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ABSTRACT

An analysis and a numerical lifting surface method are
developed for predicting the unsteady airloads on two-dimen-
sional circulation control airfoils in incompressible flow.
The analysis and the computer program are validated by corre-
lating the computed unsteady airloads with test data and also
with other theoretical solutions.

Additionally, a mathematical model for predicting the
bendincj-torsion flutter of a two-dimensional airfoil (a reference
section of a wing or rotor blade) and a computer program using
an iterative scheme are developed. The flutter program has a
provision for using the CC airfoil airloads program or the
Theodorsen hard flap solution to compute the unsteady lift and
moment used in the flutter equations. The adopted mathematical
model and the iterative scheme are used to perform a flutter
analysis of a typical CC rotor blade reference section. The
program seems to work well within the basic assumption of the
incompressible flow.

1 1.
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NOTATION

CJ	jet blowing momentum coefficient 	 iI

D	 semi-width of a panel

h,11	 position of the wake jet

k,K	 doublet strength

R	 semi-chord length of an airfoil

p	 frequency of oscillation

t,T	 time

X,X	 coordinatealong the chord line of an airfoil

11	 free stream velocity

w,W	 downward displacement of can airfoil

Z	 coordinate for plunging motion

a	 angle of attack, coordinate for pitching motion

I'	 vorticity

reduced frequency

^ 	 density

iii

I

I

I
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1N' PODUl TION

In the last few years there has boen a considerable in-
crease in activity in the prediction of unsteady airloads on
the circulation-control and jet flap airfoils. Williams et-
al. (Ref. 1) and Platzer (Ref. 2) presented a review of the
experimental and analytical studies of jet flap airfoils.
Several investigators conducted a series of experimental studies
on airfoils with trailing-edge jet flaps. Simmons and Platzer
(Ref. 3) measured the frequency response of a trailing-edge
flap on a two-dimensional NACA 0012 airfoil, Two values of
jet momentum coefficients (CJ = 0.14 and 0.158) and several
values of reduced frequencies were investigated at constant jet
deflection amplitudes and the airfoil at zero angle of attack.
Trenka (Ref. 4) considered the jet flap and wing oscillations
on a two-dimensional NACA O015 airfoil with a 20% flap over the
span. Takeuchi (Ref. 5) measured the oscillatory forces and
moments on a semi-span wing model of a NACA 63 2A015 airfoil
with a trailing-edge jet flap. Using false walls, various
aspect ratio wings ranginq from 2.1 to infinity were simulated.
Kretz (Ref. 6) investigated the harmonic: oscillations of a jet
flap on a NACA 0012 at CJ = 0.25, 0.50 and 1.0 for a reduced
frequency range from 0 to 1.26.

Some progress has been made towards the derelopment, of
theoretical solutions for jet flaps under unsteady flow condi-
tions using potential flow theory. It has bee , ; a standard pro-
cedure to assume pure harmonic motions of jet and airfoil.
Three types of motions are of interest; namely: (i) the sta-
tionary airfoil with oscillating jet flap; (ii) the pitching
motion of the airfoil; and (iii) the plunging motion of the
airfoil. For harmonic motions of the airfoil or jet flap, the
pressure distribution, and hence the aerodynamic loads, laq the
motion. The prediction of this lagged response taking the jet
interaction into account has not been too successful even under
potential flow conditions. Spence (Ref. 7) suggested that for
low values of reduced frequency (less than 0.2), the wall jet
effects may be neglected and Theodorsen's trailing-edge, hard-
flap solution may be a good blowing representation. At low
blowing coefficients, there is a reasonable correlation between
the experimental and analytical (Theodorsen) results for isolated
airfoils. Theodorsen's solution can easily be modified to in-
clude the wake effects of a helicopter rotor blade in Hover using
Loewy's mathematical representation of a wake model.
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Spence (Ref. 7) obtained a solution for jet f laps in un-
steady flow, modifying the governing flow equation anti the jet
dynramic Equation using a weak jet approximation. However, his
solution is valid only for small values of jet momentum coeffi-
cient. Potter (Ref. 8) solved the problem as an initial value
problem by reducing the governing equation into a finite-dif-
ference form and using point vortex distributions. The jet
is initially specified as a straight horizontal line with zero
voiticity, after which time the jet exit angle is either in-
stantaneou:.ly detlected of continuously oscillated, and the
shed vortices are assuniod to propagate downstream with the
free-stream velocity. Conservation of circulation is maintained
for each time step, and the jet shapes is determined by tak i ncl
into account .ill changes in bound airfoil vortic-ity in comput-
ing the downwash and the resultant velocities at each jet vor-
tex point. The adoption of an averaging scheme over several
neighboring vortices provided a satisfactory approach to cor-
rect the erratic vortex motion with increasing time steps, and
stave satisfactory results for ;et momentum coefficients smaller
than 0.1.

