the

system of message traffic overhead.

Of course, a co-routine approach to implementation of the
LOAD command depends upon whether the operating system of the

host computer supports co-routines.

In contrast to the LOAD command, the UNLOAD command
can be implemented with a single, reasonably simple and
straightforward, subroutinéi The special point to note is
that an UNLOAD command will be rejected if the Data File
Cafalog indicates that a backed up copy of the file already
exists. The exception to this rule is that an UNLOAD will
be accepted if the backed up copy is in Format X and the
current on-line copy is not in Format X. This can happen
if a conversion routine is added to the system between
the first LOAD and UNLOAD of the file and the most recent
LOAD.

7-30

SECTION 8 - SYSTEM INTERNALS
é.l Control Structure Concepts

This sectlon describes the control structures around which
the internal architecture of the Integrated Data Base Management
System is designed. The control structures consist of control
blocks, control block extensions, dictionaries, lists and
gqueues. All control structures are transient in nature.

That is, main storage is allocated for a control structure

when it is to be used and freed when the control structure is
no longer required to support processing. The control struc~
tures have been categorized as a function of their usage within

the system and are described below.
8.2 Communications Controcl Struectures

The category of communications contrcl structures includes
the Remote Terminal Communications list and the Application
Program Communications list. These two lists provide logical
entries or ports into the Integrated Data Base Management System

for remote terminal users and application programs, respectively.
8.2.1 The Remote Terminal Communications List

The Remote Terminal Communications List performs the fune-
tion of associating a remote terminal, an interactive user and
a command being processed. It consists of one entry for each
remote terminal connected to the Integrated Data Base Management
System. The Remote Terminal Communications List can be
implemented in several different ways, one of which is a two-
way linked list of remote terminal entries ordered in ascending
logical sequence by terminal-id. Each entry in the Remote
Terminal Communications List will contain at least the follow-
ing information: the terminal-id of the remote terminal for
which the entry was created; a pointer to the User Control
Block for the user who connected to the system via the remote

terminal; a pointer to the Command Control Block for any cur-
rently active command that was received from the remote terminal;
a continuation flag that indicates whether or not a continua-
tion message is expected for the last command received from the
remote terminal and a message routing flag that indicates
whether or not the next message received from the remote terminal
is to be passed directly to an active procedure where it will be

processed.

Initially, the Remote Terminal Communications List will be
empty . When a message is received from a remote terminal, the
entries, if any, in the Remote Terminal Communications List are
searched to determine whether an entry exists for the remote
terminal. The terminal-id of the remote terminal from which
the message was received is compared with the terminal-id in
each entry in the Remote Terminal Communications List. If a
match occurs, the message is processed. If no match occurs,
an entry containing the terminal-id of the remote terminal Ffrom
which the message was received is created and the message is
pProcessed. If the message contains a valid command counnecting
a user to the Integrated Data Base Management System, the entry
is completed with the necessary pointers and is inserted in the
Remote Terminal Communications List so as to preserve the
ascending logical sequence by terminal-id. Otherwise, the new
entry is discarded since the only valid command for initiating
an interactive session is the one which connects a user to the

system.

When subsequent messages are received from a remote terminal,
the Remote Terminal Communications List is searched to locate
the entry corresponding to the remote terminal. Since a pointer
to a User Control Block is contained within the entry, the user
issuing the command can be identified. When a command is
received disconnecting a user from the Integrated Data Base
Management System, the entry associated with the remote

terminal from which the message was received is deleted from

the Remote Terminal Communications List.
8.2.2 The Application Program Communications List

The Application Program Communications List is analgous to
the Remote Terminal Communications List and performs the func-
tion of associating a region in main storage, an application
program and a command being processed. It consists of one
entry for each application program connected to thé Integrated
Data Base Management Systemn. As for the Remote Terminal
Communications List, the Application Program Communications
List can be implemented as a two-way linked list of application
program enfiries ordered in ascending logical sequence by program-
id. The choice of a program-id probably will be operating
system dépendent. It must uniquely identify a particular applica-
tion program executing in a particular region of main storage
Since the same application program may be executing in different
regions of main storage at the same time. Each entry in the
Application Program Communications List will contain at least
the following information: +the program-id of the application
program for which the entry was created, a pointer to the User
Control Block for the application program and a pointer to the
Command Control Block for any currently active command that was

received from the application program.

Initially, the Application Program Communications List will
be empty. When a CALL statement is executed in an application
program transferring control to the Integrated Data Base
Management System, the entries, 1if any, in the Application
Program Communications List, are searched to determine whether
an entry exists for the application program. The program-ia
of the application program executing the CALL statement is
compared with the program-id in each entry in the Application
Program Communications List. If a match occurs, the request

is processed. If no match occurs, an entry containing the
program-id of the application program executing the CALL state-
ment is created and the request is processed. If the request
contains a valid command connecting the application program to
the Integrated Data Base Management System, the entry is com-
Pleted with the necessary pointers and is inserted in the
Application Program Communications List so as to preserve the
ascending logical sequence by program-id. Otherwise, the new
entry is discarded and an error code is returned to the applica-
tion program since the only valid command for initiating applica
tion program actiéity is the one which connects an application

brogram to the system.

When subsequent requests are received from an application
proéram, the Application Program Communications List is searched
to locate the entry corresponding to the application program.
Since a pointer to the User Control Block is contained within
the enfry, the application program making the reguest can be
identified. When a command is received disconnecting an
application program from the Integrated Data Base Management
System or, if the application program abnormally terminates
execution, the entry associated with the application program
is deleted from the Application Program Communications List.

8.3 The Command Control Elock

The Command Control Block is the primary repository of
information for the processing of a command. It is created
for each interactive command and application program command
that entérs the Integrated Data Base Management System. The
main storage required for a Command Control Block is allocated
dynamically when the command enters the system. Although the
contents of a Command Control Block created for an interactive
command and one created for an application program command

will differ somewhat in content, the basic format of a Command

8-4

Control Block will be the same so that the software processes
that use the Command Control Block can operate on them in the

same manner when necessary.

The Command Control Block is the primary control structure
for command processing. It is passed between software processes
by means of queues which are discussed below. Fach Commﬁnd
Control Block will contain an indication of which command it
represents, an indication of whether the command was received
from a remote terminal or an application program, a pointer to
the User Control Block of the user or application progranm
responsible for the command, a pointer to the communications
list entry associated with the command and several other data
fields, flags, pointers and storage‘areas reguired for command
processing. The Command Control Block exists until the proces-—
sing of the command that it represents is terminated by the
Integrated Data Base Management System or, in the case of an
interactive command, is aborted by the remote terminal user.
When the processing of a command has been completed, the main
storage used for its Command Control Block is freed.

8.4 System Control Structures

The category of system control structures includes the
control blocks, control block extensions and dictionaries that
.are stored in system tables. As stored in system tables,
these control structures represent the current information
state oi the Integrated Data Base Management System.' As resi-
dent in main storage, these control structures represent the
current proceésing state of the system. Permanent changes to
the information state of the system, such as the creation of a
new data base, are reflected by updating the system tables.
Temporary changes to the processing state of the system, such
as the attaching of a user to a data base for processing, are
reflected within the control structures resident in main storage

but do not affect the system tables. System control struc-
tures are loaded from system tables as required to support the

processing state of the system.
8.4.1 User Control Blocks

A User Control Block exists for each individual who has
been defined to the Integrated Data Base Management System as
a valid user by the Data Base Administrator. Likewise, a
User Control Block exists for each application program that
has been authorized access to the system by the Data Base
Administrator. User Control Blocks are stored, as records,
in the SYSUSER system table. Each User Control Block will
contain the user-id of the individual user or application pro-
gram which it represents as well as a password, in the case of
an individual user, and other data fields, flags and pointers.

A User Control Block is created when the Data Base
Administrator issues a command to define a new user or applica-
tion pfogram to the system. Main storage is allocated for
the new User Control Block, after which it is initialized and in-
serted in the SYSUSER table. Data fields in a User Control Block
can be updated at any time by the Data Base Administrator.
However, only the password data field in the User Control Block
for an individual user can be changed by that user.

When an interactive user connects to the Integrated Data
Base Management System, the User Control Block for the user is
retrieved from the SYSUSER table and placed on a two-way chain
of User Control Blocks for users and application programs cur-
rently connected to the system. This chain is maintained in
main storage in -ascending logical sequence by user-id. If a
User Control Block containing the user-id already exists on
the chain, the user is not permitted to connect to the system.

Thus, in the current system design only one interactive user

can be connected to the system under the same user-id at- any
one time. Each User Control Block may have both an Authorization
Extension and a Group Extension associated with it in main

storage.

When an application program connects to the Integrated
Data Base Management System, it must supply not only its own
user-id, but the user-id and password of the individual user
who initiated execution of the application program. The User
Control Block associated with the application program is re-
trieved from the SYSUSER table and placed on the User Control
Block chain in main storage. If 2 User Control Block contain-
ing the user-id of the application program already exists on
the chain, a character string is appended to the application
program user-id so that 1t is unique. Thus, multiple copies
of the same application program can gain access to the system
simultaneously. The User Control Block associated with the
user running the program is reirieved from the SYSUSER table
and the password supplied by the application program is verified.
The Authorization Extension and the Group Extension which are
associated with the User Control Block for the application pro-
gram will be those of the user running the application program.
Thus, the access rights associated with this execution of the
application program are those that have been granted to the user
who is running the program. .

When a command is received from either a remote terminal
or an application program, it is always associated with a
User Control Block via one of the communication lists described
previously. Thus, the system can identify, in effect, the
user issuing the command and, thereby, control access to
information and regulate the definition, modification, and
removal of control structures (i.e., users, access rights, data
bases, data fields and tables). Also, since the User Control
Block contains pointers to both the Data Base Control Block

for the data - base to which the user or application program is
currently attached and the Data Base Control Block for the
previously attached data base, processing can be directed to
the proper data base via the User Control Block. When a user
Oor an application program disconnects from the Integrated Data
Base Management System, the corresponding User Control Block

is removed from the User Control Block chain and the main stor-

age allocated for the User Control Block is freed.

Existing users or application programs can be denied access
to the system by the Data Base Administrator. If the Data
Base Administrator removes the User Control Block for a user
Or an application program from the SYSUSER table, that user
or application program can no longer gain access to the
Integrated Data Base Management System.

8.4.2 Group Extensions

A Group Extension is always associated in main storage
with a User Control Block. It defines the groups to which
the user belongs for the purpose of sharing common access
rights to tables. If the user does not belong to any groups,
no Group Extension to the User Control Block will exist. A
Group Extension contains one entry for each group to which the
user belongs. Each entry in a Group Extension is stored in
the SYSGROUP system table. Each Group Extension entry con-
tains the name of a group to which the user belongs and a
pointer to the Authorization Extension which defines the
access rights of that group. If the group has not been granted .
any access rights, no Auvthorization Extension will exist for
the group so the pointer will be null. During the processing
of commands, the access rights of the group are treated
logically as if they had been granted directly to the user.

A Group Extension entry is created when the Data Base

Administrator includes a user in an existing group so that the

user can share the access rights assigned to that group. The
new Group Extension entry is inserted into the SYSGROUP table.
It will be included in the Group Extension constructed when
the user next conneects to the system.

When a user or an application program connects to the
Integrated Data Base Management System,.the amount of main
storage required for the Group Extension is computed. The
number of entries in the user's Group Extension is stored in
the User Control Block. After allocating the main storage
necessary to contain the Group Extension, the Group Extension
records are retrieved from the SYSGROUP table and are stored
in the Group Extension. Whenever it becomes necessary, dur-
ing the processing of a command, to determine a user's right
to access a table, the Authorizatrion Extension attached to
the User Control Block is searched. If the required authoriza-
tion is not contained therein, each entry in the Group
Extension attached to the User Control Block is used to locate
the Authorization Extension associated with the group specified
within the entry. Each Authorization Extension for a group
to which the user belongs is searched until the reguired authoriza-
tion is located or until all Authorization Extensions have been
searched. When a user or an application program disconnects
from the Integrated Data Base Management System, the main storage
allocated for the corresponding Group Extension is freed. The
main storage allocated for each of the Authorization Extensions
for groups to which the user belongs, will be freed only if no
other members of the wvarious groups are connected to the system.

At any time, the Data Base Administrator can remove a user
from a group or remove a group from the system. In either
case, one or more records will be deleted from the SYSGROUP
table and the change will be reflected by the absence of the
corresponding entry in the Group Extension for the affected
user or users when they next connect to the system.

8.4.3 Authorization Extensions

An Authorization Extension may be associated in main stor-
age with a User Control Block if it contains rights granted
directly to the user or an Authorization Extension may be

associated with entries in one or more Group Extensions if it

contains rights granted tc a group. If a user has not been
explicitly granted any access rights, no Authorization Extension
to the User Control Block will exist. However, if a user is

a member of one or more groups, he will assume any access
rights contained in the Authorization Extensions for those
groups. Additionally, the user can access tables on which
PUBLIC rights have been granted and tables of which he is the
owner. An Authorization Extension contains one entry for
eacﬁ table on which the user or group has been explicitly
granted one or more operational rights (READ, INSERT, UPDATE,
DELETE) by the table's owner. Each entry in an Authorization
Extension is stored as a record in the SYSAUTH system table.
Each Authorization Exitension entry contains the name of the
table on which the rights were granted, the name of the data
base containing the table, flags that indicate which access
rights were explicitly granted, the ﬁser—id of the owner of
the table and flags indicating which rights were granted by
the owner of the table and which were granted by the Data Base

Administrator.

An'Authorization Extension entry is created when the
owner of a table or the Data Base Administrator issues a com-
mand to grant one or more operational rights on the table to
an individual user or a group. The new Authorization Extension
entry is inserted into the SYSAUTH table. If the entry
represents an access right granted to an individual user, it
will be included in the Authorization Extension constructed
for that user when he next connects to the system. If the
entry represents an access right granted to a group, it will

8-10

be included in the Authorization Extension constructed for
that group when any member of the group next connects to the
system.

When a user or an application program connects to the
Integrated Data Base Management System, the amount of main
storage required for the Authorization Extension is computed.
The number of entries in a user's Authorization Extension is
stored in the User Control Block,. After allocating the
main storage necessary to contain the Authorization Extension,
the authorization records are retrieved from the SYSAUTH table
and are stored in the Authorization Extension. If the user
is a member of one or more groups, fhe system determines whether
the Authorization Extension associated with each of the groups
is resident in main storage. If the Authorization Extension
for a group is already resident in main storage, a pointer to
it is stored in the corresponding entry in the user's Group
Extension. If not, the record containing the group-name and
a blank user-id is retrieved from the SYSGROUP table. This
record contains the number of entries in the group's Authorization
Extension. After allocating the main storage necessary 1o
contain the Authorization Extension, the authorization records
for the group are retrieved from the SYSAUTH table and are
stored in its Authorization Extension. Whenever a user
attempts to access data in a table which is owned by another
usexr or the Data Base Administrator, the user's right to
access the table must be determined. If access righis have
not been granted to the PUBLIC but have been granted to in-
dividual users, the Authorization Extension associated Witp
the user is searched to determine whether or not the user
has been granted the right to perform the attempted data
manipulation operation on the table. When a user or an
application program disconnects from the Integrated Data Base
Management System, the main storage allocated for the correspond-
ing Authorization Extension is freed. Main storage allocated

8-11

for Authorization Extensions for any groups to which the
user belongs may be freed if the user is the only member of the

group who 1is connected to the system.

