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ABSTRACT

In Rosen's "bimetric" theory of gravity the (local) speed of gravi-
tational radiation vl is determined by the combined effects of cosmolog-
ical boundary values and nearby concentrations of matter. It is possible
for vg to be less than the speed of light, I show here that emission of
gravitational radiation prevents particles of nonzero rest mass from
exceeding the speed of gravitational radiation. Observations of relativ-
istic particles place limits on vg and the cosmological boundary values
today, and observations of synchrotron radiation from compact radio

sources place limits on the cosmological boundary values in the past.
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1. INTRODUCTION

Several years ago Nathan Rosen [1] proposed a new theory of gravity,
the "bimetric" theory =- the two metrics being the physical metric By and

a flat, "background" metric n The theory is perhaps better described

pv’
as a two-tensor, metric theory (see (2] for discussion). It is a metric
theory in the sense that the physical metric obeys the Einstein Equivalen:e
Prineciple: in the local, freely falling frames of B,y the nongravitational
laws of physics reduce to those of speclal relativity. One lmmediate con-
sequence 1s local conservation of nongravitational stress-energy Tuv -= the
matter-response equation:

Tuv. = 0 ) amn

3V

The auxiliary, symmetric cwo-tensor “uvc"" be thought of as a second metric; it
is constrained to be flat and is used in constructing the field equations for
the physical metric (see Section 2B)., In a series of papers Rosen and others
have analyzed various consequences of the theory, including the maximum mass
of neutron stars (3], cosmological models [4]), equations of motion [5],
gravitational radiation [6], and other topics [7].

The traditional testing ground for such a theory is the solar systen,
where observations at today's accuracies probe the theory's predictions to
post-Newtonian order (see [8] for a review). Lee et al. [9] have calculared
the post-Newtonian limit of Rosen's theory and shown that it {s the same as

that of general relativity, except for the preferred-frame PPN parameter

“ne

{For a discussion of the Nordtvedt-Will Parametrized Post-Newtonian (PPN)
Formalism and a description of the meaning of the PPN parameters, see chapter

39 of [10]; in particular, Box 39.5.] The values of o, and the Newtonian

-



gravitational "constant" G are determined by the distant matter in the
Universe, which reaches into the solar system through boundary conditions
applied far outside it., An appropriate adjustment of the cosmological
boundary values brings the theory into agreement with present limits on
Q, and on the time rate of change of G. Put the other way around, these
limits place constraints on the possible boundary values., One way to test
the viability of the theory is to construct cosmological models and ask
whether the models can be made consistent with these constraints, In thi:
paper 1 point out a new set of observations which yield particularly
stringent constraints on the cosmological models in Rosen's theory.

The two metrics in Rosen's theory play different roles, Gravitational
radiation propagates along "light'" cones of the flat metric, while light
propagates along '"light" cones ot the physical metric, The two "light"
cones need not coincide, so the speed of gravitational radiation {s, in
general, different from the speed of light. Lee et al., [9] showed that tue
speed of gravitational radiation, as measured by an observer at rest in the

universal rest frame far from any local concentration of matter, is deter-

mined solely by the cosmological boundary values. This speed vgc is
related to o, by
o (1 + « )-1 (1.2a)
Vgc - Y h,‘. - ..

In the vicinity of a local source of gravity with (dimensionless) Newtonian
potential U -< 1 (U > 0), the speed of gravitational radiation increases

Lo

v, = vsc(l  2U) (1.2b)

(see Section ?B). It is possible for Yo to be less than the speed of lignt.
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I show here (Section 3B) that as a particle of nonzero rest mass is
accelerated through the gravitational "light" cone, it emits an infinite
amount of energy In gravitational radiation., It follows that, 1f v < 1,
the speed of gravitational radiation is the ultimate speed for such par-
ticles; they cannot escape the gravitational "1light" cone. As a result,
observation of a relativistic particle with Lorentz factor y provides a

lower bound for vg at the point of observation:

l=v <oy " (1.3a)

I1f the Newtonian potential at the point of observation is known, one also
obtains a lower bound for vgc. This lower bound can be re-expressed as an

x 2(1l - v ):

upper bound on the value of uz -

-
@, <y "+ 4U B (1.3b)

Equations (1.3) are the basis for obtaining observational constraints on v8
and a, (see Section 4).

In this paper 1 analyze the gravitational radiation emitted by par-
ticles moving at speeds near the speed of gravitational radiation. This
analysis leads to the conclusion that, in Rosen's theory, particles of
nonzero rest mass cannot exceed the speed of gravitational radiation. This
conclusion is likely to have far wider applicability than just to Rosen's
theory. The detailed analysis presented here does not depend critically on
any speclal feature of Rosen's theory; one can make a strong case that a
similar analysis holds in any theory of gravity which permits the speed of
gravitatioaal radiation to differ from the speed of light (see [11] for a
brief review of such theories). Indeed, it seems likely that the "gravita-
tional speed limit" is a feature of all such theories.

