General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA Techilcal Memorandum 73282

```
(NASA-TM-73282) AN ATLAS OF 1976 GEOS-3
RADAR ALTIMETER DATA FOR TROPICAL CYCLONE
STUDIES (NASA) 202 p HC A10/MF A01 CSCL 04B for Tropical Cyclone, Studies
\(\qquad\)

National Aeronautics and Space Administration

\section*{Wallops Flight Conter}

\title{
An Atlas of 1976 GEOS-3 Radar Altimeter Data for Tropical Cyclone Studies
}

\author{
H. Ray Stanley \\ Wallops Flight Center \\ Wallops Islana, Virginia \\ and \\ Barbara Chan, Cinuy Givens, and Ronald Taylor \\ EG\&G/Washington Analytical Services Center, Inc. \\ Wolf Research and Development Group \\ P.O. Box 476 \\ Pocomoke City, Maryland 21851
}
Section Page
1.0 INTRODUCTION ..... 1.1-1
2.0 atlantic area ..... 2.1-1
2.1 General ..... 2.1-1
2.2 Subtropical Storm No. 1 ..... 2.2-1
2.3 Tropical Storm Anna (Subtropical Storm No. 2) ..... 2.3-1
2.4 Hurricane Belle ..... 2.4.1
2.5 Hurricane Candice ..... 2.5-1
2.6 Tropical Storm Dottie ..... 2.6-1
2.7 Hurricane Emmy ..... 2.7-1
2.8 Subtropical Storm No. 3 ..... 2.8-1
2.9 Hurricane Frances ..... 2.9-1
2.10 Hurricane Gloria ..... 2.10-1
2.11 Hurricane Holly ..... 2.11-1
3.0 EASTERN PACIFIC/U. S. WEST COAST AREAS ..... 3.1-1
3.1 General ..... 3.1-1
3.2 Tropical Cyclone One ..... 3.2-1
3.3 Hurricane Annette ..... 3.3-1
3.4 Hurricane Bonny ..... 3.4-1
3.5 Tropical Cyclone Four ..... 3.5-1
3.6 Hurricane Hyacinth ..... 3.6-1
3.7 Hurricane Iva ..... 3.7-1
3.8 Tropical Storm Joanne ..... 3.8-1
3.9 Hurricane Kathleen ..... 3.9-1
3.10 Hurricane iiza ..... 3.10-1
3.11 Hurricane Madeline ..... 3.11-1
4.0 CENTRAL AND WESTERN PACIFIC AREAS ..... 4.1-1
4.1 General ..... 4.1-1
4.2 Typhoon Marie ..... 4.2-1
4.3 Typhoon 01ga ..... 4.3-1
4.4 Super Typhoon Pamela ..... 4.4-1
4.5 Super Typhoon Louise ..... 4.5-1
5.0 INDIAN OCEAN AREA ..... 5.1-1
5.1 General ..... 5.1-1
5.2 Tropical Cyclone 20-76 ..... 5.2-1
REFERENCES

\section*{LIST OF ILLUSTRATIONS}
Figure ..... Page
2-1 Tracks of North Atlantic Subtropical Cyclones, 1976 ..... 2.1-2
2-2 Tracks of 1976 Tropical Cyclones ..... 2.1-3
4-1 Pacific Area Tropical Storms ..... 4. 1-6
4-2 Pacific Area Tropical Storms ..... 4.1-7
4-3 Pacific Area Typhoons ..... 4.1-8
4-4 Pacific Area Typhoons 4.1-9
4-5 Pacific Area Typhoons ..... 4. 1-104. 2-44-6 Typhoon Marie
4-7 Typhoon 0lga 4.3-5
4-8 Typhoon Pamela4.4-2
4-9 Typhoon Louise ..... 4.5-5
5-1 North Indian Ocean Tropical Cyclones ..... 5.1-3

\section*{FOREWORD}

This document's primary purpose is to provide the means for locating and extracting GEOS-3 altimeter data acquired for the analysis of specific hurricanes, typhoons, and other tropical cyclones. This data may also be extremely useful in the analysis of the behavior of t::e altimeter instrument in the presence of severe meteorological disturbances as well as provide a data base which can be useful in the resolution of apparently anomalous geoid or sea surface characteristics.

\subsection*{1.0 INTRODUCTION}

This document is the result of recent efforts to correlate all of the GEOS-3 satellite altimeter schedule information with all of the available 1976 tropical cyclone positional information. The time period covers from January 28, 1976, through January 2, 1977. The geographical region includes all ocean area north of the equator divided into the following operational areas: the Atlantic area (which includes the Caribbean and Gulf of Mexico); the eastern Pacific area; the central and western Pacific area; and the Indian Ocean area.

During the 1976 season, an effort was maintained to schedule the GEOS-3 altimeter consistent with available tropical cyclone location information. However, the effort was not nearly as intense as that employed ciuring the 1975 season. The results of the 1976 efforts appear consistent with the conclusions reached after the 1975 effort - that, with the large number of uncontrolled variables associated with the GEOS-3 altimeter operations, the success ratio is mainly due to chance.

The approach taken in producing this document consists of the following steps:
1. All available source material concerning tropical cyclones Wis collected.
2. The date/time/location information was extracted for each disturbance.
3. This information was compared with the GEOS-3 altimeter ON/OFF history information to determine the existence of any altimeter data close enough in both time and location to make the data potentially useful for further study (the very liberal criteria used was time less than 24 hours and location within 25 degrees).
4. Geographic plots (cyclone versus GEOS-3 orbit track) were produced for all of the events found showing the approximate location of the cyclone and the GEOS-3 orbit traces for the full day.
5. The geographic plots were annotated with the available cyclone track information and the pertinent GEOS-3 altimeter schedule information (orbit number, time of the point of closest approach, etc.).
6. The basic source material as well as the resulting geographic plots were grouped together and are presented for each of the tropical cyclones considered.

The altimeter mode information indicated on the daily GEOS/Cyclone plots can be decoded as follows:
```

Mode \#
702
703 - Global Mode Data
- Lo Data Rate (TM Form 1)
- Both pre and post bit-cal performed
711 • Altimeter Intensive Mode
- Data Rate - Hi (TM Form 3)
- Altitude Data Rate - 100/sec
- Waveform Data and Rate - 8 even numbered
instantaneous waveform samples at 100/sec
each. }16\mathrm{ averaged waveform samples at one
per }\approx3.2\mathrm{ seconds each
- Both pre and post bit-cal performed
708 - Altineter Intensive Mode
Data Rate - Hi (TM Form 2)
- Waveform Data and Rate - 16 instantaneous
waveform samples at 100/sec each
- Both pre and post bit-cal performed
- 16 averaged waveform samples at one per }\approx3.
802 - Altimeter Intensive Mode
- Data Rate Lo (TM Form 1)
- 16 averaged waveform samples at one per }=2.
seconds each

```
```

Mode \# Mode
803 Global Mode Data
- Lo Data Rate (TM Form 1)
808 - Altimeter Intensive Mode
- Data Rate Hi (TM Form 2)
- 16 instantaneous waveform samples at 100/sac each
- 16 averaged waveform samples at one per 3.2 seconds each

```

Table 1-1 and Table 1-2 list those GEOS tracks which show the best possibility of correlation with tropical cyclone activity. These summary lists were compiled from all of the daily GEOS/cyclone plots. Table \(1-1\) is listed in time order while Table 1-2 is listed by storm and regional area, each table showing the GEOS revolution number, disturbance name and the page number of the corresponding GEOS/cyclone ground track plot. It should be pointed out that the GEOS-3 altimeter on/off information is basically schedule information and no attempt has been made to correlate this with the actual existence of data.

Table 1-1. Summary Listing of Scheduled GEOS Revolution Number vs Cyclone
\begin{tabular}{|c|c|c|c|}
\hline Orbit \# & Cyclone & Date & Page \# \\
\hline 5106 & Typhoon Marie & 4/04 & 4.2-5 \\
\hline 5451 & TC20-76 & 4/29 & 5.2-2 \\
\hline 5684 & Typhoon 01ga & 5/15 & 4.3-6 \\
\hline 5720 & Typhoon Olga & 5/18 & 4.3-7 \\
\hline 5734 & Typhoon 0lga & 5/19 & 4.3-8 \\
\hline 5741 & Typhoon 0lga & 5/19 & 4.3-8 \\
\hline 5755 & Typhoon 01ga & 5/20 & 4.3-9 \\
\hline 5762 & Typhoon 01ga & 5/21 & 4.3-10 \\
\hline 5762 & Subtropical Storm Pamela & 5/21 & 4.4-7 \\
\hline 5770 & Subtropical Storm \#1 & 5/21 & 2.2-3 \\
\hline 5776 & Subtropical Storm \#1 & 5/22 & 2.2-4 \\
\hline 5783 & Typhoon 01ga & 5/22 & . 3 \\
\hline 5790 & Subtropical Storm \#l & 5/23 & 2.2-5 \\
\hline 5791 & Typhoon 0lga & 5/23 & 2.2-5 \\
\hline 5798 & Typhoon 01ga & 5/23 & 4.3-12 \\
\hline 5805 & Typhoon 0lga & 5/24 & 4.3-12 \\
\hline 5812 & Typhoon 0lga & 5/24 & 4.3-73 \\
\hline 5826 & Typhoon 01ga & 5/26 & 4.3-15 \\
\hline 5834 & Typhoon 0lga & 5/26 & 4.3-15 \\
\hline 5934 & Tropical Cycione One & 6/02 & 3.2-3 \\
\hline 5955 & Hurricane Annette & 6/03 & 3.3-4 \\
\hline 5961 & Hurricane Anretie & 6/04 & 3.3-5 \\
\hline 5969 & Hurricane Annette & 6/04 & 3.3-5 \\
\hline 6020 & Hurricane Annette & 6/08 & 3.3-6 \\
\hline 6026 & Hurricane Annette & 6/08 & 3.3-6 \\
\hline 6318 & Hurricane Bonny & 6/28 & 3.4-3 \\
\hline 6318 & Tropical Cyclone four & 6/28 & 3.5-3 \\
\hline 6756 & Tropical Storm Anna & 7/30 & 2.3-3 \\
\hline 6763 & Tropical Storm Anna & 7/31 & 2.3-4 \\
\hline 6777 & Tropical Storm Anna & 8/01 & 2.3-5 \\
\hline 6871 & Hurricane Belle & 8/07 & 2.4-5 \\
\hline 6879 & Hurricane Belle & 8/08 & 2.4-6 \\
\hline 6879 & Hurricane Hyacinth & 8/08 & 3.6-4 \\
\hline
\end{tabular}

Table 1-1 (cont.)
\begin{tabular}{|c|c|c|c|}
\hline Orbit \# & Cyclone & Date & Page * \\
\hline 6884 & Hurricane Belle & 3/08 & 2.4-6 \\
\hline 6885 & Hurricane Belle & 8/08 & 2.4-6 \\
\hline 6893 & Hurricane Belle & 8/09 & 2.4-7 \\
\hline 6898 & Hurricane Belle & 8/09 & 2.4-7 \\
\hline 6899 & Hurricane Belle & 8/09 & 2.4-7 \\
\hline 6900 & Hurricane Belle & 8/09 & 2.4-7 \\
\hline 6907 & Hurricane Belle & 8/10 & 2.4-8 \\
\hline 6913 & Hurricane Belle & 8/10 & 2.4-8 \\
\hline 7021 & Hurricane Candice & 8/18 & 2.5-3 \\
\hline 7027 & Hurricane Candice & 8/18 & 2.5-3 \\
\hline 7035 & Hurricane Candice & 8/19 & 2.5-4 \\
\hline 7035 & Tropical Storm Dottie & 8/19 & 2.6-4 \\
\hline 7036 & Hurricane Candice & 8/19 & 2.5-4 \\
\hline 7036 & Tropical Storm Dottie & 8/19 & 2.6-4 \\
\hline 7041 & Hurricane Candice & 8/19 & 2.5-4 \\
\hline 7041 & Tropical Storm Dottie & 8/19 & 2.6-4 \\
\hline 7049 & Hurricane Candice & 8/20 & 2.5-5 \\
\hline 7049 & Tropical Storm Dottie & 8/20 & 2.6-5 \\
\hline 7070 & Tropical Storm Dottie & 8/21 & 2.6-6 \\
\hline 7076 & Hurricane Emmy & 8/22 & 2.7-4 \\
\hline 7078 & Hurricane Candice & 8/22 & 2.5-7 \\
\hline 7084 & Hurricane Candice & 8/22 & 2.5-7 \\
\hline 7084 & Hurricane Emmy & 8/22 & 2.7-4 \\
\hline 7090 & Hurricane Emmy & 8/23 & 2.7-5 \\
\hline 7092 & Hurricane Candice & 8/23 & 2.5-8 \\
\hline 7092 & Hurricane Emmy & 8/23 & 2.7-5 \\
\hline 7098 & Hurricane Candice & 8/23 & 2.5-8 \\
\hline 7098 & Hurricane Emmy & \(8 / 23\) & 2.7-5 \\
\hline 7106 & Hurricane Candice & 8/24 & 2.5-9 \\
\hline 7106 & Hurricane Emmy & 8/24 & 2.7-6 \\
\hline 7107 & Hurricane Iva & 8/24 & 3.7-4 \\
\hline 7112 & Hurricane Emmy & 8/24 & 2.7-6 \\
\hline 7120 & Hurricane Emmy & 8/25 & 2.7-7 \\
\hline 7127 & Hurricane Emmy & 8/25 & 2.7-7 \\
\hline
\end{tabular}

Table 1-1 (cont.)

Orbit \#
7149
7155
7161
7163
7164
7169
7169
7175
7177
7177
7182
7183
7185
7196
7198
7204
7204
7212
7220
7226
7234
7246
7246
7248
7253
7260
7261
7261
7264
7313
7397
7405
741
7425
\begin{tabular}{|c|c|c|c|}
\hline Orbit \# & Cyclone & Rate & Page \# \\
\hline 7149 & Hurricane Emmy & 8/27 & 2.7-9 \\
\hline 7155 & Hurricane Emmy & 8/27 & 2.7-9 \\
\hline 7161 & Hurricane Frances & 8/28 & 2.7-9 \\
\hline 7163 & Hurricane Emmy & 8/28 & 2.9-3 \\
\hline 7164 & Hurricane Iva & 8/28 & 2.7-10 \\
\hline 7169 & Hurricane Emmy & 8/28 & 3.7-5 \\
\hline 7169 & Hurricane Frances & 8/28 & 2.7-10 \\
\hline 7175 & Hurricane Frances & 8/29 & 2.9-3 \\
\hline 7177 & Hurricane Emmy & 29 & 2.9-4 \\
\hline 7177 & Hurricane Frances & 99 & 2.7-11 \\
\hline 7182 & Hurricane Emmy & 29 & 2.9-4 \\
\hline 7183 & Hurricane Frances & 8/29 & 2.7-11 \\
\hline 7185 & Hurricane Iva & & 2.9-4 \\
\hline 7196 & Hurricane Emmy & \&/¢s & 3.7-6 \\
\hline 7198 & Hurricane Frances & 8/30 & 2.7-12 \\
\hline 7204 & Hurricane Emmy & \(8 / 30\) & 2. 9-5 \\
\hline 7204 & Hurricane Frances & 8/31 & 2.7-13 \\
\hline 7212 & Hurricane Frances & 8/31 & 2.9-6 \\
\hline & Hurricane Frances & 8/31 & 2.9-6 \\
\hline 7220 & Hurricane Frances & 9/01 & 2.9-7 \\
\hline 7226 & Hurricane Frances & 9/01 & 2.9-7 \\
\hline 7234 & Huirricane Frances & 9/02 & 2.9-8 \\
\hline 7246 & Hurricane Emmy & 9/03 & 2.7-16 \\
\hline 7246 & Hurricane Frances & 9/03 & 2.9-9 \\
\hline 7248 & Hurricane Frances & 9/03 & \\
\hline 7253 & Hurricane Emmy & 9/03 & \\
\hline 7260 & Hurricane Emmy & 9/04 & 2.7-16 \\
\hline 7261 & Hurricane Emmy & 9/04 & 2.7-17 \\
\hline 7261 & Hurricane Frances & 9/04 & 2.9-10 \\
\hline 7264 & Tropical Storm Joanne & 9/04 & 3.8-4 \\
\hline 7313 & Hurricane Kathleen & 9/07 & 3.9-4 \\
\hline 7397 & Subtropical Storm \#3 & 9/13 & 2.8-3 \\
\hline 7405 & Suitropical Storm \#3 & 9/13 & 2.8-3 \\
\hline 7411 & Subtropical Storm \#3 & 9/14 & 2.8-4 \\
\hline 7425 & Subtropical Storm \#3 & 9/14 & 2.8-4 \\
\hline
\end{tabular}

Table 1-1 (cont.)
\begin{tabular}{|c|c|c|c|}
\hline Orbit \# & Cyclone & Date & Page \# \\
\hline 7562 & Hurricane Liza & & \\
\hline 7588 & Hurricare Gloria & 9/25 & 3.10-4 \\
\hline 7595 & Hurricane Gloria & 927 & 2.10-3 \\
\hline 7596 & Hurricane Gloria & 9/27 & 2.10-3 \\
\hline 7604 & Hurricane Madeline & 9/27 & 2.10-3 \\
\hline 7605 & Hurricane Gloria & 9/29 & 3.11-5 \\
\hline 7610 & Hurricane Gloria & 9/28 & 2.10-4 \\
\hline 7618 & Hurricane Gloria & 9/28 & 2.10-4 \\
\hline 7624 & Hurricane Gloria & 9/29 & 2.10-5 \\
\hline 7632 & Hurricane Gloria & 9/29 & 2.10-5 \\
\hline ? 637 & Hurricane Gloria & 9/30 & 2.10-6 \\
\hline 7640 & Hurricane Liza & 9/30 & 2.10-6 \\
\hline 7645 & Hurricane Gloria & 9/30 & 3.10-5 \\
\hline 7651 & Hurricane Gloria & 10/0? & 2.10-7 \\
\hline 7652 & Hurricane Gloria & 10/01 & \(2.10-7\) \\
\hline 7659 & Hurricane Gloria & 10/01 & 2.10-7 \\
\hline 7665 & Hurricane Gloria & 10/02 & 2.10-8 \\
\hline 7666 & Hurricane Gloria & 10/02 & \(2.10-8\) \\
\hline 7673 & Hurricane Gloria & 10/02. & 2.10-8 \\
\hline 7675 & Hurricane Gloria & 10/03 & 2.10-9 \\
\hline 7679 & & 10/03 & 2.10-9 \\
\hline 7680 & Hurricane Gloria & 10/03 & 2.10-9 \\
\hline 7689 & Hurricane Gloria & 10/03 & 2.10-9 \\
\hline 7693 & Hurricane Gloria & 10/04 & 2.10-10 \\
\hline 7959 & Hurricane Gloria & 10/04 & 2.10-10 \\
\hline 7964 & Hurricane Holly & 10/23 & 2.11-3 \\
\hline & Hurricane Holly & 10/23 & 2.11-3 \\
\hline 7965 & Hurricane Holly & 10/23 & 2.11-3 \\
\hline 7973 & Hurricane Holly & 10/24 & 2.11-4 \\
\hline 7986 & Hurricane Holly & 10/25 & 2.11-5 \\
\hline 7993 & Hurricane Holly & 10/25 & 2.11-5 \\
\hline 7994 & Hurricane Holly & 10/26 & 2.11-6 \\
\hline 8001 & Hurricane Holly & 10/26 & 2.11-6 \\
\hline 8002 & Hurricane Holly & 10/26 & 2.11 \\
\hline 8006 & Hurricane Holly & 10/26 & 2.11 \\
\hline 8007 & ilurricane Holly & 10/26 & \(2.11-6\) \\
\hline 8008 & Hurricane Holly & 10/27 & \(2.11-7\) \\
\hline
\end{tabular}

\section*{Table 1-1 (cont.)}
\begin{tabular}{|c|c|c|c|}
\hline Orbit \# & Cyclone & Date & Page \# \\
\hline 8016 & Hurricane tiolly & !0/27 & 2.117 \\
\hline 8020 & Hurricane Holly & 10/27 & -7 \\
\hline 8021 & Hurricane Holly & 10/27 & 11-7 \\
\hline 8022 & Hurricane Holly & 10/28 & \(2.11-8\) \\
\hline 8030 & Hurricane Holly & 10/28 & 2.11-8 \\
\hline 8035 & Hurricane Holly & 10/28 & -8 \\
\hline 8036 & Hurricane Holly & 10/28 & \\
\hline 8048 & Hurricane Holly & 10/29 & \\
\hline 8049 & Hurricane Holly & 10/29 & -9 \\
\hline 8063 & Subtropical Storm Louise & 10/30 & 4.5-6 \\
\hline
\end{tabular}

\section*{Table 1-2. Summary Listing of Cyclone vs. GEOS Revolution Number According to Area}
\begin{tabular}{|c|c|c|c|}
\hline Cyclone Name & Date & GEOS Orbit & Page \# \\
\hline Subtropical Storm. \({ }^{\text {.1 }}\) & 5/21 & 5770 & 2.2-3 \\
\hline Subtropical Storm \#1 & 5/22 & 5776 & 2.2-4 \\
\hline Subtropical Storm \#1 & 5/23 & 5790 & 2.2-5 \\
\hline Subtropical Storm \#3 & 9/13 & 7397 & 2.8-3 \\
\hline Subtropical Storm \#3 & 9/13 & 7405 & 2.8-3 \\
\hline Subtropical Strom \#3 & 9/14 & 7411 & 2.8-4 \\
\hline Subtropical Storm \#3 & 9/14 & 7425 & 2.8-4 \\
\hline Tropical Storm Anna & 7/30 & 6756 & 2.3-3 \\
\hline Tropical Strom Anna & 7/31 & 6763 & 2.3-4 \\
\hline Tropical Storm Anna & 8/01 & 6777 & 2.3-5 \\
\hline Hurricane Belle & 8/07 & 6871 & 2.4-5 \\
\hline Hurricane Belle & 8/08 & 6879 & 2.4-6 \\
\hline Hurricane Belle & 8/08 & 6884 & 2.4-6 \\
\hline Hurricane Belle & 8/08 & 6885 & 2.4-6 \\
\hline Hurricane Belle & 8/09 & 6893 & 2.4-7 \\
\hline Hurricane Belle & 8/09 & 6898 & 2.4-7 \\
\hline Hurricane Belle & 8/09 & 6899 & 2.4-7 \\
\hline Hurricane Belle & 8/09 & 6900 & 2.4-7 \\
\hline Hurricane Belle & 8/10 & 6907 & 2.4-8 \\
\hline Hurricane Belle & 8/10 & 6913 & 2.4-8 \\
\hline Hurricane Candice & 8/18 & 7021 & 2.5-3 \\
\hline Hurricane Candice & 8/18 & 7027 & 2.5-3 \\
\hline Hurricane Candice & 8/19 & 7035 & 2.5-4 \\
\hline Hurricane Candice & 8/19 & 7036 & 2.5-4 \\
\hline Hurricane Candice & 8/19 & 7041 & 2.5-4 \\
\hline Hurricane Candice & 8/20 & 7049 & 2.5-5 \\
\hline Hurricane Candice & 8/22 & 7078 & 2.5-7 \\
\hline Hurricane Candice & 8/22 & 7084 & 2.5-7 \\
\hline Hurricane Candice & 8/23 & 7092 & 2.5-8 \\
\hline Hurricane Candice & 8/23 & 7098 & 2.5-8 \\
\hline Hurricane Candice & 8/24 & 7106 & 2.5-9 \\
\hline
\end{tabular}

Table 1-2 (cont.)
\begin{tabular}{|c|c|c|c|}
\hline Cyclone Name & Date & Orbit & Page \# \\
\hline Tropical Storm Dottie & 8/19 & 7035 & 2.6-4 \\
\hline Tropical Storm Dottie & 8/19 & 7036 & 2.6-4 \\
\hline Tropical Storm Dottie & 8/19 & 7041 & 2.6-4 \\
\hline Tropical Storm Dottie & 8/20 & 7049 & 2.6-5 \\
\hline Tropical Storm Dottie & 8/21 & 7070 & 2.6-6 \\
\hline Hurricane Emmy & 8/22 & 7076 & 2.7-4 \\
\hline Hurricane Emmy & 8/22 & 7084 & 2.7-4 \\
\hline Hurricane Emmy & 8/23 & 7090 & 2.7-5 \\
\hline Hurricane Emmy & 8/23 & 7092 & 2.7-5 \\
\hline Hurricane Emmy & 8/23 & 7098 & 2.7-5 \\
\hline Hurricane Emmy & 8/24 & 7106 & <.7-6 \\
\hline Hurricane Emmy & 8/24 & 7112 & 2.7-6 \\
\hline Hurricane Emmy & 8/25 & 7120 & 2.7-7 \\
\hline Hurricane Emmy & 8/25 & 7127 & 2.7-7 \\
\hline Hurricane Eminy & 8/27 & 7149 & 2.7-9 \\
\hline Hurricane Emriby & 8/27 & 7155 & 2.7-9 \\
\hline : :urricane Emmy & 8/28 & 7163 & 2.7-10 \\
\hline Hurr icane Emmy & 8/28 & 7169 & 2.7-10 \\
\hline Hurricante Emmy & 8/29 & 7177 & 2.7-11 \\
\hline Hurriche Emmy & 8/29 & 7182 & 2.7-11 \\
\hline Hurricane Emmy & 8/30 & 7196 & 2.7-12 \\
\hline Hurricane Emmy & 8/31 & 7204 & 2.7-13 \\
\hline Hurricane Emmy & 9/03 & 7246 & 2.7-16 \\
\hline Hurricare Emmy & 9/03 & 7253 & 2.7-16 \\
\hline Hurricane Emmy & 9/04 & 7260 & 2.7-17 \\
\hline Hurricane Emmy & 9/04 & 7261 & 2.7-17 \\
\hline Hurricane Frances & 8/28 & 7161 & 2.9-3 \\
\hline Hurricane Frances & 8/28 & 7169 & 2.9-3 \\
\hline Hurricane Frances & 8/29 & 7175 & 2.9-4 \\
\hline Hurricane Frances & 8/29 & 7177 & 2.9-4 \\
\hline Hurricane Frances & 8/29 & 7183 & 2.9-4 \\
\hline Hurricane Frances & 8/30 & 7198 & 2.9-5 \\
\hline Hurricane Frances & 8/31 & 7204 & 2.9-6 \\
\hline Hurricane Frances & 8/31 & 7212 & 2.9-6 \\
\hline
\end{tabular}

Table 1-2 (cont.)
\begin{tabular}{|c|c|c|c|}
\hline Cyclone Name & Date & Orbit & Page \# \\
\hline Hurricane Frances & \(9 / 01\) & 7220 & 2.9-7 \\
\hline Hurricane Frances & 9/01 & 7226 & 2.9-7 \\
\hline Hurricane Frances & 9/02 & 7234 & 2.9-8 \\
\hline Hurricane Frances & 9/03 & 7246 & 2.9-9 \\
\hline Hurricane Frances & 9/03 & 7248 & 2.9-9 \\
\hline Hurricane Frances & 9/04 & 7261 & 2.9-10 \\
\hline Hurricane Gloria & 9/27 & 7588 & 2.10-3 \\
\hline Hurricane Gloria & 9/27 & 7595 & 2.10-3 \\
\hline Hurricane Gloria & 9/27 & 7596 & 2.10 \\
\hline Hurricane Gloria & 9/28 & 7605 & 2.10-4 \\
\hline Hurricane Gloria & 9/28 & 7610 & 2.10-4 \\
\hline Hurricane Gloria & 9/29 & 7618 & 2.10-5 \\
\hline Hurricane Gloria & 9/29 & 7624 & 2.10-5 \\
\hline Hurricane Gloria & 9/30 & 7632 & 2.10-6 \\
\hline Hurricane Gloria & 9/30 & 7637 & 2.10-6 \\
\hline Hurricane Gloria & 10/1 & 7645 & .10 \\
\hline Hurricane Gloria & 10/1 & 7651 & 2.10-7 \\
\hline Hurricane Gloria & 10/1 & 7652 & 2.10-7 \\
\hline Hurricane Gloria & 10/2 & 7659 & 2.10-8 \\
\hline Hurricane Gloria & 10/2 & 7665 & 2.10-8 \\
\hline Hurricane Gloria & 10,2 & 7666 & 2.10-8 \\
\hline Hurricane Gloria & 10/3 & 7673 & 2.10-9 \\
\hline Hurricane Gloria & 10/3 & 7675 & 2.10-9 \\
\hline Hurricane Gloria & 10/3 & 7679 & 2.10-9 \\
\hline Hurricane Gloria & 10/3 & 7680 & 2.10-9 \\
\hline Hurricane Gloria & 10/4 & 7689 & 2.10-10 \\
\hline Hurricane Gloria & 10/4 & 7693 & 2.10-10 \\
\hline Hurricane Holly & 10/23 & 7959 & 2.11-3 \\
\hline Hurricane Holly & 10/23 & 7964 & 2.11-3 \\
\hline Hurricane Holly & 10/23 & 7965 & 2.11-3 \\
\hline Hurricane Holly & 10/24 & 7973 & 2.11-4 \\
\hline Hurricane Holly & 10/25 & 7986 & 2.11-5 \\
\hline Hurricane Holly & 10/25 & 7993 & 2.11-5 \\
\hline Hurricane Holly & 10/26 & 7994 & 2.11-6 \\
\hline
\end{tabular}

\section*{Table 1-2 (cont.)}
\begin{tabular}{|c|c|c|c|}
\hline Cuclone Name & Date & Orbit & Page \# \\
\hline Hurricane Holly & 10/26 & 8001 & 2.11-6 \\
\hline Hurricane Holly & 10/26 & 8002 & 2.11-6 \\
\hline Hurricane Holly & 10/26 & 8006 & 2.11-6 \\
\hline Hurricane Holly & 10/26 & 8007 & 2.11-6 \\
\hline Hurricane Holly & 10/27 & 8008 & 2.11-7 \\
\hline Hurricane Holly & 10/27 & 8016 & 2.11-7 \\
\hline Hurricane Holly & 10/27 & 8020 & 2.11-7 \\
\hline Hurricane Holly & 10/27 & 8021 & 2.11-7 \\
\hline Hurricane Holly & 10/28 & 8022 & 2.11-8 \\
\hline Hurricane Holly & 10/28 & 8030 & 2.11-8 \\
\hline Hurricane Holly & 10/28 & 8035 & 2.11-8 \\
\hline Hurricane Holly & 10/28 & 8036 & 2.11-8 \\
\hline Hurricane Holly & 10/29 & 8048 & 2.11-9 \\
\hline Hurricane Holly & 10/29 & 8049 & 2.11 .9 \\
\hline
\end{tabular}

\section*{Table 1-2 (cont.)}
3.0 EASTERN PACIFIC \& U. S. WEST COAST
\begin{tabular}{llll} 
Cyclone Name & Date & & Orbit \\
Tropical Cyclone One & \(6 / 02\) & & Page \# \\
Hurricane Annette & \(6 / 03\) & 5934 & \(3.2-3\) \\
Hurricane Annette & \(6 / 04\) & 5955 & \(3.3-4\) \\
Hurricane Annette & \(6 / 04\) & 5961 & \(3.3-5\) \\
Hurricane Annette & \(6 / 08\) & 5969 & \(3.3-5\) \\
Hurricane Annette & \(6 / 08\) & 6020 & \(3.3-6\) \\
Hurricane Bonny & \(6 / 28\) & 6026 & \(3.3-6\) \\
Tropical Cyclone Four & \(6 / 28\) & 6318 & \(3.4-3\) \\
Hurricane Hyacinth & \(8 / 08\) & 6318 & \(3.5-3\) \\
Hurricane Iva & \(8 / 24\) & 6879 & \(3.6-4\) \\
Hurricane Iva & \(8 / 28\) & 7107 & \(3.7-4\) \\
Hurricane Iva & \(8 / 29\) & 7164 & \(3.7-5\) \\
Tropical Storm Joanne & \(9 / 04\) & 7185 & \(3.7-6\) \\
Hurricane Kathleen & \(9 / 04\) & 7264 & \(3.8-4\) \\
Hurricane Liza & \(9 / 25\) & 7313 & \(3.9-4\) \\
Hurricane Liza & \(9 / 30\) & 7562 & \(3.10-4\) \\
Hurricane Madeline & \(9 / 29\) & 7640 & \(3.10-5\) \\
& & 7604 & \(3.11-5\)
\end{tabular}

Table 1-2 (cont.)
4.0 CENTRAL \& WESTERN PACIFIC AREAS
\begin{tabular}{llll} 
Cyclone Name & \(\underline{\text { Date }}\) & Orbit & Page \# \\
\hline Typhoon Marie & \(4 / 04\) & 5106 & \(4.2-5\) \\
Typhoon 01ga & \(5 / 15\) & 5684 & \(4.3-6\) \\
Typhoon 01ga & \(5 / 18\) & 5720 & \(4.3-7\) \\
Typhoon 01ga & \(5 / 19\) & 5734 & \(4.3-8\) \\
Typhoon 01ga & \(5 / 19\) & 5741 & \(4.3-8\) \\
Tjphoon 01ga & \(5 / 20\) & 5755 & \(4.3-9\) \\
Typhoon 01ga & \(5 / 21\) & 5762 & \(4.3-10\) \\
Typhoon 01ga & \(5 / 22\) & 5783 & \(4.3-11\) \\
Typhoon 01ga & \(5 / 23\) & 5791 & \(4.3-11\) \\
Typhoon 01ga & \(5 / 23\) & 5798 & \(4.3-11\) \\
Typhoon 01ga & \(5 / 24\) & 5805 & \(4.3-12\) \\
Typhoon 01ga & \(5 / 24\) & 5812 & \(4.3-12\) \\
Typhoon 01ga & \(5 / 25\) & 5826 & \(4.3-13\) \\
Typhoon 01ga & \(5 / 26\) & 5834 & \(4.3-14\) \\
Super Typhoon Pamela & \(5 / 21\) & 5762 & \(4.4-7\) \\
Super Typhoon Louise & \(10 / 30\) & 8063 & \(4.5-6\)
\end{tabular}
\begin{tabular}{llll}
\multicolumn{4}{c}{ Table 1-2 (cont.) } \\
\(5.0 \quad\) NORTH INDIAN OCEAN AREA & \\
Cyclone Name & \(\underline{\text { Date }}\) & \(\underline{\text { Orbit }}\) & Page \# \\
Tropical Cyclone 20-76 & \(4 / 29\) & 5451 & \(5.2-5\)
\end{tabular}

\subsection*{2.0 ATLANTIC AREA TROPICAL AND SUBTROPICAL CYCLONES}

\subsection*{2.1 General}

The data presented in this section on tropical and subtropical cyclones occurring in the Atlantic area were extracted from the National Hurricane Center's document, "Annual Data and Verification Tabulation Atlantic Tropical Cyclones 1976," and from the Monthly Weather Review's article "Atlantic Hurricane Season of 1976," by Miles B. Lawrence. During the 1976 season, there were a total of 10 cyclones that occurred in this area as listed below:
\begin{tabular}{ll} 
Subtropical Storm No. 1 & \((05 / 21 / 76-05 / 25 / 76)\) \\
Tropical Storm "Anna" & \((07 / 28 / 76-08 / 06 / 76)\) \\
(Subtropical Storm No. 2) & \\
Hurricane "Belle" & \((08 / 06 / 76-08 / 10 / 76)\) \\
Hurricane "Candice" & \((08 / 18 / 76-08 / 24 / 76)\) \\
Tropical Storm "Dottie" & \((08 / 17 / 76-08 / 21 / 76)\) \\
Hurricane "Emmy" & \((08 / 20 / 76-09 / 04 / 76)\) \\
Hurricane "Frances" & \((08 / 27 / 76-09 / 07 / 76)\) \\
Subtropical Storm No. 3 & \((09 / 13 / 76-09 / 17 / 76)\) \\
Hurricane "Gloria" & \((09 / 26 / 76-10 / 04 / 76)\) \\
Hurricane "Holly" & \((10 / 22 / 76-10 / 28 / 76)\)
\end{tabular}

Ground track plots of the Atlantic subtropical cyclones are shown in Figure 2-1 and track plots for the Atlantic tropical cyclones are shown in Figure 2-2.

Results of the comparison of the cyclone information and the GEOS-3 schedule information indicates that all of the cyclones may have associated GEOS altimeter data. All information as available for these cyclones along with any promising GEOS ground track maps are presented in the following sections.


Figure 2-1. Tracks of North Atlantic Subtropical Cyclones, 1976.


Figure 2-2. Tracks of 1976 Tropical Cyclones


Figure 2-2. Tracks of 1976 Tropical Cyclones

SUBTROPICAL STORM \#1
May 21-25, 1976

On May 21 , reports from the NOAA Buoy EBO4 \(\left(26^{\circ} \mathrm{N}, 90^{\circ} \mathrm{W}\right)\) and ship observations indicated a low-pressure system was developing over the central Gulf of Mexico. The low gained strength and drifted northwest until becoming nearly stationary on May 22 just north of EB04.

A developing trough in the westerlies over the Mississippi Valley began to influence the low on May 23 and the system strengthened to subtropical storm intensity. The storm accelerated toward the east-northeast at 20 kt and crossed north Florida and southwest Georgia that afternoon. The system continued into the Atlantic and merged with a frontal system by May 25.

The development of the storm had some characteristics of a tropical system while in the Gulf of Mexico, but the environment remained cold and the approach of an upper trough prevented any further warming of the system However, the upper trough did contribute to the strengthening of the low and a lowest pressure of 994 mb was estimated on May 24 when the storm was offshore of the Carolinas. Highest winds were 45 kt .

Tides of 1-2 ft above normal occurred along the Gulf coast from Tampa to Pensacola, and combined with large swells, caused beach erosion in this area. Heavy rainfall was reported over eastern South Carolina with 5 inches at Charleston. Damage from the storm was minimal and rainfall was beneficial to the southeastern states since precipitation had been below normal in this area.
\[
\begin{aligned}
\text { DISTURBANCE: } & \text { SUBTROPICAL STORII \#1 } \\
\text { DATE: } & \text { May } 21-25,1976
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Date} & \multirow[b]{2}{*}{Time} & \multicolumn{2}{|r|}{Position} & \multirow[t]{2}{*}{Pressure (MBS)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Wind } \\
& \text { (KTS) } \\
& \hline
\end{aligned}
\]} & \multirow[b]{2}{*}{Stage} \\
\hline & & Latitude & Longitude & & & \\
\hline 5/21 & 12002 & 24. ON & 89. OW & 1010 & & Low \\
\hline 5/22 & \[
\begin{aligned}
& 00002 \\
& 12002
\end{aligned}
\] & \[
\begin{aligned}
& 25.4 N \\
& 27.0
\end{aligned}
\] & \[
\begin{aligned}
& 90.0 \mathrm{~W} \\
& 91.0
\end{aligned}
\] & 1004 & & Low \\
\hline 5/23 & \[
\begin{aligned}
& 00002 \\
& 12002
\end{aligned}
\] & \[
26.3 i
\] & \[
\begin{aligned}
& 89.01 \mathrm{~W} \\
& 86.0
\end{aligned}
\] & 998 & & Subtropical Storm \\
\hline 5/24 & \[
\begin{aligned}
& 00002 \\
& 12002
\end{aligned}
\] & \[
\begin{aligned}
& 31.011 \\
& 33.0
\end{aligned}
\] & \[
\begin{aligned}
& 82.014 \\
& 78.0
\end{aligned}
\] & 996 & & Subtropical Storm \\
\hline 5/2.5 & \[
\begin{aligned}
& 00002 \\
& 12002
\end{aligned}
\] & \[
\begin{aligned}
& 34.0 \mathrm{ON} \\
& 35.5
\end{aligned}
\] & \[
\begin{aligned}
& \text { 74.0W } \\
& 69.5
\end{aligned}
\] & 994 & & \\
\hline
\end{tabular}


SUBTROPICAL STORM \(=1-5 / 22 / 76\) (00002 - 2400Z)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline TIME & LATITUDE & LONGITUUE & ORBIT & EQUATCR CROSSING & TIME OF EQUATOR CROSSING & & & & & \\
\hline 20002 & 27.0 N & 91.04 & 5776 & -55.10 & - 054658 & APPROXIMATE PCA & ON & OFF & MODE & UNID. \({ }^{\text {P }}\) \\
\hline 12002 & 26.3 & 89.0 & & & & 05572 & 055044 & 055827 & 808 & 166 \\
\hline 24002 & 28.5 & 86.0 & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}


The first named storm of the 1976 season began as a subtropical depression late on July 28, several hundred miles southeast of Bermuda. As the system moved toward the east-northeast, it gradually strengthened, reaching subtropical storm force early on July 30 , approximately 100 nm southwest of the Azores.

A ship, M/S Pointe Alleqre, confirmed the presence of the second subtropical storm of the season by passing through the center at 0200 GMT July 30. This vessel reported a barometric fall from 1014 to 999 mb followed by a rapid rise to 1010 mb , all of this within a 1 hour period. The ship experienced heavy thunderstorms with gusts to 60 kt and winds shifting from southeast to south-southwest to northwest.

The storm continued toward the east-northeast and began to rapidly acquire tropical characteristics, as inferred from satellite pictures. It was named Tropical Storm Anna on the afternoon of July 30 and then continued in a northeasterly direction sustaining winds of about 40 kt .

As Anna crossed south of the Azores on August 1, its path became blocked by a surface ridge to the east and north. The cloud pattern became disorganized and tropical characteristics were lost. After the storm became extratropical, a ship encountered the system 400 nm northeast of the Azores and at 1200 GMT August 2, an east wind of 46 kt and a 998.5 mb central pressure were reported. The storm's motion was blocked for the next 3 days as it made a slow counterclockwise loop through the Azores. By now the system was quite weak and passed east of the Azores as a 1015 mb low pressure system on August 6.

There were no wind reports from the Azores above gale force except after Anna had become extratropical, and there were no reports of damage or casualties.
```

