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TREATMENT OF THE CONTROL MECHANISMS OF LIGHT AIRPLANES
IN THE FLUTTER CLEARANCE PROCESS

Eimar J. Breitbach*
Langley Research Center

SUMMARY

Recently, it has become more and more evident that many difficulties
encountered in the course of aircraft fluttec analyses can be traced to strong
localized nonlinearities in the control mechanisms. To cope with these prob-
lems, more reliable mathematical models paying special attention to control
system nonlinearities may be established by means of modified ground vibration
test procedures in combination with suitably adapted modal synthesis approaches.
Three different concepts are presented in detail,

INTRODUCTION

At first glance the flutter clearance of soaring and light airplanes does
not seem to raise any serious problems which cannot be solved by means of
today's aeroelastic tools., This is true even for the determination of the
unsteady aerodynamic loads as long as cases with large aspect ratios at compa-
rably low speeds are considered. The elastodynamical characteristics can be
determined by using common experimental or analytical methods if structural
linearity can be assumed to be a proper approximation. However, as experience
has shown, the control mechanisms of light airplanes‘ are generally nonlinear
to such a large extent that setting up a dependable mathematical model requires
special attention, including modifications to standard linearized procedures.

In the first part of this paper some of the most frequently occurring types
of control-system nonlinearities are described. To get an idea of the influence
of some typical nonlinearities on the aeroeclastic stability the results of wind
tunnel flutter tests on a nonlinear wing aileron model are presented. After
that, it is shown in detail how the aercelastic equations of light airplanes
with localized nonlinearities may be formulated by using various suitably modi-
fied ground vibration test (GVT) procedures all based on the well-known modal
synthesis approach. The shortcomings as well as the usefulness of the different
concepts are discussed.

#*NRC=NASA Senior Resident Research Associate.

YLight airplanes as sued in this paper include both powered and unpowered
vehicles where the power to the flight control system is supplied by the pilot
without electrical or hydraulic boost through a system of cables, pulleys, push-
rods, bellcranks, or other mechanical linkages.
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SYMBOLS

hinge axis coordinates of control surfaces and tabs, respectively .

mass, damping, and stiffness matrices, respectively, defined in terms
of geometrical displacements

matrices of mass, damping, and stiffness changes, respectively,
defined in terms of geometrical displacements

equivalent linear stiffness of a nonlinear force deflection diagram,
defined in equations (1) and (2)

center-of-gravity coordinates of control surfaces and tabs,
respectively

force or moment acting on a control surface or tab
column matrix of constraint functions g3
bending deflection of the quarter-chord line of lifting surface

mass moments of inertia per span unit of control surface and tab,
respectively, referred to the center of gravity

IRxsIRys IRz mass moments of inertia of control surface referred to the main
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axes ¢ inertia
span width coordinate
control-surface mass
mass per unit span of control surface and tab, respectively
generalized mass, damping, and stiffness matrices, respectively

generalized matrices taking into account mass, damping, and stiffness
changes, respectively

column matrix of external forces

column matrices of generalized coordinates
colurm matrix of generalized forces

time

inertia energy

column matrix of geometrical deflections

stiffness energy



v flight speed

W damping energy

X,Y transformation matrices, defined in equations (53) and (55)
a rotation about the quarter-chord line of lifting surface

8 control-surface rotation about the hinge line

Y tab rotation about tab hinge line

n rotation of a control surface referred to its center of gravity

6 damping loss angle

A column matrix of Lagrange's multipliers Ag

A diagonal matrix of the square values of the normal circular
frequencies

oY modal matrices

W circular frequency

1 unity matrix

o zero matrix

j = =1 imaginary unit
Subscripts:

A,B,C,R,v,t substructures indices

2 constraint index, 2 =1, 2, « « «+ O

r normal mode index

g€ indices referring to o constraints ané € independent coordinates
NL index referring to nonlinear properties

L index referring to linear properties

Superscripts:

T transposed matrix

A,B indices referring to substructures A and B

" real, imaginary part
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GENERAL REMARKS
Sources of Control-System Nonlinearities

