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ABSTRACT

Hang gliding was born as a popular sport in France in the 7O's. After a period of observation, French Officials

decided that hang g!iders were no longer to be considered as toys, but as a new Kind of aircraft. Then, French Govern-

ment funded a two years'research contract at ONERA on the safety of hang<jliders, in an attempt to set up the most
adequate acceptance rules.

•Slp 8 x 16 meters wind-tunnel of Chalais-Meudon near Paris, was used for two series of full scale tests, with 15

different gliders, including two-seaters, and most of them with a dummy pilot. A six component instrumentation pro-

vided lots of aerodynamic data. Flow visualization was used and showed quite unexpected air flo,_,s.

The calculated basi,- performances were checked in real flight by the author, with some of the same gliders as
used in the tunnel.

The flight mechanics computations were then completed, providing both the flight envelopes wit all sorts of

limits and a fairly precise idea of the influence of several parameters, such as pilot's weight, wing settings, aero-

elasticity, etc... The particular problem of luffing dives was thoroughly analysed, and two kinds of causeswere

exhibited in both the rules of luffing and aeroelastic effects. The general analysis of longitudinal stability showed

a strong link with fabric tension, as expected through Nielsen's and Thwaites' theory. Fabric tension strongly depen-

ding upon aeroelasticity, that parameter was found to be the most effective design (_;e for positive stability.

Lateral stability was found to be very similar in all gliders except perhaps the cylindro-conical. The loss of

stability happens in roll at low angle of attack, whereas it happens in yaw at high angle. Turning performance was a

bit surprising, with a common maximum value of approximately 55° of bank angle for a steady turn.

Structure calculations began on the basisof an isostatic technique which did not succeed because the leading-

edges, keel, and cross-spar were separated. Then, a linear finite elements technique was used and gave very adequate

results for normal Ioadings, since the comparison with both flight and ground tests was very satisfactory. "Theprediction

of ultimate Ioadings and breaking of the structure is less precise, and would possibly require a non-linear computation

because of the bendings.

During the research, all reports about significant casualties happening in France were analysed at ONERA and

were of great help in the direction of the study.

Tt_econclusions of the research are, first :hat none of the normal aeronautical requirements would apply to the

case of hang-gliders. One good example would be the stall, winch is the base of agood half of a normal aircraft certifi-

catlon. A hang glider would possibly require the half of the certificator's attention on its maximum diwng speed. As
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far as certification means are concerned, it is intended to make an aerodynamic-test-vehicle which would be devoted

only to development and stability checks. A structural acceptance could be delivered on the basisof a calculation, plus

ground-testing, using the ONE RA method.

But probably the most important impact of the research in terms of hang-gilders flight safety was the

dissemination of this information to French instructors and pilots.
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R

V

V_t°ll.

o<K

dL.ff

angle of attack

drag coefficient

drag coefficient at oC = o (linearized)

lift coefficient

derivative : d Ci./dol (linearized),lift gradient

rolling moment due to sidedip-coefficient

pitching moment coefficient

pitching moment coefficient at o( = o (linearised)

derivative ¢1 C M /¢Jo((linearized)

pitching moment due to sideslip-coefficient

yawing moment due to sideslip*coefficient

force exerted by the pilot on the control bar ( F > O corresponds to a nose-up action)

center of gravity of the vehicle

aerodynamic chord (length of the keel)

fineness ratio

center of the glider (at the crossing of keel and cross-par)

wing axes

resulting aerodynamic force on the glider

relative air velocity

stalling speed

height of center of gravitvtwing axis (see fig.)

angle of attack (in degree)

corresponding to maximum L/.1>

corresponding to the kink point on C_1 [,t,)curve

correspondin(J to onset of luffing if _ decreases

0(_;. =_',_kcorresponding to minimum sink speed

[

corresponding to maximum of yC_ t- + C_ (minimum flying speed)

sideslip

---- o(v" -- o(L.f/,

= o_v---- _',<

angle between wing.axis oz and pilot strap (see fig.) ( _;> o corresponds to a nose-up action)

aspect ratio

A

P
aircraft in trim with control bar free (F = O)

luffing limit

maneuvering limit (max length of the pilot's arms)

force limit (25% of pilot's weight)

lossof roll control

lossof yaw control
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INTRODUCTION

in France, hang gliding started to be a popular sport in 1973, when a national association (FFVL) was bo_n.

