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I. INTRODUCTION

The work performed by the agthor while at the Langley Research
Center (LRC) during the period June 1, 1977 through May 31, 1978 on
an IPA assigment agreement provided the necessary continuity béfween
the work carried out under the grant NSG 47-004-114 and the present
grant NSG 1546. Several ldeas evolved or were stimulated as a result
of author's collaboration with the-technical monitors Robert Hayduk and
Robert Thomson of LRC.

A multitude,of problems common to the development of a successful
nonlinear analysis code prevented ACTION.from being able to solve even
the simplest of the nonlinear ptoblems during the early stages. Most
of these problems having been overcome ACTION's performance looked cau-
tiously optimistie. Hence, the need to validate the ACTICN computer
code on an airecraft-like structure followed by its finalization for pub-

lic release were recognized.



IT. TECHNICAL PROGRESS

The technical efforts during the past year were concentrated in
several different areas. These are discussed below. Each group of
paragraphs provides a background, a brief statement of the problem,
approach to solution, the progress made and is some cases recommenda-
tions for future work.

1. Structuring of the ACTION Code to Handle Relatively Large Scale

Problems
In order to make ACTION suitable to handle large scale problems
involving finite element models with stringer, frame and membrane ele-
ments, it was necessary to undertake the following tasks.

a. Implementation of Analytic Gradients for the Membrame Element

The calculation of gradients of the strain energy of deformgtion of
the membrane element was hitherto being performed by the use of central
differences in ACTION. This is nearly twice as more expensive as when
the gradients are calculated analytically. This is especially crucial .
when a model contains a large number of membrane elements. 1t was thus
imperat;ve that gradients of strain energy of deformation of the mem-
brane elements be calculated analytically in ACTION. Accordingly, on
lines similar to those used for the frame element explicit expressions
were devgloped for the]calculation of the gradients of the strain energy
both in the elastic and the inelastic range. In the inelastic range the
computations were simplified'by the use of the total deformation theo?y
[1}. 1If incrémental flow theory of plasticity is to be used then the
definition of the poteﬁtial function must be altered to allow the use of

| .
certain minimum principles in plasticity {2]. This novel formulation
using the direct minimization approach appeérs like a topic suitable fér

Master's thesis and hence Mr. Lin T. Duong who has been working as a



graduate research assistant on the project indicated his interest in
pursuing this line of research towards his Master of Science degree.
Whether such a formulation will be computationally more efficient or
will result in improved responsé prediction remains to be seen.

b. Quasi~Newton Minimizétion Algorithms that Exploit Sparsity

0f the two minimization algdfithms available in ACTION, Powell's
conjugate algorithm can handle problems involving thousands of variables
but its convérgente rate is at best linear. Hence, it is unlikely that
it can be competitive with second order algorithms like the Fletcher’s
algorithms . (BFGS) [3] whose convergence rate is at least superlinear.
Fletéhe?'s method is especially suited for soclution of transient pro-
blems in steps since it has a3 reasonably good approximation to the
variableg and the inverse Hessian of the potential surface. The number
of minimizations required for convergence to a solution after the first
time step is thus a very small fraction of the total number of degrees
of freedom. The drawback of Fletcher's algorithm is however it's stor-
age requirements - NX(N+1)/2 for a N degree of freedom proélem. This
is because Fletchér's algorithm approximates the Hessian inverse rather
than the Hessian itself whigh is usually banded and very sparse. Thus,
if an extremely large scale nonlinear transient problem is to be solved
using energy minimization technique it is imperative to use a variable
metric algorithm which updates the Hessian rather than its inverse and -
thereby expioits and maintains its sparsity in its march. to the minimum:

It appeared at one point ‘that for solﬁing problems with as few as 325 de-

grees of freedom using Fletcher's method the available core on the CDC



system may be insufficient.* Accordingly, work was initiated to im-
plement into ACTION a minimization algorithm that exploits sparsity.
Such an aigorithm based on the work of Schubert [4] has been implemented
ints one of VPI & SU's version of ACTION. The algorithm, however,
remains to be validated. A survey of the state-of-the-art of minimiza-
tion techniques for extremely large scaie problems, which was conducted

in this connection, may be found in réference [5].

2, Drop Test of the Navajo Fuselage Section:

VPI & SU was entrusted with the task of development of a model for
nonlinear crash dynamic analysis of the Navajo fuselage section using
the ACTION code. The response characteristics of such a model was to be
compared with comparable models developed using DYCAST [6] and KRASH
[7]. Such a comparison was subsequently reported in reference [8].

An ACTION model of the Navajo fuselage section was developed using
the corresponding DYCAST model (an initial cruder model different from
the one reported in [8]) as its basis. This model shown in Fig. 1 has
105 nodes, 209 members (36 stringers, 77 frame elements and 96 mem~
braneg), 71 lumped masses and a total of about 336 degrees of freedom.
This is the largest model ever attempted using ACTION.

Although the model could be run using the Powell's conjugate
gradient minimization-algorithm (MIN5) which requires very little stor-
age, it was believed, as explained before, that in going from one step

to the next this algorithm does not have the same advantages of the

*An ACTION version which could handle problems with up to about 475
degrees of freedom using the Fletcher's method was put together at VPI
& SU. This was possible because of the almost unlimited storage avail-
able on the IBM system. Although some preliminary runs were made using
this version the task of simulation of large scale problems like the
Navajo drop test had to be relegated to the CDC computer at LRC because
of extremely tight funding situation at VPI & SU. ’
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second order algorithm of Fletcher (MIN7). The latter has a good ap-
proximation to the inverse Hessian in addition to a good initial guess
for the wvariables at hand at the end of each time step.

To run this model using the more efficient Fletcher's minimization
algorithm in ACTION it was necessary to overlay the ACTION code on
NASA's CDC system using the segloade?. The assiétance of Ms. Barbara
Durling of NASA Langley in accomplishing this taék is greatly appreciated.

Of simulation interest was the occupant chest motion and its ver-
tical acceleration at the pelvis location. The occupant was modeled by
a single lumped mass while the seat was modeled by a set of four non-
linear stringer eiements whose stress—strain behavior was based on
previous, independent static crash tests on similar seats. This infor-
mation was provided by LRC. Although, the ground plane capability
(terrain model) in ACTION could have been exe;cised for this problem, in
the interesat of simpiicity, the aircraft substructure was assumed to bhe
in contact with the.gfound plane at nodes (86} and (91) while a velocity
of 330 inches/sec. was imparted to the entire model. Thus one would
expect correlation only in the initial phases of the response.

Figures 2 through 5 provide the correlation between the analysis
and test results. For additional model and simulation details it is
suggested that reference [8] be consulted. 'fhis reference also provides
a comparison of the perfoimance of the energy minimization technique
vis-a—-vis thé so—called hybrid technique (KRASH) and another technique

which utilizes the pseudo force technique (DYCAST).
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3. Implementstion of the Frame Element with Cross—Sectional Flexi-

bility into DYCAST

VPI & SU was entrusted with the task of aiding Greenman Engineers
in implementing the frame element with cross—-sectional flexibility into
their program DYCAST. The frame element with cross—sectionai flexibility
was developed by VPI & SU in the ACTION code enviromment [9] which uses
the direct minimization approach. Implementation of this element re-
quires the development of a tangent stiffness matrix for such an ele-
ment. This task was given a very low priority dictated by the conclu-
sions of the study reported in reference [9] and other experiences in
simulating the crash response of the Navajo section.

Report {9] concludes that the frame elements in both ACTION and
DYCAS? which do not currently allow for cross—-sectional deformations are
adequate in predicting gross response parameters even though the struc-
tures in question may undergo severe localized cross—-sectional deforma-
tions. By gross parameters is meant total energies, load-deflection
response, etc. The report goes on to conelude that purely from the
peoint of view of crashworthiness where the trauma measﬁres are deter-
mined more by gross parameters it seems highly unlikely that they will
be significantly influenced by highly localized cross—sectional deforma-
tions. The inclusion of such effects can only make the already expen~—
sive nonlinear analysis only more so without any significant pay-off by
way of improvement in response. Considering the cost comparisons of
KRASH, ACTION & DYCAST in reference [8] vis-a-vis the quality of their
respective response predictions this would warrant a careful assessment
of the necessity of incluaing such a costly element into either ACTION

or DYCAST. In any event if such am implementation is to be carried out
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into DYCAST at some future date, VPI & SU's cooperation in this matter
can always be counted upon. The formulation details outlined in ref-

erence [9} will provide the required basis for this purpose.

4. Documentation and Wrap-up of the ACTION Code

a. ACTION Theory Document

The old ACTION theory ‘document was thoroughly revised to reflect
the current formulation basis in ACTION (especially the part pertaining
to the caleculation of analytic gradients and the new minimization algo-
rithms). A copy of the completed- rough draft oflthis document will be
mailed to LSC within the next few éays. Upon receipt of comments from
LRC thg document will be revised accordingly and the final wversion of
this document will be completed under NASA's Master Agreement arrange-
ment with VPI & SU (NAS1i-15080 Task #10).

b. . ACTION User's Guide

The existing ACTION user's manual was revised to be consistent with
the final ACTION version to be released through COSMIC. Additional
features included analytic gradients, selection of Newmark-Beta para-
meters, automatic calculation of lumped masses, a new solid rectangular
frame cross-section, etc. Several ‘outdated, unvalidated ACTION features
have been removed from the present version as called for in the grant
proposal. The revised ACTION versiom, however, remains to be thoroughly
tested. This testing will be performed again under the Master Agreement
arrangement coﬁtract NAS1~15080 Task #10. A copy of the completed rough
draft of this document will be mailed to LRC within the next few days

for their comments to be implemented in the final version.
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¢, Publication of VPI&SU Reports and Papers in Referred Journals,
Progress in this area was extremely satisfactory. A report [2] en-

titled "An Investigation into the Effects of Cross-Sectional Flexibility

on Responsé" VPI-E-78-30 was éompleted and four copies of the same were
mailed to LRC (see Appendix A). This study summarizes the findings

of the importance of cross—sectional flexibility on gross response and
attempts to identify reasons for the discrepancy between apalytical

and experimental predictions. A technical note entitled "On the Impor-

tance of Cross—Sectional Flexibility on Gross Response" has been ac-

cepted for publication by the Journal of Computers and Structures (see
Appendix B).