Schmidt ([tef. . 9) presented a complete sununary end evaluation
of the experimental invesrigation, (Refs. 10 through 13) oil
the circulation control airfoils under unsteady flow conditions
conducted at the Naval Postgraduate School. Bauman (Ref. 10)
developed and tested the operation of a control valve in the
piessure supply line just upstream of the airfoil cavity so as
to permit the superposition of a harmonic perturbation upon a
mean value of cavity pressure. Rickelsimer (Ref. 11) developed
a numerical algorithm for identifying Fourier components in
multi--channel, discretized, truncated signal information. This
technigtie enabled the determination of amplitude anti phase
_ngle of the various daLa channels relative to the reference
clock chailiiel (unsteady cavity pressure) and also the in-phase
and out-of-phase lift coefficient components from unsteady pres-
sure data. Kail (Ref. 12) investigated the behavior of the
Coanda sheet formed by the tangential jet flow over the airfoil's
rounded trailing edge and noted that the superposition of an
oscillatory blowing component upon the steady tangential jet
flow did not produce any discernible change ir the average
value of lift aut_3mentation. Englehardt (Ref. 13) developed the
hardware and software implementation of a microprocessor based
on it high-speed digital data acquisition and reduction system
that was tailored for use: in time-varying signal analysis of
the unsteady pressure information derived by oscillating the
cavity pressure of a circulation-control airfoil. Schmidt
(Ref. 9) analysed the results for the CCA model at one angle
of attack, one tunnel airspeed, with the harmonic: oscillation
of the cavity pressure at four frequency values using one
average value of momentum blowing coefficient, and arrived at
the iollowin q conclusions:

2
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The airfoil behaved in a linear manner.

b. The mean or average value of the lift coefficient was not
altered during unsteady blowing.

c. The frequency response traits of the Coanda sheet region
suggest the presence of a transportation lag between the
pressure cavity and the blowing slot.

d. The overall airfoil lift transfer function from harmonic
circulation-control variations had a behavior quite similar
to that of a simple pole in classical control theory.

e. A frequency-dependent pitching moment about the 54, percent
chord center of pressure location for circulation control
type lift was evident with the attributes of aerodynamic
damping being shown.

Williams et al (Ref. 1) presented a discussion on the
appropriate mathematical modeling of the circulation-control
airfoil under unsteady flow conditions. With a rate of change
of angle of attack, heave or velocity at constant duct pressure,
they have noted that the airfoil will produce a corresponding
lagged response in pressure distribution and lift anti ;lave
hypothesized that these unsteady effects may be treated by
neglecting the wall jet dynamics, especially for low values
of reduced frequency. Under this assumption, the CC airfoil
problem can then be stated in terms of a bluff, elliptical type
of airfoil with a small trailing-edge vane or flap, a variation
of whose position produces a corresponding change in circulation
on the airfoil and vorticity in the wake. For oscillating
angles of attack or heave, the flap position is assumed to be
controlled cnly by the blowing coefficient so that the problem
can be treated classically. Also presented in Reference 14
was some limited test data which demonstrated that the oscil-
lating mechanical flap is a good g lowing representation.

In conclusion, at the present time, there do not exist any
,inalytic:al. and/or computational methods for predicting the
unsteady airloads on circulation-controlled airfoils for high
blowing coefficients. For the present development, a numerical
lifting surface-method will be adopted. Rao and Jones have
successfully applied this method for predicting steady and un-
steady airloads over a variety of thin lifting surfaces in sub-
sonic flow, such as helicopter blades, cascade of blades, and
delta wings (Refs. 14, 15, 16 and 17). In all of their work,
they have used potential flow and small perturbation assumptions
at small incidence angles. For circulation-control airfoils, the
effect of the unsteady jet interaction can be incorporated by
prescribing the :jet displacement taking into account the jet
dynamics.

