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1. INTRODUCTION

Feature selection is one of the important problems in pattern recognition.
Considerable interest has been shown on this problem in recent literature.
Usually, the performance of the recognition system is expressed in terms of
the probability of misrecognition Pe' Unfortunately, it is often difficult
to obtain an analytical expression for Pe; and even if one can be obtained,
it will usually be too complicated to permit analytical or numerical compu-
tation. Hence, certain probabilistic distance measures (ref. 1), which are
easy to evaluate and manipulate, are used as criteria for the selection of
effective features.

The distance measures that are normally used in practice are listed in table 1.
Among these distance measures, divergence (refs. 2 to 5) and Bhattacharyya
distance (refs. 6 and 7) are extensively investigated in the literature.

These distance measures either provide bounds on the probability of error

or give intuitive justification for the measure of separability between the
classes. If the distributions of the patterns in the classes are assumed to
be multivariate normal; i.e., if

p(x[“‘i) z N(m.is L1)’

closed-form expressions can be derived for the distance measures given in
table 1. The closed-form expressions are listed in table 2.

For feature selection, the use of the distance measures is as follows. Sup-
pose that r features are to be selected out of given S featur2s. There are
(3) different combinations of r features. In a two-ciass case, for each
feature subset one of the criteria given in table 2 is computed as a measure
of effectiveness of the feature subset; and that feature subset is selected
as the best, which extremizes the criterion. In a multiclass case (refs. 6
and 13), the distance measures are computed for the feature subset between
all pairs of classes; and the maximum of either the minimum distance between
class pairs or the mean value of the distance between class pairs is used as
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a measure of the feature subset's effectiveness. Because the complete cri-
terion function is to be computed for each feature subset, it is computation-
ally very inefficient.

The purpose of this paper is to derive recursive relations for the criteria
lTisted in table 2. That is, expressions are derived for the change in the
criteria when a feature is deleted from the current feature subset. Expres-
sions are also derived for the change in the criteria when a feature is

added to the current feature subset. A combinatorial algorithm (ref. 14)

is presented; it generates all possible r feature combinations out of given

S features with a single feature change at each step in Scr steps. This
algorithm and the recursive relations provide an efficient method of choosing
the best feiLcure subset out of all possible feature subsets. The paper is
organized as follows.

In section 2, recursive relations are derived for computing the distance
measures when a feature is added to the current feature subset. In section 3,
recursive expressions are developed for the computation of distance measures
when a feature is deleted from the current feature subset. In section 4, a
combinatorial algorithm is presented for generating all possible r combina-
tions of S in (§) steps with a single change at each step. Matrix relations
used in the paper are derived in the appendices.

2. RECURSIVE RELATIONS FOR DISTANCE MEASURES
WHEN A FEATURE IS ADDED

In this section, expressions are developed for recursively updating the dis-
tance measures (presented in section 1) when a feature is added to the current
feature subset. Let the current feature subset contain features X1s Xos 0%,

X The pattern Xr_] containing these features is represented as

r-1°
- T
Xr_-l = (X'I, xzy "', Kr_‘-l) (1)



Let m_y jand Ly q be the means and covariance matrices of the patterns
X..y Inclass i, i =1, 2, «++, M, where M is the number of classes. Let a
feature x . be added to the current feature subset. Then let the mean and

covariance matrix of the pattern X. in class i be L and zr.i‘ The m__; 4

and LTI and Zr.i are related as follows.
M1,
Me,i = (2)
e,
and
Fratyi O
P g ® . s (3)
®r-1,1 | %1

A careful examination of table 2 shows that all the criteria listed contain
terms such as determinant of a covariance matrix, inverse of a covariance
matrix, and trace of the product of two matrices. In appendix A, recursive
expressions for these component terms are developed. In the following, these
relations are used to develop expressions for the recursive computation of
the distance measures listed in table 2 when a feature Xp is added to the
current feature subset Xy, X,, ***, X ;.