DISTURBANCE : TROPICAL STORM ANNA (Subtropical Storm \#2)
DATE: July 28 - August 6, 1976

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Date} & \multirow[b]{2}{*}{Time} & \multicolumn{2}{|r|}{Position} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Pressure } \\
\text { (MBS) } \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Wind } \\
& \text { (KTS) } \\
& \hline
\end{aligned}
\]} & \multirow[b]{2}{*}{Stage} \\
\hline & & Latitude & Longitude & & & \\
\hline 7/28 & 18302 & 28.0 N & 52.2W & & & \\
\hline 7/29 & \[
\begin{aligned}
& 06002 \\
& 12302 \\
& 18302
\end{aligned}
\] & \[
\begin{aligned}
& 28.211 \\
& 28.2 \\
& 27.9
\end{aligned}
\] & \[
\begin{aligned}
& 50.1 \mathrm{~W} \\
& 49.9 \\
& 48.0
\end{aligned}
\] & 1012 & 25 & Suttropical Depression \\
\hline 7/30 & \[
\begin{aligned}
& 0030 Z \\
& 0630 Z \\
& 1230 Z \\
& 1800 Z
\end{aligned}
\] & \[
\begin{aligned}
& 28.3 \mathrm{~N} \\
& 30.0 \\
& 30.1 \\
& 30.5
\end{aligned}
\] & \[
\begin{aligned}
& 45.6 \mathrm{~W} \\
& 41.9 \\
& 39.9 \\
& 37.7
\end{aligned}
\] & 1005 & \[
\begin{aligned}
& 30 \\
& 30 \\
& 40 \\
& 40
\end{aligned}
\] & \begin{tabular}{l}
Subtropical Depression \\
Subtropical Storm \\
Tropical Storm
\end{tabular} \\
\hline \[
\underset{z=}{7 / 31}
\] & \[
\begin{aligned}
& 0000 z \\
& 0600 z \\
& 1200 z \\
& 1800
\end{aligned}
\] & \[
\begin{aligned}
& 31.3 \mathrm{~N} \\
& 31.9 \\
& 32.5 \\
& 33.2
\end{aligned}
\] & \[
\begin{aligned}
& 35.7 \mathrm{~W} \\
& 33.6 \\
& 31.5 \\
& 29.4
\end{aligned}
\] & 999 & 40
40
40
40 & Tropical Storm \\
\hline 8/1 & \[
\begin{aligned}
& 00002 \\
& 06002 \\
& 1230 z
\end{aligned}
\] & \[
\begin{aligned}
& 33.911 \\
& 35.0
\end{aligned}
\] & \[
\begin{aligned}
& 27.1 \mathrm{~W} \\
& 24.9
\end{aligned}
\] & 999 & 35 & \begin{tabular}{l}
Tropical Storm \\
Extratropical
\end{tabular} \\
\hline
\end{tabular}



LOCATION
Tropical Storm

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNIQ. \\
\hline 6763 & 151.19 & 000723 & \(0049 Z\) & 005652 & 005944 & 802 & 178 \\
\hline 6764 & 125.86 & 014190 & \(0227 Z\) & 1.0 & & & \\
\hline 6769 & -0.74 & 101805 & 115952 & 12082 & No & & \\
\hline 6770 & -26.06 & & & No & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

hurricane belle
August 6-10, 1976

The precursor of Belle moved westward off of the African Coast on July 28. It was the 20th tropical system of 1976 to be tracked across the Atlantic and was well defined. On July 31, in the mid-Atlantic, the system was better organized than most waves seen in this area. Satellite pictures indicated a possible lower-tropospheric circulation and much convection.

The wave traveled across the Atlantic at about 20 kt . While the wave itself continued westward into the Caribbean, the major convection separated just east of the Leeward Islands and moved northwestward and slowed down, reaching a position just east of the northern Bahamas on August 5 .

By this time, the convection was concentrated over a circular area 300400 nm wide. And late on August 5, a well-defined cirrus-level outflow was indicated. Finally, early on August 6, surface winds reached 25 kt with a depression.

Intensification was rather steady from August 6 to early on August 9 when a central pressure of 957 mb was reached with a maximum sustained surface wind speed of 105 kt . NOAA research aircraft reported spot winds as high as 130 kt , representative of sustained surface winds. 700 mb and were not evaluated to be

As Belle increased in strength, its status was upgraded to tropical storm August 7 .

As a tropical depression and for the first few hours as a tropical storm, Belle's position remained about 250 nm east-northeast of Nassau in the Bahamas. Actually during this time there was a small cyclonic looping motion. But soon after reaching tropical storm intensity, acceleration began toward the northwest and toward the north by August 8. This northward motion continued for the next two days while forward speed increased to \(20-25 \mathrm{kt}\).

Landfall was made early on August 10 ( 0500 GMT or 0100 EDT) on the south coast of Long Island. The point of landfall is estimated to be in the vicinity of Jones Beach on western Long Island.

The storm moved northward across Long Island, then over Long Island Sound, reaching the Connecticut coast near Bridgeport. Belle's course continued across west central Massachusetts into southwest New Hampshire, finally northMaine, tropical characteristics were lost.

As is the case with almost every storm that moves very near and parallel to the U.S. east coast, it was necessary to place a hurricane watch and/or warning over a rather large segment of the Eastern Seaboard. Belle was no exception. The entire coastline from Georgia northward to Maine was eventually placed under a hurricane watch.

Hurricane warnings were first announced for the Outer Banks of North Carolina from Kitty Hawk to Cape Lookout. This was on the afternoon of August 8. By the evening of August 9, warnings had extended northward through Maine.

By midday on August 9, the public advisories started mentioning central or eastern Long Island as the point of landfall. Coastal storm tides of 8 ft or more above normal were emphasized as well as high winds near landfall. An inland flash flood threat was expressed for much of the northeast as heavy rain had already been occurring not associated with Belle. In addition, tides of 12-15 ft above normal in some bays and inlets were considered possible near the center.

However, the storm had been on a weakening trend for about 24 hours prior to landfall, so that at the time of landfall the estimated maximum sustained winds were 65 kt and minimum sea level pressure was up to near 980 mb .

One of the reasons for this significant weakening before landfall is the fact that Belle's northward motion remained at speeds less than 25 kt . This allowed more time for the storm to travel over the colder waters of the Atlantic.

Estimates of damage caused by strong winds were minimal. Reports indicate that maximum sustained winds were mostly less than hurricane force over most of the warning area. Steady northwest \(55-65 \mathrm{kt}\) winds were estimated along the Outer Banks of North Carolina during the period that Belle passed just offshore. Moving northward, the next highest wind reported was 50 kt with gusts to 60 kt at Ocean City, MD. Along the New Jersey coast, \(30-40 \mathrm{kt}\) was common but the Bottom estimated 55 kt with gusts to 80 kt , and Manasquan estimated 70 kt gusts.

Tidal variation associated with the storm surge was generally about 3 ft above normal over much of the warning area. However, at some locations from New Jersey southward, tides were somewhat below normal due to an offshore wind component.

Rainfall amounts of 4-5 inches during the 24 hour period of Belle's passage were common over much of the warning area as well as quite a distance inland, especially in the western and northern mountains of New England.

Because of widespread precipitation throughout the area for a day or two immediately prior to the hurricane, there was considerable small stream flooding and flooded roads. Crop damage was spotty and although there were some losses to bottomland crops, the New England Crop and Live-Stock Reporting Service said "Damage from Hurricane Belle was much less than anticipated...".

In New England, there were three deaths which were attributed to Belle two drowned in southern Vermont when a foot bridge was swept from under them. a tree. At Norfolk, VA was killed in Barkhamstead when her car skidded into death. In New York, a falling tree was responsible for rain resulted in one fore, five storm-related deaths are accounted for for one fatality. There-

Reports of dollar damage as well as how many persons evacuated are difficult to estimate. The largest figure available for evacuation is that 30,000 peopleople along the New Jersey shore. A combined figure of near Connecticut reports approximar New York City and Suffolk County, New York. coast, 10,000 people evacuated 5000 evacuated. Down on the North Carolina elsewhere in New England and Unknown thousands were most likely evacuated concluded that nearly half a million Eastern Seaboard. It can therefore be danger of Belle's storm surge.

The total damage estimate for the United States is \(\$ 100\) million. This is mainiy a result of agricultural crop damage in the northeast United States although other property damage (dwellings, boats, commercial and beachfront structures) accounts for a considerable percentage. This figure is based Insurance Association.

OISTURBANCE: HURRICANE BELLE
\[
\text { DATE: August 6-10, } 1976
\]
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Date} & \multirow[b]{2}{*}{Time} & \multicolumn{2}{|c|}{Position} & \multirow[b]{2}{*}{Pressure (MB)} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Wind } \\
& \text { (KTS) }
\end{aligned}
\]} & \multirow[b]{2}{*}{Stage} \\
\hline & & Latitude & Longitude & & & \\
\hline 8/7 & \[
\begin{aligned}
& 00302 \\
& 06302 \\
& 12002 \\
& 18302
\end{aligned}
\] & \[
\begin{aligned}
& 26.1 N \\
& 25.8 \\
& 26.2 \\
& 26.6
\end{aligned}
\] & \begin{tabular}{l}
72.9W \\
73.1 \\
73.7 \\
74.3
\end{tabular} & 993 & \[
\begin{aligned}
& 40 \\
& 45 \\
& 50 \\
& 65
\end{aligned}
\] & \begin{tabular}{l}
Tropical Storm \\
Hurricane
\end{tabular} \\
\hline 8/8 & \[
\begin{aligned}
& 00302 \\
& 06302 \\
& 13012 \\
& 18032
\end{aligned}
\] & \[
\begin{aligned}
& 27.1 \mathrm{~N} \\
& 77.5 \\
& 28.5 \\
& 29.4
\end{aligned}
\] & \begin{tabular}{l}
74.8 H \\
75.2 \\
75.1 \\
75.4
\end{tabular} & 964 & \[
\begin{aligned}
& 77 \\
& 84 \\
& 84 \\
& 80
\end{aligned}
\] & Hurricane \\
\hline 8/9 & \[
\begin{aligned}
& 00302 \\
& 06302 \\
& 12282 \\
& 18002
\end{aligned}
\] & \[
\begin{aligned}
& 31.1 N \\
& 32.4 \\
& 34.7 \\
& 36.8
\end{aligned}
\] & \[
\begin{aligned}
& 75.0 W \\
& 75.2 \\
& 74.8 \\
& 74.5
\end{aligned}
\] & \[
\begin{aligned}
& 965 \\
& 971
\end{aligned}
\] & 90
90
75
70 & Hurricane \\
\hline 8/10 & \[
\begin{aligned}
& 00302 \\
& 05532
\end{aligned}
\] & \[
\begin{aligned}
& 39.5 \mathrm{~N} \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 73.5 \mathrm{~W} \\
& 73.5
\end{aligned}
\] & & \[
\begin{aligned}
& 77 \\
& 50
\end{aligned}
\] & Hurricane Tropical Storm \\
\hline
\end{tabular}


LOCATION
Hurrican
\begin{tabular}{|c|c|c|}
\hline TIME & LATITUDE & LONGITUDE \\
\hline 00002 & 26.0 N & 73.5W \\
\hline 06002 & 26.0 & 73.0 \\
\hline 12002 & 26.3 & 73.6 \\
\hline 18002 & 26.7 & 74.0 \\
\hline 24002 & 27.0 & 74.5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATCR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNIQ.P \\
\hline 6864 & 113.57 & 032732 & 04112 & No & & & \\
\hline 6865 & 88.25 & 050919 & 05492 & No & & & \\
\hline 6870 & -38.36 & 133814 & 152001 & 13502 & No & & \\
\hline 6871 & -63.68 & & 15282 & 152306 & 152948 & 808 & 177 \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}




LOCATION Tropical storm

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORSIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & N:DE & UNIQ. \\
\hline 6907 & 104.69 & 042414 & 05042 & 050042 & 051021 & 2.8 & -115 \\
\hline 6908 & 79.37 & 060600 & 06412 & \(N 0\) & & & \\
\hline 6912 & -21.91 & 125308 & 13112 & No & & & \\
\hline 6913 & -47.24 & 143455 & 14472 & 141322 & 144823 & 808 & \\
\hline 6914 & -72.56 & 161642 & 16252 & No & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

\section*{HURRICANE CANDICE}

August 18-24, 1976

Candice originated as a baroclinic system. As early as August 11, a cold low was clearly evident at 200 mb , centered about 500 nm southeast of Bermuda. At this time there was no reflection of the system on the surface pressure analysis; in fact, a surface ridge of high pressure extended northsouth along \(60^{\circ} \mathrm{W}\) longitude. The outline of the cold low was clearly seen on a movie loop made from successive satellite pictures.

This upper low drifted northwestward for the next few days and convective cloudiness increased, but it was not until August 15 that a broad low pressure area was detected on surface charts. Meanwhile, the low at 200 mb was becoming less well defined; by August 17 unly an upper trough west of the surface low could be identified and the flow above the surface ow became increasingly anticyclonic. This suggested a general warming of the system and a transformation to tropical structure.

At 1200 GMT August 18, about 200 nm west of Bermuda, the low was classified as a tropical depression as satellite pictures showed increasingly better organization and a ship reported winds gusting to 40 kt . Development continued and it was named later on the same day.

As the storm moved northeastward about 15 kt , slight weakening occurred beginning on the afternoon of August 19 and continuing until the following afternoon, when the storm again began to deepen. It became a hurricane during the night of August 20. Maximum intensity was reached on the afternoon of August 22 when the lowest pressure dropped to 964 mb and maximum sustained winds were 80 kt .

Early on August 24, the hurricane was overtaken by a rapidly moving cold front east of Cape Race, Newfoundland. It rapidly lost its identity as a tropical system while accelerating northeastward over the open Atlantic.

Candice initially took a north-northeast course around the periphery of a 1031 mb high centered just west of the Azores. By August 21 the central pressure of the high had dropped to 1026 mb and as steering currents became balanced, the hurricane drifted southeastward for about 24 hours. It began to be infiuenced by a prefrontal trough on August 22, after which it accelerated northeastward.

There were no known casualties or damages associated with Candice.
dISturbance: hurricane candice
DATE: August 18-24, 1976
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Date} & \multirow[b]{2}{*}{Time} & \multicolumn{2}{|c|}{Position} & \multirow[t]{2}{*}{Pressure (MB)} & \multirow[t]{2}{*}{Wind (KTS)} & \multirow[b]{2}{*}{Stage} \\
\hline & & Latitude & Longitude & & & \\
\hline 8/18 & 18302 & 34.0 N & 67.7W & & 27 & Tropical Depression \\
\hline 8/19 & \[
\begin{aligned}
& 0030 z \\
& 0630 z \\
& 1154 z \\
& 18302
\end{aligned}
\] & \[
\begin{aligned}
& 35.3 \mathrm{~N} \\
& 37.0 \\
& 37.5 \\
& 38.1
\end{aligned}
\] & \[
\begin{aligned}
& 66.3 W \\
& 65.2 \\
& 65.2 \\
& 64.1
\end{aligned}
\] & 996 & \[
\begin{aligned}
& 40 \\
& 45 \\
& 55 \\
& 45
\end{aligned}
\] & Tropical Storm \\
\hline 8/20 & \[
\begin{aligned}
& 00002 \\
& 0630 z \\
& 1230 z \\
& 18302
\end{aligned}
\] & \[
\begin{aligned}
& 39.0 \mathrm{~N} \\
& 40.0 \\
& 40.2 \\
& 40.6
\end{aligned}
\] & \[
\begin{aligned}
& 63.7 W \\
& 62.5 \\
& 61.7 \\
& 61.1
\end{aligned}
\] & 1006 & \[
\begin{aligned}
& 40 \\
& 45 \\
& 45 \\
& 45
\end{aligned}
\] & Tropical Storm \\
\hline 8/21 & \[
\begin{aligned}
& 0030 Z \\
& 0630 Z \\
& 1204 Z \\
& 1830 Z
\end{aligned}
\] & \begin{tabular}{l}
41. 3N \\
41.2 \\
41.0 \\
40.4
\end{tabular} & \[
\begin{aligned}
& 60.0 \mathrm{~W} \\
& 58.9 \\
& 59.3 \\
& 58.8
\end{aligned}
\] & 989 & \[
\begin{aligned}
& 45 \\
& 45 \\
& 45 \\
& 45
\end{aligned}
\] & Tropical Storm \\
\hline 8/22 & \[
\begin{aligned}
& 0030 Z \\
& 0630 Z \\
& 12312 \\
& 18312
\end{aligned}
\] & \[
\begin{aligned}
& 40.3 \mathrm{~N} \\
& 40.8 \\
& 41.1 \\
& 41.2
\end{aligned}
\] & \[
\begin{aligned}
& 57.8 \mathrm{~W} \\
& 57.8 \\
& 56.7 \\
& 56.8
\end{aligned}
\] & & \[
\begin{aligned}
& 65 \\
& 65 \\
& 65 \\
& 65
\end{aligned}
\] & Hurricane \\
\hline 8/23 & \[
\begin{aligned}
& 0030 Z \\
& 0630 Z \\
& 1230 Z \\
& 1830 Z
\end{aligned}
\] & \[
\begin{aligned}
& 41.6 \mathrm{~N} \\
& 42.5 \\
& 43.2 \\
& 44.6
\end{aligned}
\] & \[
\begin{aligned}
& 55.6 \mathrm{~W} \\
& 54.2 \\
& 52.8 \\
& 50.9
\end{aligned}
\] & & \[
\begin{aligned}
& 65 \\
& 65 \\
& 65 \\
& 65
\end{aligned}
\] & Hurricane \\
\hline 8/24 & \[
\begin{aligned}
& 0030 Z \\
& 0630 Z
\end{aligned}
\] & \[
\begin{aligned}
& 46.114 \\
& 47.2
\end{aligned}
\] & \[
\begin{aligned}
& 48.111 \\
& 45.7
\end{aligned}
\] & & \[
\begin{aligned}
& 65 \\
& 65
\end{aligned}
\] & Hurricane Extratropical \\
\hline
\end{tabular}
2.5-2


LOCATION

\section*{Tropical Storm}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNIC. \\
\hline 7020 & 123.21 & 040545 & 04492 & \(N_{0}\) & & & \\
\hline 7021 & 97.88 & 154713 & 06272 & 062310 & 063337 & 708 & 127 \\
\hline 7026 & -28.73 & 141628 & 15815 & 1612 & \(N_{0}\) & & \\
\hline 7027 & -54.05 & & & 161216 & 161332 & 708 & 135 \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

HURRICANE CANOICE - 8/19/78 (0000Z - 2400Z)


Location
Tropical Storm
\begin{tabular}{|c|c|c|}
\hline TIME & LATITUDE & LONGITUDE \\
\hline 0000\% & 35.3 N & 66.4W \\
\hline if\%cz & 36.3 & 65.9 \\
\hline 12002 & 37.5 & 65.1 \\
\hline 18002 & 38.1 & 64.3 \\
\hline \(\underline{24002}\) & 39.0 & 63.7 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSIMG & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & INIC. \({ }^{\text {a }}\) \\
\hline 7034 & 128.03 & 035043 & 04332 & No & & & \\
\hline 7035 & 103.36 & 153231 & 06112 & 060809 & 051911 & 708 & 143 \\
\hline 7036 & 78.04 & 071418 & 07482 & 075200 & & 708 & 144 \\
\hline 7040 & -23.25 & 140126 & 14162 & \(\frac{\mathrm{No}}{}\) & 075930 & 808 & 144 \\
\hline 7041 & 048.57 & 154313 & 15542 & 154227 & 155620 & 808 & \\
\hline & & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{LOCATION} \\
\hline TIME & Hurrica LATITUDE & LONGITUDE \\
\hline \(\underline{00002}\) & 39.0N & 63.7W \\
\hline 06002 & 40.0 & 63.3 \\
\hline 12002 & 40.2 & 62.0 \\
\hline 18002 & 41.0 & 61.0 \\
\hline \(\underline{24002}\) & 41.3 & 60.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNIQ. \\
\hline 7049 & 108.84 & 051729 & 06062 & 055450 & 060427 & 808 & 160 \\
\hline 7050 & 83.52 & 065916 & 07342 & No & & & \\
\hline 7054 & -17.77 & 134624 & 152811 & 14022 & No & & \\
\hline 7055 & -43.09 & & 15442 & No & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}


HURRICANE CANDICE - 8/22/76 (0000Z - 2400Z)




LOCATION Extratropical


\section*{TROPICAL STORM DOTTIE}

August 17-21, 1976

Dottie began spectacularly and ended ignominiously. The initial low center which became Dottie formed about 150 nm northwest of Key West during the evening of August 17 in response to a strong upper level trough which moved rapidly southward into the eastern Gulf of Mexico. On the next morning, the center consolidated between Dry Tortugas and Key West as pressure fell 8 mb in 24 hours in the area. The depression drifted slowly east and northeast during the next 24 hours with the pressure falling to 1004 mb at Key West during the early morning hours of August 19.

