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I.	 INTRODUCTION

Feature selection is one of the important problems in pattern recognition.

Considerable interest has been shown on this problem in recent literature.

Usually, the performance of the recognition system is expressed in terms of

the probability of misrecognition P e . Unfortunately, it is often difficult

to obtain an analytical expression for Pe ; and even if one can be obtained,

it will usually be too complicated to permit analytical or numerical compu-

tation. Hence, certain probabilistic distance measures (ref. 1), which are

easy to evaluate and manipulate, arc! used as criteria for the selection of

effective features.

T he distance measures that are normally used in practice are listed in table 1.

Among these distance measures, divergence (refs. 2 to 5) and Bhattacharyya

distance (refs. 6 and 7) are extensively investigated in the literature.

These distance measures either provide bounds on the probability of error

or give intuitive justification for the measure of separability between the

classes.	 If the distributions of the patterns in the classes are assumed to

be multivariate nonmal; i.e., if

P(XJw i ) I N(m i , Ei),

closed-form expressions can be derived for the distance measures given in

table 1. The closed-form expressions are listed in table 2.

For feature selection, the use of the distance measures is as follows. Sup-

pose that r features are to be selected out of given S features. There are

( r ) different combinations of r features. In a two-ciass case, for each

feature subset one of the criteria given in table 2 is computed as a measure

of effectiveness of the feature subset; and that feature subset is selected

as the best, which extremizes the criterion. 	 In a multiclass case (refs. 6

and 13), the distance measures ire computed for the feature subset between

all pairs of classes; and the maximum of either the minimum distance between

class pairs or the mean value of the distance between class pairs is used as

r
I
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a measure of the feature subset's effectiveness. Because the complete cri-

terion function is to be computed for each feature subset, it is computation-

ally very inefficient.

The purpose of tnis paper is to derive recursive relations for the criteria

listed in table 2. That is, expressions are derived for the change in the

criteria when a feature is deleted from the current feature subset. Expres-

sions are also derived for the change in the criteria when a feature is

added to the current feature subset. A combinatorial algorithm (ref. 14)

is presented; it generates all possible r feature combinations out of given

S features with a single feature change at each step in Sc r steps. This

algorithm and the recursive relations provide an efficient method of choosing

the best fec.cure subset out of all possible feature subsets. The paper is

organized as follows.

In section 2, ►-acursive relations are derived for computing the distance

measures when a feature is added to the current feature subset. In section 3,

recursive expressions are developed for the computation of distance measures

when a feature is deleted from the current feature subset. In section 4, a

combinatorial algorithm is presented for generating all possible r combina-

tions of S in ( r ) steps with a single change at each step. Matrix relations

used in the paper are derived in the appendices.

2. RECURSIVE RELATIONS FOR DISTANCE MEASURES

WHEN A FEATURE IS ADDED

In this section, expressions are developed for recursively updating the dis-

tance measures (presented in section 1) when a feature is added to the current

feature subset. Let the current feature subset contain features xi, x 2 , •• ,

x r-l . The pattern X r-1 containing these features is represented as

X r-1 - ( x11) x2,	 xr-1)T
	

( I )

I

4

k



Let 
mr-1,i 

and 
'.r-1,i 

be the means and covariance matrices of the patterns

Xr_I in class i, i = 1, 2, -- -, M. where M is the number of classes. 	 Let a

feature x  be added to the current feature subset. Then let the mean and

covariance matrix of the pattern X  in class i be m r j and Er,i . The mr-1,i

and m
r,i ; cr-1,i 

and 
rr,i 

are related as follows.

m

and

r	 ;

Erj	
----------- ---------	

(3)

r-1,i	 °r,i

A careful examination of table 2 shows that all the criteria listed contain

terms such as determinant of a covariance matrix, inverse of a covariance

matrix, and trace of the product of two matrices. In appendix A, recursive

expressions for these component terms are developed. In the following, these

relations are used to develop expressions for the recursive computation of

the distance measures listed in table 2 when a feature x  is added to the

current feature subset 
x l' x2' ...9 xr-1'

2.1 DIVERGENCE

From table 2, the divergence between two Gaussian distributed pattern classes

can be written as

J r = 10 7 - 1
-
r,l

+
Er12Er,1

- 2I)

+ I
2
tr E-1	 +r,l -1Z

r,2 mf	 r,l T-
 Mr,
	 m	 - m

2^	 r,l	 r,2) (4)

