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ANALYTICAL AND bCALE MODEL RESEARCH AIMED AT IMPROVED .HANG GLIDER DESIGN

llan Kroo and LI-Shing Chang

Stanford University

SUMMARY

A program of research on the aerodynamics, aeroelastlcity, and stability

of hang gliders has recently begun at Stanford University with support from

NASA. The research consists of a theoretical analysis which attempts to predict
aerodynamic characteristics using lifting surface theory and finite-element

s_ructural analysis as well as an experimental investigation using I/5-scale

elastically similar models in the NASA Ames 2m x 3m (7' x I0') wind tunnel.

Experimental data will be compared with theoretical results in the development

of a computer program which may be used in the design and evaluation of ultra-
light gliders.

This paper describes the goals and general procedures of the investigation
begun in January 1979.

INTRODUCTION

In recent years the performance and variety of hang glider designs have

increased dramatically. Flight conditions and demands that are placed on hang

gliders are very different from those encountered by older designs. Whereas

lift-to-drag ratios of 3 were common not long ago, some present designs achieve

glide ratios of close to 10 and have been flown cross country for 160km (100mi)

at altitudes as high as 6000 m (19,000 ft.) (Ref. I). In addition to (often

turbulent) thermal flying, increased controllability has made limited acrobatic

maneuvers possible. Several years ago the results of NASA wind tunnel studies

of t_ Rogallo wing (Ref. 2-7) in the 1960's could be used to obtain some idea

of the characteristics of new designs. Although not all flight regimes and

relevant parameters were thoroughly investigated, the data that did exist proved

useful. The hang glider has evolved, however, to the point that these original

investigations can no longer be applied. The flight characteristics of modern

hang gliders (Ref. 8) with spans extending to 31m (36 ft.), aspect ratios from

5 to 7.6 and sails with low billow and sweep, cannot be estimated from these

data for the high billow (4- 5 degrees), low aspect ratio (2.5) "standards".

Information on the aerodynamic characteristics of present designs is almost

entirely q,alltative, deduced from limited flight tests of new designs.

_{any problems that have beeu encountered might have been prevented had

such data been available. Pitch-down divergence at low angles of attack

continues to be an important problem. Thirty percent of fatalities in 1976

Involved full-luffing dives from altitudes in excess of 60m (200 ft.) (Ref. 9)

although recovery Is theoretically possible in less than 15m (50 ft.) (Ref. I0).

Statistics from hang gliding accidents in 1977 and 1978 show that, despite a more
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thoroagh testing program pursued by the industry in the last few years, such

instabilities are all too common even up to the present time.

Work was begun in January 1979 on a program of research aimed at providing

quantitative tools for use in the design and evaluation of modern hang gliders.

The investigation consists of two concurrent and closely integrated phases:

I) Basic force and moment measurements will be made on scale models in
one of the 2mx 3m wind tunnels at NASA Ames Research Center. Models

are being constructed that will reproduce the geometric, elastic, and

aerodynamic properties of a representative class of modern gllder.

2) A computer program, based on the best avail_ble analytic tools from

potential aerodynamics and finite-element structural methods, for

predicting the measured alrloads with static aeroelastic corrections

is being developed. After refinement by compaziso_ with the tests,

this program will be promulgated for the analysis of future glider

designs.

As this research is to be conducted over the next two years, this paper

describes the goals and general approach of the pre_ect with results to be

published at a later date.

WIND TUNNEL TESTS

Models

Planned wind tunnel tests consist of measurements of the basic forces and

moments on a group of I/5-scale models at Reynold's numbers very close to the

full scale value.

Although there exist today a wide variety of hang glider designs and it is

no longer possible to test a "standard" configuration and use the results to

predict universal characteristics for these aircraft, sufficient similarity does

exist so that certain characteristics may be determined from tests on a limited

number of models and applied to many other designs with similar features. In

this way, good approximations to the properties of such gliders may be obtained

from tests on a small group with different, but carefully selected, geometries.

The models selected span a wide range of glider types, from the older Rogallo-,, de _ Igns •

type standards to more recent "intermediate and high performance

(See Table I). _ne effect on overall aerodynamic characteristics of various

wing tip geometries, sall planforms, and camber and twist distributions common

to many gliders will be determined from tests on this group of models.

The importance of elastic scaling has been demonstrated recently (Ref. II).

The flight characteristics of gliders are seen to vary considerably with

changes in loading. Thi=_ is caused by the flexibility of the frame and defor-

mation of the sail of these ultralight gliders. For this reason, it is impor-

tant that scale models be constructed in such a way as to remain geometrically

similar to full size gliders under corresponding loads.