2.1 DIVERGENCE

From table 2, the divergence between two Gaussian distributed pattern classes
can be written as

1 -1 -1
I = ?tr(zr.lzr.Z MRS 21)

] -1 =1 T
+atr [(Zr,1 * Lr.Z)(mr,l - mr,2) (mr.l - mr.Z) ] (4)



From equations (A-6) and (A-8), the following is obtained.
) o] ] -1
tr(hr.lzr.Z *Ip gyt ) = tr(Ty G5yt Iy ot - 2‘)
2% 2 Y Sp %2 - 2 (5)

Let
12 "%y "M

mr-l.l mr-l.z mr-1.12
s - = (6)

He 1 Yr,2 Hp,12
From equations (6) and (A-1), the following equation is derived:

T T e T 2
Me 1250 1M 12 = Mpa1,125r-1,1"1,12 * S0 1My 12921 1)

T T
= He 1281 M1 12%21,1) 7 e 12801 (M0 12921,0)

2
* LJr.126r,l

7 -1 T 2
© M 1,1250-1,1-1,12 S 1(™e1,12%-0,0 7 HeL12) (7)

Similar to equation (7), equation (8) can be written as follows:

T 1 R T 2
M 125,212 = Mec1,1250-1,2"-1,12 * 0, 2(Mee1,12%21,2 = Hr12)" (8)

Combining equations (4), (5), (7), and (8) results in

) ]
Yo =9 * 28 22 * 8, yapy - 2)

! T 2 1 T 2
7 8 (M1 12%-1,1 7 He12) 2 0, 2(Me 12001,2 7 He2) (9)



2.2 BHATTACHARYYA DISTANCE

The Bhattacharyya distance between two Gaussian distributed pattern classes
is given by

1 :  xul
5 = I(mr.l - mr.Z) (“r,l by I‘r,I'!) (mr.l - mr.z)

| .
det z + L
3 ] in . [2-( r.1 r.Z)]H (]0)
{det(zr ])det(zr 2)}

Let I 140 ® zr'] + zr_z. Equation (11) can be written similarly to
equation (7):

T 1 L)

- - ]
Me 125,142,102 ° Mpa1,12

Lea1,142™21,02
T 2
* 8 142(Mely 120021 ,142 ~ M 12! an
From equation (A-5), the following equation is obtained:

1,. ) [ L det(z )
det 5(I. 4+, ;) : o 142

1 _
= &n = = LN
2 {det(xr'])det(ir‘z)}a 2 _{det(Er’1)det(Er_2)}5
i | 5
-1 Qnr det 17(Zp 1,142 v L 0 15r,2]
) L 28
fdet(zr-1.1)d°t(£r-l,2)} r,142
(12)

From equations (10), (11), and (12), the recursive relation for the
Bhattacharyya distance is obtained as

(s, 16,
) | T 2 1 r,1°r,2
B = Bt * 7 S 1e2(Me1 12%1 142 T M 12) " 2 ﬂ"(__gé;_T:E_ ) .



2.3 JEFFREYS-MATUSITA DISTANCE

The Jeftreys-Matusita distance between two Gaussian distributed pattern
classes is obtained from table 2:

det(r  ,)det(: 2)]‘ 1 1. -1
=|[de:[}::l L Lr’z)L‘s expl-3im, ) = B ) (Ep g = Ty )y - m ) (14)
| r, s

Jlllr=21-

Let Er.12 - zr.l s Zr,2'

Similar to equation (7), the following equation is derived:

T T 1 T 2
M 12501212 = Mpa1,1250-1,12"-1,12 * 8r,12(Mec1,12%0-0,12 = M 020" (16)
Let
, (17)
C (28, 142) L 5 S, S _ )2
ng‘;;;':;pi P[ 4 °r,120r-1,12%r-1,12 7 Fr12
r, 1%,

From equations (A-5), (14), (16), and (17), the recursive relation for the
Jeffreys-Matusita distance is obtained as

M.=Cam 4200 - C) (18)

2.4 KULLBACK-LEIBLER NUMBERS

The Kullback-Leibler number between two Gaussian distributed pattern classes
is given by