A synoptic summarizing the AC?ION formulation and validation en-

titled “Nonlinear Transient Analysis via Energy Minimization" has been
accepted for publication by the Journal of American Institute of Aero~
nautics and Astronautics. The full length paper by the same title has
been accepted as a backup NTIS document number N79-22819 for the synop-
tic. The same full length was previously released as a VPI & SU report
number VPI-E-79-10 entitled "Nonlinear Transient Analysis of Aircraft-
like Structures = Tﬁeory and Validation" (see Appendix C). The nec-
essary number of copies were mailed to LRC. ’

A paper entitled "Energy Minimization versus Pseudo Force Technique

for Nonlinear Structural Amalysis' has been accepted for publication

by the Journal of Computers and Structures (see Appendix D). This paper
compares the efficiency of the minimization technique (ACTION} vis-a-vis
the pseudo force technique (DYCAST) for the solution of nonlinear pro-
blems. It also explores the feasibility of exéending the minimization
technique for the solution of extremely large scale nonlineaxr problems

competitively.

tpape~



5. Simplified Modeling Techmniques

This is ‘the only task which received the least attention because of
lack of time and also because of lack of suitable personnel who could be
assigned to tackle this problem. Some nominal progress was, however,
made. A literature survey on the topic revealed that ideas simila; to
those proposed in the proposal have been explored in much greater detail
by Kawai aﬁd his associates [10]. Their work suggests that ideas like
the ones proposed in the proposal should be worthwhile to pursue es-
pecially if codes like DYCAST or ACTION can ever hope to be cost effec-

tive with codes like KRASH [8].
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III. OPERATIONAL SET-UP

The work reported in this report was carried out by the principal
investigator, Dr. M. P. Kamat, with the aid of Mr. Linh T. Duong, a
graduate research assistant in the departmént of Fngineering Science and
Mechanics of VPI & SU. Because of lack of students with the ;ppropriate
background and the time required to familiarize them with the ACTION
code no attempt was made to hire other graduate research assistants.
Instead the principal investigator undertook a larger share of the
responsibility inorder that he may meet the grant obligations more

fully.
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IV. CONCLUSIONS

The work performed under this grant achieved several cbjeci:ives.
It successfully demonstrated ACTION's capability to model and analyze
aircraft for nonlinear crash response at a cost which is comparable
with that of other similar analytical tools like DYCAST. It was estab-
lished that computer programs like ACTION & DYCAST in their present
status are quite a&equate in predicting gross response parameters in-
spite of the fact that structures in question may undergo severs local-
ized cross-sectional deformations. The theoretical and user's documen—
tation for the ACTION code were nearly finalized for public release. In
addition to a few technical reports several papers were published in
referred Journals. State—of—theTart survey conducted indicates minimi-
zation techniques to be quite suitable for the solution of large scale
nonlinear problems. A similar suréey also indicates that simplified
modeling techniques are mot only viable but should be pursued if pro-
grams like ACTION or DYCAST are to be cost effective with programs like

KRASH.
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Abstract

A simplified frame element (3D-beam) formulation which accounts
for the beam cross-sectional flexibility is presented. The effectiveness
of such a formulation as opposed to modeling the frame element us;ng
membranes and plate bending elements is investigated on the post-buckling
response of a beam column with a thin-walled channel cross-section.
The fidelity of the simulation with and withéut such effects is determined
on the basis of a comparison with available experimental results and
other independent simulations. The study concludes that in view of the
excellent correlation between experimental and mathematical predictions
using simulators like ACTION and O-PLANE-MG which do not account for
cross-sectional flexibility, a beam element with cross-sectional
flexibility will have little.pay-off, especially so for the response

parameters of importance. in crashworthiness.
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1. Introduction

Static and dynamic load tests on tubular and angular frame structures
conducted by the Dynamic Loads Branch of the NASA Langley Research Center
reveal that significant cross-sectional warping and distortions occur
near the joints [1]. It is believed that the lack of correlation between
experimental and theoretical predictions may be attributed, at least in
part, to cross-sectional flexibility during deformation hitherto not
.accounted for by most mathematical simulators of such nonlinear phenomena.
The present investigation was thus initiated with the objective of
implementing such a capability into existing programs for nonlinear
analysis of structures.

In the context of the cross-sectional flexibility the word "beam" is
perhaps a misnomer since it is implicit in its usage that its response is
predominantly in the direction of its longest dimension which is supposedly
an order of magnitude larger than its other cross-sectional dimensiéns.
Hence when cross-sectional flexibility effects are significant it would
be more appropriaté to refer to the structure as either a three dimensional
solid or in the case of thin-walled open or closed sections as an
assemblage of flat or curved plates. In other words, cross-s;ctional
flexibility in the case of thin-walled structures would be most naturally
accounted for by idealizing the member or structure with mgmbranes and
plate ben&ing finiée elements., However, the degrees of freedpm of the
resulting model would in most cases, be prohibitive for a general nonlinear

analysis. Hence, some other cheaper formulation which perhaps sacrifices

some of the rigor of the formulation would be desirable.



A thin-walled open section frame (3D-beam) element formulation which
abandons the assumptions of the elementary beam theory and accounts for
the flexibility of its cross-section in an approximate manner was undertaken.
The objective was to develop a model which is simple and in terms of its
size well below that which would result from building up the frame element
using membrane.and plate bending elements. Consequently, certain simplifying
assumptions were incorporated in its development, The development was
initially carried out in the context of the ACTION simulator. This
simulator uses the minimization of the total potentiai energy for

nonlinear analysis [2]. .



2. Formulation

a. Assumptions: Restricted to beams with thin-walled cross-sections,

the formulation focusses on distortions in the plane of the cross-sectioﬁs
only since warping, at least of the unrestrained type is usually accounted )
for in most conventional frame element developmént. This.is true of the
ACTION simulator as well.

The development consists in abandoning the assumption of the
elementary beam theory about cross-sections remaining rigid during
deformation. Co-ordinates of a select few ieference points on the cross-
section are treated as additional degrees of freedom with a prescribed
co-ordinate variation in between reference points. In essence then this
is tantamount to treating the co-ordinates of the integration or
quadrature points used for the evaluation of the strain energy of
deformation of the frame element as additional degrees of freedom of the
model. Since the problem now becomes extremely nonlinear it is reasonable
to adopt a linearization procedure of the following type. At the beginming
of each loaé increment elementary beam theory is used to predict overall
deformations of the frame element assuming a rigid cross-section. At the
end of the increment the load is.maintained constant and the additional
deformations of the elements of the cross-section are determined by
treating the elements as prestressed plate elements with a known initial
eccentricity. The shape of the cross-section is determined by minimizing
the corresponding potential energy of additional deformations which consists

of the 'strain energy of additional deformations and the potential of the



prestress. Using this new cross-section the process is then repeated for
the next load increment. Iteration at constant. load could be employed to

obtain improved results.

b. Formulation Details: Consider the IE cross-section shown in

Figure 1. This cross-section has five flange pieces and two web pieces.
This element as implemented in the ‘ACTION Simulator has the option of
specifying zero thicknesses for all but the two web pieces. This enables
the generation of cross-sections of many well-known shapes. Each of the
seven pieces is treated like a flat plate element extending between the
two end nodes of the beam or frame element. A total of seven reference
points(:)through(:)as shown in Figure 1 are chosen on the cross-section
at each end of the beam element and half-way between the two nodes.
Incidently, these locations of reference points are coincident with the
Lobatto integration points (at the ends of the intervals of integratiomns)
used for each of the seven plate elements. The stress-strain history at
all of these points is thus available without additional calculation
effort or storage. The cross-section is allowed to deform relative to
the fixed point @ in the cross-section. At each of the reference
points (:), (:), (:), (:) and (:) only one independent displacement
transverse to the respective plate elements , , E, and is
allowed and at each of the reference points (:) and (:) only one independent
displacement transverse to the respective plate elements and is
allowed. The other position co-ordinate of each of the reference points

is determined on the basis of the additional deformations of the plate

elements being inextensional,



For the IE section of Figure 1 the potential energy of addi_tional-lf

deformations, 7w, is thus given by [3]
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The deformation shapes Wy and’ v are chosen as in the finite element
formulation namely as pelynomials with the values of the independent
co-ordinates at the six reference points as coefficients of the

interpolants. Thus for a typical element shown in Figure 2-a

6
W, = E wiij(g,n) i=1, 2, 4, 6, 7 (2-a)
j=1
6 . ’
and v, = E viij (E,p) 1 =3 and 5 (2-b)
i=1



where Nj‘s are the interpolating polynomials given below
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Dy = 34(1-vo) (%)

with v = 0.5, ETév is the average tangent modulus for the ith plate
element. This is taken to be the average of the tangent moduli.at all
the nine Lobatto integration points for the element. This approximation

enables an explicit evaluation of the integrals in the expression for
Ty Thus typically for the element shown in Figure 2-a
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For i=3 or 5,w in Equation (4) is replaced by v. No such explicit
expression is however possibile for Ty because of the occurrence of
stress resultant terms N°_., N° . and N° . within the integrands.

: xxi’ Txyi xzi

™, is therefore evaluated numerically using Lobatto quadratures. For
three points in each direction Lobatto quadratures reduces to the

well-known Simpson's rule.

c. Simplification of the model: The model described previously

may be simplified by reducing the number of reference points per plate
element from six to four. For a typical element shown in Figure 2-b

equations (2} are then replaced by

4
wi.= E wij Nj (E,n) . i=1, 2, 4, 6, ?
j=1
) and
. . - . . -
v, = E Vﬁj Nj (g,p) i=3and 5
j=1

where Nj's are the interpolating polynomials given below

=
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=
1l

% (1+8) (1+n)

d. Limitations and Deficiencies of the Model: Firstly, like in

most other simulators, the frame element material model in ACTION is ’

strictly uniaxial, i.e. interaction between shear and normal stresses is

ignored. Shear stresses are thus evaluated by using the shear flow
theory of thin-walled structures assuming linear elastic behavior.

-7
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Secondly, with changes in cross-section the shift -of the position
of the shear center should be accounted for. The transverse forces VY
and VZ which are assumed to pass through the shear center of the original
rigid cross-section will then give rise to additional twisting moments.
Because tﬁe calculation of the shear center for a thin-walled open
cross-section of arbitrary shape is highly complicated in the interest
of simplicity and efficiency this is avoided.

Thirdly, fpr the assumed deformation patterns of the flanges and
webs it is not possible to maintain the right angle bends between the
flanges and webs at every point along the length. The_deformapion patterns
imply that the plate elements are gffectively hinged at some points along .
intersections. To obtain any sort of slope continuity it will be
necessary to assume higher order interpolation functions in the n direction.
This defeats the original objective of this model. Hence again in éhe

interest of simplicity such a deficiency is tolerated.