Another key assumption underlying she design of flexible models is the

attainment of full-scale Reynolds' number, Re. This is because rather complex
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!
separated-flow effects are anticipated at the Imrger values of a and 8 •

Since available wind tunnels operate at essentially sea-level conditions, it

follows that any resultant force, F , experienced by the model must equal

the corresponding Ff at full scale_ (Mach number effects are negligible at
these "mlcrosonic speeds.")

Force equality can be reasoned from the fact that:

Re = Refm

where the product of speed and typlcal length, V_, must be the same at both
scales. With air densities:

0m Of

oV2_ 2 , then:and forces proportional to

Fm = Ff

The combination of equal force and equal strain requirements lead to dif-

ficulties in the construction of elastically scaled models. Consider that both

the model and full scale gliders are constructed of tubes and cables of approxi-

mately circular cross sections of radius r , supporting the fabric sails.

Since r should be proportional to _ for aerodynami_ similarity, the strains in
these tubes are proportional to Fr£/EI or to Fr /El, with E1 the familiar

bending rigidity. The severe requirement on model construction is to ensure

For a typical glider, assembled of thln-walled aluminum tubes, this quantity is
of the order 10 -7 N -I (4x 10 -7 lb.-l). If the same construction and

material were employed on the model, one would get

I

This factor of 25 at one-flfth scale is quite unaccepteble. Since weight is

not believed to be a very significant factor, the situation can be alleviated

by going to solld-section cylinders of stiffer material on t_e model. Models

constructed of steel in this manner approach the desired stiffness:

It appears that the requirement of equal strains, therefore, can only be

met by some relaxation of the Reynolds number requirement. The following values
correspond to the model construction above:

,i
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Re
m

-- = .53

Ref

This difference is not large and can be reduced further with the use of tubes

and cables of slightly larger than scaled radii.

Especially for newer hang glider designs with low billow, it is important

to duplicate the stretching of the fabric sail as well as the bending of frame

elements. This requirement may be seen approximately as follows.

Requiring equal strains in the model and full-scale glider sails,

m = _f, for geometric similarity implies that

o p (x)dx p (x)dx F

E E dA Et dx Et_

1

is the same at both scales. Now since _m = _ _f and from above we have let

F = i/3.4 Ff we require that (Et) = 1.8 (Et) This can be achieved withm m f"

the appropriate choice of Dacron fabric. Values of Et for Dacron sails are

given in reference 24, from which it can be seen that the proper (Et) may be

achieved with two layers of material slightly lighter than that used m on

full-scale gliders.

Data Reduction

From measurements of the basic forces and moments on these models, the

following performance coefficients and static stability derivatives can be
calculated.

CL C D Cm Cm C_ B Cn B

Data will be obtained generally at angles of attack, _ from -45 ° through
stall and at sideslip angles B to i 20 ° . Tests will be conducted at

various pressures to obtain data on the presumably significant variation of

these quantities with the dynamic pressure, q (elastic effects). Test results

will be corrected for jet blockage and wall effects.

Much of this data could be used immediately for design p:_rposes with little

intermediate manipulation. With the use of data on pitching moment coefficient,

the longitudinal equations of motion may be numerically integrated to show the

effectiveness of "welght-shlft" control, including required bar pressures (stick

forces), under various flight conditions. Stall, dive recovery, and other

aspects of longitudinal motion will be analyzed. A similar analysis for lateral

motion, taking account of the unusually large coupling between longitudinal

and lateral modes associated with hang gliders, will also be carried out. At

the present time, the first wind tunnel model is being constructed at the

machine shop facilities at Stanford. The frame will have two possible nose
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angles and by attaching different sails many configurations may be tested.

Although a final list of configurations to be tested has not yet been deter-

mined, a tentative group of test models is described in table I.

THEORETICAL ANALYSIS

In conjunction with the testing program, theoretical aerodynamic and

aeroelastlc methodology is being applied toward the development of a computer

program whlch will undertake to predict some or all of the quantities measured

in the experimental portion of the project.

Several theoretlcal treatments of "parawing" a_rodynamics were published

in the 1960's (e.g. Ref. 12-14). Lifting surface theory was used to predict

lift and moment of various parawing configurations with the assumption of a

particular mode shape (generally taken to be a portion of a right circular

cone). Induced and profile drags and the effects of rigid leading edges were

treated. Recent experimental work (Ref. II) has shown, however, that changes

in sail shape with angle of attack and dynamic pressure are extremely important,

especially for current hang glider designs. Thus, not only is the assumption

of conical canopy shape no longer valid, but no rigid analytic assumption of

mode shape can be used.

The approach taken in the present analysis consists of two major parts:

I) The determination of airloads for a prescribed mode shape, and

2) The flexible structural response to this calculated loading,

resulting in a new approximation for canopy shape.