Access rights granted on a table can be revoked at any
time. If one or more access rights granted to a user or
group are revoked by the owner of the table or the Data Base
Administrator, the corresponding authorization record in the
SYSAUTH table is updated to reflect the new rights of the user
or group. If the revocation of rights is such that the user
or group retains no access rights to the table, the correspond-
ing authorization record is deleted from the SYSAUTH table.

8.4:4" Data Base Control Blocks

A Data Base Control Block exists for each data base main-
tained by the Integrated Data Base Management System. Data
Base Control Blocks are stored, as records, in the SYSDB
system table. Each Data Base Control Block will contain the
data base name, the user-id of the owner of the data base, a
description of the data base, the data base classification,
the date on which the data base was created and other data

fields, flags and pointers.

A Data Base Control Block is created when a user issues a
commanq to define a new data base to the system. Main storage
1s allocated for the new Data Base Control Block after which it
is initiaiized and inserted in the SYSDE table. Data fields in a
Data Base Control Block can be updated at any time by the Data

Base Administrator.

When a user or an application program connected to the
Integrated Data Base Management System attaches to a data base
for processing, the Data Base Control Block for the data base
is retrieved from the SYSDB table and placed on a two-way chain

of Data Base Control Blocks for data bases to which one or more
users are attached. This chain is maintained in main storage
in ascending logical Sequence by data-base-name. If a Data
Base Control Bloeck for the data base to which a user is attach-
ing already exists on the chain, there is no need to access

the SYSDB table to retrieve the Data Base Control Block. A
pointer to the Data Base Control Block for the data base to
which a user is attached 1s stored in the User Control Block.

When a command is received that references the data base
to which the user or application program Iissuing the command
is attached, the corresponding Data Base Control Bloeck is
located using the attached data base pointer in the User Control
Block. Since the Data Base Control Block contains a pointer
to the Data Dictionary associated with the data base and a
pointer to the chain of Relation Control Blocks for tables in
the data base, it can be used to iocate other control structures
required to execute a command. Also, the user-id of the owner
of the data base, which is contained within the Data Base Control
Block, is used to assign either a tenporary or permanent status
to new data fields and tables defined for the data base. When
there are no longer any users attached to a data base, its
Data Base Control Block is removed from the Data Base Control
Block chain and the main storage allocated for the Data Base
Control Block is freed.

An existing data base can be removed from the system by
its owner or by the Data Base Administrator. When a data base
is removed from the Integrated Data Base Management System, the
record containing the corresponding Data Base Control Block
is deleted from the SYSDB table. This may cause records to be
deleted from other system tables, as well. All data contained

in tables in the data base are deleted from the system, also.

8-13

8.4,53 Data Dictionaries

A Data Dictionary is always associated in main storage with
a Data Base Control Block. It contains a description of each
data field contained in the corresponding data base. The Data
Dictionary contains one entry for each data field defined for
the data base. Each entry in a Data Dictionary is stored, as
a record, in the SYSDD system table. Each Data Dictionary
entry contains the name of the data field, the length of the
data field, the storage format of the data field, the user-id
of its owner and an indication of the units, if any, that are
associated with the data field. The Data Dictionary will
contain only one entry for each data field, no matter how many
tables that data field is used in.

A Data Dictionary entry is created when a user issues a
command to define a new data field for the data base to which
the user is currently attached. The ,new Data Dictionary entry
is placed in the existing Data Dictionary in main storage and
is inserted into the SYSDD table, It will be marked as a
permanent entry if the user defining it is the owner of the
data base. Otherwise, it will be marked as a temporary entry
and will be deleted from the SYSDD table when the user is no
longer attached to the data base.

When the control structures associated with a data base
are beiﬁg loaded into main storage, the amount of main storage
required for the Data Dictionary is computed. The number of
entries in the Data Dictionary is sitored in the Data Base Control
Block. After allocating the main storage necessary to contain
the Data Dictionary, the Data Dictionary entry records are
retrieved from the SYSDD table and stored in the Data
Dictionary. Whenever a user defines a new table in the data

base or expands an existing table, the Data Dictionary associated

8§-14

with the data base is searched to insure that all data fields
in the table have been previously defined. When there are no
longer any users attached to a data base, the main storage
allocated for the corresponding Data Dictionary is freed.

An existing data field can be removed from z data base by
1ts owner, the owner of the data base, or the Data Base
Administrator, only if the data field is not currently being
used within a table in the data base. ¥hen 2z data field is
removed from a data base, the corresponding entry in the Data
Dictionary is removed from main storage and the corresponding
Data Dictionary entry record 1s deleted from the SYSPD table.

8.4.6 Relation Control Blocks

A Relation Control Block exists for each table maintained
by the Integrated Data Base Management System. Relation
Control Blocks are stored, as records, in the SYSRFL System
table. Fach Relation Control Block will contain the table
name, the user-id of the owner of the table, a description of
the table, the temporary/permanent status of the table, the
date on which the table was created and other data fields,

flags and pointers.

A Relation Control Block is created when & user issues a
command to‘define a new table to the system. Main storage
is allocated for the new Relation Control Block after which it
is initialized and inserted in the SYSDD takle. It is also
inserted in the chain of Relation Control Blocks pointed to
by the Data Base Control Block for the data base containing the
new table. Data fields in a Relation Control Block can be
updated at any time by the Data Base Administrator.

When the control structures associated with the data base
are being loaded into main storage, the Relation Control Blocks

for tables within the data base are retrieved from the SYSREL
table and placed on a two-way chain originating at the Data Base
Control Block. This chain is maintained in main storage in
ascending logical sequence by table name. When a command is
received that references a particular table in the data base
to which the user or application program issuing the command
is attached, the corresponding Relation Control Block is
located by searching the chain of Relation Control Blocks
emanating from the Data Base Control Block. Access to all
data contained in a table is controlled through the Relation
Control Block. When there are no longer any users attached
To a data base, the main storage allocated for the Relation

Contrcel Blocks is freed.

An existing table can be removed from a data base by its
6wner,-the owner of the data base or the Dztz Base Administrator.
%hen a table is removed from a data base, the Relation Conircl
Block is removed from the Relation Control Block chain, the
main storage allocated for the Relation Control Block is freed
and the record containing the corresponding Relation Contirol
Block is deleted from the SYSREL table. This may cause records to
be deleted from other systiem tables, as well. A1l data contained
in the table and 21l superstructures created for the table are
deleted from the system, zlso.

8.4.7 Domain Extensions

A Domain Exteasion is zlways assoclated in maln storage
with a Relation Control Block. It contains information about
the data fields in the corresponding table. The Domain Extension
consists of two sectlons; a primary section which contains one
entry for each data field in the table and an auxiliary section
which contains one entry for each data field used in a combina-
tion B-tree or inverted key field associated with the table.

8-16

Bach entry in a Domain Extension is stored, as a record, in the
SYSDOM system table. Each Domain Extension entry in the primary
section contains the data field name, the column number of the
data field in the table, the dimensionality of the data field,
the starting location of the data field in each record, the
length of the data field, a flag indicating whether or not an
index exists on the data field and, if so, what type of index
and, if an index does exist, a pointer to an index page.

Domain Extension entries in the auxiliary section contain,
essentially, the same information as these in the primary sec-

tion except that they also include the key name.

Domain Extension entries are created when a user issues
a command to define a new table, when new data fields are added
st0 an existing table and when a new B-tree or inverted index
is created on a combination of data fields in the table.
When a new table is created, main storage is obtained for the
Domain Extension. An entry is created for each data field
in the table and stored in the Domain Extension. It is in-
serted in the SYSDOM table, also. When an existing table is
expanded by adding one or more data fields, an entry is

created for each data field. It is placed in the primary
section of the existing Domain Extension and inserted in the
SYSDOM table. When a B-tree or inveried index is defined on

2 combination of data fields in a table, an entry is created
for each data field specified as part of the key field. They
are pléced in the auxiliary section of the Domain Extension
and inserted in the SYSDOM table.

When the control structures associated with a data base
are being loaded into main storage, the Domain Extension
entries associated with each table in the data base are
retrieved and placed in the appropriate Domain Extension.
Each Domain Extension is linked to the corresponding Relation
Control Bloeck in main storage by a pointer in the Relation

Control Block. When a data manipulation command accesses
data in a table, the Domain Extension is used to validate
that the data fields or key fields specified in the command
exist in the table, to select the access path which minimizes
the number of records which must be accessed to satisfy the
command and to locate the referenced data fields within the
retrieved records. When the Relation Control Block which
points to the Domain Extension is removed from main storage,
the main storage allocated for the Domain Extension is freed.

When a table is removed from a data base, the main storage
allocated for the Domain Extension to the Relation Control Bloek
is freed and all records containing the corresponding Domain
Extension entries are deleted from the SYSDOM table.

8.5 Queues

A queue is a two-way chain of Command Control Blocks. A
-gueue is empty when it contains no Command Control Blocks.
Some gueues are used to transfer Command Control Blocks from
one asynchronous process to another. Other gqueues are used
to hold Command Control Blocks for commands that are awaiting

the completion of an event.

8.5.1 The Command Queue

The Command Queue contains Command Control Blocks associated
with interactive and application program commands which have
been syntax checked. Command Control Blocks for¥ interactive
commands are placed on the Command Queue by the Interactive
Command Processor. Command Control Blocks for application
program commands are placed on the Command Queue by the
Application Program Interface. When a Command Control Block
is added to the Command Queue, it is placed at the end of the
chain of Command Control Blocks already on the gueue. Also, a

8-18

flag is set which activates the Monitor, if it is not already

active.

When activated, the Monitor determines whether or not the
tables required by the command whose Command Control Block has
just been added to the Command Queue can be allocated to the
command. If so, the Command Control Block for the command is
removed from the Command Queue and the command is initiated.
If not, it remains on the Command Queue until the necessary
tables can be allocated to the command. Whenever a table

becomes available, the Monitor is activated. The Monitor
scans the Command Queue to determine if any command can be

initiated.
8.5.2 The Initiator Queue

The Initiator Queue contains Command Control Blocks associa-
ted with commands for which execution can be started. That
is, all tables required for execution of the commands can be
allocated to them in the required mode. Command Control
Blocks are placed on the Initiator Queue by the Monitor. When
a Command Control Block is added to the Initiator Queue, it is
placed at the end of the chain of Command Control Blocks already
on the gueue. Also, a flag is set which activates the Logical
Interface, if it is not already active.

Whén activated, the Logical Interface attempts to select a
command for execution from the Wait Queue, described below.
Failing that, the Logical Interface selects the command whose
Command Control Block is the first one in the Initiator Queue
to be started. When a command is selected for execution from
the Initiator Queue, its Command Control Block is removed from
the Initiator Queue and the command becomes the executing com-
mand.

8-19

8.5.3 The Wait Queue

The Wait Queue contains Command Control Blocks associated

with commands for which execution has been started but are now

awaiting the completion of a I/0 event. Command Control Blocks
are placed on the Wait Queue by the Physical Interface when an
I/0 operation is started for the command. When a Command

Control Block is added to the Wait Queue, it is placed at the
end of the chain of Command Control Blocks already on the queue.

Then, control is returned to the Logical Interface.

The Logical Interface scans the Wait Queue to determine if
any of the commands therein can continue execution. A command
whose Command Control Block is on the Wait Queue can continue
exeéutlon when the I/0 operation on which it is waiting com-
Pletes. Since the Wait Queue is a first in - first ourt gueue,
the scan always begins with the first Command Control Block in
the queue. When a command is encountered that can continue
execution, its Command Control Block is removed from the Wait
Queue and that command becomes the executing command. If no
command on the Wait Queue can continue execution, the Logical
interface starts the execution of the command whose Command
Control Block is first in the Initiator Queue.

8§.5.4 The Output Message Queue

Thé Output Message Queue contains Message Request Blocks
associated with output messages that are to be transmitted
from the Integrated Data Base Management System to remote
terminals., Message Request Blocks can be placed on the Output
Message Queue by any software process %hat handles interactive
commands. Each Message Request Block contains.an indication
of the message to be transmitted and the remote terminal to
which it is to be sent. When a Message Regquest Bloek is added
to the Output Message Queue, it is placed at the end of the

chain of Message Request Blocks already on the queue. Also,
a flag is set which activates the Output Message Processor if

it is not already active.

When activated, the Ouput Message Processor removes the
first Message Request Block from the Output Message Queue and

transmits the corresponding message to the specified terminal.
8.5.5 The Interactive Terminator Queue

The Interactive Terminator Queue contains Command Control
Blocks associated with interactive commands for which execution
has completed Oor has been aborted. Command Control Blocks for in-
teractive commands which have completed normally are placed on the
Interactive Terminator Queue by the Logical Interface. Command
Control Blocks for interactive commands which have been aborted
may be placed on the Interactive Terminator Queue by any soit-
ware process that handles interactive commands. When a Command
Control Block is added to the Interactive Terminator Queue, it
'is placed at the end of the chain of Command Control Blocks
already on the queue. Also, a flag is set which activates
the Interactive Command Terminator, if it is not already
&ctive. When activated, the Interactive Command Terminator
removes the first Command Control Block from the Interactive
Terminator Queue and performs the required processing to
terminate the associated command.

8.5.6 The Application Terminator Queue

The Application Terminator Queue contains Command Control
Blocks associéted with application program commands for which
execution has been completed. Command Control Blocks for
application program commands which completed normalily are
placed on the Application Terminator Queue by the lLogical
Interface. Application Program Commands which contain syntax

errors are terminated abnormally. Their Command Control
Blocks are placed on the Application Terminator Quéue by the
Application Program Interface. When a Command Control Block
is added to the Application Terminator Queue, it is placed at
the end of the chain of Command Control Blocks already ®n the
gueue. Also, a flag is set which activates the Application
Program Terminator, if it is not already active. When
activated, the Application Program Terminator removes the first
Commmand Control Block from the Application Terminator Queue and
performs the required processing to terminate the associated

application program command.

SECTION 9 -~ SYSTEM SOFTWARE
2.1 System Architecture

This section describes the architecture of the Integrated
Data Base Management System. The software has been divided
into several asynchronous processes based on the functions
which must be performed as a command proceeds through the
svsten, Each of the processes are event driven. That is,
a software process is executing in 2 "run" state only when an
event occurs which indicates the software process must perform
some function. Otherwise, the process is in 2 dormant or
"wait" state. This soitware architecture, coupled with the
use of the queunes which are desceribed in Section 8, permits
several commands to be in different stages of processing with
a minimum of delay.

The following subsections describe briefly each of the soft-
ware processes that constitute the Integrated Data Base Management
System. Certain programs, such as the System Generaiion
Program and utility programs, are separate from the software
which supports user processing. Also, there will exist a set
of routines which will be stored in a library managed by tae
Integrated Data Base Management System. These routines will
be loaded into main storage only when needed to SUpPpPOTrtT a user
processing reguirement. Figure g-1 shows the software proces-
ses which constitute the system and the command flow through
the system viz the gqueues.