R det(zr’]q | 1
KLIZr =7 n a_e—f-rfr.-z—J+ 5 tr(zr’]ir'z - ])

S (UNRIEE NP L MATURPE WY (19)



From equations (7), (1%), (A-5), and (A-6), the recursive relation for the
Kullback-Leibler number is obtained as

s
. 1 r
Kler KL]Zr-] + ? Qﬂ(g:l;) 2{6r zallz - ])

2
58 Z{mr 1.12%-1,2 = ¥, 2 (20)

2.5 MAHALANOBIS DISTANCE

In Mahalanobis distance, ~ is usually taken as an average of the covariance
matrices of the two pattern classes. Then it is defined as
-1
L + I
g ) T( rad * 52 i
b (mr.l mr.Z) __J—_?___-L') (mr.l mr.2) (21)
From equations (7) and (21), the recursive expression for the Mahalanobis
distance is obtained as

2 . ,2 2
r = eyt 2, 1ealmy. 1,12%-1,142 = ¥r,12) (22)

A

3. RECURSIVE RELATIONS FOR DISTANCE MEASURES WHEN A FEATURE IS DELETED

Recursive expressions are presented in this section for updating the dis-
tance measures given in section 1 when a feature is deleted from the current
feature subset. Let the current feature subset contain features X1s Xps **%y
L The pattern xr containing the<e features is represented as

T

)

xr = (x1' xz' ono’ xr

Let L and Er,i be the mean and the covariance matrix of the pattern xr in
class i. Let the feature X be deleted from the current feature subset.
Then let the mean and the covariance matrix of the patterns X - in class i
bem. , jand I 4 4. Them , and the m._y 45 L. 4 and L., ; are related
as in equations (2) and (3). Appendix B presents the derivations of the
recursive relations tor the determinant of a covariance matrix, the inverse

of a covariance matrix, and the trace of the product o1 two matrices when a

9



feature is deleted from the current feature subset. These relations are
used in the following subsections in deriving expressions for recursively
computing the distance measures when a feature is deleted from the current
feature subset (section 1),

3.1 DIVERGENCE

The divergence between two Gaussian distributed pattern classes is given by
equation (4). From equation (B-13), the following is obtained:

T ’
5r,ZZr,lcr,z

2 A
trilp10p,2) = (T 05y 2) ¢ Y (23)

From equations (6), (B-1), and (B-8), the following is obtained:

T - T T
M 1250, 1™, 12 Mect,12%-1,1™1,12 * ¥ 1280-1,1r-1,12

T 2
t Me1,125-1, 1,02 ¥ M 128000

T 2
(m £ )
T -1 r-1,125r-1,1
Me1,125021,1M-1,12 * '3 '

r,]
T 2
* 2 128021 ,1Mea1,12 * He 02800
2
T -1 1 [ ] Epa1,1
Moy, 125p0-1,1Mr-1,12 * 51,028 02

.l

. m‘r - )2
] r12%r,1 (24)

T
m + - -
‘].1 r']|]2 6r’]

m 7
r-1,12 "

Similar to equations (23) and (24), the following is obtained:

P -
-1 . -1 fra1tr,25r,
tr(zr.zzr,l) tr(zr-l.er-],l) S : . £25)

2
T - T 3 (mI 125¢ 2)
= 3
M 1250, 2" 12 = ™ea1,12%0-1,2"-1,12 ¢ 2 (26)

r,l

10



From equation (4) and equations (23) to (26), the following recursive re-
lation is obtained for the computation of divergence.