There were some hundreds of people f!ying, almost all claiming to be instructors! As usual, some dramatic

accidents focused everyones attention on hang gliding, and fairly soon, many flying places became very crowded.

Some of them were closed because of the p='oblems created by the people watching and their motor-cars. Rut the

aeronautical authorities were reluctant to c_,nsider them as real aircraft, and preferred initially to classify them as beach

_oames, in order not to have to certify them.

After two years, it was clear that a new kind of aircraft was flying Flench skies, and something had to be done

Ilbout its flying safety. The DGAC (equiv. to F.A.A.) funded a two years'research at ONERA about the fiyin9

envelope of ultralight hang-gliders, and requested advice for future specifications.

In order to avoid difficult similarity problems due to the lackness of fabric, it was decided to go through

scale 1 tests in $1 Meudon wind-tunnel The gliders used covered different shapes from the standard RogaHo to the

Fledgling I.

Somewhat unexpected results were obtained, and it was decided to check the main performances in flight,

which was done successfully.

Then, the flight mechanics computations were completed, and highlighted some very interesting and specific

features of these vehicles.

At the same time structural calculations were undertaken, and constantly cross-checked with in-flight and

ground-test measurements.

But the determination of handling, performance and structure specifications remains difficult because of the

numerous non-linearities encountered in the problem, and the difficulty of defining adequate demonstrations for the

manufacturers.

AE RODYNAMICS

Wind-tunnel testing of a sail-wing mock-up raises difficult scale effect questions. Therefore ONERA decided to

use $1 Meudon, which allows scale 1 tests of hang-gliders, thanks to its 16 x 8 m elliptic facility. Nevertheless, the

study is not necessarily free of Reynolds problems, as the paragliders' flying speeds places their Reynolds number in

the range of 1 to 8 million. This could explain a good part of the scattering found in the tunnel results.

Two series of one month tests were performed with f5 diff,_rent gliders covering the shapes shown on figure 1.

5TAMDAI_D 5WALLO_/TAIL _I'tAPF,. C'fLIrlgl:;O COFllC,\L CAI'IA_D

t,U_T_ALIArl
ALBATI_055 or DI_AGOI1 PHOEI'IlX 6B SHAPE

FLFDGLIMG ]Z

Fig. I - Survey of the shapes of gliders u_ed.
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Fig. 2 - Wind tunnel arrangement.

Fig. 3 a) and b) show the resutts of visuali zat;ons respectively made with tufts and smoke, in the tunnel and in

flight at air AOAs. ¢ig. 4 indicates the general flow around the wing at cruise angle of attack.

-4-

The mounting is basically made of a tetrahedral tubing (fig. 2),

fixed on three vertical masts, through three dynamometric rings. The

glider is fixed by means of clutches :

a) at its "center", on the top of the tetrahedron,

b) at the control bar on both front struts.

The rear mast ends with a screw-jack which provides adjustment

of the angle.of-attack. The whole of the mounting can rotate about

a vertical axis for sideslip setting.

All tests were made under static conditions, =nd air measure-

ments had to be strongly filtered because of the effects of wire and

fabric vibrations.

Flow visualization revealed quite unexpected air flows, in that :

- no wing-tip vortex was found around cruise A.O.A. (~ 20 =),

- a fairly high vorticing activity was found in the center-part

of the wing, in spite of sweep angles (_. _ra°) wetl below the admittec

minimum value of _ 52 ° for a vortex flow to be organised over the

wing. This is almost certainly due to wing twist, which is surprisingly

always near to 20 °, thus preventing early separation.

O/,:18; O(:22: O_:30: d_:40 t
I o'-

max L/_ rnin sinl_

_ _ _ I

I I _ 4

s o.U.

i

ill
iilllllll :''

Fig. 3 - Flow visuahzation with ruffs (a) and smoke (b).
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Fig. 4 - Flow visualization,

cruise A.O.A.