9.2 The System Generation Program

The System Generation Prdgram is a stand-zlone program
which, except under extraordinary circumstances, is run only
once to initialize the Integrated Data Base Management System.
When invoked, the System Generation Program reads a set of in-
put parameters specified by the Data Base Administrator which

1-6 2an31g

T

Integrated Date Dase Management System
Software Processes and Command Fjow

!
FRONT END ' BACK END
!
|
AP AP AT * . |
.\ i g | NON~RELATIONAL
gg;ﬁknns APPLICATION | TERMINATOR DATA BASE
—— BATCH TROCRAM] I
3 comianp INTERFACE
READER i
| /
LOGICAL | DATA FILE
IQ INTERTACE PROCESSOR
c
b P A~ — - —— - H
RENOTE INTERACITVE |] pj MONITOR Ly
TERMINALS COMMAND <
LERMINALS L PROCESSOR
1 Pg I LTQ I CALL
M TERMINATOR [4 ;
o WOt _
N PHYSICAL
<) e b
1 INTERFACE %2
1
o OMQ
‘:3? R OUTPUT ALL
MESSAGE 4 — $— PROCESSES
PROCESSOR v

. ; PRINTED
REPORTS

\/_

OPERATOR SYSTEM

CONTROL
PROGRAM

control the system initialization process. The input para-
meters include the initial password for the Data Base
Adminis%rator, the page size for the tabular dats storage
area and a list of online storage devices which can be mapped
into the tabular data storage area.

After accepting and checking the input parameters, the
modules which constitute the nucleus of the Integrated Data
Base Management System are loaded. This code is used to
perform most of the output during the initialization of the
system. The online storage area which will contain tabular
data is initialized by writing empty pages throughout the
area. The System Generation Program will contain within it,
the control structures associated with the Global Data Base,
as well as the User Control Block for the Data Base Administrator.
The control structures include the Dats Base Control Block
for the Global Data Base, its Data Dictionary, the chain of
Relation Control Blocks for all system tables in the Global
Data Base and their Domain Extensions. The control structures
will reflect an empty Global Data Base. The System Generation
Program will insert the control structure records representing
the Data Base Administrator and the Global Data Base into the
appropriate system tables. The order of processing of the
various control structures is significant since the proces-
sing of one control structure may affect the contents of
anothe;.

After completing the output of the control structure records,
the System Generation Program will output a block of control
information to be used each time the program load operation is
performed for the Integrated Data Base Management System. The
control information will include a map to be used in convert-
ing page pointers in the tabular data storage area to online
device addresses, a page pointer to the first free page in
the tabular data storage area, page pointers to the pages con-

taining the control structures which constitute the Global Data

9-3

Base and any other information which must be retained from

Oone program load operation to the next. The control informa-
tion may be stored in a specific location on a system resident
pack so that the block can be loaded by the System Control Program

when the Integrated Data Base Management System is started.

€.3 The System Control Program

The System Control Program provides the operator with con-
trol over the execution of the Integrated Data Base Manzgement
System. All operator communication with the system is via the
Svstem Control Program using a set of Operator commands.
Operator commands are accepted, checked and executed by the
System Control Program. The operztor commands allow the
operator to start the system, obtain information concerning
the operation of the system, Stop the system and restart tThe

system after a major malfunction.

During the program load operztion which starts the systemn,
the System Control Program loads the control iniformaiion block,
attaches all of the asynchronous processes and initiszlizes 211
gueues to an empty state. Vhen an operator command is received
which requests information, the System Control Program collects
the required information and transmits it to the operator.

When the operator stops execution of the system, the System
Control Program performs the required procedures to terminate
the processing of any commands in progress and stop the systen.
When the operator requests a system restart, the System Control
Program performs the required restore operations such.that the
system can be restarted.

8.4 The Interactive Command Processor

The Interactive Command Processor actually consists of two
asynchronous software processes; the Interactive Command Input

9-4

JProcessor and the Interactive Command Termination Processor.

FEach of these software processes is described briefly below.
©.4.1 The Interactive Command Input Processor

The Interactive Command Input Processor accepts interactive
commands from either the telecommunications message handler
or the Batch Command Reader. Messages received from the
telecommuncations message handler were entered via a remote
terminal while messages received from the batch command reader
were entered via a card reader. Each message containg an
identifier indicating its point of origin; either a particular

remote terminal or the card reader.

" After receiving a message, the Remote Terminal Communications
List is searched to determine if an entry already exists con-
taining the identifier. ITf not, a new entry is created con-
taining the identifier and the message is associated with that
Entry. If an entry already exists, the message is associated
with the existing entry in the list. If the message is not
a continuation of a previously received message, the Interactive
Command Processor constructs a Command Control Block for the
message. The message is parsed and the syntax is checked.

If, after parsing the message, the system expects a continua-
tion message, a flag is set in the corresponding entry in the
Remote Terminal Communications List and the next message is
acceptéd. If no continuation is expected and a syntax error
occurs, a Message Regquest Block is placed on the Output

Message Queue which will cause a diagnostic message to be
transmitted to the terminal from which the message originated
or, if the message entered via the batch command reader, the
diagnostic message is printed. If a syntax error is encountered
while processing a command, the command is terminated by
placing its Command Control Block on the Interactive Terminator

Quete. If no errors are found in the command, the command

is introduced to the monitor by placing its Command Control

Block on the Command Queue.

A command entered through a remote terminal can be aborted
by sending a special "break'" character in a message. then a
message 1s received containing the special character, the com-
mand being processed from that terminal, if any, is immediately
terminated no matter what stage of processing it may be in.
The termination may require some amount of restoration of in-
formation to remove the effects of the command on the system,
The Command Control Block is placed on the Interactive

Terminator Queue so that it may be purged from the system.
9.4.2 The Interactive Command Terminator

The Interactive Command Terminator is an asynchronous soft-
ware process which performs all actions necessary to complete
the processing of an interactive command. The Command Control
Blocks for the interactive commands to be terminated are
obtained from the Interactive Terminator Queune. When a Command
Control Block is placed on the Interactive Terminator Queue by
another software process, a flag is set placing the Interactive
Command Terminator into the run state, if it is not already
executing. The Interactive Command Terminator removes the
first Command Control Block from the Interactive Terminator
Queue. The entry in the Remote Terminal Communications List
with which the command is associated is modified to remove all
reference to the command being terminated. The main storage
allocated for the Command Control Block is freed and all other
processing required to purge the command from the system is
performed.

9.5 The Application Program Interface

The Application Program Interface consists of two modules

9-6

which provide the facilities by which an application program

in one region of main storage can communicate with the
Integrated Data Base Management System in another region and

two asynchronous software processes: the Application Program
Command Processor and the Application Program Command Terminator.
Each of the communication modules and the software processes
are described briefly below.

9.5.1 The Communication Modules

Two modules are used to provide communication between an
application program and the Integrated Data Base Management
System. They are the Application Program Communication

Modul€ and the Cross-Boundary System Routine.

A copy of the Application Program Communication Module

.must be included in the load module for each application pro-

gram which issues commands to the Integrated Data Base

Management Systém. The Application Program Communication Modulé is
entered when a CALL to the Integrated Data Base Management

System is executed in the application program. It creates an
Application Program Request Block containing the address of each
argument in the command and invokes the Cross-Boundary System

REoutine.

The Cross-Boundary System Routine places the Application
Program Request Block on the Application Program Request Jueue
and sets a flag to place the Application Program Command
Processor in the run state, if it is not already executing.
Control is returned to the Application Program Communication
Module where the application program 1s placed in a non-executing
wait state. hen the Integrated Data Base Management System
completes the processing of a command, control is returned to
the Cross-Boundary System Routine where argument values are
transferred to the application program and the application

program is placed in the run state again.

9.5.2 The Application Program Command Processor

The Application Program Command Processor is an asynchronous
software process which accepts commands from application pro-
grams. vhen an Application Program Request Block is placed
on thei Application Program Request Queue by the Cross-Boundary
System Routine, a flag is set placing the Application Program
Command Processor into the run state,if it is not already
executing. The Application Program Command Processor removes
the first Application Program Reguest Block from the Application
Program Request Queue and searches the Application Program
Communicétion List to determine if an entry already exists for
the application program that issued the command. If not, a
new eniry is created for the application program and the
Application Program Request Block is associated with that entry.
If an entry already exists, the Application Program Request

Block is associated with the existing entry in the list.

A command Control Block is constructed for the cémmand and
the contents of the argument list associated with the command
are checked. If an error is detected in the argument list,
the command is terminated by placing its Command Control Bloek
on the Application Terminator Queue. If no errors are found
in the argument list, the command is introduced to the Monitor
by placing its Command Control Block on the Command Queue.

9.5.3 The Application Program Command Terminator

Trne Application Program Command Terminator is an asynchronous
software process which performs all actions necessary to com-
plete the processing of an application program command, The
Comrand Control Blocks for the commands to be terminated are
obtained from the Application Terminator Queue. When a
Command Control Block is nlaced on the Apnlication Terminator
Queue by another Software Process, a flag is set blacing the

Application Program Command Terminator into the run state, if

it is not already executing. The Application Program Command
Terminator removes the first Command Control Block from the
Application Terminator Queue. The entry in the Application
Program Communications List with which the command is associated
is modified to remove all reference to the command being termin-
ated. The main storage allocated for the Command Control Block
is freed and all other Processing reguired to purge the command
from the system is performed. Finally, the Cross-Boundary
System Routine is invoked to transfer argument values to the
application using addresses in the Application Program Request
Block and to place the application program back into the run
state.

9.6 The Monitor

The Monitor is an asynchronous software process which
handlés resource allocation for commands and dispatches com—
mands to the Logical Interface for execution. The Command
Control Blocks for the commands to be dispatched by the
Monitor are obtained from the Command Queue. When a Command
Control Block is placed on the Command Queue by either the
Interactive Command Input Processor or the Application Program
Command Processor, a flag is set placing the Monitor into the
run state, if it is not already executing. Whenever a Command
Control Block is placed on the Command Queue, the Monitor
determines whether or not the command can be dispatched immediately.
A command can be dispatched if all tables which it requires for
processing can be allocated to the command in the proper mode.
If the command can be dispatcheéd by the Monitor, its Command
Control Block is removed from the Command Queune and placed on
the Initiator Queue for processing by the Logicaljlnterface.

If the command cannot be dispatched immediately by the Monitor,
its Command Control Block remains at the end of the Command
Queue.

thenever the status of a table in the system changes, a flag
is set. This flag causes the Monitor to enter the run state,)
if it is not already executing. ‘hen the status of one or
more tables changes, the ilonitor scans the Command Queue to
determine whether or not any command on the queue can be dis-
patched. If so, the Command Control Block for the command to
be dispatched is removed from the Command Queue and placed on
the Initiator Queue for processing by the Logical Interface.
If no command on the Command Queue can be dispatched, the
Monitor is placed in the wait state until either a new command
is placed on the Command Queue or the status of a table within

the system changes.

9.7 The Logical Interface

The Logical Interface, along with the Physical Interface
and the Data File Processor, forms a single asynchronous pro-
cess which performs the command dependent processing. The
Command Control Blocks for commands to be processed by the
Logical Interface are obtained from the Initiator Queue.

When a Command Control Block is placed on the Initiator Queue
by the MdOnitor, a flag is set placing the Logical Interface
into the run state, if it is not already executing. The
Logical Interface removes the first Command Control Block from
the Initiator Queue and begins the command dependent processing
for that command. When the command that is currently being
processed by the Logical Interface performs an Input/Output
operation or requires the loading of a library routine, its
Command Control Block is placed on the Wait Queue and the

execution of that command is suspended.

After placing a Command Control Block on the Wait Queue,
the Logical Interface scans the Wait Queue to determine
whether or not any of the Input/Output or library load opera-
tions on which the commands are waiting have completed. It

S0, the corresponding Command Control Block is removed from
the Wait Queue and execution of the command continues. If no
command on the Wait Queue can continue execution, the Logical
Interface removes the first Command Control Block from the
Initiator Queue and starts the execution of that command.

If the Initiator Queue is empty, the ‘Logical Interface is
placed in the wait state until a command is placed on the
Initiator Queue or a command on the Wait Queue can continue

execution.

When a command completes execution or is aborted, the
Logical Interface places its Command Control Block on either
the Interactive Terminator Queue or the Application Terminator
Quepe; depending upon the source of the command. A flag 1s
set to place the corresponding terminator into the run state,

if it is not already executing.

9.8 The Physical Interface

The Physical Interface consists of subroutines which
support Input/Output operations for tabular data. The sub-
routines are entered froﬁ the Logical Interface via a CALL.
The Physical Interface provides the buffer control facilities
for transferring pages between main storage and the tabular
data storage area on direct access devices. It also maintéins
the superstructures associated with tabular data. The
Physical Interface controls the logging of page images and
provides the capability of dynamically restoring data bases
should a command terminate abnormally. Also, the Physical
Interface is responsible for the logging of transactions to
provide an audit trail and record images to allow recovery

should a malfunction cause system failure.

9-11

Of course, the primary function of the Physical Interface
is the transfer of tabular data into and out of main storage.
When an Input/Output operation is to be performed, the Input/
Output subroutine is entered. This routine starts the data
transfer and then places the Command Control Block for the
command which initiated the data transfer on the Wait Queue.
After placing the Command Control Block on the Wait Queue,
the Input/Output subroutine returns control to the Logical
Interface which selects the next command to be executed.

9.9 The Data File Processor

The Data File Processor consists of a set of subroutines
which supports Input/Output operations for seguential data
files. It is entered from the Logical Interface via a CALL.
The Data File Processor is responsible for locating an exist-
ing data file for an input operation and, if necessary, issu-
ing Gevice mounting instructions to the operator. For an out-
put operation, the Data File Processor assigns a unique data
identifier to a new data file, locates direct access space for
storage of the data file, if necessary, and updates the SYSCATL
system table to reflect the existence of a new data file or

another copy of an existing data file.

The Data File Processor supports the loading of library
routines to perform special processing on data files. - This
includes functions such as regridding, windowing and plotting.
These routines will be resident in the system library until a
command is issued which specifies one of the functions per-
formed by a library routine. The Data File Processor will
cause the proper module to be loéded from the library and
pass control to the routine after it has been loaded. When
the routine has completed its processing, control is returned
to the Data File Processor.

9-12

The Data File Processor uses .several system standard
formats for the internal handling of data files. Data files
in their original format are converted to one of the system
standard formats automatically by the Data File Processor ~
using library routines. Thus, when an off-line copy of a
data file in its original format is loaded onto a direct access
device, the Data File Processor uses information contained in
thecorrespondingrecordjmléheSYSCATLtable“MJlocate and load
the proper format conversion routine from the system library.
The format conversion routines read a data file in its
original format and write either a copy of the data file or
a new data file, which is a subset of the original, in one of

the system standard formats.

:The technique of using loadable routines to perform opera-
tions on data files and to perform format conversion provides
an open-ended facility for data file processing. New routines
can be added to the system library to perform new functions on
data files. Also, new format conversion routines can be
added to convert new original formats into system standard
formats. . Naturally, there will be certain programming
conventions that must be adhered to when creating the new
routines and it is expected that the Data Base Administrator
will control the addition of new routines to the system

library.

The Data File Processor supports the processing of data
files by application programs. It provides the capability
of positioning a data file to a particular logical record
based upon data values in each record or based upon a relative
record number in the data file. It also provides for the
deblocking of physical records into logical records during
input and the blocking of logical records into physical
records during output.