The system moved northeast rapidly during the morning and was named Dottie that afternoon as it reached the Atlantic near Palm Beach. The depression was not upgraded to a storm in the morning because of the uncertainty that the center might remain over land. However, post-analysis indicates storm strength was attained by 1200 GMT. Air Force reconnaissance reports indicated 35 kt winds near the middle Keys around mid-morning and \(35-45 \mathrm{kt}\) gusts were reported in the middle and upper Keys and on Grand Bahama during the day. In addition, 24 hour rainfall amounts of 5 inches were cormon in the Greater Miami area with one report of over 8 inches in Coral Gables.

Building high pressure north of the storm indicated Dottie would turn more to the west. Also, conditions appeared favorable for further strengthening. Accordingly, gale warnings were issued at 2200 GMT August 19 from Jacksonville, FL, to Virginia Beach, including Pamlico and Albermarle Sounds, and a hurricane watch from Savannah, GA, to Cape Hatteras, NC. The hurricane watch was extended to Jacksonville at 1000 GMT the next morning when it appeared the center was slowing and turning more to the west. However, the storm continued north and moved inland near Charleston, SC during the evening.

Dottie strengthened after moving off the Florida coast and an Air Force plane found the storm's minimum central pressure of 996 mb and maximum estimated surface winds of 45 kt around 0600 GMT August 19 when the center was about 75 miles northeast of Daytona Beach. Strong high-level winds over the storm caused weakening thereafter and Dottie was barely of tropical storm strength at landfall.

Gusts of \(35-40 \mathrm{kt}\) were reported at beach locations near Wilmington, NC. Tides were 3.5 ft above normal at Atlanta Beach, NC, and ranged from \(1-2 \mathrm{ft}\) above normal from Jacksonville Beach to the North Carolina Outer Banks. Carolina Beach had a storm rainfall of 7.78 inches with amounts of \(4-6\) inches over the remainder of coastal North Carolina near Wilmington.

The low pressure center which was the remnant of Dottie moved back over the water on August 22. It almost retraced the storm track, south and then southwes: across central Florida into the Gulf of Mexico where it lost its identity on August 25. No strong winds or significant shower activity were associated with the low and it has not been included in the track.

Four deaths resulted from Dottie when a fishing boat when down on August 19 near Grand Bahama Bank. Damage from the storm was minor, occurring mainly as beach erosion from Georgia to North Carolina.

DISTURBANCE: TROPICAL STORM DOTTIE
DATE: August 17-21, 1976
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Date} & \multirow[b]{2}{*}{Time} & \multicolumn{2}{|c|}{Position} & \multirow[t]{2}{*}{Pressure (MB)} & \multirow[t]{2}{*}{Wind (KTS)} & \multirow[t]{2}{*}{Stage} \\
\hline & & Latitude & Longitude & & & \\
\hline 8/19 & \[
\begin{aligned}
& 12302 \\
& 18302
\end{aligned}
\] & \[
\begin{aligned}
& 25.0 \mathrm{~N} \\
& 26.5
\end{aligned}
\] & \[
\begin{aligned}
& 81.5 \mathrm{~W} \\
& 80.0
\end{aligned}
\] & & 25
25 & Tropical Depression \\
\hline 8/20 & \[
\begin{aligned}
& 00302 \\
& 07002 \\
& 12302 \\
& 18302
\end{aligned}
\] & \[
\begin{aligned}
& 28.6 \mathrm{~N} \\
& 29.9 \\
& 30.6 \\
& 32.1
\end{aligned}
\] & \[
\begin{aligned}
& 79.8 \mathrm{~W} \\
& 80.3 \\
& 79.9 \\
& 80.0
\end{aligned}
\] & & 30
45
45
45 & Tropical Depression Tropical Storm \\
\hline 8/21 & 00302 & 32.8N & 79.8V & & 45 & Tropical Storm \\
\hline
\end{tabular}

TROPICAL STORM DOTTIE - 8/19/76 (1200Z - 2400Z)


LOCATION
Tropical Storm
LATITUDE LONGITUDE

\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNIQ.: \\
\hline 7035 & 103.36 & 063231 & 06162 & 060809 & 061911 & 708 & 143 \\
\hline 7036 & 78.04 & 071418 & & 07542 & 075200 & 015930 & 808 \\
\hline 7041 & -48.57 & 154313 & 172500 & 17342 & 154227 & 155620 & 898 \\
\hline 7042 & -73.89 & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

TROPICAL STOKM DOTTIE - 8/20/76 (00002 - 24002)


LOCATION
Tropical Storm
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Tropical Storm} \\
\hline TIME & LATITUDE & LONGITUDE \\
\hline 00002 & 27.8 N & 80.0 W \\
\hline \(\underline{06002}\) & 30.0 & 79.7 \\
\hline 12007 & 30.5 & 80.1 \\
\hline 1809? & 31.8 & 80.0 \\
\hline \(\underline{24007}\) & 32.7 & 80.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OTF & MODE & UNIQ.: \\
\hline 7049 & 108.84 & 251729 & 06012 & 055450 & 060427 & 808 & 160 \\
\hline 7050 & 83.52 & 065916 & 152811 & & 07392 & No & \\
\hline 7055 & -43.09 & -68.41 & & 170958 & 15402 & No & \\
\hline 7056 & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

TROPICAL STORM DOTTIE - 8/21/76 (0000Z)


Location
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Tropical Cepression} \\
\hline TIME & Latitude & LONGITUDE \\
\hline 00007 & 32.70 & 80.014 \\
\hline & & \\
\hline - & & \\
\hline - & & \\
\hline -- & & \\
\hline - & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNIO.: \\
\hline 7063 & 114.82 & 050227 & 05462 & \(N_{0}\) & & & \\
\hline 7064 & 89.00 & 064414 & 0724 & \(N_{0}\) & & & \\
\hline 7069 & -37.61 & 151309 & 15287 & \(N_{0}\) & & & \\
\hline 7070 & -62.93 & 165456 & 17052 & 165800 & 170512 & 808 & 184 \\
\hline 7071 & -83.26 & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

\section*{August 20 - September 4, 1976}

A tropical disturbance moved off the African coast on August 15. After traveling westward at \(15-20 \mathrm{kt}\) for several days, a depression formed 1000 nm east of the Lesser Antilles on August 20. This depression gradually strengthened as it slowed to 10 kt and became Tropical Storm Emmy on August 22 at a position 300 nm east of the Leeward Islands.

Emmy was now moving northwest about 15 kt and by late on August 24, recurvature began. Emmy had reached hurricane force on August 25 and was heading eastward, an unprecedented course for the time of year at this low latitude. The rapid development of an unseasonal low pressure system in the mid-Atlantic northeast of Emmy was responsible for the early recurvature.

Emmy resumed a north to northwest course from August 26-28 encountering strong upper level westerlies and again turning to the east on August 29. The hurricane maintained an easteriy direction for the next several days. On September 2, Emmy turned northward, crossing the central Azores. Weakening commenced as Hurricane Frances approached and Emmy was finally absorbed by the large circulation of Frances on September 4.

The storm's highest intensity was reached on August 29 when a reconnaissance aircraft reported a wind of 90 kt and a central pressure of 974 mb .

Several ships were buffeted by the high seas and winds of Emmy, but there were no reports of significant damage. A Venezuelan Air Force plane carrying a school choir to Europe crashed while attempting to land at Lajes Air Force Base in the Azores while the storm was in progress and 68 people were killed.

DISTURBANCE: HURRICANE EMMY
DATE: August 20 - September 4, 1976
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Date} & \multirow[b]{2}{*}{Time} & \multicolumn{2}{|c|}{Position} & \multirow[b]{2}{*}{Pressure (MB)} & \multirow[b]{2}{*}{Wind (KTS)} & \multirow[b]{2}{*}{Stage} \\
\hline & & Latitude & Longitude & & & \\
\hline 8/22 & \[
\begin{aligned}
& 123: 2 \\
& 18302
\end{aligned}
\] & \[
\begin{aligned}
& 15.8 \mathrm{~N} \\
& 16.9
\end{aligned}
\] & \[
\begin{aligned}
& 55.6 \mathrm{~W} \\
& 57.4
\end{aligned}
\] & 1003 & \[
\begin{aligned}
& 33 \\
& 50
\end{aligned}
\] & Tropical Depression Tropical Storm \\
\hline 8/23 & \[
\begin{aligned}
& 00302 \\
& 06302 \\
& 12302 \\
& 18302
\end{aligned}
\] & \begin{tabular}{l}
17.7N \\
18.6 \\
19.7 \\
20.3
\end{tabular} & \[
\begin{aligned}
& 58.6 \mathrm{~W} \\
& 59.7 \\
& 61.0 \\
& 62.0
\end{aligned}
\] & & \[
\begin{aligned}
& 50 \\
& 55 \\
& 60 \\
& 60
\end{aligned}
\] & Tropical Storm \\
\hline 8/24 & \[
\begin{aligned}
& 00302 \\
& 06302 \\
& 11072 \\
& 18302
\end{aligned}
\] & \[
\begin{aligned}
& 21.3 \mathrm{~N} \\
& 22.3 \\
& 23.5 \\
& 24.6
\end{aligned}
\] & \[
\begin{aligned}
& 62.9 \mathrm{~W} \\
& 63.2 \\
& 64.9 \\
& 64.7
\end{aligned}
\] & 999 & \[
\begin{aligned}
& 60 \\
& 60 \\
& 70 \\
& 55
\end{aligned}
\] & \begin{tabular}{l}
Tropical Storm \\
Hurricane \\
Tropical Storm
\end{tabular} \\
\hline 8/25 & \[
\begin{aligned}
& 0030 Z \\
& 06302 \\
& 1230 Z \\
& 1830 Z \\
& 2314 Z
\end{aligned}
\] & \[
\begin{aligned}
& 25.4 N \\
& 26.3 \\
& 26.7 \\
& 26.7 \\
& 26.8
\end{aligned}
\] & \[
\begin{aligned}
& 64.5 \mathrm{~W} \\
& 63.4 \\
& 62.0 \\
& 60.0 \\
& 59.2
\end{aligned}
\] & 189 & \[
\begin{aligned}
& 45 \\
& 45 \\
& 60 \\
& 65 \\
& 65
\end{aligned}
\] & Tropical Storm Hurricane \\
\hline 8/26 & \[
\begin{aligned}
& 00302 \\
& 0630 Z \\
& 12302 \\
& 18012
\end{aligned}
\] & \[
\begin{aligned}
& 26.8 N \\
& 26.8 \\
& 27.2 \\
& 27.7
\end{aligned}
\] & \[
\begin{aligned}
& 58.8 \mathrm{~W} \\
& 57.4 \\
& 55.7 \\
& 54.9
\end{aligned}
\] & 975 & \[
\begin{aligned}
& 65 \\
& 65 \\
& 65 \\
& 75
\end{aligned}
\] & Hurricane \\
\hline 8/27 & \[
\begin{aligned}
& 00302 \\
& 06302 \\
& 12302 \\
& 18302
\end{aligned}
\] & \[
\begin{aligned}
& 28.9 \mathrm{~N} \\
& 29.9 \\
& 30.6 \\
& 31.9
\end{aligned}
\] & \[
\begin{aligned}
& 53.6 \mathrm{~W} \\
& 53.6 \\
& 53.5 \\
& 54.1
\end{aligned}
\] & & \[
\begin{aligned}
& 65 \\
& 77 \\
& 77 \\
& 77
\end{aligned}
\] & Hurricane \\
\hline 8/28 & \[
\begin{aligned}
& 00302 \\
& 06307 . \\
& 12302
\end{aligned}
\] & \[
\begin{aligned}
& 32.5 N \\
& 33.3 \\
& 33.6
\end{aligned}
\] & \[
\begin{aligned}
& 55.2 \mathrm{~W} \\
& 56.0 \\
& 57.0
\end{aligned}
\] & 978 & \[
\begin{aligned}
& 90 \\
& 90 \\
& 70
\end{aligned}
\] & Hurricane \\
\hline 8/29 & \[
\begin{aligned}
& 00302 \\
& 06302 \\
& 12302 \\
& 18302
\end{aligned}
\] & \[
\begin{aligned}
& 34.7 \mathrm{~N} \\
& 34.7 \\
& 34.9 \\
& 35.1
\end{aligned}
\] & \[
\begin{aligned}
& 57.4 \mathrm{~W} \\
& 57.3 \\
& 56.6 \\
& 55.7
\end{aligned}
\] & & \[
\begin{aligned}
& 102 \\
& 102 \\
& 102 \\
& 102
\end{aligned}
\] & Hurricane \\
\hline
\end{tabular}

\section*{DISTURBANCE: HURRICANE EMMY (Continued)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Date} & \multirow[b]{2}{*}{Time} & \multicolumn{2}{|c|}{Position} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Pressure } \\
& \text { (MB) }
\end{aligned}
\]} & \multirow[t]{2}{*}{Wind (KTS)} & \multirow[b]{2}{*}{Stage} \\
\hline & & Latitude & Longitude & & & \\
\hline 8/30 & \[
\begin{aligned}
& 0030 z \\
& 0630 Z \\
& 1230 Z \\
& 18302
\end{aligned}
\] & \[
\begin{aligned}
& 35.0 \mathrm{~N} \\
& 35.0 \\
& 34.9 \\
& 34.5
\end{aligned}
\] & \[
\begin{aligned}
& 53.4 \mathrm{~W} \\
& 52.7 \\
& 51.9 \\
& 50.6
\end{aligned}
\] & & \[
\begin{array}{r}
102 \\
77 \\
70 \\
65
\end{array}
\] & Hurricane \\
\hline 8/31 & \[
\begin{aligned}
& 0030 Z \\
& 0630 Z \\
& 1230 Z \\
& 1830 Z
\end{aligned}
\] & \[
\begin{aligned}
& 34.9 N \\
& 34.7 \\
& 35.2 \\
& 35.4
\end{aligned}
\] & \[
\begin{aligned}
& 48.2 W \\
& 46.4 \\
& 44.7 \\
& 42.5
\end{aligned}
\] & & \[
\begin{aligned}
& 65 \\
& 55 \\
& 45 \\
& 50
\end{aligned}
\] & \begin{tabular}{l}
Hurricane \\
Tropical Storm
\end{tabular} \\
\hline 9/1 & \[
\begin{aligned}
& 0030 Z \\
& 0630 Z \\
& 1230 Z \\
& 1830 Z
\end{aligned}
\] & \[
\begin{aligned}
& 35.8 \mathrm{~N} \\
& 35.5 \\
& 35.0 \\
& 34.8
\end{aligned}
\] & \[
\begin{aligned}
& 39.9 \mathrm{~W} \\
& 37.3 \\
& 36.5 \\
& 34.9
\end{aligned}
\] & & \[
\begin{aligned}
& 50 \\
& 50 \\
& 45 \\
& 45
\end{aligned}
\] & Tropical Storm \\
\hline 9/2 & \[
\begin{aligned}
& 0030 Z \\
& 0630 Z \\
& 1230 Z \\
& 18002
\end{aligned}
\] & \[
\begin{aligned}
& 33.8 \mathrm{~N} \\
& 33.2 \\
& 33.6 \\
& 34.4
\end{aligned}
\] & \[
\begin{aligned}
& 33.0 \mathrm{~W} \\
& 31.6 \\
& 30.6 \\
& 29.2
\end{aligned}
\] & & \[
\begin{aligned}
& 45 \\
& 50 \\
& 50 \\
& 50
\end{aligned}
\] & Tropical Storm \\
\hline 9/3 & \[
\begin{aligned}
& 0030 Z \\
& 0630 Z \\
& 12312 \\
& 18002
\end{aligned}
\] & \[
\begin{aligned}
& 35.8 N \\
& 36.8 \\
& 37.2 \\
& 38.0
\end{aligned}
\] & \[
\begin{aligned}
& 28.3 \mathrm{~W} \\
& 28.4 \\
& 28.3 \\
& 28.1
\end{aligned}
\] & & \[
\begin{aligned}
& 50 \\
& 50 \\
& 50 \\
& 40
\end{aligned}
\] & Tropical Storm \\
\hline 9/4 & 0030Z & 38.8 N & 26.8 W & & 40 & Tropical Storm \\
\hline
\end{tabular}
2.7-3
hURRICANE EMMY - 8/22/76 (1200Z - 2400Z)


Location
Tropical Storm

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNID. 7 \\
\hline 7076 & 145.12 & 030538 & 03532 & 033626 & 035724 & 802 & 189 \\
\hline 7077 & 119.80 & 044725 & 05322 & No & & & \\
\hline 7083 & -32.13 & 145807 & 15052 & No & & & \\
\hline 7084 & -57.47 & 163954 & 16442 & 164247 & 165108 & 808 & 196 \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

HURRICANE EMMY - 8/23/76 (00002-24002)


LOCATION
Tropical Storm
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline TIME & LATITUDE & LONGITUDE & ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & & & & & \\
\hline \(\underline{00002}\) & 17.2 N & 58.4 W & 7090 & 150.61 & 025035 & APPROXIMATE PCA & ON & OFF & MODE & UNIQ. \({ }^{\text {I }}\) \\
\hline 06007 & 18.5 & 60.0 & 709i & 125.29 & 143222 & 03382 & 032059 & 034253 & 802 & 102 \\
\hline 12002 & 19.6 & 61.0 & 7092 & 99.96 & 061409 & 05172 & No & & & \\
\hline 18002 & 20.1 & 61.8 & 7097 & -26.64 & 044304 & 06552 & 065004 & 070049 & 808 & 103 \\
\hline 24 COZ & 21.3 & 62.8 & 7098 & -51.97 & 044304 & 14522 & No & & & \\
\hline & & & & & 162451 & 16302 & 163150 & 163852 & 808 & 108 \\
\hline
\end{tabular}

HURRICANE EMMY - 8/24/76 (00002-2400Z)


LOCATION
Tropical Storm
\begin{tabular}{|c|c|c|}
\hline TIME & LATITUDE & LONGITUDE \\
\hline 000) 2 & 21.3 N & 62.8 W \\
\hline 06002 & 22.4 & 63.6 \\
\hline 12002 & 23.8 & 65.0 \\
\hline 18002 & 24.7 & 64.8 \\
\hline 24002 & 25.4 & 64.7 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNIQ. \\
\hline 7105 & 130.77 & 041720 & \(0503 Z\) & No & & & \\
\hline 7106 & 105.44 & 055907 & 06412 & 063546 & 064602 & 708 & 114 \\
\hline 7111 & -21.16 & 142802 & 14402 & No &. & & \\
\hline 7112 & -46.49 & 160949 & 16182 & 154821 & 162326 & 808 & - \\
\hline 7113 & -71.81 & & 17562 & No & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

HURRICANE EMMY - 8/25/76 (00002-24002)


LOCATION
Hurricane
\begin{tabular}{|c|c|c|}
\hline TIME & LATITUDE & LONGITUDE \\
\hline 00007 & 25.4 N & 64.7 W \\
\hline 06002 & 26.1 & 63.8 \\
\hline 12002 & 26.5 & 62.1 \\
\hline 18002 & 26.7 & 60.0 \\
\hline 24002 & 26.8 & 59.1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNIQ.: \\
\hline 7119 & 136.24 & 040218 & 04472 & No & & & \\
\hline 7120 & 110.92 & 054405 & 06262 & 062154 & 063115 & 808 & 126 \\
\hline 7126 & -41.01 & -66.33 & & 17347 & & 16042 & \(N\) \\
\hline 7127 & & & & 17422 & 174030 & & 174459 \\
\hline & & & & & 808 & 130 \\
\hline & & & & & & & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{TIME} & \multicolumn{2}{|l|}{LOCATION Hurricane} & \multicolumn{8}{|l|}{} \\
\hline & LATITUDE & LONGITUDE & ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNID. \({ }^{\text {P }}\) \\
\hline 00002 & 28.9 N & 53.8 W & 7147 & 147.20 & 033214 & 04172 & No & & & \\
\hline \(\underline{06002}\) & 30.0 & 53.3 & 7148 & 121.88 & 051401 & 05552 & No & & & \\
\hline 12002 & 30.7 & 53.5 & 7149 & 96.56 & 065548 & 07342 & 073108 & 074244 & 808 & 147 \\
\hline 18002 & 31.7 & 54.1 & 7154 & -30.05 & 152443 & 15342 & No & & 808 & 147 \\
\hline \(\underline{24002}\) & 32.5 & 55.2 & 7155 & -55.37 & 170630 & & No & & & \\
\hline & & & & & & 17132 & 171102 & 171759 & 808 & 151 \\
\hline
\end{tabular}

HURRICANE EMMY - 8/28/76 (00002-24002)

location
Hurricane
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline TIME & LATITUDE & LONGITUDE & ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & 0FF & MODE & TUNIO. \(]\) \\
\hline \(\underline{00002}\) & 32.5 N & 55.2W & 7162 & 127.36 & 045900 & 05412 & No & & & \\
\hline \(\underline{06002}\) & 33.0 & 56.0 & 7163 & 102.03 & 064047 & 07182 & 071700 & 072727 & 808 & 156 \\
\hline \(\underline{12002}\) & 33.4 & 56.8 & 7168 & -24.57 & 150942 & 15222 & No & & & \\
\hline 18002 & 34.0 & 57.0 & 7169 & -49.89 & 165129 & 17002 & 162940 & 170435 & 802 & \\
\hline \(\underline{24002}\) & 34.7 & 57.4 & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}




HURRICANE EMMY - 9/1/76 (00002-2400Z)


LOCATION
Hurr icane
\begin{tabular}{|c|c|c|}
\hline TIME & LATITUDE & LONGITUDE \\
\hline 00002 & 35.2 N & 40.3W \\
\hline 06002 & 35.5 & 37.3 \\
\hline 12002 & 35.4 & 36.8 \\
\hline 18002 & 34.8 & 34.6 \\
\hline 24002 & 34.9 & 33.5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNIQ. \\
\hline 7218 & 149.28 & 035852 & \(0341 Z\) & 1.0 & & & \\
\hline 7219 & 123.95 & 054039 & 140934 & 06182 & No & & \\
\hline 7224 & -2.65 & -27.97 & & 155121 & 16222 & No & \\
\hline 7225 & & & & & No & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}


HURRICANE EMMY - 9/3/76 (0000Z-2400Z)


LOCATION
Hurricane
\begin{tabular}{|c|c|c|}
\hline TIME & LATITUDE & LONGITUDE \\
\hline 00002 & 36.0 N & 28.0 W \\
\hline 06002 & 37.0 & 27.5 \\
\hline 12002 & 37.2 & 28.3 \\
\hline 18002 & 38.0 & 28.1 \\
\hline 24002 & 37.5 & 28.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNIQ. \\
\hline 7246 & 160.24 & 032848 & 04102 & 041253 & 042201 & 802 & 144 \\
\hline 7247 & 134.91 & 051035 & 05482 & No & & & \\
\hline 7252 & 8.30 & 133930 & 13532 & No & & & \\
\hline 7253 & -17.01 & & 152117 & 15312 & 150351 & 152908 & 802 \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

HURRICANE EMMY - 9/4/76 (0000Z - 0600Z)


LOCATION Extratropical
\begin{tabular}{|c|c|c|}
\hline TIME & LATITUDE & LONGITUDE \\
\hline 00002 & 37.5 N & 28.0W \\
\hline 06002 & 39.2 & 26.8 \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNIQ. \\
\hline 7260 & 165.72 & 031346 & 03562 & 035821 & 042351 & 802 & 153 \\
\hline 7261 & 140.39 & 045533 & 05332 & 053843 & 054613 & 802 & 154 \\
\hline 7262 & 115.07 & 263720 & 07112 & No & & & \\
\hline 7266 & 13.78 & 132428 & 13392 & No & & & \\
\hline 7267 & -11.58 & 150615 & 15272 & No & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

September 13-17, 1976

On September 12, the interaction between a midtropospheric low and a diffuse stationary front caused the formation of a surface low pressure system over central Florida. This low moved northward and developed into a subtropical storm late on September 13 as the center moved offshore just north of Jacksonville, FL. After only a short overwater trajectory the storm crossed the coast just below Charleston, SC on September 14. The system, now weakening overland, moved north-northeast through the mid-Atlantic states, finally dissipating over Virginia on September 17.

A large high pressure system located over the mid-Atlantic states, north of the low, produced a strong pressure gradient which caused gale force winds off the Georgia and Carolina coasts during the passage of the storm. Charleston reported gusts to near 50 kt in the downtown area shortly before the storm center reached the coast. Heavy rains accompanied the storm over eastern Georgia, South Carolina and southeastern North Carolina. Most reporting stations in those areas reported between 3 and 6 inches. Tides were 2-3 ft above normal along the Carolina coasts. Damage was mainly confined to minor beach erosion and local stream flooding.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|r|}{\multirow[t]{2}{*}{DISTURBANCE: DATE:}} & \multicolumn{2}{|l|}{SUBTROPICAL STORM \#3} & \\
\hline & & & & \multicolumn{2}{|l|}{September 13-17, 1976} & \\
\hline Date & Time & \multicolumn{2}{|r|}{Position} & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { Pressure } \\
\text { (MBS) } \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Wind } \\
& \text { (KTS) } \\
& \hline
\end{aligned}
\]} & \multirow{3}{*}{Stage} \\
\hline Date & Time & Latitude & Longitude & & & \\
\hline 9/13 & 12002 & 28.0N & 81.5W & & & \\
\hline 9/14 & \[
\begin{aligned}
& 0000 Z \\
& 1200 Z
\end{aligned}
\] & \[
\begin{aligned}
& 29.5 \mathrm{~N} \\
& 31.0
\end{aligned}
\] & \[
\begin{aligned}
& 81.5 \mathrm{~W} \\
& 81.0
\end{aligned}
\] & 1015 & & \\
\hline 9/15 & \[
\begin{aligned}
& 0000 Z \\
& 1200 Z
\end{aligned}
\] & \[
\begin{aligned}
& 32.3 \mathrm{~N} \\
& 33.9
\end{aligned}
\] & \[
\begin{aligned}
& 80.7 \mathrm{~W} \\
& 80.0
\end{aligned}
\] & 1011 & 40 & \\
\hline 9/16 & \[
\begin{aligned}
& 0000 Z \\
& 1200 z
\end{aligned}
\] & \[
\begin{aligned}
& 35.0 \mathrm{~N} \\
& 36.0
\end{aligned}
\] & \[
\begin{aligned}
& 79.0 W \\
& 78.8
\end{aligned}
\] & & & \\
\hline 9/17 & 00002 & 37.0N & 78.0W & 1014 & & \\
\hline
\end{tabular}
2.8-2

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline TIME & LATITUDE & LONGITUDE & ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & 0FF & MODE & UNIO. \({ }^{\text {P }}\) \\
\hline 12007 & 28.0:4 & 81.5 W & 7397 & -63.51 & 193806 & 19482 & 194123 & 194806 & 808 & 109 \\
\hline \(\underline{24002}\) & 29.5 & 81.5 & 7405 & 93.90 & 091222 & 09532 & 093947 & 095922 & 808 & 111 \\
\hline \(\square\) & & & & & & & & & & \\
\hline - & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}


Llocation
\begin{tabular}{|c|c|c|}
\hline TIME & LATITUDE & LONGITUDE \\
\hline 00002 & 29.511 & 81.5W \\
\hline 12002 & 31.0 & 81.0 \\
\hline 24002 & 32.3 & 80.7 \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EqUATOR CROSSİNG & TIME OF EQUATOR CROSSIING & APPROXIIMATE PCA & ON & OFF & MODE & Unic. \({ }^{\text {P }}\) \\
\hline 7411 & -58.03 & 192304 & 19382 & 192752 & 193414 & 808 & 119 \\
\hline 7425 & -52.55 & 198802 & 19202 & 191255 & 192420 & 808 & 130 \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}
hURRICANE FRANCES
August 27 - September 7, 1976

Frances followed an unusual track through the central Atlantic, similar to the path of Emmy, with which it coexisted for 6 days.

A tropical wave crossed the African coast on August 24 and became a depression 3 days later as it moved westward in the trade wind belt. The first reconnaissance flight into the system found winds of 50 kt and a minimum pressure of 1002 mb on August 28, at which time the new storm was designated Frances.

Early on August 28 Frances crossed about 1000 nm to the south of Hurricane Emmy, near longitude \(53^{\circ} \mathrm{W}\). Shortly thereafter the storm took a northwestward turn into the weakness in the Bermuda-Azores high left by Emmy.

The storm became a hurricane on August 30 and reached its maximum intensity on September 1, when winds of 100 kt were measured by reconnaisstance aircraft along with a minimum pressure of 963 mb .

Frances continued to follow in the trough left by Emmy, and turned toward the east during September 1. This hurricane recurved south of latitude \(30^{\circ} \mathrm{N}\) which, except for Emmy's first eastward turn, was unprecedented for that time of year. At that time, the two hurricanes, together with a low near the Azores and a frontal trough to the northwest, produced an enormous area of negative surface pressure anomalies stretching from Europe westward through the Azores to Bermuda, and from the Virgin Islands to Newfoundland.

As Frances turned toward the east and then northeast toward the Azores, it gradually weakened. Satellite pictures suggest that it had lost tropical characteristics by the morning of September 4 . The extratropical stage of the storm passed through the eastern Azores on the next day. Then the remaining low pressure center made a counterclockwise loop to the north of the Azores. For several days after that, the residual weak circulation io the cloud pattern could be tracked as it moved southwestward, parallel to, and a short distance south of the earlier track of Frances.

No reports of damage or casualties caused by Frances were received.