Aeroelastic investigations are usually carried out on the basis of simpli-
fied linearized mathematical models. In many cases this approach has been ade-
quate to ensure sufficient flutter safety margins for light airplanes. However,
in the last few years, it has become evident that disregarding nonlinear phenom-
ena can lead to hazardously misleading results. For example, it is shown in
reference 1 that so-called concentrated or locaiized nonlinearities in control
systems have a significant effect on the flutter behavior. Nonlinearities of
this kind may be produced by such things as

(1) Backlash in the joints and linkage elements

(2) Solid friction in control-cable and pushrod ducts as well as in the
hinge bearings

(3) Kinematic limit: :ion of the ..ontrol~surface stroke

(4) Application of special spring tab systems provided for pilot handling
relief

The most critical parts of a control mechanism where localized nonlinearities
may arise are shown schematically in figure 1.

An aeroelastic investigation may become even more complicated if it is
necessary to account for items such as the following:

(1) Preload changes due to maneuver loads and specially trimmed flight
attitudes

(2) Changes in friction and backlash over an airplane's lifetime

(3) Additional mass, stiffness, and damping forces randomly activated by
the pilot

Coping with all these difficulties requires special measures throughout the
flutter clearance process. First, the ground vibration test (GVT) used to
determine the elastodynamical coefficients of the flutter equations has to be
modified so that a consistent and superpositionable set of orthogonal, or
well-defined nonorthogonal, normal modes can be measured.

In reference 2 a proposed experimental approach employs a high frequency
auxiliary excitation superimposed upon the much lower sinusoidal excitation to
be tuned to the several normal frequencies. Thus, "elip-stick®™ effects and
related nonlinearities in the control mechanisms can be minimized. The method

requires additional test and control devices capable of exciting all controls
simultaneously.

Of course, the simplest solution appears to be to build control-surface
mechanisms without either fricticn or backlash. However, aside from a consider-

440




L ]

=
-

able increase in manufacturing costs, there is no guarantee that such an ideal
condition could be kept unchanged for the lifetime of an airplane. Moreover,
a frictionless control system is not necessarily equivalent to better nandling
qualities, because friction helps give the pilot the “feel®™ of flying the
airplane.

From an experimentalist's standpoint, there are some simpler, but effective,
methods using special modal coupling and modal superposition approaches. A
detailed presentation of some of these methods is given in the subsequent sec-
tions of this paper. They will be referred to as Concepts I, 1I, and III.

Illustrative Examples of Control-System Nonlinearities

To get a realistic impressicn of control-mechanism nonlinearities, the
force deflection diagrams F(B) of the rudder and aileron system (antisymmet-
rical and symmetrical case) of a soaring airplane (ASW-15, A. Schleicher,
Poppenhausen, W. Germany) are shown in figures 2(a), 3(a), and 4(a). Using the
principle of the energetic equivalence (refs. 1 and 3) the stiffness and damp-
ing properties of a nonlinear force deflection diagram can be approximated by
the so-called equivalent complex stiffness:

Ce(B) = Co(B) + 3 ColB) (G = V) M)

1] L]
The coefficients Cg(B) and Cg(B), representing stiffness and damping, respec-
tively, can be calculated from

' 1 2n w
CelB) = — ‘g F(B cos ¢, -Bw sin ¢) cos ¢ dd
“B ¢30
(2)
- 1 2N
Ce(B) = — ) F(8 cos ¢, -Bw sin ¢) sin ¢ dd
“B ¢no

J

where the circular frequency w = 2nf (where £ 1is frequency in hertz) and
the integration variable ¢ = wt. Damping can also be expressed by the loss
angle

Ce (B)
Ce (B)

ee(B) - (3)
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The functions Cg(B) and Cg(B) corresponding to the force deflection diagrams
of figures 2(a), 3(a), and 4(a) are plotted in 2(b), 3(b), and 4(b), respec-
tively. Figure 3(b) shows that the antisymmetric aileron hinge stiffness in the
range of the normal aileron stroke varies between 390 N-m and 44 N-m. Because
of the stiffness variation, the normal frequency of the antisymmetrical aileron
vibration (wing assumed to be fixed) varies over a wide range, between 2.4 Hz
and 7.4 Hz. At least two other antisymmetric normal modes lie in this frequency
range and are consequently characterized by highly amplitude-dependent portions
of aileron vibrations. Similar effects can also be observed for the symmetric
aileron mode and for the rudder vibration.

