
N79-270 73 

aq GLOBAL OPTIMIU. SAILPLANE PLIGII'l' S'l'RA'l'BGY 

G. Sander and F. X. Litt 
University of Liege, Belgium 

SUMMARY 

The present paper concentrates on the derivation and intepretation of the 
necessary conditions that a sailplane cross-country flight has to satisfy to 
achieve the maximum global flight speed. Simple rules are obtained for two 
specific meteorological models. The first one uses concentrated lifts of vari­
ous strengths and unequal distance. The second one takes into account finite, 
non-uniform space amplitudes for the lifts and allows, therefore, for dolphin­
style flight. In both models, altitude constraints consisting of upper and 
lower limits are shown to be essential to model realistic problems. Numerical 
examples illustrate the difference with existing techniques based on local 
optimality conditions. 

INTRODUCTION 

The problems associated with the optimization of sailplane flight paths to 
achieve maximum cross-country speeds have recently received special attention 
in the literature. This has been stimulated by the modern competitive soaring 
which consists almost exclusively in racing and by the development of high 
performance sailplanes allowing for new, highly efficient flight techniques. 
Starting with the now classical MacCready [11 results, most of the investiga­
tions have been concerned essentially with local optimization problems, that 
is, finding the optimum flight strategy for various specific situations 
encountered in a short section of a flight [1 to 10]. 

In recent papers [2, 4, 5, 8] the optimum speeds to fly in a variety 
of atmospheric vertical velocity distributions have been det~rmined fram the 
basic assumption that the corresponding flight segments had to be crossed 
with zero net altitude loss. Conditions under which a transition fram the 
circling mode of climb to the dolphin or essing modes has to be decided have 
been examined [4]. Although such results yield extremely valuable guidelines 
for selecting a flight strategy, they only optimize the speed over a limited 
portion of the total flight. 

It is well known, however, in optimi~ation theory that a succession of 
locally optimum solutions does not, in general, lead to a globally optimum 
result [111. It is worth pointing out that a glohally optimum flight strategy 
can only be determined if the assumption is made that the distribution of 
atmospheric velocities over the whole flight path is known in advance and 
is independent of time. Although this is never achieved in practice, it is 
felt that the derivation of global optimality conditions allows for a new 
insight into the sailplane flight technique by giving a posteriori the deci­
sions that the pilot should have taken and the influence of factors that have 
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been up to now neglected in the analysis, such as the effect of the unequal 
distribution and strength of the lifts and the effect of minimum and maximum 
altitude limitations. Such altitude constraints reveal an essential ingredient 
in the formulation. Their necessity appears as follows. If they are absent 
and if the lifts are of unequal strength, the globally optimum solution turns 
out to be trivial and consists of a glide until the maximum lift existing 
along the pa~h is reached and a climb to an altit~e that allows completion 
of the task, the speed on both segments corresponding to the MacCready setting 
for that strongest lift [12]. 

The present paper provides simple rules for global optimality for two 
simple atmospheric models. These appear to be in agreement with the techniques 
intuitively used by good competition pilots. 

PROBLEM FORMULATION 

In both atmospheric models used in the following, the horizontal (wind) 
velocity of the air mass is assumed to be either zero or to be taken into 
account by an appropriate modification of the polar equation. The vertical 
velocity (lift) of the air mass ci is defined by the so-called netto value. 
It is constant in the vertical direction between the altitude limits. The 
flight path is supposed to be constituted by a succession of segments of vari­
able lengths in which the air mass exhibits vertical velocities ci which are 
constant along a given segment but vary from one to the other. The altitude 
constraints consist in constant upper and lower limits denoted hand h. 
Note that variable altitude limits could be easily incorporated. For simplic­
ity the lower altitude limit is taKen as zero (h sO). 