9-13

9.10 The Output Message Processor

The Output Message Processor is an asynchronous software
process which constructs and transmits messages to either
remote fterminals or z line printer. The Message Reguest
Blocks for the messages to be transmitted by the Output
Message Processor are cbtained from the Output Message Queue.
When a Message Request Block is placed on the Output Message
Queue by another software process, a flag is set placing the
Output Message Processor into the run state, if it is not
already executing. The Output Message Processor removes the
first Message Request Block from the Output Message Queue.
The message ldentified in the Message Request Block is con-
structed and transmitted to the remote terminal specified in
the Message Request Block or to the line printer. After
transmitting the message, the main storage allocated for the
message request block is freed and fthe nexi Message Request
Block is obtained from the Output Message Queue. If the
Output Message Queue is empty, the Output Message Processor is
placed into the wait state until a Message Request Block is

placed on the Output Message Queue.

T 9-14

APPENDIX A - THE RELATIONAL MODEL OF DATA

A1 Description and Definition

"Data model" is the technical term used to describe a
user's conceptual view of the contents and logical structure of
a data base. The relational data model is, at the same time,
one of the conceptually simplest models, yet one of the most
sophisticated. To begin with, within the relational data
model all information is contained in one or more flat tables.
Certainly, this is a common enough approach to data organiza-
tion; human beings have been tabulating data and looking up
information in tables for as long as there have been writing
‘materials and some sort of script to write in.* Given the
ubigquity of tables of information in our daily lives, it may
come as something of a surprise that the relational model of
data is founded on a rigoroeus mathematical base. Moreover,
it can be mathematically demonstrated that any data relation-
ship which can be represented in a competing data model (hier-
archical, network) is representable in the relational model of

data, while the converse is not always true.

The term '"relation” has a rigorous mathematical defini-
tion. Given sets Dl’ D2, c e, Dn (not necessarily distinct),
R 1is a relation on those sets if it is a set of n-tuples
<d1, d2’ . dn> such that dl is from Dl, d2 is from D2’
and, in general, di is from Di for i =1, 2, ..., n.

To be mathematically consise, R 1is a relation on the sets
Dl’ D2’ < Dn if it is a subset of the Carteslan cross pro-

duct Dl pd D2 X ... X Dn_

*See, for example, Knuth, D. E., "Ancient Babylonian Algorithms',
Communications of the ACH, vol. 18, Wo. 7 (July 1972) or Boyer,
C.B., A History of Mathematics, Wiley & Sons, (1968).

This mathematical definition gives rise to much of the

nomenclature used in the relational data model. The sets
Dl’ D2, etc., are called domains and n 1is called the degree
of the relation. When n = 1 the relation is called "unary",

when n =2 1t dis called "binary'" (and the n-tuples are cal-
led "ordered pairs"), when n = 3, the relation is called
"ternary', and for larger values of n (or when n is unknown)
the term "n-ary'" is generally used. In the standard nomen-
clature the term n-tuple is usually shortened to tuple, and

it is a property of the above formal definition of relations

that the tuples are assumed to be in random order.

One term which requires careful definition is "attribute".
An attribute is a name assigned to a domain set reflecting its
usaée within the relation. Whereas the domains are not dis-
tinct, the attributes of a relation must be distinct. To see
- the difference between domains and attributes consider a rela-—
tion describing a group of tropical storms. One attribute
would be the name-of the storm and two others might be the date
it formed and the date it broke up. Both 0f these latter two
attributes are from the same domain - the set of all calendar
days covered by the study ~ but the meaning of the elements of
that domain when used in the '"start date" attribute is dif-
ferent from the meaning of dates used in the "end date" attribute.

At this point, it is worthwhile to stop to examine the
correspondences between tabular nomenclature and relational
nomenclature. An n-ary relation is eguivalent to a flat table
with n columns. The attributes are eguivalent to the columns
and the tuples represent the rows of the table. It is also pos-
sible to relate ent%ties in the relatiocnal data model to terms
and concepts used in standard data processing, but this requires
a caveat or two. For example, it is possible to think of a
tuple as a record and an attribute as the name of a field, but
a file is a physical entity, as well as a logical entity, while

tables and relations are abstract concepts. Depending upon

the implementation details, a single physical file may hold

more than one relation, or a single relation may span

multiple physical files. The table below, summarizes

the correspondences between tabular, relational, and data proces-

sing nomenclature.

by

Relational Tabular Data Processing

relation table (logical) file

attribute column , field name
tuple oW record
degree No. of columns No. of fields

Table A-1: Terminology Correspondences

Two terms have been borrowed from data processing nomen-
clature which do not have a common name in tabular Terminology.
One of these is data item*, which refers to the contents of a
single field of a record, and which, by extension, is used to
refer to the value of a particular attributg in a given tuple,
The other term is key, which refers to an attribute or collec-
tion of attributes whose values uniquely determine the tuples
they belong to. If there are multiple keys (i.e., "candidate
keys™), then one of them is usually designated as a primary
Rey. In business~oriented implementations, it is not unusual
to see the tuples stored in sorted order on the primary key,
but this is an implementation detail of specific systems and
is not a property of the relational model per se.

For the balance of this appendix, the terms "column®
and "attribute" will be used interchangeably and, likewise,
for "table'" and "relation". The terms "row", "tuple", and

"record" will also be treated as synonyms.

*The term "component" is sometimes used for "data item" in
relational terminology.

A.2 Normalization

A.2.1 First Normal Form

Except for very trivial examples, there will not be a
single, unique way to represent a collection of data (i.e., a
data base) as a group of relations. Some table layouts are
easier to work with than others and, particularly when the data
base is dynamic, careless structuring of the data base can
lead to problems. Fortunately, it is possible to define
"normal forms" for table layouts based on data dependencies

which will circumvent most of these problems.

One type of problem occurs when an attribute can be
decomposed into sub-data items which may be of interest to a
user. For example, it is possible to store a date as a six
character alphanumeric string representing day, month, and
year or year, month, day or some such combination. In this
form "date" can be a single attribute. However, if this is
done it becomes impossible, within the relational framework, to
handle a request such as "fetch all table entries where the
year is 1@77Y. Since year is not an attribute of the rela-
tion, it 1s necessary to rephrase the request in the more awk-
ward form 'fetch all table entries where date is between 1
January 1877 and 31 December 1977". Similarly, a location on
the earth’'s surface can be a single attribute (named, perhaps,
"location") or expressed as a pair of attributes - latitude
and longitude. The former approach, using the single attribute
"location”, would make it impossible to retrieve tuples based
on latitude value even though the information is implicitly

present, because "latitude" would not be an attribute of the

relation in that formulation.
A related problem can be illustrated by the following

example. Suppose we wish to set up a data base for presiden-
tial elections. One table might have election year, (primary

A-4

key), winner, winning party, winner's electoral votes, Iloser,
losing party, and loser's electoral votes as its set of attributes.
{(Note, by the way, that winner and loser are defined over the
same domain, the set of all presidential candidates and, like-
wise, the two "party" attributes are defined over a comﬁon
domain. Also, both "electoral vote" attributes are defined
over the set of all nonnegative integers.) However, while we
are accustomed to thinking of the United States as having a two
party system, in many years there have been more than two major
party candidates (in the election of 1860, Lincoln ran in a
four candidate field) and, of course, George Washington ran
unopposed. Thus, while most tuples would have single values
for the attributes loser, losing party, and loser's electoral
voTes, some tuples would have Two values for each of this set
of attributes, some would have three values, a couple of tuples
would have none. As awkward as this is from an implementation
standpoint, it is even more awkward for a user to work with.
The solution is to split this table into two tables, .one

(keyed on election year) with the attributes "election year",
"winner'", "winning party", and ”electorgl votes', while the
other (keyed on election year and loser, together) would have
""election year", "loser", "losing party", and "electoral votes"
as its attributes, with unique values of each attribute of

each tuple.

These considerations lead to the concept of a first
normal form. First normal form has a rigorous mathematical
definition, but it can be easily summarized as follows:

A relation is in first normal form if each attribute

is single-valued and nondecomposable.

In order for a relational data base management system to work
properly, all relations must be in first normal form.

A.2.2 Apnomalies and Bigher Normal Forms

A relational data base can exhibit three kinds of mis-
behavior, called "anomalies" in the literature, even when all
of its relations are in first normal form. The first of these
iscalled the update anomaly. Consider again the "election™
relation with the attributes election year, winner, winning

party, and electoral votes. Suppose we have the two tuples:

<1968, Nixon, Democrat, 301>
<1972, Nixon, Democrat, 520>

f we discover this mistake while processing the 1872 tuple,
for:eéample, we must be careful to change Nixon's party in
both tTuples. Moreover, we must check the "election losers”
relation to look for tuples containing Nixon to correct his
party affiliation there as well, or else the data in this hypo-
thetical data base would have inconsistent facts about Nixon.
Since one of the most important goals of a data base manage-
ment system is to maintain data consistency, this is perhaps

the most sericus of the three anomalies.

The second type of anomaly is called the insertion
anomaly. If the relations are not well chosen, it may be
impossible to represent certain facts in the data base. For
example, it is not possible to represent the fact that Ronald
Reagan is a Republican or that Scoop Jackson is a Democrat in
this data base since these men were not their party's candidate
in 1976. More seriously, between August, 1974, and November,
1976, it was not possible to represent the fact that Gerald
Ford is a Republican in the hypothetical data base, since he
was not a candidate for either the presidency or vice presidency
until the 1976 election. This could be a serious problem if
the point of the data base was to supply data about presidents.

The final anomaly, the deletion anomaly, is harder to

A-6

illustrate. Suppose that a data base exists to support a
manufacturing or wholesaling activity, with a relation having
the name "item reorder" and attributes "item number", "supplier",
"supplier address', and "minimum reorder aty". Suppose fur-
ther that supplier XYZ is a supplier for item W, and that ¥ is
the only item XYZ supplies. If the firm decides not to order
any more of item W and deletes this tuple then, since the tuple
has the only occurrence of supplier XYZ in the entire relation,
we also lose XYZ's address. If the firm ever intends to deal
with XYZ in the future, this loss of information will be an
unwanted side effect.

Second and third normal forms were developed as tools
to help data base designers select good sets of relations,
relations which avoid the three anomalies described zbove.

Second normal form is primarily of historical interest, as =

step towards development of third normal form. Let A and B
be two attributes in a relation R. If knowledge of the value
of A uniquely determines the value of B, (e.g., "supplier”

determines "supplier address" and "winner"” determines “"winning
party") then we can call A a determinant. B will be in third
normal form if it is in first normal form and every determinant

is a candidate key.

Recently a fourth normal form has been defined to handle
vet another type of problem. If an attribute A determines a
set of values for attribute B, then the relation is in fourth
normal form if A is a determinant of all remaining attributes
in the relation. There is no specific anomaly associated
with relations in third but not fourth normal form. but such
relations are not as easy to maintain properly as fourth normal
form relations.

These higher normal forms are simply formal ways to
structure sets of relations so that each relation expresses a

single concept. It should be emphasized that these higher
normal forms are pot required for a relational data base to
function. For that, only first normal form is requiredl
Rather, these normal forms should be considered by a data base
designer to be guidelines for selecting sets of tables and

takble layouts that are easy to work with and easy to maintain.
In particular, the design of the Integrated Data Base Manage~
ment System will allow it to function guite well without
necessarily having the data in any normal form higher than first
normal form. The features which permit this are:

(1) TUse of higher level data sublanguages,

(2) Allowance for null attributes in tuples, and

(3) DNon-necessity for keys and random ordering for
stored tuples in data files.

Higher level languages are particularly useful for finessing
the update anomaly. Instead of looking up the 1968 and 1972
tuples in the hypothetical "elections' relation to change
Nixon's party affiliation to Republican, a command in our
system's query language would say:

UPDATE ELECTIONS
) (WINNING PARTY = REPUBLICAN)

WHERE ELECTIONS.WINNER EQ NIXON #

(This would still require looking for Nixon in the "losers"

relation.)

Since keys are not an integral part of the storage and
retrieval operations in the system's physical interface, and
since null values are permitted for any attribute of a tuple
(the latter feature is not possible without the former), it is
possiple to store facts in a relation maintained by this system
even though a tuple cannot properly be defined for the fact.

For example, tuples such as < -, Reagan, Republican, - > and
< -, Jackson, Democrat, - > could be added to the "losers"
relation descfibed earlier. While this does not provide a
complete solution to the insertion and deletion anomalies, it
does partially mitigate their effect.

A.3 Relational Operations and Query Languages

There were three views of relations offered previously
and each of these views suggests a series of basic opera-
tions which ought to be applicable to relations in a relational
data base.

One of-the views was mathematical, the perception of
the relations as sets of n-tuples. Hence, 1t follows that
the common set operations such as union, intersection, and
difference should be performable on relations provided, of
course, that the two sets to be operated on are compatable
{i.e., that the two relations are defined over the same set of
domains taken in the same sequence).

The ,view of a relation as a table implies that table
look-up operations are applicable to relations. A basic set
of tabular operations can be defined: select a column or set
of columns ("project"), select a row or set of rows based on
some logical criterion ("restrict'), and create a new, larger
table by cross-referencing two tables of lower degree over a
common domain ("join'). Just as the set theoretic operators
take two sets as input and vield a single set as output, these
tabular operations take one or two (in the case of "join")
tables as input and produce a new table as output. Finally,
the view of a relation as a file of records suggests that
data manipulation commands such as insert, delete, and update
shoula be supported (data retrieval, of course, is equivalent

to a2 restriction, or a restriction followed by a projection

over the desired attributes). These nine operations con-

stitute a relational algebra for manipulating relations, and

this relational algebra provides the foundation for guery
languages to support information handling in a relational data
base. We say that a data sublanguage is relationally com-

plete if it is possible to perform all relational operations
in the relational algebra using that language.

A rather different point of view is adopted by query
languages based on relational calculus. It is possible to view
a relaticon as a proposition in the first order predicate
calculus, and to view the individual n-tuples as "axioms."

In languages based on relational calculus a user formulates

his or her query as a statement in the first order predicate
calculus defining a new relation, where that statement may

well include universal and existential quantifiers (y, “"for

all," and 3, "there exists", respectively). Codd8 was the

first to propose the relational calculus, and he went on to
demonstrate that the relational calculus is relationally complete.
The advantage of relational calculus over relational algebra

is nonprocedurality, that is, the user formulates a query by

defining the results of the retrieval and not as a series of
processing steps. It is left for the system to interpret
the query statement and to formulate its own retrieval procedures.
Nonetheless, the unfamiliar and highly mathematical notation used
by the relational calculus appears to have been an impediment

to its widespread acceptance. Recently, however, a relational
calculus-based language named QUEL has been developed by
Stonebraker, et. a1.37,which dispenses with the need for the
quantifiers and which makes heavy use of English key words.

Such a language would presumably have a higher degree of user

acceptance.

A-10

Another approach to a nonprocedural guery language
made palatable to casual users by use of Engiish key words
is embodied in IBM's experimental SEQUEL 1anguage4, which is

based on the concept of "mapping.” In a mapping, known
quantities ~- specified in a Boolean predicate —-- are mapped
into an unknown quantity -- the data items to be retrieved

by means of the relations in the data base, much as mathe-
matical functions may be viewed as mapping sets into other
sets. In SEQUEL, mappings may be nested inside other mappings.
This feature gives SEQUEL its power and yet its most
significant drawback; although the language is purportedly
"directed at the nonprogramming professional,”8 examples in
Cha.mberlin4 and Datgi)suggest that formulating queries in
SEQUEL would be difficult for users not trained in recursive
programming languages such as Algol.