3
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In the present study, a numerical lifting-surface method
is developed for predicting the unsteady airloads on circula-
tion-control airfoils. for arbitrary combinations of pitching
and plunging motions, longitudinal velocity variations, and
variations in blowing pressure and jet deflection angle. The
analysis and the computer program are tested by correlating the
computed unsteady airloads with test data and the approximate
prediction based on Theodorsen's method.

In addition, a simple two-dimensional bending-torsion
flutter analysis and a computer program are developed using
the unsteady airloads program developed in the present study.
This analysis and the computer programs are used to perform a
flutter analysis of a typical CC rotor blade section.

UNSTEADY AIRLOADS ANALYSIS

The Governing Flow Equations

The governing equation for incompressible flow relating the
downwash on the airfoil to the vorticity distribution from the
leading edge to infinity and the jet dynamic equation relating
the jet displacement to the local vorticity distribution (see
Figure 1) are expressed in a ncn-dimensional form as:

on

W(X,T) _ - 1	 r 
X d4	

(1)

-1

d	
d 

3'iJ
and(iw + dX) 

rJ 
= - 2U	 3	 (2)

dX

where

X = x/Z, T = U t/Q, W= w/U, 1' = y/U, 11- h/Z, w= PR/U,

U = LJ/4, and Z is the semichord.
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W Downward displacement

Vorticity on the airfoil

y. Vorticity in the wake

Figure 1. Mathematical Flow Model.
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For an oscillating airfoil or jet it is assumed h,j = Q, and
h' J = h ' Jc is constant at the trail in(I vd(le of the airfoil.
These i,ounaary c and t ions can ho m.i l	 1)y a.-ottim i nq I Ilo I o I I, )w 1 1JtJ
form of the wake shape:

1i = HJ	 w 
Jc 

L e
- iw (X-1) _ 1 1

 L	 JJ

	
( 3)

Numerical LiftinU-Surface Method

The nu.-narical procedure uses doublet distributions on the
airfoil surface. lience Eqns. (1) and (2) are rewritten in terms
of doublet distributions as:

1
K

W (X' T)	 2n	 X -tl +	 K a^	 1 X ^ dt,

m

-	 3K/dX dr	 .4)-

1

and

d	 dz 
HJ

iw + dX	
KJ = - 2U --- s

dX

where	 X

K(X) =	 FdX'	 or	 1'(X) = dK/dX,

and Y, t (KJ(X)ex	 1) is the doublet strength at the

trailing edge of the airfoil.	 3

Equations (3) and (5) are combined to yield

KJ =	 Kt + i211lllJcU, (X - 1)	
e-iw (X-1)	

(6)

(5)

b
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{tW(X,T) R	 x om +	 Kn X -	 -	 - 1It + n 
n	 X	 Xn	 D  - X

r iw	 Kt	 2uH' JC + i.'UZ^^Jcw(^ - 1) e-iw(^-1) d^.

i	 t7)

The last expression in F.qn. (7) can be analytically integrated
for any given value of X. The expansion of this wake integral
is presented in tilt! Appendix.

A typical airfoil surface is represented by a number of
chordwise panels (N) over each of which the doublet strength
(Kn) is assumed to be a constant. Kt can be expressed as a
function of KN using Eqns. (3), (5) and (6):

K  + i2j DN 141Jc(2 - e-iwDN)
(8)

e-iwDN + 2iwDN

where JN is the semi-width of the last panel, N. For chosen N
values	 of X at the collocation points of each of the N strips,
using Eqns. (7) and (8), a set of N linear equations are ob-
tained. For the known boundary conditions, W(X n ), the solution
of these linear equations yields the K distribution from which
the airloads can be computed.

The above analysis is valid for any arbitrary motion where
W and K value:-; , re time-dependent. However, for aeroelastic
analysis applications, it is a standard practice to assume a
simple harmonic mo-.ion. For a two degree-of-freedom simple
harmonic motion in the plunge and pitch of the airfoil,

z = Z'e lpt = 
Z'eiwT	 (9)

a = a'e
ipt = a,ei.wT	 (10)

Pr

7

I
I



where Z'(= z/Q, assumed to be positive downward) and a' are
the amplitudes of the airfoil motion clue to blade bending and
torsion, respectively. The boundary condition at any colloca-
tion point, i, then becomes

W(X,T) = I iwZ' + (1 + iWX,) ;c' 	 LiwT
L	 1

w(Xi) eiwT	 (11)

where

W(Xi) = iwZ' + (1 + iw}{ i ) a'.

