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RADIOMETRIC RESOLLYTION FOR MONITORING VE(;ETATION
HOW MANY BITS ARE NEEDED'!

Compton J. Tucker
Earth Resources Branch, Code 923

ABSTRACT

The significance of the various number of radiometric quantizing

levels required for satellite monitoring of vegetation resources was cvalu-

ated by using in sift collected spectral reflectance data, an atmospheric

radiative transfer simulation model, and a satellite sensor simulation model.

Reflectance data were converted to radiance data, passed through a model

atmosphere to an altitude of 706 {gy m. and subsequently quantized at 16,

32, 64, 128, 256, and 512 digital count levels for Thematic Mapper bands

TM3 (0.63-4.69 pin) and TM4 (0.76-0.90,um). The simulated digital

count data were regressed against the in situ biological data to quantify

the relationship between quantizing levels.

Results of the analysis demonstrated that solar zenith angle had an

effect on NEDp (as expected), that 256 quantizing levels gave a 2-Y4 im-

provement per channel over 64 quantizing levels,* and that 256 quantizing

levels gave a 1 0/c improvement per channel over 128 quantizing levels, No

improvements were found for 256 vs. 51'- quantizing levels.

*Recall that the Thematic; Mapper is currently designed to provide 256 levels without Fain Change while the older
i_andsat MSS data provide only 64 levels.



RADIOMETRIC RESOLUTION FOR MONITORING VEGETATION
HOW MANY f;l FS ARE NFEDUD?

INT RODUCTION

Radiometric resolution for satellite monitoring of vegetation m%olves the conversion of re-

motely sensed spectral radiances into some type of output signal from the sensor system in question.

Usually this output signal is converted from ail 	 voltage to a digital binary word for telemetry

to ground stations. In th- case of the Landsat Multispectral Scanner (MSS), cacti of the four reflec-

tive bands receives spectral radiances which are in turn converted into digital count outputs ranging

from 0 to 63. The MSS has six-bit radiometric accuracy or, in other words, quantizes input radi-

ances among 64 !evels. Various analog gains are provided to match the scene dynamic range to the

,apability of the c iantizer. Radiances which exceed the full range value are output as level 63.

Tile full range value is selected as the maximun ► radiance value which the sensor system will

experience for the band in question under various illumination conditions. The interval between

quantizing levels is simply the maximum radiance value divided by the number of quantizing levels

minus one. In the case of the MSS, there are 63 radiance quantizing levels and level 1 which is zero.

Previous efforts to addr!ss the question of satellite sensor system radiometric resolution have

approached this problem by using aircraft tnultispectral scanner data (Morgenstern et al., 1976).

The procedure used for this type of radiometric resolution investigation involved using a simulation

classifier and a set of scene cover-type spectral responses for an agricultural data set collected by an

aircraft ntultispectral scanner. "These data were employed to define .decision boundaries for the

various scene components. Pixels in the simulated scene were randomly gen !rated from each of thL'

spectral response distributions and were subsequently classified. Radiometric sensitivity was simu-

lated by adding corresponding amounts of noise to the covariance matrices of the spectral responses.

Conclusions of this simulation included that a noise equivalent change in reflectance (NF,lp)* of

*The NEAP of the Landsat MSS is ^27owhile the Thematic Mapper will have a NEAP of —0.5% for the first four
reflective bands.
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0.5<< to 2.0`;7, resulted in in overall decrease in classification accuracy front 	 to 807, a classifi-

cation accuracy decrease from 53% to 37% for highly stressed corn, and a classification accuracy

decrease front 94'1 to 85 1'f for soybeans. These simulation results addressed the specific question of

how field center classification accuracy was affected by changes in NEAP. The authors caution ► that

actual classification or mensuration ^auracy is a complex function of many factors, only one of

which is field center accuracy (Morgenstern et al., 1976).