Two important consequences have to be mentioned. The aerodynamic loading vs. wing-span is less severe than

expected through a two-dimensional theory. The flow above des_,ibed remains as long as the shape of the fabric is

self-adapting to the angle of attack, i.e. between luffing angle and approximately 25 ° . The latter characteristic pro-

rides unique capabilities to Rogallo wings in that their flying envelope is significantly increased (by an angle of 10°

or more) with regard to a normal "rigid" aircraft. Fig. 5 shows the flying envelopes infered from the following defi-

nition : the usable angles-of-attack _E=( are limited by luffing; a<luff and stall dxr, .

Standard

Swallows ai'.

Cylindro con.

Canard

Albatross

Phoenix 6B

Australian

Fledgling

o

(_luff L/D max max min sink

7 20 4.3 23

9 23 5.5 24

9 18 4.9 24

12 24 4.1 32

1 16 5.5 19.5

<6 18 5.9 21

8 24 5.0 27

-5 12.5 7.6 14

o" (_ r__KK

3O 9

30 6

31 -1

27 0

29 3

31 1

(_V'-%.]
39 32

36 27

30 24

36 24

27 26

32 > 26

32 24

20 25

Fig. 5 - Key A.O.Asused in defining the flight envelopes.

Under these conditions, one could expect to find numerous non-linearities in the aerodynamic data. In fact,

there are many, but curiously, the lift coefficient remains pretty linear against o( IFig. 6) as long as the fabric is

free of luffing and far from stall conditions, which means able to adapt its own shape to the proposed angle of

attack. The local linearity allows drawing a graph of CLe ( against aspect ratio /1L for all the gliders in the study

(Fig. 7). Then it is possible to compare data o_ different origins : Fig. 8 and refs, i2, 3, 4, 5, 6].

But C L is the only coefficient to behave so. and unfortunately the non linearities of the pitching moment C M

are very strong. Fig. 6 shows typical results obtained at constant wind speed in the tunnel, c_ut these do not repre-

sent the actual conditions of flying, because the variations of speed induce variable loads on the aluminium

structure, which is very flexible. Consequently, the shapes of the wings, mainly the billo,_, are modified, uo to

the point where it was found essential to make tunnel tests at different speeds Iprecisely 3 speeds in the range

of 8 to 20 m/s or 18 tO 45 m.p.h.). Fig. 6 =hows one example of the necessary interpolation. The impact will be

analysed in the discussion of longitudinal stability.
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The angles-of-attack limiting the flying envelope, as mentioned above, have to be discussed. The correlated

analysis of the wing shape and pitching moment at ;ow angle proviaes a clear explanation of the so-called luffing-dives.

Fig. 9 shows how quickly and how far the center of prer_lre moves beck when o( decreases, in conjunction with
a partition of the sail into two parts ;

a) one immediately dowmtre_m of the leading edges which flutters and does not provide any lift,

b) the contral part, which is inflated, and probably lifted up by the nose vortices, and which gives a local lift,

applied in the rear part of the wing.

Fig. 9 -- Mechanism of "aerodynamic luffing"

This phenomenon is typical of conical wings, obviously very dangerous, and of increased severity with increased

length of the keel. It could explain many accidents, and will be called "aerodynamic luffing" in this paper. One must

keep in mind that it hel_eros at positive, but admittedly small, AOA, precisely when the billows ale not fully inflated.

It should not be confused with the cause of tumbling which is discu_=d below.

At negative AOA, the sails tend to invert, but are partly restrained by the cross-spar lif there is one). In that

case, the shape indicated on Fig. t0 provides a very violent nose-down pitching moment which is able to launch the

wing in I permanent motion, called tumbling 171.