E	
5

k-



From Qquations (A-6) and (A-8), the following is obtained.

tr(Er l l .: r,2 + Er 1 2E r , ,l - 2I) = tr ( E
r 1 1,l Er-1,2 + :r-1,2Er-1,1 - 21^

+ 5 r,2a112 + 6 r,l a211 - 2	 (5)

Let

mr,12 = in 	 - mr,2

in	 1 , 2	
in

r-1 12

'r,l	 'r,2	 "r,12

Frorn equations (6) and (A-1), the following equation is aerived:

mr,12 'r l l n'r,12 - mr-1,12 E r 1 1,l n 'r-1,12 + `^r,I(mr-1,12^r-1,1)2

ur,l2 d r,1 (rn r-1,120r-1,l ) 	 ur,12 r,l(mr-1,120r-1,1)

2
+ 11r,126r,1

mr-1,12 E r l l,l mr-1,12 + `̂ r,l (mr-1,126 r-1,1	 ur,12)2	
(7)

Similar to equation (7), equation (8) can be written as follows:

_	 _	 2
m r,12 r r,2 rnr,12	 mr-1,12 F r 1 1,2"'r-1,12 + d r,2 (rn r-1,120r-1,2	 "r,12 ) 	(8)

Combining equations (4), (5), (1), and (8) results in

J r = Jr-1 + 2(Sr,20'112 + 6r,la211 _ 2)

+ 7 `̂ r,l (mr-1,12
0
r-1,1 - "r,12 )2 + 2 `^r,2 (m r-1,12

0
r-1 ,2	 "r,12 )2	(9)

6



2.2 BHATTACHARYYA DISTANCE

The Bhattacharyya distance between two Gaussian distributed pattern classes

is given by

T	 1fi r, = 4 r,,l - Ti 	 (.. r ^ l + F r ^ 2 )	 ( mr,l - mr,2)

+ l 
Qn det 2(^r,l + Er,2)^	

(10)
{det(F.r,,l)det(Er,2)}11

Let Er,1+2 = Er,l + Er,2• Equation (11) can be written similarly to

equation (7):

T	 ..-1	 T	 -1
m r,12 . r,1+2 rnr,12 = n'r-1,12Fr-1,1+2mr-1,l.

T	 _	 2

	

+ d r,1 +2 (m ►• - 1,l2^r-1,1+2	 ^r,12)	
(11)

From equation (A-5), the followinq equation is obtained:

1	
det 2(Er,l + F

r,2 }	 1	 2 det(Fr,1+2)

2 Rn { det ( E r,1 )let (<:r,2) 	 2 n {det(^' r,1 )det(Er,20

I1	 !	 }

1	 det l7( ^r-1,1+2 ) I	 1	 {`^r,1^r,2}- R.n --	 + en	 —
2-	

{det(Fr-1,1)det(Fr-1,2)}
	

2
	 26 r,1+2

(12)

From equations (10), (11), and (12), the recursive relation for the

Bhattacharyya distance is obtained as

{s	 s	 }^
_	 _T	 2	 1	 r 1 r, 2

	

Br = B
r-1 + 4 

d r, ,1+2 (m
r-1,120r-1,1+2	 1'r,12 )	+ 2-

^ n	

26 r,1+2	
(13)

7



2.3 JEFFREVS-MATUSITA DISTANCE

The Jeftreys-Matusita distance between two Gaussian disc

classes is obtained from table 2:

_I det(F.	 )det(F	 )	 T

^	

I
r 1_	 r,2_^ 

exD[ d(mr,I - mr,2 ) (Er,l
1 1 det[ 2,(E r.1 ' 'r.A

Let Er,12 -- 
F r,l - F.r,2.