Another crucial test of Rosen's theory comes from observations of the



change in orbital period of the binary pulsar [12]. Unless the two compon=-
ents of the binary svstem have identical ratios of gravitational binding
energy to inertial mass, Rosen's theory predicts that the system will emit
dipole gravitational radiation and that the radiation will carry away
negative energy [13]. Observations of the binary pulsar are now good
enough that Rosen's theory can be ruled out -- unless the two ratios are
the same to within less than a percent [1l4],

Section 2 develops the formalism for analyzing gravitational radia-
tion emission from weak-field systems in Rosen's theory. Section 3 builds
upon this foundation to justify the claim that a particle of finite rest
mass cannot ex-.od the speed of gravitational radiation. Section 3A calcu-
lates the energy spectrum of gravitational Cherenkov radiation emitted by
a particle moving with uniform velocity v > v , and Section 3B analyzes the
energy emitted as a particle is accelerated th?ough the gravitational "1light"
cone. The result of these considerations {s Eqs. (1.3), which Section 4
uses to obtain observational limits on vg and a, (vsc). Section 5 argue:
that these constraints apply to any theory of gravity with a variable speed

of gravitational radiation.

2. FOUNDATION FOR ANALYZING EMISSION OF GRAVITATIONAL RADIATION

This section lays the foundation for analyzing emission of grasita-
tional radiation from weak-field, linearized systems in Rosen's theory. The
foundatior will be lald in two pieces: the first pilece is construction of
coordinates which take inte account matching to boundary values provided by
an external gravitational field; the second plece 1s construction of equa-
tions governing generation of gravitational radiation and specifying the

amount of energy the radiation carrics.
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A. 1Isolated Sources and Preferred Coordinates

Below I shall deal with "isolated" sources of gravity, such as the
solar system or one of the ultrarelativistic particles of Section 3. Since
such sources are not actually alone in the Universe, it 18 necessary to
describe briefly what 1s meant by an "isolated" source.

The key feature of an isolated source is that the gravitational field
can be split into two pileces: the field of the isolated source (the local
field), which applies near the source; and the field of the rest of the mat-
ter in the Universe (the external field), which appiies far from the source.

To understand the conditions necessary for such a split, consider the
length scales characteristic of the source and the external fileld. The scirce
is characterized by two lengths: its physical size R and the length Gm cor-
responding to its mass m. The external field {s also characterized by twn
lengths: a typical radius of curvature a and the length L over which the
external field varies appreciably. Let ry be the distance from the sourc: at
which the curvature produced by the source becomes comparable to the exte "nal
curvature:

r (Gua?) /3 . (2.1

To get a clean split between the local and external fields, the source must
be buried deep inside L (R << ro). and r, must be much smaller than the ox-

ternal scales (ro << min{a,L}). These two conditions translate into

GmlR3 >> a-z " (2.2a)

Gm << min{a, L(Lfa)z} . (2.2b)

The curvature produced by the isolated source is a large, but small-scale

"bump' in the large-scale external curvature,
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When Eqs. (2.2) are satisfied, the region around the source can be

broken up into three parts, which provide a natural split of the gravita-

tional field:

(1) the local-field region, in which the curvature of the isolated

source dominates:

F <Py

where r 1s distance from the source;

(2.3a)

(i1) the transition region, in which the external curvature dominates,

but which is small enough that the external field is nearly homogeneous:

E S YA X

‘¢ « min{a,L} ,
(&)

1

where ¢ 1is a suitably chosen factor less than one;

(i1i) the external-field region:

The nearly flat transition region splits the gravitational field

and external flelds. The only connection between the two fields

(2.9b)

(2.7¢)

into local

is the re-

quirement that they match smoothly in the transition region; from the point

of view of the local field, the external field establishes boundary condi-

tions in the transition region.

The boundary conditions are made explicit by choosing a specific

coordinate system. A particularly convenient set of coordinates can be

constructed as follows., Consider the external gravitational field in the

absence of the isolated source. Let an observer falling freely iIn this

field construct Fermi normal coordinates {x'} = {t.xj} in the vicinity of

his world line [15). 1In these coordinates the two metrics can be expanded

about the observer's world line:



B3~ 3&:) + [terms of order Rajﬁkxjxk v (r/l)zl L (2.4a)
nas(t.xj) - nlﬂ(t.xj =0) + ”aﬁ.k(t"‘j -n)xk g rer (2.4b)
(B)

(8)
al ! alyd

is the Riemann tensor derived from the physical metriec., Now introduce the

where 8.3 1s Minkowskian, l.e., |lg = diag(-1,+1,+#1,+1) , and R
isolated source in the vicinity of the fiducfal world line and use these
coordinates to solve for its local fleld. The flat metric retains the form
(2,4b), and the physical metric retains the form (2.4a) in the transition
region outside the source.

Equations (2.4) display explicitly the boundary conditions to be applied
in the transition region. In general relativity, which has onlyv a physical
metric, the external field influences the isolated source only through the
Riemann and higher-order tcrms in Eq. (2.4a), which represent tidal and
higher-order multipole forces on the isolated source, The situation 1s dif-
ferent in Rosen's theory because of the presence of the flit metric. Although
the region around the source has been split cleanly into local and extern:l
parts, nuﬁ cannot be adjusted independently in the two reglons; rather, the
external field determines the form of "R in the transition region, and a
particular choice of coordinates together with its flatness then determines
”qH in the local-field regio (The above choice of coordinates insures that
nuB is nearly constant in the local field region.) 1In general, the 2xtermal
field prohibits finding coordinates such that both 8,3 and Nap are nearly
Minkowskian in the transition region. This lack of "meshing" allows the ox-
ternal field to reach into the vicinity of the Isolated source and affect
local gravitation physics, (Will [2, Section 5.3] gives a general discussion

of the manner in which auxiliary tensor fields in metric theories of gravity

~1



couple local gravitation physics to an external fleld.)

