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SUMMARY

The purpose of this paper is to develop a singularity-free analytical solu-
tion to the J2 perturbation problem in the Earth satellite theory. Elements
similar to the classical Poincare ® elements, but which are in the extended phase
space, are used. The solution, which has the long-period terms eliminated, is
developed into a computer algorithm which is then compared for several typical
examples with numerically integrated results. The error of the analytical solu-
tion is of the order of 500 to 1000 meters after 100 periods of revolution.

INTRODUCTION

The objective of this paper is to develop a singularity-free (for vanishing
eccentricity and inclination) solution of the J2 problem in the satellite the-
ory. The procedure resembles the one described by Lyddane (ref. 1), which
rederives Brouwer's satellite theory (ref. 2), by using canonical Poincare ele-
ments instead of the Delaunay elements. A comparable procedure is performed in
this report for the newly developed satellite theory, which uses elements simi-
lar to the Delaunay elements (DSO) presented by Scheifele in reference 3 and the
Poincar4 elements (PSG) presented by Scheifele and Graf in reference 4. The ca-
nonical von Zeipel approach is used to arrive at a perturbation solution, which
will include only the short-period effects due to J2.

1. The fast variable (here canonical true anomaly) is eliminated by the
use of a canonical transformation, leading to a set of 1°mean" elements.

2. The remaining Hamiltonian system, which has a Hamiltonian that is free
of angle variables, is integrated by quadrature.

This procedure, when used with the DSO and PSG elements, necessitates
changes in both (1) and (2) as follows:

1. The generating function that leads to the "mean" elements and is known
from the DSO perturbation theory is reformulated in terms of PSG variables.
Because of the nature of these variables, there will be no more singularities
when taking the partial derivatives of this new generating function with respect
to the PSG variables.

2. The solution of the first-order Hamiltonian system in the DSO vari-
ables is rearranged in such a way that it can be expressed entirely in PSG
variables.



The following observations can be made:

1. The use of many convenient regular and carefully selected abbreviations
will considerably reduce computation time and core requirements.

2. Typical accuracy is 200 to 500 meters after 50 revolutions when
compared with numerically integrated solutions.

3. Although the theory is not restricted to short-period J 2 effects
only, for practical purposes it seems adequate at present to take only the
short-period J 2 solution into account because the higher zonal harmonics
short-period terms are of the order J22 only. Also, the long-period effects
due to J2 are the same order as the higher zonal harmonics.

The author gratefully acknowledges the assistance of Gerhard Scheifele of
ACM, Inc. for suggesting that this problem be solved and for patiently providing
invaluable aid in the complicated disciplines of Hamilton mechanics and von
Zeipel formalism. Dr. Scheifele is the inventor of the Delaunay-Similar and
Poincard-Similar elements. He holds credit for first solving the J 2 satellite
problem in the Delaunay-Similar elements, which is absolutely essential for fur-
ther refinement in the Poincare-Similar elements as presented here.

The author also wishes to thank Stephen Starke of ACM, Inc. for checking
the formulas and for generating the data in table I.

This report was first issued as a Johnson Space Center Internal Note
77-FM-52 JSC-13128 in November 1977.

THE J2 PROBLEM IN DSO VARIABLES

This section briefly outlines the approximate solution (in the sense that
only the short-period terms are eliminated) by the von Zeipel technique of
the J2 problem in the DSO variables. This outline is taken from reference
4 where a more complete treatment of the J 2 problem in the DSO variables may
be found.

The canonical DSO elements for the unperturbed case may be briefly
described with the angle elements

^ = true anomaly = T + constant

g = argument of periapsis (classical w)

2



h = argument of the ascending node (classical Q)

Q = uthe time element = 
(2L)3/2 

T + constant

and the action elements

= associated with two-body energy

G = total angular momentum

H = axial component of the angular momentum

L = the total energy

The independent variable is T.

The Hamiltonian for the oblateness perturbation J 2 is

F =Fo +eF1

F =	 - u/-V-2-L
0

F
0 

is the unperturbed or two-body Hamiltonian in DSO elements and

1	 b	 1
F 1 = —	 - - - ( 1 + e cos )

pq 2 3 )

b e

2 2 cos
	 + 2g) + cos (2^ + 2g) + 2 cos (3^ + 2g 

J	
(3)

is the perturbing Hamiltonian taken from reference 3. The following are abbrevi-
ations for some functions of the DSO elements:

p=u(G- +u/Y2_L12

1
q = G - - 0 + u/2V2__L

2

b = 1 - H2 /G2 = sin  I (I is the inclination)

(1)

(2)
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f = 1/
pq

2L
e = 1 - — p	 (4)

u

The Hamiltonian equations of motion

0 aF d(D aF

T N dT T^

dg aF dG aF

dT DG dT ag

dh aF dH aF

dT DH dT ah

dQ 9 dL D 

(5)dT D dT 3Q,

are nonintegrable in this form.