The effects of strong nonlinearities on the flutter behavior have been dem-
onstrated in some wind-tunnel tests carried out on a nonlinear wing-aileron model
in the low-speed wind tuninel of DFVLR Gottingen. The nonlinear flutter bound-
aries for a backlash-type and for a spring-tab-type aileron hinge stiffness are
shown in figure 5. Unlike the flutter boundaries of linear systems, both curves
are characterized by a considerable dependence of the critical flutter speed on
the aileron amplitude. Thus, the flutter boundary of the spring-tab-type system
varies between V = 12,5 m/s and V = 24 m/s. The backlash-type system shows
a flutter boundary variation between V = 13.5m/s and V = 20 m/s. More
detailed information, especially about the geometric and elastodynamic data of
the wing-aileron model, is presented in reference 1.

MATHEMATICAL MODELING USING MODAL SYNTHESIS CONCEPTS

As mentioned previously, the determination of the elastodynamic character-
istics by means of GVT can be affected severely by localized nonlinearities in
the control mechanisms. It will be shown in the following discussion that the
uncertainties resulting from these nonlinear effects can be avoided by applying
experimental-analytical concepts based on the well-known modal synthesis
approach.

Each of these concepts can be used to set up the aeroelastic equations of
the actual airplane including all control-mechanism nonlinearities. The non-
linear force deflection diagrams of the different controls can be determined
by static or dynamic tests.

Three different concepts will be presented. They may be briefly described
as follows:

Concept I: Measurement of a set of orthcgonal normal modes with the con-
trol surfaces rigidly clamped; separate determination of the control-
surface normal modes with the rest of the airplane rigidly fixed.

Concept IIs GVT on a configuration artificially linearized by replacing
the nonlinear control-mechanism elements by linear and lightly demped

dummy devices; thus, a set of orthogonal normal modes for the entire
gsystem is available.
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Concept III: Measurement of a set of orthogonal normal modes with the
control surfaces removed; separate determination of the normal modes of
the control surfaces in uncoupled condition.

Concept 1

The governing equations of motion of an aeroelastic system, formulated in
terms of physical coordinates, can be written in matrix notation as follows:

where

Al + Bu + Cu = P (4)

mass matrix
damping matrix
stiffness matrix

column matrix of the physical displacements; u and 4 are first
and second derivatives with respect to time t

colum matrix of external forces, for instance, unsteady aerodynamic
forces

It is obvious that parts of the matrices B and C are nonlinear because of
the localized nonlinearities of the controls.

Controls without tabs.- If the GVT is carried out with the controls rigidly
c€lamped to the adjacent structure, a set of n largely linear normal modes
®ar can be measured and combined in the modal matrix

o= [Parr %20 ¢ v wh Opr, .., ®an) (5)

The modes satisfy the orthogonality condition

where

Ka

@ATNDA = Mp \

T j (6)
°A CQA = AAMA = Kp

diagonal matrix of the generalized masses Mar

. 2
diagonal matrix of the generalized stiffnesses Kar = wy Mar
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Ap diagonal matrix of the square values of the circular normal
frequencies War

The generalized damping ma‘trix Dp (not necessarily diagonal) is defined by
DA = @ATMA 7

Next, assuming that the control surfaces are rigid in the frequency range of
interest, a number of additional control-surface rotation modes with the

adjacent main structure at rest can be determined and combined in the modal
matrix

¢p = EI'B'I' ®p2s « . ., PEvr . . . °Bm] (8)

The physical displacements of the complete structure are related to the gener-~
alized coordinates by

u =9%q (9)
where the column matrix of the generalized coordinates qQ and q is

q = [qaT, qpT]T (10)
and

® = [0, op] an

The basic idea of this modal superposition is outlined in figure 6. Substitut-
ing equation (9) into equation (4) and Premultiplying it by ¢T yields

MJ + Dg + Kq = 0 (12)

where
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Mp Map )
M= 0 = ¢Tp
| MBA Mg | K
Dy O Ky O
D = K =
o D | O K|