O_ the other end, the stall can't be defined as precisely as on a normal aircraft, because of the very important

wing twist. This will nece_klrily I.'revenl abrupt flow.separation, and syste;natically provide a nose-down reaction

of the glider. Thus a Rogallo glider may be fundamentally safe at stall. The :tall conditions may be difficult to define

up to the poir, t that i reference to Vl_.ai I may no longer be possible. Actually, two events go along with stall. In

an increase of o( , one first muets a marked kink ir the CM = f (e() Curve at IK k (di_continui:y on d C_/dcc )

But lift continues to increase up to its maximum ol0tained at M v- . Fig. ,5 shows the values of -_S,= = ¢<_r' - _

which are of interest in forecasting the behaviour of the glider at stall. Thus a good Correlation w3s obtained between

forecast and flight on the stalls obtained after quasistatic slow-downs, the _,llrity of the stall heing lest with increas4KI

gall) between both events (increased /_$= ), But this does not apply to most of the stalls actually occuring in flight,

which are more or less dynamic ones, and often more severe than expected. A good study remains to be done on the

543
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influence of the local magnitude of CL= ( on the severity of the stall at a given &Sdx •

// =K _0 _

violent

pitch-down /

Fig. I0- Tumbling.

FLIGHT MECHANICS

The first polar curves obtained in the tunnel provided surprisingly high minimum flying sp(eds, as well as

mattered typical performance speeds (minimum sink and maximum L/D, as presented in fig. 5). The minimas were

approximately but successfully checked in flight, using a simple but effective instrumentation, which provided through

telemetry : air-speed, A.O.A., 3-axis-accelerometers, and two structural stresses(Fig. 11 and 12 give the calibrations).

As an indirect consequence of that verification, we had to consider that a hang-glider is often flying in unsteady

conditions, for example at take-off, landing, initiation of a turn, stall. This is due to the effects of the accelerated

air-mass around the glider, which probably can't be neglected, and puts a severe limitation on the validity of quasi-

static models.

V true.

a f

//. __--_-.

I,o. _

, . _ _;10 ?
op

o to zo 30 40 Cy,T_ru¢

Fig. I t - CJlibration of =t_oon tnemortm_r.
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The overall verification of the calculated performance allowed the estimatiGn of the origins of drag. Fig. 13

shows the little contribution of pilot's body, but the high level of friction drag.
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z _ ¢ 0 m

•-_ U

" I'.-?N

A

A

U

E

Fig. 13 - _ontribution to total dra 8 (typical wing,

CD= = 0.06, L/D= 5, V = _0 m/s/.

There is no doubt that the most

critical problem of hang-gliders ts

longitudinal stability. It was explained

above that ,;on-linearities are present

everywhere in the aerodynamic data,

especially if aeroelastic effects are

taken into account. One consequence

is that it is not possible to define an

aerodynamic center, which would

require constant values of CLo (

and CMo ( . Another particular fea-

ture of hang<jliders is the lowered

center of gravity, which introduces

an effect of drag on longitudinal

stability. Remembering the rule of

positive stability which applies to a

normal flying wing : CM o < O, it

might be generalized to a hang-glider,

whose aerodynamics would he linear,

'1 I
assuming ,_'K constant (the

calculation hm to be me3e in body-

axis, using Lilienthal polar curve).

In order to clarify the problem, fig. 14 shows how the actual ,-nulting ae, odynamic force R varies in body

axis. The necessity of equilibrium fixes the center of gravity of the vehicle at a given location for e given o(.
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.-p

!f the aerodynamic data C D C L C M were linear, or at least conventional, the intersection G of R and a circle

centered in fJ would vary regularly. As it is not the case, the displacement of point G moves in an odd manner

against o_ .

,_,; ; _ _ ."
LOCRTiOHo. Cq . _,', :-" ,

._- I 1_' 't/ i," '

CONTAOL I_RI_ "_ " "": "_ "

Fig. 14 - Location of resulting aerodynamic force in body axis (unstable wing).

The problem of longitudinal stability having no analytical solution, a numerical computation was performed,

giving both pilot's forces F and displacements <_ in body-axis against o< . Analysing the sigllificance of :hesa curves

shows that :

a) "effort"-- or "control bar free" stability F(¢< ) is typical of stability about O, pilot's weight being a pure

pitching moment generator, as seen on figure 15,

b) "displacement"- or "control bar fixed" stability 6(0() is typical of s'.ability about G, as seen on figure 16.

The latter being necessarily smaller, "control bar free" stability is to be prefered as a safety criterion, which

would write dF/d=<.