Concentrated Lift Model 

In a first model, the lengths of the segments where a positive vertical 
velocity is encountered are supposed to be negligible, that is, the lifts ar~ 
considered as concentrated. The air mass between the lifts is supposed to be 
stable. Climbing is therefore achieved only by circling at fi.xed locations 
corresponding to the lifts. If a lift is not used, its crossing is supposed not 
to affect the glide and the dynamical aspects of the transition from gliding 
to circling are not considered. The model is illustrated in figure 1 which is 
drawn in the vertical plane. The signs of the velocities are taken according 
to the posi t i ve s i 91'\ of the axes. 

The flight consists of a succession of climbs in the selected lifts fol­
lowed by a glide at constant speed which possibly crosses discarded lifts. The 
pilot controls the selection of the lifts where he decides to gain altitude, 
the amount of altitude gained, and the speed to fly between the selected lifts. 
During the climbs the vertical speed of the sailplane is simply taken as the 
algebraic sum of the air mass vertical velocity and the mirimum sinking speed 
of the glider. The increase of sinking s~ed due to variations in bank angle 
is not considered explicitely and should be incorporated in the polar definition. 
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The variations in altitudes are given by 

i = 0,1, ••• ,n-1 (1) 

9,. 
1 

where the sinking speed w(vi) is given by the polar equation. The classical 
quadratic approximation has been used for numerical examples 

W = A v2 + B v + C (2) 

The time spent at each step consists of the sum of the time used in climb­
ing and the transition time between lifts 

i 0,1 , ••• , n-1 (3) 

The achieved rate of climb is the sum of the air mass velocity ci and the 
glider minimum sinking speed wm. The constraints on the altitude and altitude 
gains are expressed by 

A control constraint lI.hi ~ 0 (4) 

Initial and terminal ho = 0 h2n = 0 ( 5) 

constraints, say 

Altitude constraints h2i+1 S h; h2i ~ 0 (6) 
at each step 

i '" 0, 1 , ••• , n-l 

The mathematical problem can be treated by the classical discrete optimal con­
trol theory [111 and consists of finding the sequence(s) lI.ho , vo ' lI.h1, v" ••• , 
vn-1 which satisfy the relations (1), (4), (5), and (6) and minimizes the total 
flight time 

n-1 

T'" L !t2i + t2i+') 

i=O 

. . . 

(7) 
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Distributed Lift Model 

In this second model, the length of the segments is always finite and non­
vanishing. Between lifts the air mass may present negative vertical velocities 
so that any desired air mass vertical balance can be achieved. The model is 
illustrated in figure 2. An important difference with the preceding model is 
brought by the possibility of crossing a lifting segment at a horizontal speed 
Vi less than the speed corresponding to the minimum sinking speed wm. This 
is achieved by using the equivalent polar illustrated in figure 3 and already 
used in other similar works [4]. For horizontal speeds less than that corre­
sponding to the minimum sinking speed, the sinking speed remains constant. This 
appears to be sufficiently accurate to simulate the transition from pure dolphin 
flight to essing or circling or a combination of equivalent manoeuvers achieved 
to cross a lifting area in the time reqJired to gain a certain amount of alti­
tude. Note that the same approximation is used as the basis for speed control 
in same modern instrumentation. In the numerical applications, the quadratic 
approximation (2) remains applicable at speeds higher than v(wm). 

The variations in altitude are governed by 

hi+1 - hi = --------- i = 0,1, ... ,n-1 (8) 

If Vi ~ v(wm), then W = wm = Constant and thus the altitude gain is entirely 
controlled by the equivalent horizontal speed Vi' The altitude gain no longer 
appears as an explicit control variable. The time spent in each segment is 
given by 

while the 

Jl. i hi+1 - hi 
ti = = 

Vi w(vi) + ci 

alti tude constraints read 

At initial and terminal 
points 

At each step 

he = 0 

i = 1, 2, ••• , n-1 

The mathematical problem consists of finding the sequence(s) vo ' v1, ... , 
vn-1 satisfying the relations (8), (10), and (11) and minimizing the total 
flight time 

T ,. 
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NECESSARY OPTIMALITY CONDITIONS 

The first-order necessary conditions for optimality can be deduced by the 
classical methods of discrete optimal control [11]. Such methods have been 
used in previous work [4, 6]. A detailed treatment can be found in [12, 13] 
for the two atmospheric models presented here, as well as for certain more com­
plex situations. The conclusions are summarized as follows. 