A fill-in-the blanks language call Query-by-Example
has been developed by Zloof40. The user enters the ﬁames
of the relations against which a query is to be made on a
graphics CRT terminal and the system responds by drawing in
a skeleton table with columns and headings. At that point
the user fills in one or more rows with examples of ithe desired
result. The known values are keyed in directly while unknowns
are representied by arbitrarily-chosen sample values which are
flagged in some way. Psychological studies of user interact-
ions with Query—by-Example38 demonstrate that Query-by-Example
is easy to use, particularly for the casual or novice user;
has a high degree of retention for infrequent users; and is
"behaviorly extendable,' that is, a user can start by learning
just enough of the language to get by and add to his or her
knowledge as necessary. However, although a "linearized"
version of Query-by-Example exists for use with batch input
or non-graphics terminals, that form of the language is more
bulky to use and not nearly as convenient.

A-11

Finally, there has been much interest in the use of
natural language (specifically English) as a very high level
query language. In particular, there has been much research
on the part of artificial intelligence theorists on develop-
ment of a natural language interface for relational data base
management systems (the consensus among researchers is that
the relational data model facilitates natural language inter-
face development to such a degree that if a natural language
front end cannot be developed for a relational system, then
it cannot be developed for a data base management system at
all). There has also been much work done on automatic trans—
lation of questions into first order predicate calculus, so
that a relational calculus-based system may yet be commercially
feasible. But a true natural language interface is still a
loné way off.

- A.4 History

The late 1960's saw the development of several arti-
ficial intelligence-oriented systems based on the storage of
data as a set of binary relations (such as MOTHER-OF<JACK,MARY>),
However, textbooks on data base management systems (e.g., Datelo,
Martin?% and survey articles (Chamberlins) are unanimous in
ﬁointing to the 1970 article by E. F. Codd6 as the seminal
paper providing the impetus for the theoretical and practical
development of the relational model of data. A subsequent
series of articles by Codd continued to develop the theoretical
foundations of the relational data model, including definition
of a "relational algebra" and specification of prototype data
sublanguages based on first order predicate calculus and on

the relational algebra8

tion7, and conceptual design of an English language interface

, development of the theory of normaliza-
between a casual user and a relational data base management

systemg. It is rare in any science for a single individual
" to provide nearly all of the theoretical basis for a major new

A-12

branch of technology, and rarer still in computer science.
Nonetheless, it is c¢lear that Codd is the founding father of
the relational model of data.

Curiously enough, Codd does not appear to have made a
direct contribution to the implementation of any working proto-
type relational data base management system. Most prototype
systems have been constructed in 2z university environment or

in IBM research laboratories (for a list and description of

3 10

these systems and the following two see Chamberlin® or Date

).
General Motors implemented a system called RDMS in 1972 (not

to be confused with MIT's system of the same name) and RISS

was built for Forest Hospital in Des Plaines, Illinois. Two
0of these systems - RISS and INGRES - are commercially available
for use on DEC PDP-11's. The vast bulk of research on
relational data base management systems has been conducted
under IBM auspices (all of the people mentioned in this sec-
tion, Chamberlin, Codd, Date, and Martin, are IBMers, as is Zlooi
the person who developed Query-by-Example). However, IBM has
been careful to label all of its work on the relational data
model as "experimental", and it is not likely that an IBM pro-
duct in this area will soon be forthcoming.

A.5 The Advantages of the Relational Model of Data

There are two competitive data models, the "hierarchical"
model typified by IBM's IMS system and the "“network" model
devised by the Data Base Task Group of the CODASYL committee5,
It is sufficient, however, to compare the relational data
model to the CODASYL model since the hierarchical data model
is not general - there are data relationships which can be
represented in the relational data model and in the CODASYL
model which cannot be represented in the hierarchical model.

The primary advantage of the relational data model viz-
a-viz the CODASYL model is data independence. There are two
forms of data independence - physical independence and logical
independence. Physical independence means that the user
should be shielded from details of the physical storage of the
data, including character representation methods, byte size,
record blocking, physical access method, etc. The relational
model functions gquite well in this respect, since the user
sees only the tables and attributes and sees nothing of the
underlying physical implementation. In the CODASYL model,
the files may be envisioned as labeled vertices of a directed
graph with labeled arcs, where the labels on the arcs define
relationships between the entities of one file and the entities
of another. Typically, a CODASYL model is implemented with
pointers from one record in a file pointing to a record or
linked 1list of records in another file, and so the user must
often be aware of decisions made by the Data Base Administrator
concerning physical record placement and access paths. In the
CODASYL model, both structural and nonstructural features,
€.g., details of storage structure and access strategy, are
interwoven with the logical structure. Physical structure
changes which would be transparent to a user of a relational
data base would not be transparent to the user of a CODASYL
data base.

Logical independence is generally defined to mean

that, within reason, application programs which operated prop-
erly before a change to the logical structure of the data base
should continue to work after the change. Here, again, the
relational model has a major advantage over the CODASYL model.
Changes such as adding a column cause no problem to the user,
although small changes in information can cause the data to

be unnormalized and require major restructuring of the data
base. However, it is equally possible that small changes,
for example changing a one~to-one relationship to a one-to-

A-14

many or, especially, a one-to-many relationship to a many-to-
many, can also cause nontrivial restructuring of a CODASYL
data base. Consequently, it is gemnerazlly conceded that the
CODASYL data model has considerably less logical independence
Than the relational data model.

Another major advantage of the relational data model
over the CODASYL model is its flexibility, although it is not
sO much that the relational model is flexible as that the
CODASYL model‘is inflexible. Recall that relationships and
access paths must be formally specified in the CODASYL data
definition schema, and if the data base administrator should
happen to overlook some relationship between records in a
pair of files, then users of the system will be unable to re-

spond To a query which requires that (missing) access path.

Two interwined issues are complexity and clarity and,
here again, the relational data model has the advantage. The
CODASYL model has no fewer than six data constructs, any of
which can bear information which could not otherwise be
derived. In the relational model there is precisely one
such data construct (the n-ary relation). Moreover the set
construct, which supports one-to-many relationships, performs
three roles:

(1) It carries information,

(2) It defines access paths, and
(3) It provides a mechanism for integrity constraints.

The multiplicity of information-bearing constructs and the
multiplicity of roles make it hard to present the contents and
interrelationships in a CODASYL data base consisely. This is
reflected in Martin's statément®S that "a badly drawn schema
can confuse rather than clarify, and one often sees badly
drawn schemas' (pg. 83).

A-15

The simplicity and clarity of the relational data
model contribute to ease of use, particularly for the untrained,
nontechnical, and/or casual user. This is a point conceded
by even the most outspoken advoecates of the CODASYL model.

The reader might well ask why, if there are all of
these fore-mentioned advantages of the relational model over
the CODASYL model, there should be any advocates of the CODASYL
data model at all. One reason may be that the CODASYL data
model provides the user with highly visible navigation routes or
access paths through the data base and, consequently, the data
sublanguages for manipulating data in a CODASYL data base tend to
be procedural in nature. That is, a gquery is input to a CODASYL
data base management system as a series of steps to be taken
which will derive the intended answer. While this will hold
back the untrained or trained but casual user, direct control
of data access provides a feeling of intimacy with the system
which can be very important to some classes of user.

Associlated with this is the generally-accepted (though
not backed up by hard prooi) point of view that CODASYL data
base management systems are more efficient than relational
systems. The CODASYL data model trades off data independence
for efficiency's sake and, in some implementations, the quest
for machine efficiency has been taken to the point where a
user may be accessing a record while it is being updated to
save the overhead involved in testing, setting, and releasing con-
currency control locks. However, there are perils in evaluating
system efficiency without consideration of whether the users
are capable of making the most.efficient use of their own
time. Everyone understands that there is a tradeoff between
main memory and execution time in designing a system, but fewer
people seem prepared to grasp the fact that there is a tradeoff
between system efficiency and user efficiency. The latter is,
granted, hard to quantify since it includes not only the time
a user must spend devising and inputting his query, but,also

hidden costs in demands on the Data Base Administrator's time
and ingenuity, training time to teach new users how to use the
system, etec. Howéver, problems with user efficiency can cause
a system to be under-utilized and, oftentimes, abandoned (sece

Lucaszz).

It is believed that this system will be competitive
with existing commercial CODASYL data base management systems

in terms of system efficiency, and that tﬁe many user-oriented

advantages offered by the relational data model will help the
user and system together achieve their fullest potential.

A-17

v

APPENDIX B -~ ADDITIONAL TOPICS
B.1 Dynamic Memory Allocation
B.1.1 Approaches to Dynamic Memory Allocation

In order to maintain the User Control Blocks, Relation
Control Blocks, the command queues, buffers for processing
large tape files and on-line data files, etc., with any
degree of efficiency it might be necessary for the Integrated
Data Base Management System to hold a large, contiguous block
of memory and to allocate and deallocate portions of this
""free space'" for control blocks, buffers, and so forth as
needed. There are three basic approaches to managing this
free -space: fixed-size pages, variable-sized allocation
with a free space list, and "buddy" methods. Each of these
methods is discussed below. Whether or not one of these
techniques will be included as part of the Integrated Data
Base ‘Management System will depend upon the operating system
on which it is implemented.

Paging is the easiest approach to implement and its
memory overhead -- a single bit map with one bit per page -~
is quite low. However, even when the system supports more
than one page size there will normally be a certain amount
of wasted space within a pagé where the space.required is
less than the size of the page. This wasted space is called
"internal fragmentation", and it can be a serious problem
leading to system degradation.

A very different approach is to allocate precisely as

much memory as is required to service any given request.

‘Such an approach results in the free space being checker-

boarded into blocks or areas which are in use and blocks
which are available for allocation, where it is rare for
any pair.of blocks to be the same size. Typically, the

available blocks are chained together on some sort of linked
list. Knuthzq,Section 2.5 describes algorithms for maintain-
ing free space lists and allocation strategies for selecting
which available block to allocate to a given request for
memory. This class of dynamic memcry management schemes

has only negligible internal fragmentation, but it suffers
from the more subtle problem of external fragmentation.
External fragmentation describes a situation where the free
space becomes choked with tiny available blocks, each ftoo
small to satisfy a typical request for memory. External
fragmentation not only raises the cost of searching the

free list of available blocks, but in the limit it can re-
sult in a system blockéée where no pending request for

space can be satisfied, even though sufficient free space
exists to satisfy them, because the available memory is
scattered in pieces too small to be of use. '

The "buddy' methods represent a compromise between the
above two approaches. In the binary buddy method all
blocks -~ allocated or available —- are of size 2k for some
integral value of k . If a request for a block of size x
comes in, then the system would determine the smallest j
—such that 2j > x . If there is a block of that size
available, then it would be allocated immediately. If not,
then the system locates the smallest available block larger
than x and splits it in half (repeatedly, if necessary)
until a block of size 2j results. BSince each allocated
block in the system must have been created by splitting a
larger block in half, when a block is released the system
checks to see whether the other member of the pair -- the
buddy -- is also free. If so then the two are combined to
reconstitute the original, larger, block and then the system
looks for that block's buddy to rebuild even larger free
blocks.

Intuitively, thg buddy method approach should be worse -
than the other two, since it is susceptible to both in-
ternal and external fragmentation. Moreover, it is quite
possible to have a large, contiguous block of unallocated
memory which cannot be used in its entirety because it is
composed of two smaller blocks which, though available, are
not buddies and cannot be coalesced. Nonetheless, theoretical
calculations and simulation Studiesmlzssuggest that buddy
methods do, in fact, outperform the variable~sized allocation
method both from the point of view of total fragmenta"cion and from the
point of view of efficiency of the allocation and dealloca-
tion operations. A recent study by N;glsenzgsuggests that
the fragmentation problems of the binary buddy method are
too severe when used in simulation systems, but that study
conflrmed the execution efficiency of the buddy methods
noted by Knuthzl

B.1.2 The Fibonacei Buddy Method

A variation on the binary buddy method proposed by
_Hirschberglguses the Fibonacci numbers instead of powers of
two. Table B-1 shows the Fibonacci Sequence, where each
number in the séquence (after the second) is the sum of the
previous two. The binary buddy method is based on the
equality 25 = 2571 &+ 251 Gpite the Fibonacei buddy method
is basig on the equality F = Fk—l + Fk—z , Where Fk is
the Fibonacci number. Table B-2 shows the most
important advantage of the Fibonacci approach over the
binary approach, namely, that the Fibonaceci method presents
the user with a greater variety of block” sizes for a given
limit -- particularly at the low end of the spectrum.

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,

Table B-1: The Fibonacci Numbers

Range \\ Fibonacei \ Binary
\
! |
1 - 100 ‘ 10 7
100 - 1100
1100 - 120600 5 -3

Table B-2: Counf'of Numbers in Various Ranges

For a while, the Fibonacci method was an academic curious-
ity. Hirschberg's calculations and his simulation study
(using the data of Minker, et. al.za) demonstrated that the
Fibonacci buddy method outperformed the binary buddy method,

but he was not able to produce an efficient algorithm for

implementing it. Then Thomas and Cranston39 came up with an

,efficient method for implementing the Fibonacci scheme that
they were able to prove was within one bit of the absolute
minimum storage overhead needed to implement any buddy method.
Each block -- freed or in use -- wastes one word (or one byte,
for an eight-bit byte-oriented machine). This overhead word
(byte) has four fields: a one-bit "A" ("allocated") field, =z
one-bit "B" field, a one-bit "M" field, and a "k-value"
(indicating that the block is of size F,, the k™ Fivonacei
number). The B bit tells whether this is a left buddy or a
right buddy, and the M bit saves half of the original block's
B and M byte. If B =0, then the M bit is the original
block's B bit and if B = 1 , the M bit is the original

block's M Dbit.

The Fibonacci sequence is stored in an array (starting
with 2 and 3 to generate the sequence) and associated with
each number is a pointer to a linked list where free blocks
of that size are chained together. If a block of size x
is requested, then the array is searched to find the smallest
bloeck size (strictly) larger than x. If that list is empty,
then the array is searched to find a larger block which can
be split (and resplit, if necessary) to create a block of the
appropriate size. When a block is freed, the B bit, its size,
and its address are used to compute the address of the buddy.
If the buddy's A bit shows that it, too, is free, then the
two are combined to reconstitute the original block, and then
the address of the original block's buddy is computed and the

process repeats itself.

Not only does the Fibonacci method have the considerable
advantage of permitting a variety of block sizes, but it lends
itself to generalization and extension to permit a system designer
to fine tune for a specific purpose. One approach to general-

F + F, .* | where the first i
k-1 i-1i
numbers in the sequence are specified. Such a sequence is even

ization is to define Fk =

denser than the usual Fibonacci sequence, as shown in Table B-3.
Clearly, the more different block sizes that are available,
the smaller the internal fragmentation will be. Another

extension of this technique is to use different generating

seguences. There is no particular reason why the sequence
should begin 1, 2, 3, 5, ... and not 2, 4, 6, 10, ... or 3, 7,
10, 17, Therefore, if a system designer knows in

advance that requests of certain particular sizes will be very
frequent in the system he can try different values of 1 and

different starting sequences to optimize for those sizes.

xNote that 1 =1 and Fl = 1 defines the binary buddy approach.