DISTURBANCE: HURRICANE FRANCES
DATE: August 27 - September 7, 1976


HURRIChNE FRANCES - 8/28/76 (1800Z-2400Z)



\section*{HURRICANE FRANCES - 8/29/76 (0000Z - 2400Z)}


HURRICANE FRANCES - 8/30/76 (00002 - 24002)



\title{
HURRICANE FRANCES - 8/31/76 (00002 - 2400Z)
}


LOCATION
Hurricane

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNIQ.A \\
\hline 7204 & 143.80 & 041354 & 05002 & 044434 & 050530 & 802 & 113 \\
\hline 1205 & 118.47 & 055541 & 06382 & No & & & \\
\hline 7211 & -33.45 & 160623 & 174810 & 17532 & No & & \\
\hline 7212 & -58.78 & & & & 175154 & 175913 & 808 \\
\hline & & & & & & & 118 \\
\hline & & & & & & & \\
\hline
\end{tabular}

HURRICANE FRR:NCES - 3/1/76 (0000Z - 2400Z)


LOCATION Hurricane
\begin{tabular}{|c|c|c|}
\hline TIME & LATITUDE & LONGITUDE \\
\hline 00002 & 25.2 N & 55.0 W \\
\hline 06007 & 26.3 & 54.3 \\
\hline \(\underline{12002}\) & 27.2 & 53.8 \\
\hline 18002 & 28.0 & 52.5 \\
\hline 24002 & 28.5 & 51.5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSIING & APPROXIMATE PCA & ON & OFF & MODE & UNIQ. \({ }^{\text {P }}\) \\
\hline 7218 & 149.28 & 035852 & 04452 & No & OFF & MODE & NIC.7 \\
\hline 7219 & 123.95 & 054039 & 06232 & No & & & \\
\hline 7220 & 98.63 & 072226 & 08012 & - 075 & & & \\
\hline 7225 & 27.97 & 155121 & 16012 & 075810 & 080918 & 808 & 124 \\
\hline 722.6 & -53.30 & 173308 & 17397 & No & & & \\
\hline & & & 17392 & 173800 & 174011 & 808 & i28 \\
\hline
\end{tabular}

HURRICANE FRANCES - 9/2/76 (0000Z - 2400Z)


LOCATION LATITUDE
\begin{tabular}{|c|c|c|}
\hline TIME & LATITUDE & LONGITUDE \\
\hline 00002 & \(-28.5 \mathrm{~N}\) & 5i. 5 W \\
\hline 06002 & 28.2 & 49.9 \\
\hline 12002 & 28.1 & 49.0 \\
\hline 18002 & 28.5 & 47.2 \\
\hline 24002 & 28.9 & 45.6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNIQ. \\
\hline 7233 & 129.43 & 052537 & \(0608 Z\) & No & & & \\
\hline 7234 & 104.11 & 070724 & 07562 & 074356 & 075409 & 808 & 134 \\
\hline 7239 & -22.49 & 153619 & 171806 & 17252 & No & & \\
\hline 7240 & -47.82 & & & No & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

HURRICANE FRANCES - 9/3/75 (0000Z - 2400Z)

\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{l}
LOCATI \\
Hurric
\end{tabular} & \\
\hline TIME & LATITUDE & LONGITUDE \\
\hline 00002 & 28.9 N & 45.6 W \\
\hline 06002 & 29.0 & 43.5 \\
\hline 12002 & 29.2 & 41.5 \\
\hline 18002 & 30.1 & 39.5 \\
\hline 24002 & 31.6 & 37.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNIQ. \\
\hline 7246 & 160.24 & 032848 & 04072 & 041253 & 042201 & 802 & 144 \\
\hline 7247 & 134.91 & 051035 & 05527 & No & & & \\
\hline 7248 & 109.49 & 065222 & 07292 & 072954 & 073918 & 808 & 146 \\
\hline 7253 & -17.01 & 152117 & 170304 & 17102 & No & & \\
\hline 7254 & -42.34 & & & \(N o\) & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}


\section*{HURRICANE GLORIA}

September 26 - October 4, 1976

Gloria originated as a tropical wave which moved westward off of the African coast on September 18. This wave traveled toward the west-northwest at 10 kt , reaching a location approximately 400 nm northeast of the Leeward Islands of the Caribbean on September 26. While this was occurring, an upper-tropospheric cold low moved toward the southwest from a position in the central Atlantic midway between the Leeward Islands and the Azores.

On September 23, the upper low came close enough to the wave so that the cloud features, which were not enhanced by the combining synoptic systems, started to show signs of becoming better organized. On September 26, the low-level circulation became sufficiently well defined to locate a tropical depression 400 nm northeast of the Leeward Islands.

The depression moved northward to northwestward at less than 10 kt for a few days while gradually intensifying. It became Tropical Storm Gloria at 1200 GMT on September 27 and a hurricane at 0600 GMT two days later.

At the time Gloria reached hurricane intensity, the storm was located about 300 nm southeast of Bermuda and heading in a northwesterly direction. This was the only time that there was a threat to any land area and this was not considered to be a serious problem as the storm was forecast to turn back to the north and then northoast before coming very close to Bermuda.

During this time a series of short-wave troughs in the westerlies were moving across the Canadian Maritime Provinces and out over the North Atlantic. So as Gloria moved farther north, it became increasingly more likely that it would recurve toward the northeast. This finally occurred early on September 30 and the hurricane moved eastward to northeastward for the next several days while gradually weakening.

Maximum winds decreased to tropical storm strength on October 2 while Gloria was centered about 600 nm south of Cape Race, Newfoundland. Two days later, Gloria weakened to a depression and became extratropical on October 5 just north of the Azores.

No damage or deaths are known to have been caused by Gloria. Maximum sustained surface winds are estimated to have been 90 kt and the minimum sea level pressure was 970 mb . These figures are based on aircraft reconnaissance and satellite imagery.

\section*{DISTURBANCE: HURRICANE GLJRIA}

DATE: September 26 - October 4, 1976
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Date} & \multirow[b]{2}{*}{Time} & \multicolumn{2}{|c|}{Position} & \multirow[t]{2}{*}{Pressure
(MB)} & \multirow[t]{2}{*}{Wind (KTS)} & \multirow[b]{2}{*}{Stage} \\
\hline & & Latitude & Longitude & & & \\
\hline 9/27 & \[
\begin{aligned}
& 13012 \\
& 18302
\end{aligned}
\] & \[
\begin{aligned}
& 25.9 \mathrm{~N} \\
& 26.2
\end{aligned}
\] & \[
\begin{aligned}
& 58.0 \mathrm{~W} \\
& 58.1
\end{aligned}
\] & & \[
\begin{aligned}
& 35 \\
& 35
\end{aligned}
\] & Tropical Storm \\
\hline 9/28 & \[
\begin{aligned}
& 00302 \\
& 06302 \\
& 12302 \\
& 18402
\end{aligned}
\] & \begin{tabular}{l}
27.1N \\
27.6 \\
27.8 \\
28.3
\end{tabular} & \[
\begin{aligned}
& 57.9 \mathrm{~W} \\
& 58.0 \\
& 58.5 \\
& 59.0
\end{aligned}
\] & & \[
\begin{aligned}
& 45 \\
& 45 \\
& 45 \\
& 45
\end{aligned}
\] & Tropical Storm \\
\hline 9/29 & \[
\begin{aligned}
& 0030 Z \\
& 06302 \\
& 13302 \\
& 1830 Z
\end{aligned}
\] & \[
\begin{aligned}
& 28.8 N \\
& 29.2 \\
& 29.6 \\
& 30.3
\end{aligned}
\] & \[
\begin{aligned}
& 59.2 \mathrm{~W} \\
& 59.7 \\
& 60.1 \\
& 60.2
\end{aligned}
\] & 980 & \[
\begin{aligned}
& 45 \\
& 45 \\
& 65 \\
& 77
\end{aligned}
\] & Tropical Storm Hurricane \\
\hline 9/30 & \[
\begin{aligned}
& 00302 \\
& 063: 17 \\
& 12002 \\
& 18302
\end{aligned}
\] & \[
\begin{aligned}
& 31.1 \mathrm{~N} \\
& 32.2 \\
& 33.0 \\
& 34.1
\end{aligned}
\] & \[
\begin{aligned}
& 59.9 \mathrm{~W} \\
& 59.7 \\
& 58.8 \\
& 57.2
\end{aligned}
\] & 980 & \[
\begin{aligned}
& 77 \\
& 84 \\
& 90 \\
& 90
\end{aligned}
\] & Hurricane \\
\hline 10/1 & \[
\begin{aligned}
& 0030 Z \\
& 06302 \\
& 1230 Z \\
& 1830 Z
\end{aligned}
\] & \[
\begin{aligned}
& 34.7 \mathrm{~N} \\
& 35.1 \\
& 35.7 \\
& 35.6
\end{aligned}
\] & \[
\begin{aligned}
& 56.0 \mathrm{~W} \\
& 54.7 \\
& 53.6 \\
& 52.5
\end{aligned}
\] & & \[
\begin{aligned}
& 90 \\
& 83 \\
& 77 \\
& 60
\end{aligned}
\] & \begin{tabular}{l}
Hurricane \\
Tropical Storm
\end{tabular} \\
\hline 10/2 & \[
\begin{aligned}
& 0030 Z \\
& 0630 Z \\
& 1230 Z \\
& 1830 Z
\end{aligned}
\] & \[
\begin{aligned}
& 36.2 \mathrm{~N} \\
& 36.4 \\
& 37.1 \\
& 37.0
\end{aligned}
\] & \[
\begin{aligned}
& 51.5 \mathrm{~W} \\
& 50.5 \\
& 49.8 \\
& 49.0
\end{aligned}
\] & & \[
\begin{aligned}
& 60 \\
& 60 \\
& 60 \\
& 55
\end{aligned}
\] & Tropical Storm \\
\hline 10/3 & \[
\begin{aligned}
& 0030 Z \\
& 06302 \\
& 12302 \\
& 18302
\end{aligned}
\] & \[
\begin{aligned}
& 36.7 \mathrm{~N} \\
& 35.8 \\
& 35.9 \\
& 36.1
\end{aligned}
\] & \[
\begin{aligned}
& 47.7 \mathrm{~W} \\
& 46.7 \\
& 46.9 \\
& 46.6
\end{aligned}
\] & & \[
\begin{aligned}
& 55 \\
& 55 \\
& 55 \\
& 45
\end{aligned}
\] & Tropical Storm \\
\hline
\end{tabular}
2.10-2


Location
Tropical Storm
\begin{tabular}{ccc}
\(\frac{\text { TIME }}{1200 Z}\) & \(\frac{\text { LATITUDE }}{26.0 N}\) & \(\frac{\text { LONGITUDE }}{\frac{58.0 W}{1800 Z}}\) \\
\(\frac{2400 Z}{26.5}\) & \(\frac{58.0}{27.0}\) & - \\
- & - & - \\
- & - & -
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNIQ. \\
\hline 7588 & 139.81 & 073844 & 08232 & 082157 & 082910 & 802 & 103 \\
\hline 7589 & 114.48 & 092031 & 193113 & 10022 & \(N_{0}\) & & \\
\hline 7595 & -37.44 & 211300 & & 21192 & 194752 & 195206 & 802 \\
\hline 7596 & -62.77 & & & 110 \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}


HURRICANE GLORIA - 9/29/76 (0000Z - 2400Z)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{TIME} & \multicolumn{10}{|l|}{LOCATION} \\
\hline & Hurrica & \multirow[b]{2}{*}{LONGITUDE} & & & & & & & & \\
\hline & LATITUDE & & ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CRISSING & APPROXIMATE PCA & ON & OFF & MODE & UNIQ. \({ }^{\text {I }}\) \\
\hline 00002 & 28.9 N & 59.1W & 7617 & 125.44 & 085027 & 09332 & No & & & \\
\hline 06002 & 29.2 & 59.7 & 7618 & 100.12 & 103214 & 11112 & 110024 & 111852 & 808 & 127 \\
\hline 12002 & 29.7 & 60.2 & 7623 & -26.48 & 190109 & 19132 & No & & & \\
\hline 1800: & 30.2 & 60.2 & 7624 & -51.81 & 204256 & 20512 & 204418 & 205541 & 808 & 132 \\
\hline \(\underline{24002}\) & 30.7 & 60.0 & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}

HURRICANE GLORIA - 9/30/76 (0000Z - 2400Z)



HURRICANE GLORIA - 10/1/76 (0000Z - 24002)


LOCATION turricane
\begin{tabular}{|c|c|c|}
\hline TIME & LATITUDE & LONGITUDE \\
\hline 00002 & 34.7 N & 56.2 W \\
\hline 06002 & 35.1 & 54.8 \\
\hline 12002 & 35.9 & 53.3 \\
\hline 18002 & 35.7 & 53.6 \\
\hline 24002 & 36.2 & 51.5 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUFTOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNID.:. \\
\hline 7645 & 136.40 & 082023 & 09032 & 090357 & 091015 & 802 & 150 \\
\hline 7646 & 111.08 & 100210 & 18312 & 18452 & 184528 & & 185431 \\
\hline 7651 & -15.52 & 201252 & & 20222 & 201926 & 202719 & 802 \\
\hline 7652 & -40.85 & & & & & 155 \\
\hline & & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

HURRICANE GLORIA - 10/2/76 (0000Z - 2400Z)


LOCATIOH
Tropical Storm
\begin{tabular}{|c|c|c|}
\hline TIME & LATITUDE & LONGITUDE \\
\hline 00cjz & 36.2 N & 51.5W \\
\hline 06002 & 36.3 & 50.5 \\
\hline \(\underline{12002}\) & 36.6 & 49.8 \\
\hline 18002 & 37.1 & 49.0 \\
\hline 2.702 & 37.3 & 48.0 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNID. \({ }^{\text {P }}\) \\
\hline 7659 & 141.88 & 080521 & 08472 & 084827 & 085710 & 802 & 161 \\
\hline 7660 & 116.56 & 094708 & 10262 & No & & & \\
\hline 7665 & -10.05 & 181604 & 195750 & 20082 & 183246 & 183925 & 802 \\
\hline 7666 & -35.37 & & & & 200506 & 201535 & 802 \\
\hline & & & & & & 167 \\
\hline & & & & & & & \\
\hline
\end{tabular}

HURRICANE GLORIA - 10/3/76 (00002-2400Z)


LOCATION
Tropical Storm LATITUDE LONGITUDE

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNIQ. \\
\hline 7673 & 147.36 & 075019 & 08332 & 083324 & 084213 & 802 & 172 \\
\hline 7674 & 122.04 & 093206 & 10112 & No & & & \\
\hline 7675 & 96.72 & 111353 & 180102 & 1482 & 114139 & 120047 & 808 \\
\hline 7579 & -4.57 & 194248 & 18162 & 181709 & 182435 & 802 & 177 \\
\hline 7680 & -29.89 & & 19532 & 195659 & 200444 & 802 & 178 \\
\hline & & & & & & & \\
\hline
\end{tabular}
* best track estimate


LOCATION
Tropical Depression
\begin{tabular}{|c|c|c|}
\hline TIME & LATITUDE & LONGITUDE \\
\hline 00002 & 35. \(\mathrm{iN}^{*}\) & 44.6 W \\
\hline - & & \\
\hline - & & \\
\hline - & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNIO.: \\
\hline 7688 & 127.52 & 091704 & 09572 & \(N\) & & & \\
\hline 7689 & 102.20 & 105851 & 11342 & 112719 & 114443 & 708 & 104 \\
\hline 7693 & 0.91 & -24.40 & 192746 & 18012 & 180314 & 181025 & 802 \\
\hline 7694 & & & 19382 & \(N 0\) & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}
* best track estimate

\section*{HURRICANE HOLLY}

October 22-28, 1976

A relatively weak wave moved off the coast of Africa into the Atlantic on October 14. Six days later, satellite pictures revealed that the cloudiness associated with this wave had become rather concentrated at a location 700 nm east of the Leeward Islands. Organization continued and late on October 22 the system reached depression stage. Now moving northwestward, the depression intensified to storm strength on October 23 and to a minimal hurricane on the followin'y day near latitude \(25^{\circ} \mathrm{N}\), longitude \(58^{\circ} \mathrm{W}\). This intensity was maintained for only 24 hours, after which it dropped back to tropical storm status. This status continued until the storm lost its identity as it merged with a strong cold front over the North Atlantic on October 28.

Upper air conditions were not considered particularly favorable for tropical development when the system first reached the depression stage on October 22. At 200 mb the flow was generally cyclonic over the developing storm as an upper low was located just to the north of the depression. By the time Holly became a hurricane, however, the upper low had opened into a trough lying from \(5^{\circ}\) to the west of the hurricane's position. This configuration resulted in anticyclonic flow over the storm at 200 mb .

As the hurricane moved northeastward, the higher latitude portion of the upper trough moved eastward rapidly enough to overtake the storm. This interaction resulted in weakening of the storm and some loss of tropical structure even before it merged with the cold front.

Holly's lowest pressure was 990 mb on October 24, and the highest wind reported by reconnaissance aircraft was 65 kt on the same day.

DISTURBANCE: HURRICANE HOLLY
DATE: October 22-28, 1976


HURRICANE HOLLY - 10/23/76 (1800Z - 2400Z)


LOCATION
Tropical Storm
\begin{tabular}{|c|c|c|}
\hline TIME & LATITUDE & LONGITUDE \\
\hline 18002 & \(22.5 \mathrm{~N}^{*}\) & 58.0W* \\
\hline \(\underline{24002}\) & 23.3* & 58.3* \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNIQ.:7I \\
\hline 7958 & 130.36 & 111834 & 12032 & No & & & \\
\hline 7959 & 105.04 & 130021 & 13427 & 132912 & 134707 & 808 & 175 \\
\hline 7964 & -21.57 & 212916 & 21402 & 214900 & 215205 & 808 & 182 \\
\hline 7965 & -46.89 & & 231103 & & 231711 & 232432 & 808 \\
\hline & & & & & & & 185 \\
\hline & & & & & & & \\
\hline
\end{tabular}
hurricane holly - 10/24/76 (0000z-2400Z)




HURRICANE HOLLY - 10/26/76 (0000Z - 2400Z)


LOCATION
Tropical Storm
\begin{tabular}{|c|c|c|}
\hline TIME & LATITUDE & LONGITUDE \\
\hline 00007 & 32.2 N & 50.5W \\
\hline 06002 & 33.4 & 48.8 \\
\hline 12002 & 32.5 & 51.3 \\
\hline 18002 & 32.7 & 50.5 \\
\hline 24002 & 33.0 & 49.8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNIQ. \\
\hline 7994 & -61.26 & 002247 & 0029 & 002737 & 003327 & 808 & 115 \\
\hline 8001 & 121.47 & 121516 & 12552 & 125914 & 130338 & 808 & 118 \\
\hline 8002 & 96.15 & 135703 & 14332 & 143233 & 144357 & 808 & 119 \\
\hline 8006 & -5.13 & 204411 & 20592 & 210004 & 210741 & 808 & 123 \\
\hline 8007 & -30.46 & & 22358 & 224203 & 224752 & 808 & 126 \\
\hline & & & & & & & \\
\hline
\end{tabular}

HURRICANE HOLLY - 10/27/76 (00002-2400Z)


LOCATION
Tropical Storm
\begin{tabular}{|c|c|c|}
\hline TIME & LATITUDE & LONGITUDE \\
\hline 00007 & 33.0 N & 49.8 W \\
\hline 06002 & 34.0 & 50.0 \\
\hline 12002 & 33.5 & 49.0 \\
\hline 18002 & 35.7 & 48.1 \\
\hline \(\underline{24002}\) & 37.2 & 45.3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNIQ. 7 . \\
\hline 8008 & -55.78 & 000745 & \(0015 Z\) & 000955 & 001911 & 808 & 127 \\
\hline 8015 & 126.95 & 120013 & \(1245 Z\) & No & & & \\
\hline 8016 & 101.63 & 134200 & 14182 & 141514 & 142841 & 808 & 131 \\
\hline 8020 & 0.34 & 202909 & 20452 & 204723 & 205331 & 808 & 137 \\
\hline 8021 & -24.98 & 221056 & \(2222 Z\) & 222955 & 223324 & 808 & 140 \\
\hline & & & & & & & \\
\hline
\end{tabular}

HURRICANE HOLLY - 10/28/76 (0000Z - 24002)


\section*{LOCATION}

Tropical Storm
\begin{tabular}{|c|c|c|}
\hline TIME & LATITUDE & LONGITUDE \\
\hline 00 COZ & 37.2 N & 45.3W \\
\hline 05007 & 39.4 & 42.8 \\
\hline 12002 & 41.5 & 39.5 \\
\hline 18002 & 45.0 & 35.0 \\
\hline 24002 & 46.5* & 30.0* \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNIQ. \\
\hline 8022 & -50.30 & 235243 & 00012 & 235741 & 000530 & 808 & 142 \\
\hline 8029 & 132.43 & 114511 & 12252 & \(N\) & & & \\
\hline 8030 & 107.11 & 132658 & 14032 & 135607 & 141403 & 808 & 148 \\
\hline 8035 & -19.50 & 215554 & 22082 & \(2^{\top} 1553\) & 221850 & 808 & 154 \\
\hline 8036 & -44.82 & 233741 & 23472 & 234416 & 235124 & 808 & 156 \\
\hline & & & & & & & \\
\hline
\end{tabular}
* best track estimate

HURRICANE HOLLY - 10/29/76 (0000Z)


\subsection*{3.0 EASTERN PACIFIC/U. S. WEST COAST AREAS}

\subsection*{3.1 GENERAL}

All of the data presented in this section on the tropical cyclones occurring in the eastern Pacific were extracted from the Monthly Weather Review article by E. B. Gunther. During the 1976 season, there were 18 tropical cyclones that occurred in this area as listed below:
*Tropical Cyclone One
*Hurricane Annette
*Hurricane Bonnie
*Tropical Cyclone Four
Tropical Storm Celeste
Hurricane Diana
Tropical Storm Estelle
Tropical Storm Fernanda
Tropical Storm Gwen
*Hurricane Hyacinth
Tropical Cyclone Eleven
Tropical Cyclone Twelve
*Hurricane Iva
*Tropical Storm Joanne
*Hurricane Kathleen
*Hurricane Liza
*Hurricane Madeline
Tropical Storm Naomi
\begin{tabular}{|c|}
\hline \[
\begin{aligned}
& (06 / 02 / 76-06 / 03 / 76) \\
& (06 / 03 / 76-06 / 14 / 76)
\end{aligned}
\] \\
\hline (06/25/76-06/29/76) \\
\hline 06/28/76-06/30/76 \\
\hline 06/14/76-07/19/76) \\
\hline 07/15/76-07/22/76 \\
\hline 07/26/76-07/29/76) \\
\hline 07/27/76-07/30/76) \\
\hline 08/05/76-08/14/76) \\
\hline 08/06/76-08/14/76) \\
\hline 08/07/76-08/08/76) \\
\hline 08/16/76-08/19/76) \\
\hline 08/24/76-09/02/76) \\
\hline 08/29/76-09/08/76) \\
\hline 09/07/76-09/10/76) \\
\hline (09/25/76-10/01/76) \\
\hline 09/29/76-10/08/76) \\
\hline 10/25/76-10/29/76) \\
\hline
\end{tabular}

Results of the comparison of the cyclone information and the GEOS-3 schedule information indicates that 10 cyclones may have associated GEOS altimeter data. These cyclones are marked by an * in the above tabulation. Information as available for these tropical cyclones along with any promising GEOS ground track maps are presented in the following sections.

The first cyclone of the 1976 season began 1200 GMT June 1 as a disturbed area near \(11^{\circ} \mathrm{N}, 112^{\circ} \mathrm{W}\). Moving slowly northwest, the disturbance was upgraded to a tropical depression at 1800 GMT June 2 near \(12^{\circ} \mathrm{N}\), \(113^{\circ} \mathrm{W}\). Sustained winds near the center were estimated at 30 kt with gusts to 40 kt . By 0000 GMT June 3 the depression had moved to near \(13^{\circ} \mathrm{N}, 113^{\circ} \mathrm{W}\) and winds near the center had decreased to 25 kt with gusts to 35 kt . Turning west, the depression weakened rapidly. The last advisory issued on the cyclone was at 0600 GMT June 3 with the center near \(13^{\circ} \mathrm{N}, 116^{\circ} \mathrm{W}\).
\[
\begin{aligned}
& \text { DISTURBANCE: } \text { TROPICAL CYCLONE ONE } \\
& \text { DATE: } \text { June 2-3, } 1976 \\
&
\end{aligned}
\]
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline \multirow{2}{*}{ Date } & Time & \multicolumn{2}{|c|}{ Position } & \multirow{2}{c|}{\begin{tabular}{c} 
Pressure \\
(MB)
\end{tabular}} & \begin{tabular}{c} 
Wind \\
(KTS)
\end{tabular} & Stage \\
\hline \(6 / 2\) & 18002 & 12.5 N & 112.5 W & & 30 & Tropical Depression \\
\hline \(6 / 3\) & 00002 & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

TROPICAL CYCLONE ONE - 6/2/76 (18002)


The second tropical cyclone of the season began as a tropical disturbance at 1800 GMT June \& near \(11^{\circ} \mathrm{N}, 95^{\circ} \mathrm{W}\). Six hours later the disturbance was upgraded to a tropical depression near \(11^{\circ} \mathrm{N}, 95^{\circ} \mathrm{W}\) with 25 kt winds. Satellite imagery indicated little change over the next 72 hours with a loosely defined cyclonic circulation at night becoming better organized during the daylight hours. By 0600 GMT June 6 the winds increased to 40 kt near the center and the depression was upgraded to Tropical Storm Annette near \(12^{\circ} \mathrm{N}, 96^{\circ} \mathrm{W}\). Moving west at 5 kt , Annette was upgraded to hurricane status at 0600 GMT June 7 about 350 n mi south of Acapulco, Mexico. Winds had increased to 65 kt near the center with gusts to 85 kt . Satellite imagery indicated an eye beginning to form near the center by 1200 GMT June 7. Moving west-northwest at 8 kt over \(88^{\circ} \mathrm{F}\) water, Annette continued to intensify. On June 9 U . S. Air Force reconnaissance aircraft flew into Annette locating the center at \(14.6^{\circ} \mathrm{N}, 105.0^{\circ} \mathrm{W}\) at 1707 . Surface winds were estimated at 90 kt and minimum surface pressure computed at 925 mb . The aircraft also reported a well-defined eye with a closed wall. Hurricane Annette reached its maximum intensity with 120 kt winds and gusts to 140 kt at 1200 GMT June 10 near \(16^{\circ} \mathrm{N}, 108^{\circ} \mathrm{W}\), about 300 n mi southwest of Manzanillo, Mexico. Annette continued to move westward for another 12 hours then turned northwest toward colder ( \(78^{\circ} \mathrm{F}\) ) water. Annette's eye was no longer visible on satellite pictures after 0600 GMT June 11 as the hurricane, under the influence of an upper level trough, moved northward over colder water. Annette was downgraded to a tropical storm with 60 kt winds at 1200 GMT on June 12 near \(18^{\circ} \mathrm{N}, 113^{\circ} \mathrm{W}\). Weakening rapidly, the storm was downgraded to a tropical depression with 25 kt winds at 1800 GMT June 13 near \(19^{\circ} \mathrm{N}\), \(113^{\circ} \mathrm{W}\). Two more advisories were issued on the depression before convective activity near the center dissipated by 0600 GMT June 14 near \(21^{\circ} \mathrm{N}, 115^{\circ} \mathrm{W}\).

DISTURBANCE: HURRICANE ANNETTE
DATE: June 3-14, 1976


DISTURBANCE: HURRICANE ANNETTE (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Date} & \multirow[b]{2}{*}{Time} & \multicolumn{2}{|c|}{Position} & \multirow[b]{2}{*}{Pressure (MB)} & \multirow[b]{2}{*}{Wind (KTS)} & \multirow[b]{2}{*}{Stage} \\
\hline & & Latitude & Longitude & & & \\
\hline 6/11 & \[
\left\lvert\, \begin{aligned}
& 0000 z \\
& 1200 z
\end{aligned}\right.
\] & \[
\begin{aligned}
& 16.0 \mathrm{~N} \\
& 17.0
\end{aligned}
\] & \[
\begin{aligned}
& 110.5 \mathrm{~W} \\
& 111.5
\end{aligned}
\] & & & Hurricane \\
\hline 5/12 & \[
\begin{aligned}
& 00002 \\
& 12002
\end{aligned}
\] & \[
\begin{aligned}
& 17.5 \mathrm{~N} \\
& 18.0
\end{aligned}
\] & \[
\begin{aligned}
& 112.0 \mathrm{~W} \\
& 113.0
\end{aligned}
\] & & 60 & Tropical Storm \\
\hline 6/13 & \[
\begin{aligned}
& 0000 z \\
& 1200 z \\
& 1800 z
\end{aligned}
\] & \[
\begin{aligned}
& 18.3 \mathrm{~N} \\
& 18.8 \\
& 19.2
\end{aligned}
\] & \[
\begin{aligned}
& 112.5 \mathrm{~W} \\
& 113.0 \\
& 113.2
\end{aligned}
\] & & 25 & Tropical Depression \\
\hline 6/14 & \[
\begin{aligned}
& 0000 Z \\
& 06002 \\
& 1200 Z
\end{aligned}
\] & \[
\begin{aligned}
& 19.5 \mathrm{~N} \\
& 20.9 \\
& 21.0
\end{aligned}
\] & \[
\begin{aligned}
& 114.0 W \\
& 115.0 \\
& 115.0
\end{aligned}
\] & & & Tropical Depression \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{\begin{tabular}{l}
LOCATION \\
Tropical Depression
\end{tabular}} \\
\hline TIME & LATITUDE & LONGITUDE \\
\hline 00 COZ & 11.0 N & 95.0W \\
\hline 12002 & 13.0 & 97.0 \\
\hline & & \\
\hline & & \\
\hline \(\sim\) & & \\
\hline - & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNID.:7 \\
\hline 5955 & 92.17 & & 212554 & 22112 & 215708 & 221130 & 802 & 140 \\
\hline & & & & & & & - & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}





Bonny began as a tropical disturbance over \(86^{\circ} \mathrm{F}\) water near \(12^{\circ} \mathrm{N}, 100^{\circ} \mathrm{W}\) at 0600 GMT June 22. Moving northwest, the disturbance was upgraded to a tropical depression with 30 kt winds near \(16^{\circ} \mathrm{N}, 103^{\circ} \mathrm{W}\), about 200 n mi west of Acapulco, Mexico, at 1800 GMT June 25 . Turning west and moving at 7 kt , the depression was upgraded to tropical storm status at 1200 GMT June 26 near \(16^{\circ} \mathrm{N}\), \(105^{\circ} \mathrm{W}\). Winds near the center were estimated at 45 kt with gale winds extending out 75 n mi from the center. By 0000 GMT June 27 winds had increased to 55 kt and gale winds extended to 90 n mi from the center which was then near \(16^{\circ} \mathrm{N}\), \(106^{\circ} \mathrm{W}\). Moving west at 10 to 12 kt , Bonny was upgraded to hurricane status at 1200 GMT June 27 near \(17^{\circ} \mathrm{N}, 109^{\circ} \mathrm{W}\) or 135 n mi southeast of Socorro Island. Winds had increased to 65 kt with gusts to 75 kt near the center and gale winds extended out 100 n mi from the center. At 1939 GMT June 27 a NOAA reconnaissance aircraft flew through Bonny locating the center at \(17.2^{\circ} \mathrm{N}\), \(110.7^{\circ} \mathrm{W}\) or 90 nmi south of Socorro Island. The surface wind was estimated at 63 kt and pressure computed at 987.4 mb . Continuing west at \(10-12 \mathrm{kt}\), Bonny began to move over colder ( \(76^{\circ} \mathrm{F}\) ) water and weaken. At 0000 GMT June 28 Bonny was downgraded to a tropical storm near \(17^{\circ} \mathrm{N}, 112^{\circ} \mathrm{W}\). Moving a little faster to the west, the storm was downgraded to a tropical depression with 30 kt winds near \(18^{\circ} \mathrm{N}, 115^{\circ} \mathrm{W}\) at 1200 GMT June 29. The final advisory on the depression was issued at 180 C GMT June 29 with the center near \(16^{\circ} \mathrm{N}, 117^{\circ} \mathrm{W}\).