Cravitational radiation emitted by the source is analyzed in the tran-
sition region, In order to separate the radiation from the external curva-
ture, the wavelength A of the radiation must be much smaller than external
scales:

\ << min{a,L} ; (2.5)

a requirement which also guarantees that the wave zone of the radiation ex-
tends into the transition region. In Section 3 I will be interested in
calculating gravitational radiation emission in the linear approximation. In
this limit another consequence of (2.5) is that, in Eqs. (2.4), one can
ignore both the tidal terms in I and the spatial and temporal derivatives
of "aﬂ‘ these terms cannot affect radiation at wavelengths much smaller
than their own characteristic i1engths.

As a result, in calculating the gravitational radiation emitted by an
isolated source in the linear approximation, one can always use coordinates
with the following two properties:

Property 1. The physical metric gaﬁ is asymptotically Minkowskian in

the transition region far from the source,

Property 2. The flat metric ”aﬂ is a nearly constant matrix in the
the locil-field and transition regions; its slowly changing values
are de’ermined by the external field, and its temporal derivatives
can be ignored.

I shall refer to a coordinate system which satisfies these two properties as

a preferred coordinate system. Such coordinates are particularly useful for

analyzing gravitational radiation emission: Property 1 insures that the

coordinates provide a good reference frame for an observer in the transition



region monitoring the emitted radiation; and Property 2 {nsures that the
field equations and gravitational stress-energy assume a particularly simple
form (see Section 28). Properties 1 and 2 do not uniquely specify the coor-
dinates; instead, they specify a family of preferred coordinate systems,
the members of which are related by arbitrary Lorentz transformations and
translations. Throughout the following I shall use preferred coordinates.

Now restrict attention to the sources considered in Sections 3 and 4 --
ultrarelesiivistic particles moving in a typical astrophysical environment,
For such sources, the external field must include both the smoothed=-out
cosmological solution and the ficlds of nearby, large-scale density enhance-
ments, A typical source might be a cosmic-ray proton near the Earth; then
the nearby density enhancements include the Virgo cluster, the Local Group,
the Galaxy, the solar system, and the Earth, To sufficient accuracy the
gravitational fields of the large-scale density enhancements can be treated in
the wesk-field, slow-motion approximation, 1f the Universe is homogeneous and
isotropic (assumed henceforth), the solution for the full external field - in-
cluding the cosmological boundary values and nearby density enhancements — is
that given in reference [9]. In the universal rest .rame — the frame in which

the cosmological fluid is at rest the two metrics are given by

Bgg = "1+ U , (2.6a)
BO_] = ( ’ (?-6b)
By = Syl + 20) , 2.6¢)
. -] =1 =1 =1
;[ndﬂll = diag(-cU €1 a0 ) 5 (2.6d)

where o and ¢y are determined by the cosmological solutfon, and U is the

Newtonian potential due to those nearby density enhancements which produce a

significant deviation from the cosmological solution. The componen:s have

oy

been teglected, since they are much smaller than U for slow-motion sources.



The external field (2.6) Is used to construct preferred coordinates
appropriate for analyzing an isolated source, For many purposes the most
convenient set of preferred coordinates is obtained by using a (freely falling)
fiducial observer who is initially at rest in the universal rest [rame. In the

resulting preferred coordinates &aa is asymptotically Minkowskian in the¢ trar®.

tion region (Property 1), and e is given by

ngg = = € (1 + 20) , (2.7a)

noj - 0 2-7b)
.—l- 3

njk - (.1 6Jk(1 - 2”; ¥ (20 7C)

where U (= constant) is evaluated in the vicinity of the isolated source,
These preferred coordinates will be called the local universal rest (LURF);

they will be used for all the calculations in Section 3,

B. Lineariz, J Field Equations and Gravitational Streas-Eneng

It is not necessary to give the full, nonlinear Rosen field equatiuns
here; only the linearized version will be needed. For the full equations
the reader is referred to the original papers of Rosen [1] and to [9].

For a weak-field source, the physical metric in a preferred coordinate
system is nearly Minkowskian in both the local-field and transition regicns.
In the usual way, define the metric perturhbation huv to be the deviation of

g from Minkowskian:
uv

(3) (B) _ _
o ™ Boy, + huu " g“v = diag(-1,+1,+1,+1) ; (2.8)

and let Huv be the trace-reversed metric perturtation:

o 1 ()
huU = huv 7 8y h , (2.7)
= o(Buv e -
where h = g h - The indices of huv and huUare raised and lowered

10



(B)
using g .
2

To linear order in the metric perturbation, the field equations 1in

any preferred coordinate system are given by

n*h , = =167 (-g/-q)lfz GT . (2.10a)

MV, 0B O U\

ap
Here 7

b

is the inverse of Nopé B and 7 are the determinants of guv and ‘uv’
respectively; and Go is a coupling constant with dimensions of the Newtonian

gravitational constant (see [9]). In LURF coordinates, Eq. (2.10a) becomes

02 - oy T s
VR, = VD) B o = 16T CT : (2.10b)

(VY

. /2.
Here G = (c“cl) / bo is the gravitational "constant'" at the epoch of

interest (as measured, e.g., by a Cavendish experiment performed far awav
from any local densitv enhancements), and Vp - the speed of gravitational

radiation in the LURF -- is given by Eqs. (1.2). Equation (l.2a) uses ihe

results of [9] to relate Vgc to o [v2 1

o [Vge = ¢yfcg = (1 + ay)

P

The linearized matter-response equations are obtained from Eq. (1.1):

1 = 0 ' (2.11)

Just as in genera' relativity or any other metric theory, gravitational ef-
fects disappear from the matter-response equations at linear order; the
linear approximation is valid only so long as the motion of the source is
governed by nongravitational forces.

