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SUMMARY

Two approximation concepts for combined thermal/structural design are
evaluated. The first concept is an approximate thermal analysis based on the
first derivatives of structural temperatures with respect to design variables.
Two commonly used first-order Taylor series expansions are examined. The
direct and reciprocal expansions are shown to be special members of a general
family of approximations, and it is shown that for some conditions other mem-—
bers of that family of approximations are more accurate. Several examples are
used to compare the accuracy of the different expansions.

The second approximation concept is the use of critical time points for
combined thermal and stress analyses of structures with transient loading con-
ditions. It is shown that significant time savings may be realized by identi-
fying critical time points and performing the stress analysis for those points
only. This approach is used to design an insulated panel which is exposed to
transient heating conditions.

INTRODUCTION

One of the major obstacles to the widespread use of automated structural
design (member sizing) procedures is the need for large computational resources
to perform repeated analyses of a structure throughout the design process. To
alleviate this problem, it is now common practice during major portions of the
design process to use approximations for response functions such as displace-
ments, stresses, buckling loads, or flutter speeds. (See refs. 1 to 6.) Such
approximations are often based on the first derivatives of the response func-
tions with respect to the design variables. One obvious technique in the use
of these approximations is to employ a first-order Taylor series (i.e., a lin-
ear approximation), herein called the direct expansion. An alternate approach
is to approximate the desired function by a first-order Taylor series in the
reciprocals of the design variables. Such a technique, herein called the
reciprocal expansion, is exact for stresses and displacements of statically
determinate trusses and has been shown to be more accurate than the direct
expansion for other structures (ref. 5).

Another useful approximation concept is that of constraint deletion
(e.g., ref. 1). Constraints which are far from being critical are ignored
during parts of this design process. Periodic updates are made of the number
of constraints that are retained. For constraints which are functions of a
parameter such as time (parametric constraints), the concept of constraint
deletion can be extended (ref. 7). When the dependence on the parameter
is sufficiently smooth, critical values of that parameter (critical points)
may be identified. The constraints for other values of the parameter may be
ignored; however, the values of the critical points are updated periodically
as the design changes.



This paper is concerned with application of the two concepts, response
approximation and critical points, to combined thermal/structural design. Both
direct and reciprocal expansions of the response functions are investigated for
accuracy in predicting temperature fields for steady-state and transient thermal
problems. The time savings associated with the use of these expansions are also
evaluated with the aid of two examples; one of a steady-state response and the
other of transient thermal response. In the second example, use is also made of
the second approximation concept (i.e., critical time points), and an investi-
gation is made of the resulting accuracy and time savings.

SYMBOLS

Values are given in both SI and U.S. Customary Units. The measurements
and calculations were made in U.S. Customary Units.

ajragsay bar element areas, mm 2 (in2)

E Young's modulus, Pa (psi)

£(v) response function

fp (V) direct approximation to function f (V)

fRr (V) reciprocal approximation to function £(V)
g constraint function

de critical constraint function

k thermal conductivity, W/m~9C (Btu-in/sec-ft2-°F)
m(V) mass of structure, kg (1b)

Ne number of constraints

ny number of design variables

Nt number of time points

Ny /Ny Nyy applied loads, kN/m (1lbf/in.)

é heat rate, W/m2 (Btu/inz—sec)

t thickness, mm (in.)

ty,to,t3,ty plate element thicknesses, mm (in.)

tortasstog lamina thicknesses, mm (in.)



T temperature, °C (°F)

T, allowable temperature, °C (©F)

Teq transient, surface equilibrium temperature, °C (°F)
vi ith design variable

Vmi offset value of ith design variable

v vector of design variables

o coefficient of thermal expansion, per ©C (per ©F)
o) mass density, kg/m3 (1b/in3)

T time, sec

Te critical time, sec

Subscripts:

max maximum

o initial value

APPROXIMATION CONCEPTS
First~-Order Taylor Series Expansions of Response Functions

The design problem considered herein is to find a vector of design vari-
ables V (with components wvs; Jj =1, 2, . . « ny) that minimizes the mass
m(V) of a structure and/or its thermal protection system subject to a set of
ne constraints

gi(v,t) > 0 (L =1, 2, « ¢ oy Na; 0 < T < TYay) (1)

where 1t is time. The constraint functions g; represent design limits on
response functions such as displacements, stresses, or temperatures. Many
algorithms for resizing the structure require evaluation of the derivatives

of the response functions with respect to the design variables. These deriv~
atives may be used to obtain approximations for the response functions which
can replace the full analysis during parts of the design process. One approxi-
mation for a response function £(V), which is based on the value of the func-
tion and its derivatives at a design point Vg, is a first-order Taylor series
expansion



Ny
3f (V)
fp(V) = £(Vy) + z —(v5 = voj) (2)
— 9V
J=

where v, are the components of V,. This approximation is herein called
the direct expansion. An alternate expression (e.g., refs. 1 to 3, 5, and 6),
herein called the reciprocal expansion, is a first-order Taylor series in the
reciprocals of the design variables. It can be written as

D 3£ (Vo) Vo
fR(V) = f(vo) + z -3—.— -—_—(Vj - voj) (3)
IS B

The reciprocal expansion was originally proposed for approximating stresses
and displacements in structural analyses. For statically determinate trusses,
stresses and displacements are indeed linear functions of the reciprocals of the
cross—-sectional areas of the members. For statically indeterminate structures,
the reciprocal expansion is not exact, but studies (ref. 5) have shown it to be
superior to the direct expansion for a number of problems. The reciprocal
expansion also has the added attraction that it is usually more conservative
than the direct expansion in estimating response functions such as stresses,
displacements, or temperatures (ref. 2). If £(V) is the temperature at a
point and V 1is a vector of insulation thicknesses, it may be expected that
3E(V)/3vs < 0. Since all design variables are positive, it is easy to check
from equations (2) and (3) that £R(V) > £p(V).