A transformation will now be found

^y g j h j t	 I V'1gI,h',Z'

(D,G,H,LI	 ^',G',H',L'	 (6)

by means of the von Zeipel method. This method may be systematically employed
to eliminate the short-period and long-period terms allowing the integration of
the differential equations in the new primed variables to be obtained by simple
quadrature. As mentioned above, for the present, only the short-period terms
will be considered.

The generating function S to be used to eliminating the short-period
effects is

S = S o + e S1
	

(7)

where
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S
0
 = ^D'^ + G'g + H'h + L I Z	 (8)

is the identity transformation because

aso aso

aso aso

G =	 = g '
ag

g'	 =	 = g
aG 

aso aso

'	 H = ^— = H'
h

h'	 _ ---= h

DH'

aso aso

L = — = L ' V	 = -- = Q	 (9)
a 9 aL'

S1 is also a function of the old (unprimed) angle elements and the new
(primed) action elements.

The function S1 is a periodic function of the fast variable ^ and is
found from the von Zeipel equations,

,
Fo( (D ',L') = Fo(^D ',L')	 (10)

aFo aS1
-- _ -F1P(1D',G',H',L',^,g)	 (11)

ao' 3^

Equation (10) shows that the unperturbed part of the Hamiltonian
is left unchanged by the transformation. Equation (11) is used
to determine the generating function S1. F1P is the periodic portion of
F 1 and has a mean value of zero. The new perturbing Hamiltonian is found
from

F^ (ID',G',H',L',_,g = F 1 ( ID1 , G1 , H ', L1 ,^, g ) - F1P(D',G',H',L',^,g)	 (12)

The periodic portion of F 1 is found from equation (3) by inspection
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1

	

^ 1P - b - 1	 e cos

pq	 2	 3

b	 e	 e

2	
2 cos (^ + 2g) + cos (2^ + 2g) + 2 cos (3^ + 2g)1	 (13)

Solving the partial differential equation (11) for S1,

S1 = - 	 f'e'b' +	 f'e'	 sin}
2	 3

1

+ 4 f'e'b' sin	 + 29)

1

+ - f'b' sin (2^ + 2g)

1

+ — f'e'b' sin (3^ + 2g)	 (14)
12

The abbreviations f', e', b', p', q' are the same as those in equa-
tions (4) except they depend on the primed elements.

The new (primed) Hamiltonian is

F'	 F + EFo	 1

where from equations (3), (12), (13)

I	 1	 1	 H' 
2

F 1 =	 2prqf	 3 -
	

2	
(16)

G'

Because F' depends only upon the elements 0 1 , G', H', L', the problem is
now solved.

The Hamilton equations of motion, equation (5) (but with primes on all the
canonical variables), yield the first-order solution. This operation will be
performed in a following section.

(15)
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The generating function (eq. (7)) where So and S 1 are given by equa-
tions (8) and (14) defines the transformation between the primed and unprimed
variables in either direction through first order. During this transformation,
there are numerical problems for certain types of orbits. For both I =
0 and e = 0, singularities occur because sin I and e occur in the denominators
of certain terms. In the next section, the transformation to the PSG canonical
elements will be given. The PSG elements do not have singularities for
vanishing inclination and eccentricity.

THE J2 PROBLEM IN THE PSc ELEMENTS THROUGH FIRST ORDER

The transformation among the DSO and PSQ variables may be given as

P 1	 ^D

p 2 =2(^ cos (g + h)

P 3 = 2 G _-H)  cos h

P 4 = L

61 = ^ + g + h

a 2 = -2(^ sin (g + h)

a3 
= -2(1^ G - H) sin h

G 4 = Q, (17)

A transformation between primed and unprimed PSG elements is sought. The
approach taken will be to transform the generating function S 1 given by equa-
tion (14) from DSO elements to PSG elements by direct substitution. That is,

(17)

S1(1',G',H',L',^,g)S1(P1'P2''P3'P ' 6 1'6 2'
Q 3 , _)	 (18)

Here it is assumed that equations (17) remain valid whether in the primed or
unprimed system.

The operation involved in making the transformation from S 1 to S 1 is
done by temporarily dropping the distinction between the primed and unprimed PSG
variables. By direct substitution of equations (17), a temporary S 1 (P k , (J k ) is
obtained in terms of the unprimed variables. Then, by making the assumption
that the primed and unprimed PSG variables are related through the order of

the perturbing parameter e, that is	 P k
 = pk + 0(c) and Q k = Qk + 0(e), and

eliminating Pk in favor of p k, the temporary S 1 becomes S 1 (p k + O( g ), 6k).