NEAP, as used in this report refers to the change in target spectral reflectance necessary to re-

cult in a spectral radiance value which is quantized by the sensor system in question into a higher or

lower output signal vis-a-vis an "un. • hanged - or noiseless target spectral reflectance. Where

NEAP = -i	
(scene radi a nce)	 I	 C

(1)1 (mean sensor sif.nal),(rm	 a (scene radiances sensor noise) ( 	^	
3P

—^

NEAP = ' NE radiance	 `	
di	

('-)
ap

a radiance

Willi	 p	 = spectral reflectance of target

NE = noise equivalent of sensor (i.e., generally, electronic and quantizing noise)

rats = root mean square

'I he NEAP thus represents the ability of a sensor system to detect a minnrnuni change in target

spectral reflectance (or NEAT for thermal channels). The sinAlcr [lie numerical value for the NFAp

or NEAT, the more sensitive any sensor system is to changes in target spectral radiances. Several

factors besides qu.intization levels impact upon a sensor system's NFAp performance. These factors

include the intensity of the target incident spectral irradiance (solar zenith angle and atmospheric

conditions) and the nature of the sensor system's optical and electronic design.

A brief review of how target spectral radiances are sensed by a satellite ni tilt i,pectral scanner

system is necessary to understand the relationship of radiometric resolution to overall system per-

forniancc.

k-



Target spectral radiances are in part reflected upwanl and, with the addition of atmospheric

backscatter d spectral radiances. hotl ► impinge upon the sensor's detectors at the satellite system's

orbital altitude. In general the spectral radiances are converted by the detectors into an output

signal (current or voltage) which is amplified and passed through a low-pass presample filter. I he

low-pass filter controls ( I ) the rms electronic noise. and (2 ) the high frequency aliasing due to tar-

gets smaller than a resolution element. Recall that the Nyquist theorem states that the total infor-

►nation in a hand limited signal can he reconstructed ► f sampling occurs at -' times the highest

frequent% component. therefore. the low-pass presample (iIter minimizes the effect of high spatial

frequency targets which can appear -aliased" as lower frequencies within the filter bandpass.

Electronic sampling then occurs to obtain voltage (analog) values for each pixel which are re-

presentative of the scene radiances. This sampled voltage is next converted from an analog level into

J digital value by the analog/digital converter. This is a straightforward task where the input voltage

is converted into the hinary representation of the voltage level to which it most closely corresponds.

The various hands for the system in question are multiplexed and encoded serially into a data

stream which is telen ► etered directly or recorded for subsequent telemetry to ground receiving

stations.

The number of quantizing levels impacts upon the data rate transmitted from the satellite to

ground receiving stations. Because of the relationship of the number of bands, the spatial resolution,

and various aspects of sensor system performance to the resulting data rate, detailed understanding

of radiometric resolution will allow for instrument design trade-offs to be n ► ade for optin ► um sys-

tem performance. These are related by the equation:

(v1 . 0 •s•g•h
DATA KATE = I ► 	 —i	 (3)

K S a-

where

DATA RA'Z'E = BI rS/SECOND
V =	 speed relative to ground

3
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It	 = altitude
O = view ing angle
S	 = samples per IHOV
g = quantizing levels
h = nunther of hands

K s = scanning efficiency (i.e.. TM = 0.85, MSS = 0.45)
C,	 = angular Il:OV

DESCRIPTION OF RESEARCH UNDLRTAKEN

The work described herein was undertaken to explore and quantify the relationship between

the number of quantizing levels of a satellite remote sensing system and the ability of that system

to resolve detailed spectral information related to physiologic condition from vegetated surfaces.

A new approach was tahcn where in situ collected reflectance data, computed radiance data for the

orbital altitude of the sensor system in question, and simulated digital count satellite sea inet

system output for 16, 32, 04, 128, 256, and 51-' quantizing levels were evaluated. These -elation-

ship(s) were quantified statistically by regressing the spectral variables against satml l lcd glint canopy

biological data. Comparison of coefficients of deterinination (r= values) then allowed for quantify-

ing the in ► proven ► cnt(s)/degradation(s) resultu ► t: from the different quantizing levels.