The reciprocal expansion predicts an infinite value for £(V) when any
one of the variables v3 goes to zero. It is, therefore, especially suitable
for approximating functions, such as stresses and displacements in a stati-
cally determinate truss, which go to infinity when the member areas go to zero.
Approximation of stresses in redundant structures (or temperatures in situations
where multiple heat paths exist) is slightly different in that several variables
must vanish simultaneously for £(V) to become infinite.

Some understanding of the relative performance of the direct and reciprocal
expansions for a redundant structure may be gained by an examination of the
following simple example:

11
£THv) = ——— (4)
10V] + va

This example illustrates a redundant situation where one of the design variables
has a much larger effect than the other. Assume that £(V) 1is approximated
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by using its value and derivatives at vg) = vgy = 1.0. The direct and recip-
rocal expansions for several other values of vy and vy are contained in
table 1. Two conclusions may be drawn from table 1. First, the reciprocal
expansion is better for approximating £(V) for changes in the dominant design
variable v; but not as good for approximations with changes in the other design
variable vp. Second, the reciprocal expansion is much better with changes in
the design variables which reinforce each other (vi = vy = 2) than with changes
that cancel each other (vj = 0.5, vp = 6).

Generalized Approximation

The fact that the function £(V) becomes very large only when several
variables go to zero simultaneously can be accounted for by the following more
general form of the approximation:

Ny
£(V) = £(Vp) + ZE' (vi - Voi)‘f‘—“"' ——T(Vb) (5)
i=]

where vpi; is the ith component of a vector of constants chosen to account for
the fact that as one variable goes to zero the function remains finite because
other variables may have nonzero values. The direct and reciprocal expansions
are special conditions of equation (5) with the direct expansion correspond-
ing to vpj > —o and the reciprocal expansion corresponding to ‘vpj = 0.
Because the approximation becomes unbounded when Vvj = vpj, Vpi may be chosen
as the value of vj which drives the exact function £(V) to infinity if all
other variables vj remain constant (i.e., vy = vVgj where j # i).

For the function of equation (4) with v45] = vo2 = 1, such a consideration
leads to the choice of wvp = -0.1 and vy = -10. The last column in table 1
shows that the general approximation for this choice is generally superior to
the other two, in the range considered. In general, it may not be possible to
pick optimum values of vpj, but small negative values of vpj may be used to
avoid large errors in the reciprocal expansion when one variable goes to zero.

Critical Time Points

The use of response approximations applies to designs under either steady-
state or transient thermal constraints; however, a second approximation concept
may also be useful in transient problems. For transient thermal loads, the
thermal/structural design problem is characterized by constraint functions (see
eq. (1)) which must be enforced for an entire time interval. Numerically, this
means that a set of closely spaced time points T4, where j =1, 2, . . ., nq,
must be chosen such that serious constraint violations at intermediate time
points are unlikely. Equation (1) may then be replaced by



gij (M) = gj(Vet4) 2 0 . (6)

In most practical applications, the product ngcn; will be a very large number
and carrying out the design process with this full complement of constraints

may become prohibitively expensive.

Instead of monitoring a constraint at a set of n; time points, it may
be monitored only at its most critical points (ref. 7). This concept is
explained by figure 1 which schematically shows the variation of a constraint
function with time. The times of the local minima of the constraint function
(A, B, and C in fig. 1) are herein called critical time points. Instead of
monitoring the constraint function at all times, it is monitored only at those
times. However, the critical time points drift as the design changes, and the
constraint must be calculated at many time points to accurately locate the
critical time points. The usefulness of the critical-time-points concept
derives from the fact that, for portions of the design process, the drift of
the critical time points may be neglected. For these portions of the design
process, the constraint function has to be evaluated for only a relatively
small number of time points.

To prove that the drift in the location of the critical points may be
neglected to a first-order approximation, it is assumed at first that a con-
straint function g(V,T) has a single local minimum in the time region of
interest. Equation (1) for the constraint gj(V,r) is replaced by

gci(M = gi1(V,1e) = min{gj(V,7)} 2 0 (7

where 1o is the time for which g; is most critical (the critical time
point). The partial derivative of goj with respect to a design variable v
is

39¢1 (V) 391 (V,1e) 39i(V,Te) 91
= + - (8
8Vj BVj T BVj )

For interior critical points (A and B in fig. 1), Bgi/BT = 0, and for boundary
minimum points (point C), 3Tc/3Vj =0 if 23g;i/dT # 0. Therefore,

99¢i (V) 991 (V,T¢)
= (9)

BVj BVj




Equation (9) shows that the drift in the critical time point may be neglected

to a first-order approximation. Drift may be neglected not because it is small
but because it does not affect the first derivatives of the constraint ggj. In
practice, the critical time points are calculated periodically and are frozen
between updatings. However, the concept remains useful, even if the critical
points require frequent updating, because of the savings in the derivative
calculation.