Similarly, for a simple harmonic motion, K = K'e 1WT , where
K'(= K'(X)) is a function of X only. From these conditions,
Eqns. (7) , (8) , (9) and (10) can be replaced with quantities
that are fui-.'ons of X only, and the doublet distribution
(amplitudes s ► be obtained for the assumed boundary condi-
tions g ive- oy Eqn . (11) .

The unsteady lift and moment coefficients are then expres-
sed as

L 	
C^ z Z + CSCa

PU2^

_M'

PU2Q`	
C	

+
mz L 	C	

a
MCI

where	

`N

n=1

8
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(13)

D 	 Kn(•)
	

(14)



and

N

C m( • )	 _Kt(•) + 2 1	 D  K11
n=1

N
-i2wD 

K	 x	
(15)n	

n( • )	 n
n=1

The parentheses, (•), in Eqns. (14) and (15) can be replaced
either by z or a and the appropriate boundary conditions are
applied.

TWO-DIMENSIONAL FLUTTER ANALYSIS

Flutter is an oscillating instability produced by the nega-
tive damping terms of the aerodynamic forces at speeds known as
critical flutter speeds. The classical type of flutter is
associated with potential flow and it is almost universal to
make the assumption of linearlity, according to which the forces
brought into Flay by any small deviation and of its time deriva•-
ti.ve	 The flutter problem can Le reduced to two basic problems--
mechanical and aerodynamic. The first involves cons;deration of
the motion of a flight structure as a continuous vibrating
system acted on by external forces and internal damping, which
then becomes one of writing the equations of motion for such
a system. The seconts ;)asic problem is that of determining the
nature of the oscillatory aerodynamic forces, which are indepen-
dent of the static_ forces that are needed to maintain the system
in an equilibrium posic.ion.

Equatio n s of Motion

Although an actual flight vehicle shou:i, strictly speaking,
be considered a single elastic unit, it becomes necessary from
the engineering viewpoint to make certain simplifying assumptions.
Theodorsen (Ref. 18) and Theod.orsen and Garrick (Ref. 19) ap-
proached the flutter problem by considering a wing of infinite
aspect ratio, moving with small oscillatory amplitudes at con-
stant velocity. Thus the aerodynamic forces can be determined
by considering the problem as one of two-dimensional flow.
Furthermore, instead of the actual distributed mass and geometric
properties of the wing, Theodorsen and Garrick assumed at that
time that the results for the actual wing could conservatively
re obtained by considering the motion of unit span of the wing



at some representative position; this has been often chosen
at the 3/4 semispan. This approach is termed the two-dimen-
sional flutter problem.

To simplify the problem further, the assumption is made that
the actual motion of a rotor blade system can be considered a
combination of fundamental bending and funda,-^ ,ental torsion about
the elastic axis. The system can then be replaced by an equiva-
lent system containing an airfoil section of unit span restrained
by springs against independent vertical (bending) motion and
torsion. Then the equations of motion for a two degree-of-
freedom (bending torsion) system of an airfoil are

	

Mot , + Sri + KzZZ = -BUZZ (C Zz Z + C
ZOt (1)	 (1 U)

	

SZ2 + Iai + Kaa = PU'0 
(CmzZ + Cma

(X)
	 (17)

where,

M - f dm = blade mass per unit span,

fr dm = blade static moment about elastic axis
J	 per unit span,

I =r 2 dm - blade mass ;+oment of intertia about
f	 elastic axis per unit span,

Z = semi-chord length of the blade,

Z = flapping (bending) motion,

a = pitchinj motion,

K  = generalized bending stiffness of the blade, and

KCx = generalized torsional stiffness of the blade.