The research descrihed in this report addressed the specific question of how many quantif y ing

levels or number of Fits were rcyuired for earth resource satellite it ► is:;ions which monitor vegetation

resources. To accomplish this end, Landsat-D ' ltcntatic Mapper bands TM3 (0.63-0.69 pill ) and

I'M4 (0.76-0. 1)0 min ) were selected for detailed radiometric resolution study. TM3 was selected

because it received spectral radiances which are very low in energy as a result of cliloroph\ Ii absorp-

tion in t he 0.63-0.(,,) un ► region. TM4 was selected because it receives spectral radiances which ne

very high in energy as a result of the high levels of foliar spectral ret'ICCtamCe characteristic of green

vegetation. These two hands th..n represented the two extrcmes in the 0.40-2.50 jam spectral rc-

gion for remote sensing of vegetation missions.

phis study addresses the question of radiometric resolution 14 ?r tmonitoring vegetation condi-

tion and not classitication accuracy 	 It is assumed, however, that rk , mote sensing radiometric

4
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resolution requirements for monLtonfig %egelat'an and classification .,f vtgctarhon types are similar

this follows in that differences between types of vegetation result from differences in morphological

expression %%hich are usually associated with ditferenccs in 	 geometry. biorn ass. chloro-

phyll density, projected Teat area. foliar water density. etc.

NIFTHODS- ANALYSIS

Three in situ collected data sets were used for this study. They included a Septenlhcr 1971

grassland data set. an April 1 978 winter wheat data set, and a May 1978 data set t Figure 1 ; Table 11.

hhc three data sets v 7• rc selected because they represented a range of different reflectance value,

.utd also represent data front natural ecological scene (thc grassland data) and agricultural scenes

(the winter wheat data).

IS, - FULL SCALE - 75%

70

65

60

Figure I . Ketlectance values used for the three
data sets for'rk13 (0.63 -0.69 µni) and TM4 (0.76-
0.90 µ1n ). The April. 1978 and N1a> . 1 0 78 data
sets are from winter wheat while the September.
1971 data set is from blue grama grass.
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TABLI: I
Statistical Summary of Retle,:Imices and Canopy Variable Characteristics for the Three Data
Sets I valuated. (A) The April 1978 winter wheat data set; (B) The May 1478 winter wheat

data set; , d (C) The September 1971 blue grama grass data set.

VARIABLE.
SAMPLh:

SIZE
MEAN

STND.
DFV.

RANGE
STND. FRROR

OF MEAN
COFFF.OI.,
VARIATION

A	 Rt=DREFL.(%) 20 7'6 1.53 438-10.63 0?4 21.04
I R RF1: L ( 17) 20 33.74 2.18 28.70-37.70 0.41) o,45
iorAL DRY 20 795.02 152.51 480.78-1004.50 34.10 19.18
1110MASS (g/m2)

R	 RI D RI FL. ('') 20 5.0 2.03 3.13-10.50 0.45 30.03
IR RFFL.(`'i) ^0 4308 3.54 38.70-Sl.bl 0.79 8.05
TOTAL DRY 20 795.02 152.51 480.78-1004.50 34.10 19.18
BIOMASS (g/m2)

C	 RFD REFL. (^) 40 1 1. ,)0 2.47 6.27-15.98 0.39 20.72
IR RFFL.(%) 40 2130 334 15.x0-28.57 0.53 15.69
LEAF w'ATFR 40 92.75 5093 28.03-190.80 8.05 54.91

CONTENT (g/m-)

The three data sets were used to provide in situ retlectance data for Landsal-I)Thematic Niap-

per bands TM3 (0.63-0.69 mm) and TM4 (0.76-0.90 jum).

Satellite sensor bands receive spectral radiances according. to their spectral configuration. The

in situ data used for this analysis are spectral reflectance da;- ► and thus conversions were made to

express the spectral retlectance data as spectral radiance data.

To accomplish thi,, an atn •.ospheric transmission model was used where cacti of the spectral

retlectances were illuminated by a computed spectral irradiance value at sea level. The resulting

spectral radiance then was passed directly overhead to a 706 kn ► orbital altitude. Data ► 1111111 values

to the atmospheric model included the mid-band retlectances of I'N'.3 and 1'N14 (i.e.. the reflectance

data; Table 1 ), twelve solar zenith angles (Table -'), and a horizontal visibility at sea level of 27 km

(Tinkler and Reini. 1973).