When the constraint function has more than one local minimum as in fig-
ure 1, each critical point must be assigned a separate constraint ggj; other-
wise, equation (7) may yield a discontinuous derivative of goi{ when the global
minimum is switched from one local minimum to another.

EVALUATION OF APPROXIMATION TECHNIQUES

To judge the usefulness of an approximation concept, the question of what
magnitude of change in design parameters results in unacceptable errors must
be answered. Although it is desirable to obtain a general answer to this ques-
tion, this did not appear possible in the present studies. Instead, the present
work uses examples of both steady-state and transient thermal/structural design
results to assess the usefulness of the two approximation concepts discussed in
the preceding section. The steady-state example is a titanium panel with inte-
gral aluminum bars, and the transient one is an insulated panel.

Approximate Thermal Analysis of a Titanium Panel

The accuracy of both the direct and reciprocal expansions for steady-state
thermal analysis was investigated in reference 8 for a configuration which con-
sisted of a titanium panel with aluminum bars as shown in figure 2. This con-
figuration is representative of a class of structures in which one material
satisfies strength requirements and the other acts as an efficient conductor
to transfer incident heat to a heat sink. The sink is represented by the panel
edge maintained at T = -18° C (0° F). The incident heat load, material proper-
ties, and remaining boundary conditions are also shown in figure 2. The accu-
racy of the direct and reciprocal expansions for predicting the maximum temper-
ature is shown in figure 3 for changes in the thickness of one-quarter of the
plate and in the area of one aluminum bar (both variables are changed propor-
tionately). 1Initially the eight triangular plate elements were 12.7 mm
(0.5 in.) thick and the four bar elements had areas of 645.2 mm2 (1.0 in2?).

The results shown in figure 3 indicate that the reciprocal expansion is
more accurate than the direct expansion. The portions of the plate and the
bars that were resized constitute the major path of heat conduction to the heat
sink. When their thickness and area are reduced to zero, the temperature
becomes unbounded so that the reciprocal expansion may be expected to be better
than the direct one. The bias toward the reciprocal expansion can be carried
to an extreme by uniformly increasing or decreasing the thickness and areas of
all elements. When this is done, the error in the reciprocal expansion becomes
minute. A different situation occurs when some of the design variables are



increased and others are decreased (a common occurrence in optimization prob-
lems). Performance of the expansions for such mixed changes in design variables
is shown in figure 4. The percentage change in maximum plate temperature is
shown as a function of the percentage of the total change in design variables
from the original design to the final design. This is indicated in the figure
inset. For these conditions, the direct expansion is better. The reciprocal
expansion does not perform as well because of the redundancy of the heat paths.
This redundancy creates a situation similar to that of the simple example of
equation (4) previously noted.

Approximate Thermal Analysis of an Insulated Panel

The quality of the approximate thermal analysis was investigated for tran-
sient heating of the insulated panel shown in figure 5. A transient surface
equilibrium temperature Tgq, typical of a reentry heating trajectory, is
applied to the outer surface of the insulation layer. The insulation protects
a balanced, symmetric, graphite/epoxy composite panel with 0°, +45°, and 90°
plies. The material properties of the composite panel and insulation are given
in table 2. The thermal and stress analyses of the panel were carried out using
a modified version of the computer program employed to obtain the results of
reference 8.

The dependence of the laminate temperature on insulation thickness is shown
in fiqure 6 for one time point. Also shown are the direct and reciprocal expan-
sions for that temperature based on derivatives calculated for a 71.52-mm
(0.060-in.) laminate thickness and 102-mm (4.0-in.) insulation thickness. The
reciprocal expansion is reasonably good over the entire range of insulation
thicknesses, which is equal to the base value +50 percent. The direct expansion
is considerably less accurate. The better performance of the reciprocal expan-
sion is understandable because the temperature becomes very high when the insu-
lation thickness goes to zero.

The dependence of the laminate temperature on laminate thickness is shown
in figure 7. The temperature is much less sensitive to the laminate thickness
than to the insulation thickness so that the errors for both approximations are
smaller. For this set of calculations however, the direct expansion is better
than the reciprocal one. The reason is that the temperature is not expected
to become very high when the laminate thickness goes to zero because of the
presence of the insulation (the same phenomenon was noted in the example of
eg. (4) for changes in vj). It is also shown in figure 7 that an even better
approximation can be obtained with vy = -4.06 mm (-0.16 in.).

For the calculations illustrated in figure 7, the design variable was
assigned to the laminate thickness. Often, design variables are assigned to
the thickness of each ply. When one ply thickness is changed while others are
kept constant, the reciprocal expansion will be even less accurate. This
inaccuracy was demonstrated by repeating the calculations presented in fig-
ure 7 with individual design variables assigned to the 0°, +45°, and 90° plies.
The initial laminate thickness, 1.52 mm (0.060 in.), consisted of 0.51 mm
(0.020 in.) for each ply direction. Then, the 90°- and +45°-ply thicknesses
were kept constant and only the 0°9-ply thickness was increased. The reciprocal
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expansion for these conditions is shown in figure 7 by the circular symbols.
The direct expansion is not affected by assigning design variables in this
manner.