10
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Assuming simple harmonic motion,

Z = Z' eipt = Z' eiwT	 (18a )

a = a'elpt = aIeiwT	
(18b)

and separating the aerodynamic derivatives into real and imagin-
ary parts,

C£z	 CZZ R 
4-
	 I
	 (1 9a)

C ZOL	 CkaR + ictaI
	 (19b)

Cmz	 CmzR + icmZI
	 (19c)

Cma = CmaR + icmal
	 (19d)

Eqns. (16) and (17) reduce to

(oK z - M9,p 2 + pu 2 ZC kz ) Z ' + (PU Z 'ZC Ra - Sp 2 )a , = 0

	

(PU2 â 2cmz + 
SRp 2 )'L' + 

(Ka	 PU1P2Cma	 Ip2) a ' = 0.

(20)

Equations (20) are a set of two linear, homogeneous equa-
tions in 7' and a'. For this system to have a nontrivial solu-
tion, the coefficient determinant of Z' and a' must be equal to
zero.

I1

I



(R K Z - W p 2 + P(72 RCRz )	 (P U 1 Z CR.(x	 Sp2 )
0

- (CmzpU20 + SAp2)
	

(Ka - PU2ZICma - Ip2 )

(21)

This determinant is referred to as the flutter determinant and
the solution gives the flutter frequency. However, a direct
solution cannot be obtained since the aerodynamic derivatives
are functions of the reduced frequency. Since the aerodynamic
derivatives ar,j, complex quantities, the determinant can be
expressed in two parts, real and imaginary. After expandi-j
the flutter determinant and substi.tutinq appropriate values
of Eqns. (19), the real and imaginary parts of the flutter
determinant become,

(R K7K(x ) p 2 - [ PK z (I +	
4

^'-W2 Cma	 aR) + K (M - P W 2 C 
kZR p

+	
2

3
kM RI - S' R) - P- 	 (IC ,	 - MR ? C	 + S QC	 - S QC )1kzR	 maR	 mzR	 to R

w
P2R7

(C QzR CrtxR	 C RzI CmaI + 
C
taI 

C
mzI - C	 C

	

tot R m:	
- U

W 4

^ ha CQzI - 9,2K zCmIxl] p + I sic CXI - IC kZI +- MR2CmaI

aka

	

SRCmzI + 
w2 

(CRaR Cm7I + CRaI CmzR	 CRzR Cmkrl

	

C RZI Cmah ) ] - 0.	 (22)

where p = 11p 2 . If the real and imaginary parts are set to zero,
solutions p, and p2 can be obtained for the real part, and p,
for the imaginary part. For an assumed value of w, if une of
the solutions, p l or p ; , of the real part is equal to the solu-
tion, p,, of the imaginary part, then this w corresponds to
the flutter frequency. However, the aerodynamic derivatives

12



are functions of tho Mach number and the reduced frequency.
The flutter problem can only be solved after the aerodynamic
derivatives are evaluated. It is necessary to assume a Mach
number and a reduced frequency and test whether flutter occurs
at these values. If the test results are negative, then it is
necessary to iterate on reduced frequency until a flutter case
occurs at these values.

DESCRIPTION OF THE COMPUTER PROGRAM

The main program incorporates the iterative scheme for
a two-dimensional bending-torsion flutter analysis as described
in the previous section. The geometric and structural data of
a reference section of a wing of a rotor blade are read in as
input information to the program. For any assumed value of
reduced frequency (w), the unsteady airload and moment coeffi-
cients are obtained by calling one o the two subroutines,
either AEROCC or AEROTH. Then in the main program the flutter
determinant is formulated, the solution of which yields two
real roots and one imaginary root. If one of the two real
roots is not equal to the imaginary root, then the assumed
reduced frequency does not correspond to a flutter condition
and another value of w is assumed, and the process is repeated
iteratively until the flutter frequency is obtained. From the
flutter frequency, the flutter velocity and the Mach number are
computed.

Subroutine AEROCC is the unsteady airload prediction pro-
gram for circulation-control airfoils. The numerical lifting
surface method described in a previous section was adopted.
The boundary conditions are assumed to correspond to a simple
harmonic motion of the airfoil in plunge and pitch, with the
fixed jet blowing momentum coefficient as a parameter. For a
specified CJ , the steady airload and moment coefficients are
computed as a function of reduced frequency and are used in the
main program in evaluating various terns in the flutter equations.