The matrices Mp, Kp, and D, measured in a GVT are defined in the equa-
tions (6) and (7). The diagonal matrices Mp, Dpg, and Kg contain the gener-
alized masses, damping values, and stiffnesses of the control-surface rotation
modes. In the case of nonlinear hinge stiffness and damping, the matrix elements
of Kg and Dp are

Kpy = Cev(B) Bwa Dgy = ——— Bwa (14)

L "
where Cey(B) and Cey(B) can be determined from equation (2). The term By,
denotes the control rotation in the action line of the control actuator force.
The matrix Mg can be determined by calculation or measurement taking into
account not ouily the control-surface mass but also the moving mass of such
attached hardware as pushrods, cables, and control stick. The elements of the
coupling matrix

Map = MpaT = pTAdy (15)

can be found by integration over surfaces Sp, Of the controls

MaB,rv = S (e\;n\ﬁrﬂ\, + [I\, + eymylay + e\,)] arfs\,} ar (16)
Spv

where the follewing terms correspond to the vth control with tab locked to the
control

my mass of the control surface per unit span

1, mass nmoment of inertia per unit span referred to the center of gravity
ey distance between center of gravity and hinge axis (see fig. 7)

ay distance between hinge axis and the quarter-chord point (seec fig. 7)

All these data as well as the amplitudes h,, a,, and By (see fig. 7) are
functions cf the span coordinate &. 1In case of an ideal locking of the con-
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trols, neither hinge stiffness forces nor hinge damping forces are generaced in
the normal modes %,4,. Gence,

Kap = KgaT = 0
tn
bap = Dpa” = 0J

Extension to controls with tabs.- The above procedure can easily be
extended to systems with controls and tabs (spring tzbs, trim tabs, or geared
tabs) by introducing the tab movement as a separate degree of freedom. For
this special case the main GVT configuration is characterized by controls
locked to the adjacent airplane structure and tabs locked to the controls.
This leads to the same set of normal modes &, as defined in equation (5).
Furthermore, the degrees of freedom of the controls are separately determined
with the main structure at rest and with tabs locked to the controls. The
resulting notmal modes ave identical to the ones defined by equation (8).
Finally, in « third step the tab modes ®cy are determined with both the main
structure and the controls at rest. This concept is schematically illustrated
in figure 8. 1In accordance with this, u can be expressed as a series expan-
sion of the normal mode sets &%, %p, and %¢

u= [, %, %] q (18)
where
a = (a7 asT, ac¥]? (19)

Replacement of u in equation (4) by equation (18) and premultiplication by
9T 1leads to an equation similar to equation (12). Because of the additional
tab degrees of freedom the matrices M, D, K, and Q have the extended form

Mn  Map My w
M= |Mga HMp  Mpc Q = ¢Tp
Mca  Mep M |
> (20)
bp 0 o0 | Kn O O
D=|0 Dg O K=|0 Kg O
0 0 Dc | 0 0 Kgf)
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The matrices My, My, Mpg = MpaT, Kp, Kp, Dp, and Dg are identical to
the matrices defined in rquations (6), (7), (14), (15), and (16). The matrices
Kc and D¢ can be determined in the same way as Ky and Dp by measuring

the nonlincar force deflection diagrams of the tabs and using equation (2) to
calculate

Kew = CenlY) Yo Doy = CualY) Yo @)

The term Yy, denotes the tab rotation in the line where the force acting on the
tab is applied. The matrix Mc can be determined by test or calculation. The
elerents of the coupling matrix

Mac = McaT = 93TA0c (22)

can be found by integration over the tab surface Scv

Mac,rv = S {Evmevhery + [Tey + Eympy(by + £y)] aryy) die (23)
Scv

where the following terms correspond to the Vth tab (part of the Vth control)

Mey mass of the tab per unit span
Iy mass moment of inertia per unit span referred to the center of gravity
fy distance between the tab hinge axis and the tab center of gravity (;ee
fig. 7)
b, di;:anc;)between the tab hinge axis and the control hinge axis (see
g.