The curve with the circular symbols in figure 7 shows the danger of
choosing wvyi = 0 (reciprocal expansion) for a highly redundant system such
as a composite laminate. The choice of wvpj is based on estimations of the
combined effect of all other design variables when vj goes to zero. Based
on the insulated panel example, the following recommendations can be made:

1. If the response function is not expected to become very large when vi
goes to zero, the direct expansion is appropriate and vpi should be chosen to
be a large negative number.

2. If the response function may be expected to become large but finite
when vj = 0, choose wvpj to be a small negative fraction of a typical value
of vj. This is a safety measure to guard against excessive errors in the
approximation when vj changes by an order of magnitude.

Use of Critical Time Points

The approximation concept of following only critical time points was also
checked for the insulated panel. Shown in figure 8 are typical changes in
temperature histories as the design changes. Indicated in the figure is an
appreciable drift in the critical time for the maximum temperature constraint.
The same phenomenon is illustrated in figure 9 by showing the difference between
following the maximum temperature, that takes into account the drift of the
critical time point, and following the temperature at the time point which was
maximum for the base design (insulation thickness = 101.6 mm (4.0 in.), laminate
thickness = 1.52 mm (0.06 in.)). The two curves in figure 9 have the same
derivatives at the base design point as predicted by equation (9). However,
the difference between the two curves becomes substantial due to the drift of
the time point of maximum temperature. There are indications in figures 8 and
9 that the critical time points require updating more often than the approximate
thermal analyses. (Compare figs. 6, 8, and 9.)

APPLICATION TO OPTIMIZATION
Optimization of a Titanium Plate

The titanium plate with aluminum bars shown in figure 2 was designed for
minimum mass under a constraint on the maximum temperature. A resizing
algorithm based on optimality criteria (ref. 9) was used for optimization.
Derivatives of the temperatures with respect to design variables were calcu-
lated analytically.

Mass iteration histories for this design problem are shown in figure 10.
During the first few iterations, all design variables were reduced until con-
straint violations occurred; thus, a reciprocal expansion may be expected to be
more accurate than a direct expansion. Succeeding design iterations tend to



redistribute material among the structural elements to satisfy the design con-
straints; therefore, a direct expansion may be expected to be more accurate
for that phase of the optimization process. Accordingly, three separate cal-
culations were made using approximate thermal analysis: 1in the first, a
reciprocal expansion was used in both phases of the optimization process; in
the second, a direct expansion was used in both phases; and in the third, a
reciprocal expansion was used in the first phase and a direct expansion was
used in the second phase. For the initial design, the plate thickness was set
at 76 mm (3.0 in.) and the aluminum bars had areas of 9290 mm2 (14.4 inz)
each. Derivatives were calculated for the initial design, and the temperature
was approximated up to iteration 10. At that point, a new full analysis was
used to generate a new approximation which was used for the rest of the design
process. The decision to generate a new approximation at iteration 10 was
based on full analysis results where changes in the design variables became
mixed rather than uniform. Although the mass changed very little after about
the 40th iteration, the optimality criteria required an additional 40 itera-
tions to accurately satisfy the temperature constraints.

The final designs and maximum temperature errors (which were obtained
from a full analysis of that final design) are given in table 3. It can be
seen that the direct expansion lacks sufficient accuracy to guide the opti-
mization process completely to a converged solution. The reciprocal expan-
sion also begins to diverge after about 30 iterations. This results in a
design substantially different from the full analysis with 20 percent greater
mass and a maximum temperature error of 49.9° C (89.8° F). However, the use
of the reciprocal expansion in the first phase of the optimization and the
direct expansion in the second phase yields a final design very close to the
full analysis design with only a 1.1 percent mass difference and a maximum
temperature error of 14.9° C (26.8° F). Additionally, the approximate thermal
analysis reduces the total optimization time by about 40 percent. The opti-
mization algorithm was modified to automatically select the expansion concept
based on whether the changes in design variables all have the same sign or
different signs. The results obtained by such a modified algorithm were essen-
tially the same as before.

Optimization of an Insulated Panel

The insulated panel shown in figure 5 was designed for minimum mass under
temperature and stress constraints. The stress constraint was based on the
Tsai-Wu failure criterion (ref. 10). The applied loads and the material
strength allowables are given in table 2.

The optimizer for the programs for analysis and resizing of structures
(PARS), described in reference 11, was used for optimization. PARS is a
collection of programs developed for the minimum mass design of structures
subject to stress, displacement, and flutter constraints. The PARS optimizer
employs the sequential unconstrained minimization technique (SUMT), described
in reference 12, with a quadratic extended interior penalty function, described
in reference 13. Newton's method with approximate second derivatives (ref. 14)
is used to generate directions for one-dimensional searches for each uncon-
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strained minimization. The program approximates the constraint functions dur-
ing one-dimensional searches using values of vyi specified by the user.

In resizing the panel, new temperatures were approximated based on the
values and derivatives of the initial design temperatures without any updating.
That is, a full thermal analysis was performed only twice; once for the initial
design and once for the final design. Exact calculations of the stresses from
the approximate temperatures were performed once for each one-dimensional
search. During each search, the stresses were approximated using the same
values of w4 wused for approximating the temperatures.