Subroutine AEROTH is the unsteady airload prediction
program based on Theodorsen's Bard flap solution for incompres-
sible two-dimensional flows (Ref. 18). The theory and the
computational procedure adopted is not presented in this report
since it is available and well	 presented in the literature.
The flap/chord ratio and the reduced frequency are the para-
meters used in the program. The program involves the genera-
tion of Hankel functions as a function of w. The purpose of

13



this subroutine is to provide a cross check and also an alter-
nate means to compute airload_ in place of a cirjulation-c:ontzol
airload prediction.

The input/output specifications and other relevant infor-
mation for the computer program are included in the Program User's
Manual.

RESULTS AND DISCUSSION

The numerical procedure adopted for the computation of
airloads on circulation-control airfoils was teased on a lifting-
surface method in which a thin airfoil is divided into N strips
over each of which the doublet strength is assumed to be a con-
stant. The computed results for a typical case of an oscillating
jet are shown in Table 1. From these results, it can be seen
that the program yields a convergent solution even for the case
in which the airfoil is represented by only 20 panels.

Figures 2 and 3 present the lift response of an oscillating
jet and its comparison with several theoretical and test results.
The oscillatory jet deflection angle (amplitude) eras assumed to
b., 60 , based on test results to correspond with C j = 0.1 under
steady flow conditions. Figure 2 presents the comparison of
the lift amplitude ratio (ICLI/ICLol) variation with the reduced
frequency (w). As can be seen from this figure, the amplitude
ratio decreases as the frequency increases for most of the
theoretical and test results, including the results of the
present study. However, for the test results of Takeuchi (Ref.
5) and the theoretical solution of Spence (Ref. 7), the ampli-
tude ratio increases as w increases. Takeuchi used false walls
in his tests and the discrepancy may be due to these walls and
tunnel interference. Soence's solution was based ors a weak jet
approximation and is valid for only very weak jet momentum
coefficients. The present results are in good agreement with
those of Theodorsen's hard flap solution (Ref. 18), and are in
reasonable agreement with Potter's theory (Ref. 8) and the test
results of Simmons and Platzer (Ref. 3) and Kretz (Ref. 6).

Figure 3 presents the comparison of the phase lag angle
with w. Once again Takeuchi's and Spence's solutions are com-
pletely out of phase from the other results. The present re-
sults compare reasonably well with Theodorsen's and Potter's
solutions for G, values less than 1. They deviate substantially

14

I



Table 1. Lift Amplitude Ratios and Phase Angles for an
OscillatinLI Jet (CJ = 0.14 and Jet De£lectiun
Angle = 7. 3°) .

NUMBER OF PANELS

20 24 30

CL CL
w

CLo CLo ICLCI.o Q

0.0^ 0.923 -0.126 0.923 -0.126 0.923 -0.124

0.10 0.857 -0.176 0.857 -0.175 0.858 -0.173

0.15 0.804 -0.197 0.805 -0.196 0.806 -0.154

0.20 0.762 -0.205 0.763 -0.204 0.764 -0.201

0.25 0.728 -0.204 0.728 -0.203 0.730 -0.200

0.30 0.70U -0.19; 0.701 -0.197 0."702 -0.193

0.35 0.677 -0.190 0.678 -0.188 0.679 --0.1:',4

0.40 0.658 -0.179 0.658 -0.177 0.659 -0.173

0.45 0.641 -0.167 0.642 -0.165 0.643 -0.161

0.50 0.627 -0.155 0.627 -0.153 0.628 -0.150

0.55 0.615 -0.143 0.615 -0.142 0.616 -0.138

0.60 0.604 -0.131 0.604 -0.130 0.605 -0.126

0.65 0.594 -0.120 0.595 -0.119 0.595 -0.115

0.70 0.536 -0.110 0.586 -0.109 0.587 -0.105

0.75 0.578 -0.099 0.579 -0.099 0.579 -0.096

0.80 0.572 -0.090 0.572 -0.090 0.572 -0.087

0.85 0.566 -0.082 0.566 -0.082 0.566 -0.080

0.90 0.561 -0.074 0.561 -0.075 0.561 -0.073

0.95 0.557 -0.067 0.557 -0.068 0.557 -0.066

1.00 0.553 -0.060 0.553 -0.062 0.553 -0.061

1.05 0.550 -0.054 0.549 -0.057 0.549 -0.057

1.10 0.547 -0.049 0.547 -0.052 0.547 -0.053

1.15 0.545 -0.045 0.545 -0.048 0.545 -0.049

1.20 0.543 -0.040 0.543 -0.045 0.543 -0.047

1.25 0.542 -0.037 0.542 -0.041 0.542 -0.044

w - Reduced Frequency (pk/U)	 (D - Phase Angle (radians)