Similar to equation (7), the following equation is deri,

mr,12 Er112mr,12 = 
rn
r-1,12 Fr1 1,12mr-1,12 + dr,12(mr-1,li

Let

(2d r,1+2 )	1	 T	 _	 2

(d 
r,l 

d
C = 	

exP[-4- d r,12 (mr-1,12^r-1,12	 Ur,12)
]	

(17)

)r,2

From equations (A-5), (14), (16), and (17), the recursive relation for the

Jeffreys-Matusita distance is obtained as

JM r = C JMr-1 + 2(1 - C)	 (18)

2.4 KULLBACK-LEIBLER NUMBERS

The Kullback-Leibler number between two Gaussian distributed pattern classes

is given by

det(E	 )1
KL12 r = 2 Rn het F^_ I + 2 tr(F r ^ 1 F.r 1 2 - I )

r, 2

+ 2(mr,l - mr,2)TFr12(mr,l - mr,2 )	 (19)

8



From equations (7), (lV . (A-5), and (A-6), the recursive relation for the

Kuliback-Leibler number is obtained as

d
KL12 r, = KL12 r-1 + 7 

An(Trr-:_1
11 + 2' r,2a1I2-1)

+ 2 6 r,2 (m r-1 ,120r-1 ,2 - 1'r, . )2	 (20)

2.5 MAHALANOBIS DISTANCE

In Mahalanobis distance,	 is usually taken as an ave rage of the covariance

matrices of the two pattern classes. Then it is defined as

-1
2	 TIEr,l + Er,2

^r = (mr,l - mr,2 ) 11	 2	 ) ( mr,l - mr,2 )	 (21)

From equations (7) and (21), the recursive expression for the Mahalanobis

distance is obtained as

Ar - n2-1 + 2`̂ r,1+2 (mr-1,120x-1,1+?.	 ^'r,12)2	
(22)

RECURSIVE RELATIONS FOR DISTANCE MEASURES WHEN A FEATURE IS DELETED

Recursive expressions are presented in this section for updating the dis-

tance measures given in section 1 when a feature is deleted from the current

feature subset. Let the current feature subset contain features xi, x2, ...,
x r, . The pattern X  containing the-e features is represented as

X 
	 = (x l l x 2 1 	 xr)T

Let inr,i and E r j be the mean and the covariance matrix of the pattern X  in

class i. Let the feature x be deleted from the current feature subset.
r

Then let the mean and the covariance matrix of the patterns X r-1 in class i

be mr-1,i and `-r-1,i•	 The mrj and the 
m
r-1,i' Er,i and Er-1,i are related

as in equations (2) and (3). Appendix B presents the derivations of the

recursive relations for the determinant of a covariance matrix, the inverse

of a covariance matrix, and the trace of the product cf two matrices when a

q

-A



feature is deleted from the current feature subset. Tnese relations are

used in the following subsections in deriving expressions for recursively

computing the distance measures when a feature is deleted from the current

feature subset (section 1).

3.1	 DIVERGENCE

The divergence between two Gaussian distributed pattern classes is given by

equation (4).	 From equation (B-13), the following is obtained:

tr(£	 F. -1 ) = tr(E	 r-1	 ) + 'r,2 r,l r,2	 (23)

	

r,l r,2	 r-1,1 r-1,2	
6r,2

From equations (6), (B-1), and (B-8), the following is obtained:

mr,12 E rll mr,l2 = ^"r-1,12'^r-I,l mr-1,12 + ur,12Er-1,lmr-1,12

+ 
M
r-1 ,12^r-I j or,12 + ur,12dr,l

T	 2

	

M
T	 E-1	 m	 + (m r-1,12 r-1,1)

	

r-1,12 r-1,1 r-1,12 	
br,l

	

T	 2
+ 2u r,12 r-1 ,l r-1,12 + ur,12ar,1

2

	

T	 ^

	

MI	 -1	 m	 + 1	 mT 

	

r .-1 ,12"r- 1 ,l r-1 ,12	 6 r,l [ r-1 , 12 r,12 b
r,l	 J

( T	 I2

=

	

MT	
E-1	

m	
+ ` mr,12E r,1/_	 (24)

	

r-1,12 r-1 ,l r-1,12	
6r,l

Similar to equations (23) and (24), the following is obtained:

T

trlE	 E -1	 = tr (
r-
	

r-1	 + r,l`r,2^r,j	 (25)

	

\\ r,2 r,l	 1,2`r-I,l	
`{r,l

((T	 12

III 	 E -1 m	 = m 	 E - 1	 m	
+ 1mr,12^r,2/	

26

	

r,12 r,2 r,12	 r-1,12 r-1,2 r-1,12	
6r,2	 (	 )

10

A-



From equation (4) and equations (23) to (26), the following recursive re-

lation is obtained for the computation of divergence.