Starting with two initial designs, studies were carried out to test the
accuracy and time savings associated with the two approximation concepts. The
first initial design had a 101.6-mm (4.0~in.) insulation thickness and ply thick-
ness of tg = tgg = 0.76 mm (0.03 in.) and t45 = 1.52 mm (0.06 in., combined
thickness of +45° and ~-45° plies). This is fairly close to the optimum insula-
tion thickness, but far from the optimum laminate thickness. The second ini-~
tial design had a 203-mm (8.0-in.) insulation thickness and ply thickness of
tg = tys = tgg = 0.508 mm (0.02 in.), which is close to the optimum laminate
thickness but far from the optimum insulation thickness.

Performance using response approximations.- The results of the optimiza-
tion starting with the first initial design are summarized in the first three
rows of table 4. For this design, both approximations compare favorably with
the full analysis. This may be expected, because the final design differs
from the initial design primarily in the laminate thickness which has a weak
effect on the temperature. (See fig. 7.) The final design thicknesses deter-
mined using the reciprocal expansion are substantially different from those
obtained from the full analysis. However, the mass is only 3.6 percent greater
than that from the full analysis design. The maximum temperature error for the
reciprocal expansion final design is only 3.67° C (6.6° F), which is smaller
than the error for the direct expansion. This does not indicate that the recip-
rocal expansion is superior to the direct expansion; rather, it indicates that
the difference between the initial and final design thicknesses from the recip-
rocal expansion is less than that from the direct expansion.

Considerable time savings are achieved by using the approximate thermal
analysis. The approximate thermal analysis requires less than 5 percent of the
time required for a full analysis. However, the total optimization time can
only be reduced to 30 percent of the time required for full analyses because
of the time needed for the initial full analysis and for the operation of the
PARS optimizer.

The first three rows of table 5 summarize the results obtained with the
second initial design. This time there was a large change in insulation thick-
ness, and as a result, both approximations performed rather poorly. The direct
expansion yielded an infeasible design with a maximum temperature error of
292C C (525° F). The reciprocal expansion produced a much better design which
is very close to the true optimum with a maximum temperature difference of
66.7° C (120° F). Based on the temperature error, the final design is, in
fact, much closer to the true optimum than may be expected. This is because

11



the error peaks for noncritical time points. For the critical time points, the
temperature error is an order of magnitude smaller.

The results in tables 4 and 5 for the reciprocal expansion were obtained
with wvpi = 0 for the ply thickness design variables. When the same calcu-
lations were repeated for wvpi = -1.02 mm (-0.04 in.), there was little change.
However, the changes in ply thickness from the initial design to the final
design were moderate. When ply thicknesses are changed drastically during the
design process, it becomes necessary to compensate for the thickness of other
plies via wvpi. An example is an initial design with insulation thickness of
122 mm (4.8 in.) and ply thickness of tg = tgg = 0.127 mm (0.005 in.) and
tgs = 1.27 mm (0.05 in.). With vy = -1.02 mm (-0.04 in.), the final mass
per unit area was 20.67 kg/m? (4.233 1b/ft2), or 3.6 percent heavier than the
true optimum, with a maximum temperature error of 7.4° C (13.3° F). With
Vmi = 0 mm, the final mass per unit area was 21.35 kg/m2 (4.372 lb/ftz), or
7.1 percent heavier than the true optimum, with a maximum temperature error of
16.4°9 C (29.6° F).

Based on these studies, it appears that it may be feasible to employ an
approximate thermal analysis using the reciprocal expansion without updating
the approximation. If the temperature error for the final design is large
enough to put the optimality of that design into doubt, the optimization may
be restarted from that final design. This was done for the final design given
in table 5 for the reciprocal expansion. The restarted optimization required
14.0 seconds of central processing unit (CPU) time to converge to the exact
optimum in a few iterations.

Performance using critical times.- The performance of the critical~time
approach was evaluated next. Because of the drift in the critical time point
discussed in "Use of Critical Time Points" and shown in figures 8 and 9, crit-
ical times were updated at the beginning of each one-dimensional search. For
each one-dimensional search, stresses were calculated only at two time points:
the time of maximum stress ratio and that of maximum temperature. The results
of the optimization using this concept are summarized in the last two rows of
tables 4 and 5. It can be seen that additional savings of about 50 percent in
computation time are realized without any substantial change in the details of
the final design.

CONCLUDING REMARKS

Two approximation concepts were evaluated for use in the design of thermal/
structural systems for minimum mass. The first concept was the use of response
approximations, and the second concept was the use of critical time points. The
evaluations were carried out by the use of steady-state and transient example
problems. The following conclusions are therefore valid only to the extent that

they apply to those examples.

The first concept which was evaluated made use of approximate thermal anal-
ysis. Two commonly used approximations, the direct and reciprocal expansions,
were shown to be special members of a more general family of approximations
characterized by a set of parameters wvpi which controls the point where the
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approximations become unbounded. The following conclusions were reached regard-
ing the performance of the approximations.

1. The reciprocal expansion is more accurate than the direct expansion when
the temperature becomes very high as a single design variable goes to zero.

2. If the temperature does not become very high when a single design vari-
able goes to zero but as several design variables go to zero simultaneously
(redundant system), the reciprocal expansion provides a better approximation
when these design variables either increase or decrease together. The direct
expansion is better when some design variables are increased as others decrease.

3. The reciprocal expansion is accurate enough for approximating temper-
atures without needing updating by a full analysis for changes of up to 50 per-
cent in the values of design variables during the design process.