There is further evidence, beyond Hirschberg's own calcula-
tions and simulation to support the suggestion that a Fibonacci
buddy method is 1likely to be the best choice for a dynamic memor
allocation algorithm. This expectation is reinforced by

Nielsen's study‘?'9

although Nielsen did not test the Fibonacci
buddy method directly, since the Fibonaceci buddy method com-
bines the best features of the top-rated "multiple free list"
algorithm and the high-rated binary buddy method. Moreover;
the efficacy of the Fibonaceci buddy method in the face of an
unknown distribution of request sizes and durations is supported

by the conclusions of Peterson and Norma&l

Range i=1 | i=2 i=3 i=4

1
2 - 100 7 l 10 12 14
100 ~ 1100 4 ! 5 & 7
1100 - 12000 3 i 5 6 8

Table B-3: Count of Numbers in Various Ranges

tor Fp = Fp o f Py

B.2 Data Integrity, Consistency, and Quality
B.2.1 Sources of Erroneocus Datsa

Sibley and Frylshave identified five sources of poor quality
data in a data base. The data might be incorrect because it
was:

(1) never any good (garbage in equals garbage out)
(2) altered by human error
(3) altered by a program bug

¥
Generated by first 1 numbers in the sequence 1, 2, 3, 4.
B-6

(4) altered by a machine error
(5) destroyed by a major system catastrophe.

In addition to these five problems, one can add problems relat-
ing to data consistency. Consider the effect of a system
crash during an update. It is seldom possible to restart the
update procedure at precisely the instant where the system
malfunctioned, and simply restarting the update without some
mechanism to recreate the data as it was before the crash will
not often give the reguired results. For example, suppose
the machine crashes while processing an update to give all
systems analysts a 10% raise. If the update is simply
restarted after the system comes back up without restoring the
data base to its initial state, some systems analysts will get
a 21% raise. A second source of consistency problems oceurs
when two users update the same table simultaneously. These
problems will be addressed at greater length in another section

dealing with user concurrency.

Ensuring data quality and consistency requires both the
ability to detect erroneous data and the ability to restore
affected portions of the data base to a previous state. To
-2id in the detection of erroneous data, there will be provision
for user-input data validation rules through an integrity sub-

system and procedures for automatic backout and recovery.
B.2.2 Backup and Restoration
B.2.2.1 Audit Trails

An audit trail (alsoc called a "journal' or "log file')
is a tape file which records:

(1) Beginning and end of all commands
(2) VUser-id for each command
(3) "Before" and "after'" images of all changed records

(plus) images of inserted and deleted records
(4) Time and command identifier for each change.

The audit trail plays three roles. First, an audit trail is
convehient for a quality audit of the data base, to detect
data which is erroneous, but semantically plausible. Second,
an audit trail helps detect the source of errors (whether
discovered during a formal quality audit or detected informally
by a human user). Finally, and probably most important,

is the role of the audit trail in recovery from a system
crash. The entries in the tape file can determine which
commands have been initiated but not completed prior to the
crash, and backout procedures can be initiated to recover the
contents of those tables to thelr state prior to the initia-
tion of the incomplete command. Moreover, if the data base
has been checkpointed then the audit trail can help roll for-
ward from that checkpoint to recover from major system mal-

functions.
B.2.2.2 Internal Backout Prowvisions

It is very important that the system be able to undo any
-changes made to a table for two reasons: (1) the command
may be blocked from completion by an I/0O error or a semantic
error, or (2) the system may crash during the course of execut-
ing a transaction. The latter can be handled by resorting to
the audit trail, but there may be a more efficient method for

restoring a table.

There are a variety of techniques in current use for pro-
viding backup and restore capabilities. The simplest but least
efficient approach is to create and maintain a second copy of
the origiqgl state of the file. This makes restoration an easy
matter, but it 1s expensive and time-consuming. Differential
files have been espoused as a means of getting around the dump-~

ing of entire files to provide backup copies. "After'" images

of all changed records are kept in a separate file —-- the
differential file -- and record accesses begin by searching for
the required record in the differential file, using the original
file only if searching the differential file comes up empty.

Then only the somewhat smaller differential file must be copied
before a change transaction begins. Differential files have
their drawbacks, most notably-with respect to restoring deletions
and due to the two-pass record access reguirements. Severance
and Lohmansgdescribe a method for alleviating some of the latter

difficulties, but deletions would still be a problem.

An approach with some similarities to differential files
is taken in this system. This approach makes use of a linked
list in the tabular data storage area of "before" images of
changed physical pages and another linked list in main storage
that is attached to a Command Control Block and which contains
the page id of each page for which a "before" image has been
recorded during processing of the associated command. While
a2 physical page 1s being rélled in prior to being changed, the
system scans the list of page ids to see whether this page is
recorded on it. If not, then the first order of business
. once this page is in core is to select an empty page slot,
create an entry in the list which records the physical id for
the page to be changed and the page id for the empty slot, and
then, before doing any further processing, copy the page in

core into the slot. After the page is updated, it can go
back into its proper location on the disk. Backing out the
effects of a command and restoring a table to its state before
initiation of the command is simple enough. The system
merely scans down the list connected to the Command Control
Block, entry by entry, and for each entry in the list it rolls
in the before image of the physical page and writes it back to
its proper location. Notice that this scheme preserves the
pointer mechanism for the linked list of physical pages. If
the command goes through to completion withlno problems (hope-
fully the normal case!) then the entire 1list of "before™ images

B-2

in the tabular data storage area can be freed up with no
noticeable overhead providing they themselves are maintained

in a linked 1list.

It will be necessary to record the new free page head
pointer and backup page pointer in the audit trail when a free

page is selected for copying.
B.2.3 The Integrity Subsystem
B.2.3.1 1Integrity Assertions

When data base management systems designers and computer
scientists refer to the "integrity" of data in a data base, they
usually are referring to semantic correctness. Examples of
semantically incorrect data would be a temperature less than
-273.16° Celsius, a latitude greater than 80°, an employvee
record where the first name is "William" and the sex is HE
etc. In the days when data management systems consisted of a
room full of filing cabinets and several clerks, the human be-
ings responsible for data entry could catch most suech errors
with no perceptible overhead. 1In modern, computerized, data
pase management systems certain errors become very difficult
to catch (e.g., ”%emale” employees with obviously masculine
names) and any data validation software included in the system
must exact overhead penalties in the form of extra time to
perform the tests and extra space to store the knowledge base
and the code itself. Designing a space and time—efficient
structure for the knowledge base, and resolution of the
trade-offs between the expense of performing the tests and
the utility of catching the errors, are major problems which

confront the designer of a data base management system.

The normal approach to data validation in a relational

data base management system is the "“integrity assertion" (also

called an "integrity constraint'). An integrity assertion

is a true/false predicate whose value will be "true'" if and
only if the records of the updated table are semantically cor-
rect. Suppose SPACECRAFT-DATA and EMPLOYEE are tables con-
taining satellite data and personnel records, respectively.

Then typical assertions might be defined as:

DEFINE ASSERTION Al ON SPACECRAFT-DATA: TEMP > -273.16
DEFINE ASSERTION AZ ON SPACECRAFT-DATA: LAT < 1.5708.
DEFINE ASSERTION A3 ON EMPLOYEE: AVG(SALARY) < 30000

A Y

(where temperatures are stored in degrees Celsius and latitudes

in radians north latitude). Eswaren and Chamberlinlzidentify

five ways to classify integrity assertions:

(1) record vs. set

(2) state vs. transition

(3) 1immediate vs. delayed

(4) invoked on all cﬁhnges vs. invoked only for
specific types of changes (e.g., deletions only)

(5) hard vs. "soft"

Not all of the thirty-two (= 2°) combinations of these labels
are likely to be useful, and some of these are expensive to
support. The Integrated Data Base Management System will sup-
port precisely the following combinations, with "hard! and
"soft" variations on each:

(1} immediate-record-state-update only
(2) immediate-record-transition-update only
(3) immediate-record-state-insert only

(4) immediate-record-state-both insert and update

What is to be performed by the above assertion classes can be
determined by the description below.

" B-11

Immediate-type assertions are tested each time a data
item is changed. Delayed assertions are tested at the end of
& command or sequence of commands. The wvalue of delayed
asserticns is that a proper and correct sequence of updates
can cause a temporarily invalid state of the data base to occur.
For example, consider a personnel data base with an assertion
that the "number of employees” data field in a record of the
"department' table must equal the sum of the number of records
in the "employee" table with that department number. Adding
or deleting a recofd in the "employee" table would cause this
assertion to be violated until the appropriate data field in
the "department'" table was also updated. Delayed assertions
are not necessarily expensive to implement, but analysis of
projected user requirements suggests that their utility in a
scientific environment, no matter how useful they are in a
business environment, would not be worth the cost of implementing

and supporting such a feature.

Set-type integrity asseritions are distinguished from record
assertions in having predicates which are functions of the
entire table (e.g., assertion A3, above). These are expensive
to perform since every record must be accessed when any tuple
is changed. For that reason the Integrated Data Base
Management System shall not support set assertions. It is
not clear whether there would be any benefit to allowing the
owner of a table to specify that certain assertions be tested
only on insertion or only on update of a record, although this
is simple enough to support and will be, in fact, supported by
the system. One type of assertion which applies only to up-
dates and which may be useful is the transition assertion, which
relates allowable values of a data field in an updated record
to the former value (e.g., DEFINE ASSERTION A4 ON EMPLOYEE:
AGE > QLD AGE). Again this would be simple enough to
implement and inexpensive to perform, and it will be implemented

within the system.

One enhancement whose value is clear is the "soft" asser-
tion. Unlike "hard" assertions, which abort commands when
semantic errors are detected, a soft assertion would merely

issue a warning.

One final consideration is the allowable complexity of
predicates for immediate assertions. Cleariy, the simpler

the predicates are, the easier it will be to store, decode,
and apply them. If we assume that predicates have the form:

<predicate>:: =<field name> <comp> <value>

where <field name> is the name of a data field in the table

and <comp> is a comparison operator (i.e., =, <, > 1T, LE

> r 3

EQ,'GE, GT, or NE), then the allowable forms for <value> are

3

(1) a constant

(2) another data field

(3) =a data field plus or minus a constant

(4) a data times or divided by a constant

(5) a data field times or divided by a constant plus

or minus a constant

The "field name" will be either another data field of the same
table or (if transition assertions are supported) the same
field name as on the left side of the predicate, preceeded by

the word "OLD. Some examples are:

DEFINE ASSERTION A5 ON EMPLOYEE: AGE = OLD AGE + 1
DEFINE ASSERTION A6 ON SPACECRAFT-DATA: START-DATE > END-DATE

By restricting the complexity of the predicates and the
scope of the assertions it is possible to support immediate
integrity assertions by a fairly simple table, attached to the
Relation Control Block in main storage much as the Domain

Extension. The fields of this table would include;

(1) assertion name

(2) data field name (left side of comparison)

(3) applicability code (insertion only, update only,
both)

(4) comparison operator

(5) constant

(6) data field name (right side of comparison)

(7) multiply/divide flag

(8) constant

(9) add/subtract flag

By a suitable choice of null entries, this set of fields is

sufficient to describe all valid predicates.
B.3 A Locking Mechanism to Support Concurrency
B.3.1 Problems Introduced by Concurrent Updates

One major objective of a data base management system is
to provide for the guality and integrity of the data. There-
fore, it makes sense that the system should not itself introduce
inconsistencies into the data. One source of system-induced
inconsistencies are problems which can arise from permitting
concu;rent processing of the same files (tables) of data by

two or more users.

There are two broad categories of problems which can arise
due to concurrent processing. The first of these is called the

"lost update', and it is a counsequence of the fact that data in
a data base management system is stored on external media (disk,

drum) but must be copied into main memory before being read and/

or edited. Suppose that user 1 initiates process 1 to update
Record R, and suppose that user 2 simultaneously initiates pro-
cess 2 to edit the same record. A possible sequence of events

{0

-14

is:

(1) Process 1 copies R into main memory and begins
to update the record.

(2) Process 2 copies R into main memory and begins
its own update.

(3) Process 1 finishes and copies R back to disk.

(4) Process 2 finishes and copies R back to disk.

Thus, the results of the first user's efforts are overwritten,
hence the name '"lost update"™. Fortunately, the design of the
propeosed Integrated Data Base Management System (which uses a
common buffer pool and begins any data retrieval by searching

for the required physical page in the buffer pool before initiat-
ing“any disk I1/0 request) will alleviate the lost update problem
to some extent. However, the case of a "pipelined CPU" or

multi-CPU environment would still pose difficulties.

A more insidious problem is the so-called "phantom
record”. Suppose that user 1 is incereasing the salary field
of some set of records in a personnel file (e.g., giving all
systems analysts a 10% raise) while user 2 is listing all
records in the personnel file where the salary is above a
certain threshold. 1If these two processes run concurrently,
then depending upon the relative order in which the records
were accessed some systems analysts whose salaries were in-
creased above the threshold might be listed and some might not --
these are the phantom records. Note that this type of problem
is not a loss of data integrity, but a loss of process integrity.
One feels, intuitivg}y, that the second process' results should
list all the systems analysts where salary changed from below
the threshold to above the threshold, or else none should be
listed -- anything else is inconsistent.

The standard approach to retaining data consistency with

concurrent users is through the use of some sort of locking

mechanism on the data. The basic rule is that data consistency

can be maintained if and only if the results of two concurrent
processes are indistinguishable from the results of the same

two processes run sequentially in some order. Considering
again the example used to describe the phantom record problem,
it is acceptable to have all of the systems analysts whose
salaries were lifted over the threshold included in the listing,
since this is equivalent to executing process 1, followed by
process 2. It-is equally acceptable to have none of the systems
analysts included, as that is equivalent to executing process

2, foliowed by process 1. As that exhausts the possibilaities,
nothing else is acceptable. Notice that the rule is always
satisfied if the two processes in question only read the data
and do not change it. However, if a process wishes to change
some piece of data, it will be necessary to wait until all other
processes operating on that piece of data finish, then that
process must have sole access to the data. Normally, this is
accomplished by means of two different types of locks -- a
share' lock for processes which do not intend to change the
data, and an "exclusive" lock for processes which do. Processes
which request a piece of data are allowed to proceed only if (a)
no other process has a lock on that data, or (b) this process
wishes to lock the data in shared mode and the data has

already been locked in a2 shared mode (depending upon system
strategy, the request may have to check for pending exclusive
use requests). If neither criterion is satisfied then the
request must be placed in some sort of '"pending'' queue.

B.3.2 High Level vs. Low Level Locking

There are two issues -~- not entirely separable -- which must
be clarified in the description of any locking mechanism. The
first of these is whether the locks shall be set by some sort

of high~level logical mechanism (e.g., predicate locks) or

whether the locks should be physically attached to single, in-
divisible, units of data. The high-level approach to locking
in a relational system is seductive. In the command language
of most relational systems, the set of records to be accessed
is implicitly defined by a logical predicate (the "WHERE clause™
of SEQUEL and QUEL). The predicate of the incoming request
and the predicates for active requests are combined into a
Boolean expression (usually in disjunctive normal form) and
tested for satisfiability. An expression is satisfiable if
there exists some consistent assignment of "true" or "false"

to each term in the expression which makes the whole expression

true. Consider the following pair of requests against a personnel
file:

(1) NAME = SMITH AND SALARY > 20000
(2) TITLE = MGR OR SALARY < 19000

The resultant expression is:

(NAME = SMITH AND SALARY > 20000 AND TITLE = MGR) ‘
OR (NAME = SMITH AND SALARY > 20000 AND SALARY < 19000)

The second parenthesized subexpression is always false, since

a salary cannot simultaneously be greater than 820,000 and less
than $19,000. However, the entire expression is satisfiable
since the first subexpression is satisfiable if there is a
manager named Smith making more than twenty thousand dollars.
Therefore, the two requests conflict and one must be blocked.
Note that this says nothing about whether there is such a record
in the personnel file -- sétisfiability does not guarantee that
a conflict exists, only that there is a potential for problems.
Rather, it is the unsatisfiability which is desirable, since

it guarantees that conflict will not exist.