The iterated procedure, shown schematically in Fig. I, is used to obtain a

solution for pressure distribution without the need for specifying the exact

sail shape initially.

From these predicted airloads, force and moment coefficients may be

calculated and compared with experimental results.

Aerodynamics

Linearized, steady, lifting-surface theory for incompressible flow is used

in the prediction of aerodynamic loads on the glider. Under such conditions

the flow over the glider satisfies Laplace's equation: V2_ = g which

may be solved with the use of vortex-lattice or kernel-function methods. The

approach taken here utilizes the former method described by Woodward and

Rubbert (Refs. 15,16) with a code by Nathman (Ref. 17) used at Stanford's

computing facilities.

The sail is divided into finite elements as shown in Fig. 2. Each element

is idealized as a flat panel of constant doublet strength, K, defined as the

discontinuity in potential between the upper and lower surfaces,

K = _E- _u
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As shown in the appendix, this leads to the following expression for the

velocity induced at points outside this surface

1 [C]{K}{V} = 4--4

where [C] is the aerodynamic influence matrix described in the appendix. The

doublet strength for each panel is chosen so that the flow at the surface of

the glider is tangent (zero sall porosity). This condition is satisfied if the

normal velocity induced by the system of doublets just cancels the free-stream

normal velocity:

[Cn]{K} - 47 {n • V }

i'

Since the surface normals arid influence matrix may be computed from the assumed

sail geometry and since the free-stream velocity is given, the value of K can
be calculated over the surface.

Once K is known, the vorticity on the surface is given by:

= n× VK

and the loading:

£p(x) = 0 V x ¥

These pressures are then used to calculate the desired force and moment coeffi-

cients according to standard definitions (cf. Ref. 18). The procedure is
summarized in Fig. 3.

Figs. 4-6 show the preliminary results of this theory applied to some

simple planforms for which experimental data is available. (Ref. 19,20). Agree-

ment is close although effects of leading edges and deviation from conical
geometry are not considered.

It should be noted that these results are the predictions of the aero-

dynamic portion of the program only. A rigid mode shape is assumed and so agree-
ment with experiment can only be expected at intermediate a • The combination

of this portion of the program and the structural analysis described below is

presently underway and results are not yet available.

This analysis does not include the effect of pilot, cable or frame inter-

ference. It applies only to unseparated flow and does not include viscous

effects. Corrections to the first stage of the analysis, taking these effects

into account, are being studied and can, hopefully, be implemented in later
work.
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Structural Analysis

The sail and frame of a hang glider constitute a rather flexible structure

assumed to be in a state of quasi-static equilibrium. Tension members, axially

loaded beams, bending members, and membrane surfaces are all involved, w_th

clearly defined modal connections, It is evident that the finite-element

method of static, structural analysis is the only feasible way of representing
and balancing the complete system of internal and external loads.

The approach taken here involves an analysis of the glider frame by

classical methods and modelling of the sail as a membrane with very small

flexural rigidity. The procedure is diagrammed in Fig. 7.

An incremental loading technique as described by Turner et al. (Ref. 21)

is used to predict the response of the entire structure to the given applied

load. The pressure distribution given by the aerodynamic portion of the

analysis is broken down into small increments and the change in shape due to

this incremental load is calculated. This is done by expressing the pressure,

., over each panel in terms of equivalent nodal loads, Fi, and calculating
displacement, Di, of the nodes by the relation:

{F} = [S] {D}

Here, [S] is a stiffness matrix, made up of a linear, elastic part [Se]
which accounts for sail stretching (despite the anisotropic stretching behavior

of textile materials, the glider sail is assumed isotropic for the early stage

of the investigation) and a non-linear geometric part [Sg] which depends

on the geometry and initial tension. The addition of this geometric stiffness

to the conventional stiffness matrix allows the non-linear strain-displacement

relations associated with this large displacement problem to be incorporated
in an approximate manner.

A method described by Argyris (Ref. 22) is adapted here to generate the

geometric stiffness matrix. This method assumes a linear strain-displacement

relationship within the elements and is considerably simpler than conventional

techniques which require calculation of the strain energy (cf. Ref. 23).

At each step the geometric stiffness matrix is updated and nodal forces

and incremental displacements calculated. After the step-by-step process is

completed, the incremental displacements are summed to obtain a new mode shape

which is then used as input to the aerodynamic program for another iteration.

A code based on this approach has been developed and is presently being

checked by comparison with test cases for which analytic solutions are

possible. Preliminary work indicates agreement to within a few percent in

displacement although further work is needed to assure convergence in some
cases.
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Results from the experimental portion of the investigation will be used to

establish the theoretical results' range of validity and will guide efforts to

incorporate the effects of viscosity, interference, leadlng-edge suction, and
other phenomena in the analytical portion of the research.