4, For a redundant system such as a composite laminate, the generalized
approximation with a value of the parameter which compensates for the redundancy
is found to be better than either the direct or reciprocal expansions.

The second concept that was evaluated, the use of critical time points, was
found to work well if the critical time points were updated periodically. For
transient example problems, the combined use of the two approximation concepts
resulted in an order of magnitude reduction in computation time.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

April 10, 1979

13



10.

11.

12.

14

REFERENCES

Schmit, L. A., Jr.; and Farshi, B.: Some Approximation Concepts for Struc-
tural Synthesis. AIAA J., vol. 12, no. 5, May 1974, pp. 692-699.

Starnes, James H., Jr.; and Haftka, Raphael T.: Preliminary Design of
Composite Wings for Buckling, Strength and Displacement Constraints. A
Collection of Technical Papers - AIAA/ASME 19th Structures, Structural
Dynamics and Materials Conference, Apr. 1978, pp. 1-13. (Available as
ATAA Paper No. 78-466.)

Austin, Fred: A Rapid Optimization Procedure for Structures Subjected to
Multiple Constraints. AIAA/ASME 18th Structures, Structural Dynamics &
Materials Conference, Mar. 1977, pp. 71-79. (Available as AIAA Paper
No. 77-374.)

Storaasli, Olaf O.; and Sobieszczanski, Jaroslaw: On the Accuracy of the
Taylor Approximation for Structure Resizing. AIAA J., vol. 12, no. 2,
Feb. 1974, pp. 231-233.

Noor, Ahmed K.; and Lowder, Harold E.: Structural Reanalysis Via a Mixed
Method. Comput. & Struct., vol. 5, no. 7, Apr. 1975, pp. 9-12.

Schmit, Lucien A., Jr.; and Miura, Hirokazu: Approximation Concepts for
Efficient Structural Synthesis. NASA CR-2552, 1976.

Haftka, Raphael T.: Parametric Constraints With Application to Optimiza-
tion for Flutter Using a Continuous Flutter Constraint. AIAA J.,
vol. 13, no. 4, Apr. 1975, pp. 471-475.

Adelman, Howard M.; Sawyer, Patricia L.; and Shore, Charles P.: Develop-
ment of Methodology for Optimum Design of Structures at Elevated Temper-
atures. A Collection of Technical Papers - AIAA/ASME 19th Structures,
Structural Dynamics and Materials Conference, Apr. 1978, pp. 23-36.
(Available as AIAA Paper No. 78-468.)

Rao, G. Venkateswara; Shore, Charles P.; and Narayanaswami, R.: An
Optimality Criterion for Sizing Members of Heated Structures With
Temperature Constraints. NASA T™ D-8525, 1977.

Tsai, Stephen W.; and Wu, Edward M.: A General Theory of Strength for
Anisotropic Materials. J. Compos. Mater., vol., 5, Jan. 1971, pp. 58-80.

Haftka, R. T.; and Prasad, B.: Programs for Analysis and Resizing of
Complex Structures. Trends in Computerized Structural Analysis and
Synthesis, Ahmed K. Noor and Harvey G. McComb, Jr., eds., Pergamon Press
Ltd., c.1978, pp. 323-330. (Also available in Comput. & Struct., vol. 10,
no. 1/2, Apr. 1979, pp. 323-330.)

Fiacco, Anthony V.; and McCormick, Garth P.: Nonlinear Programming:
Sequential Unconstrained Minimization Techniques. John Wiley & Sons,
Inc., c.1968.



13. Haftka, Raphael T.; and Starnes, James H., Jr.: Applications of a Quadratic
Extended Interior Penalty Function for Structural Optimization. AIAA J.,
vol. 14, no. 6, June 1976, pp. 718-724.

14. Haftka, Raphael T.: Automated Procedure for Design of Wing Structures To
Satisfy Strength and Flutter Requirements. NASA TN D-7264, 1973.

15



TABLE 1.~ APPROXIMATIONS FOR £(V) = 11/(10vy + V)

£(V)

Direct
approximation
(eq. (2))

1.000
1.833
.524
1.078
.733
.500
1.00

1.000
1.455
0N
1.073
.636
.000
1.000

Reciprocal
approximation
(eq. (3))

1.000
1.909
.545
1.364
.927
.500
1.833

BASED ON

VALUES OF FUNCTION AND DERIVATIVES AT vgy = Vg = 1

Generalized

approximation

= -0.1,
(eq. (5))

1.000
1.833
.524
1.078
.733
441
1.521

Vp2 = =10
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TABLE 2.- MATERIAL PROPERTIES AND LOADING FOR INSULATED PANEL

(a) Mechanical properties for graphite epoxy

Value at -
Property Symbol Units
Room temperature | 177° C (350° F)
Material properties
! T )
Young's modulus E, GPa 155 155
psi 22.5 x 108 22.5 x 106
Ej GPa 8.83 5.58
psi 1.28 x 106 0.81 x 106
Poisson's ratio, major Vig 1 -- 0.30 0.23
| Shear modulus G12 GPa ‘ 5.10 0.551
1 psi ' 0.74 x 106 0.08 x 106
Coefficients of thermal 09 per ©C -0.234 x 10~6 -0.126 x 10-6
expansion per OF -0.13 x 1076 -0.07 x 10-6
o per ©C 34.0 x 1076 78.7 x 1076
per OF 18.9 x 106 43.7 x 1076
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TABLE 2.- Continued