To analyze gravitational radiation emitted by a source, one must Le
able to cal 'ulate the energy and momentum carried by the radiation. Rosen
{1] has demonstrated the existence of a stress-energy complex O ~ which is

|
¥

conserved with respect to the flat metric:




&1y O . (2.12a)

3 2
0"‘ o (=g/-n)}/? (T“"+ :u") . (2.12b)

The tensor t“v is interpreted as the gravitationa' stress-energy; it is a

quadratic expression In first derivatives of g witn respectton (g )
Ny w Pwvla
To lowest order in the metric perturbation, {t is given in any preferred
coordinate system by
v 1 1/2‘ av 1.V uﬁ)(—ﬁﬁ - ie T
= = [wl)/= \ - & -
CU 32“60 (=n/-8) “u " 2 u 1 " ,uhws'd 2 h,ah'g, f
(2.13)
= - ABuve
where h = g h‘m .

Equations (2.12) can be integrated to obtain conservation laws for t.e
total 4-momentum. In a preferred coordinate system, the 4-momentum P of the
\|
source is defined by

’ 1/2. .0, 0. 3 )
P : {(-h) T, +e )dx : (2.14)

.

P transforms like a 4-vector under Lorent: transformations among the pre-
a

ferred coordinates, and its indices are ratsed and lowered using g:“’. Now

1\
surround the source with a closed 2-surface S which lies In the transition

(B)

region, and let n be the unit outward normal (with respect to g“v

) to S .,
The conservation law (2.12) relates the change of 4-momentum inside S to a

'ix of 4-momentum through S ¢

A |
d_l_'_ N f ¢ ] o) 7 1%
at | (T + t )l'l'1 dA " (2.15)
S
v , (B)
Here the first index of t“ has been raised using gu“ .

The important quantity for calculating energy loss due to gravitational

0j

radiation is t -, the energy flux in the radiation. Its form (to lowest




order in the metric perturbation) i{s particularly simple in LURF coordinates:

“” hyﬁ,j - h,U h j) " (2.16)

Note that the field equations (2.10a) and the gravitational stress-energy
2.13) are not invariant under infinitesimal coordinate (gauge) transforma-
t.ons. This lack of invariance reflects the fact that a gauge transformation
destroys Property 2 of the preferred coordinates, i.e., Mot does not remain
(B)

constant on local scales. In such coordinates, Bog |y # 0 and terms con-

appear in the linearized {’eld equations and in

3
taininrg gﬁrfr and giL?\f

the gravitational stress-energy

3. GRAVITATIONAL RADIATION AND THE GRAVITATIONAL SPEED LIMIT

In Rosen's theory the speed of gravitational radiation is determined by
the combined effects of the cosmological gravitational field and the gravita-
tional fields of nearby, local concentrations of matter [Eqs. (1.2)].
Although the latter always tend to increase \'g, the cosmological field can
force Vg to be less than the speed of light. It is this case =-- \'g <1 =
that I consider in this section; in particular, I investigate the gravita-
tional radiation emitted by particles moving at speeds near vH.

The motivation for doing so is provided by an analogy with electromag-
net .m. A charged particle, moving through a material medium at a speed
faster than the speed of light in the medium, emits electromagnetic Cherenkov
[16]) radiation. In any real medium dispersion restricts the radiation to a
finite rang: of frequencies; however, for an idealized, dispersionless mecium,
the energy emitted diverges. Similarly, in Rosen's theory, a particle which

exceeds the speed of gravitational radiation ought to emit gravitational

13




Cherenkov radiation. Moreover, the gravitational "medium" is dispersion-
less (at least at high frequencies), so the electromagnetic analogy suggests
that the energy emitted ought to diverge. If so, this result would suggost

that particles cannot exceed the speed of gravitational radiation.

These ideas were first considered in a different context by Aichelburg,
Ecker, and Sex1 [17]. They considered a particle whose equation of motion
apparently allows it to ex-zeed the speed of light, but which is coupled (o
a field that propagates at the speed ~f light. They argued that radiation
reaction prohibits accelerating the particle to speeds greater than the
speed of light. They showed, for example, that if such a particle is
charged, the electromagnetic radiation it emits diverges as it is acceler-
ated through the light cone. The situation considered here is similar, and
the analysis is patterned after thelr work. 1 shall first consider the
gravitational Cherenkov problem and them analyze the power radiated in
gravitational radiation as a particle is accelerated through the gr - ita

tional "light" cone.