T T

_	 ^r,2 z r-1 + rnr,l2mr,12 F"
Jr-1	

Jr -
	 26r,2

	

C"T ( ?: 	+ m	 m 
	
)^,,(21)

2	 r^1l2 r,12rl + 1

	

-	 ---N_
	

-

3.2 BHATTACHARYYA DISTANCE

the Bhattacharyya distance between two Gaussian distributed pattern classes is

giver by equation (10). Similar to equation (24), equation (28) is obtained:

T	 2
mT	 F

-1	
m	 = MT	 C-1	 m	 + ^"

r'12£
r'l+2 —	 (28)

.• ,12 r,1+2 r,12	 r-1,12 r-1,1+2 r-1,12	
6r,1+2

From equations (10), (28), and (B-9), a recursive expression for the computa-

tion of Bhattacharyya distance can be obtained as

	

T	 7_	 ^

	

B	 = B -	 1mr,12Cr+1+^ _ 
1 ^n ^^ r ' l6r ' 2 —	 29r-1	 r 4 

a^r,l+2
	

r,1+2
 (	 )

3.3 JEFFREYS -MATJSITA DISTANCE

The Jeffreys-Matusita distance between two Gaussian distributed pattern

classes is given by equation (14).	 Equation (15) is used similarly to

equation (24) to obtain

T	
, )_2

T	 .-1	 T	 .-1	 "' r, 12 ^ r 12	 ^
n'

 r,12 r,12n'r,12 - 'nr-1,12"r-1,12 mr-1,12 +	 (30,
r,12

Let

	

?	 T)2
C = _(26r^1 2)

	exp	 I (m	 tr, l2 r, 12	 (31 )

	

L° 	 4	 6 
r, 12( 6	6

	

r,1r,2 )	 ^ 



From equations (15), (B-9), (30), and (31), a recursive expression for the

computation of Jeffreys-Matusita distance when a feature is deleted from the

current feature subset can be written as

11M r-1 = 2 + ^LJM r 	(32)

).4 KULLBACK-LEIBLER NUMBERS

from table 2, the Kul Iback-leibler numbers between two Gaussian distributed

pattern classes is given in equation (19). Equations (B-9), UP,  and (26)

in (19) can be used to write a recursive expression for the computation

of the Kullhack .-Leibler number as follows:

1 ''rT2(^r,l + mr,l2'r'►
KL1	

,12) 	 +'r,2 	 1	 1	 `r,2	 (33)?_	 KL12
r-1 =	

r -	 -- _ — - 5 ---	 2 _	 ,n2 (6
1

	

r,2	 r,1

3.5 MAHALANOBIS DISTANCE

The Mahalanobis distance, taking the covariance matrix in it as the average

of the covariance matrices of the two pattern classes, can be written as

% 2 = 2(I-i	 - m	 )T(`,	 + F

	

r .2r'.1	 r•2) -1 (fit	
- mr'2)	 (34)

From equations (28) and (34), a recursive relation for the computation of

Mahalanobis distance when a feature is deleted from the current feature sub-

set is obtained:

(1111
T 	 2

A2A2 	 2 r,12 t_r,1+2 _	
(35)r-1	 r	 YSr, 1+2

4. A COMBINATORIAL ALGORITHM FOR GENERATING ALL POSSIBLE COM13INATIONS

This section describes an algorithm for generating all possible r combina-

tions out of S in Sc r steps. At each step, a single change is made: -i.e.,

one feature is deleted and one is added. The recursive relations developed

in sections 2 and 3, coupled with this algorithm, can be effectively used

to search for a best feature subset of r features out of all possible

(^) feature subsets using probabilistic distance measures as the criteria.

12



The initial combination may be any combination in which all the r-selected

features are numbered consecutively. In the binary representation it means

that all the r 1's are in one run in a vector of length S. For example, if

r = 3 and S = 5, one may start with 11100 or 0011',. The binary vector is de-

noted by A, and its ith component is A(i). Initially, all the components of A,

except those of the last run, are marked. For example, if A = 00111000

(for r = 3 and S = 8), then it is marked as 0011000.

If a is a symbol, a  stands for as ••• a m times. Let i be the highest
index j such that A(j) is marked. A vector T(1), T(2), 	 T(S) of integers
that satisfy the condition IT(j)l 	 j for j = 1, 2, •--, S is defined.

Initially, T(1) = 0.	 If the initial combination is (0) p (T) rOS-r-p where

S > r + p, then T(p + r) = -1 and all the rest are immaterial. 	 If the

initial combination is (0) S-r I r , then T(S -r) = -1 and all the rest are

immaterial. The changes T must undergo in each combination generation are

described by subroutines a and E as follows.