(a) Concluded

Value at -
Property Symbol | Units
Room temperature | 177° C (350° F)
Material allowables
Strength component in fiber Xt GPa 1.11 1.03
direction, tensile and psi 0.161 x 106 0.150 x 106
compressive
Xc MPa -972 -848
| psi -0.141 x 106 -0.123 x 106
Strength component in direction Yt { MPa 35.8 21.0
normal to fibers, tensile and | psi 5,19 x 103 3.04 x 103 ‘
campressive I
Yo MPa -170 =119
psi -24.7 x 103 -17.3 x 103 I
Shear strength s | Mpa 57.9 25.9 ;
'~ psi 8.40 x 103 3.76 x 103
Loads
Applied loads Ny kN/m -700
1bf/in. -4000
Ny kN/m 228 i
1bf/in. 1300 ‘
Nyy kN/m 22.4
1bf/in. 128
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TABLE 2.- Concluded

(b) Thermal properties

Material
Property Symbol Units r

Graphite/Epoxy | Insulation

Mass density 0 kg/m3 1550 144
1b/in3 56 x 1073 5.2 x 1073

Thermal conductivity k W/m-°C 1.64 0.18
Btu-in/sec-ft2-OF | 3.16 x 1073 | 0.35 x 1073

Heat capacity c J/kg-°C 962 1200

Btu/1b-°F 0.23 0.291
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TABLE 3.- FINAL DESIGNS FOR TITANIUM PLATE WITH ALUMINUM BARS

Maximum
Final mass Design variables temperature cpu! per | cpul for total
error . . - .
Procedure iteration, | optimization,
kg 1b SI U.S. Customary oc o sec sec
Units Units
Full analysis 1 5.35 [ 11.79 21.23 mm 0.836 in. 0 0 1.99 167
‘ 6.91 .272
4.70 .185
2.62 .103
: 901.9 mm? | 1.398 in2 |
' ' 2491.0 . 3.861 i
314.8 .488 |
! f* E :
Reciprocal expansion | 6.41 - 14.14 28 .85 mm 1.136 in. 49.9, 89.8 1.12 100
' | 8.70 .342 K ;
4.66 .183 !
2.76 , .109
1036.8 nm2  1.607 inZ
| 2507.7 3.887
‘ | 342.6 .531
Direct expansion ; Algorithm diverges; final design not obtained
[
Combined reciprocal 5.29 | 11.66 20.84 mm 0.821 in. 14.9} 26.8 1.12 100
and direct 6.91 .272
expansions 4,63 .182
2.55 .101
917.4 mm2 | 1.422 in2
2485.8 3.853
‘ 302.6 .469
e 1
lcentral processing unit time on CDC Cyber 173; FIN campiler; OPT = 2.
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TABLE 4.- FINAL DESIGNS OF INSULATED COMPOSITE PANEL

[initial design: t;

tys

101.6 mm,
1.52 mm, and tgg = 0.76 nmﬂ

to = 0-76 mm,

' Final Design variables, mm (in.) Maximum | 1
mass, J ! : temperature CPU' per | Total
Procedure kg/me error, amalysis, | cpy,!
(1b/ft2) |t tg t4s tgg oC (°F) sec sec
| Full analysis 19.94 121.4 0.848 0.175 0.546 0 11.00 230.0
(4.084) (4.781) | (0.0334) | (0.0069) | (0.0215) (0)
Direct expansion 19.98 121.7 0.859 0.173 0.541 9.17 0.49 59.1
(4.093) (4.792) | (0.0338) | (0.0068) | (0.0213) (16.5)
Reciprocal expansion | 20.70 113.5 0.724 1.384 0.688 3.67 0.49 63.0
(4.239) | (4.468) | (0.0285) | (0.0545) | (0.0271) (6.6)
Direct expansion 19.97 121.7 0.853 0.163 0.528 9.50 0.23 28.9
plus critical (4.090) (4.790) | (0.0336) | (0.0064) | (0.0208) (17.1)
time points
Reciprocal expansion | 20.68 113.6 0.673 1.422 0.681 3.72 0.23 28,7
plus critical time | (4.235) (4.472) | (0.0265) | (0.056) (0.0268) (6.7)
points
Icentral processing unit time on CDC Cyber 173; FIN compiler, OPT = 2,
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TABLE 5.- FINAL DESIGNS OF INSULATED COMPOSITE PANEL

@nitial design: ty = 203.2 mm and tg

= tys = tgg = 0.51 mnzl

21Infeasible design.