3. Results and Conclusions

a. Discussion of Results:

For validating the proposed model the tests conducted by McIvor et al
on thin-walled open section beam columns and reported in reference [4]
seemed appropriate. One such test involved the post-buckling response
of a beam-column with a thin-walled channel cross-section as shown in
Figure 3. To prevent failure by direct compression the column was tested
at an inclination of 5° from the vertical with both ends of the column
being ciamped. A column under these conditions is extremely imperfection
sensitive. Hence McIvor suggests a§suming an additional 1° offset for
the mathematical model to simulate the inherent imperfections of the
actual column tes£ed. The post-buckling response of this column as
observed in the experiment and as reported in [4] shows extremely severe
cross-sectional deformations and is presumably a good problem for validation
of the new beam element proposed herein.

Before validating the proposed new beam element it was necessa£y to
assess the importance of the magnitude of the degradation of response
without allowing for such effects. This effo?t was initizlly undertaken.
The results of this study are shown in Figures 3 and 4. Surprisingly
enough the responses predicted by'both ACTION and O-PLANE-MG [5] correlate
extremely well with the experimental prediction. It would appear then
that gross responses like load-deflection are not likely to be affected by
localized cross—éectional deformations, irrespective,of their severity,.
especially when the beam material models in both ACTION and O-PLANE-MG

permit simulation of plastic hinges. This leads very naturally to the

-9-



investigation of the original problem, namely the NASA angular frame
wherein large discrepancies between the mathematical and experimental
predictions were responsible for initiating the study of the effects of
beam cross-sectional flexibility.

Before we get into a discussion of this study however, it may be
appropriate to discuss the results of the attempts of using the new beam
model in predicting the post-buckling response of the beam-column of
Figure 3. These attempts were not very sucéessfui. The simplified
beam model with j=4 (see Eqs. 2-d § 2—e)‘failed to produce any significant
cross-sectional deformations and had to be abandoned in place of the
more refined model with j=6 (see Eqs. 2-a § 2-b). The new beam elements
were employed only between nodes @-@,. @-@, @—, —@
and @ - @ . This model although instrumental in predicting rather
severe distortions of the cross-section troubles in converging to an
accurate solution for the prescribed load steps,presumably because of
an increased degree of nonlinearity,prevented completion of this study.
Drastic reductions in load steps may overcome this problem but only so
at a very high computational cost. Limited results of this study are
tabulated in Table 1. To say the least, it is disturbing to see that
initially the cﬁlumn has a tendency to stiffen ieading to a higher
axial load carfying capability. This does not seem impossible however,
because i? is quite likely that the plastic section modulus of the
slightly deformed beam cross-section may be higher than that of the
undeformed cross-section. With increasing cross-sectional deformations
however, the trend is likely to be reversed and this does appear to be

characteristic of the results of Table 1. The cross-sectional shapes

-10-



-at different locations along the length of the beam aré illustrated
qualitatively in Figure 5. While in some places these shﬁﬁes appea;‘to

be intuitively reasénable in other‘places they do pdt. This may be the
result of the simplicity of the model along with its under}ying assumptions.
Undoubtedly these results warrant further improvement and an investigation
into the accuracy of the results generated using the new beam élement.

Next, as regards NASA's angular frame the lack of correlation
between mathematical simulation and experimental results, if any, af least
in the 1ipear range must be attributed to either (i) lack Bf inappropriate
boundary conditions that is to say boundary conditions of the mathematicél
model different from those in the experiment; (ii) assumptions regarding
rigidity of the bulkheads too conservative; (iii) insufficiently refined
model or inappropriate discretization; (iv) lack of inclusion of some
important response features like shear deformatién.

The %esults of a study entailing the sensitiviéy of response {(due
to'a 10 1b total load) to variations in modeling parameters are outlined
in Table 2. The maximum deflection of the model of class 4 in Table 2
agrees closely with that of the experimental modql; Shear deformation
effects which are likely to be important for this frame were not included
in this gnalysig, however. With the inclusion of such éffects the mathématigal
model will undoubtedly be even more flexible than the experimental model.

It would appear that the correlation between the mathematical and
experimental models -can be substantially improved by using the class 4
model of Table 2 or refinements thereof and allowing for shear flexibility.
The frame in question is very much like a vierendel truss wherein the

shear forces give rise to secondary bending.

-11-



The results of Table 2 suggest that the discrepancy between experi-

mental and mathematical simulations as in Figure 6 are most likely .the result

of inappropriate modeling of the angular frame and not the ?esult of
some highly localized cross-sectional deformations as was anticipated.
b. Conclusions:

It is clear from this study that computer programs like ACTION and
O-PLANE-MG in their present status are'quite adequate in predicting
gross response parameters in spite of the fact that the structures in
question may undergo severe localized cross—se;tional-deformations.

By gross parameters we mean total energies, load-deflection responses etc.
which are the quantities directly solved for in the displacement formulation.
They are not derived quantities like strains, stresses etc. which are
derived through spatial differentiation. If derived quantities are of
importance we are talking of pointwise correlation rather than a giobal

or gross correlation. In such an event the displacement formulations

of programs like ACTION or O-PLANE-MG even with the inclusion of the

effects of the cross-sectional flexibility (in the manner outlined in this
reportj would be inadequate. One will have to then resort to some soft

of hybrid or mixed formulations for better respomse predictions.‘

Purely from the pbint of view of crashworthiness where the trauma
measures are determined more by gross parameters it seems highly unlikely
that they will be significantlylinfluenced.by highly localized cross-
sectional deformations. The inclusion of such effects can only make the
already expensive nonlinear analysis only more so without any

significant pay-off by way of improvement in response.
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TABLE 1.

rotwents

EFFECTS OF CROSS-SECTIONAL FLEXIBILITY (INITIAL STAGES):

VERTICAL ' LOAD P (KIPS)
DEFL. (p,) WITHOUT p.y MWITH .

I Y esr P2 s AP = Py- Py
0.03 . 10,228 10,217 | 0.011
0.08 8.6639 8.7798 -+ -0,1159
0.130 6.0146 6.2641 -0,2495
0.150 5.5161 . 5.9241 - -0.408
0,200 | Iy, 6866 4,773k -0,0868

0,225 14,3972 4, 6097 -0.,2125
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TABLE 2.

SENSITIVITY OF RESPONSE TO MODELLING OF NASA'S ANGULAR FRAME

MAX DEFL. x 10° 1n.

TYPE OF MODEL FOR P=10 Lg,
ACTION
A, THREE D.0,F, PER NODE 7.5451

BLKHDS. NOT RIGID
END FULLY FIXED

SIX D.0,F. PER NODE
BLKHDS. NOT RIGID
END FULLY FIXED

SIX D.0.F., PER NODE
BLKHDS, RIGID
END FULLY FIXED

SIX D.0.F, PER NODE
BLKHDS. NOT RIGID
END REPLACED BY A FLEXIBLE

" BLKHD, WITH PROPER SUPPORT

holﬂj
!\:l'w

.8.3’-133 i

5.6992 = E;-
. {7

16,5658



APPENDIX B

On the Importance of Cross-sectioné]
Flexibility on Gross Response*

M. P. Kamat
Department of Engineering Science & Mechanics
Virginia Polytechnic Institute and State University
) BTacksburg, Virginia 24061
ABSTRACT
Most nonlinear analyzers 1ike ACTION and PLANS do not account
for cross-sectional flexibility of thin-walled frgme members, They
do however, permit-simulation of plastic hinges. Judging by the
excellent correlation between theory and experiment, such analyzers
appear quite adeguate in predicting reasonably accurately gross re-
sponse parameters of thin-walled frame structures even though they

may undergo severe cross-sectional deformations.

INTRODUCTION
The crush response of structural components of an automobile or
aircraft which are built-up from thin-walled open section frame ele-
ments entails severe deformations of the cross-section. Static and
dyramic Toad tests on tubular and angular frame structures conduct-
ed by the Dynamic Loads Branch of the NASA Langley Research Center
revealed that significant cross-sectional warping and distortions .

occur near the joints[1]. In fact, it was conjectured that the

* This work was supported by NASA Langley under grant NGR 47-004-114

under the congnizance of the technical monitor, Robert J. Hayduk.



large discrgpancies between experimental and theoretical predictions
may, at least in part, bé attributable to such phenomena which are
normally not accounted for in a conventioha] nonlinear finite ele-
ment analysis.

Recently, attempts have been made to model the phenomenon of
cross-sectional deformations analytically [2],[3]. The purpose of
this paper however, is not to evaluate these attémpts but rather to
assess the degradation of the fidelity of mathematical simulation of
the response using nonlinear analyzers 1ike ACTION [4] and PLANS [5]

which currently do not permit such modeling.

RESULTS AND CONCLUSTONS

Anderson, McIvor and Kimball have conducted several tests on
thin-wa11ed épen section columns and these have been reported in ref-
erence [6]. These tests seem appropriate for the present investiga-
tion. One such test involved the post-buckling -elastic-plastic re-
sponse of a beam-column with a thin-walled channel cross-section as
shown in Figure 1. To prevent failure by direct compression, the
column was tested at an inctination of 5° from the vertical with both
ends of the column being clamped. A column under these conditions
is extremely imperfection sensitive. Hence, Anderson et al [6]
suggest assuming an additional 1° offset for the mathematical model
to simulate the inherent imperfections of the actual column tested.
The post-buckling response of this column as observed in the experi-
ment and as reported in reference [6] involves extremely gross cross-
sectional deformations and is presumably a good problem for the pur-

poses of this paper.



The column of Figure 1 exhibits a bifurcation phenomenon with
a highly unstable branch. For reasons very well known, most nén]in-
ear finite element analyzers Tike ACTION and PLANS ha&e to resort to
a displacement rather than a load incrementation for predicting re-
spanse along an unstable branch. The mathematical predictions of
ACTION and PLANS have been jllustrated in Figure 2 along with the
experimental and that predicted by UMVC$-] [7].

Surprisingly enough, the responses predicted by ACTION and
PLANS correlate extremely well with the experimental prediction.
This excellent correlation between theory and experiment may be
the result of several compensating assumptions, especially when one
considers the fact that both ACTION and PLANS permit only large
rotations with only small strains. The sTight differences between
the responses of ACTION and PLANS may be due to one or all of the
following causes: (1) ACTION uses an energy minimization approach
whereas PLANS uses a one-step Newton-Raphson psuedo force technique;
(1) the deformation models of ACTION and PLANS differ in the in-
elastic range; (iii) the number of quadrature points for integration
of energy densities and stresses are not identical. It must be re-
marked, however, that with an elastic-perfectly plastic stress strain '
curve, both ACTION and PLANS do indeed possess the capability of simu-
lating a plastic hinge. UMVCS-1 is a program based on the assump-
tion that plastic deformations occur at idealized hinges Tocated at
nodal points. A generalized hinge theory which accounts for biaxial
bending, .torsion and axial loading is employed. The user has to

test the different types of joints and cross-sections experimentally



to gather data required for the constitutive Taws employed in
the analytical formulation. In this sense, it is more of a hybrid
program,

It is interesting to note that whiie the UMVCS-1 model s con-
sistently stiffer than the actual that of PLANS is consistently more
flexible than the actual and that of ACTION is more 1ike an "average"
model. If one were to account for cross-sectional flexibility in
ACTION or PLANS, it would appear that this would Tead to a deteriora-
tion of the excellent correlation.