The quantities Iy, myy, fy, and by, as well as h,, a,, and Y, (see
fig. 7) are functions of the tab span coordinate £,. The elements of the
coupling matrix

Mpc = McpT = 0pTMC (24)

between the control surfaces and the appertaining tabs can be calculated by
integration over the tab surface S¢,

MpC,wv * S [Tev + mefy(by + £)]Byyy ale (25)
Scov
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Provided that the normal modes ®Ar can be measured with ideally locked control

N and tab hinges, neither hinge damping forces nor hinge stiffness forces are \
generated in .. This leads to

. Kac = KcaT = 0 Kpc = KcpT = 0
: (26)
- Dac = DcpaT = 0 Dpc = DcpT = 0

Concept II

As described in references 1, 6, and 7, the replacement of the control non-
- linecarities by artificial linear Stiffnesses results in a modified linearized
- test configuration represented in matrix notation by

ALG + BLI...I +Cu=Pp (27)

which is formulated in terms of physical displacements. The governing dynamic
equations of the unchanged nonlinear system can be written in the same form as
equation (4) by subdividing the matrices A, B, and C as follows:

A =Ap - Aap + Ay

BxBL-ABL+ABNL? (28)

C'CL-ACL+ACNL)

The term OAyy - BA;, represents the difference in the mass distribution

between the artificial linear system and the real nonlinear system; 4By and
ACp, define the damping and stiffness properties of the artificial linear
elements; ABy;, and ACy; describe the damping and stiffness properties of
the replaced nonlinear elements. Development of the arbitrary displacement

vector u in a series expansion of the measured normal modes ¢y, of the
linearized system yields

u = 0q (29)

Inserting this modal transformation into equation (4)
and taking into account equation (28) results in gene
in the same form as equa
matrices now defined as

+ Premultiplying by ¢,T,
ralized equations of motion
tion (12), but with the mass, damping, and stiffness
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M= M- Mg+ Ay

D'DL-ML+MNL> (30) \

K=KL-AKL*AKNL/

The matrices W, D, and Ki, are measured in a GVT on the linearized system.
Furthermore,

it

MMyp, - MMp, = o T(AAgg, - AAp) o)

ADyy, - Dp, = T (AByy, - By @y, ) (31)

Bkyy, - 8Ky, = oMoy, - Acp)op,

For simplicity, consider only one control surface. For the vth contro? surface,
the modal matrix ®;, degenerates to the row matrix

o\)L = [B\)]l B‘\)Z' ¢ e oy B\)ro © e ey B\)]ﬂ (32)
and AByy, - AB;, and ACyy, - ACp, degenerate to the 1 x 1 matrices

Co (B)

w

AByy - 8By, =

_BL

(33)
ACyhp, - ACy, = Co(B) - Cy

¥ "
where the nonlinear stiffness and damping valuez C.(B8) and Ce(B) can be
determined again by applying equation (2) to the measured nonlinear force
deflection diagram. The damping and stiffness matrices B and CL. respec-
tively, of the artificial linear element can be measured by means of simple
tests. The matrix AMyp, - OMp, can also be calculated by using the modal
matrix as defined in equation (32), provided the two parts of the 1 x 1 matrix
OAnp, - AAp can be defined as maments of inertia by referring the removed mass
of the nonlinear sSystem, as well as the additional mass resulting from the arti-
ficial linearization, to the hinge angle B8,
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Concept III

The aeroelastic equations of an airplane can also be establ:shed by means
of both a set of normal modes measured in a GVT with controls removed and rigid-
body and some elastic normal modes of the several controls (see fig. 10) Qdeter-
mined experimentally or by fairly simple calculations. The equations of motion
of the coupled system can be set up by means of Lagrange's equations

o
3 /or W w a9y,
—l— ]t —— t — = Xz — (34)
9T \3q, 9q, 9q, 9q,

where
2T = Mg?

2U = Rq? + AK q2

"

(35)

2W = pg? + AD g2

The matrices AK and AD in equation (35) take into account the elastic coupl-
ing between control surfaces and main structure by means of the real hinge stiff-
ness and hinge damping elements. The term on the right side of equation (34)

is formulated in terms of Lagrange's undetermined multipliers Ag which correz-
spond to a number of 0 constraint ccnditions

RO any) =0 w2, L 36)

They express compatibility in those coupling points, where the controls can be
assumed to be rigidly fixed to the main structure. Application of equation (34)
to equations (35) and (36) yislds

Mg + (D + AD)q + (K + AK)g - ¥T\ = O (37)

where the elements of the r x 2 matrix ¥T are
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Yo.T & e (38)
r %,