A. Gravitational Cherenkov Radiation

Consider a particle with rest mass m moving with uniform velocity v
relative to the LURF; let v ° vg. In the case of interest, vg is very
close to the speed of light. Adopt LURF coordinates and solve for the grav'-
tational field in the linear approximation. The solution of the field equa-
tions (2.10b) proceeds exactly as in the analogous electromagnetic problem
(see, e.8.. [18], Section 14.9). The metric perturbation huv forms a shock
front along a cone which extends back from the instantaneous position of the

particle (see Fig. 1); the angle GC between the velocity v and the normal to

14



the cone is given by cos OC = (vslv). OQuts ide the cone ;uv vanishes;

inside the cone,

SGYmO

By (xst) = oo (3.1a)

| % -vt|[1 - (vlvg)zsinzn

04 00 : (3.1b)
’ (3 10)

where o is the angle between the observation point x and the velocity v, and

Y £ (1-v2)-1/2 is the particle's Lorentz factor. The field (3.1) represents

gravitational Cherenkov radiation propagating in the direction normal to the

Cherenkov cone. By evaluating the energy flux using (2.16) and then folliowing

the procedure used for electromagnetic Cherenkov radiation, one obtains the
2
energy d°E radiated into an angular frequency interval dw as the particle

moves a distance di:

d:E . Cmif =2 1.8
T bmow(v = 1) for v o> vg ; {d.2)

This expression is similar to the Frank-Tamm [19] result for electromagnetic
Cherenkov radiation.

Equation (3.2) does not, of course, hold for all frequencies, and it
is important to determine its region of validity. In using the formalism
of Section 2, the above analysis neglects variations in the external gravi-
taticnal field. lHowever, since the particle {s assumed to radiate for an
infinite amount of time, these variations cannot be ignored; their effect is
to modify Eq. (3.2) at low frequencies. To estimate the frequency at which

such modification becomes important, consider a particle which radiates tor

15



only a fivite time T v (rllv) [see Eq. (2.3b)]. Then the particle's motion
and the radiation it emits can be analyzed within the transition region,
where the formalism developed in Section 2 i{s applicable. The emitted radia-
tion is a pulse which lies just inside the Cherenkov cone (see Fig. 1). It

is easy to show that, when the radlation is analyzed at a distance v r; from
the particle's trajectory, the pulse has a duration At v I(v/vs)— 1](r/8).
Thus the energy spectrum will be given by Eq. (3.2) for frequencies

w2 w, = (1/At). The wavelength corresponding to the critical frequency wy

is
N -1 -1 .1 -2 =2, .
A, g(v8 - v ) * minfa,L} = 3 € (yg -Y “) * min{a,L} , (3.3)
- 2,-1/2
where YS = (1 - vs) . I have confirmed this result by a detailed analysis

of the radiation emitted by a particle which moves faster than v8 for only a
fivive time.

Variations in the external gravitational field can be regarded as procduc-
ing "dispersion" in the propagation of gravitational radiation. This disper-
sion modifies the Cherenkov spectrum at frequencies below mc. Note that, as
v approaches vg, w increases and dispersion affects more of the spectrum.
Even when Y 1s not close to Wg‘ the critical wavelength AC is typlcally rather
small. For example, for a particle near the earth, the relevant external
scale is of order the radius of the earth: L~ ]09cm. Using the smallest
value of vg allowed by the limits obtained in Section 4 [see Eq. (4.2b)]
and choosing ¢ = 10-2, one finds )\C n (lo-llcm)[l - (Yg/‘{)zl.

The importance of the preceding analysis lies not so much in estimating
the size of lc, but rather in demonstrating that, as long as v > vg, there is

a finite critical frequency above which the gravitational "medium" is

16



dispersionless and Eq. (3.2) applies. In the purely classical analysis

given above, the validity of Eq. (3.2) extends to arbitrarily high frequen-
cles, and the spectrum diverges as w + @, However, quantum m.chanics often
eliminates classical divergences, and one might expect a proper quantum-

mechanical treatment to modify the classical spectrum at very high frequen-
cies. In particular, conservation of energy might seem to require that the
spectrum be cut off at a frequency . - (\mn}ﬁ) corresponding to emission

of a graviton whose energy is equal to the particle's energy. Applying tnis

cutoff to Eq. (3.2) (and assuming W ax >> w ), one finds an energv loss rate
] C
4
Cm
dE -16 -1
-#Ev "—;uq \ 10 . eV - em for protons . 3.4)
L ral 4
2vh

This energy loss rate is so small that, if there is a cutoff at < the
effects of gravitational Cherenkov radiation are negligible even on galactic
distance scales.

However, the existence of the cutoff {s by no means certain. The
uncertainty arises because it is not clear that Rosen's theory, even in fts
linearized version, can be quantized; the linearized field equations (2.10a)
are not those of a canonical field theorv. The difficulties that thereby
arise are perhaps most apparent in an examination of plane gravitational
waves in Rosen's theory:

(i) The Riemann tensor derived from an arbitrarv plane wave has =ix
independent polarizations -- the most general polarization structure all-wed
in a metric theory. Even in the case Vg = 1, where the theory is Lorentz-
invariant, these six polarizations form a nonunitary representation of the
inhomogeneous Lorentz group; they cannot be associated with massless quarta
of definite, Lorentz-invariant helicity (see [20] for a general discussicn

of these issues).