It appears that the excellent agreement between theory and ex-
periment in Figure 2, in spite qf the absence of cross-sectional flex-
ibility, is attributable to the capabi!i%y of both ACTION and PLANS to
permit simulation of plastic hinges. Gross responses like strain
energy, load versus deflection are not Tikely to be affected by highly
localized cross-sectional deformations, irrespective of their severity.
1t is the view of this author that nonlinear analyzers 1ike ACTION
and PLANS in their present status seem quite adequate in predicting
reasonably accurately gross parameters like total strain energies,
load-deflection responses, etc. of structures that undergo severe
localized cross-sectional deformations. Gross parameters are para-
meters which are directly solved for in the displacement formulations
of ACTION and PLANS. They are not derived quantities Tike strains,
stresses, etc. which are derived through spatial differentiation.

IT derived quantities are of importance, one is talking of pointwise
correlation rather than a global or gross correlation. In such an

event, the displacement formulations of programs Tike ACTION or PLANS,



even with the inclusion of the effects of cross-sectional felxibility,
would be inadequate. One will have to then resort to some sort of a
hybrid or a mixed formulation with the inclusion of large strain ef-

fects for better response prediction.
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I. Introduction

Nonlinear transient_analysis of structures hes béen of increasing
interest to engineers by v%rtue of their interest in minimizing human
and property damage resulting from the catastrophic failure of such
structures under crash or-seismic con@itions. Complexities of the "
structﬁral egnfiguration and its equally complex‘transient response in
the presence of‘material inelasticit& make finite element médeling of
such structures a very natural and plausible recourse. Portions of the
structures may remain elasti& and undergo infinitesimally small déformgn
tions while other portions may experience finite deformations and mo-
tions and respond inelastically under time-varying loads that may lead
to é complete failure of the structure, If finite strains are to be
permitted in the model, distiqction must be made between undeformed and
deformed configuratiéns and the concepts of pséudo stresses and con~-
jugate strain measures which have intricate physical intgrpretations
must be introduced [1]. Furthermore, str;ctly speaking mest elaétic-
plastic theories which hypothesize an additive decomposition of the
total strain into an elastic and a plastic component lose their validity
in the large strain domain [2]. Because of this, most developers of
nonlinear analysis codes restrict themselves to a small strain for-
mulation but permit finite displacements and rotations thereby allowing
buckling and collapse of the structure to occur. There are some indi-
cations that this may be adequate for most practical purposes.

With this hypothesis as its basis, the present discussion focuéeé
on the simulation of response of a structure modeled as an assemblage of

membrane, frame (3-D beam}, stringer elements and rigid links (see

Figure 1). The mathematical model is a finite element displacement






model which consists of discretizing the actual structure by an assem-

blage of finite elements and approximating the response of sach element
by a finite number of deformation states expressed as linear functions

;f the generalized nodal displacements.

Two distinct solution appro;ches exist: (i) the vector approach
and (ii) the scalar approach. In tﬁe former, the mathematical model is
derived on the basis of the principle of virtual work and‘reduces to a
system of nonlinear second-order differential equatiohs in time. In the
1atter.appfoach, a scalar or potential function assSocizted with the
energy of the model is introdu;ed, minimization of which yields the
desired'equilibrium configuration. In both approaches a temporal finite
difference scheme is utilized to effectively eliminate time as a var-
iable. As a result, in the vector approach the equations of motion are
reduced to a system of nonlinear algebraic equations in the unknown

[31-16]

nodal parameters of the finite element model In -the scalar
approach, which is of relevance to this report, the problem is reduced
to a well known problem in mathematical programming namely the uncon-
strained minimization of a nonlinear function of several variables.
The scalar approach has been used'for n;nlinegr analysis by préviou&
investigators [7]-[9]. However, with the possible exception of reference
[9] moet of the previous work using the eidergy minimization technique
has been restricted teo static analysis of structures. The algorithm of
reference [9} had difficulties in'converging.to correct solutions because
of inhe;ent element formulation deficiencies and use of extremely in-
efficient and expensive finite difference operations for gradients
besides being restricted to stringer and frame element models only. As a

result, no meaningful results using the energy minimization approach

were obtained. The present formulation overcomes such limitations



using analytically dexrived gradients, consistent element formulations

~

and the best current variable metric update formula [10] for use in un-

constrained minimization [11].



II. Minimization Techbnique for Nonlinear Analysis

a. Formulation Basis

In this case the problem of response prediction is posed as the
minimization of a potential function of the unknown nodal parameters of
the finite element model. For all structural problems with geometric
and material nonlinearities of the type considered herein such a potential
function always exists. Although this technique has been hitherto used
for mainly positive or negative definite systems, other systems which
fail to be positive or negative definite can be handled by using the
least squares method or the modified conjugate gradient method with
preconditioning [12]. In some cases for such systems displacement
incrementation rather than load incrementation in conjunction with
conventional unconstrained minimization techniques can also be equally
effective [13].

The minimization scheme as applied to the solution of transient
nonlinear structural analysis problems consists of minimizing ; poten-—
tial function associated with the system for an assumed relationship
between displacements and time. The displacement-time relation for each
generalized nodal displacement of a finite element model may be assumed
of the form [14]

By, + G- By, + (bt)dy, + 9y (1-2)

qei

Il

Aoy = Y@ABXY , + (L - VQOY,, + 4. (1-b)
where 9oy is the i-th generalized nodal displacement at the end of the
time step and B and y are constants. The quantities &ei and qei can
now be expressed in terms of the i-~th generalized nodal displacement,

4942 velocity, &01 and acceleration, qu at the beginning of the time



step and the generalized nodal -displacement, 9ei? at the end of the time
step. It can be easily verified that the equation of equilibrium for
an N degree-of~freedom system with lumped masses

U
aq

Mgy ~F +g50—=0 5 i=1,2..N (2)
el

correspoiid to the necessary conditions for the functional

N
1 A 1 1 . 1
s= Al——5a, - =5 9; * 3 Yoz * Gg - Do) 90
- 28(At)2 el B(At)z 0i B(At) 04 26 017 Fedi L
- Ei(tﬂlt)qei} +U+¢C ‘ (3

to be stationary. In Equation (3), U is the strain energy and C is an
arbitrary constant. Thus, knowing dOi’ éDi and'&iOi at time't for any
given load Fi at time (t+At), ;he functional § -may be minimized with
respect to the genéfalized nodal displacements, Aoy (i=1,...8), ?n order
to determine the corresponding stable equilibrium configuration.' Thus,
.this scheme satisfies equilibrium at the end of the time step, thereby
providing an implicit tempo;al integration scheme. The size of the time
gtep is automatically controlled so that the error at half time based

on infeipolated configuration data is less than a presdribed change in
total energy. In general, the strain energy U will be a nonlinear
function (at the very least a quadratic) of the generalized nodal dis-
placements Gaq” Details on the explicit evaluation of U as a function_
of 9ag will be tPuched upon later,

Of all the available technigues for unconstrained minimization only
the gquasi-Newton or the variable metric methods have been more frequently
used for structural analysis, because of their higher effectiveness
[15]. Again, unless one accounts for the sparsity of the Hessian matrix
and an update scheme which maintains it, one has to almost invariably
'resort to some form of a conjugate gradient techmnique for problems

wherein N is an extremely large number. The extension of the minimi-



zation techniques to extremely large scale nonlinear structural analysis
problems is a subject of separate research [16] in itself and is beyond
the scope of this paper.

Most algorithms for unconstrained minimization seek a direction of
travel and the amount of travel in that direction. The manner in which
these are sought depends upon the sophistication of the particular
algorithm invoked. Most often the directions of travel are sought in a
manner which guarantees not only a decrease in the value of the function
to be minimized at each iteration but also a convergence to the minimum
in a finite number of iterations (usually M1 for an N dimensional
space) in the case of quadratic functionals. It is important to note
that all functionals are very nearly quadratic in the neighborhood of
the minimum. The present formulation uses the well-known Broyden-
Fletcher-Goldfarb-Shanne (BFGS) variable metric algorithm which dis-
penses with the exact line searches while using an Hessian update formula
which, in the case of a quadratic functionmal, Suarantees a monotonic
convergence of the eigenvalués of the approximating matrix to the inverse
Hegsian, The iteratiye scheme is begun with an initial guess which is
usually the null vector in the absence of other better estimates. For
the variable metric or the conjugate gradient metﬁods the required
gradient of § is evaluated either analytically or by.a finite difference
operation on 8. The use of an analytic gradient results in a substan-
tial saving in computational effort. This saving is the result of not
only a cheaper gradient evaluation but most often a faster convergence
of the solution because of higher aceuracy of all computed quantities
{15]. The i-th component of the gradient of $§ can be written as

aas = Midy — Fyt aaU
9ei Qei

(4)



The term in Eg. (4) requiring significant computational effort is

au

5 as it embraces the geometric and material nonlinearities. Using
el
half-station central differences this is given by
m
U, (q q ease @ + 1 Aq q R
U Kol kel 2’ ei 2 Trei’ “eitl eN
aqei Aqei
m U, (q ;5 9.0 - -‘-q - %hq_,, q cer Q)
z klel’ “e2 T el 2 Tei’ “ejtl eN (5)

k=1 Aq

ef

where Aqei is a small change in the i-th component and m is the number

of members or elements which has the i~th degree of freedom in common.