X T »
i “r.z(Lr-l " ”r.12”r112)5r12

Jr-l ) Jr f3r )
wo¥ e T -
-'ILJ!IIQ--j flglzfrilzlfsil v =
zér 1

3.2 BHATTACHARYYA DISTANCE
The Bhattacharyya distance between two Gaussian distributed pattern classes is
given by equation (10). Similar to equation (24), equation (28) is obtained:

S )2
rle'r.]+2 (28)

r,1+42

] T o -

T ) ;
142" 12 Moy 128ra1,042™-1,12 ¢

m
r.d2°r

From equations (10), (28), and (B-9), a recursive expression for the computa-
tion of Bhattacharyya distance can be obtained as

T .. \2 .
= o aE ] (mr.l?lelig)'_ o (5r,15rig)__ (29)
r-1 v 8 r 142 2 25 142

3.3 JEFFREYS-MATUSITA DISTANCE

The Jeffreys-Matusita distance between two Gaussian distributed pattern
classes is given by equation (14). Equation (15) is used similarly to
equation (24) to obtain

T ..
T ol _ . (mr IZErtlg)
" 125r, 12", 02 T Me 128 12 02 T (30)
Let
Y PR
C = _(_—L_—_Zér ]2) exp |:l —?(mr ]_2_‘!'_!._2..)_.. (3])
(8 5 4 4 6r 12
r,1°r,2 L ¢

A



From equations (15), (B-9), (20), and (31), a recursive expression for the
computation of Jeffreys-Matusita distance when a feature is deleted from the
current feature subset can be written as

My =2+ glom, -] (32)

From table 2, the Kullback-Leibler numbers between two Gaussian distributed
pattern classes is given in equation (19). Equations (B-9). (23, and (26)
in (19) can be uced to write a recursive expression for the computation

of the Kullback-Leibler number as follows:

. |
KLIZ, = KLIZ, - 5 el el

' T .
tr.g_fr.l_+ L Tr,] )EEJ? ad ol (fglg) (33)

r,l

3.5 MAHALANOBIS DISTANCE

The Mahalanobis distance, taking the covariance matrix in it as the average
of the covariance matrices of the two pattern classes, can be written as

2 _ f P - =1
& 2(”r.l - mr.Z) (“r,] + “r.2) (m - mr.2) (34)

;)

From equations (28) and (34), a recursive relation for the computation of
Mahalanobis distance when a feature is deleted from the current feature sub-
set is obtained:

, R )2
2 2 2("&;}22})}:3_»

A o Ry il (35)
“r, 142

r-1 r

4. A COMBINATORIAL ALGORITHM FOR GENERATING ALL POSSIBLE COMBINATIONS

This section describes an algorithm for generating all possible r combina-
tions out of S in Scr steps. At each step, a single change is made; i.e.,
one feature is deleted and one is added. The recursive relations developed
in sections 2 and 3, coupled with this algorithm, can be effectively used
to search for a best feature subset of r features out of all possible

(;) feature subsets using probabilistic distance measures as the criteria.

12



The initial combination may be any combination in which all the r-selected
features are numbered consecutively. In the binary representation it means
that all the v 1's are in one run in a vector of length S. For example, if
r=3and S = 5, one may start with 11100 or 00117. The binary vector is de-
noted by A, and its itk component is A(i). Initially, all the components of A,
except those of the last run, are marked. For example, if A = 00111000

(for r = 3and S = 8), then it is marked as 00171000.

If a is a symbol, a" stands for aa c--am times. Let i be the highest

index j such that A(j) is marked. A vector T(1), T(2), +++, T(S) of integers
tnat satisfy the condition |T(j)| < j for j =1, 2, +++, S is defined.
Initially, T(1) = 0. If the initial combination is (0)P(T)"0°"""P where
S>r +p, then T(p + r) = -1 and all the rest are immaterial. If the
initial combination is (0)>™1", then T(S -r) = -1 and all the rest are
immaterial. The changes T must undergo in each combination generation are
described by subroutines a and g as follows.

a: (1) If T(k) = 0, then output A and halt.

(ii) If T(k) > 0, then i « T(k), output A and go tu step 1 of
the algorithm.

(ii1) 1 «k - 1. If T(k) > =(k - 1), then T(k - 1) « T(k).
(iv) Output A and go to step 1 of the algorithm.
g: (1) T(i) « -(k + 1). If T(k) > 0, then T(k + 1) « T(k), output A,
and go to step 1 of the algorithm,
(ii) T(k+1) « k=-1. If T(k) > -(k = 1), then T(k - 1) « T(k).