6



X
C
v

a p
q 11
> -f

L E^-

,r
V I

v ^s ^
^ 9
y M
r O VII

OF-^
v

ocy r ^

m^ia5_

M C y rc Y rr

J

A ^J ^ ^

y ^_ 1

^ m`T

N ^ ^

o «.cz

E H
^ 6J

O ^
C
y C

Ncr ^
:1 A

T_

5^
a. ^

0
r

0
r

0
r

0
r

0
r

r
r̂

r
r

r
r

r
r r

r—
x oo ao 0o

—
ao

N
r

N
r

N
r

N
r

r^
r

T .y. O O C C O C O C O C O O C C O O O C C O
J ;

OyiC

H
..aww
Y(

Y3• ;,^ O o 0 0 0 r r r r ^ — — — — — N — r i CA M
Z r r r r r r r r rr r o0 00 00 00 0o r r rr rr r
Q^ O O C G+ O C C O O C C C O O O O C O 0 0
G r
a

— 0 0 0 0 O r r r r -- O O O -- M f, r ^ r4 Mcn O r r r r r r r r r r x o0 0o x oo r r r r rJ O O n O C C C C C O O O^ O C O 0 0 0 0

pl f 1 O -- -- a, rr r rr 0 — O — — M M N M
J oD C r r r rr rr rr r r r- 00 x a0 x x r- rr r r r-

0 f l vi v) O 00 00 v'^ 00 r N 0 ^L` O --^ N CA r— -tr r r ^O c r r rr r r rr x x r r 00 r r ^O r- r
L 0 0 0 6 0 6 6 6 6 6 6 6 6 6 6 0 6 6 0 6
a

f ! r N r — W) O' v1 00 -1 f ! 00 v1 oc — r x Q` 00 ttz r r ^O ^D r r r r r x r 00 D 'D r z r
^y, C O C O O O O C O C C O O C C O O C O O

S' 11C ON IV O O` 00 V7 00 r N M ^, OIt K a ^, z ^C v r .^ ^p v1 v^ r~ J r ^n ^n z z r
^] O O O O C O 0 0 0 0 0 0 0 0 0 0 0 0 0 0
J
z .: x r v) r-- ^- v^ r N 0-T x C^ rr N f") T r r►,

•T 7 `t -t tt N CIA IRr v1 v1 z V) v, v') M C vi vi
O O O O O O O O O O O C O 0 0 0 0 0 0 0

J

o r N o0 to r- N 00 kn r N o0 vl r f^A 00a rJ ry `O V^ ^D N r*A ^O ^O C f`^ N rC ^C D N rJ r0 C .^
4 o -r r r- t O 4 r r--: -r O^ r r 4 O^ r rN(.. LJ N `T M N — tn M C'4 — v', er M N —

W)
d M r ! —

Z^
N

a

E - = M M M M M - t I^r

$ri.i a — H E" ^' (""' f--. z z z z z ^' CL '.L ,".^:
(n >



The atmospheric radiative transfer model which was used for this analysis was based oil

Turner and Spencer (1972) mottel, This simulation grogram calculates the spectral path radiance

and Elie total spectral radiance at any altitude in the earth's atmosn;iere accordin g to a modified -'-

stream radiative-transfer lUriCtlon. The path radiance is a function of the solar zenith angle, the

nadir view angle, the azimuth angle between the vertical solar plait, and the vertical view plane, the

horizontal visibility at sea level, the surface background spectral reflectance, and the target spectral

reflectance. The horizontal visibility at sea level was a surrogate for the atmospheric aerosol con-

cen t ration.

The atmosphere was treated as being plane-parallel, horizontally homogeneous, and non-

absorbing which was bounded by a spatially uniform Lambertian surface (Tinkler and Reim, 1973).

It was therefore wel! suited for evaluating the 0.63-0.69 and 0.76-0.90 µm hands used in this

analvsis.

The reflectance data did not correspond exactly to ilie TM3 and TM4 mid-band reflectances.