In evaluating the gradient vector énalytically {171, eaéh of its com~

ponent involves the evaluation of only a single function similar to the

function for member energy evaluation.
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Equations (6-a) through (6-c) imply the use of Hencky's total strain

theory along with its assumption that in the strain hardening range the

inelastic component of the total strain is predomihant [18].
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way is consistent with the assumption that the total strain can be de-
composed into an elastic and a plastic part especially in cases where
the strains are large [2]. According to reference [2] it is only when
plastic strains are predominant that such a decomposition is justified.
The problem at hand could have equally well been formulated using
the incremental flow theories of plasticity in the strain hardening
éange. The potential function instead of being a function of the total
quantities need then be expressed in terms of incremental quanties
and the minimization technique can still be used [19].  As 2 matter
of fact, it may be conjectured that the performance of the solution
algorithm will perhaps be significantly improved using such a formula-
tion even though the material model may then be slightly more complex.
In any event, it is immediately obvious that a significant reduction in
computational time will be realized if analytic gradients are used in
preference to central difference gradients.
The complexity of the strain energy evaluation for any element is
determined by its deformation model. This is discussed next.

b. Deformation model:

The deformation model of the entire structure is synthesized from
deformation states of each element of the structure. These states are
expressed in terms of generalized displacements of the nodes of the
structure at which the elements Interface. The displacemept field
within each element is chosen as a continuously differentiable function
of the local spatial coordinates and the generalized nodal displace-
ments. The field maintains interelement continuity of its essential
derivatives thereby providing z Galerkin model of the system. The local
gene&alized nodal displacements of each element are then related to the

global displacements of the assemblage. These relations, which can be



interpreted as transformations of the local coordinate system to the
global coordinate system, may be linear or nonlinear depending upon
whether the motions and deformations of the elements are infinitesimal
or finite. For large rigid body rctations, these transformations are
accomplished using Euler angles which are linearly independent by virtue
- of the fact that the rotations are performed in a preécribea order.

There are three kinematic descriptions most commonly used for char—
acterizing large displacements of finite element models of structures,
These are: (i) the total Lagrangian formulation wherein the initial
undeformed configuration is the reference configuration, (ii) the up-
dated Lagrangian formulation which uses a total Lagrangian formulation
within each load or time step but updates the reference configuration at
the end of each step and (iii) the co~rotational or rigid convected
coordinate formulation which utilizes a coordinzte system rigidly at-—
tached to an element and moving with the element. For development of a
large rotation formulation vital for crashworthiness studies the use of
the total Lagrangian formulation is unsuitable since most si;.ructural
theories permit only moderately small rotations [20}. The co-rotational
formulation decomposes the total displacements into a rigid body motion
component and a strain producing component. Thus, with the restriction
of small relative rotations within the element, this formulation leads
to a simplification of the strain-displacement relationship on the
element level while still permitting arbitrarily large rotatioms of the
element. The present deformation model uses the co-rotational or rigid-
convected formulation for its kinematic description.

Through appropriate kinematic constraints modeling of massless
degrees of freedom or of deformation-free rigid links or even the simu-

lation of contact with an impenetrable, rough plane are easily achieved.
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Rigid links can be used to simulate either joint eccentrices or rigid
parts of a structure. In the interest of a truly unconstrained minimi-
zation Lagrange multipliers or penalty functions are avoided. Rather
kinematic constraints are formulated as prescribed displacements under
reactive forces provided by the gradients of the strain energy with
respect to the corresponding degrees of freedom.

¢. Material model:

‘Althougb closed form analytic expressions for U can be developed
when the material is elastic the same is not true when elements yield.
Then the response depends upon the current values of stress components
and the past history. Von Mises' yield criterion together with Henckey's
total strain theory provides a simple means of caleulating strain
energy density distributions throughout an element that has yielded.
Because total stresses and total strains are no longer linearly related
recourse must be made to numerical integration (Gaussian or Lobatto)} of
the strain energy density over the wolume of the element.

It is clear then that when an element yields, the complexity of
the strain energy evaluation increases several times in relation té its
purely elastic behavior. A number of quadrature points have to be
assigned over the volume of the element and using the material model
stresses and strain energy densities have to be evaluated at each of
these points for known values of strains (Figure 2). The average strain
energy density which is simply the weighted sum of these strain enefgy
densities then enables the .calculation of the total strain energy. It
must be noted, however, that the stress-strain history at each of these
quadrature points, which corresponds to a uﬁique location on an ideal-

ized effective stress—effective strain curve for the material of the

i1



element (Figure 3)1 must be made available at all times. Tﬁis places
highly increazsed demands on compﬁter gstorage as inelastic deformations
progress with time.

Thus, ; frame element which was strictly a uniaxial member in the
elastic range, typified by its cross-sectional area and moments of
inertia, requires a full three dimensional characterization in the
inelastic range. In other words, frame elements for inelastic analysis
require a classification based on the different cross-sectioms. This
development is restricted to frame elements with thin-walled sections of
the closed and open (Box, Tube, Elip and E) variety -"a characteristic
of general aviation aircraft frames. However, in the elastic range the
development does permit frame elements with arbitrary cross—sections
characterized by their gross section properties. In the interest of
simplicity, classical shear flow theory for thin—walled sections is used
and certain simplifying assumptions regarding torsion, warping and shear
deformations in the inelastic range are introduced. This is characteristi
of most'nonlinear analyzers mainly because the development of a truiy
three-dimensional frame element for nonlinear inelastic response is a
formidable task perhaps even more challenging than that of éhe develop-
m;nt of a plate bending or a shell element for the same purpose. In
fact, in the inelastic range it may be easier to model a thin-walled
beam of arbitrary ecross—section by an assemblage of a largé number of
plate and shell elements thereby permitting a faithful representation of
very complex effects like restrained warping, torsion, cross-sectional
distortions, etc.

The material is assumed to unload elastically. For modeling plas-

ticity under cyclic loading kinematic hardening with an idealized
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Bauschinger effect is assumed. Specialized elements like the gap ele-
ments and stays can be easily modeled simply through an appropriate
modification of the material model of the conventional elements.

The details of the total strain energy calculations for the dif-
ferent element types considered and the transformations relating element

behavior to global variables is relegated to the appendix.
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IITI. Results and Discussion

The effectiveness of the minimization technique in solving non-
iinear problems is very énch a function of not only the size of the load
or time step but also the extent and type of the nonlinearity-geometric
or material and even the type of the temporal discretization scheme used
which is to say the assumed values of B and Yy in Eq. (I). With this in
mind, the process of selection of problems for vali&ation was geared
towards providing an evaluation of the techniques under different types
of nonlinearities. Prpblems belonging to three distinct classes namely:
(i) gquasi-static, elastic with geometric nonlinearities, (ii) quasi-
static, elastic—plastic with geometric nonlinearities and (iii) transient,
elastic-plastic with geometric monlinearities were selected. Independent
solutions or experimental results for these problems were available for
comparison purposes.,

Figure 4 shows the case of a rod-spring problem wherein the stiff-
ness of the spring is just enough to prevent a snap—through and provide
a single-valued load deflgc?ion‘response. Most researchers repard this
problem as geometrically highly nonlinear. Using stringer elements with
load steps as high as 1 1b., the energy minimization solution 1s indis-
tinguishable from the easily obtainable exact solution to this problem.
Higher load steps could have been chosen but caution must be exercised
with extremely large load steps since the performance (the number of
minimizations required for convergence) of the minimization algorithm
may be adversely affected. In other words, the computational effort
within a load step may increase substantially enough to offset the sav-

ings accured from fewer lcad steps.
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Figure 5 provides yet another example of such a nonlinearity except
that in this case the load response curve is no longer single valued but
is a composite of stable and umstable branches. Using straight—forward
load incrementation, it is possible to locate only the stable equili-
brium confipurations as indicated in Fiéure 5. Using displacement
incrementation, however, the entire load response curve can be easily
obtained. The response predicted by energy minimization agrees very
closely with that predicted by the nonlinear analyzer developed by
Stricklin and Haisler [21] for an identical model of the shallow arch
using frame elements.

While both of the previous problems involved only geometric non-
linearities, Figure 6 presents the case wherein both material and geo-
metric nonlinearities interact., The experimental prediction of the
post-buckling, elastic-plastic response of this beam—column with a thin-
walled channel cross—section was the result of a test carried out by
Anderson et al [22]. To prevent failure by direct compression, the
columm was tested at an inclination of 5° from the vertical with both
ends of the column being clamped. A column under these conditions is
highly imperfection sensitive and hence Anderson et al assume an addi-
tional 1° offset, as shown in the figure, for the mathematical model
hoping to simulate the inherent imperfections of the actual column
tested. Because the response involves a highly unstable branch, dis-
placement incrementation had to be used in place of load incrementation.
The response predicted by energy minimigzation agrees extremely well with
the experimental prediction and even more so by comparison with that

predicted using IMVCS-1[23].
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Figure 7 illustrates the case of the transient response in the
presence of both geometric and material nonlinearities.- The impulse is
large enough to cause the entire beam to respond inelastically while
experiencing moderately large relative rotations. The experimental re~
sponse for this beam was dbtained by Krieg et al 124]. ‘It is immediately
obvious that the quality of the response prediction is very much a func-
tipn of the values of B and y. This is not to say that optimum values
of B and v exist which guarantee optimum fidelity of the response pre-
diction. As a matter of fact, optimum values of B and Y appear to be
very much problem dependent. Use of B = 0.276 and vy = 0.55 has been
recommended by Goudreau and Taylor [25] for smoothing out the high
frequency oscillations. Again, the response may be significantly
affected by the use of a consistent mass matriﬁ and with rotatory iner—
tia and shear deformation effects included.

With the possible exception of the problém of Figure 8, all the
previous problems involved only a relatively few degrees of freedom.
Furtherm;re, the state of ‘stress in all of these problems was essen-
tially uniaxial for all practical purposes. Using constant strain
membrane elements the maximum strain in the viecinity of a notch in the
direction of'loading is determined and compared with the experimental
results. The agreement between the two predictions ig good but could
perhaps be improvéd upon by the use of nonlinear strain displacement
relationships in the co-rotational coordinate system.

Next, by way of a reasonably large scale problem consider the drop
test of a twin eungine, low wing Navajo substructure conducted by NASA
Langley's Impact Dynamics Research Facility under the- auspices of the

joint NASA-FAA general aviation crash test program. The substructure
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including the disposition of the occupants and their seats being sym-
metric about B.L.0.0, a finite element model of only half the structurL
as indicated in Figure 1, suffices. The depth of the substructure floor
is implicit in the frame elements used for this portion of the substruc-
ture. Of simulation interest was the occupant chest motion and its
vertical acceleration at the pelvis location. The occupant was modeled
by a single lumped mass while the seat was modeled by a set Qf four
nonlinear striqger elements whose stress~strain behavior was based on
previous, independent static crash tests on similar seats. Although,
the ground plane capability could be exercised for this problem, in the
interest of simplicity, the aircraft substrﬁcture was assumed to be in
contact with the ground plane at nodes through while a velo-
city of 330 inches/sec was imparted to the entire model. Thus one would
expect correlation ih only in the initial phases of the response.
Figures 9 and 10 provide the correlation between the analysis and
test results. The chest motion history was cobtained from high-speed
film analysis, performed by NASA Langley. The reduced data for the
acceleration trace at the pelvis location was cbtained by NASA by least-
square-fit filtering technique. The differences in the two traces on
the left and rxight side of the substructure indicate slightly unsym-—
metrical test bonditions. "The time of occurrence of the initial peak
and its magnltude obtained by analysis agrees reascnably well with the
corresponding test values. For additional model and simulation details
the interested reader should consult reference [26]. This reference
also provides a comparison of the performance of the energy minimization

technique vis-a-vis the so-called hybrid technigue and another technique

which utilizes the vector approach.
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Indeed, one may say that this demonstration of the effectiveness of
the minimization technique as a tool for nonlinear analysis has been,
restricted to problems with a relatively few degrees of freedom. For
such small scale problems the energy minimization technique has been
shown to be at least comparable to, if not better than, the pseudo force
technique [16]. Extensions to large scale problems like a full aircraft
may involve several thousands of degrees of freedom. The state-of-the-
art in nonlinear transient analysis in general, does not appear to be at
a point where such large scale problems can be solved efficiently and
with any high degree of confidence in the simulation fidelity. Likewise
the effectiveness of the present technique for response prediction of
such large scale structures remains to be demonstrated. Using precon-
ditioned conjugate gradient technique or variable metric metheds which
exploit sparsity, it is believed that this is no longer an insurmount-

able task.
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VI. Appendix

Evaluation of the Total Strain Enerpy

The scalar .approach for the solution of problems of structural

analysis requires that the strain energy of the system be expressed,
_explicitly or implicitly, as a function of ‘the global generalizéd nodal
displacements of the finite element model.