(iii) Output A and go to step 1 of the algorithm.

Now the vector F(C), F(1), +«+, F(S) is introduced as follows. If A(m) =1
and if it is the rightmost element in a run of 1's, then F(m) is the index
of the first 1 of this run. If not, F(m) is immaterial. Let 2 be the
index of the rightmost 1; that is, £ = max m.

A(m) =1

13



Now an algorithm for generating all possible combinations with a single
change at each step can be described as follows. The initial conditions of
the algorithm are illustrated as follows. Let r = 3, S = 8 with an

initial A = 01110000. Then i = 4,

1. k<« i. If A(i) =1, go to step 8.
2. j « F(v).

3. A(i) « 1, A(j) « 0, and F(k) « k. If A(k - 1) =1 and k > 1, then
F(k) « F(k = 1). F(&) « j+ 1, if j < £, go to step 5.

4. L« i. Perform a.

5. If 2 <SS, go to step 7.

6. i+« j. Perform B.

7. 1+« 2. Perform g3,

8. F(i -1)«F(i). If 2> 1, go to step 12.

9. A(i) « 0, A(S) « 1, F(S) «S, 2 «S. Ifi<S-1,qgo tostep1l.
10. Perform a.

1. i+«S-1. Perform B.

12. 3 = F(1).

13. A(i) <« 0, A(j - 1)« 1. F(R)« j=-1. If £ <S, go to step 17.
4. If 2 +1+«j -1, go to step 16.

15. Perform a.

16. i« j - 2. Perform B.

17. 1 « L. Perform B.
5. CONCLUSIONS

This paper considered probabilistic distance measures as criteria for feature
subset evaluation. The measures discussed are divergence, 3hattacharyya
distance, Jeffreys-Matusita distance, Kullback-Leibler numbers, and
Mahalanobis distance.

14



The problem of finding the best feature subset is that of evaluating all
possible feature subsets and selecting the one that extremizes the criteria.
Recursive expressions are derived for computing the criteria as a change in
the distance measures, both when a feature is added to the current feature
subset and when a feature is deleted from the current feature subset. A
combinatorial algorithm is presented for generating all possible r feature
combinations from a given set of S features in (?) steps with a change of a
single feature at each step. These recursive expressions and the combina-
torial algorithm provide an efficient way of finding by exhaustive search the
best feature subset using the probabilistic distance measures as criteria.
These expressions can also be used for finding the suboptimal feature subset
using forward or backward sequential feature selection methods.

15



APPENDIX A
RECURSIVE MATRIX RELATIONSHIPS WHEN A FEATURE IS ADDED
In this appendix, recursive relations are derived for the inverse of a
matrix, determinant of a matrix, and trace of the product of two matrices

when a feature x. is added to the current feature subset Xys Xps 0%y Xn .

A.1 INVERSE OF A COVARIANCE MATRIX

It can be shown that the inverse of equation (3) can be written (ref. 15) as

v'] ’T "
-1 “r-1,i ¥ 5r.ior—hior-'l.i 6r.10r-1,1
“ri T ; (A-1)
“8p,1%-1,1 & g
where
—_!_..- = 9 - !"-'I @
A - ¥ L
5r.1 vt r-1,i"r=1,i"r=1,i
and (A-2)
) = "-] )
r-l,i “rel,i%r=1,1i

A.2 DETERMINANT OF A COVARIANCE MATRIX

Let the matrix Sr i be partitioned as in equation (3). Consider a matrix B.

-1
" WL

0 I (A-3)

A-1



The determinant of matrix B is unity. Form a matrix BTZr 13.