(i) If T(k) = 0, then output A and halt.

(ii) If T(k) > 0, then i - T(k), output A and go t(, step 1 of

the algorithm.

(iii) i	 k - 1.	 If T(k) > -(k - 1), then T(k - 1) , T(k).

(iv) Output A and go to step 1 of the algorithm.

T(i) , -(k + 1).	 If T(k) > 0, then T(k + 1) - T(k), output A,

and go to step 1 of the algorithm.

(ii) T(k + 1) -- k - 1.	 If T(k) > -(k - 1), then T(k - 1) 	 T(k).

(iii) Output A and go to step 1 of the algorithm.

Now the vector F(C), F(1),	 F(S) is introduced as follows.	 If A(m) = 1
and if it is the rightmost element in a run of 1's, then F(m) is the index
of the first 1 of this run. 	 If not, F(m) is immaterial. 	 Let k be the
index of the rightmost l; that is, Q = max m.

A(m) = 1

13
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Now an algorithm for generating all possible combinations with a single

change at each step can be described as follows. The initial conditions of

the al gorithm are illustrated as Follows. Let r = 3, S = 8 with an

initial A - 01110000.	 Then i = 4.

1. k	 i.	 If A(i) = 1, go to step 8.

2. j	 F(e).

3. A(i)	 1, A(j) - 0, and F(k) - k.	 If AS - 1) = 1 and k	 1, then

F(k)	 F(k - 1).	 FQ) - j + 1, if j < e, go to step 5.

4. R	 i. Perform a.

5. If R < S, go to stop 7.

6. i	 j. Perform Q.

7. i	 w.	 Perform Q.

8. F(i - 1) • F(i).	 If a ^ i, go to step 12.

9. A(i )	 0, A(S) - 1, F(S) f- S, R - S.	 If i	 S - 1, go to step 11.

10. Perform a.

11. i t S - 1.	 Perform Q.

12.j - F ( a )

13. A(i)• 0,Q - 1) f 1.	 F(c)- j - 1.	 If is<S,go to step 17.

14. If k + 1	 j - 1, go to step 16.

15. Perform a.

16. i t- j - 2.	 Perform Q.

17. i - Z. Perform Q.

5. CONCLUSIONS

This paper considered probabilistic distance measures as criteria for feature

subset evaluation. The measures discussed are divergence, 3hattacharyya

distance, Jeffreys-Matusita distance, Kullback-Leibler numbers, and

Mahalanobis distance.

14
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The problem of finding the best feature subset is that of e-oaluating all

possible feature subsets and selecting the one that extremizes the criteria.

Recursive expressions are derived for computing the criteria as a change in

the distance measures, both when a feature is added to the current feature

subset and when a feature is deleted from the current feature subset. A

combinatorial algorithm is presented for generating all possible r feature

combinations from a given set of S features in (r) steps with a change of a

single feature at each step. These recursive expressions and the combina-

torial algorithm provide an efficient way of finding by exhaustive search the

best feature subset using the probabilistic distance measures as criteria.

These expressions can also be used for finding the suboptimal feature subset

using forward or backward sequential feature selection methods.
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APPENDIX A

RECURSIVE MATRIX RELATIONSHIPS WHEN A FEATURE IS ADDED

In this appendix, recursive relations are derive6 for the inverse of a

matrix, determinant of a matrix, and trace of the product of two matrices

when a feature x r is added to the current feature subset x l , x2,	 xr- l'

A.1 INVERSE OF A COVARIANCE MATRIX

It can be shown that the inverse of equation (3) can be written (ref. 15) as

r
r l l,i + 6 r r-l,i O r - l,i	 -`rj0r-1,i

-6	
^T

r, i ` r-1 , i	 `^r, i

where

1	 IT	 - 1

	

6 r i	 r,i ' "r-1,i r-l,iSr-1,i

and	 (A-2)

-1

	

^r-1,i	 "r-lj r-1,i

A.2 DETERMINANT OF A COVARIANCE MATRIX

Let the matrix E r,i be partitioned as in equation (3). Consider a matrix B.