Confining the further derivation to the coupling of only two systems, A and
B (main structure and control surface) results in the following generalized
mass, stiffness, and damping matrices of the uncoupled system:

— \
M) OT Da 0
M= D=
0 M 0O D
b —
(39a)
LN ?
K=
0 Kp
e -
where the submatrices are /
My = ¢1TA1¢1 ®j = 9;Tc;04 D; = ¢;TB;¢; (i =A, B) (39b)

The matrices Aj, B;, and Ci describe mass, damping, and stiffness of the
subsystems A and B in terms of geometrical coordinates; i is the modal
matrix of subsystem i. The elements of the diagonal matrices M; and K; and
of the damping matrices Dj, which are not necessarily diagonal, can be deter-
mined by GVT or, as in the case of the controls, by calculation, also.

According to reference 7 the generalized coupling matrices AK and AD
can be written as follows:

&K = dppTCaR0AR AD = 9xpTBAROAR (40)

Whe: the main structure and control surface are coupled by one gsingle complex
hinge stiffness Cq in the action line of the control force, we obtain

A A A
o Talsr Aa2s « o o %an |
R R 1y T T gt - - - (41)
:“a,n+l' ®a,n+2s ¢« « «1 Gang
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Cap = Ce Bpg = — (42)

-1 1 -1 1

A B
The angles of rotation oy and 0, are defined in figure 9. For the special
case of coupling two systems A and B the compatibility condition for ¢
physical degrees of freedom can be expressed by the constraints

A B
gg =ug -ug =0 =12, ... 0 (43)

B
If up and up are expressed in a series of the normal modes of the systems
A and B, then

na np
A B
g = uprdr - 25 ugrdr = 0 (44)
r=} nAH

or in matrix notation
g=¥q=0 (45)

The aeroelastic equations of motion are defined now by the np + ng = m gener-
alized coordinates. Due to the 0 constraints there remains a number of

€ =m - 0 independent generalized coordinates in terms of which the aero-
elastic equations have to be formulated. To do this, the term ¥T in equa-
tion (37) has to be rearranged rowwise so that

.
w+w.[ﬂ (46)
Yo

where Yy is a nonsingular ¢ x 0 matrix. The matrices M, K, D, Ak, and
AD with respect to both their columns and rows and the column matrix q have
to be rearringed in the same sense. The rearranged equations can be written as

fig + (B + 4D)g + (K + $E)G = VT 7
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where
a = [pT, qT|T (48)

The new structure of the matrices M, D, K, AD, and AK is shown in the
following equation using M as an example

- Mee Mg
M= (49)

Mge Mgo

Thus, A can be determined as follows

A= (¥T)-1 ﬂ:“oe' “oojé + ([Poes Dog] + [ADges ADoo])‘:! oo
+ ([Kcer Kog) + [AKges AKoo])‘-!} (50)

From equatioas (45) and (46) it follows that
a5 = -¥5'¥ep (51)

Inserting equation (50) into the first € rows of equation (47) and taking into
account equation (51) results in the foliowing equation

(Mge ~ MegX - XTMge + XTMgX)D
+ (Dec + 8De - (Deg + AD )X - XT(Dge + ADye) + XT(Dyg + ADgg) X p
+ {Kee + MRge = (Keg + MReg)X = XT(Kge + MKge) + XT(Kyp + AKgg)X)p = O

(52)
where
X = y5ly, (53)

It can easily be shown that equation (52) can be transformed to the more con-
venient equation
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YYD + YT(D + AB)yYp + YT(X + AK)Yp = O (54)

I
where Y = (55)
-X

with the unity matrix I. 1t should be mentioned that a nonsingular matrix
Yo can be determined optimally by applying common mathematical tools for the
determination of the linear independence of a given number of vectors, as
described, for example, in reference 8. These methods are also applicable
to cases with the number of constraints higher than the rank of matrix Yo

Practical applications to structural dynamics problems are Presented in
reference 9.