(11) The time-averaged energy density in an arbitrary plane wave
(v‘ ¢ 1), evaluated using (2.13), can be regarded as a quadratic form in
the amplitudes of the ten independent potentials Euv' (None of these ten
potentials can be removed from the energy density by a gauge transformat'on;
see Section 2B.) When this quadratic form {s diagonalized, one finds
that four of the eigenvalues are negative. In other words, four of the ten
degrees of freedom in the wave carry negative energy. The presence of
negative-energy radiation has been noted previously in analyses of radiation
emitted by binary systems in Rosen's theory [13]. 1In a theory with such
negative-energy radiation, the stability of the vacuum is uncertain.

Any attempt to quantize Rosen's theory must confront these two prob-
lems. Even if they can be overcome, the presence of negative-energy radia-

tion removes the raison d'etre for a cutoff at Wnax® The classical Cher-nkov

radiation (3.1) is made up of both positive- and negative-energy parts, the
total energy emitted being a balance between the two. Quanium-mechanically,
this Cherenkov emission might well be represented by multi-graviton proc
esses in which both positive- and negative-energy gravitons are emitted. In
such processes, conservation of ecnergy imposes no restrictions on the fr.-
quency of the emitted gravitons.

Another potential quantum-mechanical cutoff is the Planck frequency

-1/2

wp = (Oh) . If the Cherenkov spectrum (3.2) is cut off at wp. the

energy loss rate becomes

0 N - for protons . (3.5)

di 273éﬁlmo) \3(5 xlO_lacm)

dE _ ym ym

Just as for the cutoff at Woax® it is not clear that this cutoff should te

imposed. However, even if it is, the loss rate (3.5) is large enough that

18



the limits obtained in Section 4 are not affected.

The classical analysis of gravitational Cherenkov radiation hints
at a serious problem in Rosen's theory. The divergence of the spectrum as
w * @ means that the energy emitted is infinite (and positive). This result
strongly suggests that particles cannot exceed the speed of gravitarional radi-
ation. It is not clear that a quantum-mechanical treatment will eliminate
the divergence, nor indeed that such a treatment can be given. Fven as a
purely classical analysis, the above calculation has serious difficulties:
it is clearly inconsistent and, just as clearly, the l!near approximation
is not valid. However, there is little point in trying to patch up these
difficulties. If particles cannot exceed the speed of gravitational radla-
tion, a consistent calculation of gravitational Cherenkov radiation is not
possible. More realistic and more relevant would be an examination of what
happens as a particle is accelerated up to the speed of gravitational radla-
tion.

Before turning to this problem, It is Iinteresting to ask about the
Cherenkov radiation emitted by photons and other zero rest-mass particles.
The best that can be done using the above calculation is to model a free
photon as the limit v-=+1, y+=, ym, * constant. Applying this limit to Eq.
(3.2), one finds that free photons apparently do not produce any gravita-

tional Cherenkov radiatiomn,

B. Acceleration through the CGravitational "Light" Cone

Now consider a particle with rest mass m which has velocity v(t)
in LURF coordinates. The particle is being accelerated by interactions
with other matter and nongravitational fields. The objective 18 to

evaluate, in the linear approximation, the energy emitted in gravitational
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radiation as v approaches vg. In doing so, one must remember that the total
stress-energy 1s conserved [Eq. (2.11)]. This means that one cannot, in
general, neglect the radiation emitted by the matter and nongravitational
fields as they "recoil" from the interaction. However, I shall argue that
in the case of interest here, this "recoil" radiation can be neglected.
Imagine the following scenario for accelerating the particle -- a
scenario similar to those often envisioned for accelerating cosmic rays [21].
The particle is accelerated by a series of "collisions" with local concen-
trations of stress-energy. These "blobs" of stress-energy have masses much
larger than mo and their velocities -- both center-of-mass and internal --
relative to the LURF are small. In each collision, the momentum exchanged
is small compared to the particle's momentum. The subsequent motion of
the "blob" occurs on time scales much longer than the collision time;
clearly, the radiation emitted by the "blob" does not diverge. Now consider
the final stage of the acceleration process, when after many collisions
the particle has attained a velocity so close to vs that one more collicion
can push its velocity above vg. From the point of view of the particular
"blob" involved, this collision is no different from the preceding ones.
However, the radiation produced by the particle in this collision is beamed
in the direction of its velocity, and the radiation diverges in that direc-
tion as v approaches vg. Therefore, in analyzing the final stage of the
acceleration process, one can neglect the "recoil" motion and calculate
the radiation emitted by considering only the particle's motion. The
results obtained will be valid when v is very close to vg.
The field equations (2.10b) for a single-particle source can be
solved in the same way as in electromagnetism (see, e.g., [18], Sec. 14.1).

The Euu have the same form as the Liénard-Wiechert potentials. The energy
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flux is evaluated using Eq. (2.16), and an integral over a sphere in the

transition region gives the power radiated:

Gn2v3
dE 1 8 2 .
T T Ya(v-V) (=11+ zouz- 9u") + y"‘vz(l- uz)(-11+ 12u2)
dt 3 (1_u2)4 - = v

- onf,v:[zv"tg.g)’u- B 3 yia- uz)"] , (3.6)
where U = Y/Ys. and where the last expression contains the leading-order
terms in the limit v =+ vs. As anticipated, the power radiated diverges.