Final : : ; Maximum
nass, Design variables, mm (in.) temperature cpu! per Tota%
Procedure kg/m2 error, analysis,| CPU,
(1b/£t2) t tg tys tgg °c (°F) sec sec
Full analysis 19.93 121.5 0.848 0.163 0.549 0 11.00 208.0
(4.081) (4.783) | (0.0334) | (0.0064) | (0.0216) (0)
i I
Direct expansion 13.91 80.6 0.864 0.102 0.508 292 0.49 53.6
(2.849) (3.175) | (0.0340) | (0.0040) | (0.0200) 2(525) ~
Reciprocal expansion | 20.73 127.6 0.833 0.124 0.551 l 66.7 0.49 58.6
(4.246) (5.023) | (0.0328) | (0.0049) | (0.0217) ! (120)
Direct expansion 14.49 79.9 0.777 0.480 0.663 275 0.23 21.5
plus critical (2.968) (3.145) | (0.0306) | (0.0189) | (0.0261) 2 (495)
points
Reciprocal expansion 20.67 127.4 0.836 0.114 0.538 68.3 0.23 21.4.
plus critical (4.234) (5.014) | (0.0329) | (0.0045)  (0.0212) (123)
points |
| L
Tcentral processing unit time on CDC Cyber 173; FIN compiler, OPT = 2.




Constraint function, g

Time, T T
max

Figure 1.- Typical variation of constraint function with time.
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Plate dimensions-—

305 mm % 305 mm

(12 in. x 12 in.)

/47<;\}nsulated edges

Titanium plate

H = 3300 W/m?

(0.002 Btu/in“-sec)
\) u N —
T - 1% (°m) A
(a) Configuration and loads.
Materiali
Property -
Aluminum Titanium
Gpa 69.6 103
E - - S
psi 10.1 x 10° 15 % 10
per °C 23.8 % 106 10.4 X 1076
o —-
per °F 13.2 X 1076 5.8 x 1076
. kg/m> 2770 4437
1b/in3 0.100 0.160
W
m-ocC 234 9.49
k - — 1
Btu-in
sec-ft2-OF | 0.451 0.018
°c 177 260
Ta -
O 350 500

(b) Material properties.

Figure 2.- Titanium plate with aluminum bars.

Aluminum bars



Design varibles

T = -18°c (0°F)

200

Reciprocal expansion

160 —— - —— Direct expansion

- e— — — Full analysis

120

\
Percent change A
in T
max \

80

\
— \
N \\ -
40 N\ /’/:’
\\\ /f//
- ~ //’
\ P
O ] ] ] ] | | |

-30 -40 0 40 80

Percent change in design variables

Figure 3.- Approximations of maximum temperature in titanium plate with
aluminum bars (from ref. 8).



Design Original design Final design | Percent
variable | S.I. unit|U.S. Cust.|S.I. unit|U.S. Cust.|difference
ty 13.11 mm|0.516 in. | 21.03 mm|0.828 in. |  +60.5
to 11.68 | .460 6.92 .272_ |~ -40.8 |
to 4.18 | .l64 4.69 -185 _#12.2 |
ta 3.26 T .128 2.62 .103 - -=19.5
a) 650.3 mm2[1.008 in2 [901.3 mm2[1.397 in2 +38.6 |
as 2350.3 3.643 2489.7  [3.859 + 5.9 |
as 418.1 .648 3l6.1 .4%0 -24.4 |
or /

/
6 e— . Full analysis /
— == = Direct expansion //
al —— — = Reciprocal expansion /

Percent
change in

Tm ax

-12 I 1 1 o ]

0 20 40 60 80 100
Percentage of total change in design variables
from original to final design

Figure 4.- Approximation performance for mixed changes in design variables
for titanium plate with aluminum bars.
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Figure 5.- Mathematical model and loadings for insulated composite panel.
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Full analysis

—_——— — Direct expansion

——— — Reciprocal expansion

Laminate thickness = 1.52 mm (0.06 in.)

T, = 177°C (350°F)

Point of expansion

| | J

i \
|
2 —
I\
Temperature ' ~
ratio,
/T,
1 —
50

Figure 6.- Quality

75 100 125 150

Insulation thickness, t, mm

of approximations in estimating temperature dependence on insulation
thickness; T = 2000 sec.
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1.4 —

—_— Full analysis
0.8 — _—-—— Direct expansion
Temperature | ——— — — Reciprocal expansion
ratio, FAN Approximation with vy = -4.06 mm
T/Tq (-0.16 in.)
0.6/ O Reciprocal expansion with individual-
ply design variable
0.41—
0.2
1 | | ]
1.5 2.0 2.5 3.0 3.5

Laminate thickness, t, mm

Figure 7.- Quality of approximation in estimating temperature dependence on laminate thickness;
T = 3200 sec, ty =101.6 mm (4.0 in.).
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ti, mm to + tgs + tgg, mm

Initial design 203 1.52
~=——e-—= Intermediate design 118 3.26

— ~— — Final design 121 2.86

Critical time points

Temperature /
ratio, 0.5 /
T
T /Ta

| ] | |
Y 1600 3200 4800 6400

Time, T, sec

Figure 8.- Laminate temperature history for different insulated composite-panel design.
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—— e T/Ty
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Laminate thickness = 1.52 mm (0.06 in,)

Base design point

Temperature ratio, T/T

! i | J
50 75 100 125 150

Insulation thickness, t, mm

Figure 9.~ Variation with insulation thickness of maximum laminate temperature
and laminate temperature at T = 3200 sec for insulated caomposite panel.
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60

50

40

Mass,
kg

20

10

—_ Direct expansion — 120
— — e e— — - Reciprocal expansion
Combined direct - 100
and reciprocal
expansion
o Full analysis — 80
Mass,
B 1b
— 60
— 40
i — 20
| I | |
20 40 60 80 100
Iteration

Figure 10.- Performance of Taylor series approximations in optimization

of titanium plate with aluminum bars.
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