It is obvious that the unsteady aerodynamic forces cannot immediately be
calculated on the basis of the separate normal mode sets of the several sub-
structures (main structure and control surfaces). However, this problem can
easily be solved as follows:

(1) Couple the controls to the main structure using the above described
Procedure. In doing so, the actual nonlinear stif&nesses Ce are replaced by
linear stiffnesses chosen to be an average representative of the nonlinear
ones,

(2) Calculate the normal mode characteristics of this linearly coupled
system and calculate the unsteady aerodynamic forces based on this set of nor-
mal modes.

(3) In the case of hinge stiffness variations or nonlinear flutter cal-
culations, the combination of concepts III and II described subsequently may

be used.
Combined Application of Concepts I, II, and III
A detailed examination of the possibilities offered by the three concepts
makes it obvious that sometimes their combined application may be very benefi-

cial. Pour possible variations can be outlined as follows:

Combination of Concept III and Concept 11:

(1) Apply Concept III, taking into account linear and lightly damped
hinge coupiing elements.

(2) Calculate the normal mode characteristics of the linearly coupled
system.

(3) Vary the linear coupling elements or introduce the nonlinear coupling
elements by means of Concept 1I.
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Combination of Concept III and Concept I:

(1) Apply Concept III with a campletely rigid coupling including the con-

trol hinge degrees of freedom resulting in a configuration with rigidly locked
controls.

(2) Take into account the control degrees of freedom according to Concept 1
by adding a Separate set of control normal modes with the main structure at rest

Combination of Concept II and Concept I:

(1) Test the aircraft structure with controls removed as a basic
configuration.

(2) Establisgh analytically a second configuration with the controls rigidly
locked to the main structure by applying Concept II. This can be achieved by

adding modal mass coupling matrices MM to the equations of motion of the basic
configuration similar to those defined in equation (31),

When a single control surface is vcnsidered the coefficients of the mass
coupling matrix AM can be written as

Mpg = dp, TAARORg (56)

where

O, T = Uxrs Uyrs Uzr, Nxrs Nyr» nzr] (57)

The column matrix ®rr represents the translational and rotational displace-
ments at the coupling Point of the main structure in relatjon to the XYz axis
system (see fig. 10). If the center of gravity of the control lies outside the

coupling point, (x4, Ygr 2g) = (8, 0, 8;), the inertia matrix AAR  can be
written in the form

r— ! -
mR | o MRS, o
|
[}
g = |- ----._ .. R T T T (58)
o ~mRs, O | Ipx + MRS, o MR8z 8y
[
mRs, o ~mRs, | 0 Ipy + ma(sg + s%) 0
)
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where
mR mass of the control surface

Irx+ IRy’ IRz mass moments of inertia of the control surface in
relation to its center of gravity

(3) Take into account the control degrees of freedom according to Concept I
by adding a separate set of control normal modes with the main structure at rest.

Conbination of Concept II and Concept III:

(1) Test the aircraft structure with rigid control dummies in locked con-
dition as a basic configuration. The rigid dummies are used to determine a bet-
ter basic set of normal mode shapes representing the dynamic deformations of
the coupled system than can be determined in the test configuration with
removed controls. This procedure can best be described as convergence accel-
eration by means of interface loading.

(2) Establish analytically a second configuration with the dumay controls
removed. This can be achieved in accordance with Concept II by subtracting a
modal mass coupling matrix &M as defined in equation (56) from the equations
of motion of the basic configuration.

(3) Apply Concept III coupling the elastic controls to the main structure.

COMPARATIVE OONSIDERATIONS

The concepts presented offer a number >f possibilities to incorporate the
control systems of light airplanes, which in general are affected by strong con-
centrated nonlinearities, into the flutter analysis. Special emphasis is placed
on the mathematical modeling of the elastomechanical system based on GVT. It
is obvious that a final evaluation of the applicability and accuracy of the dif-
ferent concepts is rather difficult because, up to the present time, only
Concept I has been applied to some extent to real airplane structures. only
little experience with the other concepts is at hand. Thus, Concept Il has
recently been employed in the course of the flutter clearance process of the
soaring airplane ASW-15. Flutter calculations based on this concept predicted
tail flutter at about 200 km/hr. That result was verified by flight flutter
tests, where the airpiane showed nonlinear flutter in a speed range from
175 to 220 km/hr, starting with camparably small amplitudes at 175 km/hr and
increasing to very high amplitudes far beyond the regular rudder stroke at
higher speeds. This behavior in concurrence with substantial alterations of
the flutter modes is symptomatic of highly nonlinear flutter cases. A more
detailed consideration of this special problem exceeds the subject of this
paper and should be reserved for further investigations.