r-1,i r-1,i
6 =

0	 I	 (A-3)

A-1



The determinant of matrix B is unity. Form a matrix BT4.r,iB,

I	 0
BT`	

(3

-fi r-1 j r l l,i	 1	 ^r-1,i	 °r,i , 0
	 I

r,•	 0

(A-4)
T	 r-10

Taking the determinants on both sides of equation (A-4), one obtains the

following:

det(` 'r,^ ) _ ( °r,i - `'r-1,irrll,i^r-I,i)det(Er-1,i)

	I det(F
r_1, i)	

(A-5)

r,i

A.3 TRACt OF THE PRODUCT OF NO MATRICES

From equations (3) and (A-1), the following is obtained:

. -1	 `}.	 r-1	 + S	 T

	

tr1Er^1' s 
r,, = tr ^' r-1 ,l 

-
r-1,2	 r,2Fr-1 ,l Or-1 ,2O r-1 ,2

	

T	 T
a r,2^r-1 ,1 r-1,2 _ 6 r,2^r-1 ,l

0
r-1 ,2 * °r,l`Sr,2

= tr	 s.-
"r-1 ,l"r

1
-1,2)

+	 r,2 [Or -1,2 s'r-1,1'r-1,2 - 2 ^'r -1,l Or-1,2 + ^r,l

-1	
(A-6)= tr 

F r-1,1 F r-1,2) + ar,2`Y112

where

	

Y112 = O r-1,2 Fr-l,l Or-1,2	 2 ^'r-1,l Or-1,2 + °r,l	
(A-7)

'111

A-2

I

I



+ 6 r, I a211	 (A-8)

(A-9)

?0r-1 ,1 + ors_.

A-3
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APPENDIX B

RECURSIVE MATRIX RELATIONSHIPS WHEN A FEATURE IS DELETED

This appendix derives recursive expressions when a feature x  is deleted

	

from the current feature subset x l , x 2 ,	 xr for the inverse of a covari-

ance matrix, determinant of a covariance matrix, and trace of the product of

two matrices.

B.1 INVERSE OF A COVARIANCE MATRIX

Let the inverse of the covariance matrix 
^r,i 

of equation (3) be represented

by

	

r-1,i	 ^r-1,i
E r 1 i =	 (B-1)

	

r-1 ,i	 br,i

Since E r l i is the inverse of Zr,i , one has

 B-2(	 )

From equations (3), (B-1), and (B-2), the following are obtained:

T_
r-l,i"r-1,i + ^r-lJi r-1,i	 I	 (B-3)

	^r-1J 41r-1,i + 0r,i&r-1,i	
0	 (B-4)

	

r-l,i"r-1,i + `fi r j r-1,i	
0	 (B-5)

T
Fr-l,i^r-1,i + a r,i°r,i = 1
	 (B-6)

noting that Fr-l,i^
 Tr_

l,i is a matrix of unit rank, one gets from equation (B-3)

(ref. 15),

,
T

^r-1j r-1 j r-1,i
F r-1,i	 r-I,1 +	 1 -	 T	 ^B-7)

^r-I,i

B-1



Using equations (B-4) and (B-6) in (B-7) yields

-1	 _	 ^r-1 i
&
r-1 i

d r i	 s-8^

B.2 DETERMINANT OF A COVARIANCE MATRIX

From equation (A-5), det(E r,l ) and det(Er-1,i) are related as

det(Er-1,i)
	

d r j det(Er,i)	 (B-9)

B.3 TRACE OF THE PRODUCT OF TWO MATRICES

From equations (3), (B-1), and B-8), one obtains

tr^': r ^ l Er l 2) = tr [r-lj  r-1,2 +mr-1 ,1'r-12 +4'r-1jlr-1,2 + °r,l6r,2

T
= tr(
	 E-1	 + tr E r-1,l^r-1,2^r-1 ,2
1 r- 1 ,l r-1,2)	 6r,2

+ 2mr-I,1 r-1,2 + "r,ldr,2	
(B-10)

Let

r'r-.1 ,2

dr,2

Consider

^r,2 7r,l^r,2 = tr Er,1^r,2^,

d r,2	 dr,2

rT
= tr `r-1.1"r-1,2'r-1,2 + 2 T

`fi r-1,1 r-1 ,2 + ar,ldr,2	
(B-12)

`^r,2 

B--2



From equations (B-10) and (B-12), one obtains the required recursive

expression,	 T

Ir	
-1	

1 ('r,lEr,2)
1
	

Fr,2r,l^r,2tr	 E-tr" 	 '	 6r,2
(B-13)

B-3
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