In a real situvation, of course, the power radiated cannot diverge; instead,
radiation reaction diverges and prevents the particle from exceeding the
speed of gravitational radiation.

This calculation suffers from some of the same difficulties as the
Cherenkov calculation. The particle radiates substantial amounts of energy
only at very high frequencies where quantum corrections might well be im-
portant. For the reasons given earlier, the effect of these corrections
is uncertain, and I shall ignore them. A perhaps more serious objection
is that the linear approximation is not valid; however, it seems unlikely
that the nonlinear terms in the field equations can eliminate the diver-
gences that have cropped up in both the preceding problems.

Despite its uncertainties, the analysis of Rosen's theory in this
section leads one to the following tentative conclusion: {f vg < 1, the
speed of gravitational radiation is the ultimate speed for particles of
nonzero rest mass -- a "'speed limit" enforced by the emission of gravita-
tional radiation. Hence, observations of relativistic particles can be
used to place limits on the speed of gravitational radiation [Eq. (1.3a)]

and on the cosmological boundary values [Eq. (1.3b)].
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4. OBSERVATIONAL CONSTRAINTS

The highest-energy particles in the vicinity of the earrh are ultra-
high-energy cosmic rays, which have been detected at energies exceeding

1020

eV (see [22] for a review of the observations). At these very high
energies, cosmic rays are not observed directly; rather, they are detected
by the air shower they produce as they enter the atmosphere. The energy
assigned to the primary particle In a given event is somewhat uncertain,
since it is derived from a model for the shower. However, an energy of

3 XIO19 eV seems reasonably firm,

This energy estimate, even if correct, is not a measurement of veloc-
ity. One obtains a velocity by using the familiar relation E = Ym . How=
ever, one might expect this relation to fail in Rosen's theory, because a
particle's gravitational binding energy might diverge as v approaches vs.
Indeed, an analysis using the linear approximation suggests that the energy
of a particle, as measured by an observer at rest in the LURF, diverges

logarithmically:

-1/2
%

¢ . 2 .
E=ym +YqQ 108{2"3[1 - (i) ; (4.1

where ﬂo is the gravitational Linding energy when the particle is at rest
in the LURF, and q is a dimcnsionless quantity which depends on the structure
of the particle. This divergence is one more reason why particles cannot
exceed the speed of gravitational radiation.

The logarithmic divergence (4.1) is slow enough that it does not
interfere with interpretation of the cosmic-ray observations. [f a particle's
speed is so close to vg that the binding-energy term in (4.1) dominates,

then Eq. (3.6) predicts that the particle will radiate away almost all its
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energy as gravitational radiation. It will not produce the observed shower
of particles.

A more serious uncertainty results from the inability to identify the
primary particle. The most likely candidates are protons or, perhaps, alpha
particles; however, the possibility of heavier nuclei -- perhaps nuclei near

19

iron == has not been ruled out. For a proton at 3 x10" " eV, the limit (1.3a)

on the speed of gravitational radiation near the earth today is

1-v, < 5 - (4.2a)

For an iron nucleus at the same energy, the limit is a bit weaker:

1-v, < 1x1071% (4.2b)

Since vs increases toward the galactic center, these limits 1lso apply at
any point closer to the galactic center than the earth.

Equations (4.2) actually hold not only at the earth but also in those
regions traversed by the cosmic rays after thelir initial acceleration.
Unfortunately, the point of origin of ultra-high-energy cosmic rays is un-
certain. Their Larmor radii{ !n the galactic magnetic field are much larger
than the thickness of the galactic disk. This, together with the lack of
anisotropy in the observed events [23], means that, ‘f they are galactic in
origin, they must come from a distance less than the thickness of the disk
(v 200 pec). It seems more likely that they are extragalactic, in which
case Eqs. (4.2) probably apply out to a distance of at least 100 Mpc.

Earth-based observations of relativistic particles also provide an
upper bound on the value of ) (vgc) today [Eq. (1.3b)]. This limit is
considerably less stringent than the limit on v8 because it 1s determincd

by the Newtonian potential at the earth, which is dominated by the galactic



potential Ugal' A 1 particle with y 2 103 == a medium-energy cosmic-ray
proton or electron, a positron or electron produced in a high-energy colli-
sion at Fermi Lab or CERN or circulating in a storage ring at SLAC or DESY -=-

yields the same limit:

a, <4u .~ 3x1070 . (4.3)

today gal

Here I have used a galactic mass of 1.4 ”IOIIH. at a distance of 10 kpc.

For positive values of az, this limit (valid only in Rosen's theory) is
almost three orders of magnitude better than the best previous limit, ob~-
tained by scarching for anomalous earth tides [24]).