DISTURBANCE: HURRICANE BONNY
DATE: June 25-29, 1976
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Date} & \multirow[b]{2}{*}{Time} & \multicolumn{2}{|c|}{Position} & \multirow[t]{2}{*}{Pressure (MB)} & \multirow[t]{2}{*}{Wind (KTS)} & \multirow[b]{2}{*}{Stage} \\
\hline & & Latitude & Longitude & & & \\
\hline 6/25 & 18002 & 16.0N & 103.0W & & 30 & Tropical Depression \\
\hline 6/26 & \[
\begin{array}{|l|l}
\hline 0000 z \\
12002
\end{array}
\] & \[
\begin{aligned}
& 16.0 \mathrm{~N} \\
& 15.8
\end{aligned}
\] & \[
\begin{aligned}
& \text { 103.0W } \\
& 105.1
\end{aligned}
\] & & 45 & Tropical Storm \\
\hline 6/27 & \[
\begin{aligned}
& \hline 00002 \\
& 12002 \\
& 19392
\end{aligned}
\] & \[
\begin{aligned}
& \hline 16.5 \mathrm{~N} \\
& 17.0 \\
& 17.2
\end{aligned}
\] & \[
\begin{aligned}
& 106.5 \mathrm{~W} \\
& 109.4 \\
& 110.7
\end{aligned}
\] & 987.4 & \[
\begin{aligned}
& 55 \\
& 65 \\
& 63
\end{aligned}
\] & Hurricane \\
\hline 5/:28 & \[
\begin{aligned}
& 0000 z \\
& 1200 z
\end{aligned}
\] & \[
\begin{aligned}
& 17.3 \mathrm{~N} \\
& 17.7
\end{aligned}
\] & \[
\begin{aligned}
& 111.6 \mathrm{~W} \\
& 114.8
\end{aligned}
\] & & 30 & \begin{tabular}{l}
Tropical Storm \\
Tropical Depression
\end{tabular} \\
\hline 6/29 & \[
\begin{aligned}
& 0000 z \\
& 1200 z \\
& 1800 z
\end{aligned}
\] & \[
\begin{aligned}
& 16.2 \mathrm{~N} \\
& 15.8 \\
& 16.2
\end{aligned}
\] & \[
\begin{aligned}
& 115.5 \mathrm{~W} \\
& 117.0 \\
& 117.2
\end{aligned}
\] & & & Tropical Depression \\
\hline
\end{tabular}

HURRICANE BONNY - 6/28/76 (0000Z - 12002)


LOCATION
Tropical Storm
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Tropical Storm} \\
\hline TIME & LATITUDE & LONGITUDE \\
\hline 00002 & 17.5 N & 111.5 W \\
\hline 12002 & 17.7 & 114.8 \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNID. \\
\hline 6318 & -100.12 & & 131342 & 13202 & 131632 & 133214 & 808 \\
\hline & & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

The fourth tropical cyclone of the season began as a large area of thunderstorm activity 300 nmi in diameter in the Gulf of Tehuantepec at 1200 GMT June 28. By 1800 the area began to show definite cyclonic circulation and was classified as a tropical depression near \(13^{\circ} \mathrm{N}, 96^{\circ} \mathrm{W}\). By 0000 GMT June 29 the center, with 30 kt winds, has noved o near \(14^{\circ} \mathrm{N}, 95^{\circ} \mathrm{W}\). Moving north at 6 kt , the depression moved onshore near Sàlina Cruz, Mexico, at 0000 GMT June 30.

DISTURBANCE: TROPICAL CYCLONE 4
DATE: June 28-30, 1976
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Date} & \multirow[b]{2}{*}{Time} & \multicolumn{2}{|c|}{Position} & \multirow[t]{2}{*}{Pressure (MB)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Wind } \\
& \text { (KTS) }
\end{aligned}
\]} & \multirow[t]{2}{*}{Stage} \\
\hline & & Latitude & Longitude & & & \\
\hline 6/28 & \[
\begin{array}{|l|l}
1200 Z \\
1800 Z
\end{array}
\] & \[
\begin{aligned}
& 13.0 \mathrm{~N} \\
& 13.0
\end{aligned}
\] & \[
\begin{aligned}
& 96.0 \mathrm{~W} \\
& 96.0
\end{aligned}
\] & & & Tropical Depression \\
\hline 6/29 & \[
\begin{aligned}
& 0000 Z \\
& 1200 Z
\end{aligned}
\] & \[
\begin{aligned}
& 14.5 \mathrm{~N} \\
& 14.8
\end{aligned}
\] & \[
\begin{aligned}
& 95.3 \mathrm{~W} \\
& 95.6
\end{aligned}
\] & & 30 & Tropical Depression \\
\hline 6/30 & 00002 & 16.0 N & 95.5W & & & Tropical Depression \\
\hline
\end{tabular}
3.5-2

TROPICAL CYCLONE FOUR - 6/28/76 (1200Z)


LOCATION
Tropica! Depression
\begin{tabular}{|c|c|c|}
\hline TIME* & LATITUDE & LONGITUDE \\
\hline 12002 & 13.0 N & 96.0W \\
\hline & & \\
\hline * & & \\
\hline & & \\
\hline  & & \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CRJSSIING & APPROXIMATE PCA & \(\mathrm{O}^{1}\) & OFF & MOOE & UNIT. \({ }^{\text {a }}\) \\
\hline 6318 & -100.12 & 131342 & 13172 & 131632 & 133214 & 808 & 115 \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}
*

Hyacinth began as a disturbed area near \(9^{\circ} \mathrm{N}, 97^{\circ} \mathrm{W}\) at 1800 GMT August 5. Moving west-northwest at 11 kt over \(85^{\circ} \mathrm{F}\) water, the disturbance began to show signs of cyclonic circulation and was upgraded to a tropical depression at 1800 GMT August 6 near \(12^{\circ} \mathrm{N}, 102^{\circ} \mathrm{W}\). Later satellite information indicated that the center was slightly southwest of that position. Winds increased to 35 kt Hyacinth with the 7 and the depression was upgraded and named Tropical Storm the center had increased near \(12^{\circ} \mathrm{N}, 102^{\circ} \mathrm{W}\). By 0000 GMT August 8 winds near to 70 kt by 1200 GMT on August 9 . Winds near the center of Hyacinth increased near \(15^{\circ} \mathrm{N}, 110^{\circ} \mathrm{W}\). By 1800 GMT August 9 Hyacinth center, had developed a small, well 9 Hyacinth, with 85 kt winds near the \(15^{\circ} \mathrm{N}\), \(111^{\circ} \mathrm{W}\). The Maritime Justice 140 n eye about 10 n mi in diameter near August 9, reported 35 kt winds from the nmi south of Hyacinth at 1800 GMT west-northwest at 6 kt , Hyacinth continued to intensify over \(84^{\circ} \mathrm{F}\) rain. Moving increased to 95 kt by 0000 GMT August 10 with intensify over \(84^{\circ} \mathrm{F}\) water. Winds The Maritime Justice , 160 nmi ust 10 with the center near \(15^{\circ} \mathrm{N}, 111^{\circ} \mathrm{W}\). with 30 kt westerly winds. The hurricane moved, reported violent rain showers August 10 with winds near the near \(15^{\circ} \mathrm{N}, 112^{\circ} \mathrm{W}\) by 0600 GMT developed only 12 hours earli center increasing to 100 kt . The eye, which had 0600 GMT August 10 . By 1800 GMT August longer visible on satellite imagery by \(114^{\circ} \mathrm{W}\). Winds began to decrease August 10 Hyacinth had moved to near \(16^{\circ} \mathrm{N}\), August 11 as the hurricane northeast of nearly stationary lerated west-northwest at \(15-20 \mathrm{kt} 500 \mathrm{nmi}\) Hyacinth had moved to near \(17^{\circ}\) Tropical Storm Gwen. By 1200 GMT August 11 continued to move west-northwest \(117^{\circ} \mathrm{W}\) with 85 kt winds near the center. It with the center near \(22^{\circ} \mathrm{N}, 128^{\circ} \mathrm{W}\), accelerating to 25 kt by 1800 GMT August 12, the hurricane, now moving Hyacinth passed to the north, cooler ( \(74^{\circ} \mathrm{F}\) ) water, continued to weaken. As northward, eventually passing Tropical Storm Gwen began to intensify and move August 13. Hyacinth, turning west mi to the east of Hyacinth at 1200 GMT 55 kt winds near \(22^{\circ} \mathrm{N}, 130^{\circ} \mathrm{W}\) at 0000 GMT Augusted to a tropical storm with westward at 1200 on the 13th and was downgraded to a The storin turned south30 kt winds near \(20^{\circ} \mathrm{N}, 137^{\circ} \mathrm{W}\) at 0000 GmT August 14 a tropical depression with depression had moved to near \(20^{\circ} \mathrm{N}, 139^{\circ} \mathrm{W}\). It 14 . By 0600 GMT August 14 the with Gwen, now a tropical depression near it then turned northward mergin The last advisory issued by the Eastern Pacific \(139^{\circ} \mathrm{W}\) at 1200 GMT August 14. was at 1200 GMT August 14 the Eastern Pacific Hurricane Center on Hyacinth drift westward into the Central the center near \(22^{\circ} \mathrm{N}, 139^{\circ} \mathrm{W}\). Gwen continued to carrying with it the remants of Acific Hurricane Center's forecast area carrying with it the remnants of Hurricane Hyacinth.

DISTURBANCE: HURRICANE HYACINTH

DATE: \(\qquad\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Date} & \multirow[b]{2}{*}{Time} & \multicolumn{2}{|c|}{Position} & \multirow[t]{2}{*}{Pressure (MB)} & \multirow[t]{2}{*}{Wind (KTS)} & \multirow[b]{2}{*}{Stage} \\
\hline & & Latitude & Longitude & & & \\
\hline 8/6 & 18002 & 12.1N & 102.2W & & & Tropical Depression \\
\hline 8/7 & \[
\begin{aligned}
& 0000 z \\
& 0600 z \\
& 12002
\end{aligned}
\] & \[
\begin{aligned}
& 12.0 \mathrm{~N} \\
& 12.0 \\
& 12.5
\end{aligned}
\] & \[
\begin{aligned}
& 101.5 \mathrm{~W} \\
& 102.0 \\
& 103.5
\end{aligned}
\] & & 35 & Tropical Storm \\
\hline 8/8 & \[
\begin{aligned}
& 00002 \\
& 12002
\end{aligned}
\] & \[
\begin{aligned}
& 12.5 \mathrm{~N} \\
& 13.0
\end{aligned}
\] & \[
\begin{aligned}
& 106.0 \mathrm{~W} \\
& 107.0
\end{aligned}
\] & & 55 & Tropical Storm \\
\hline 8/9 & \[
\begin{aligned}
& 0000 Z \\
& 1200 Z \\
& 18002
\end{aligned}
\] & \[
\begin{gathered}
14.5 \mathrm{~N} \\
15.0 \\
-15.0
\end{gathered}
\] & \[
\begin{gathered}
108.5 \mathrm{~W} \\
110.2 \\
-111.0
\end{gathered}
\] & & \[
\begin{aligned}
& 70 \\
& 85
\end{aligned}
\] & Hurricane \\
\hline 8/10 & \[
\begin{aligned}
& 0000 z \\
& 06002 \\
& 1200 z
\end{aligned}
\] & \[
\begin{aligned}
& 14.8 \mathrm{~N} \\
& 15.1 \\
& 15.5
\end{aligned}
\] & \[
\begin{aligned}
& 111.5 \mathrm{~W} \\
& 112.1 \\
& 112.8
\end{aligned}
\] & & \[
\begin{array}{r}
95 \\
100
\end{array}
\] & Hurricane \\
\hline 8/11 & \[
\begin{array}{|l|}
\hline 00002 \\
12002
\end{array}
\] & \[
\begin{aligned}
& 16.5 \mathrm{~N} \\
& 17.5
\end{aligned}
\] & \[
\begin{aligned}
& 114.5 \mathrm{~W} \\
& 117.5
\end{aligned}
\] & & 85 & Hurricane \\
\hline 8/12 & \[
\begin{aligned}
& 0000 Z \\
& 1200 z \\
& 1800 z
\end{aligned}
\] & \[
\begin{aligned}
& 19.3 \mathrm{~N} \\
& 21.5 \\
& 22.0
\end{aligned}
\] & \[
\begin{aligned}
& 120.8 \mathrm{~W} \\
& 124.5 \\
& 128.0
\end{aligned}
\] & & 70 & Hurricane \\
\hline 8/13 & \[
\begin{aligned}
& 00002 \\
& 12002
\end{aligned}
\] & \[
\begin{aligned}
& 22.0 \mathrm{~N} \\
& 22.0
\end{aligned}
\] & \[
\begin{aligned}
& 130.5 \mathrm{~W} \\
& 134.5
\end{aligned}
\] & & 55 & Tropical Storm \\
\hline \multicolumn{7}{|c|}{6-2} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|c|c|c|}
\hline \multirow{2}{*}{ Date } & \multirow{2}{*|}{ Time } & \multicolumn{2}{|c|}{ Position } & \multirow{2}{*}{\begin{tabular}{c} 
Pressure \\
(MB)
\end{tabular}} & \begin{tabular}{c} 
Wind \\
(KTS)
\end{tabular} & \multicolumn{2}{c|}{ Stage } \\
\hline & & Latitude & Longitude & & 30 & Tropical Depression \\
\hline \(8 / 14\) & 0000 Z & 20.5 N & 137.0 W & & & \\
& \(1200 Z\) & 22.0 & 139.0 & & & \\
\hline
\end{tabular}

HURRICANE HYACINTH - 8/8/76 (0000Z - 12002)



Iva degan as a disturbance near \(13^{\circ} \mathrm{N}\), \(94^{\circ} \mathrm{W}\), or 420 n mi southeast of Acapulco, Mexico, at 1800 GMT August 23 , 94 , or 420 n mi southeast of with warmer ( \(85^{\circ} \mathrm{F}\) ) water to the north and Moving west at 12 kt over \(93^{\circ} \mathrm{F}\) water rapidly. Satellite pictures showed the disturbance disturbance intensified thunderstorm activity 300 n mi in diameter circulation appeared about the center on sat By 0000 GMT August 24 cyclonic disturbance was upgraded to a tropical depression time-lapse loops and the increased to 35 kt by 1800 GMT August depressisn near \(13^{\circ} \mathrm{N}, 96^{\circ} \mathrm{W}\). Winds named Tropical Storm Iva near \(13^{\circ} \mathrm{N}, 104^{\circ} \mathrm{W}\), about 320 n 噱 Turning west-northwest and moving at \(10{ }^{\circ} \mathrm{Wt}\), about 320 n mi southwest of Acapulco, warm, moist air northward from the Intertropical continued to intensify, drawing the south. By 1600 GMT August 26 NOAA 5 high-resolution satellite 400 n mi to showed Iva with a small eye approximately 10 n mi in ion satellite imagery center increased to 65 kt by 1800 GMT August 26 mi in diameter. Winds near the hurricane status near \(15^{\circ} \mathrm{N}, 108^{\circ} \mathrm{W}\), about 300 n mi athe storm was upgraded to Mexico. Continuing west-northwest, Iva passed southwest of Manzanillo, at 0000 GMT August 28 . Winds near the passed 70 nmi south uf Socorro Island Socorro Island were easterly 55 kt . By 0600 GMT Auged to 110 kt and winds on eye had increased to 25 nmi in diameter and GMT August 28, the hurricane's to 115 kt . Socorro Island, 85 nmi to the east, winds. By 1200 GMT winds on Socorro to the east, reported southeasterly 45 kt now 140 n mi to the west. As Iva continued had decreased to 25 kt with Iva began to move over cooler ( \(80^{\circ} \mathrm{F}\) ) water and sla a west-northwesterly track, it the eye was no longer visible on satellite slowly weaken. By 0900 GMT August 29 as the hurricane moved west-northwest at 9 imagery. Winds continued to decrease stratus and stratocumulus clouds. By 1200 kt into an extensive field of low \(76^{\circ} \mathrm{F}\) water and winds near the center had was downgraded to a tropical storm near \(21^{\circ} \mathrm{N}\), continued to weaken rapidly as it moved northwest at 1200 GMT August 30 . It
 downgraded to a tropical depression near \(23^{\circ} \mathrm{N}\) GMT September 1, the storm was issued at 0000 GMT September 2 with the depression W . The final advisory was \(25^{\circ} \mathrm{N}, 128^{\circ} \mathrm{W}\).

DISTURBANCE: HURRICANE IVA
DATE: August 24 - September 2, 1976
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Date} & \multirow[b]{2}{*}{Time} & \multicolumn{2}{|c|}{Position} & \multirow[t]{2}{*}{Pressure (MB)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Wind \\
(KTS)
\end{tabular}} & \multirow[b]{2}{*}{Stage} \\
\hline & & Latitude & Longitude & & & \\
\hline 8/24 & \[
\begin{aligned}
& 0000 Z \\
& 1200 Z
\end{aligned}
\] & \[
\begin{aligned}
& 13.0 \mathrm{~N} \\
& 13.5
\end{aligned}
\] & \[
\begin{aligned}
& 96.0 \mathrm{~W} \\
& 99.0
\end{aligned}
\] & & & Tropical Depression \\
\hline 8/25 & \[
\begin{aligned}
& 0000 Z \\
& 1200 z \\
& 1800 z
\end{aligned}
\] & \[
\begin{aligned}
& 13.2 \mathrm{~N} \\
& 13.2 \\
& 13.5
\end{aligned}
\] & \[
\begin{aligned}
& 101.0 \mathrm{~W} \\
& 103.3 \\
& 104.0
\end{aligned}
\] & & 35 & Tropical Storm \\
\hline 8/26 & \[
\begin{aligned}
& 0000 Z \\
& 1200 Z \\
& 1800 z
\end{aligned}
\] & \[
\begin{aligned}
& 13.6 \mathrm{~N} \\
& 15.0 \\
& 15.2
\end{aligned}
\] & \[
\begin{aligned}
& 104.7 \mathrm{~W} \\
& 107.0 \\
& 107.8
\end{aligned}
\] & & 65 & Hurricane \\
\hline 8t27 & \[
\begin{aligned}
& 0000 Z \\
& 1200 Z
\end{aligned}
\] & \[
\begin{aligned}
& 16.0 \mathrm{~N} \\
& 16.8
\end{aligned}
\] & \[
\begin{aligned}
& 108.2 \mathrm{~W} \\
& 109.5
\end{aligned}
\] & & & Hurricane \\
\hline 8/28 & \[
\begin{aligned}
& 00002 \\
& 06002 \\
& 12002
\end{aligned}
\] & \[
\begin{aligned}
& 17.6 \mathrm{~N} \\
& 18.2 \\
& 18.2
\end{aligned}
\] & \[
\begin{aligned}
& 111.5 \mathrm{~W} \\
& 112.4 \\
& 113.5
\end{aligned}
\] & & \[
\begin{aligned}
& 110 \\
& 115
\end{aligned}
\] & Hurricane \\
\hline 8/29 & \[
\begin{aligned}
& 00002 \\
& 12002
\end{aligned}
\] & \[
\begin{aligned}
& 19.0 \mathrm{~N} \\
& 19.5
\end{aligned}
\] & \[
\begin{aligned}
& 115.2 \mathrm{~W} \\
& 118.0
\end{aligned}
\] & & & Hurricane \\
\hline 8/30 & \[
\begin{aligned}
& 0000 Z \\
& 1200 Z
\end{aligned}
\] & \[
\begin{aligned}
& 20.0 \mathrm{~N} \\
& 20.7
\end{aligned}
\] & \[
\begin{aligned}
& 119.5 \mathrm{~W} \\
& 122.0
\end{aligned}
\] & . & 60 & Tropical Storm \\
\hline 8/31 & \[
\begin{aligned}
& 0000 Z \\
& 1200 Z
\end{aligned}
\] & \[
\begin{aligned}
& 21.0 \mathrm{~N} \\
& 22.5
\end{aligned}
\] & \[
\begin{aligned}
& 123.5 \mathrm{~W} \\
& 125.0
\end{aligned}
\] & & & Tropical Storm \\
\hline
\end{tabular}

DISTURBANCE: HURRICANE IVA (Continued)
\begin{tabular}{|c|l|c|c|c|c|c|}
\hline \multirow{2}{*}{ Date } & \multirow{2}{*|}{ Time } & \multicolumn{2}{|c|}{ Position } & \begin{tabular}{c} 
Pressure \\
(MB)
\end{tabular} & \begin{tabular}{c} 
Wind \\
(KTS)
\end{tabular} & \multicolumn{1}{c|}{ Stage } \\
\hline \(9 / 1\) & 00002 & 23.4 N & 126.4 W & & & Tropical Depression \\
& 12002 & 24.5 & 127.5 & & & \\
\hline \(9 / 2\) & 00002 & 24.9 N & 128.5 W & & & Tropical Depression \\
& & & & & & \\
\hline
\end{tabular}

\section*{3.7-3}


LOCATION
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Tropical Depression} \\
\hline TIME & LATITUDE & LONGITUDE \\
\hline 00002 & 13.0 N & 96.0 W \\
\hline 12002 & 13.5 & 99.0 \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNIQ. I \\
\hline 7107 & 80.12 & & 074054 & 08262 & 081825 & 082621 & 808 \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}




The fourteenth tropical cyclone of the season began as a disturbance at 1200 GMT August 26 near \(4^{\circ} \mathrm{N}, 80^{\circ} \mathrm{W}\), about 150 n mi west of the Columbian Coast. The disturbance, centered within a large area of convective thunderstorm activity 300 nmi in diameter, moved northwest at \(15-18 \mathrm{kt}\) to near \(8^{\circ} \mathrm{N}, 84^{\circ} \mathrm{w}\), about 45 nmi west of the De Osa peninsula on the Costa Rican coast by 1200 GMT August 27. Turning west-southwest and moving at 18 kt away from the coast, the center of the disturbance moved to near \(6^{\circ} \mathrm{N}, 87^{\circ} \mathrm{W}\) by 0000 GMT August 28 . It then turned west and, slowing to 12-14 kt, began to intensify. By 0000 GMT August 29 satellite pictures indicated a definite circulation about the center of the disturbance and it was upgraded to a tropical depression with 25 kt winds near \(8^{\circ} \mathrm{N}, 92^{\circ} \mathrm{W}\). Turning west-northwest and moving at 11 kt over \(81^{\circ} \mathrm{F}\) water, winds increased to 30 kt by 0000 GMT August 30 with the center near \(10^{\circ} \mathrm{N}, 96^{\circ} \mathrm{W}\). The depression then turned west at 10 kt and began to weaken. By 1800 GMT August 30 satellite imagery indicated that the circulation had ceased about the center and the depression was downgraded to a tropical disturbance again near \(10^{\circ} \mathrm{N}, 99^{\circ} \mathrm{W}\). The disturbance then moved rapidly west-northwest at 18 kt and appeared to be dissipating into an area of widely scattered thunderstorm activity \(300-400 \mathrm{n} \mathrm{mi}\) in diameter. However, between 0600 and 1200 GMT August 31 the thunderstorm activity increased again and coalesced into a solid area 300 nmi in diameter. Within 12 hours satellite imagery indicated a cyclonic circulation about the center of the activity and the disturbance was upgraded to a tropical depression again at 0000 GMT September 1 near \(11^{\circ} \mathrm{N}, 107^{\circ} \mathrm{W}\). Turning west-southwest, the depression moved to near \(10^{\circ} \mathrm{N}, 110^{\circ} \mathrm{W}\) by 1800 GMT then turned northwest and, moving at 8 kt over \(82^{\circ} \mathrm{F}\) water, began to intensify. By 1200 GMT September 3 winds near the center had increased to 40 kt and the depression was upgraded and became Tropical Storm Joanne near \(14^{\circ} \mathrm{N}, 114^{\circ} \mathrm{W}\). It moved northwest to near \(15^{\circ} \mathrm{N}, 115^{\circ} \mathrm{W}\) by 0000 GMT September 4 then turned westsouthwest and began to weaken slowly. Low clouds pushing down from the north continued to weaken the storm to the extent that it was downgraded to a tropical depression with 30 kt winds near \(14^{\circ} \mathrm{N}, 117^{\circ} \mathrm{W}\) by 0000 GMT September 5 . Turning west and continuing to weaken, the depression moved near \(12^{\circ} \mathrm{N}, 124^{\circ} \mathrm{W}\) where the final advisory was issued at 0600 GMT September 8.

DISTURBANCE: \(\qquad\)
DATE: August 29 - September 8, 1976


DISTURBANCE: TROPICAL STORM JOANNE (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Date} & \multirow[b]{2}{*}{Time} & \multicolumn{2}{|c|}{Position} & \multirow[t]{2}{*}{Pressure (MB)} & \multirow[t]{2}{*}{Wind ( \(k T S\) )} & \multirow[b]{2}{*}{Stage} \\
\hline & & Latitude & Longitude & & & \\
\hline 9/6 & \[
\begin{aligned}
& 00002 \\
& 12002
\end{aligned}
\] & \[
\begin{aligned}
& 13.5 \mathrm{~N} \\
& 13.0
\end{aligned}
\] & \[
\begin{aligned}
& 120.0 \mathrm{~W} \\
& 121.5
\end{aligned}
\] & & & Tropical Depression \\
\hline 9/7 & \[
\begin{aligned}
& 00002 \\
& 12002
\end{aligned}
\] & \[
\begin{aligned}
& 12.0 \mathrm{~N} \\
& 13.0
\end{aligned}
\] & \[
\begin{aligned}
& 122.3 \mathrm{~W} \\
& 126.0
\end{aligned}
\] & & & Tropical Depression \\
\hline 9/8 & \[
\begin{aligned}
& 0000 Z \\
& 0600 Z
\end{aligned}
\] & \[
\begin{aligned}
& 13.2 \mathrm{~N} \\
& 12.5
\end{aligned}
\] & \[
\begin{aligned}
& 124.5 \mathrm{~W} \\
& 124.5
\end{aligned}
\] & & & Tropical Depression \\
\hline
\end{tabular}


\section*{September 7-10, 1976}

Kathleen, the fifteenth tropical cyclone of the season, began as a disturbance 300 n mi southwest of Acapulco, Mexico, at 0000 GMT September 6. The disturbance, centered near \(13^{\circ} \mathrm{N}, 103^{\circ} \mathrm{W}\) within an area of intense thunderstorm activity 600 n mi in diameter, began to move rapidly west-northwest. By 0600 GMT September 7 the disturbance had moved to near \(15^{\circ} \mathrm{N}, 109^{\circ} \mathrm{W}\), about 360 nmi southwest of Manzanillo and, with 25 kt winds near the center, was upgraded to a tropical depression. By 1800 GMT the depression had moved only 12 nmi south of its 0600 GMI position. Winds near tiue center increased to 35 kt by 0000 GMT September 8 and the depression was upgraded and named Tropical Storm Kathleen near \(15^{\circ} \mathrm{N}, 105^{\circ} \mathrm{W}\), about 360 n mi southwest of Marzanillo. Moving northwest over \(83^{\circ} \mathrm{F}\) water, Kathleen intensified rapidly with winds reaching 55 kt by 0600 GMT September 8 with the center near \(16^{\circ} \mathrm{N}, 110^{\circ} \mathrm{W}\) about 180 nmi south-southeast of Socorro Island. Winds on the Island increased steadily as Kathleen approached from the south reaching 50 kt from the southeast by 0000 GMT September 9. The storm passed 60 n mi to the west of the Island at 0300 GMT and by 0600 GMT winds on Socorro, still from the southeast, had decreased to 35 kt . Kathleen was then 60 n mi northwest of the Island. Turning north-northwest, the storm passed over the western edge of an area of very warm ( \(87^{\circ} \mathrm{F}\) ) water off the southern tip of Baja California. Drawing additional energy from the warm water on its eastern side, Kathleen began to intensify and accelerate rapidly northward. By 1800 GMT the center had moved to near \(23^{\circ} \mathrm{N}, 113^{\circ} \mathrm{W}\), about 180 nmi west of the tip of Baja California. The Conon Forest, 80 nmi northnortheast of the center, reported easterly 35 kt winds and intermittent heavy rain. The American Leader, 160 n mi east of the storm and near the tip of Baja, reported southeasterly 45 kt winds. Turning to the north and moving at a fairly rapid 20 kt , Kathleen was upgraded to a hurricane with 70 kt winds near the center at 0000 GMT September 10 near \(25^{\circ} \mathrm{N}\), \(114^{\circ} \mathrm{W}\). The Conon Fomest, 40 nmi to the east, reported southeast 40 kt winds and the Americ. Seaker, 130 nmi east-southeast of Kathleen, reported southerly 40 kt winds. A: 0046 GMT September 10 U. S. Air Force reconnaissance aircraft located the center of Kathleen at \(25.3^{\circ} \mathrm{N}, 114.8^{\circ} \mathrm{W}\). Surface winds were estinated at 80 kt and the pressure at 986 mb . A second flight through the hurricane at 0145 GMT September 10 estimated the surface winds at 55 kt and pressure at 990 mb . Kathleen was downgraded to a tropical storm with 55 kt winds at 0600 GMT September 10 near \(27^{\circ} \mathrm{N}\), \(114^{\circ} \mathrm{W}\) after a brief existence as a hurricane. Accelerating rapidly northward at \(30-33 \mathrm{kt}\), Kathleen crossed the western tip of the Point Eugenia peninsula on the west coast of Baja California between 0700 and 0800 GMT September 10. It moved onshore 140 n mi south of Ensenada, Mexico, at 1130 GMT September 10. Kathleen then continued northward over the Sierra San Pedro and Juarez mountains entering southern California near Calexico at 1800. Racing across the southern California desert, Kathleen began to weaken. The storm moved northward through Death Valley and into western Nevada 140 nmi southeast of Reno by 0600 GMT September 11. Although the center of the storm was difficult to locate after 0600, gusty winds and rain contin'ed to spread northward into eastern Oregon, Idaho, Montana, Utah and Wyoming.

Normally, tropical cyclones weaken rapidly as they move inland. Kathleen did not. While south of Socorro Island the storm had a classic cyclonic configuration roughly 600 nmi in diameter. It never developed an Eye that could be identified on available satellite imagery. As the storm passed west of Socorro Island it picked up considerable energy from the warm waters off the tip of Baja California and carried it rapidly northward in an elongated cloud mass extending 700-800 n mi north into southern California and Arizona. The configuration of the cloud mass, which was \(300-400 \mathrm{n}\) mi wide, was determined, at least partially, by the circulation of a low-pressure system lingering off the southern California coast. That circulation was also instrumental in developing the heavy rains and accelerating the storm northward in a whip-like Fujiwhara fashion (Fujiwhara, 1931). As Kathleen moved north through Death Valley and into wrstern Nevada, the low off the southern California coast was pulled inland bringing additional rain to central California and weakening Kathleen.