Certainly the high level logical locking approach is mathe-
matically elegant. However, at a higher mathematical level it

is known that satisfiability is an NP-complete problem. Barring
a major mathematical break-through of unprecedented proportions,
there exists no efficient means for testing for satisfiability.
Testing for satisfiability with r transactions and an average

of n terms per predicate must take time proportiocnal to

r-zn. (In fact, r.2" is a lower bound.) Stonebraker, one
0of the designers of the INGRES system, has proposed a similar
approachae. It is easy enough to show that if the incoming

predicate passes Stonebraker's test, than the resultant Boolean
expression must be unsatisfiable, and in fact the test may be
more restrictive than is necessary to detect potentially non-
conflicting requests. Moreover, it is not clear whether there
exist efficient procedures to perform the tests required for

Stonebraker's algorithm,.
B.3.3 Granularity

Granularity refers to the size of a lockable unit, and

once the decision is made to use physical locks, the size of the

data ''granules" to be locked must be specified. Should the
locks be set at the record level? Lower still, at the data field
level? Or higher -- at the physical page or even data base
level?

16

Gray, et al., have proposed a scheme which allows the
user to place locks at a variety of different granule sizes,
depending upon the needs of the particular transaction. This
approach views:the structure of a data base, conceptually, as

a directed acyclic graph structure (see Figure B-1). The system
may place explicit locks at any vertex in the graph, and an explicit
lock at a vertex implicitly locks all descendants in the

graph. These implicit locks do not have to be formally specified
anywhere -- to prevent possible lock conflicts between an ex-—
pPlicitly-set lock at a lower vertex in the graph from conflict-

ing with an implicitly-set lock created by an explicit lock on

’Data Base

Table

Indices

{ Record

? Data Field

Figure B~1: Hierarchy of Lockable Units in a Data Base

an ancestor vertex, all lock requests are required to begin by
walking down the graph from the top vertex placing “"intention"
locks at every ancestor of the vertex to be locked. This
permits.conflicts to be detected at the very highest level.

The advantage of being able to select a fine granularity
is that it permits the maximum possible concurrency. If the
system places locks on units of data which are larger than
necessary, then there is the danger of blocking a second request
which needs the unused portion of the locked data, but which
otherwise does not conflict with the original request.
The disadvantage of using a fine granularity is clear, however --
the more granules which can be locked, the more overhead to
test, set, and maintain these locks will be required. In an
effort to examine the tradeoffs, Stonebraker and Ries performed
a simulation study to explore the desirable size of aJ”granule”.31
Their study can be critiqued on the grounds that it assumes that
the transactions are uncorrelated, and thus it ignores the
n80-20" law.* The study demonstrated that splitting the data
base in ten equal-sized granules performed surprisingly well,
particularly when transactions requested large portions of the
data or when the number of I/0 channels was restricted. Using
fifty granules appeared to do best for multiple I/0 paths (and
it performed as well as ten granules for z single I/0 path) and

for reguests for small portions of the data base.
B.3.4 A Physical Locking Mechanism

The results of Ries and Stonebraker's study suggest that
the table should be the basic lock granule. Several factors

have influenced this choice, most notably the fact that it is
easy to determine which tables are needed for a command in

advance of executing that command -- something not known for

The 80-20 law for commercial data processing applications states
that 80% of the transactiorsagainst a file deal with at most 20%
of the records in the file, and the same applies to this 20%.
Therefore, when the 80-20 law holds, a miniscule 4% of the records
account for approximately 64% of the transactions.

B-20

http:a,"granule".32

records or physical pages -- and the Relation Control Block is
always in core, making it easy tc keep the list of pending
requeéts queued at the RCB (again, not possible for records or

physical pages).

Figure B-2 depicts the basic system elements included
in the locking scheme. The monitor selects Command Control
Blocks from the Command Queue and passes them to the Logical
Interface for execution. The Monitor is an asynchronous process
which i1s awakened by one of three sources, the Application
Program Interface, the Interactive Command Processor,. and the
Logical Interface, depending upon circumstances. Although the
Relation Control Blocks (RCB) zre the "property" of the Logical
Interfﬁce, they are also used by both the Monitor and Physical
Interface.

Both the Apﬁlication Program Interface and the Interactive
Command Processor can activate the Monitor by passing it =
Command Control Block (CCB). The Monitor examines the CCB to
determine what action to take. The Monitor determines which
tables the command will access and the type of'lock needed to
support that access (shared for reads, exclusive for insertions,
updated, and deletes) (note that any CCB will need at most one
exclusive lock). Fdr each table needed by the CCB, the Monitor
will locate the RCB and save a pointer to it. The Monitor can
pass this CCB to the Logical Interface only if:

(1) Each RCB needed has an empty 'pending"” queue, and

(2) Either the RCB is unlocked or else it is locked in
shared mode and the reguested lock is also shared
mode.

If any table fails either test then the CCB will not be
Placed on the Initiator Queue for execution and each lock re-
quest will also be enqueued at the RCB. The CCB will be given
&2 copy of the list of pointers to RCB's.

From Applications
Program Interface

From
Interactive
Command
Processor
¥ ¥
Mo? Iv. L
Ny g O
To A P RF IC
R AC AL
E
A=
%o
0 M,,
HUEL.{AN
UE D

Figure B~ 2: Concurrency Support Substructure

To support this locking mechanism the RCB must have
three fields: a bit indicator for lock mode (0,= shared,
1 = exclusive), a counter for the number of CCB's using this
table (equals =zero when the table is unlocked), and a
pointer to a queue of pending requests. The gueue will be a
circularly~linked list, so that front and rear are equally
accessible (since FRONT = LINK (REAR)). Entries in the queue
.will consist of the mode of the pending lock request plus a
pointer to the CCB which is waiting for that table.
Accepted lock requests are handled by setting the lock mode bit
to the appropriate value and incrementing the counter. Rejected
requests cause the system to create a queue entry and to add it
to the queue.

When the Logical Interface completes the execution of a
command, it decrements the count fields of each RCB referenced
by the command (this may happen incrementally, while the command
is executing, as the system finishes using each RCB). If the
count field on any RCB goes to zero during this step and the
gqueue of pending lock requests is not empty then the Logical
Interface will wake the Monitor and pass it the CCB address
for the first entry in the queue.

When the Monitor is awakened by the Logical Interface, it will
begin by examining the RCB's needed by that CCB. The require-
ments for activating the CCB are slightly different. First,
each RCB needed must be unlocked or else locked in shared mode
and the pending CCB's lock reguest must also be shared mode.
Second, the CCB's gueue entry must be at the head of the queue,
or else the lock request must be for a shared lock and all lock
requests ahead of it in the gueue must also be for shared locks.
If the above requirements are met then the gueue entry is dé-
leted for each RCB, following which the CCB is deleted from the
Command Queue and placed on the Initiator Queue for processing

by the lLogical Interface.

Whether or not the CCB is activated at this point, all
remaining CCB's which follow it in the Command Queue are tested
to see whether they, too, can now be activated. Note that
nothing ahead of the CCB whose address was passed back to the

Monitor to initiate this procedure need be considered.

It is important to note that the proposed approach re-
quires the Monitor to do no more work than the minimal amount
necessary since the Monitor is only activated at points when
there is a possibility of changing the contents of the Command
Queue.

B.3.5 Scheduling Strategies

There are two approaches to scheduling which can be used.
One approach is to initiate any new command which can be in-
itiated, even 1f this siezmes a table needed by a pending
command in the Command Queue. This increases ftotal system
throughput, but it has the porential to leave one transaction
stranded in the Command Queue while commands entered later get
processed sooner. The second strategy, which is the strategy
embedded in the previous section's procedure, maintains a
strict first in, first out discipline. As a result, no single
command will spend an inordinate amount of time in the Command
Queue, but total system throughput may suffer. If the
test for an empty "regquest pending" gueue when the Monitor is
activated by the Interactive Command Processor or the Applications
Program Interface and the similar test for queue entry at the
head of the gueue when the Monitor is activated by the Logical
Interface are deleted this will result in the initial strategy
described in this section being employed, rather than the second
strategy. As these are easy changes to make, it is possible that
the Data Base Administrator could experiment with both strategies
over a period of time and use whichever seems best. The DBA

could also adapt the strategy to changing system reguirements.

It should be pointed out that some sort of hybrid
approach, following the first strategy of letting commands
begin when relations were available regardless of pending
requests, but preempting an active command if any CCB waits
too long in the queue, would be expensive to implement. The
preempted command would have to be backed out (cheap enough
for a read, but otherwise expensive) and the work done to
~that point would be nullified. Moreover, the Monitor would
have to start keeping track of the length of time each CCB spent

in the Command Queue.
B.3.6 Deadlock

Deadlock is a condition where ftwo oOor more processes
permanently block each other. The simplest example is when

command C1 has an exclusive lock on table Rl but cannot

do any further processing without accessing table RZ

Meanwhile, command C2 has an exclusive lock on R2 but cannot

go on without accessing R Obviously, both are blocked and

1
neither command can proceed unless one or the other is preempted.

It can be demonstrated that deadlock can occur only if
all of the following conditions are met:

(1) Concurrency - two or more processes can run at the

same time.

(2) Locking - a process can have exclusive access to
some datsa.

(3) No Preemption - no data can be taken from a process
which has locked that data.

(4) Expansion - a process may request additional locks
without relinquishing locks already held.

If any of the above conditions are disallowed then deadlock

can ocecur, except that allowing preemption is insufficient by
itzelf and must be used in conjunction with some algorithm

for detecting a circular chain of blocked processes and a
strategy for choosing the process to be preempted. The pro-
cedure outlined in the previous section prevents deadlock by
disallowing expansion. No command is permitted to begin until
it has available all tables which will be needed by that command.

B.4 Data Compatibility
B.4.1 The Scope of the Problem

One problem which is perhaps unique to scientifically-
oriented data bases is the question of data units. If a data
item representing a distance is stored. in some table, that
distance may be expressed in angstroms, microns, millimeters,
centimeters, inches, feet, yards, meters, rods, kilometers,
miles, earth radii, astronomical units, or light years. The
problems Witﬁ weight are even worse, as there are two different
kinds of ounces and three different tons -- not to mention the
difference between pounds as weight, pounds as mass and pounds
as force. If two items in different tables, both represent-
ing the same measured quantity (e.g., distance, time, mass,
area, volume) are to be compared or mathematically combined,
it is imperative that they have the same units attached or be
converted to eguivalent units. This should be handled automat-

ically by the data base management system.

A related problem occurs when data items representing dif-
ferent measured quantities are to be combined to produce a
third quantity, as for example, if a mass is to be divided by
a volume to produce a density. In such cases, it is important
that the units all be part of the same system of measurements
(cgs, kms, English), and the data base management system should
see to it that they are. ’

B-26

B.4.2 An Approach to Data Compatibility
The problems outlined in the preceding section can be

handled within the system with the aid of the following pair
of tables:

(1) a system table, indicating the measurement system

(cgs, kms, English) to which thesunits belong, and

(2) a conversion table, listing pairs of commensurate

units and the conversion factor.

These two tables might be laid out as depicted in Figure B-3.

If the Integrated Data Base Management System is called upon

to compare the values of two data items or to add or subtract
them, it will begin by examining the definition of these items
in the appropriate Data Dietionary. If the data items are
alphanumeric, then comparison will be allowed, but not addition
or subitraction. If the data items are numeric, then comparison
operations, additions, and subtractions will be allowed 1f and
only if the data items have the same units or can be converted
to the same units. If the units do not agree, then the system
will try to retrieve a conversion factor from the conversion
table and the operation will be aborted if no conversion factor
can be retrieved. It should be noted that an internal data
type conversion may also be necessary (integer to real, real

to double precision), as well as a numeric conversion with the
conversion factor. It should also be noted that retrieving
the conversion factor would use standard search and access
software. It is eguivalent to the following retrieval command:

USE C FOR CONVERSION

SELECT (C. FACTOR)

WHERE C.GIVEN-UNITS = unitsl
AND C.TARGET-UNITS = units2

CONVERSION

GIVEN-UNITS TARGET-UNITS FACTOR
INCHES M 2,54
o INCHES _0.3937
_ YARDS | INCHES _ "36.0
MILES | FEET 5280.0
- sec | 7 " bays .0000198

UNITS-SYSTEM

UNITS SYSTEM QTY
| FEET | __ENG | DISTANCE
FPS ENG_ | SPEED
K6 KMS MASS

Figure B-3: Tables To Support Data Compatibility

B-28

The system table would be used to support multiplication
and division. Multiplication and division would be permitted
only if the two data items agreed as to measurement system.

If the system does not agree (e.g., mass measured in grams but
volume in cubic meters when computing a density) then the
system will have to convert one or both data itemé until they
agree as to measurement system. Again, standard system
software could be used to handle the search and acceés, which

would be equivalent to the following guery:

USE C FOR CONVERSION

USE S, X, Y FOR UNITS-SYSTEM
SELECT (X.UNITS)

WHERE S.UNITS = unitsl

AND X.QTY = S.QTY

AND Y.UNITS = units2

AND X.SYSTEM = Y.SYSTEM
SELECT (C.FACTOR)

WHERE C.GIVEN-UNITS = unitsl
AND C.TARGET-UNITS = ¥.UNITS

Again, care must be taken to make certain that the data types

i+

agree, as well as data units.

The above approach will not handle all possible data con-
versions -- one type of conversion which cannot be handled by
a multiplicative 'scale factor is temperdture. It is possible
to convert Centigrade to Kelvin (or back), Centigrade to
Farenheit, or Farenheit to degrees Rankine. If desired,
temperatures could be handled as a special case.

A third table -- relating abbreviations to unit names --
might also be useful for purposes of parsing gueries (includ-
ing DEFINE commands).

B.5 System Security

One goal of a data base management system is prevention of
the dissemination of data to unauthorized recipients. Within
a data base management system this requires three steps:
identification of the user accessing the data base, authentica-
tion of that user, and validation of each operation requested

by the user subsequent to 1ogg%ng on to the system. In the
Integrated Data Base Management System, the identification and
authentication steps will be handled by the ENTER command and
the validation step will be embedded within the affected com-
mands (e.g., ATTACH, DEFINE, SELECT, INSERT, etc.). Provided
the user remains within the system, the weakest link 1n the
system's security is the identification/authentication step
since the system will only be capable of determining whether
the password input as part of the ENTER command agrees with the
specified user-id, and not whether the user logging on with
the ENTER is, in fact, the user identified by the user-id.

The onus will be on the user community to protect their pass-
words from becoming known by other users and to change them

with some frequency.