Concentrated Lift Model 

The Hamiltonian turns out to be 

(13) 
ti w(vi) 

H(h2i+1' Vi' P2i+2' po, 2i+1) = po + P2i+2 ti 

It has to be maximized with respect to ~hi or Vi for each i. The so-called 
adjoint variables Pi have to satisfy the relations 

po - P1 :: 0 

P2i+1 - P2i+2 = A2i+1 

A2i+1 (h2i+1 - h) :: 0 

P2i - P2i+1 = -A2i 

i = 0, 1 , ••• , n- 1 

A2i+2 ~ 0 

i = 1, 2, ••• , n-1 

where the Ai are Lagrange multiplier~. From those conditions, it can be 

(14) 

shown [12] that a reduced set of adjoint variables no' n1, •.. , nn-1, WO ' W1, 
••• , ~n-1 and of Lagrange multipliers ~1' ~2' ••• , ~n-1 can be derived which, 
in an optimal solution, have to satisfy the following conditions 

~2i+1 (h2i+1 - h) = 0 ~2i+1 ~ 0 i = 0,1 , .•. , n-1 (15) 

~2i h2i :: 0 ~2i ~ 0 i :: 1 ,2 , ••• , n-1 (16) 

flhi ~ 0 ni ~ 0 ni tlhi = 0 i 0,1, ••• ,n-1 (17) 

Tli+1 ,. Tl i + ci - ci+1 + ~2i+1 - ~2i+2 i :II 0,1, •.• ,n-2 ( 18) 

dw(vi) 
Vi - w(vi) + Wi = 0 Wi > 0 i = 0,1 , ••• , n-1 (19) 

dvi 
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~i+1 = ~i - ~2i+2 + ~2i+3 i = 0,1, ••• ,n-2 (20) 

~ i = T'l i + 9 i + wm + ~ 2 i + 1 i = 0,1, ••• ,n-1 (21) 

Distributed Lift Model 

The optimal solution (hi' vi) must be such that the Hamiltonian 

1i w(vi) + ci 
H (hi' vi' PH1, po, i) = po _ 

+ PH1 1i (22) 
Vi Vi 

i = 0,1, ••• ,n-1 

is maximized with respect to Vi for each i. The adjoint variables Pi have 
to satisfy the relations 

po - P1 = 0 po ~ 0 

(1) (2) 
1 ,2 , ••• , n- 1 Pi - Pi+1 = -Ai + Ai i = 

(23) 
(1) (1) 

Ai hi 0 Ai ~ 0 

(2) 2 
Ai (hi h) = 0 Ai ~ 0 

(1) (2) 
where Ai and Ai are Lagrange multipliers. Again a set of reduced vari-
ables and Lagrange multipliers 

( 
(1) (1) (2) (2») 

~o'·"'~n-1,J.I1 ,···,J.In-l, lJ l ,···,J.In-1 

allows to present the optimality conditions in a more suitable form which turns 
out to be [13] 

(1) 
J.Ii hi = 0 

(1) 
IJ i ~ 0 

i ,. 1,2, ••. ,n-1 (24) 
(2) 

IJ i (h i-h) = 0 
(2) 

IJ i S 0 

- w(vi) - ci + ~i • 0 i '" 0,', ••• , n- 1 (25) 
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(1 ) 
1I1i = l/!i-1 - ]..Ii 

(2) 
+ ]..Ii 

PHYSICAL INTERPRETATION 

i = 1, 2, ••• , n-1 (26) 

i = 0, 1 , ••• , n- 1 (27) 

The interpretation of the two sets of optimality conditions follows similar 
lines. A first conclusion is drawn from equation (19) or (25) which governs 
the speed to fly in a segment. Note that equation (25) reduces to equation (19) 
if the air mass vertical velocity ci is zero, as assumed in the first model. 
F~om figure 3, the reduced adjoint variable Wi appears to correspond to a 
classical MacCready setting and indeed equation (25) appears in most other works 
on optimization [4, 5, 8]. In the following, the notation MCS(ci) denotes the 
setting corresponding to an air mass velocity ci as defined by equation (25). 
The next interpretation concerns the Lagrange multipliers ]..Ii in equation (15), 

(16), or (24). '1'hese multipliers are zero in entering (]..I2i or 111
1») or leav­

ing (]..I2i+1 or ]..I~2») a segment if the LAL (lower altitude limit) or UAL (upper 
alti\ude limit) is not reached. 