DISTURBANCE: HURRICANE KATHLEEN
UAIE: September 7-10, 1976
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Date} & \multirow[b]{2}{*}{Time} & \multicolumn{2}{|c|}{Position} & \multirow[t]{2}{*}{Pressure (MB)} & \multirow[t]{2}{*}{Wind (KTS)} & \multirow[b]{2}{*}{Stage} \\
\hline & & Latitude & Longitude & & & \\
\hline 9/7 & \[
\begin{aligned}
& 06002 \\
& 12002
\end{aligned}
\] & \[
\begin{aligned}
& 15.0 \mathrm{~N} \\
& 14.5
\end{aligned}
\] & \[
\begin{aligned}
& \text { 109.0W } \\
& 109.5
\end{aligned}
\] & & 25 & Tropical Depression \\
\hline 9/8 & \[
\begin{aligned}
& 0000 Z \\
& 0600 z \\
& 1200 z
\end{aligned}
\] & \[
\begin{aligned}
& 15.5 \mathrm{~N} \\
& 16.0 \\
& 16.5
\end{aligned}
\] & \[
\begin{aligned}
& 109.3 \mathrm{~W} \\
& 110.0 \\
& 111.5
\end{aligned}
\] & & \[
\begin{array}{r}
35 \\
55
\end{array}
\] & Tropical Storm \\
\hline 9/9 & \[
\begin{aligned}
& 00002 \\
& 12002
\end{aligned}
\] & \[
\begin{aligned}
& 18.0 \mathrm{~N} \\
& 21.0
\end{aligned}
\] & \[
\begin{aligned}
& 112.5 \mathrm{~W} \\
& 112.3
\end{aligned}
\] & & & Tropical Storm \\
\hline 9/10 & \[
\begin{aligned}
& \hline 0000 Z \\
& 0046 z \\
& 0145 z \\
& 06002 \\
& 1200 Z
\end{aligned}
\] & \[
\begin{aligned}
& 25.0 \mathrm{~N} \\
& 25.3 \\
& \\
& 26.8 \\
& 30.0
\end{aligned}
\] & \[
\begin{aligned}
& 114.0 \mathrm{~W} \\
& 114.8 \\
& 114.4 \\
& 115.5
\end{aligned}
\] & \[
\begin{aligned}
& 986 \\
& 990
\end{aligned}
\] & \[
\begin{aligned}
& 70 \\
& 80 \\
& 55 \\
& 55
\end{aligned}
\] & \begin{tabular}{l}
Hurricane \\
Tropical Storm
\end{tabular} \\
\hline
\end{tabular}

\title{
HURRICANE KATHLEEN - 9/7/76 (12007)
}


LOCATION
Tropical Depression
\begin{tabular}{|c|c|c|}
\hline TIME & LATITUDE & LONGITUDE \\
\hline 12002 & 14.5 N & 109.5W \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBBT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & OUIIC. \\
\hline 7313 & -96.39 & 210182 & 211530 & 212136 & 808 & 123 \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Liza, the hurricane that brought death and destruction to the city of La Paz on the tip of the Baja California peninsula, began September 25 as an area of intense thunderstorm activity 400 n mi diameter centered near \(12^{\circ} \mathrm{N}, 106^{\circ} \mathrm{W}\). By 1800 GMT September 25 satellite pictures indicated a cyclonic circulation near the center of the disturbance and it was upgraded to a tropical depression with 25 kt winds near \(13^{\circ} \mathrm{N}, 107^{\circ} \mathrm{W}\). Winds increased to 35 kt by 1800 GMT September 26 and the depression was upgraded and became Tropical Storm Liza near \(14^{\circ} \mathrm{N}, 108^{\circ} \mathrm{W}\), about 620 n mi south of La Paz. Turning north and moving at 5 kt over warm \(\left(85^{\circ} \mathrm{F}\right.\) ) water, Liza began to intensify. By 1800 GMT September 27 the center, with 55 kt winds, had moved to about \(16^{\circ} \mathrm{N}\), \(108^{\circ} \mathrm{W}\). At 1730 GMT September 28 U . S. Air Force reconnaissance aircraft located the center near \(18.0^{\circ} \mathrm{N}, 108.0^{\circ} \mathrm{W}\), or 400 n mi south of La Paz. Surface winds were estimated at 40 kt and sea level pressure at 971 mb . Although not discernible on satellite imagery, Liza had developed a 15 n mi diameter closed wall eye. Moving north at 5 kt , the storm's winds increased to 65 kt by 1800 GMT September 28 and Liza was upgraded to a hurricane near \(18^{\circ} \mathrm{N}, 108^{\circ} \mathrm{W}\). At 1923 GMT September 28 a second flight through the hurricane by Air Force reconnaissance aircraft fixed the center at \(18.0^{\circ} \mathrm{N}, 108.2 \mathrm{~W}\). Surface winds were estimated at 65 kt and sea level pressure at 968 mb . Winds increased to 70 kt near the center near \(18^{\circ} \mathrm{N}, 108^{\circ} \mathrm{W}\) at 1204 GMT September 29. Air Force reconnaissance penetrating the hurricane at 948 mb . The hurri 29 computed the surface pressure near the center satellite imagery, had become, visible for the first time on infrared long oriented north-northwest to south-with the major axis 14 n mi north, Liza began to move east northeast of Liza and 30 n mi ported southeasterly 50 kt winds and the Mexican coast at 1500 GMT, remade another flight through Liza at 1800 GMT rain Showers. The Air Force center at \(19.3^{\circ} \mathrm{N}, 1079^{\circ} \mathrm{W}\). Surfat \({ }^{\circ} 29\) locating the pressure at 941 . Surface winds were estimated at 110 kt and and 30 nmi in diameter. eye was again circular with concentric walls 10 center, reported southeasterly 60 the showers. The Phmyne, 120 n 60 kt winds and continued violent rain westerly 35 kt winds and 16 ft south-southeast of Liza, reported southwith 110 kt winds, had moved to near \({ }^{\circ}{ }^{\circ}\) By 0000 GMT September 30 Liza, of La Paz. The Inger, 120 nmi east \(20^{\circ} \mathrm{N}, 108^{\circ} \mathrm{W}\), about 280 nmi scuth coast, reported southeasterly 45 ms of the hurricane and 15 nmi off the ship Richard, 110 nmi merly 45 kt winds and 24 ft seas. At 1500 the sudden drop in sea surface temperature from \(88^{\circ}\) to \(80^{\circ} \mathrm{F}\), reported a

Moving north at 8 kt over warm ( \(86^{\circ} \mathrm{F}\) ) water, Liza continued to intensify gatnering additional energy from the warmer ( \(88^{\circ} \mathrm{F}\) ) water along its eastern side. At 1725 GMT September 30 the Air Force flew another reconnaissance
flight through the center of the hurricane locating the center at \(22.1^{\circ} \mathrm{N}\), \(109.3^{\circ} \mathrm{W}\) about 140 n mi south of La Paz. Surface winds were estimated at 125 kt and pressure at 939 mb . The diameter of the eye had increased to 20 n mi with a 2 n mi thick closed wall. By 0000 GMT October 1 Liza was 50 n mi east-southeast of La Paz near \(24^{\circ} \mathrm{N}, 109^{\circ} \mathrm{W}\). At 0200 GMT October 1 Liza, with 115 kt winds and gusts to 130 kt , passed 45 nmi to the east of La Paz. An estimated 5-6 inches of rain fell over the southern end of the Baja peninsula resulting in considerable damage and several hundred deaths. Moving rapidly northward over the southern end of the Gulf of California, Liza moved onshore with 100 kt winds on the west coast of Mexico 45 nmi north of Los Mochis at 1300 GMT October 1. Weakening rapidly, the storm accelerated across northern Mexico at 25 to 30 kt .

DISTURBANCE:
HURRICANE LIZA
UAIE: September 25-October 1, 1976
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Date} & \multirow[b]{2}{*}{Time} & \multicolumn{2}{|c|}{Position} & \multirow[t]{2}{*}{Pressure ( AB )} & \multirow[t]{2}{*}{\begin{tabular}{l}
Wind \\
(KTS)
\end{tabular}} & \multirow[b]{2}{*}{Stage} \\
\hline & & Latitude & L.ongitude & & & \\
\hline 9/25 & \[
\begin{aligned}
& 1800 z \\
& 1200 z
\end{aligned}
\] & \[
\begin{aligned}
& 13.0 \mathrm{~N} \\
& 13.0
\end{aligned}
\] & \[
\begin{aligned}
& 107.0 W \\
& 107.0
\end{aligned}
\] & & 25 & Tropical Depression \\
\hline 9/26 & \[
\begin{aligned}
& 0000 z \\
& 1200 Z \\
& 1800 Z
\end{aligned}
\] & \[
\begin{aligned}
& 13.0 \mathrm{~N} \\
& 14.0 \\
& 14.0
\end{aligned}
\] & \[
\begin{aligned}
& 108.0 \mathrm{~W} \\
& 109.0 \\
& 108.5
\end{aligned}
\] & & 35 & \begin{tabular}{l}
Tropical Depression \\
Tropical Storm
\end{tabular} \\
\hline 9/27 & \[
\begin{aligned}
& 0000 Z \\
& 1200 z \\
& 1800 z
\end{aligned}
\] & \[
\begin{aligned}
& 14.5 \mathrm{~N} \\
& 16.0 \\
& 16.0
\end{aligned}
\] & \[
\begin{aligned}
& 109.0 W \\
& 108.3 \\
& 108.0
\end{aligned}
\] & & 55 & Tropical Storm \\
\hline 9/28 & \[
\begin{aligned}
& n 000 z \\
& 1200 z \\
& 1730 z \\
& 18002 \\
& 1923 z
\end{aligned}
\] & \[
\begin{aligned}
& 16.3 \mathrm{~N} \\
& 17.5 \\
& 18.0 \\
& 18.0 \\
& 18.0
\end{aligned}
\] & \[
\begin{aligned}
& \text { 109.0W } \\
& 108.5 \\
& 108.0 \\
& 108.1 \\
& 108.2
\end{aligned}
\] & \[
\begin{aligned}
& 971 \\
& 968
\end{aligned}
\] & \[
\begin{aligned}
& 40 \\
& 65 \\
& 65
\end{aligned}
\] & \begin{tabular}{l}
Tropical Storm \\
Hurricane
\end{tabular} \\
\hline 9/29 & \[
\begin{aligned}
& 00002 \\
& 12002 \\
& 18002
\end{aligned}
\] & \[
\begin{aligned}
& 18.5 \mathrm{~N} \\
& 19.0 \\
& 19.3
\end{aligned}
\] & \[
\begin{aligned}
& 108.0 \mathrm{~W} \\
& 108.0 \\
& 107.9
\end{aligned}
\] & \[
\begin{aligned}
& 948 \\
& 941
\end{aligned}
\] & \[
\begin{aligned}
& 70 \\
& 110
\end{aligned}
\] & Hurricane \\
\hline 9/30 & \[
\begin{aligned}
& 0000 Z \\
& 12002 \\
& 1725 z \\
& 18002
\end{aligned}
\] & \[
\begin{aligned}
& 20.0 \mathrm{~N} \\
& 21.5 \\
& 22.1 \\
& 22.2
\end{aligned}
\] & \[
\begin{aligned}
& 108.0 \mathrm{~W} \\
& 109.0 \\
& 109.3 \\
& 109.1 \\
& \hline
\end{aligned}
\] & 939 & \[
\begin{aligned}
& 110 \\
& 125 \\
& 115
\end{aligned}
\] & Hurricane \\
\hline 10/1 & \[
\begin{aligned}
& 0000 Z \\
& 0600 z \\
& 12002 \\
& 1800 z
\end{aligned}
\] & \[
\begin{aligned}
& 23.8 \mathrm{~N} \\
& 25.2 \\
& 26.2 \\
& 28.8
\end{aligned}
\] & \[
\begin{aligned}
& 109.4 W \\
& 109.3 \\
& 109.5 \\
& 108.6
\end{aligned}
\] & & & \begin{tabular}{l}
Hurricane \\
Tropical Storm
\end{tabular} \\
\hline
\end{tabular}
3. 10-3


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{location Hurricane} \\
\hline TIME & LATITUDE & LONGITUDE & ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & & & & & \\
\hline \(\underline{00002}\) & 20.0 N & 108.0W & 7640 & -96.97 & 235128 & APPROXIMATE PCA & ON & OFF & MODE & UNIO. \({ }^{\text {a }}\) \\
\hline 12007 & 21.5 & 109.0 & & & 235128 & 23592 & 235855 & 000405 & 808 & 146 \\
\hline & & & & & & & & & & \\
\hline - & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}

Madeline began as a disturbance at 0000 GMT September 27 near \(9^{\circ} \mathrm{N}, 91^{\circ} \mathrm{W}\), about 300 n mi south of the Guatamalan coast and 700 nmi southeast of Acapulco, Mexico. At 2100 GMT September 28 the Seatiger, 70 n mi south of the disturbance, reported south-southwesterly 40 kt winds and continuous heavy rain. With satellite pictures indicating a cyclonic circulation about the center, the disturbance was upgraded and named Tropical Storm Madeline with 35 kt winds near the center near \(10^{\circ} \mathrm{N}, 90^{\circ} \mathrm{W}\) at 0000 GMT September 29. By 1200 satellite imagery showed considerable weakening of the storm and Madeline was downgraded to a tropical depression with 30 kt winds near \(10^{\circ} \mathrm{N}\), \(91^{\circ} \mathrm{W}\). By 1800 GMT September 30 winds had diminished to 25 kt and with circulation no longer evident about the center, the depression was downgraded to a tropical disturbance near \(11^{\circ} \mathrm{N}, 92^{\circ} \mathrm{W}\), about \(500 \mathrm{n} \mathrm{mi} \mathrm{southeast} \mathrm{of} \mathrm{Acapulco}\). The disturbance then turned west and, moving at 4 kt , began to slowly regenerate. By 1800 it had moved to near \(12^{\circ} \mathrm{N}, 95^{\circ} \mathrm{W}\). Satellite imagery indicated a cyclonic circulation about the center by 0000 GMT October 3 and the disturbance was upgraded to a tropical depression with 30 kt winds near \(12^{\circ} \mathrm{N}, 95^{\circ} \mathrm{W}\), about 400 nmi southwest of Acapulco. Turning southwest, the depression moved to near \(10^{\circ} \mathrm{N}, 97^{\circ} \mathrm{W}\) by 1800 GMT October 4 remaining nearly stationary for the next 18 hours. By 0000 GMT October 5 winds near the center had increased to 35 kt and the depression was upgraded again to Tropical Storm Madeline near \(10^{\circ} \mathrm{N}, 97^{\circ} \mathrm{W}\), about 400 n mi south-southeast of Acapulco. Madeline turned north-northwest after 1200 GMT October 5 and, with warmer ( \(85^{\circ} \mathrm{F}\) ) water on its northeast side, began to intensify rapidly. By 0000 GMT October 6 the storm had moved to near \(12^{\circ} \mathrm{N}, 98^{\circ} \mathrm{W}\) and winds had increased to 55 kt . The storm was upgraded to hurricane status with 70 kt winds near \(13^{\circ} \mathrm{N}, 100^{\circ} \mathrm{W}\), about 220 nmi south of Acapulco at 1800 GMT October 6. At 1815 GMT October 6 Air Force reconnaissance aircraft located the center of Madeline at \(13.1^{\circ} \mathrm{N}, 100.4^{\circ} \mathrm{W}\) with winds estimated at 65 kt and surface pressure at 984 mb . Madeline's eye, first visible on satellite pictures at 1615, was reported as well-defined with a 30 n mi diameter. By 0000 GMT October 7 Madeline, with 70 kt winds, had moved to near \(14^{\circ} \mathrm{N}, 101^{\circ} \mathrm{W}\), about 200 n mi south-southwest of Acapulco. At 1117 GMT October 7 Air Force reconnaissance aircraft again located the center of Madeline at \(14.9^{\circ} \mathrm{N}, i 02.0^{\circ} \mathrm{W}\), about \(i 70 \mathrm{nmi}\) southwest of Acapulco and 160 nmi south of Zihuatane: 0 . Surface winds were estimated at 75 kt and the eye had increased to \(\left\langle\circ \mathrm{n} \mathrm{ml}\right.\) in diameter. Moving north over \(82^{\circ} \mathrm{F}\) water with warmer ( \(85^{\circ} \mathrm{F}\) ) water along its eastern side, Madeline continued to intensify. By 1800 winds had increased to 110 kt with the center near \(15^{\circ} \mathrm{N}, 102^{\circ} \mathrm{W}\). The Norse Viking, 100 nmi northeast of the certer and 30 n mi off the coast, reported easterly 60 kt winds and continuous heavy rain. The Ecuadorian Reefer, 70 n mi eastnortheast of the hurricane, reported southeasterly 55 kt winds and intermittent heavy rain. By 0000 GMT October 8, Madeline, with 115 kt winds, had moved to near \(16^{\circ} \mathrm{N}, 102^{\circ} \mathrm{W}\), about 140 n mi west of Acapulco and 100 nmi south of Zihuatanejo. The Chevron Genoa, 140 n mi to the east, reported east-southeasterly wind and continuous heavy rain. At 0300 GIMT October 8 Air Force reconnaissance
aircraft located the center of Madeline near \(16^{\circ} \mathrm{N}, 102^{\circ} \mathrm{W}\) with winds estimated at 120 kt and surface pressure at 941 mb . A second penetration by the aircraft at 0209 reported a pressure of 940 mb and eye diameter of 30 nmi . Winds increased to 125 kt with gusts to 140 kt by 0600 GMT October 8 with the center near \(17^{\circ} \mathrm{N}, 102^{\circ} \mathrm{W}\), about 70 n mi west of Acapulco and 50 nmi southwest of
Zihuatanejo. The Austral Lightning, 50 n mi to the northwest, reported northerly 100 kt winds and continuous heavy rain. The Finn Leon Hardt, 120 nmi to the east, reported southeasterly 40 kt winds. By 0900 GMT the Austral Lightning was 60 n mi south-southwest of the hurricane. The ship continued to report continuous heavy rain with the wind having shifted to southivest 75 kt . Madeline moved onshore 45 n mi northwest of Zihuatanejo at 1100 GMT October 8 and weakened rapidly after moving inland.

DISTURBANCE:

UAIE: September 29-October 8, 1976
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Date} & \multirow[b]{2}{*}{Time} & \multicolumn{2}{|c|}{Position} & \multirow[t]{2}{*}{Pressure (AB)} & \multirow[t]{2}{*}{Wind (KTS)} & \multirow[b]{2}{*}{Stage} \\
\hline & & Latitude & Longitude & & & \\
\hline 9/29 & \[
\begin{aligned}
& 0000 z \\
& 1200 z
\end{aligned}
\] & \[
\begin{aligned}
& 10.0 \mathrm{~N} \\
& 10.0
\end{aligned}
\] & \[
\begin{aligned}
& 90.5 \mathrm{~W} \\
& 91.0
\end{aligned}
\] & & \[
\begin{aligned}
& 35 \\
& 30
\end{aligned}
\] & \begin{tabular}{l}
Tropical Storm \\
Tropical Depression
\end{tabular} \\
\hline 9/30 & \[
\begin{aligned}
& 0000 Z \\
& 1200 Z
\end{aligned}
\] & \[
\begin{aligned}
& 10.5 \mathrm{~N} \\
& 10.5
\end{aligned}
\] & \[
\begin{aligned}
& \text { 91.0W } \\
& 92.0
\end{aligned}
\] & & & Tropical Depression Tropical Disturbance \\
\hline 10/1 & \[
\begin{aligned}
& 00002 \\
& 12002
\end{aligned}
\] & & & & & Tropical Disturbance \\
\hline 10/2 & \[
\begin{aligned}
& 0000 Z \\
& 12002
\end{aligned}
\] & & & & & Tropical Disturbance \\
\hline 10/3 & \[
\begin{aligned}
& 0000 z \\
& 1200 Z
\end{aligned}
\] & \[
\begin{aligned}
& 11.8 N \\
& 11.2
\end{aligned}
\] & \[
\begin{aligned}
& 95.5 \mathrm{~W} \\
& 97.0
\end{aligned}
\] & & 30 & Tropical Depression \\
\hline 10/4 & \[
\begin{aligned}
& 0000 z \\
& 1200 z
\end{aligned}
\] & \[
\begin{aligned}
& 10.8 \mathrm{~N} \\
& 10.5
\end{aligned}
\] & \[
\begin{aligned}
& 97.0 \mathrm{~W} \\
& 98.0
\end{aligned}
\] & & & Tropical Depression \\
\hline 10/5 & 00002 & 10.5 N & 97.5 & & 35 & Tropical Storm \\
\hline 10/6 & \[
\begin{aligned}
& 00002 \\
& 12002 \\
& 18002
\end{aligned}
\] & \[
\begin{aligned}
& 12.0 \mathrm{~N} \\
& 13.0 \\
& 13.1
\end{aligned}
\] & \[
\begin{gathered}
98.5 \mathrm{~W} \\
99.5 \\
100.3
\end{gathered}
\] & 984 & \[
\begin{aligned}
& 55 \\
& 70
\end{aligned}
\] & \begin{tabular}{l}
Tropical Storm \\
Hurricane
\end{tabular} \\
\hline
\end{tabular}

DISTURBANCE: HURRICANE MADELINE (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Date} & \multirow[b]{2}{*}{Time} & \multicolumn{2}{|c|}{Position} & \multirow[t]{2}{*}{Pressure (MB)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Wind } \\
& \text { (KTS) }
\end{aligned}
\]} & \multirow[t]{2}{*}{Stage} \\
\hline & & Latitude & Longitude & & & \\
\hline \multirow[t]{3}{*}{10/7} & 00002 & 14.0N & 101.0W & & 70 & Hurricane \\
\hline & 11172 & 14.9 & 102.0 & & 75 & \\
\hline & 12002 & 15.0 & 102.0 & & & \\
\hline \multirow[t]{2}{*}{10/8} & 00002 & 16.0N & 102.0W & & & Hurricane \\
\hline & 02092
06002
12002 & \[
\begin{aligned}
& 17.0 \\
& 18.2
\end{aligned}
\] & \[
\begin{aligned}
& 102.1 \\
& 102.0
\end{aligned}
\] & 940 & 125 & Tropical Storm \\
\hline
\end{tabular}
3.11-4


LOCATION
Tropical Storm

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{|l|}
\hline ORBIT \\
\hline 7604 \\
\hline
\end{tabular} & \(\frac{\text { EGUATOR CROSSIMG }}{94.64}\) & TIME OF EQUATIR CROSSING & AFPROXIMATE PCA & & OFF & MODE & UnIo. \({ }^{\text {a }}\) \\
\hline & & 104716 & 11342 & 111447 & 113416 & 808 & 116 \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

\subsection*{4.0 CENTRAL AND WESTERN PACIFIC AREAS}

\subsection*{4.1 GENERAL}

All of the data on the tropical cyclones occurring in these areas were extracted from the Joint Typhoon Warning Center (JTWC) document.

Storms as identified by the JTWC document are listed (Table 4-1) together with their periods of occurrence and general description of intensity.

In 1976, the number of Western Pacific tropical cyclones remained below the long term average. There were 25 numbered tropical cyclones in the JTWC area of responsibility, all of which progressed to tropical storm or typhoon intensity. Of the 25 storms, 14 attained typhoon intensity, including four super typhoons. The month of March was the only month without a numbered cyclone, while three months (February, March, and December) were without a typhoon (Table 4-2).

The storm season hut an early debut with Typhoon Kathy forming in January. The near eq،atorial trough was firmly established by April and maintained itself throughout most of the remainder of the year. An exception was late September and most of October, when the westerly flow along the equator gave way to easterly trades.

1976 saw a large number of days (53) of multiple-storm situations. As early as May, simultaneous storms were generated when 01 ga and Pamela tracked across the western Pacific causing extensive damage to the Philippines and to Guam. June through September saw six additional two-storm situations and one three-storm situation. Although the season started quickly, the latter part of the season tapered off earlier than normal. For 36 days in September and October, normally a very active period, there were no warnings issued. Not since 1:358, when 30 days passed without a depression, has such a lull in activity occurred during this time of the year. It is interesting io note that twin storms in the northern and southern hemisphere ociu:red during April when Tropical Storm Nancy formed in the Pacific, north of the equator, and TC 19-76 did likewise, south of the equator.

Most of the damage during 1976 was associated with three of the four super typhoons. Damage estimates to public and private property for Panela and Fran combined exceeded one billion dollars. Fran also accounted for 133 dead in Japan. While Pamela was responsible for 10 dead on Truk, the super typhoon miraculously caused only one fatality as it passed over Guam. Therese sank 12 ships, and left 1300 homeless due to heavy rains in southern Japan. During May, Olga caused enhanced monsoonal rains over the Philippines which led to over 200 deaths and thousands homeless. In addition, Typhoon Billie generated great waves which resulted in the drown:no of 41 fishermen and swimmers as the storm passed through the Ryukyu Islands. It was subsequently responsible for 4 deaths in Taipei
and caused millions of dollars of damage to facilities during its passage over northern Taiwan. Although Marie caused no known fatalities, it brought millions of dollars of damage to crops and structures in the Pa?au Islands. In September, Iris sank a Panamanian freighter and killed four as it tracked slowly across the South China Sea.

The only Central Paciric tropical cyclone spawned during 1976 was in the month of September. A disturbance observed on the 20th ultimately developed into Hurricane Kate, and at one time became a threat to the Hawaiian Islands. It later recurved, passing northeast of Hawaii. Kate ended a 24 month absence of tropical cyclone activity in the Central Pacific, being the first hurricane since August 1974. Table 4-3 gives the frequency of storms by month for the Central Pacific.

Ground track plots for all of the western Pacific cyclones are shown in Figures 4-1 through 4-5.

In the following sections, GEOS-3 ground track plots and additional cyclone information are given for the four Pacific area tropical cyclones which appear to have accompanying GEOS altimeter data. These are:

Marie TC-03
01ga TC-05
Pamela TC-06
Louise TC-23

Table 4-1.


Table 4-2. Frequency of Tropical Storms and Typhoons by Month and Year
\begin{tabular}{lccccccccccccc} 
YEAR & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP & OCT & NOV & DEC & TOTAL \\
AVERAGE & 0.4 & 0.1 & 0.4 & 0.5 & 0.8 & 1.3 & 3.0 & 3.9 & 4.1 & 3.3 & 2.7 & 1.1 & 22.0 \\
(1945-57) & & & & & & & & & & & & & \\
1959 & 0 & 1 & 1 & 1 & 0 & 0 & 3 & 6 & 6 & 4 & 2 & 2 & 26 \\
1960 & 0 & 0 & 0 & 1 & 1 & 3 & 3 & 10 & 3 & 4 & 1 & 1 & 27 \\
1961 & 1 & 1 & 1 & 1 & 3 & 2 & 5 & 4 & 6 & 5 & 1 & 1 & 31 \\
1962 & 0 & 1 & 0 & 1 & 2 & 0 & 6 & 7 & 3 & 5 & 3 & 2 & 30 \\
1963 & 0 & 0 & 0 & 1 & 1 & 3 & 4 & 3 & 5 & 5 & 0 & 3 & 25 \\
1964 & 0 & 0 & 0 & 0 & 2 & 2 & 7 & 9 & 7 & 6 & 6 & 1 & 40 \\
1965 & 2 & 2 & 1 & 1 & 2 & 3 & 5 & 6 & 7 & 2 & 2 & 1 & 34 \\
1966 & 0 & 0 & 0 & 1 & 2 & 1 & 5 & 8 & 7 & 3 & 2 & 1 & 30 \\
1967 & 1 & 0 & 2 & 1 & 1 & 1 & 6 & 8 & 7 & 4 & 3 & 1 & 35 \\
1968 & 0 & 0 & 0 & 1 & 1 & 1 & 3 & 8 & 3 & 6 & 4 & 0 & 27 \\
1969 & 1 & 0 & 1 & 1 & 0 & 0 & 3 & 4 & 3 & 3 & 2 & 1 & 19 \\
1970 & 0 & 1 & 0 & 0 & 0 & 2 & 2 & 6 & 4 & 5 & 4 & 0 & 24 \\
1971 & 1 & 0 & 1 & 3 & 4 & 2 & 8 & 4 & 6 & 4 & 2 & 0 & 35 \\
1972 & 1 & 0 & 0 & 0 & 1 & 3 & 6 & 5 & 4 & 5 & 2 & 3 & 30 \\
1973 & 0 & 0 & 0 & 0 & 0 & 0 & 7 & 5 & 2 & 4 & 3 & 0 & 21 \\
1974 & 1 & 0 & 1 & 1 & 1 & 4 & 4 & 5 & 5 & 4 & 4 & 2 & 32 \\
1975 & 1 & 0 & 0 & 0 & 0 & 0 & 2 & 4 & 5 & 5 & 3 & 0 & 20 \\
1976 & 1 & 1 & 0 & 2 & 2 & 2 & 4 & 4 & 5 & 1 & 1 & 2 & 25 \\
\hline AVERAGE & 0.6 & 0.4 & 0.4 & 0.9 & 1.3 & 1.6 & 4.6 & 5.9 & 4.9 & 4.2 & 2.5 & 1.2 & 28.4 \\
\((1959-76)\) & & & & & & & & & & & & &
\end{tabular}

Table 4-3. Frequency of Central Pacific Storms by Month and Year. (Number in parenthesis indicate storms reaching hurricane intensity)
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline & \begin{tabular}{c} 
JAN- \\
JUN
\end{tabular} & JUL & AUG & SEP & OCT & \begin{tabular}{c} 
NOV- \\
DEC
\end{tabular} \\
\hline 1967 & 0 & 0 & 0 & 0 & 1 & 0 \\
1968 & 0 & 0 & 2 & 0 & 0 & 0 \\
1969 & 0 & 0 & 0 & 0 & 0 & 0 \\
1970 & 0 & 0 & 1 & 0 & 0 & 0 \\
1971 & 0 & \(1(1)\) & 1 & 0 & 0 & 0 \\
1972 & 0 & 0 & \(3(1)\) & 1 & 0 & 0 \\
1973 & 0 & \(1(1)\) & 0 & 0 & 0 & 0 \\
1974 & 0 & 0 & \(2(1)\) & 0 & 0 & 0 \\
1975 & 0 & 0 & 0 & 0 & 0 & 0 \\
1976 & 0 & 0 & 0 & \(1(1)\) & 0 & 0 \\
\hline AVERAGE & 0 & \(.2(.2 ;\) & \(.9(.3)\) & \(.2(.2)\) & .1 & 0 \\
\hline
\end{tabular}
4.1-5


Figure 4-1


Figure 4-2


Figure 4-3


Figure 4-4


On the lst of April a tropical disturbance was detected by satellite near 10N, 140E. Synoptic data revealed a weak surface cyclonic circulation with an associated upper level anticyclone. The system drifted slowly southward for the next 2 days. At \(0030 Z\) on the 3rd, a formation alert was issued when synoptic data indicated the system had intensified to 25 kt , and increasing upper level outflow to the north promised good potential for further intensification. At \(0600 Z\) on the 3rd the first warning was issued. Six hours later the system was upgraded to Tropical Storm Marie when synoptic data confirmed aircraft reports of 35 kt winds.

Influenced by a weak steering flow, the storm turned eastward in a counterclockwise loop, and during the evening of the 4th began taking a slow, southerly heading. Tropical Storm Marie intensified, and by 06002 on the 5 th had attained typhoon strength. Twelve hours later the typhoon had acquired a 6 kt movement toward the west-northwest, and for the next 48 hours maintained 65 kt winds. On the evening of the 7th, the typhoon once again began to intensify, as upper tropospheric winds over the Philippine Islands backed, indicating deeper troughing to the west and a more efficient link of the storm's outflow channel with the mid-latitude westerlies. This intensification continued slowly during the subsequent 84 hours at a rate of about \(1 / 2 \mathrm{mb}\) per hour.

At 15002 on the 7th Typhoon Marie passed 40 nm north of Palau with peak gusts of 75 kt and a minimum sea level pressure of 993 mb recorded at Koror. While no deaths or injuries were reported, damage of more than \(\$ 4\) million was incurred on the Palau Islands. Crop destruction was extensive as was damage to buildings and public utilities. As a result, Palau was declared a major disaster area.

By 00007 on the 8th a weakness in the subtropical r1dye appeared near the eastern coast of the Philippines. In response, Marie turned northward and recurved. During the typhoon's western-most position at 21002 on the 10th, the system reached its maximum intensity of 115 kt . The lowest sea-level pressure was 929 mb recorded by aircraft at 2031 Z on the 10 th. Typhoon Marie maintained 115 kt winds for 24 hours as its northeast movement increased to 11 kt . By 1800 z on the 11 th Marie began to weaken while accelerating on a northeast track, closely following the 700 mb flow. Two days later the final warning was issued as Marie became extratropical.