From a known vector of the generalized nodal variables in the
global co-ordinate system, consistent with the prescribed beundary
conditions, a vector of local generalized variables in the; co—rotational

* co-ordinate system of each element is established through transforma-
tions which are functions of its geometry and its rigid body rotations.
The assumption of deformatiocn pattefns of the element as functions of
these local generalized nodal variables (interpolating polynomials)
vields element strains. Recourse-to the element material model then
vields the corresponding stresses and strain energy densities at various
predetermined points (quadrature points) over the extent of the élement.
Barring purely elastic response, a simple weighted summation of these °
quantities over the element volume yields stress resultants and strain
energies respectively. For pu;ely elastic response these are provided
by weli-known cloged form expressions. For the elastic-plastic response
the strain energy density may be decomposed inteo an elastic part and an
incrementalndigsipative’part thereby providing an estimate of the total
energy of the system that has been dissipated through inelastic deforma—
tions. Thus, as shown in Figure 3 for a system with M elements

M, M
i

. : M . -

U=y U= UL+ (f whv+ [ mwltav) (a1

i=1 e L IVi e J, Aoae )
. L

. s , i, , .
where the dissipative energy AUd is the incremental dissipative energy
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computed from the previous stress state typied by the point ay on the
effective stress-effective strain curve of Figure 3.

In the following sections expressions for the stréin—displacement
relations are developed for the different elements.

(i) Stringer Element

A structural component .of uniform cross section which is initially
straight and which is capable of resisting only axial loads is known as
a stringer element.

From Figure (A-1) it can be seen that for assumed nodal displace-
ments (U_, Vp’ Wp) and (Uq, Vq, Wq) of nodes p and q, the change in

P
length, ‘DL, of the element is given by

DL = [(X +U-X-U)2+(Y ~:-v—3{?v)2
q q P P q q D P
2.1/2 2 2
+(Z +W -2 -W - [x -X + (Y -Y
( q q P p) ] L( q p) ( q p)
2.1/2
+ (2 ~2Z A-2
( q p) ] (A-2)
which can be simplified to
2 (AXATHAYAVHAZAW) AU2+AV2+AW2 1/2
DL = L{1 + 3 + 3 ] ~ I (A-3)
L L

A being the difference operator for q and p end values. Assumption of
the usual linear interpolation functiom in the corotational coordinate
system then yields

= (D (a-4)

(ii) Frame Element (3D Beam)

A frame element (Figure A-2) is a structural component which is
initially straight and which wndergoes axial, bending and torsional
deformations resulting from finite displacements and rotations of its

ends.
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Figure A-1,

Deformation of a Truss Element
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From Figure (A~3), the displacements of the end q relative to the

end p can be seen to be

du = (Eq - E?) - L+ (Hq - Hp) (A-5)

or in terms of the three components as

Su ¥ - X L U -U
q P q p
Svi= [T Y - Y - 0 + [T v -V A6
[]p q . []p g o (A-6)
Sw Z -2 0 W -W
q P q P

where again Ui’ Vi and Wi (i=p or q) denote the global displacements of

the nodes. The matrix [T]p can be showm to be [9]

71, = [T, (0, 6,0 0910T,(0_, 6, 6 )] (a-7)
with
e c c s -g
Yy =2 y 2 ¥
[Tl(ax,ay,uz)] = —cxsé+sxsycz cxcz+sxsysz sxcy (A-8)
8 8 +c 5. C -s ¢ *+c 8 8 c_c
Xz XV 2 XZ X9y 2 RY

c; = cos a  and s, = sin o, for i=x,y and 2. Anglesr¢x, ¢y and ¢_ are
the initial orientation angles described in Figure (A-2) and angles
pr, Byp and BZP are the rigid body rotations of the end p. In deriving
Eq. (A-7) Euler angle transformations are implied with the order of the
rotations being o , o and o .

2’ Ty X

Similarly, with the restriction of small relative rotations within

the element, the rotations wx’ wy and wz of the end q relative to the

end p are
I’bx exq - exp
= [T - -
wy L ]P qu Byp (A-9)
v, %20 7 %2p

With the relative generalized displacements {8u, 6v, 8w} and
{wx’ wy’ ¢Z} known the usual deformation patterns of the reference axis

of the beam element in the co~rotational co-ordinate system are assumed



Figure A-3.

Deformation of a Frame Element
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to be

u(e) = g &
1 2 3 3 2
v(E) =+ (38 - 287) (6w = 53 ) + (£ - £
L 8'X z (A-10)
w(E) = 85 - 28 Gow + ) - (& - £,
B = &b,

where £ = x/L and Yo and z_ are the co-ordinates of the shear center of
the cross-section of the beam. The strain of the reference axis can

then be shown to be

: E%._ n[%.(l_zg)(av—zswx) + 2(3£—l)¢z]

£
6 (A-11)
- c[z (1-2£)(6w+yslbx) - 2(3E—l)¢y]

with n v/L and £ = z/L. 1In the above equations it is implicitly as-
sumed that the lateral displacements and twists are referenced to a
longitudinal axis through the shear center while the axial displacements
and rotations.are referenced to the centroidal axis. As shown in ref-
erence [27] this assumption necessitates the introduction of an addi-
tional degree of freedom in the axial direction in the interest of equi-

librium satisfaction in the inelastic range.

{iii) Membrane Element

The membrane element of Figure (A-4) is a plane triangular thin
plate element under constant strain. The element can undergo large
rigid body motions but its deformation is restricted.-to only in-plane
stretching resulting from finite displacements of its vertices.

The orientation of the element is uniquely determined by the global
co—ordinates of its three vertices, p°, q° and r°. The relative dis-

placements Suq, Gur and Gvr defined in Figure (A-4) can be seen to be
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u =R -~ R°
q
ﬁur =Q cos B-Q° cos & (A-12)
6Vf =Q sin B - Q° sin o
with

RS = (X2 + Y2 + 122 )l/2
rp

TP rp

- 2 2 2.1/2
R [(er + Urp) + (er + Vrp) + (er + er) ]

Q° = (x2 + Y2 + 7 y1/2
QP qp  qp

Q= [(XEHJ + qu)z + (qu + vqp)2 + (qu + 1‘;;(@)2}1/2 (A~-13)
cos o = (X_qurp + YqPer + ZqPer)/(Q°R°)
cos B = [(Xqp + qu)(er + Urp) + (qu + qu)(er + vrp) +
@y W) (B + W, 31/ (QR)
and typically aij = ai - aj. Next, as in the case of the two previous

elements, deformation patterms u(x,vy) and v(x,y) in the co~-rotational
co-ordinate system when expressed in terms of the local nodal displace-

ments yield

Su Su Su
u(x,y) = u + ( —ﬁg )x + | Qosinu - Rg cotaly
(A-14)
Sv Sv Sv
v(x,y) = v + (g3 )x+ [ gegims - g cotaly

with the strains £, & and y__ determined on the basis of the small
xx* Tyy Xy

deformation theory as

du \
_%u_ ., _"q
Exx T o9x ( R° )
Sv ‘
_ov ___r -
€yy T 3y  Q°sina > (A-15)
8u Su
- du  dv _ r __¢g
ny T 3y * 5% ( Q°sino. R° cota)
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Thus, with the assumption thaﬁ-the total deformation theory of plas-
ticity is applicable, the effective strain and effective stress defined
by Eqs. (6-b) and (6-c) yield estimates of the stresses and strain
energy densities from the material model. It.is obvious that the Inte-
graticns over the volume of the element are rendered trivial by virtue
of the assumption that sﬁrains and hence the stresses and strain energy
densities within the element are constant.
(iv) Rigid Link

Rigid link is an element which merely translates and rotates
without any appreciable deformations. The element is i&entified Ey two
nodes located with reference to the global co-ordinate system. One of
these two nodes is referred to as the master gr primary node, p, with a
maximum of six independent degrees of freedom. The motions of the slave
or secondary node or nodes, ¢, are determined purely from kinematics by
setting the left hand side of equation (A~5) to zero. Knowing the
dependent displacements of the secondary nodes,

fu}, = {0} + [T]g{L} + (R} - (R} (A-16)
the contribution, to thg total potential energy, of loads applied

directly at the secondary nodes can thus be determined.
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T. Introduction

The prediction of transient Tinear or nonlinear response of structures is
~almost invariably accomplished by using a tempﬁra? finite-difference scheme to
effectively eliminate time as a variable and reduce the system to a set of
algebraic equations in the unknown nodal variables of the finite element dis-
cretization., Finite differencing in time may be either of the explicit or
implicit type.

Most nonlinear analyzers 1inearize response within a time step and use an
explicit scheme [1]-[3] or an implicit scheme [3]-[4], while a select few do
not linearize response within the time step and use an implicit scheme [5] or
an explicit scheme [6]. At the present time there are no clear cut guidelines
or criteria for the selection of these procedures. Use of hybrid explicit-
implicit (on-off) schemes have been advocated and is the subject of current and
future research [7]-[97. ‘

For schemes which do not linearize the response within a time or load
step, several different techniques for the solution of the nonlinear equations
may be used. Such techniques have been d{scussed at great lengths by Bergan-
[10] and Stricklin et al. [11]. Of particular interest is the technique uti]i--
zing the minimization algorithms of mathematical programming. This approach
has been used successfully for nonlinear structural analyses [5]. [12]-[14].
In this case, the problem of finding the solufion of the equilibrium equations
can be egquivalently posed-as the one corresponding to the minimum value of a
potential function

In the past there has been considerable skepticism with regard to the
effectiveness of the energy minization technique, when compared to other

methods, such as the pseudo force technique. It has been also claimed that the
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extension of the minimization algorithms to large scale problems is virtually
impossible. The purpose of tﬂis paper is to demonstrate by comparison with the
pseudo force technique that minimization techniques have and can overcome some
of these objections and that future improvements, in minimization algorithms

will further 1mpr6ve their efficiency.