-

| 0l |z ) -1
r-1,1 r-1,i| |1 'zr-1.1°r-l,1

0 I

i | -1 T
_f¢r—l,1xr 1

-1,1 Cpr-l.i o

r,i
Leal, i 0

(A-4)
T -1

0 (°r.f - °r-1,1zr-1.1°’r-1.1)I

3

Taking the determinants on both sides of equation (A-4), one obtains the
following:

= T -] I
det(Z, o) = (o 5 = 0py iZeoy,i0p., )982 3)

2|
- det(zr-]. 1)

A-5
dr.i : )

A.3 TRACE OF THE PRODUCT OF TWO MATRICES

From equations (3) and (A-1), the following is obtained:

(. o= | 1 T
tr\“r,l“r.Z) t

rlxr-1.13r—l,2 * 8 2%p1,1%-1,2%-1,2

| T T l
= O 2%1,1%21,2 7 80, 2%-1,1%-1,2 * 9,152

. w
t"["r-l 15 .2]

T T
¥ 6r,z[or-l.zf'r-l.lar-'..z - 2p9,1%,2 ¢ °r,1]

-1
r15rn.2) * S22 VAR)

tr(z
where

e | T _
12 = O%a1,28021,1%-1,2 7 2021,1% 21,2 * O, (A-7)

A-2



The following equation is obtained similarly:

tr(ty,2Ze) = tr(Eey, 2y
where

T o
a1, 1%r-1,1%-1,

- = 0

o
Sr,l r.l

-1
r1,1 = Zpe1,1%-1,1

. - T
211 % Opa1,1%041,2%-1,1 7 20

A-3

.1) * 8%

1

1,11 * °r.5

(A-8)

(A-9)



APPENDIX B
RECURSIVE MATRIX RELATIONSHIPS WHEN A FEATURE IS DELETED

This appendix derives recursive expressions when a feature Xp is deleted
from the current feature subset Xps Xos 00y X, for the inverse of a covari-
ance matrix, determinant of a covariance matrix, and trace of the product of
two matrices.

B.1 INVERSE OF A COVARIANCE MATRIX

Let the inverse of the covariance matrix Loy of equation (3) be represented
by

Er'i - r (B-])
Er-l.i 6r.'l
Since 2;11 is the inverse of Er,i' one has
s e (B-2)
r,1°r,§

From equations (3), (B-1), and (B-2), the following are obtained:

T -
Vo1, iZr-1,4 ¥ Gpar,i%ar,i ! (8-3)

Upo1,i%-1,1 * O, i5p-1,4 = O (B-4)
T T

fra1,ifean,i * Or,i%a,i = O B3]
T ‘8 | (B-6)

bp1,i%-1,1 t O,i%,i ©

noting that gr_] i¢1—1 § is a matrix of unit rank, one gets from equation (B-3)
(ref. 15),

T
K €1 191 V...
> 1 = ¥ PR 1,1%r=1,1"r=1,1 (B-7)
r"']'i r"]'i <| - T E,
¢r-l,i r-1,i



Using equations (B-4) and (B-6) in (B-7) yields

T
3 CEra1,ibeeyi

U I Tl % I ;

e

B.2 DETERMINANT OF A COVARIANCE MATRIX

From equation (A-5), det(:  ,) and det(Z  , ;) are related as
’ L]

det(z, ; ;) = 8, ;det(z, ;)

B.3 TRACE OF THE PRODUCT OF TWO MATRICES

From equations (3), (B-1), and B-8), one obtains

(c 51 : T
tr\xr,lzr,Z)_ tr[%r-1.1wr-l.2 RS R

T
N -
) r=i,1%r-1,2%r-1,2
: tr(zr-l.l°r-l.2) ¢ "( )

6r.?.
T
* 2 1,1501,2 * 9 18,2
Let
bra1,2
a' =
P2
6r.Z
Consider
;T - - -T
gr,ZEr,lgnlg ” trrtr,lgr.Zgr,Z]
6r,2 | 6r,2
" T
. Zr—].lgr-l,Zgr-ilz
= r - 6
! r,2

B-2

r-1,1%r-1,2 * %,1%¢,2

T
= 2¢r-1,|5r-l,2 : Gr,15r z

(3-8)

(B-9)

]

(B-10)

(B-11)

(B-12)



From equaticns (B-10) and (B-12), one obtains the required recursive

expression, T )

Er.zzr.lgr.z
6r.2

(r 1,0 r-l 2) . "(f-.-.ﬁ;fz)- (B-13)

B-3
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