From equation (20) or (26) the important conclusion is drawn that the MCS 
cannot change from a segment to the next one unless either the UAL or the LAL 
has been reached, that is, if one of the Lagrange multipliers ]..I becomes nega­
tive. If, and only if, the UAL is reached, then the MCS may be reduced. Con­
versely, the MeS may be increased only if the LAL is touched. To proceed fur­
ther with the interpretation requires distinguishing between the two models. 

Concentrated Lift Model 

The reduced adjoint variables ni appears from equation (17) as indicators 
of whather the lifts ci may be used (ni = 0) to climb or not (ni > 0). With 
these results in mind, it becomes easy to deduce from equations (la), (20), 
and (21) the logic for deriving iteratively the optimum solution. 

Consider the beginning of the flight at a location where a lift A exists. 
Denote by B the first lift stronger than A along the flight path. The follow­
ing iterative reasoning can be made. If B can be reached from the UAL in A with 
a MeS(A), that is, a MCS corresponding to the lift A, then one has to climb 
in A just enough to reach Bat LAL with a MeS(A). If B cannot be reached with 
MeS{A) even when climbing at UAL in A, then climb to UAL in A and look fo~ the 
next best lift, denoted C, between A and B. Evidently C < Band C $ A. Try 
to reach Bat LAL with a MCS inferior to MeS(A) but superior to MCS(C). If this 
is impossible because C cannot be reached, then restart the reasoning with A 
unchanged and B replaced by C: if this is impossible because B cannot be reached, 
then take a MCS(C) to reach C and restart t~e reasoning with B unchanged and 
A replaced by C. 
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Consider now the case where a lift A is stronger than all remaInlng ones 
on the flight path. Denote by B the strongest of the remaining lifts. Unless 
in the special case where the task could be ended from A with a MCS(A) without 
climbing up to the UAL, one necessarily has to climb up to the UAL and take a 
MeS superior to the MCS(B) but equal or inferior to the MeS(A). If the task 
cannot be ended, reach B with a MCS(B) and climb in it up to the UAL. Repeat 
the reasoning in B for the next strongest lift. If B cannot be reached from 
A with MCS(B), look for the best lift between A and B, denoted C, and try if 
B can be reached at LAL with a MeS between MCS(B) and MCS(C). If necessary 
climb in C if the MCS is equal MeS(C). If it is impossible to reach C at LAL 
with a MeS(C) look for the best lift, say D, between A and C and repeat the 
reasoning. If there is no lift, try MCS(O). If it still does not work, the 
flight is evidently impossible. 

A combination of the two reasonings proposed above for increasing or 
decreasing lifts allows the construction of the optimal solution. Note that 
it is not necessarily unique. 

It is worth pointing out that the optimal solution leads always when going 
from a lift A to a lift B to use a MCS corresponding to the weaker of the two 
lifts. If A > B the UAL has to be taken in A while B has to be reached at LAL 
if A < B. Similar conclusions have been obtained independently by a variational 
approach in [14). 

Distributed Lift Model 

In this model, the decision to gain altitude in a lift is dictated by equa­
tion (27). If Wi > wm + ci the speed Vi is larger than vi (wm) and there­
fore is uniquely determined by equation (25). The lift has then to be crossed 
at the corresponding speed. This appears to be a pure dolphin mode. If, and 
only if, $i = wm + ci the decision of climbing may be taken as the speed Vi 
becomes equal to or smaller than the speed v(wm). Indeed, due to the form used 
for the equivalent polar, the speed Vi cannot be computed by equation (25). 
Its value is dictated by the need to gain a certain amount of altitude in that 
lift, given by 

(28) 

If the speed Vi is inferior to Vi (wm), lIhi is larger than the value 
obtained in pure dolphin mode which implies that some sort of manoeuver like 
essing and/or circling is achieved while flying through the segment. 