Computations were so organized that F(=x) was the final result to be obtained. As it is rather easy to measure

pilot forces against speeds F(V) in flight, this was used as means of checking the whole of the calculations. Compa-

risons are shown on figure 17.
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But many of the gliders in the study stiff presented significant instabilities st low A.O.A. in spite of having rather

short keels. Looking at pitching moment curves obtained at different tunnel speeds proved that aeroelastic effects

often have a neEative influence on longitudinal stability at low A.O.A. Figure 1B shows this and gives a physical

explanation, which was found to be applicable to a wide majority of gliders. The inwards displacement of the front

part of the leading-edges loosens the fabric around the nose (fig. 19), and local lift drops dramatically, according to

Thwaites' and Nielsen's theory on the behaviour of sail wings [8, 9]. This is a second explanation of the well

known divergent luffing drives, and will be called "aefoelmti¢ luffing" as opposed to the "aerodynamic luffir.g"

described previously. Fortunately, this dangerous effect can be easily suppressed by anchoring one end of the detiectors

in the middle of the bending part of the leading edges, at shown on figure 18. But, aeroelestic effects on longitudinal

ttability will certainly remain important, a_l thus become e very effective design parameter for the manufacturer.

V= 20 '_lJ

a<
1

...-" V:la ..Is

Ctq ./

/

/

I /

\ /
\ /

_. / ,-'°°

...... ....
/ ...... V= S,.,/s

A( RO _YN AI_I'C .D _1" Fi J_

PNY$_C _G ZMTER PRET,qT#_IV

3r_ls_iLiry 7-#_o{l_H Loe_ _£c_4._)J6- oF rs,/&,'oNl

GoOD

F_. 18 - "A_o_l_ti¢ luffing':

548

a



;/i.

!i_ - 13 -

Oo "_ 1"4v st4e_'_, 1",4, _ O TENSION

2_, 3 5Y, _<_O% AERODYNAMICCENTER

__ ///

_5 50 _S Ioo_.t

Fig. 19 -- TYro-dimensional theory of fabric airfoils (Thwaires & Nielsen).
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CM "\

/

I

!

Fig. 20 - Typical effect of keel camber.

A more generalized use of Nielsen's and Thwaites' theory shows that there is a strong relationship between

longitudinal stability and flying speed. Speed creates tension, and tension governs shape of the profile, as shown on

figure 19. Consequently a variation of speed can result in a significant diSPlacement of the center of pressure in
the wrong direction.

Another feature is favourable to a positive longitudinal stability : the keel camber, as shown on figure 20.

Lateral stability and handling was found curiously more or less similar with all gliders in the study. It was first

o . .
determined in flight that normal flying allows normal incremer (s of 10 of sideslip, whereas ultimate manoeuvers can

result in/_ = 30 =.
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Laterally, the most important reSUlt is the

general magnitude of CM) _ , which corresponds to

a marked pitch<lawn moment. Common sideslip

effect is to raise the beginning of longitudinal

instability by several degrees (fig. 21). This results

in a modification in the shape of the forward wing

due to sideslip : the fabric tends to flatten itself

downstream of the leedlng-edge, end the applicn-

tion of lift moves back. The effect on the shap_ of the

other wing is negligible in terms of camber. This

results in a high risk of "tucking into a turn" when

it is initiated at very low speed, and could explain

several accidents.

F_. 21 - Effect of ddedip _ on onset of longitudinal

in_t#b,'/ity. "spiral stability" one.

Its use demonstrated that all gliders in the study would become laterally unstable at both ends of A.O.A.

envelope because of loss of yawing stability (CN_) at high A.O.A., and because of lossof roiling stability (C_,p)
at low A.O.A. It was surprising to find such a result, which can't be generalized without care.

Lateral stability itself was analysed by means

of an old fashioned criterion which looks like the

Turning performance was also surprising. The turning equations normally used for aircraft capable of making

horizontal turns are not adequate for the case of a glider with poor L/D, which is only capable of a helicoidal motion.