If an unauthorized user bypasses the system, then the
situation will be much more difficult. Since no known operat-
ing system can be guaranteed to prevent a knowledgeable and
determined user from reading files which he or she is not
authorized to access, it behooves the system t0 provide pro-
tection against this possibility. One important piece of
information which must be protected is the list of user-ids
and passwords in the SYSUSER table. The key to providing
such protection is the one-way '"trapdoor” encoding functions
of the public key encryption systems discovered by Hellman and
Diffiell. Public key encryption systems are such a fundamental
and important advance that the topic has begun to receive
attention outside scholarly circles in popular scientific

journals such as Scientific Americanl4 and from there into

news media such as TIME ™ and The Washington Post®®. Such
— /

systems rely on '"one-way", or "trapdoor", encoding functions,
where the mathematical manipulations which encipher the data
are so very different from the mathematical manipulations that
decipher the data that knowledge of the enciphered data and
the key used to encipher it is insufficient to decode the
data. Thus, the system could store the user-id for each user
(unencoded), the user's password (encoded), and the encoding
Key (assigned by the system) in SYSUSER, and yet if an unauthorized
user should break the operating system's security and read

the SYSUSER table he would not be able to determine the pass-
words .0of any users on the system. Since all the system has
to do to authenticate the user is to encode the input password
using the stored key and match the result against the encoded
pasgword stored in the SYSUSER table, the scheme is not only
fail-safe but efficient.

The problem of encrypting the data stored in other tables,
including user-created tables as well as other system tables,
poses more difficulties since the system will have to decode
the data before using it (or presenting it to the user). Thus,
the decoding keys will have to be stored somewhere and they, them-
selves, must be secured. One public key encryption scheme which
might be used is the one proposed by Rivestsz, where the encipher-
ing and deciphering keys are based on two secretly chosen prime
numbers p and q . The decoding key is a pair of integers
(d,n), where n = pq and d satisfies certain conditions
based on p and g . Finally, the encoding key is a pair
of integers (e,n), where e+d satisfies certain criteria in-
volving p and aq. Since e and n are always known, this
encryption method can only be compromised if d is discovered
or, with some extra effort, if p and g can be deduced.

The system could avoid the latter by selecting m triples
(e,d,n) in advance and saving the (e,n) pairs in one table
T and the d's in another table T2, where the order of the

1

d's in T is different from the order of their corresponding

2

B-31

encoding keys in Tl and where the size of T2 is much

greater than the size of T1 {i.e., many "“red herrings" are
scattered through TZ). The system would employ a hash
function h, such that bh(e,n) would be the address in T2
where the decoding d for that particular encoding key can

be found. Since p and q are never stored in the system,
they are safe unless an intruder, upon discovering n, can

find the prime factors of n =-- a process which can always

be done but which is computationally infeasible for large

values of n. The alternative is to discover d, which is
stored in the system. If the encoding key for a secure

table is stored with that table's entry in SYSREL, then an
unauthorized intruder would have to copy not only the data in
the table, but also SYSREL and T2 to compromise the table's
security. Even that would not be enough without either know-
ing the hashing function or else trying all entries in T, until
one is found which provides an inverse function for the ;ncoding
key. For that matter, SYSREL and T, could themselves be encryptec
nsing a secret key embedded in the so;tware of the systemn,

Unless the physical security of the tape files could be
guaranteed, there would be no point in encrypting the on-line

data files also maintained by the system.

Encryption of tabular data is not a necessity for an
initial implementation of the Integrated Data Base Management
System, given the proposed uses to which it is expected to be
put. But it is not improbable that some time in the future
there will be a need t0 protect the security of certain data
maintained by the system, and this subsection provides an
indication of how that might be done. One issue which must
be resolved before this scheme could be implemented is the
status of Rivest's patent application on his method.

B.6 The Macro Command Facility

The Macro Command Facility would permit an interactive
user to enter a sequence of commands, specify a name for the
sequence and, subsequently, execute the seguence by simply
specifying its name. While this feature is not a necessity,
it would provide users with 2 method of executing often used
command sequences with a minimum of effort. To implement
this feature, two additional commands, END and EXECUTE, would
have to be added to the Interactive Command Language and the
DEFINE and REMOVE commands would have to be extended with a
SEQUENCE option. Each of these commands is described briefly
below.

The DEFINE command with the SEQUENCE option would intro-
duce the command sequence and place the Integrated Data Base
Management System into macro mode. The name to be assigned
to the command sequence would be included in the DEFINE
SEQUENCE command. The syntax for the DEFINE SEQUENCE command
would be as follows.

DEFINE SEQUENCE <sequence name>

The sequence name specified in the CREATE command must
be unique among command sequence names already known to the
system. If it duplicates an existing command sSeguence name,
the command will be rejected, The DEFINE SEQUENCE command
could be issued by an interactive user at any time.
Additionally, it could be used in the input stream for the
Batch Command Reader, thus permitting command sequences to
be created via the Batch Command Regder facllity.

The END command would terminate the sequence of commands
initiated by the last DEFINE SEQUENCE cpmmand issued by the
user. If no previous DEFINE SEQUENCE command issued by the

user is active, the END command would be rejected. The syntax for

B-33

the END command is as follows.

END

All commands issued following a DEFINE SEQUENCE command
and preceeding its matching END command would be included in
the command sequence named in the DEFINE SEQUENCE command.
If no interactive commands were issued between the DEFINE
SEQUENCE and END commands, no command Sequence would be
created and an error message would be displayed.

As stated previously, the DEFINE SEQUENCE command would
place the system in macro mode. ¥hile in this mode, 2all
commands received from the user issuing the DEFINE SEQUENCE
command would be parsed and syntax checked but would not be
executed. Bach error free command entered while in the
macro mode would be stored in the Macro Library. Any commant
containing an error would be rejected, but the user could
immediately reenter the command. The Macro Library might be
implemented as a new system table with an inverted index
created on the sequence name field in each record of the tabl«

The REMOVE command with the SEQUENCE option would remove
an existing command sequence from the system. The command
sequence name would have to be included in the REMOVE
SEQUENCE command. The syntax for the REMOVE SEQUENCE command
would be as follows.

REMOVE SEQUENCE <sequence name>
This command would remove all records associated with
the command sequence named in it from the Marco Library. If

no such sequence exists, the command would be rejected.

The EXECUTE command would cause an existing command

sequence to be retrieved from the Marco Library and to be

B-34

executed as if entered interactively by the user. The sequence
name oi the command sequence must be included in the EXECUTE
command. If no such command sequence exists in the Macro
Library, the EXECUTE command will be rejected. The syntax

for the EXECUTE command is as follows.)

EXECUTE <sequence name>

The EXECUTE command would cause each record contalining
the sequence name specified in the command to be retrieved
from the Command Library. Each record might contain a command
Or partial command in the command sequence as it was originally
entered when the sequence was created. It would be displayved
on the remote terminal of the interactive user and executed
by the system. An alternative approach might be to save the
Command Control Block for each command in the sequence in the
#Macro Library instead of an image of each command as it was
originally entered. This would be possible since a Command
Control Block'ié created when a command is parsed. This
approach would alleviate the need for parsing the command
sequence each time that it was executed. In either case,
execution of the command would be carried out in exactly ‘the
same mamner as 1if the command had been entered interactively
from the remote terminal. The EXECUTE command could also be
included in the input stream processed by the Batch Command
Reader. Thus, command sequences could be initiated via the
Batch Command Reader facility.

%*It might also be possible to permit EXECUTE commands to
be included in newly defined command sequences. Thus, exisi-
ing command sequences could be easily ‘incorporated into other

command Sequences.

(1)

(2)

(3)

(4)

(3)

(6)

(7)

Inc.

BIBLIOGRAPHY

Bayer, R., and McCreight, E., "Organization and
Maintenance of Large Ordered Indices," Proceedings

of the 1970 ACM-SIGFIDET Workshop gg_Dafa Description
and Access, Houston, Texas, pg. 107-141 (November 1970).

Bracken, P.A., Daltion, J.T., Billingsley, J.B., and
Quann, J.J., Atmospheric and Oceancgraphic Information

Processing System (AQIP3S) System Description, Document
X-933-77-148, Goddard Space Flight Center, Greenbelrt,
Maryland (Marech 1977).

Chamberlin, D.D., "Relational Data-Base Management
Systems," ACM Computing Survevys, vol. 8, no. 1, pg.
43-66 (March 1976).

Chamberlin, D.D., et. al,, "SBEQUEL 2: A Unified
Approach to Data Definition, Manipulation, and Con-
trol,'" IBM Journal of Research and Development, vol.
20, no. 6, pg 560-575 (November 1876).

CODASYL Data Base Task Group, April 1971 Report.
(available from Association for Computing Machinery,

, 1133 Avenue of the Americas, New York, New York
10038).

Codd, E.F., "A Relational Model of Data for Large
Shared Data Banks," Communications of the ACM, vol. 13,
no. 6, pg. 377-387 (June 1870).

Codd, E.F., "Further Normalization of the Data Base
Relational Model" in Data Base Systems, Courant Com-

puter Science Symposia Series, vol. 6, pg. 33-64,
Prentice-Hall, Inc., Englewood Cliffs, Jew Jersey (1972)

(8) Codd, E.F., "Relational Completeness of Data Base Sub-
languages," in Data Base System, Courant Computer Science

Symposia Series, vol. 6, pg. 65-98, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey (1972).

(9) Codd, E.F., "Seven Steps to RENDEZVOUS with the Casual
User," Proceedings of the IFIP TC-2 Working Conference
on Data Base Management Systems, North-~Holland Publish-
ing Company, Amsterdam, the Netherlands (April 1974).

(10) Date, C.J., An Introduction to Database Systems (2nd
ed.), Addison-Wesley Publishing Company, Reading,
Massachusetts (1977).

(11) Diffie, W., and Hellman, M.E., "New Directions in
Cryptography," IEEE Transactions on Information Theory,
vol. IT-22, no. 6, pg. 633-654 (November 1976).

(12) Eswaran, K.P., and Chamberlin, D.D., "Functional Speci-~
fications of a Subsystem for Data Base Integrity,"
Proceedings of the 1975 Conference on Very Large Data

Bases, Framingham, Massachusetts, pg.'38—68 (September
1875).

(13) Fry, J.P., and Sibley, E.H., "Evolution of Data-Base
Management Systems, ACM Computing Surveys, vol. 8,
no. 1, pg. 7-42 (March 1976).

(14) Gardner, M., "A New Kind of Cipher that would take
Millions of Years to Break," Scientific American,
vol. 237, no. 2, pg. 120-124 (August 1977).

(15) Gary, J.P., AOIPS Data Base Management System Support
for GARP Data Sets, NASA Technical Memorandum 78042,
Goddard Space Flight Center, Greenbelt, Maryland
(October 1977).

(16)

(x7)

(18)

(19)

1 (20)

(21)

(22)

(23)

(24)

Gray, J.N., Lorie, R.A., and Putzolu, G.R., “Granularit&
of Locks in a Shared Data Base,' Proceedings of the

1975 Conference on Very Large Data Bases, Framingham,
Massachusetts, pg. 428-4351 (September 1975).

Held, G., and Stonebracker, M., '"B-Trees Re-examined,"
Communications of the ACM, wvol. 21, no. 2, pg. 139-
143 (Februaxry 1978).

Hirschberg, D.S., "A Class of Dynamic Memory Allocation
Algorithms," Communications of the ACM, vol. 16, no. 10,
pg. 615-618 (October 1273).

Keehn, D.G., and Lacy, J.0., "VSAM Design Set Para-
meters,”™ IBM Systems Journzl, vel. 13, no. 3, pg.
186-212 (March 1974). ’

Knuth, D.E., The Art of Computer Programming, vol. 1,

"Fundamental Algorithms" (2nd ed.), Addison-Wesley
Publishing Company, Reading, Massachusetts (1973).

Knuth, D.E., The Art of Computer Programming, vol. 3,

"Sorting and Searching," Addison-Wesley Publishing
Compnay, Reading, Massachusetts (1972).

Lucas, H.C. Jr., Why Information Systems Fail,

Columbia University Press, New York (1975).

Martin, .J., Principles of Data-Base Management,
Prentice-~Hall, Inec., Englewood Cliffs, New Jersey (1976).

Maruyama, K., and Smith, S.E., "Analysis of Design

Alternatives for Virtuazl Memory Indices," Communications

of the ACM, vol. 20, no. 4, pg. 245-254 (April 1977).

(25) McCreight, E.M., "Pagination of B*-Trees with Variable-

Length Records," Communications of the ACM, vol. 20,
no. 9, pg. 670-674 (September 1977).

(26) Minker, J., Crooke, S., and Yeh, J., "Analysis of Data
Processing Systems,' Computer Science Center Technical
Report TR 69-99, University of Maryland, College Park,
Maryland (December 1869).

(27) Moik, J.G., Users Guide for Batch Operation of the
SMIPS/VICAR Image Processing System, Document X-933-76-114,
Goddard Space Flight Center, Greenbelt, Maryland (May 1976)

(28) Nauer, P., et. al., "Revised Report on the Algorithmic --
Language Algol 60," Communications of the ACM, vol. 6,
no. 1, pg. 1-17 (January 19863).

(29) Nielsen, N.R., '"Dynamic Memory Allocation in Computer
Simulation," Communications of the ACM, vol. 20, no. 11,
pg. 864-873 (November 1877).

(30) Peterson, J.L., and Norma, T.A., "Buddy Systems,*
Communications of the ACM, vol. 20, no. 6, pg. 421-433
(June 1977).

(31) Ries, D.R., and Stonebraker, M., "A Study of the Effects
of Locking Granularity in a Data Base Management System,"
Proceedings of the 1977 ACM-SIGMOD Conference on Manage-
ment of Data, Toronto, Canada, pg. 10-25 (August 1977).

(32) Rivset, R.L., Shamir, A., and Adleman, L., "A Method
for Obtaining Digital Signatures and Public Key
Cryptosystems," Communications of tlhe ACM, vol. 21,
no. 2, pg. 120-126 (February 1978).

(33) Severance, D.G., and Lohman, G.M., "Differential
Files: Their Application to the Maintenance of
Large Data Bases," ACM Transactions on Database Systems,
vol. 1, no. 3; pg. 256-267 (September 1976).

(34) Shapley, D., '"The New Unbreakable Codes: Will They
Put NSA Out of Business?'", The Washington Post, pg. B-1,
July 9, 1978.

(35) Shneiderman, B., Department of Information Systems
Management, University of Maryland, College Park,

Maryland (personal communication).

(36) Stonebraker, M., "High Level Integrity Assurance in
Relational Data Base Management Systems,'" Electronics
Resecarch Laboratory Memorandum ERL-1M473, College of

-Engineeriné, University of California, Berkeley,
Celifornia (August 1974).

(37) Stonebraker, M., Wong, E., Kreps, P., and Held, G.,
"The Design and Implementation of INGRES," ACM Trans-~
actions on Database Systems, vol. 1, no. 3, pg. 189~
222 (September 19276).

(38) Thomas, J.C., and Gould, J.D., "A Psychological Study
of Query by Example," Proceedings of the National
Computer Conference, vol. 44, pg. 439-445 (May 1975).

(39) Thomas, R., and Cranston, B., "4& Simplified Recombination
Scheme for the Fibonacci Buddy System," Communications
of the ACM, vol. 18, no. &, pg. 331-332 (June 1975).

(40) Zloff , M. M., "Query by Example,'" IBM Research Report
RC 4917, IBM Thomas J. Watson Research Center, Yorktown
Heights, New York (July 1974).

(41) "An Unbreakable Code?', TIME, vol. 112, no. 1, pg.
55-56 (July 3, 1978).

BUSINESS AND TECHNOLOGICAL SYSTEMS; INC

10210 GREENBELT ROAD o SEABROOK ¢ MARYLAND 20801
301/794-8800