I pie September !Q71 data used were 0.675 pill for FM3 and 0.765 pill for rM4. The April and May

1976 data used were collected with 0.65-0.70 An, and 0.775-0.825 µm bands. Alt' ► ough the data

used in this analysis do no:.:orrespond exactly to TM3 and TM4 data, in every case they fall within

or extremely close to the Thematic Mapper 0.63-0.69 and 0.76-0.90 µm bands evaluated. Previous

research by the author has demonstrated that no spectral constraints were violated by the approach

used herein (Tucker 1978).

The radiance data at 706 kn ► were remotely sensed by a comptiter program which converted

the spectral radiances into digital count output values for 16, 32, 64, 128, 256, and 512 quanlii.ing

levels (i.e., 4, 5, 6, 7, 8, and 9 bits). This was done for TM3 by using the saturation target reflec-

tance value of 5370 for a solar zenith angle of _"O and a clear rural atmosphere horizontal visibility

of 27 kill. The saturation target reflectance value of 75% was used for TM4 with the identical

8
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It'tlt't 1,111t t • \a1l.lhles and Ilse respe, l l\,' plant canopy hiolol`ic.11 \arlahles foe tilt' Ihrt,e d. 1 1a st'Is (Fig-

tilt' , , I able% . 1 , a, and s 1	 11 \\ .i, Illl-ell• Ill 111 Illls Study th.lt onk , t Onlltl 1101 IIIIpIO\•t' tlpoII the baseline

lellet'l,lll:e d.11.l .1% 111.11 tlat.l SCI \t'tl ,I% III: ha%l% 101 [lit '.111111.1t Ion ., which followed.

File radmil"k , data at -., Oo kill for each tit Ow Solar ien1t11 	 \\elk• IdC1111t'al Ill .I

regression sell- , - it, the letlet'I,II1CO tl.11.l (I 11!tlre .;, I'Alles Z• a, And ^, 1	 I Ills would he t • \pt': letl he

:.Itlst` (ht' I.Itllallte tl.11.l .11e 511111 1\ .1 se:dar l it odllt'I of Ilse rt'llet'I,Illt't' dat.l l01 lil y \arious.itlllo%pholii

'0111111 lolls a\.Illialed

Hit. cols ersloll ot'thc spe:tlal i.idi n:t, tlat,a at 	 111 ` 1,111 Into d11,11.11 11111111 tlal.l \\,I, Illustrated

I,Iplil:all)' 111 Figure 4. K,ltll,lllt , c d,lt.l \%ell I t rt"WIlled to the sellsol' Ill questl011 ,11111 wcw

,111t'nll\ k111.111 iletl to Ille 1'.01.11l:e It'\el %\ Inch was closest nl ttlunalrnce to its radiance \Slut'. lily

salelhte N^slel'1 lht'n rtll pill 1 .1 halal\ t'ode \clue (Of d11`.1ta1 count  I'M an init'IWI from ll to ht eor--

respondnll- to tilt' ttllalltvr111: howl dosed ul etlui%alt • 11.'e to lilt , 1111`111 ratLan:e \aloe (I^I1.ure -11	 h
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from (B) against the leaf water content. The degrading cf-
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was obvious that, depending upon the number of qu.lntving levek. a certain degree of -rounding-

oft"' OCCUrrcd. This was principally due to th.^ number of quantizing levels but was also impacted by

the solar zenith angle (Figure 5). Lower solar zenith angles were found to be limiting and thus were

ti-ed to illustrate the quanti.-mg levels results. In addition, there was a relationship between the

s<)lar zenith aiigie and the noise equivalent change in retlectance (NEOp) (Figure h).

hr num1wr of quantizing levels had a decided uttluence upon the relationship between the

digital count and plant canopy biological data (Tables 3, 4. and 5). The 1 28 and % qu:ultizing

levels were consistently better in terms of r2 values than t4 or lower quantizing levels. In a few

cases, higher r2 values were reported for some digit,ll count variables than existed for the basehnc re-

flectance data (i.e., TM3 for 34.62° and 04 levels). This resulted from "fortuitous" rounding-off

a td was an artifact of the analysis. Any departure from the ha!'Chiic reflectance or radiance data