An adequate set of equations was used and resulted in the performances given in figure 22. Again, they are rather

similar with all gliders because of the little scattering in maximum L/D. The most important ones are:

a) it is not possible to make a steady turn if bank angle is bigger than _ 60 ° ;

b) at a given lower bank angle, there are theoretically two possibilities of making a steady turn, with two

different A.O.A.s and load factors ;

c) the rate of descent, or height loss per turn is very sensitive toot, at low A.O.A.
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:_TRUCTURE

In France, in the early years of hang_liding, no evidence of structural failures was obtained. Some stresseswere

measured in flight or in the tunnel, and no critical figure was found. This was attributed to practical knowledge of the

manufacturers, and _lso poor performance (mainly diving _.peed) of the gliders. AIso.-t_,e demonstration made about

turning performance was anything but alarming. But the gliders on the market got improved performances, and some

problems were encountered. The investigation was started by an analysis of the load factors which may be applied

in real flight. It appeared that a value of 2 is difficult to overshoot in steady turn, whereas a symmetric pull-out

(push-out) would perhaps reach 3 or more. A typical pull-out is shown on figure 23.

LORD
fACTOR

/71
i ............ / ....

_/ t:=o D'i. V F.

to 2 o Y _ls

Fig. 23 -- Time-history of a dive recovery.

Then structure calculations began separately on leading-edges, keels, and cross-spars. That isostatic technique

did not succeed because it supposed a mandatory partition of the aerodynamic efforts. The real phenomenon required

a more global approach, which was allowed by the use of a finite element program [10]. Figure 24 shows a typical

result, giving both the stresses and displacements. As expected, the use of the program is easy, but the distribution

of aerodynamic loading is somewhat arbitrary. An effective help was found in using sail shape identification with

photography in the tunnel. Close comparison with some flight results and many ground tests gave credit to the

method.

Key results are given in figure 25. But the prediction of breaking loads remains difficult, because of the

scatter found in ground tests. That result will lead to a fairly high safety factor if the calculation is accepted as

a design tool.
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Fig. 24 - Finite elements stressesand displacements as provided by the computer. Swallowtail, Cruise A.O,A.

bWALLOWTAIL PHOEMIX 66

Fig. 25 - Comparison of key.stresses

from computation, flight- and ground-tests.
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CONCLUSION

The study was most interesting because of its many aspects and the possibillt ¢ of constant crosschecking

between flight and theory. As aircraft, Rogallo wings are really remarkable vehicles. "l"hc physical properties

of a fabric profile which is self-adapting its own shape to A.O.A. provides a very wide flying envelope, and probably

smoother Ioues of control. But these shape modifications may induce dangerous stability problems, which can be

dominated by a good knowledge of aeroelasdc effects. Several limits of the flying envelopes were determined, as

shown on figures 26 to 31.

But the final aim of the study was a proposal of specifications. Although that question is very difficult to

answer [ 11 ], it was established that a longitudinal stability criterion should rather refer to "control bar free" curves.

But the choi_ of a minimum required value for dF/d _ would be very inadequate because it would result in the

acceptance of a few gliders which, being very stable, have a very poor maneuverability. A recommended solution

might be to -equire neutral stability around cruise o0nditions (man. sink, and max. L/D) and an increasing positive

stability at I¢,w A.O.A. At stall conditions, the safety problem does not lie in longitudinal stability which is funda-

mentally very positive, and the certificator's attention should be withdrawn, if possible.

The general problem of hang-gliders acceptance was broadened to the proposal of using two different tools, one

for aerodynamics and one for structure, Considering that those accidents which are the consequences of aerodynamic

defects result from abrupt discontinuities (mainly CM#< and CM ,_ ), it was proposed to build e test vehicle,

temporarily called AUTHOPUL (AUtomobile pour les Tests et I'HOmologation des Planeurs Ultra-L_gers). This is far

less precise than a wind-tunnel but it is in the financial range of the flying community, and would allow the removal

of severe instabilities. The second tool is the finite element program for structure calculations, still cross-checked with
ground tests.

But consideration of several significant accident reports showed evidence that the most important effort to be

made for the safety of lang-gliders lies in the operational field rather than in navigability problems.
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