CONCLUDING REMARKS

The _l,eory presented here is intended to provide a general idea of some

of the methods to be used in this investigation. Much work is required before

the analysis can properly take account of the complex aerodynamic and aero-

elastic effects associated with modern hang gliders. At the time of this

writing, the aerodynamic and structural routines have not been combined although

it is expected that this welt accomplished shortly. Wind-tunnel models are

presently being fabricated for tests to be conducted later this year. Results

from both the theoretical and experimental parts of this research will be mm-
lished as they become aw_ilabie.

APPEND I X

Aerodynamic Influence Matrix Calculation

Expressin!; the velocity perturbation potential,

terms of the value of ,,_ and its normal derivative
by (:reen's theorem:

where

¢(P), at a point p, tn

3>_ , on the fluid boundary
n

¢(p)
,_ns 4-Q- ds

S

+ ¢(P') _ , ds
S

S

r is the distance between P and P', a point on the boundary, S.

If the sail [s taken to be a 2-dimensional surface, then

order that the flow be tangent to the surface,
n = - and inu n_ ,

st);

a n d

3_ 3¢
u

3 n n

u

u 5n .Tr ds . lc,
s t, )n 4-,.-r ds

I1
,,4

S
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If K is assumed constant over each of the panels Sj, then:

V(P)

J s

The aerodynamic influence coefficient of the region Sj on the point
thus defined as:

sJ
SOl

1
V(Pi) - Vi -- 4-_ K.C..

J _3

Expressing this velocity at several points in matrix notation:

{v} = ! [c] {K}
4_

Pt is

1.
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LIST OF SYMBOLS

Notat!vn

[c]

D

E

EI

F

K

n

P

P

p(x)

q

Re

t

[s]

V

V

8

¥

c

o

U

CL

Aeredynamic influence matrix (see appendix)

Displacement of panel nodes

Elasticity constant

Bending rigidity

Force

Doublet strength

Typical length

Unit vector normal to surface

Point on surface of sall

Pressure

Loading on sall per unit length

Dynamic pressure

Reynolds number

Sail thickness

Stiffness matrix

Fluid velocity

Free-stream velocity

Angle of attack

Angle of side slip

Vorticity

Strain

F|u[d density

Stress

Veloc(ty perturbation potential

Lift coefficient
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CD

C
m

C
m

Q

C_ 8

C
n 8

brag coefficient

Pitching moment coefficient (based on keel length and referred to the

Cr/2 point)

Slope of pitching moment curve with respect to

Effective dihedral (rolling moment coefficient due to yaw)

Yawing moment coefficient due to sideslip

Subscripts

e

f

g

i,j

m

n

u

elastic

full scale

geometric

indicles refer to individual panels

lower surface

model

normal component

upper surfaces
°.
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TABLE 1

Details of Proposed Models

Config-
uration

Number

6

lO

Airframe

C

C

E

F

Basic Desisn Features

High sweep, low aspect
ratio, "standard"

High sweep, medium

aspect ratio, 2°
billow "intermediate"

High performance
medium sweep (35 ° )

zero tip chord

Same as #3 with 45 °

sweep

High performance low

billow fixed minimum

twist with "floating"

ribs at tips

High performance low

billow high twist

dihedral

Same as #6 with

decreased twist

Same as #6 without

geometric dihedral

Same as #6 with "keel

pocket" and large reflex
at root chord

Similar to #6 with low

taper planform, low

twist, reflex

Col1_ent8

For comparison with more

recent designs and pre-
vious wind tunnel studies

Comparison with standard

and high performance

designs; effects of "billow"

Washout not fixed by tips

Effect of sweep on

stability

Effect of this common tip

geometry on C
m

Features common to many

contemporary hang gliders

Effect of twist on per-

formance and stability

Dihedral effects on lateral

stability and control

response

Reflex effects on longi-

tudinal stability and
lateral control

Co_on to some of the

highest performance gliders.

%

*Some configurations can be changed with minor model modifications, which

results in the need for only 6 airframes for the [0 configurations listed.
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INPUT ASSUMED IMODE SHAPE

'

_ CALCULATE PRESSURES 1FROM AERODYNAMICS

BY _-_TIV_. sTRuc'rum,'.sJ
ROU_I_ i

I ALCULATE Cm, CL,
AND OTHER PARAMETERS
OF INTEREST

Figure I.- Basic structure of load-predict_on program.

Figure 2.- Finlte-element representation of hang glider sail.
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Figure 3.- Algorithm for aerodynamic analysis.
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FROM AERODYNAMICS
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7.- Computational procedure a deflection ana lys is.
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