Except for the process of gaining altitude in a non-dolphin mode, the con­
clusions reached for the preceding model are still valid. From equation (26) 
the MCS may not be changed unless the altitude limits are reached. It Rlay 
increase only if the LAL is touched and may decrease only when reaching the UAL. 
The process for constructing numerically an ortimum solution is as follows. 
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Start by trying to use the MCS of the best existing lift, say A, for all 
the segments. If the LAL is not reached, increase the setting until either 
the task can be ended or the LAL is reached. At that point, the MCS may be 
increased. 

If the MeS corresponding to the best lift allows reaching the LAL before 
the segment where it occurs, look for the strongest lift between the present 
point and A. Denote it by B. Then try to reach A at the LAL with a MCS(B). 
If this is not possible, climbing in B is allowed. If B cannot be reached with 
a MCS(B), look for the best lift betw~en the present point and B and repeat the 
reasoning as necessary, keeping in mind the rules that allow climbing in a lift 
and those that allow changing the MCS. 

NUMERICAL EXAMPLES 

Concentrated Lift Model 

As a simple example, a 300 km flight is schematized in figure 4. The lifts 
are equidistant (10 km) for simplicity although it is by no means implied in 
the preceding rules for optimality. The lift strengths are indicated in m/sec 
along the y-axis. They increase progressively during the flight, then decrease, 
but are in general unequal. The altitude limits are 0 and 1000 m. The sail­
plane polar is approximated by 

w = -1.65 10-3 v2 + 61.6 10-3 v - 1.026 (m/sec) 

and corresponds to a dry open class ship. The optimal strategy for that lift 
distribution and altitude constraints is illustrated in figure 4. The MCS for 
each glide is indicated. It follows as a simple and systematic application of 
the rules for optimality established above. Note that the flight strategy con­
sists in hitting systematically the altitude limits, except at 110 km and 170 km 
where the altitude just necessary for reaching the next best lift at LAL is 
gained. Note also that the MCS is not always equal to the strength of one of 
the two lifts defining the glide. Finally, note that this example justifies 
the practical rule of flying "low" when the lifts are improving and keeping 
"high" when they are deteriorating. The cruising speed for that flight is 
81.01 km/h. 

As a test for the sensitivity of the speed with respect to the MeS, the 
same problem has been solved with the additional constraints of keeping the same 
MeS which implies the same speed between any two selected lifts. The optimal 
MeS for that situation has been obtained in [13] in the form 

L 
~) ,. (29) 

" Q, i )--
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where L is the total length of the flight (300 km) and ci + wm is the 
achieved rate of climb in each selected lift. Note that the selection of the 
lifts is hi~hly dependent upon the altitude limits. In the present example 
~ = 1.23 m/sec and the corresponding constant speed between the thermals is 
133 km/h. The new constrained optimal speed becomes 79.51 km/h which differs 
by only 1.85' from the exact optimum. Although some restrictions have to be 
mentioned (see [13]) concerning the applicability of equation (29) in a general 
case, it indicates clearly that in an atmosphere corresponding to the present 
model, the MCS is much less important than the correct selection of the lifts. 
This is again well known for many competition pilots [15]. 