DISTURBANCE: \#3 MARIE
IJATE:
April 3-14, 1976
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Date} & \multirow[b]{2}{*}{Time} & \multicolumn{2}{|c|}{Position} & \multirow[t]{2}{*}{Pressure (MB)} & \multirow[t]{2}{*}{Wind (KTS)} & \multirow[b]{2}{*}{Stage} \\
\hline & & Latitude & Longitude & & & \\
\hline 4/3 & \[
\begin{aligned}
& 0600 z \\
& 12002 \\
& 18002
\end{aligned}
\] & \[
\begin{aligned}
& 8.2 N \\
& 8.1 \\
& 8.2
\end{aligned}
\] & \[
\begin{aligned}
& 140.4 E \\
& 140.7 \\
& 140.9
\end{aligned}
\] & & \[
\begin{aligned}
& 30 \\
& 35 \\
& 40
\end{aligned}
\] & Tropical Depression Tropical Storm \\
\hline 4/4 & \[
\begin{aligned}
& 0000 Z \\
& 0600 Z \\
& 1200 Z \\
& 1800 Z
\end{aligned}
\] & \[
\begin{aligned}
& 8.3 \mathrm{~N} \\
& 8.6 \\
& 8.3 \\
& 7.7
\end{aligned}
\] & \[
\begin{aligned}
& 141.0 E \\
& 140.7 \\
& 140.0 \\
& 139.8
\end{aligned}
\] & & \[
\begin{aligned}
& 40 \\
& 45 \\
& 50 \\
& 55
\end{aligned}
\] & Tropical Storm \\
\hline 4/5 & \[
\begin{array}{|l}
0000 Z \\
0600 Z \\
1200 Z \\
1800 Z
\end{array}
\] & \[
\begin{aligned}
& 7.5 \mathrm{~N} \\
& 7.4 \\
& 7.3 \\
& 7.2
\end{aligned}
\] & \[
\begin{aligned}
& 139.6 \mathrm{E} \\
& 139.4 \\
& 139.2 \\
& 138.8
\end{aligned}
\] & & \[
\begin{aligned}
& 60 \\
& 65 \\
& 65 \\
& 65
\end{aligned}
\] & Tropical Storm Typhoon \\
\hline 4/6 & \[
\begin{aligned}
& 00002 \\
& 06002 \\
& 12002 \\
& 18002
\end{aligned}
\] & \[
\begin{aligned}
& 7.4 \mathrm{~N} \\
& 7.8 \\
& 8.0 \\
& 8.2
\end{aligned}
\] & \[
\begin{aligned}
& 138.2 E \\
& 137.7 \\
& 137.1 \\
& 136.5
\end{aligned}
\] & & \[
\begin{aligned}
& 65 \\
& 65 \\
& 65 \\
& 65
\end{aligned}
\] & Typhoon \\
\hline 4/7 & \[
\begin{aligned}
& 0000 Z \\
& 06002 \\
& 12002 \\
& 18002
\end{aligned}
\] & \[
\begin{aligned}
& 8.2 \mathrm{~N} \\
& 8.3 \\
& 8.3 \\
& 8.3
\end{aligned}
\] & \[
\begin{aligned}
& 136.1 \mathrm{E} \\
& 135.6 \\
& 134.9 \\
& 134.2
\end{aligned}
\] & & \[
\begin{aligned}
& 65 \\
& 65 \\
& 70 \\
& 75
\end{aligned}
\] & Typhoon \\
\hline 4/8 & \[
\begin{aligned}
& 00002 \\
& 06002 \\
& 12002 \\
& 18002
\end{aligned}
\] & \[
\begin{aligned}
& 8.5 \mathrm{~N} \\
& 8.7 \\
& 8.9 \\
& 9.2
\end{aligned}
\] & \[
\begin{aligned}
& 133.3 E \\
& 132.6 \\
& 132.0 \\
& 131.5
\end{aligned}
\] & & \[
\begin{aligned}
& 80 \\
& 80 \\
& 85 \\
& 85
\end{aligned}
\] & Typhoon \\
\hline 4/9 & \[
\begin{aligned}
& 00002 \\
& 06002 \\
& 12002 \\
& 18002
\end{aligned}
\] & \[
\begin{aligned}
& 9.7 \mathrm{~N} \\
& 10.4 \\
& 11.1 \\
& 11.7
\end{aligned}
\] & \[
\begin{aligned}
& 131.2 \mathrm{E} \\
& 131.0 \\
& 130.5 \\
& 129.9
\end{aligned}
\] & & \[
\begin{array}{r}
90 \\
95 \\
100 \\
100
\end{array}
\] & Typhoon \\
\hline 4/10 & \[
\begin{aligned}
& 00002 \\
& 06002 \\
& 12002 \\
& 18002
\end{aligned}
\] & \[
\begin{aligned}
& 12.4 \mathrm{~N} \\
& 13.1 \\
& 13.8 \\
& 14.4
\end{aligned}
\] & \[
\begin{aligned}
& 129.4 \mathrm{E} \\
& 129.1 \\
& 128.8 \\
& 128.7
\end{aligned}
\] & & \[
\begin{aligned}
& 105 \\
& 105 \\
& 110 \\
& 115
\end{aligned}
\] & Typhoon \\
\hline
\end{tabular}
4.2-2

DISTURBANCE: \#3 MARIE (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Date} & \multirow[b]{2}{*}{Time} & \multicolumn{2}{|c|}{Position} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Pressure } \\
& \text { (MB) }
\end{aligned}
\]} & \multirow[t]{2}{*}{Wind (KTS)} & \multirow[b]{2}{*}{Stage} \\
\hline & & Latitude & Longitude & & & \\
\hline 4/11 & \[
\begin{aligned}
& 00002 \\
& 06002 \\
& 12002 \\
& 18002
\end{aligned}
\] & \[
\begin{aligned}
& 15.2 \mathrm{~N} \\
& 16.0 \\
& 16.9 \\
& 17.9
\end{aligned}
\] & \[
\begin{aligned}
& 128.8 \mathrm{E} \\
& 129.0 \\
& 129.4 \\
& 130.0
\end{aligned}
\] & & \[
\begin{aligned}
& 115 \\
& 115 \\
& 115 \\
& 110
\end{aligned}
\] & Typhoon \\
\hline 4/12 & \[
\begin{aligned}
& 0000 z \\
& 06002 \\
& 12002 \\
& 1800 Z
\end{aligned}
\] & \[
\begin{aligned}
& 18.8 \mathrm{~N} \\
& 19.8 \\
& 21.0 \\
& 22.1
\end{aligned}
\] & \[
\begin{aligned}
& 130.7 \mathrm{E} \\
& 131.5 \\
& 132.4 \\
& 133.3
\end{aligned}
\] & & \[
\begin{array}{r}
105 \\
100 \\
90 \\
80
\end{array}
\] & Typhoon \\
\hline 4/13 & \[
\begin{aligned}
& 0000 z \\
& 0600 Z \\
& 12002
\end{aligned}
\] & \[
\begin{aligned}
& 23.1 \mathrm{~N} \\
& 24.0 \\
& 25.0
\end{aligned}
\] & \[
\begin{aligned}
& 134.3 \mathrm{E} \\
& 135.3 \\
& 136.3
\end{aligned}
\] & & \[
\begin{aligned}
& 70 \\
& 60 \\
& 50
\end{aligned}
\] & Tropical Storm \\
\hline 4/14 & 00002 & 28.2N* & 139.7E* & & & Extratropical \\
\hline
\end{tabular}
* Position estimated from best track map.


Figure 4-6

location Tropical Storm
\begin{tabular}{ccc} 
& \multicolumn{2}{c}{ Tropical Storm } \\
TIME \\
\(\frac{\text { LATITUDE }}{00002}\) & \(\frac{8.3 N}{12002}\) \\
\(\frac{1802}{18002}\) & \(\frac{8.6}{2.3}\) & \(\frac{-141.0 E}{140.7}\) \\
\hline- & \(\frac{7.7}{7.5}\) & \(\frac{140.0}{139.8}\) \\
\hline & - & -
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNIQ. \(1 /\) \\
\hline 5099 & 168.57 & 091915 & 09242 & No & & & \\
\hline 5100 & 143.24 & 110102 & 11032 & No & & & \\
\hline 5101 & 117.92 & 124249 & 12452 & No & & & \\
\hline 5106 & -08.68 & 211144 & 22042 & 215437 & 220925 & 802 & 375 \\
\hline 5107 & -34.01 & 225331 & 23427 & No & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Typhoon 0lga originated within a very active trough near 10 N and between 130 and 155E. As early as May 4, several surface circulations were evident throughout this zone. By the 12 th, a center analyzed near \(10 \mathrm{~N}, 140 \mathrm{E}\) showed indications that it would be the dominant circulation. and the first warning was issued at 06002 on the 12 th. From the onset, Olga was a unique system, having diffuse characteristics which it maintained throughout its life. One such trait was the lack of vertical stacking, observed when comparing satellite and aircraft positions. The low level circulation was often ill defined, and on several occasions nultiple circulations could be identified.

Originally, 0lga was tracked by satellite as a tropical disturbance moving toward the southwest, following the center of the upper level anti cyclone. After 12002 on the 12 th a more climatological track toward the west-northwest was observed, but at half the speed normal for this time of year. This movement, along the southern edge of the subtropical ridge, persisted through the afternoon of the 13th when 01 ga was upgraded to a of a second cirrilation that night satellite data indicated the presence 14 th the origina center had to the east of the storm center. By the consolidated arond this second center. and the convective energy had ceeded toward the west-northwest whil ithe relocated system then protropical storm intensity for the while it slowly intensified, and attained to a short wave trough in the westerlies and On the l6th 01 ga responded However, on the 17 th the storm resumed and moved toward the north. short wave progressed rapidly toward the its west-northwest heading as the satellite data indicated 0lga was enterings. It was at this point that environment provided by a 200 was entering unfavorable upper level shearing throughout the remainder of 01ga's life

On the 18th 0lga began to slow its forward movement in response to long wave trough moving off the east coast of China. At this point it was expected that the storm would recurve ahead of the trough, but instead, unfavorable upper attained typhoon intensity. After the 20th 01ga completed its loop and toward the west at 6 kt , continuing completing the loop the storm tracked at 03302 and 19472 on the 20th, of 44 mb (from 978 to 934 mb ), there was a drop in the central pressure deepening, 01 ga made landfall on the east 2.7 mb per hour. With this rapid approximately 0000 Z on the 21 st with east side of Luzon near 16.5 N at

After landfall the small next 24 hours Olga's center core of righ winds subsided quickly. For the coast of Luzon passing near Bayler Bay with the southwest along the east oast of Luzon passing near Bayler Bay with winds of 45 kt at storm center.

Seeking the path of least resistance, 0lga tracked through the Luzon lowlands during the next 48 hours exiting the island through Lingayen Gulf on the 24 th. During its slow journey across Luzon, at 2 to 4 kt , 01ga enhanced the southwest monsoon over southern Luzon, bringing rains in excess of 50 inches at Cubi Point and perhaps higher at other areas. The resulting floods contributed to over 200 deaths and thousands of homeless. For the next 24 hours 0lga tracked toward the northwest through the Gulf reintensifying to 40 kt . On the 25 th , the low level circulation separated from the hard core convection and tracked toward the northeast at an accel.erated rate. Olga dissipated to the west of Okinawa on the 27 th as it was absorbed into a subtropical disturbance west of the island.

DISTURBANCE: \#5 OLGA
DATE: May 12-27, 1976
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Date} & \multirow[b]{2}{*}{Time} & \multicolumn{2}{|c|}{Position} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Pressure } \\
& \text { (MB) }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Wind } \\
& \text { (KTS' }
\end{aligned}
\]} & \multirow[b]{2}{*}{Stage} \\
\hline & & Latitude & Longitude & & & \\
\hline 5/12 & \[
\begin{aligned}
& 06002 \\
& 12002 \\
& 18002
\end{aligned}
\] & \[
\begin{aligned}
& 10.5 \mathrm{~N} \\
& 10.7 \\
& 10.9
\end{aligned}
\] & \[
\begin{aligned}
& 136.2 E \\
& 135.4 \\
& 134.9
\end{aligned}
\] & & \[
\begin{aligned}
& 25 \\
& 30 \\
& 30
\end{aligned}
\] & Tropical Depression \\
\hline 5/13 & \[
\begin{aligned}
& 00002 \\
& 06002 \\
& 12002 \\
& 18002
\end{aligned}
\] & \[
\begin{aligned}
& 11.2 \mathrm{~N} \\
& 11.4 \\
& 11.5 \\
& 11.7
\end{aligned}
\] & \[
\begin{aligned}
& 134.3 E \\
& 133.9 \\
& 133.5 \\
& 133.0
\end{aligned}
\] & & \[
\begin{aligned}
& 30 \\
& 35 \\
& 40 \\
& 40
\end{aligned}
\] & Tropical Depression Tropical Storm \\
\hline 5/14 & \[
\begin{aligned}
& 0000 Z \\
& 06002 \\
& 12002 \\
& 18002
\end{aligned}
\] & \[
\begin{aligned}
& 12.0 \mathrm{~N} \\
& 12.2 \\
& 12.5 \\
& 10.4
\end{aligned}
\] & \[
\begin{aligned}
& 132.5 \mathrm{E} \\
& 132.0 \\
& 131.4 \\
& 134.1
\end{aligned}
\] & & \[
\begin{aligned}
& 35 \\
& 35 \\
& 30 \\
& 30
\end{aligned}
\] & Tropical Storm \\
\hline 5/15 & \[
\begin{aligned}
& 0000 Z \\
& 0600 Z \\
& 12002 \\
& 18002
\end{aligned}
\] & \[
\begin{aligned}
& 10.5 \mathrm{~N} \\
& 10.7 \\
& 11.0 \\
& 11.3
\end{aligned}
\] & \[
\begin{aligned}
& 133.3 \mathrm{E} \\
& 132.6 \\
& 131.9 \\
& 131.4
\end{aligned}
\] & & \[
\begin{aligned}
& 35 \\
& 35 \\
& 40 \\
& 45
\end{aligned}
\] & Tropical Storm \\
\hline 5/16 & \[
\begin{aligned}
& 0000 z \\
& 06002 \\
& 12002 \\
& 1800 z
\end{aligned}
\] & \[
\begin{aligned}
& 11.7 \mathrm{~N} \\
& 12.1 \\
& 12.6 \\
& 13.3
\end{aligned}
\] & \[
\begin{aligned}
& 130.8 \mathrm{E} \\
& 130.3 \\
& 129.9 \\
& 129.6
\end{aligned}
\] & & \[
\begin{aligned}
& 50 \\
& 50 \\
& 50 \\
& 50
\end{aligned}
\] & Tropical Storm \\
\hline 5/17 & \[
\left\{\begin{array}{l}
0000 Z \\
0600 Z \\
1200 Z \\
1800 Z
\end{array}\right.
\] & \[
\begin{aligned}
& 13.9 \mathrm{~N} \\
& 14.3 \\
& 14.6 \\
& 14.8
\end{aligned}
\] & \[
\begin{aligned}
& 129.2 \mathrm{E} \\
& 128.4 \\
& 127.5 \\
& 126.7
\end{aligned}
\] & & \[
\begin{aligned}
& 50 \\
& 45 \\
& 45 \\
& 45
\end{aligned}
\] & Tropical Storm \\
\hline 5/18 & \[
\begin{aligned}
& 0000 Z \\
& 06002 \\
& 12002 \\
& 1800 Z
\end{aligned}
\] & \[
\begin{aligned}
& 14.9 \mathrm{~N} \\
& 15.0 \\
& 15.2 \\
& 15.5
\end{aligned}
\] & \[
\begin{aligned}
& 126.1 \mathrm{IE} \\
& 125.6 \\
& 125.4 \\
& 125.2
\end{aligned}
\] & & \[
\begin{aligned}
& 45 \\
& 50 \\
& 50 \\
& 50
\end{aligned}
\] & Tropical Storm \\
\hline 5/19 & \[
\begin{aligned}
& 00002 \\
& 06002 \\
& 12002 \\
& 1800 Z
\end{aligned}
\] & \[
\begin{aligned}
& 15.8 \mathrm{~N} \\
& 15.5 \\
& 15.5 \\
& 15.7
\end{aligned}
\] & \[
\begin{aligned}
& 124.7 \mathrm{E} \\
& 124.4 \\
& 124.7 \\
& 124.8
\end{aligned}
\] & & \[
\begin{aligned}
& 50 \\
& 50 \\
& 55 \\
& 55
\end{aligned}
\] & Tropical Storm \\
\hline
\end{tabular}
4.3-3
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Date} & \multirow[b]{2}{*}{Time} & \multicolumn{2}{|c|}{Position} & \multirow[t]{2}{*}{Pressure (MB)} & \multirow[t]{2}{*}{Wind (KTS)} & \multirow[b]{2}{*}{Stage} \\
\hline & & Latitude & L.ongitude & & & \\
\hline 5/20 & \[
\begin{aligned}
& 00002 \\
& 06002 \\
& 12002 \\
& 18002
\end{aligned}
\] & \[
\begin{aligned}
& 16.1 \mathrm{~N} \\
& 16.3 \\
& 16.5 \\
& 16.5
\end{aligned}
\] & \[
\begin{aligned}
& 124.5 \mathrm{E} \\
& 123.9 \\
& 123.3 \\
& 122.7
\end{aligned}
\] & & \[
\begin{aligned}
& 60 \\
& 65 \\
& 70 \\
& 85
\end{aligned}
\] & Typhoon \\
\hline 5/21 & \[
\begin{aligned}
& 00002 \\
& 06002 \\
& 12002 \\
& 1002
\end{aligned}
\] & \[
\begin{aligned}
& 16.5 \mathrm{~N} \\
& 16.4 \\
& 16.3 \\
& 16.2
\end{aligned}
\] & \[
\begin{aligned}
& 122.1 \mathrm{E} \\
& 121.7 \\
& 121.4 \\
& 121.2
\end{aligned}
\] & & \[
\begin{array}{r}
100 \\
50 \\
45 \\
40
\end{array}
\] & Tropical Storm \\
\hline 5/22 & \[
\begin{aligned}
& 00002 \\
& 06002 \\
& 12002 \\
& 18002
\end{aligned}
\] & \[
\begin{aligned}
& 16.0 \mathrm{~N} \\
& 15.9 \\
& 15.9 \\
& 15.8
\end{aligned}
\] & \[
\begin{aligned}
& 121.1 \mathrm{E} \\
& 121.0 \\
& 120.9 \\
& 120.8
\end{aligned}
\] & & \[
\begin{aligned}
& 35 \\
& 35 \\
& 35 \\
& 35
\end{aligned}
\] & Tropical Storm \\
\hline 5/23 & \[
\begin{aligned}
& 0000 z \\
& 06002 \\
& 12002 \\
& 1800 Z
\end{aligned}
\] & \[
\begin{aligned}
& 15.8 \mathrm{~N} \\
& 15.8 \\
& 15.8 \\
& 15.9
\end{aligned}
\] & \[
\begin{aligned}
& 120.6 \mathrm{E} \\
& 120.5 \\
& 120.4 \\
& 120.3
\end{aligned}
\] & & \[
\begin{aligned}
& 35 \\
& 35 \\
& 35 \\
& 35
\end{aligned}
\] & Tropical Storm \\
\hline 5/24 & \[
\begin{aligned}
& 00002 \\
& 06002 \\
& 12002 \\
& 18002
\end{aligned}
\] & \[
\begin{aligned}
& 16.1 \mathrm{~N} \\
& 16.5 \\
& 16.8 \\
& 17.2
\end{aligned}
\] & \[
\begin{aligned}
& 120.2 \mathrm{E} \\
& 120.0 \\
& 119.8 \\
& 119.6
\end{aligned}
\] & & \[
\begin{aligned}
& 40 \\
& 40 \\
& 40 \\
& 40
\end{aligned}
\] & Tropical Storm \\
\hline 5/25 & \[
\begin{aligned}
& 00002 \\
& 06002 \\
& 12002 \\
& 1800 z
\end{aligned}
\] & \[
\begin{aligned}
& 17.5 \mathrm{~N} \\
& 17.9 \\
& 18.4 \\
& 18.8
\end{aligned}
\] & \[
\begin{aligned}
& 119.4 E \\
& 119.2 \\
& 119.2 \\
& 120.6
\end{aligned}
\] & & \[
\begin{aligned}
& 40 \\
& 40 \\
& 40 \\
& 35
\end{aligned}
\] & Tropical Storm \\
\hline 5/26 & \[
\begin{aligned}
& 0000 Z \\
& 0600 Z
\end{aligned}
\] & \[
\begin{aligned}
& 20.1 \mathrm{~N} \\
& 22.0
\end{aligned}
\] & \[
\begin{aligned}
& 121.1 \mathrm{E} \\
& 122.8
\end{aligned}
\] & & \[
\begin{aligned}
& 35 \\
& 30
\end{aligned}
\] & Tropical Storm Tropical Depression \\
\hline 5/27 & 00002 & 27.2N* & 128.5E* & & 20 & Dissipating \\
\hline
\end{tabular}

\footnotetext{
* Position estimated from best track map 4.3-4
}


Figure 4-7

location
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{TIME} & \multicolumn{2}{|l|}{Tropical Storm} \\
\hline & LATITUDE & LONGITUDE \\
\hline 00002 & 10.6 N & 133.3E \\
\hline 05002 & 10.7 & 132.6 \\
\hline 12002 & 11.0 & 131.9 \\
\hline 18002 & 11.3 & 131.4 \\
\hline \(\underline{24002}\) & 11.7 & 130.8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNIO.:. \\
\hline 5675 & -17.47 & 022648 & 03177 & No & & & \\
\hline 5676 & -42.80 & 040833 & 04572 & \(N_{0}\) & & & \\
\hline 5677 & -68.12 & 055022 & 06352 & \(N_{0}\) & & & \\
\hline 5682 & 165.26 & 141917 & 14262 & \(N_{0}\) & & & \\
\hline 5683 & 139.93 & 160104 & 16042 & \(N_{0}\) & 17452 & 173720 & \\
\hline 5684 & 114.61 & 174251 & 174649 & 802 & 527 \\
\hline
\end{tabular}


LOCATION Tropical Storm
\begin{tabular}{|c|c|c|}
\hline TIME & LATITUDE & LONGITUDE \\
\hline 00002 & 14.9 N & 126.15 \\
\hline 06002 & 15.0 & 127.6 \\
\hline 12002 & 15.2 & 125.4 \\
\hline 18002 & 15.5 & 125.2 \\
\hline 24002 & 15.8 & 124.7 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNIQ. \\
\hline 5719 & -51.68 & 050517 & 05512 & No & & & \\
\hline 5720 & -77.01 & 064704 & 07302 & 073404 & 074712 & 802 & 115 \\
\hline 5725 & 156.37 & 151559 & 15252 & No & & & \\
\hline 5726 & 131.05 & & 165746 & 17032 & \(N o\) & & \\
\hline & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}


LOCATION
Tropical Storm
\begin{tabular}{|c|c|c|}
\hline & ropical & \\
\hline TIME & LATITUDE & LONGITUDE \\
\hline 30002 & 15.8 N & 124.7E \\
\hline 06002 & 15.5 & 124.4 \\
\hline 12002 & 15.5 & 124.7 \\
\hline 18002 & 15.7 & 124.8 \\
\hline 24002 & 16.1 & 124.5 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNIQ.: \\
\hline 5733 & -46.20 & 045015 & 05372 & No & & & \\
\hline 5734 & -71.53 & 063202 & & 07162 & 071851 & 073300 & 802 & 128 \\
\hline 5740 & 136.53 & 164244 & 182431 & & 18282 & No & & \\
\hline 5741 & & & & & 181817 & 182758 & 802 & 137 \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}


TYPHOON OLGA - 5/21/76 (0000Z - 2400Z)

location
Tropical Storm
\begin{tabular}{|c|c|c|}
\hline TIME & LATITUDE & LONGITUDE \\
\hline 00002 & 16.5 N & 122.1E \\
\hline 06002 & 16.4 & 121.7 \\
\hline 12002 & 16.3 & 121.4 \\
\hline 18002 & 16.2 & 121.2 \\
\hline \(\underline{24002}\) & 16.0 & 121.1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNID.:. \\
\hline 5761 & -35.25 & 042012 & 05082 & No & & & \\
\hline 5762 & -60.57 & 060159 & 06472 & 064812 & 070523 & 802 & 153 \\
\hline 5763 & -85.89 & 174346 & 08262 & No & & & \\
\hline 5768 & 147.48 & 161241 & 175428 & 17202 & No & & \\
\hline 5769 & 122.16 & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

location
Tropical Storm
\begin{tabular}{lll}
\(\frac{\text { TIME }}{}\) & \(\frac{\text { LATITUDE }}{16.0 N}\) & \(\frac{\text { LONGITUDE }}{121.1}\) \\
\(\frac{0000 Z}{1202}\) & \(\frac{15.9}{1200 Z}\) & \(\frac{15.9}{1800 Z}\) \\
\(\frac{120.9}{2400 Z}\) & \(\frac{15.8}{15.8}\) & \(\frac{120.8}{120.6}\) \\
\hline & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNIQ. \\
\hline 5775 & -29.77 & 040511 & \(0454 Z\) & No & & & \\
\hline 5776 & -55.10 & 054658 & 06332 & No & & \\
\hline 5777 & -80.42 & 072845 & \(0812 Z\) & No & & \\
\hline 5782 & 152.96 & 155740 & 16062 & No & & & \\
\hline 5783 & 127.63 & 192114 & 17452 & No & & & \\
\hline 5783,84 & 102.31 & 1923 & 191359 & 192537 & 802 & 174 \\
\hline
\end{tabular}

TYPHOON OLGA - 5/23/76 (0000Z - 2400Z)


LOCATION
Tropical Storm

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNID. \\
\hline 5790 & -49.62 & 053156 & 06192 & No & & & \\
\hline 5791 & -74.94 & 071343 & 07582 & 080037 & 081420 & 802 & 180 \\
\hline 5797 & 133.11 & 172425 & 17302 & No & & & \\
\hline 5798 & 107.79 & 190612 & 19092 & 185936 & 190930 & 802 & 188 \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}


LOCATION Tropical Storm
\begin{tabular}{|c|c|c|}
\hline TIME & LATITUDE & LONGITUDE \\
\hline 00002 & 16.1 N & 120.2E \\
\hline 06002 & 16.5 & 120.0 \\
\hline 12007 & 16.8 & 119.8 \\
\hline 18002 & 17.2 & 119.6 \\
\hline 24002 & 17.5 & 119.4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNID.:1 \\
\hline 5804 & -44.13 & 051654 & \(0605 Z\) & No & & & \\
\hline 5865 & -69.46 & 065841 & 07432 & 074531 & 080006 & 802 & 193 \\
\hline 5811 & 138.60 & 170923 & 185110 & 18542 & No & & \\
\hline 5812 & 113.27 & & & 184555 & 185446 & 802 & 200 \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

\section*{TYPHOON OLGA - 5/25/76 (0000Z - 2400Z)}


LOCATION
Tropical Storm
LATITUDE LONGITUDE
\begin{tabular}{lll}
\(\overline{0000} \mathrm{Z}\) & \(\frac{17.5 \mathrm{~N}}{17}\) & \\
\hline\(\frac{17.9}{0600 \mathrm{Z}}\) & \(\frac{119.4 \mathrm{E}}{1200 \mathrm{Z}}\) & \(\frac{119.2}{18.4}\) \\
\(\frac{1800 \mathrm{Z}}{2400 \mathrm{Z}}\) & \(\frac{18.8}{120.2}\) \\
\hline & & \(\frac{120.6}{121.1}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE \\
\hline 5818 & -38.65 & 050152 & O5NIQ.: \\
\hline 5819 & -63.98 & 064339 & \(0729 Z\) & No & & \\
\hline 5825 & 144.07 & 165422 & 17022 & No & & \\
\hline 5826 & 118.75 & 183609 & 18412 & 183305 & 183823 & 802 \\
\hline & & & & & 212 \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}


LOCATION
Tropical Depression
\begin{tabular}{lll}
\(\frac{\text { TIME }}{00002}\) & \(\frac{\text { LATITUDE }}{20.1 N}\) & \(\frac{\text { LONGITUDE }}{1.1 .1 E}\) \\
- & - & - \\
- & - & - \\
- & - & - \\
- & - & -
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNIQ. \\
\hline 5832 & -33.18 & 044651 & \(0534 Z\) & No & & & \\
\hline 5833 & -58.50 & 062838 & 07132 & No & & & \\
\hline 5834 & -83.82 & 081025 & 163920 & 08502 & 085739 & 090314 & 802 \\
\hline 5839 & 149.55 & 182107 & 16482 & No & & & \\
\hline 5840 & 124.23 & & 18262 & No & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Pamela, the fourth typhoon of 1976, was also the first super typhoon of the season. Destined to become one of the more destructive storms of history, Pamela was first detected on the morning of May 13 as a tropical disturbance near the eastern edge of the near equatorial trough approximately 230 nm north of Truk. For the next 24 hours the disturbance was difficult to track with the sparse synoptic data available, however, satellite pictures indicated a general southward movement. On the morning of the 14th the disturbance began to move to the southwest and at 0600 Z it was upgraded to TD 06 . By that evening the depression was moving west at 5 to 7 kt . At 0339 Z on the 14th aircraft indicated surface winds near 40 kt and a sea level pressure of 998 mb ; at \(0600 \bar{z}\) TD 06 was upgraded to Tropical Storm Pamela. Shortly thereafter Pamela began to move to the soutr at 9 to 10 kt , intensifying to 45 kt by 18002 .

The next morning satellite data showed that Pamela was moving toward the south-southeast. Truk synoptic data at 1800 ? indicated a sea level pressure of 998.6 mb , a 7.1 mb fall over the previous 24 hours. By 2200 z Truk had a surface pressure of 397.9 mb and northeasterly winds of 30 kt . At this time Pamela was orecast to trace a counter-clockwise loop around Truk. At 03482 on the 15 th an aircraft fixed Pamela 75 nm southeast of Truk and proceeded on a northeast track gathering -aripheral information. Later that afternoon reports indicated destructive winds at Satawan Atoll. The aircraft was diverted to the region of the atoll where the crew observed an extensive area of 55 to 65 kt flight level winds with surface winds estimated as high as 100 kt . At 0740 Z on the 16 th warning number 09 was amended to upgrade the storm \(\pm 0\) Typhoon Pamela. Pamela at this time was a ;mall but intense typnoon. The maximum winds were located on the south side of the 150 nm diameter central dense overcast.

During the next 36 hours Pamela continued to intensify as it moved erratically at 3 to 6 kt , turning northwestward on the morning of the 17 th . From the morning of the 16 th until the morning of the 18th, Satawan Atoll continued to be buffeted with southvesterly and southerly surface winds of 50 to 55 kt . Damage was widespread or the tiny atoll, hut no deaths were reported.

By the morning of the 18th Pamela had accelerated to 7 kt , passing within 50 nm of Truk. A minimum sea level pressure of 993.4 mb was recorded at 04002 and a peak wind of 49 kt was observed an hour later. At \(0327 Z\) aircraft found maximum surface winds of 85 kt , a minimumi pressure of 951 mb and a circular eye 10 nm in diameter. From the afternoon of the i7th to the afternoon of the 18th Truk recorded nearly 11 inches of rain which initiated mud slides killing 10 persons. Massive damage was inflicted
on crops.