10
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'. 4

1. y

0

	

C M p	 ,
0	

0
p
O ^ `	 M O
O	 0 8

0 0

e

5(•N.III *NT •.lO^MIt ,f

	

wI••r r14,T	 -I

6

A

12 QUANTIZING 11 V1L•
011 009 i-

SMAN If 0011	 AMOL1 a II EY

H7 J.
.301 7.

yrl II

1 111 04
I +» - H
U1 • U

all j1
0 Be, 12
O 014 T,
ow , 70

^ o N. 11
'^	 01 11	 y

O IN r

w	 o r7 • ,s	 a
osi. +I	 ^
OOI 14

OsN 7
)

o Iw 11
OIN

007- o
0.06

°0 »0

0316 O J

1

. • • • • • .

••••	 •••

ono A
s	 o	 ! .........°

o+w o	 9 .	 ...

Clow
KU.ME. ^

p•T•.T 714
^• W, tit

7	 6.OM 5CMAII. PIMA

01460 ono u

B

71 QUANTIZINC LCVILE
063 0/1

sOUR ZINITM Aly OLE n {^•

70

H

77

H

16

N

71
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was considered as an expression of a degrading influence in the analysis. This was in every Case con-

firmed by referring to the plotted data of' the fortuitous rounding-Off.

It was apparent Iron ► the analysis that 128 levels were approximately	 superior in a regression

sense to 64 levels. Sixteen and 3' quantizing levels were dismissed from consideration because of

their demonstrated regression inferiority (Tables 2. 3. and 4), No systematic regression improve-

ments were found for 512 levels vs. 256 levels. This suggested that 256 levels represented the maxi-

mum number of quantizing levels required for orbital remote sensing of vegetation resources using

satellite sensor hands similar to Thematic Mapper hands TM3 and TM4.

In order to eliminate the possibility that the in situ re flectance data had "biased" the analysis.

the analysis was rerun for a data set of perfectly correlated data. Fhis was accomplished by using

the regression equations in Figures 'a and _'b to generate perfectly CorrelatCJ retlectanCes with

respect to the leaf water content. These data were solar irradiated and Massed upwards by the iden-

tical atmospheric model to 706 kill where they were quantized at 16, 32, 64. 128, 256. and 51

n

	

	
levels forTS13 and 1 %14 hands. J hr simulated digital counts were subsequently regressed against the

leaf water content (Table 5).

The results of the perfectly correlated radianCC data analysis agreed Closely with the in vita e-

t1c.• tance results. A ; improvement resulted from quanliiing at 128 vs. 64 levels for hoth TM Z

and 1 %14 ( Figure 9), A I"; improven ► cnt resulted tram quantizing it 256 vs. 128 levels for TM3 and

TM4. A	 improvellWnt resulicti for the rM4/TM3 digital count ratio for 128 vs. 64 levels with

no improven ► cnt for 25(1 vs. 128 levels for this saim ratio of I hematic Mahler hands (Ta)le 5). A

I'I improvement resulted for the normalised dil'ferentes for 128 vs. 64 levels and a I , " rirnl)rovcn ► cnt

existed for 256 vs. 128 levels.

The results of the perfectly correlated data analysis suggested that the in situ reflectance data

analysis was valid and furthermore demonstrated the — 2-3'% improvemwnt per CIMMIL'l resulting

I ()
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tlonl '5o yuantuirr k-Nels ^s n4 for senw ► rs suullal to I hciiialic Mal ► per hands I N1 i and I N14. II

1% C\trrnlely tit uhtl ul II more l lean 25h quJim/ing levels woul,t ever he l ► ractical fOr orbital remlurrc

Ill ssioits alit 128 yu.lntvifig levels ioul,l v% L-11 he A10IIlate. In addllion, the restlll%ol , till% stu,ly

1 ►;teed ►► 1111 the rev it) 	 retcrcticed stud\ of a ven dIII.rrn1 nature by Morgenstern et al. 1 I, ► 7(1)

(Table W. l;enelal ► , , mpariw ► I1S b4dWCV1I these h► „ %111111C% %%cic favorable. I lie resliII%oI Morgell-

stern et al 1 1' 11 71,). however, shoNr,l that all imilroveliwill 111 sillllllm,. classification accuracy re-

su1t,'J ut II\r 1 1 111 Of W%Cil Clews fm .i NI:JN of 1.0'. vs. 0.5' ( fable ()* 1 his could h.i\o rrsulicki

nom life a.ttlal scanner stonl NI Jp being - IAY; fur llic dIlLi -wts used b y Morgenstern cl al.

l I	 t ► ).