Distributed Lift Model 

The flight polar has been approximated by 

w(v) : -1.896 10-3 v2 + 77.8 10-3 v - 1.27 (m/sec) 

which corresponds also to a dry open class glider and to the model used in (4) 
and [5]. Three distributions of lifts have been selected clnd are presented in 
figures 5, 6, and 7 and denoted flights I, II, and III. These flights are all 
200 km long and correspond to different weather conditions. In flight I the 
lifts are relatively concentrated except at two places and their strengths are 
rather different from each other. The length of the lifting zones represents 
36% of the total which is rather critical for the transition from thermaling 
to dolphining [4). The air mass balance is positive, that is, the average over 
the distance of the air mass (netto) vertical velocities yields 0.39 m/sec. 
In flight II the lifting zones represent 31% of the distance and their strengths 
are much more similar to each other. The lifting and sinking areas exactly bal­
ance each other: that is, not only the average vertical velocity is zero, but 
the air mass is organized in a succession of cells which are 20 to 40 km long 
where the exact air mass balance is also achi~ved. This allows for using the 
classical rules for local optimality [4] in crossing these cells and compares 
with the globally optimal solution. In flight III the lifts are weaker and 
their strengths still closer to each other. The lifting zone represents 49% of 
the total. The air mass balance yields 0.236 m/sec and the lifting zones are 
again organized in cells tn which approximately the same air mass balance is 
maintained. For each of these atmospheric models three upper altitude limits 
have been considered h = 1000 m, 1500 m, and 2000 m. The LAL has been kept 
at h: 0 which is evidently not necessarily the ground level. 

The numerically obtained optimal solutions are illustrated in tables I, 
II, and III in digital form and in figures 8, 9, and 10 in graphical form. The 
satisfaction of the optimality conditions described above are easily verified. 
The lifts in which gaining altitude in circling or essing are indicated as well 
as the corresponding equivalent horizontal speed which is then smaller than 
the speed of minimum sink v (wm) : 20.52 m/sec. In the other segments, crossed 
in dolphin mode, the optimum MCS is given. Note that Wm = 0.47 m/sec. The 
influence of the altitude limits is illustrated by the following table: 



, 
= Unlim; te~l toh = 1000 m toh = 1500 m toh = 2000 m toll -

Flight I v = 94.5 97.94 100.19 100.57 

Flight II v = 73.76 81.2 83.10 84.20 

Flight III v = 85.87 87.98 88.16 I 88.16 

where toh is the allowed altitude range and v is the optimum average speed 
in km/h. The application of vari0us non-globally optimal flignt strategies 
based on the use of existing rules for optimizing the speed in each individual 
meteorological cell [4, 5J resulted in average speed from 5 to 15\ inferior 
depending on the allowed altitude limits and on the various conditions selected 
in applying these rules. 

CONCLUSIONS 

Simple rules for obtaining numerically the optimum flight strategy in two 
meteorological models have been obtained. Their applications reveal that the 
altitude limits imposed for the flight may have, as known from experience, a 
much more significant influence on the achieved speed than the selection of MeS. 
Additional investigation is required to determine the relation beween the vari­
ous possible wenther profiles and the optimum flight strategies as well as 
altitude limits influence. The in flight recording of such atmospheric profiles 
over rather long distances would allow for studying systematically the optimum 
sol~tion corresponding to a number of classical situations. 
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SYMBOLS 

A,B,C flight polar coefficients 

Ci air mass netto vertical velocity 

hi altitude 

h upper altitude limit 

H Hamiltonian 

ii flight segment length 

Pi adjoint variable 

ti elapsed time 

T total flight time 

Vi horizontal speed 

w sailplane sinking speed 

Wm minimum sinking speed 

Ai,ni'~i Lagrange multipliers 

~i reduced adjoint variable MCS 

i index of a flight segment 

UAL, LAL upper (lower) altitude limits 

MCS MacCready setting 
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Segment 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

Speed 

368 

TABLE I.- OPTIMAL SOLUTION FOR FLIGHT I 

H • 1000 m H • 2000 m max max 

no. MCS h v. Mode MCS h out v. Mode out 1 1. 