Pamela's erratic movements can be attributed to the influence of the Tropical Upper Tropospheric Trough (TUTT). On the 13th the TUTT began to establish itself north of the disturbance. Through the evening of the 15th the TUTT moved steadily south-southwestward, applying pressure to the upper anticyclone above Pamela. This pressure accounted for Pamela's southward and wastward movement, and for the cyclone's slow intensification. By the morning of the 16th the TUTT had receded northward relieving the southward pressure, enhancing outflow and allowing the tropical storm to intensify. This release of pressure would have allowed the storm to move towarc a climatological west-northwest tracking, however, by the 15th, an incuced mid-tropospheric high pressure cell between Pamela and Typhoon 01ga (in the Philippine Sea) had intensified, building eastward and forcing Pamela toward the east. By early morning on the 17th 01 ga had moved considerably to the west, the ridge had relaxed, and Pamela swung north and then northwest completing the loop around Truk.

From 06002 on the 18th to 06002 on the 19th Typhoon Pamela moved toward the northwest at an average speed of 9 kt , intensifying at a rate of 10 kt each 6 hours. At 12002 on the 19th Pamela reached its super typhoon intensity of 130 kt with gusts to 160 kt , which it maintained for 18 hours. At 21122 on the 19th reconnaissance aircraft reported the minimum measured sea level pressure at 921 mb while observing concentric eye wall clouds with diameters of 10 and 20 nm . By the afternoon of the 20th, an eastward moving short-wave trough had created a weakness in the midtropospheric subtropical ridge north of Pamela. This, coupled with an elongated high pressure cell east of the typhoon, forced Pamela to acquire the north-northwestward track which would bring it over Guam.

A possible threat to the island had been identified as early as the 16th, and all forecasts subsequently issued indicated that Pamela was expected to pass within 100 nm of Guam. At 0450 Z on the 19th the Commander Naval Forces Marianas (COMNAVMAR) set Typhoon Condition IIi for Guam. At \(2330 Z\) on the 18th COMNAVMAR set Typhoon Condition II and at 23302 on the 19th Condition I was set.
ru: ing the next 24 hours northeasterly winds on Guam slowly intensified as Pamela approached the island. At 18002 on the 20th the National Weather Service (NWS) at Taguac reported 73 kt winds at the 3000 ft level while surface winds were only 30 kt . At 03152 on the 21st reconnaissance aircraft from the 54th Weather Reconnaissance Squadron, Andersen AFB, Guam fixed the typhoon 30 nm southeast of the island. Less than 90 minutes later the northwestern edge of the eye was over the southeast coast of Guam.

The large, relatively calm eye, some 20 nm i, diameter, required up to 3 hours to cross the ceriter of the island. Both Andersen AFB and the NWS at Taguac continually experienced winds exceeding 50 kt as the eye passed south of these stations. Most installations which had wind indicators lost their anemometers prior to the peak winds. The maximum observed wind gust was 138 kt reported by the NWS Taguac at 09462. The \({ }_{5}\) minimum recorded surface pressure was 931.7 mb at NAS Brewer Field, some 5 nm northeast of the center. The lowest pressure of approximately 930 mb
(indicated by aircraft and land stations) supports estimated peak sustained winds of 120 kt with gusts of 145 kt . Pamela's winds gusted as much as 80 kt between peak and lull in a matter of minutes, resulting in extremely large pressure difierences ( \(60-70 \mathrm{lbs}\) per square foot) on windward and leeward sides. Few unreinforced structures were able to withstand the intermittent pressure and wrenching effects. NWS Taguac recorded 33 inches of rain during Pamela's passage, with 27 inches falling in a 24 -hour period.

Although the winds of Pamela were 25 kt weaker than those of Typhoon Karen which flattened the island in November 1976, the slow 7 kt movement rendered Pamela more destructive. The 226 square mile island was buffeted by winds in excess of 100 kt for 6 hours, by winds of typhoon force for 18 hours and by winds exceeding 50 kt for 30 hours. The last warning on Pamela by JTWC was issued at \(2320 Z\) on the 20 th. The alternate JTWC at Yokota \(A B\), Japan assumed all warning responsibilities for Pamela and 01ga during the next 5 days.

All Naval and Air Force units had been given adequate warning and had evacuated most of their ships and aircraft. Despite extensive preparations, damage to civilian and military facilities was severe, exceeding \(\$ 500 \mathrm{million}\). Ten small ships and tugs which had sought refuge in Apra Harbor, were either sunk or ran aground, and numerous other small craft were sunk or damaged. One ship, the U. S. Coast Guard Cutter Basswood, courageously rode out the storm anchored in Apra Harbor where it recorted a peak gust of 120 kt and a minimum sea level pressure of 933.1 mb .

Miraculously, only one death occurred on Guam due"to Pamela's passage. This low loss of life was attributed to the timely and accurate forecasts issued on the storm. A comprehensive account of lessons learned from Pamela is given in the Super Typhoon Pamela After-Action Report, prepared by CINCPAC REP GUAM,'TTPI in August 1976.

After devastating Guam, Pamela continued to maintain its 120 kt intensity for an additional 36 hours, moving northwestward at an average speed of iv kt. Saipan experienced gusts of 55 kt and received 10 inches of rain as the storm passed 120 nm west of the island. As Pamela continued to threaten the northern Mariana Islands, mop-up operations were in full swing on Guam. Although the civilian and military factions were wellorganized and worked closely together, recovery efforts took months.

On the morning of the 23rd Pamela, still packing winds of 115 kt , slowed to 8 kt , and by that evening had passed through, a weakness in the mid-tropospheric subtropical ridge, recurving to the northeast. At 20002 on the 24th, Pameia passed 15 nm to the east of Iwo Jima blanke \%iry the island with 75 kt winds. By 18002 on the 25 th the system had weakenod into a tropical storm. The cooler sea surface temperatures and tremendcי's vertical shear rapidly stripped the storm of its tropical characteristics, and by the afternoon of the 26 th Pamela had become extratropical.

Pamela's 15 day trek took it a distance of 2570 nm during which a total of 52 warnings were issued, 40 of them as a typhoon.


Figure 4-8
4.4-4

DISTURBANCE: \#6 PAMELA
DATE: May 14-27, 1976
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Date} & \multirow[b]{2}{*}{Time} & \multicolumn{2}{|c|}{Position} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Pressure } \\
& (M B)
\end{aligned}
\]} & \multirow[b]{2}{*}{Wind (KTS)} & \multirow[b]{2}{*}{Stage} \\
\hline & & Latitude & Longitude & & & \\
\hline 5/14 & \[
\begin{aligned}
& 06002 \\
& 10002 \\
& 18002
\end{aligned}
\] & \[
\begin{aligned}
& 8.6 \mathrm{~N} \\
& 8.4 \\
& 8.2
\end{aligned}
\] & \[
\begin{aligned}
& 152.8 \mathrm{E} \\
& 152.5 \\
& 152.1
\end{aligned}
\] & 1005.7 . & \[
\begin{aligned}
& 30 \\
& 30 \\
& 30
\end{aligned}
\] & Tropical Depression \\
\hline 5/15 & \[
\begin{aligned}
& 00002 \\
& 06002 \\
& 12002 \\
& 18002
\end{aligned}
\] & \[
\begin{aligned}
& 8.3 \mathrm{~N} \\
& 8.2 \\
& 7.3 \\
& 6.4
\end{aligned}
\] & \[
\begin{aligned}
& 151.6 \mathrm{E} \\
& 150.9 \\
& 150.5 \\
& 150.7
\end{aligned}
\] & 998.6 & \[
\begin{aligned}
& 30 \\
& 35 \\
& 40 \\
& 45
\end{aligned}
\] & Tropical Depression Tropical Storm \\
\hline 5/16 & \[
\begin{aligned}
& 0000 Z \\
& 0600 Z \\
& 1200 Z \\
& 1800 Z
\end{aligned}
\] & \[
\begin{aligned}
& 6.1 N \\
& 6.6 \\
& 6.5 \\
& 6.5
\end{aligned}
\] & \[
\begin{aligned}
& 151.5 \mathrm{E} \\
& 152.4 \\
& 153.0 \\
& 153.4
\end{aligned}
\] & & \[
\begin{aligned}
& 50 \\
& 60 \\
& 65 \\
& 70
\end{aligned}
\] & Tropical Storm Typhoon \\
\hline 5/17 & \[
\begin{aligned}
& 0000 Z \\
& 0600 Z \\
& 1200 z \\
& 1800 Z
\end{aligned}
\] & \[
\begin{aligned}
& 6.8 \mathrm{~N} \\
& 7.1 \\
& 7.3 \\
& 7.6
\end{aligned}
\] & \[
\begin{aligned}
& 153.6 \mathrm{E} \\
& 153.5 \\
& 153.3 \\
& 153.0
\end{aligned}
\] & & \[
\begin{aligned}
& 70 \\
& 70 \\
& 70 \\
& 75
\end{aligned}
\] & Typhoon \\
\hline 5/18 & \[
\begin{aligned}
& 0000 Z \\
& 06002 \\
& 12002 \\
& 18002
\end{aligned}
\] & \[
\begin{aligned}
& \text { 8.1N } \\
& 8.6 \\
& 9.1 \\
& 9.5
\end{aligned}
\] & \[
\begin{aligned}
& 152.4 \mathrm{E} \\
& 153.8 \\
& 150.9 \\
& 149.9
\end{aligned}
\] & & \[
\begin{array}{r}
80 \\
85 \\
95 \\
105
\end{array}
\] & Typhoon \\
\hline 5/19 & \[
\begin{aligned}
& 0000 Z \\
& 0600 Z \\
& 12002 \\
& 1800 Z
\end{aligned}
\] & \[
\begin{gathered}
9.6 \mathrm{~N} \\
9.9 \\
10.2 \\
10.6
\end{gathered}
\] & \[
\begin{aligned}
& 148.9 \mathrm{E} \\
& 158.3 \\
& 147.7 \\
& 147.2
\end{aligned}
\] & & \[
\begin{aligned}
& 115 \\
& 125 \\
& 130 \\
& 130
\end{aligned}
\] & \begin{tabular}{l}
Typhoon \\
Super Typhoon
\end{tabular} \\
\hline 5/20 & \[
\begin{aligned}
& 0000 z \\
& 0600 Z \\
& 12002 \\
& 1800 Z
\end{aligned}
\] & \[
\begin{aligned}
& 11.0 \mathrm{~N} \\
& 11.3 \\
& 11.6 \\
& 12.1
\end{aligned}
\] & \[
\begin{aligned}
& 146.6 \mathrm{E} \\
& 146.2 \\
& 145.9 \\
& 145.7
\end{aligned}
\] & & \[
\begin{aligned}
& 130 \\
& 125 \\
& 125 \\
& 120
\end{aligned}
\] & Super Typhoon Typhoon \\
\hline 5/21 & \[
\begin{aligned}
& 0000 z \\
& 0600 z \\
& 1200 z \\
& 18002
\end{aligned}
\] & \[
\begin{aligned}
& 12.9 \mathrm{~N} \\
& 13.3 \\
& 13.9 \\
& 14.6
\end{aligned}
\] & \[
\begin{aligned}
& 145.4 \mathrm{E} \\
& 144.9 \\
& 144.4 \\
& 144.0
\end{aligned}
\] & & \[
\begin{aligned}
& 120 \\
& 120 \\
& 120 \\
& 120
\end{aligned}
\] & Typhoon \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Date} & \multirow[b]{2}{*}{Time} & \multicolumn{2}{|c|}{Position} & \multirow[t]{2}{*}{Pressure (MB)} & \multirow[t]{2}{*}{Wind (KTS)} & \multirow[b]{2}{*}{Stage} \\
\hline & & Latitude & Longitude & & & \\
\hline 5/22 & \[
\begin{aligned}
& 0000 Z \\
& 0600 Z \\
& 1200 Z \\
& 1800 Z
\end{aligned}
\] & \[
\begin{aligned}
& 15.5 \mathrm{~N} \\
& 16.4 \\
& 17.5 \\
& 18.5
\end{aligned}
\] & \[
\begin{aligned}
& 143.4 \mathrm{E} \\
& 142.7 \\
& 142.0 \\
& 141.3
\end{aligned}
\] & & \[
\begin{aligned}
& 120 \\
& 120 \\
& 120 \\
& 120
\end{aligned}
\] & Typhoon \\
\hline 5/23 & \[
\begin{aligned}
& 00002 \\
& 06002 \\
& 12002 \\
& 18002
\end{aligned}
\] & \[
\begin{aligned}
& 19.3 \mathrm{~N} \\
& 20.0 \\
& 20.7 \\
& 21.4
\end{aligned}
\] & \[
\begin{aligned}
& 140.7 \mathrm{E} \\
& 140.2 \\
& 139.9 \\
& 139.8
\end{aligned}
\] & & \[
\begin{aligned}
& 115 \\
& 115 \\
& 115 \\
& 110
\end{aligned}
\] & Typhoon \\
\hline 5/24 & \[
\begin{aligned}
& 0000 z \\
& 0600 Z \\
& 1200 Z \\
& 1800 z
\end{aligned}
\] & \[
\begin{aligned}
& 22.2 \mathrm{~N} \\
& 22.9 \\
& 23.7 \\
& 24.3
\end{aligned}
\] & \[
\begin{aligned}
& 140.2 \mathrm{E} \\
& 140.6 \\
& 141.0 \\
& 141.4
\end{aligned}
\] & & \[
\begin{array}{r}
110 \\
100 \\
90 \\
80
\end{array}
\] & Typhoon \\
\hline 5/25 & \[
\begin{aligned}
& 0000 z \\
& 06002 \\
& 12002 \\
& 1800 z
\end{aligned}
\] & \[
\begin{aligned}
& 25.0 \mathrm{O} \\
& 25.7 \\
& 26.3 \\
& 27.0
\end{aligned}
\] & \[
\begin{aligned}
& 141.7 E \\
& 142.2 \\
& 142.8 \\
& 143.5
\end{aligned}
\] & & \[
\begin{aligned}
& 75 \\
& 70 \\
& 65 \\
& 60
\end{aligned}
\] & \begin{tabular}{l}
Typhoon \\
Tropical Storm
\end{tabular} \\
\hline 5/26 & \[
\begin{aligned}
& 0000 Z \\
& 0600 Z
\end{aligned}
\] & \[
\begin{aligned}
& 27.8 \mathrm{~N} \\
& 28.4
\end{aligned}
\] & \[
\begin{aligned}
& 144.6 \mathrm{E} \\
& 146.2
\end{aligned}
\] & & \[
\begin{aligned}
& 55 \\
& 50
\end{aligned}
\] & Tropical Storm \\
\hline 5/27 & 0000Z & 32.0N* & 150.0E* & & 35 & Extratropical \\
\hline & & & & & & \\
\hline
\end{tabular}
* Position estimated from best track map.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & LOCAT: Typhoo & & & & & & & & & \\
\hline TIME & LATITUDE & LONGITUDE & ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & & & & \\
\hline 00002 & 12.9N & 145.4 E & 5760 & -9.92 & 023825 & \(\frac{\text { APPROXIMATE PCA }}{03287}\) & ON & OFF & MODE & UNIQ. \({ }^{\text {a }}\) \\
\hline 06002 & 13.3 & 144.9 & 5761 & -35.25 & 042012 & 03282 & No & & & \\
\hline 12007 & 13.9 & 144.4 & 5762 & -60.57 & 060159 & 05062 & No & & & \\
\hline 18037 & 14.6 & 144.0 & 5767 & 172.80 & 143054 & 06462 & 064949 & 070121 & 802 & 153 \\
\hline 24002 & 15.5 & 143.4 & 5768 & 147.48 & 161254 & 14392 & No & & & \\
\hline & & & 5769 & 122.16 & 175428 & 17562 & No & & & \\
\hline
\end{tabular}

\section*{4.5}

SUPER TYPHOON LOUISE
(TC-23)
October 30 - November 7, 1976

Louise, the 14th and final typhoon of the season, was also the most intense of 1976. The disturbance that was to become Louise was first detected by satellite data on the morning of October 27 about 75 nm east of Truk. During the next 3 days the disturbance showed littile intensification as it meandered through the northern Truk District. Late on the 29th the system began moving toward the west, and by the morning of the 30th satellite data indicated that it was intensifying. The first warning was issued at 00002 on the 30th as TD 23.

Reconnaissance aircraft at \(1515 Z\) on the 30 th indicated that the central pressure had fallen to 996 mb , and at 1800 Z the depression was upgraded to Tropical Storm Louise, During the next 36 hours Louise moved west-northwestward at 14 kt , then westward at 11 kt as its winds increased at a rate of 5 kt every 6 hours. At 0311 Z on the lst of November aircraft observed 70 kt flight level winds and found that the central pressure of the storm had fallen to 976 mb . At 0600 Z Louise was upgraded to a typhoon while 100 nm northwest of Ulithi Atoll.

Beginning on the lst, a series of rapidly moving, mid-tropospheric short-wave troughs created a weakness in the subtropical ridge between 125E and 130E. On the afternoon of the 1st Louise began to respond to this weakness by acquiring a northwestward track. Almost simultanenusly, the typhoon commenced more rapid deepening, attaining 105 kt winds jy the morning of the 2nd. From 03112 on the 1st to 03102 on the 2nd reconnaissance aircraft indicated a fail in the central pressure of 43 mb , a rate of 1.8 mb per hour. This deepening was in response to favorable upperlevel outflow channels to the northeast and south. Further deepening to 905 mb had occurred by 14352 on the 2 nd , a fall of 28 mb in 11 hours.

During the early morning of the 3rd Super Typhoon Louise attained its maximum intensity of 140 kt which it maintained for nearly 36 hours. The lowest recorded pressure was 895 mb observed by aircraft at 0830 Z on the 3rd.

From the morning of the 2nd until the afternoon of the 3rd Louise maintained its northwestward track moving at 14 to 16 kt . Then, on the afternoon of the 3 rd, the storm slowed to 6 kt as it recurved around the western periphery of the mid-tropospheric suintropical ridge. By 0000 Z on the 4 th, Louise began to accelerate to 9 kt , moving in a north-northeastward direction and slowly weakening. Louise continued this movement for more than 30 hours as it traversed the broad axis of the subtropical ridge. Late on the afternoon of the 5th the typhoon, which had weakened to 115 kt , began to accelerate on a northeast track.

Frum 00002 on the 4 th until 18002 on the 6 th Louise weakened at the unusually slow rate of 5 kt per 6 hours. This slow weakening resulted from two cond .ions: (1) A broad surface high pressure cell centered over northern Honshu prevented significant equatorward penetration of frontal systems; and (2) The extremely strong jet stream (exceeding 200 kt ) over eastern Japan provided an excellent outflow channel. At 03002 on the 6 th, Minamidaito Jima, 40 nm north-northeast ô̂ Louise, reported east-northeasterly winds of 40 kt and a sea level pressure of 984.8 mb . Two hours later the storm passed 15 nm southeast of ihe island with maximum winds estimated near 95 kt.

By the 7th, cooler sea surface temperatures and very strong vertical shear were taking their toll as Louise moved north of 30 N . Reconnaissance aircraft at \(0359 Z\) on the 7 th indicated that Louise was rapidly losing its tropical character and was becoming extratropical. The Airborne Reconnaissance Weather Officer also observed that the lower half of the wall cloud was "rotating rapidly," a phenomenon sometimes reported when a storm is becoming extratropical.

At 06002 on the 7 th , moving east-northeast at 25 kt , Louise became extratropical. As an extratropical system the remains of Louise moved northward to combine with another surface low. The resulting system had deepened to 947 mb by the 10 th and became one of the most severe extratropical storms of the year, ultimately producing surf in excess of 30 ft in the Hawaiian Islands.

DATE: October 30 - November 7, 1976
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Date} & \multirow[b]{2}{*}{Time} & \multicolumn{2}{|c|}{Position} & \multirow[b]{2}{*}{Pressure (MB)} & \multirow[b]{2}{*}{Wind (KTS)} & \multirow[b]{2}{*}{Stage} \\
\hline & & Latitude & Longitude & & & \\
\hline 10/30 & \[
\begin{aligned}
& 00002 \\
& 06002 \\
& 12002 \\
& 18002
\end{aligned}
\] & \[
\begin{gathered}
10.0 \mathrm{~N} \\
9.8 \\
9.7 \\
9.8
\end{gathered}
\] & \[
\begin{aligned}
& 148.8 \mathrm{E} \\
& 148.2 \\
& 147.3 \\
& 146.1
\end{aligned}
\] & & \[
\begin{aligned}
& 25 \\
& 30 \\
& 30 \\
& 35
\end{aligned}
\] & Tropical Depression Tropical Storm \\
\hline 10/31 & \[
\begin{array}{|l}
00002 \\
06002 \\
1200 z \\
1800 z
\end{array}
\] & \[
\begin{aligned}
& 10.2 \mathrm{~N} \\
& 10.6 \\
& 11.0 \\
& 11.2
\end{aligned}
\] & \[
\begin{aligned}
& 144.8 \mathrm{E} \\
& 143.4 \\
& 142.1 \\
& 141.0
\end{aligned}
\] & & \[
\begin{aligned}
& 40 \\
& 45 \\
& 50 \\
& 55
\end{aligned}
\] & Tropical Storm \\
\hline 11/1 & \[
\begin{aligned}
& 0000 z \\
& 0600 Z \\
& 1200 Z \\
& 1800 z
\end{aligned}
\] & \[
\begin{aligned}
& 11.2 \mathrm{~N} \\
& 11.2 \\
& 11.4 \\
& 11-7
\end{aligned}
\] & \[
\begin{aligned}
& 139.8 \mathrm{E} \\
& 138.6 \\
& 137.3 \\
& 136.1
\end{aligned}
\] & & \[
\begin{aligned}
& 60 \\
& 65 \\
& 75 \\
& 90
\end{aligned}
\] & Tropical Storm Typhoon \\
\hline 11/2 & \[
\begin{aligned}
& 00002 \\
& 06 \mathrm{GOZ} \\
& 12002 \\
& 18002
\end{aligned}
\] & \[
\begin{aligned}
& 12.2 \mathrm{~N} \\
& 12.8 \\
& 13.6 \\
& 14.3
\end{aligned}
\] & \[
\begin{aligned}
& 134.8 \mathrm{E} \\
& 133.6 \\
& 132.2 \\
& 130.8
\end{aligned}
\] & & \[
\begin{aligned}
& 105 \\
& 120 \\
& 135 \\
& 140
\end{aligned}
\] & \begin{tabular}{l}
Typhoon \\
Super Typhoon
\end{tabular} \\
\hline 11/3 & \[
\begin{aligned}
& 00002 \\
& 06002 \\
& 12007 \\
& 18002
\end{aligned}
\] & \[
\begin{aligned}
& 14.9 \mathrm{~N} \\
& 15.7 \\
& 16.3 \\
& 16.8
\end{aligned}
\] & \[
\begin{aligned}
& 129.5 \mathrm{E} \\
& 128.2 \\
& 127.4 \\
& 126.9
\end{aligned}
\] & & \[
\begin{aligned}
& 140 \\
& 140 \\
& 140 \\
& 140
\end{aligned}
\] & Super Typhoon \\
\hline 11/4 & \[
\begin{aligned}
& 0000 z \\
& 0600 z \\
& 1200 z \\
& 1800 z
\end{aligned}
\] & \[
\begin{aligned}
& 17.3 \mathrm{~N} \\
& 18.1 \\
& 19.0 \\
& 19.8
\end{aligned}
\] & \[
\begin{aligned}
& 126.7 E \\
& 126.8 \\
& 127.0 \\
& 127.2
\end{aligned}
\] & & \[
\begin{aligned}
& 140 \\
& 135 \\
& 130 \\
& 125
\end{aligned}
\] & \begin{tabular}{l}
Super Typhoon \\
Typhoon
\end{tabular} \\
\hline 11/5 & \[
\begin{aligned}
& 00002 \\
& 06002 \\
& 12002 \\
& 18002
\end{aligned}
\] & \[
\begin{aligned}
& 20.6 \mathrm{~N} \\
& 21.5 \\
& 22.5 \\
& 23.5
\end{aligned}
\] & \[
\begin{aligned}
& 127.4 \mathrm{E} \\
& 127.6 \\
& 128.2 \\
& 129.1
\end{aligned}
\] & & \[
\begin{aligned}
& 120 \\
& 115 \\
& 110 \\
& 105
\end{aligned}
\] & Typhoon \\
\hline 11/6 & \[
\begin{aligned}
& 00002 \\
& 06002 \\
& 12002 \\
& 18002
\end{aligned}
\] & \[
\begin{aligned}
& 24.6 \mathrm{~N} \\
& 25.9 \\
& 27.4 \\
& 28.9
\end{aligned}
\] & \[
\begin{aligned}
& 130.3 E \\
& 131.7 \\
& 133.3 \\
& 135.2
\end{aligned}
\] & & \[
\begin{array}{r}
100 \\
95 \\
90 \\
85
\end{array}
\] & Typhoon \\
\hline
\end{tabular}
4.5-3
\begin{tabular}{|l|l|c|c|c|c|l|}
\hline \multirow{2}{*}{ Date } & \multirow{2}{*}{ Time } & \multicolumn{2}{|c|}{ Position } & \multirow{2}{*}{\begin{tabular}{c} 
Pressure \\
(MB)
\end{tabular}} & \begin{tabular}{c} 
Wind \\
(KTS)
\end{tabular} & \multicolumn{1}{c|}{ Stage } \\
\hline & Latitude & Longitude & & \\
\hline \(11 / 7\) & 00002 & 30.0 N & 137.3 E & & 70 & Typhoon \\
& 06002 & 30.6 & 139.8 & & 55 & \begin{tabular}{l} 
Tropical Storm \\
Extratropical
\end{tabular} \\
& 12002 & 31.0 & 142.6 & & 45 & \\
& & & & & & \\
\hline
\end{tabular}


Figure 4-9
4.5-5

SUPER TYPHOON LOUISE - 10/30/76 (00002-2400Z)


Trepical Depression
\begin{tabular}{|c|c|c|}
\hline TIME & LATITUDE & LONGITUDE \\
\hline 60002 & 10.0 N & 148.8E \\
\hline 06002 & 9.8 & 148.2 \\
\hline 12002 & 9.7 & 147.3 \\
\hline 18002 & 9.8 & 146.1 \\
\hline 24002 & 10.2 & 144.8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQYATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & OFF & MODE & UNIQ.: \\
\hline 8056 & 168.71 & 093321 & 09382 & No & & & \\
\hline 8057 & 143.39 & 111507 & 11172 & No & & & \\
\hline 8063 & -8.54 & 212550 & 22152 & 222110 & 222330 & 808 & 178 \\
\hline 8064 & -33.86 & & 230736 & 23552 & No & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

\subsection*{5.0 NORTH INDIAN OCEAN AREA}

\subsection*{5.1 GENERAL}

All of the data presented in this section on the cyclones occurring in the North Indian Ocean area were extracted from the Report."

During 1976, there were five tropical cyclones in the North Indian Ocean: three in the Bay of Bengal and two in the Arabian Sea. Table 5-1 presents the tropical cyclone distribution by month of activity during preceding five years. Except for the absence total of 28 warnings were 1976 was climatologically normal. which exceeded 55 kt intensity. acquired JTWC area of responsibilic 25-76 occurred in the newly from 62E to the coast of Africa.

The five tropical cyclones occurring in this area, their ground tracks together with their periods of occurrence are shown in Figure 5-1. Other pertinent data are listed in Table 5-2.

Results of the comparison of the cyclone information and the GEOS-3 schedule information indicates only one possible intersection as even that possibility does not appear very likely. Information as available, however, is given in the next section.

\subsection*{5.2 TC 20-76}

Tropical Cyclone 20-76 was the first cyclone in the Indian Ocean for the 1976 season. Maximum winds attained by this storn of the storm's deve one data pass was on 4/29, during the infarcy track maps and satellite track maps.

Table 5-1. Frequency of North Indian Ocean Cyclones by Month and Year
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline YEAR* & \(J\) & \(F\) & \(M\) & \(A\) & \(M\) & \(J\) & \(J\) & \(A\) & \(S\) & 0 & \(N\) & \(D\) & TOTAL \\
\hline 1971 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 2 \\
1972 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 2 & 0 & 1 & 0 & 4 \\
1973 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 1 & 4 \\
1974 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
1975 & 1 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 1 & 2 & 0 & 6 \\
1976 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 5 \\
\hline & & & & & & & & & & & & & \\
\hline AVG** & 0.1 & \(* * *\) & 0.1 & 0.3 & 0.7 & 0.7 & 0.6 & 0.4 & 0.5 & 1.0 & 1.1 & 0.5 & 5.7 \\
\hline
\end{tabular}
* 1971-1974 represent Bay of Bengal cyclones only
** 1877-1960 average (including Arabian Sea) Mariners Worldwide Climatic Guide to Tropical Storms at Sea (H. L. Crutcher and R. G. Quayle)
*** Less than 0.05 per month.
5.1-2


Figure 5-1

Table 5-2. 1976 Tropical Cyclones, Indian Ocean Area
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & CYCLONE & TY̌PE & NAME & & CALENDAR DAYS OF & \[
\begin{aligned}
& \text { MAX } \\
& \text { SFC }
\end{aligned}
\] & \({ }_{\text {MIN }}\) & NO. OF & RNINGS & DISTANCE \\
\hline & CrCone & T.YPE & NAME & PRD OF WRNG & WARNING & WIND & SLP & TOTAL & AS TY & TRAVELED \\
\hline & & TC & 20-76 & 29 APR-02 MAY & 4 & 50 & & & & \\
\hline & & TC & 22-76 & 02 JUN-03 JUN & 2 & 40 & ---- & 7
3 & -- & 403 \\
\hline & & TC & 23-76 & 10 SEP-11 SEP & 2 & 40 & ---- & 3
5 & -- & 163 \\
\hline & & TC & 25-76 & 15 OCT-17 OCT & 3 & 50 & ---- & 5
6 & -- & 324 \\
\hline & & & & & & 55 & --- & 7 & -- & 372
511 \\
\hline & & & & 1976 TOTALS & 15* & & & 28 & & \\
\hline \(\cdots\) & \multicolumn{10}{|l|}{* OVERLAPPING dAYS included only once in sum} \\
\hline
\end{tabular}

DISTURBANCE: TC 20-76
DATE: April 29 - May 2, 1976



LOCATION
Tropical Storm
\begin{tabular}{ccc}
\(\frac{\text { TIME }}{18002}\) & \(\frac{\text { LATITUDE }}{13.1 \mathrm{~N}}\) & \(\frac{\text { LONGITUDE }}{94.2 \mathrm{E}}\) \\
- & - & - \\
- & - & - \\
- & - & - \\
- & - \\
- & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ORBIT & EQUATOR CROSSING & TIME OF EQUATOR CROSSING & APPROXIMATE PCA & ON & UFF & MODE & UNIQ.: \\
\hline 5450 & -79.80 & 044525 & \(0532 Z\) & No & & & \\
\hline 5451 & -105.12 & 062713 & 07112 & 071123 & 072850 & 802 & 240 \\
\hline 5457 & 102.93 & 163755 & 16422 & No & & & \\
\hline 5458 & 77.61 & & & 18222 & No & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

REFERENCES

Fleet Weather Central/Joint Typhoon Warning Center, 1976 Annual Typhoon Report, 1976.

Gunther, Emil B., "Eastern North Pacific Tropical Cyclones of 1976," Monthly Weather Review, Volume 105, April 1977, pp. 508-522.
Herbert, Paul J., and Staff, National Hurricane Center," Annual Data and Verification Tabulation/Atlantic Tropical Cyclones 1976," NOAA Technical Memorandum NWS NHC 4, May 1977.

Lawrence, Miles B., "Atlantic Hurricane Season of 1976," Monthly Weather Review, Volume 105, April 1977, pp. 497-507.


\footnotetext{
*For sale by the National Technical Information Service, Springfield, Virginia 22151
}```