IT. Summary of Minimization Techniques for Nonlinear Analysis

The solution of the equilibrium equations can be equivalently posed as
the minimization of a potential function., For all structural problems with
geometric and material nonlinearities of the type considered herein, such a
potential function always exists. Aithough this technique has been previousiy
used for mainly positive or negative definite systems, otheé systems can be
handled by using Teast squares methods or modified conjugate gradient methods
with preconditioning.

The minimization problem as applied to the solution of transient nonlinear
structural problems (reduction to the static case is obvious) consists of mini-
mizing a potential function associated with the system for an assumed relation-
ship between disp]agements and time. The displacement-time relation for each
generalized nodal variable of the finite element model may be assumed to be of

the form t16].

- B) (At)2 X

<
1]

.+

; it (At)ﬁo. + X . (1-a)

2e 1
s(at) Xe 2 i 0i

e o

v(at)Xys + (1= v) (at)hy; + X

]

X (1-b)

ei 01

where Xei is the i-th generalized nodal displacement at the end of the time
step. The gand ¥ constants are selected by the analyst to define the inte-
gration algorithm. It can be easily verified that the equilibrium equation
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corresponding to the i-th degree of freedom of a Tumped mass system

W,

3o ‘ ' (2)

.
MiXes = Fy

is the stationary condition of the functional

N 2
- ) 1 1 ] v
s=3 [ S O X .+ + (s= - )X )X .M,
i ZB(At)z ei B(At)z (o} B(4t) o 28 oi’ el
- Fixei + U+ C (3)

where C s an arbitrary constant, U 1is the strain energy, and M; and F.
are the Tumped mass and external force, respectively, associated with the i-~th
degreg of freedom.

Thus, once the assumption of the displacement-time relation is made, the
minimization approach, unlike the incremental stiffness approach, solves the
actual nonlinear problem within a given load or time step without Tinearization.
Consequentiy iteration at constant load to improve equilibrium or force
imbalance at the end of a load or time step is not required.

In the realm of mathematical.programming, the algorithms used for uncon-
strained minimization can be broadly ciassified into three distinct classes
stemming from the level of computational sophistication: (i) the zeroth order
requiring only function evaluations, (i1) the first order requiring evaluation
of the gradient as well as the function and (iii) the second order requiring in
addition a variable metric related to the curvatures of the functional S. Only
the techniques belonging to the Tatter two categories have been more frequently
used for structural analysis, because of their higher effectiveness in compari-
son with zeroth order techniques [17].

For first and second order methods the' required gradient of S can be
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evaluated either by a finite difference operation on S or analytically. The
use of an analytic gradient results in a substantial saving in computational

effort. This saving is the result of not only a cheaper gradient evaluation
But in most cases, a faster convergehce to the solution because of higher
accuracy of all computed -quantities [17].

The 1i-th component of the gradient of S can be written as

D =M, -F + 3 (5)

The term requiring an analytic expression is (%%-') which can be evaluated

as
m m -
No- fU w-2 [ &, w - (6)
Vk Vk
where —
W - the strain energy density for the k-th member
m - the number of members or elements which have the i-th degree
in common :
Vi - volume of element k
_ 2 2 2 3 2,1/2
3 (eex Toyy = Sy T E iy )
e = effective strain for two dimensional stress state (7-a)

= gy for one dimensional stress state

For one step incremental Toading or unloading

2 2 -2\ 1/2
= - +
(Gxx + Oy %y STXy )
g¥-= o effective stress for two-dimensional stress state (7-b)
de

9y for one dimensional stress state



Thus

mn
3U o, ,9¢
W f Tk (5% e Wy (7-c)
el " el
=1 7,

Equations (7-a) through (7~c) imply the use of Henckey's total strain or

the deformation theory of plasticity. In addition, unloading takes place elas-
tically with the Toad path described by the initial elastic portion of the curve
and for modeling plasticity under cyclic Toading kinematic- hardening is pre-
scribed.with an idealized Bauschinger effect.

The term %%—_ in Eq. (7;c) involves a volume integral which is very
similar to that r§;uired for a member energy evaluation. Hence, each compo-
nent of the analytic gradient vector involves approximately the same calcula-
tion effort as'one member energy evaluation, two if the node is common to ‘
two elements, three if the node is common to three eléments and so on, Con-
sequen??y-é significant reduction in the number of member energy evaluations
and in CPU time should be realized if analytic gradients are used instead of
finite difference gradients. This has been vividly demonstrated for problems

involving different types of nonlinearities in reference [17].

II1. Summary of Pseudo Force Technique

The pseudo force technique, as applied here, uses the initial strain con-
cept for the treatment of material nonlinear behavior and an incremental up-
dated Lagrangian formulation for the geometric nonlinear behavior [43], [44].
The governing equation at the (n+1)th time step for the transient-nonTinear

analysis of a discretized structural problem is



(a0 = P r o0,y - KO kD 3+ s ()

with the following definitions:

(o d = Gy + a0

Prgd = Pk {Apn41i (9)
Q4 = {Qn} + {AQn+]}
{R}=1{P}+ {Q} - [MIU } - {F}
where [Kéo)] - Tlinear stiffness matrix
[Kgl)] - nonlinear geometric stiffness matrix
{APn+T} ~ increments of generalized nodal forces
{AQn+]} - increments of the effective plastic load
{Rn} - .vector of residual forces due to equilibrium imbalance
{Aun+]}, {A&n+1},‘{AUn+]} - increments of displacement, velocity and
acceleration
[M] = mass matrix
{Fn} +~ vector of internal forces.

The equations for the static case are obtained by simply neglecting the
inertia term in Equation (8). For the transient solution a convenient finite
difference approximation is the central difference integration algorithm. The

recurrence relations for this temporal operator are

1

20w
{au 44} 2{au .} - {au, 43 F At. {au,}

- (10)
{au 143 - Hau, 3

1

{al_}
n 24t



where At s the time step. The integration procedure is explicit because
{Aun+]} is obtained directly from Eé. (10} using previous infqrmation, and it
is alsc notable that {Aﬂn+1} is obtained from Eq. (8) without factorization
of the-(effective) stiffness matrix in the step-by-step solution.

Equation (8) is valid for large elastic-plastic deformation provided that
the appropriate nonlinear terms are included in the strain-displacement rela-
tions and that the total strain increment can be simply decomposed into elastic
and plastic components [43]. With an assumption on the plastic strain dis-
tribution within an element, the effective plastic load increment can be
expressed as {AQn+]} = [k*] {Agn+]} where {Aan+1} is the increment of nodal
or e]eﬁent plastic strain and -[k*]} s tﬁe initial strain stiffness matrix
used to represent initial strains and to reflect the assumed distribution of
both total and plastic strains within an element. Incremental plasticity
relations are used to determine va]ues-of stress and plastic strain developed
throughout the loading history. This technique has the capability of handling

both strain hardening and ideally plastic behavior.

IV. Energy Minimization Versus Pseudo Force Techniques

Structural analysis computer programs differ significantly in their treat-
ment of elastic-plastic response. Most exp?icit‘Codes appear to tolerate
‘vio]étion of equilibrium in the inelastic range while implicit codes cannot
get by with such a deficiency. At least two well-known explicit codes, after
conversion to implicit type using the same element deformation and material
models, experienced difficulty in converging to a solution and violation of
equilibrium. For frame elements, the implicit formulation requires an axiat

displacement field in the inelastic range which is an order higher than the
linear field which is commonly used for a two noded beam-column element in the
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elastic range [19]. Furthermore, the number of quadrature points used for in-
tegration of strain energy densities, stresses, etc. differ from code to code.
Thus, even if the two finite element models are 1dentica1‘1n the undeformed
state they differ signficantly as-de%ormation proceeds. This factor has to be
taken into account before undertaking an efficiency assessment of the two
procedures.

An obvious follow-on to the work reported in reference [17] was a
comparative efficiency evaluation of pseudo force techniques- (incremental
linearization-explicit) versus energy minimization techniques (nonlinear-
imp1icit). For the purposes of Figures 1 through 5, to be discussed below,
analytic rather than finite difference gradients were employed and Fletcher's
algorithm [18], more commonly known as the BFBGS (Broyden-Fletcher-Goldfarb-
Shanno) algorithm, was used for unconstrained minimization of the functional S.

Figure 1 illustrates the case of a rod-spring problem involving a single
degree of freedom but regarded as a highly nonlinear problem. The technique
using energy minimization predicted the 'exact' solution using load increments
as high as 1 1b. (Larger increments could have been tried but were not
attempted. For quasi-static loading conditions the energy minimization code
does not provide an automatic selection of load steps guided by error
tolerances or the Tike). The pseudo force technique using 1/10th of the load
increments did not do quite as well. Since it is only a single degree of
freedom problem a comparison of running times- was not considered meaningful
although the energy minimization technique was several times faster than the

pseudo force technique.
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Next, Figure 2 jllustrates the case of the classic snap through of a
shallow arch. Since the unstab]e‘equ111br1um branch presents computational
problems using both techniques, displacement incrementation ratﬁer than Tload
incrementation was used. The prob?em us1ng the pseudo force technique was run
on a CDC 6600 machine (tak1ng }GO 29 CPU secs) wh1ch is known to be about
2 1/2 times s]ower than the CYBER-17E %;Le ;ne;gy*m1n1m1zat1on method took
9.618 CPU seconds on the CYBER 175. A comparison of the equivalent running
times shows that the pseudo force technique is about five times slower in com-
parison with the energy minimization technique andtthe‘quaﬂity of the response
prediction does-not appear to be as. good. Using strictly load incrementation
the energy minimization technigue using potential energy as the potential
fudction can locate only stable equilibrium configurations as indicated in
Figure 2 by the circles and dotted load path. The pseudo force technique with
load incrementation becomes singular at the limit 16ad where the tgngentiaf
stiffness vanishes. #As a point of reference the square symbols represent a
first order self-correcting solution from [11].

Figure 3 11]ustrétes the post-buckling elastic-plastic response of a thin-
_ walled channel cross-sect{on column. Again, displacement rather than load
incrementation is used because -of the unstabie equilibrium branch. For the
range of deformations considered the entire column, built-up from 12 frame
elements, responded inélastically. Figure 3 indicates that the eneﬁgy minimiza-
tion technique is comparable to the pseudo force technique.for this problem.