CL - Lift Coefficient

CLo - Steady Lift Coefficient (w = 0)
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frond the rest results as well as frorn this t.hooretical solutions
for higher values of (.. However, note that for a typical classi-
cal flutter analysis, only lower values of reduced frequency
(w < 0.5) are of interest. Also, the test conditions of the
several expetimental results are different and, hence, a good
correlation is not really expected.

The unsteady airloads program is computationally very
efficient and it takes only about 0.02 cp seconds on a CDC 7600
for one value of w. This is a very desirable feature, since
a typical flutter analysis involves an iterative scheme re-
quiring the computation of unsteady airloads for several values
of W.

The Flutter Program is checked out by applying it to a CCR
blade case. The following data at 0.75 radius section of a CCR
blade are taken from Reference 20:

Reference chord length
Nass per unit span
Elastic axis location
Moment. of inertia per unit span
First static moment per unit span
First bending frequency
First 'Torsional frequency
Alternate torsional frequency

1.467 ft.
0.3737 slugs/ft.
0.35c
0.0776 slugs/ft.2/ft.
0.0547 slugs/ft.2/ft.
4.8 cps
44.5 cps
15.0 cps

The flutter analysis was performed for this airfoil assuming
CJ = 0.1 at a jet (or flap) deflection angle of 6 0 . The computed.
flutter speeds using each of the two airload programs, AEROCC and
AEROTH, are tabulated below.

:-.1titude Torsional Flutter Speed (ft./sec.)
Frequency

(cps) AEROCC AEROTII

Sea level 44.5 1,248 1,252
10,000	 ft. 44.5 1,418 1,454
Sea Level 15.0 376 379
10,000	 ft. 15.0 435 439

This example once again demonstrates that the circulation-
control airloads program developed under the present study is in
agreement with Thecdorsen's hard-flap solution. Also note that
the airloads computed in this program were fused on the incompres-
sible flow assumption, and hence the higher flutter speeds
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obtained using this program are in gross error and are beyond
the range of the Program's validity.

CONCLUSIONS

A fast and efficient computer program for predicting the
unsteady airloads in incompressible flow was developed and
correlated. The results for CC airfoils under harmonic motion
are in good agreement with those of Theodorsen's hard-flap
solution. A two-dimensional bending-torsion flutter computer
program was developed and used by performing a flutter analysis
of a typical CC rotor blade section.

In the present analysis, the compressibility and the rotor
wake effects are not taken into account. As the flutter Mach
number increases, it is important to include the compressibility
effects, and usually they tend to decrease the flutter speed.
In a typical hovering rotor, the wakes of the other blades are
directly underneath the reference blade and may have a signifi-
cant effect on the flutter speed. The rotor wake effects can
be incorporated in the present numerical lifting-surface method
by adopting the mathematical model of Loewy (Ref. 21). The
compressibility effects can be incorporated by adopting the
analysis of Jones and Rao (Ref. 22).
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APPENDIX: EXPANSION OF WAVE INTEGRAL

K t - 2wH'Jc + i2oH'Jc"j 	 - 1) e- iw(^ -1) d^
^	 (t,	 X)

I

- Y -

, a
e iwl1-?:)	 j K t - 2pH' Jc (1 + iw - iwX) ) A

r i2u1i ' Jcw}i

where	 go

A =	

e- iw(; - X) d^

1	 (:	 X)

w2 (1 - X) 2	 w" (1 - X)"log(,)
  (1 - K) +	 -	 + ...

	

2 . 21	 4.4:

i	 n - w l 1 - Y) + W, (1 - X)
2	 3.3!

and	 °°
B =	 r e -iw( ,-X) dC

1
0	

/0
	 w (1-X)

_ 1	 f	 e-i '̀ dr, - 1 
.I 

e -1`' d^ - 1 f	 e-i' d^
W	 w	 w

W (1-X)	 0	 0
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Fin w (1 - X)	 1
w	 + w C 1 - cos w (1 - X) 1

1
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