0.53 425 0.6 C 0.53 425 0.6 C 
0.53 0 30.8 D 0.53 0 30.8 D 
1.03 481 1.0 C 1.03 481 1.0 C 
1. 03 0 34.8 D 1. 03 0 34.8 0 
2.03 732 2.7 C 2.03 732 2.7 C 
2.03 288 41. 7 D 2.03 288 41. 7 0 
2.03 213 38.4 0 2.03 213 38.4 0 
2.03 233 34.8 D 2.03 233 34.8 0 
2.03 0 44.7 0 2.03 0 44.7 D 
3.03 164 34.8 D 3.03 164 34.8 D 
3.03 1000 18.1 C 3.03 1781 9.3 C 
1. 57 646 47.8 D 3.03 1396 55.3 D 
1. 57 356 45.0 D 3.03 1069 52.8 D 
1. 57 249 35.0 D 3.03 826 44. 7 D 
1. 57 350 31.0 D 3.03 749 41. 7 D 
1. 57 712 21.0 D 3.03 913 34.8 0 
1. 57 53 42.0 D 3.03 121 50.3 0 
1. 57 0 35.1 D 3.03 0 44.7 D 
4.61 268 42.2 D 4.03 370 38.4 D 
4.61 1000 27.0 0 4.03 2000 12.3 C 
1. 38 428 43.8 0 2.69 1365 51.1 D 
1. 38 0 40.7 0 2.69 858 48.5 D 
1. 53 858 8.9 C 2.69 1056 32.1 0 
1. 53 437 38.4 D 2.69 506 45.7 D 
1. 53 0 41.7 D 2.69 0 48.5 D 

94.54 km/h 100.19 km/h 

h • altitude at the end of the segment (meters) out 

Mode • D for dolphin 

C for climbing with v. < v.(w ) 
1. 1. m 

MCS. v. am/sec 
1. 



Segment 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1 
12 
13 
14 
IS 
16 
17 
18 
19 
20 
21 

Speed 

TABLE 11.- OPTIMAL SOLUTION FOR FLIGHT II 

H - 1000 m H .. 2000 m max max 

no. MCS h out v. Mode MCS h out v. Mode 
1. 1. 

0.53 447 2.9 C 0.53 447 2.9 C 
0.53 284 30.8 D 0.53 284 30.8 D 
0.53 541 20.5 D 0.53 541 20.5 D 
0.53 0 38.4 D 0.53 a 38.4 D 
I. 03 617 8.3 C J. 03 617 8.3 c 
1. 03 0 38.4 D I. 03 0 38.4 D 
2.03 1000 10. I C 2. 03 2000 5.0 C 
I. 03 443 41.7 D 2.03 1398 47.6 D 
1. 03 237 38.4 D 2.03 1165 44.7 D 
1.03 181 30.8 D 2.03 1)14 38.4 D 
I. 03 895 7.2 C 2.03 1 149 30.& D 
I. 03 278 38.4 D 2. 03 450 44.7 D 
I. 03 0 41 .7 D 2.03 149 47.6 D 
2.03 1000 10. 1 C 2. 03 2000 5.5 C 
0.53 729 38.4 D 1. 53 17 1 1 44.7 D 
0.53 144 34.8 D I .53 1055 41 .7 D 
0.53 390 10.6 C I. 53 l 215 30.8 D 
0.53 781 30.8 D 1.53 1074 38.4 D 
0.53 a 34.8 D I. 53 200 41.7 D 
I .53 1000 7.6 C 1. 53 1092 8.6 C 
0.78 0 36.7 D I. 53 0 41 • 7 D 

73.76 km/h 83.10 km/h 

h .. altitude at the end of the segment (meters) out 

Mode • D for dolphin 

C for climbing with v. < v.(w ) 
1 1 m 

MCS. v. .. m/ sec 
1. 

369 



TABLE 111.- OPTIMAL SOLUTION FOR FLIGHT ill 

H - 1000 m H -2000 m max max 

Segment no. MCS h v. Mode MCS h out v. Mode out 1 1 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
II 
12 
) 3 
) 4 
15 
16 
17 
18 