Figure 4 provides an example of transient response in the presence of
both geometric and material nonlinearities. The problem consists of a clamped-
clamped beam of rectangular cross-section subjected to an explosive loading

over a central region. The experimental data was taken from the Titerature [41.
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The impulse is large enough to cause the entire beam to behave inelastically.
In this case, the amount of nonlinearity within a time step is very much depen-
dent not only on the size of the time step but also on the temporal algorithm
used. That is to say it is very much dependent on the values of 8 and y.
Thus, it is rather difficult to settle upon a common denominator for comparison
of the two proéédures. In addition, all the previous comments regarding the
violation of equilibrium in the elastic range and the complications for the
imp]icif techniques thereof, hold true for this case as well. With this‘in
mind, one would tend to conclude that the efficiencies of the two procedures
are comparabie, although the pseudo force technique appears to have a slight
edge over the energy minimization technique when the entire structure responds
inelastically. The particular pseudo force technique code used here for com-
parison purposes provided the options of using either the central difference
or Adams predictor=corrector algorithm. O0f these two algorithms the former
was found to be the more efficient and hence it is used for comparison with the
energy minimization technique which employed variations of the Newmark-Beta
algorithm. One should note in passing, however, that the transient response
appears to be tremendously influenced by the values of g and v. This 1is
not to say that optimum values of -8 and vy exist which can guarantee optimum
fidelity of the response prediction. As a matter of fact, optimum values of
g and v appear to be very much problem dependent and it may indeed pay-off
to use a hybrid explicit-implicit (on-off) scheme.

Finally, Figure 5 provides the case of a structure bui]f~up from two
.dimensiona] membrane elements. The experimental results for the notched tensile
specimen are taken from [42]. A comparison of the running times for this

problem reveals that the time of execution using the pseudo force technique is
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nearly twice that reqﬁired by energy minimization. This may be in part due to
the fact that the pseudo force technique formulates the problem using the
incremental flow theory of piasfibity whereas the ehé?éy minimization technique
uses the simpler deformation theory of plasticity which postulates the exis-
tence of a strain energy density function of the total stresses and strains as
in Eq. (7). A comparison of the responses, however, brings out guite vividly
the effectiveness of both the techniques. It may be remarked in passing that
the preblem at hand could have equally well been formulated using the incre-
mental flow theory when energy minimization is used as the solution procedure:
The potential function, in this case, instead of being a function of the total
quantities need then be-expressed in terms of incremental quantities [20].
w{th the possible exception of the problem of Figure 5 all the other pro-

blems involve only a‘relative]y few degrees of freedom. However, based on the
results of Figures 1 through 5 it can be safely concluded that at least for
small scale problems the energy minimization techniqﬁe is better suited than
the pseudo force technique for solving highly nonlinear problems. If anything,
it is the extent of the inelasticity requiring very costly numerical volume
integrations which mars its performance. Ignoring the scale of the problem for
the moment, such a conclusion can have profound implications in the selection
of a technigue for analyzing the highly nonlinear crush response of vehicles
wherein inelastic deformations are usually confined to a very small portion of
the entire structure with a major portion behaving eithér elastically or like
a rigid body.

-Resu1ts_of‘Figures 1 through 5 certainly dispel thé skepticism with which
1nvestigator§ in the past have regarded the effectiveness of the energy minimi-

zation technigue. Needless to say, the solution algorithms of the pseudo
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force techniques can be considerzbly improved upon resulting in a much higher
efficiency. However, by the very repetitive nature of the computations of an
implicit technique like the ené?hy minimization technidie, savings of as high
as'50 percent in the computational effort may be-realized simply by an expert
restructuring of the computer logic alone.

It has been also claimed that the extension of the minimization- algorithms
to large scale problems is virtually impossible. One would not havé challenged
the Qeracity of such an assertion back in the sixties, but not any Tonger.
Within the past decade mathematicians and computer scientists have extended the

scope of the mathematical programming techniques significantly.

IV. Extension of Minimization Techniques to Large Scale Nonlinear Systems

Reference [17] concludes that for general nonlinear structural analysis,
Fietcher's variable metric method (BFGS) [18] with analytic gradients is the best
minimization algorithm of those considered therein. "This algorithm is initially
very slow in coverging to a solution presumably because it uses the null vector
as an inittal guesé for the unknown variables and the identity matrix as an
approximation to the inverse Hessian matrix [H]. Thus the solution for the
first‘éime or load step is a strong function of the total numbér of degrees of
freedom of the problem. The same is not true, however, of the subsequent time
or load steps. Having a good approximation to.the inverse Hessian [H] and a
good initial estimate of the variables the number of minimi;ations required
for convergence in subsequent steps is only a small fraction of the total num-
ber of deérees of freedom. A1though,'F1etcher'§ variable metric a]éorithm
is a very powerful tool its storage requirements (upper or Tower half of the

symmetric matrix [H] requiring n x (n + 1}/2 storage locations for a n

17



degree of freedom system) limits its applicability to swall scale problems.

To alleviate the problems of storage one could fall back upon conjugate gra-
‘dient algorithms of Fietcher-Rgeves (217 and Powell [22]. But both these
algorithms have been found to He'not nearlyas efficient as the variable metric
(BFGS) or the Davidon-Fletcher-Powel1's (DFP) algorithms [23] presumably be-
cause of some i1l-conditioning. So an extension of the minimization algorithms
to large scale problems centers on reducing the storage requirements of the
second order quasi-Newton methods (BFGS, DFP, etc.} or improving the efficiency
of the first order conjugate gradient techniques. It is essentially these

very features which ﬁaVe received the tremendous attention of the mathemati-
cians and the computer scientists in the past few years.

The convergence rate of the conventional conjugate gradient method has
been considerably improved by the use of preconditioning. Briefly, precondi-
tioning involves the modification of the residuals (components of the gradient
of the potential function) and working with the pseudo residuals rather than
the residuals themselves. The modification in designed to reduce the spectral
condition number of the Hessian of the potential surface and thereby accelerate
convergence td the minimum, Preconditioned conjugate gradient or generalized
conjugate gradient methods have been used for both Tinear and noniinear problems
with a great degree of success [24]-[28]. Recently, Axelsson has extended the
use of generalized conjugate gradient techniques to mixed finite element varia-
tional formulations [29]. Again, using preconditioning Axelsson [29] and
Widlund [30] have demonstrated the effectiveness of the generalized conjugate
gradient method in solving problems pertaining to nonpositive definite systems.
The details on the application of the generalized conjugate gradient techn{qUe

to nonlinear elliptic houndary value problems in irregular regions, as for
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instance the nonlinear problems of structural analysis using a Tinite element
d%scretizatipn, are found in reference {27]. An additional improvement is an
attempt to eliminate convergence problems resquing from round-off errors by
a modification of the linear searches [31]-[32].

In order to be able to use sécond order quasi-Newton methods for large
scale problems one has to exploit the fact that the Hessian of the potential
surface for most finite element discretizations is symmetric and banded with
a very narrow band width. However, the inverse of a banded matrix is not
necessarily banded and since most variable metric methods in their 0rjgina1
form required approximations to the inverse of the Hessian the fact that the
Hessian is banded could not be exploited. Recently however, several investiga-
tors [33]-[36] have modified the variable metric methods by utilizing anapprox-
imation to the Hessian rather thah‘its inverse in their march to the minimum
without destroying the sparsity of the approximation.during its updating at
every step. It has been shown that by doing so the modified method still
retains the convergence properties of the original method of Broyden [33] which
did not account for sparsity [37].' This is a major step in the direction of
extending the minimization techniques for the solution of large scale nonlinear
problems of structural .analysis.

Disgressing for a moment; the differential equations of motion describing
the nonlinear impulsive response of structures are stiff because of the pre-
sence of very high and low frequency components in the initial stages of the
response, In fact, a boundary layer phenomenon exists such that within the
boundary layer the use of a standard explicit integration technique will Tead
to stability and round-off problems or in the case of an implicit technique

will lead to inaccuracies which may destroy the reliability of the computed
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transient. Specialized techniques utilizing the concepts from the singuiar
perturbation theory have been used to tackle such stiff differential equations
[37]-[39]. When using minimization techniques to solve such problems the
boundary Tayer effect exhibits itself as—an 111-conditioned minimization prob-
lem. Boggs [40] has extended the singular perturbaéfOn techniques of Miranker
and others [37]-[39] to modify the conventional variable metric methods so as
to accelerate the convergence to the minimum Qa]ue.

Several other investigators [45]—[47]‘have advocated the use of self-
scéling variable metric algorithms. These algorithms use a two-parameter
family of approximations to the inverse Hessian and determine conditions on
one of the parameters to improve the condiﬁion numbér of the approximated
Hessian inverse. The gffectiveness of such scaling in conjunction with the
Hessian updates themselves rather than the inverse updates is a matter that
needs further investigation.

Thus, two alternatives are available in extending the minimization tech-
niques to 1érge scale nonlinear systems, namely: (i) the preconditioned con-
jugate gradient technique or {ii) the variable metric methods that exploit
sparsity and utilize singular perturbation theory or scaling to eliminate i11-
conditioning. The relative performance of these two alternatives is unknown
at the moment, but it is clear that they both offer the promise of Being abie
to solve extremely large scale problems efficiently. Their performance vis a
vis the pseudo force or other techniques remains to be estab1ish§d.

VI. Concluding Remarks

A comparative efficiency evaluation of the pseudo force technique {incre-
mental linearization - explicit) versus energy minimization techniques (non-

linear - implicit) is presented in this paper for the purpose of dispeling
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some of the skepticism of the past with regard to the effectiveness of the
energy minimization technilque. The use-of analytic gradients rather than
finite difference gradients significantly improves the efficiency of the energy
minimization ﬁechnique in the sélutjéﬁ;gf nonignééﬁ §%ructures problems. For
small scale problems the energyimiﬁiﬁ{zaﬁ?bp'%ecﬁﬁjqu;;is better suiteq than
the pseudo force technique for so]viﬁg highly nonlinear problems.

In the past few yeérs the mathematicians and computer scientists have
been attacking the problem areas which inhibit the extension of the minimiza-
tion algorithms to Targe scale problems. Two alternatives are presently
available, namely: (i) the p(econditioned conjugate gradient technique or

(ii) the variable metric methods that exploit sparsity and utilize singular

perturbation theory or scaling to eliminate i11-conditioning.
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Figure Legend

Figure No. Title
1 The- Rod-Spring Problem
2 Snap-Through of a Shallow Arch
3 Post-Buckling Elastic-Plastic Response of a
' Thin-Wailed CoTumn
4 Impulsively lLoaded Clamped Beam
5 The Notch Specimen
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