I'hk. MSS of l-an,lsats- I_'.  and quantves Input radiances into (1 . 1 lk , \ds. Lan^isat- I^ • ."hhe-

nl.ltic M.Ippel \ ► Ill ,luantin • input	 into 25(1 levels. I'he dat,i pre.rnicd in Fables `, 1. 4, and

5 dt-mmistrale that a r.idio w(rir; R• sollition ililt , r, ►ven nt of 1 -4 (averap.- of -2-31N ) per channel

resulicd from ► lu.111111ing :it -'S( ► levels vis-a-vis t,4 levels for I \12 and FN14. fills is a small belt

A B I I I•
L,
	

Sinlulaft-d CL;ssification Results of Morgensteln et al. ( 1 0 7(1) as  Function of R.Rhollletric
Scwoii%its. Nole the 1N) 10('lassifik.ation I'elk-enl Inlprovetnent ofU.5' vs. 2.0'; NI:Jp.

-	 IFOV = ;U ni -	 r -----IFOV = 40 m --

Stukl} Segn1011	 Noise klimaloit Change in I:rlle:t:m^e(NI Jpl*

'.U''.	 O.5' 	 I .lY';	 _ .(Y

S-20-1. 42\1

S-20-1, -11 \I

S-21 2. 43NI

U(,. , ) x)7.1 `1(,.1 05,5

So. 0 88.1) ti-1.1 Q_'	 .t

NA NA NA `I I	 .

97.3 1)(,.I

III S-1.0

90.1 SIA

*0.5	 - 25b levels; 1.0'': , 	- 12r levels; and ` 0"' _ -(4 levels.

*NFAp tit' 1.0%— -128 level; NI : Ap of 0.5'; - -250 levels.

.1

C



sul l stantlal uul o rovement over the HISS. %% hen cotivIcd 11 Ith slnctl.11 resolution 11111 1 1-OWnlerlts (het-

ter TM hand selection). an increased nunlh. r of hands, and %liatial resolution improvements (30m

II"OV), additional 11111 , 1overnents are expected from tilt interaction(s) of these lhlec - resulutlt+n"

parameters.

CONCLU S10NS

I.	 The solar icnith angle was found it) have an influence upon the noise equivalent ch.mlge in re-

11ectance.

Qualitiiing levels had .I dreidcd effect upolr the ability to resolve spectral radiances which were

highly rel.ttcd 10 111:u1t ca11011y vegetJtlonal status.

TM 3 :Ind 'I'N14 showed a per channel nnploNenlcnt of 2-3 1 ', , for -'Sto lc%els vs. (4 levels. A slight

(approximatch I ;) imptovcnlc-it result :d from 'ih Ievels ys. 128 levels. No improvemcnt>

were fou-^ I for 5 12 vs. ' i h levels.

i.	 l he TM4,' M.t I;Itlo and the normahied diffcrrncc shk1sscd a 1-3": imilroWill:ut lot '^O levels

vs. o4 levels. No	 were found for 25t, levels vs. 12S level. for Ihc •se linear conl-

hinations.

1.	 1 • Miler 1 28 or 21(1 oluant I!ulg levels appear op Until lot- orhlt.11 monitot into of 1, rrestrial vege-

tation tier F.M. t mid TN14 h.tnds or similar s e nsor hands.

( I .	 The rathimletric 1'0.0111ti011 of the I helllatli N1.11 1 1 1 e1' Watt JOHIld 10 1 1eihlsl'I)' 111.11%.111"d ti p thi'

scene d> names radl.lnce rank Ior vegetated targets without incorporating vamihic gaol control

in the instrument.
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