Speed 

370 

0.53 364 3.6 C 0.53 364 3.6 C 
0.53 200 30.8 D 0.53 200 30.8 D 
0.53 586 20.6 D 0.53 586 20.6 D 
0.53 0 34.8 D 0.53 0 34.8 D 
I. 03 999 20.6 D .03 999 20.6 D 
1.03 594 47.6 D .03 594 47.6 D 
I. 03 37 41.7 D .03 37 41.7 D 
1.03 968 ) 6.6 C .03 968 ) 6.6 C 
I. 03 4) I 41.7 D .03 4 I I 41.7 D 
I. 03 0 38.4 D .03 0 38.4 D 
I. 53 1000 15.3 C .53 1737 8.~ C 
0.56 608 35.0 D .53 1299 41.7 D 
0.56 208 44.9 D .53 887 50.3 D 
0.56 587 20.8 D .53 1046 30.8 D 
0.56 0 35.0 D .53 390 41.7 D 
I. 03 673 15.3 C .53 759 26.2 D 
I. 03 617 30.8 D .53 656 34.8 D 
1.03 0 38.4 D .53 0 4 I • 7 D 

85.87 km/h 88.16 km/h 

h altitude at the end of the segment (meters) out 

Mode = D for dolphin 

HCS, 

C for climbing with v. < v.(w ) 
11m 

v. = m/sec 
1 

. , 
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Figure 1.- Concentrated lift model. 
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Figure 2.- Distributed lift model. 
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w eq.(19),I2S) '" v,!itt +,1'. -c· -W(V) = 0 V 'd'l '+', l l 
l 

a· = '!.·-c· = MCS 
" "fIl l 

w.. -- -- -- ------ ----- --- ----- .-- ----.-- ---- .. ---------. 
l 

Figure 3.- The equivalent polar. 

altitudes 
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Figure 4.- Optimum flight strategy. 
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DISTRIBUTED LIFT MODEL 

25 

4.5\ Clem/sec) 

2 
1.5 

flight segment no. 1 2 3 4 S 161 7 e 9 10 
c· (m/sec) 1 0 1.S 0 2.5 I 0 .5 1 -.5 2 
I ~ (km) .5 19.5 .5 19.5 1 14 5 5 5 5 l 

11 12 13 14 15 16 17 18 19 20 21 22 23 24 I 25 
3.5 -1.5 -1 .5 1 2 -.5 .5 2.5 4.5 -1 -.5 2 o 1-.5 
5 5 5 10 10 5 15 1 5 10 5 10 10 5 15 10 

L = ~ Ii. = 200 km 

c = ~c(li. = 39..m... 
L . sec 

LIFTING ZONES = 36 % 

Figure 5,- Lift distribution for flight I. 

DISTRIBUTED LIFT MODEL 

2.5 

-1 -1 

fHght segment no. 1 2 
c· (m/sec) 1 0 
II (km) 2.5 7.5 l 

11 12 13 
1.5 -.5 -1 
5 15 5 

3 4 
1 -1 

10 10 

14 15 
2.5 -1 
5 5 

2.5 

-1 

S 6 7 
1.5 -.5 2.5 
5 15 5 

15 17 18 
-.5 1 0 
15 15 5 

8 9 
1 -.5 

10 5 

19 20 
-.5 2 
20 5 

10 
.5 
10 

21 
-.5 
25 

L = ~ Ii. = 200 km 

c = :Eclli. = 0 m/sec 
L 
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Figure 6.- Lift distribution for flight II. 
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DISTRIBUTED LIFT MODEL 
2 

-2 -2 

flight segment no. 1 2 3 4 5 6 7 8 9 10 
Ci (m I sec) 1 0 1 -.~ 1.5 -2 -1 1.5 -1 -.5 
Ii. ( km ) 2.5 7.5 15 '5 20 5 10 15 10 10 

11 12 13 14 15 16 17 18 

L = ~ Ii. = 200 km 

- - ~C;Ii. - 236 m c_ -.-L sec 
2 -.5 -2 1 -.5 1.5 .5 -:5 
10 10 5 15 15 10 10 IS LIFTING ZONES = 49% 

Figure 7.- Lift distribution for flight III. 
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o 100km 1S0km 

© climbing wlth vi. < vJwml 

Figure 8.- Optimal ~;(d\lt 1,)1\ f"t' fLi<Jht I. 
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Figure 9.- Optimul solution for flight II. 
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Figure 10.- optimal solution for flight TIl. 
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