There is a possibility that the Newtonian potential of the Virgo clus-
ter at the earth is as large as the galactic potential. However, there is
considerable uncertainty in estimating the mass of the Virgo cluster, and
the two potentials are comparable only for the largest estimates. In any
case, including the potential of the Virgo cluster is not likely to degrade
the limit (4.3) by more than & factor of two,

Compact radio sources at substantial red shifts provide informatiorn
about the speed of gravitational radiation in the past. They emit a power-
law radio snmectrum which is thought to be incoherent electron-svnchrotron
radiation; the spectrum has a low-frequency turnover attributed to synchro-
tron self-absorption. The Lorentz factor of the electrons can be estimated
from the brightness temperature Th at the turnover frequency: y v (kTh/mc),
where m, is the rest mass of an electron., Jones, 0'"Dell, and Stein [25]
hav: developed a detailed model for compact, nonthermal sources, including
the effects of synchrotron self-absorption and synchrotron self-Compton

radiation. Burbidge, Jones, and 0'Dell [26] have applied the model to
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several compact sources, some of which have more than one component (see
their Tables 1-3), For nine of the ten sources in thelir sample, they pro-
vide (for one or more of the components) a red shift, an angular diameter
determined by VLBL, a size determined from the angular diameter by placing
the source at its red-shift distance, and a Lorentz factor determined by

the model., To estimate a Newtonian potential for each component, I have
assumed a mass of 109H. — a mass larger than or of order those usually thought
to be associated with active galactic nucleij and 1 have assumed a constant
(nonevolving) gravitational constant G. As an example, consider the source
with the largest red shift in their sample — PKS 21%4k + 004 at z=1,936, The
estimates for one of its two components are 7 ~ 590 and U ~:1:110'5, which
implies a:,<h x10™° [Eq. (1.3b)]. Similar considerations for the other
sources provide upper bounds on G, at a variety of red shifts; considering

all these limits together. one can conclude that
, < b ’
Q, ~ 5 x 10 for 0oSss52 ., (L)

No other observation provides information about the value of G, (vhc) in the
past,

There are considerable uncertainties in estimating the Newtonian poten-
tials which go into the limit (4.4)., The masses and radii of the sources are
uncertain; in addition, the gravitational "constant' does evolve in Rosen's
theory, so that its value in the past depends on the cosmological model,
Because of these uncertainties, the limit (4.i) has been chosen conservatively;
with the above assumptions, all but one of the six sources at z > 0.1 provide

a limit ot least an order of magnitude stronger than (l.L),

5. CONCLUSION
Rosen [27] has recently modified his "bimetric" theory. 1n the modi-

fied version, the "background'" metric le i{s no longer required to be flat;

gl =~

v
[=te)



instead, it is required to be a space of constant curvature, Cosmological
mode ls are affected by this modification, but local gravitation physics

Is not, except insofar as it is influenced by cosmological boundary values.
The analysis In Sections 2 and )} remains the same, and the 1imits obtained
in Section 4 apply to the new version of the theory.

The analysis in this paper has been restricted to Rosen's theory, but
the results obtained are likely to have far vider applicability. There are
numerous metric theories of gravity which predict different speeds for
gravitational radiation and light. Typically in such theories, the differ-
ence in speed is produced just as in Rosen's theory: light propagates
along "1ight" cones of the physical metric, while gravitational radiation
propagates along "light" cones of a flat, "background" metric. 1In all such
theories, one expects the speed of gravitational radiation to have a form
similar to that in Rosen's theory: vg = vsc(l + 2£1), where vgc is deter-
mined by cosmological boundary values and f Is a constant of order unity,
The important question {s whether emission of gravitational radiation re-
stricts particles to speeds less than vs. Although detafled calculations
are necessary in each theory, one can give a general argument, based on
the analysis in Rosen's theory, for the existence of the "gravitat{onal
speed limic."

Whenever a particle exceeds the speed of propagation of a “"radiatfon"
field to which it i{s coupled, one expects a shock wave to form. One can
think of numerous examples, such as the shock wave produced by supersonic
motion in an acoustic medium and electromagnetic Cherenkov radiation. 1In
these familiar examples, the radiation does not diverge because the shock
front is not absolutely sharp; it is spread out over some length d charac-

teristic of the medifum through which the radiation is propagating. This
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"blurring" of the shock front cuts off the radiation at frequencies > 'umvu/d'
In the gravitational case, the "mediun" 1s spacetime {tself, or more ac-
curately, the "background" structure on spacetime which determines the
speed of gravitational radiation. The gravitational "medium" has no small-
scale structure to blur the shock front. Thus, there is no high-frequeny
cutoff (unliuss quantum mechanics introduces one), and the radiation does
diverge.

This argument makes it seem quite likely that any theory wicth a
variable speed of gravitational radiation must confront the 1imits obtained
in Section 4. If so, Eqs. (4.3) and (4.4) can be used to constrain the
cosmological boundary values in any such theory. [In general, the g of
these limits is not a PPN parameter; it is simply a parameter related to v
by Eq. (l.,2a).] In additi n, Eqs, (4.2) provide a general, theory-indep ndent

lower bovud on the speed of gravitational radiation near the earth,
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FOOTHNOTES

1Throughout I use the summation convention, Creek indices running from 0
to 3 and Latin indices from 1 to 3. The signatures of the metrics are +2.
A semicolon (;) denotes a covariant derivative with respect to suv' a
vertical bar (|) a covariant derivative with respect to nw, and a comma

an ordinary partial derivative. Units are chosen so that the speed of

light ¢ =1 .
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FIGURE CAPTION

Figure 1. A "snapshot", taken at time t, of the Cherenkov cone produced by

a particle moving with uniform velocity v = 2vg along the z-axis. The
particle is at the apex of the cone. The angle Bc between the normal
to the cone and the z-axis is given by cos Gc = (vs/v). The shaded
region is the pulse of Cherenkov radiation produced by a particle which

radiates fromt = 0 to t =T

.
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