It is also worth mentioning that the ground vibration test carried out in
accordance with this concept toc* far less test time than a normal test on the
unchanged structure (reduction of about 80%).
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The first comparative investigation of the Concepts I, II, and III has
been the special concern of reference 10, where results are reported for a
simple plate-type wing-aileron model with largely linear elastodynamical prop-
erties. Although this model cannot be considered representative in all respects
of the elastodynamical behavior of real airplanes, it seems to be opportune to h
use the results of this investigation together with the present experience with :
the Concepts I and II as a basis for a preliminary assessment concerning the
advantages and the weak points of different methods. For this purpose a selected

number of criteria is used taking into consideration several requirements such
as

(1) Test effort required

(2) Numerical effort required
(3) General applicability

(4) Physical consistency

Table 1 shows in a condensed form how the criteria are met by the several
concepts.

CONCLUDING REMARKS

It has been known for many years that the flutter clearance of light air-
planes can be highly afflicted by uncertainties stemming from strong localized
nonlinearities in the control mechanisms. It is shown that the establishment
of more reliable and accurate mathematical models for the flutter analysis
requires modified ground vibration test procedures combined with suitably
adapted modal synthesis approaches. Three basic concepts with several varia-
tions have beer described in detail. They offer a diverse choice of tools for
carrying out Loth approximately linearized and nonlinear flutter investigations.

A comparative consideration has been made as to the capacity as well as
the drawbacks of the different concepts. However, because of lack of practical

experience with Concepts II and III, it is not possible at present to make a
conclusive evaluation.
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Figure l.- Schematical sketch of the control system of a light airplane.
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Figure 2.- Force deflection diagram and stiffness and damping
for the rudder system of a soaring airplane.
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ADVANCED COMPOSITES IN SAILPLANE STRUCTURES :
APPLICATION AND MECHAN1CAL PROPERTIES
Dieter Muser

Research Center Stuttgart
peutsche Forschungs- und Versuchsanstalt
€iir Luft- und Raumfahrt e.V.

SUMMARY

Advanced Composites in Sailplanes mean the use of carbon and aramid fib-
ers in an epoxy matrix. Weight savings are in the range of 8 to 18% in compar-
ison with glass fiber structures. The laminates will be produced by hand-layup
techniques and all material tests shown here have been done with these mate-
rials. These values may be used for calculation of strength and stiffness as
well as for comparison of the materials to get a weight-optimum construction.
Proposals for material-optimum construction are mentioned.

TECHNICAL HISTORY

The first fiber-reinforced glider, a Phoenix developed by Prof. Eppler,
made its maiden flight in 1957. Now, more than 4000 gliders with glass-fiber=
reinforced structures are in the air all over the world. Increasing the wing
loading permitted increases in maximum speed, but structural demands increased
the weight also.

A large span enabled the constructors to build planes with 1lift to drag
ratios of about 50 (ASW 17: 48.5, Nimbus 2: 49) and sinking speeds of 0.50 m/s
(1.64 ft/s). But it was not possible to realize wing spans with more than
22 meters without a very soft wing structure. This was possible when carbon
fibers were used in the center wing section of the Akaflieg Braunschweig SB 10
in 1972 (fig. V). With a maximum wing span of 29 meters, this glider has the
best glide ratio of 53 and a sinking gspeed of 0.41 m/s (1.35 ft/s). But the
price of carbon fibers was very high at this time and so this material was used
only in another prototype, the Akaflieg Stuttgart £s-29 in 1975. To realize
the old dream to vary the span during flight, it was absolutely necessary to
use carbon fibers in the outer moving part of the wing and in the spar of the
inner wing section. When the Akaflieg Braunschweig built the ¢irst all-carbon
glider in 1977/78, they used carbon fibers to reduce weight and to stiffen the
wing, so that all flaps move only very slightly and the pilot is able to han-
dle them. And this was the year when carbon fibers were used in a larger vol-
ume in different types of commercial gliders.
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