Terms of 0(e) are then neglected to obtain the relation

7



S1	
2p,g,G,2	

3 (G,2 - 3H'	 2 - 
21 (P2'c' - 0

2 s' sin o1

+3 
(G

12 
-
 3H' 2/ 

62 + 2 CP2s' - 6 2c' ► cos 61

c'	 s'
- — sin 26 + — cos 26

2Q'	
1	

2Q'	 1

1
- Plc' 	+ 6 2s' sin 36 1 + 1 P2s' - 6 2c' cos 361

The abbreviations of equation (4) may also be expressed in terms of the
PSG variables by use of equation (17)

1	 2	 1	 ^	 up' = u CG' - P^ + u/ 2P	 2q' = G' - 	P1 +	
r2

Also, there are now some new abbreviations:

2u
Q' = jP
	

+ G' - P^ 1/2
u	

2P4

G, _ P , - 1 P ,2 + 6 2
1	 2 2	 2

H, = G' - 1 (p ;2 + 632
2

s' = (G' + H' )P 363

2 2

P3
3c'	 = (G' + H')

2

(20)

(21)

8



Numerically, through 0(e), it makes no difference in equations (19), (20),
and (21) whether the primed or unprimed PSG variables are used. Algebrai-

as1
tally in finding the derivatives —

aQk

primed and unprimed quantities is ver

For example, in the equation for G'

aS1
and — , the difference between the

aP I
k

y important and must be strictly observed.
(middle of equations (21) above), primed

values of p 1 and p 2 are used, but the unprimed value of Q 2 is used.

The unperturbed portion of the generating function is once again an iden-
tity transformation.

So = P1 61 + P2 0 2 + P3 a3 
+ P4 a 4	 (22)

The generating function through first order is

	

s (P I CY	 = So + e S 1	 (23)

The transformation between the primed and unprimed variables is therefore

	

as	 as1
Q k = ap = Qk + ap

	

k	 k

asas1

	

p k = au = Pk + e 
a^
	 ( 24)

k	 k

The computation of the partial derivatives

	

as1	 as1
and --

	

ap'	 apk
k

are straightforward and are facilitated by the introduction of additional
abbreviations. Let

9



w = Q'/2p'q'

Y = ^
3 

/
1 60k + Yk^k

k=1 \

6
, 

= -'(G"  - 3H" )P 2
 
p 2 -	 plc' - a s'

3	 2

S 2 = -c'/2Q'

(CT,2s` + p2c^

2	 2
Y1 =	 G' - 3H' Q2 +	 p 2s' + a2c'

3	 2

Y2 = s'/2Q'

Y3	
6 \p2s, - e2c)

r1 1 = sin 61

n2 = sin 261

r1 3 = sin 3a1

^1 = cos e1

C2 = cos 201

^3 = cos 3Q 1 	(25)

and the generating function (eq. (19)) becomes

	

S 1 = - 12 wy	 (26)

G

It is at this point that the advantage of the PSG elements over the DSO

as1	 as 

	

elements for the J 2 problem occurs. In the derivatives 	 i and --,
ap k	a6k

S3 = - 6

10



no singularities occur for vanishing inclination and eccentricity. At the close
of the second section, it was seen that singularities will occur for these two
conditions in the DSO solution. However, when the Hamiltonian F' in the PSG
equations is completed, it is found that the Hamiltonian differential equations
are nonintegrable. However, the solution can be found by returning to the DSO
solution and transforming it by direct substitution into the PSG variables.
This will be done in the following section.

USE OF THE DSO SOLUTION

•

	

	 From equations (5) (with primes on the DSO variables) and equation (16),
the solution in the DSO elements is given by

+T o l + 2 f,' (b' - 2/3) T - To

g' = go + e [f2 (b l - 2/3) + f'b21 CT - T o 1
2	 J \	 /

C
h' = ho + - f' b3 T - To

2

Q 	 QO +
	 u 3/ 2 CT - T

o ) + 2 f^(b' - 2/3) ^T - TO/\	 (27)

(2L')

where ^o' 
g
o' ho' Q o are the initial T = T o values of the angle elements.

The elements ^D', G', H', L' are all constant and

f; = afvn'

f2 = 3f'/3G'

f^ = af'/9L'

b2 = 3b'/3G'

b2 = ab'/@H'	 (28)



The approach to be taken here is to find expressions in terms of the DSO
elements that will relate the PSG elements at an arbitrary value of the
independent variable to the PSG elements at initiation.

Add the first three equations of equation (27) to obtain

	

+ g' + h'	 I + g' + h' + T - T
0	 0	 0	 0)

+ S
2 [

f ;(b'  - 2/3) + f2(b' - 2/3) + f'b2 + f 1 b31 (T - T 0 I	 .

 11

The left-hand side is Q^ by definition and the first term on the right is its

initial value61 0 . So

	

U 1	 U10 + \T - T0)

+ 2 [f'(b' - 2/3) + f2(b' - 2/3) + f'b2 + f'b3 1 (T - T O) (29)

Now add the second and third equations of equation (27) to obtain

g' +h' =go +ho + E V (T
2	

-TO)
\	 I

where

V = f'
2 	- 2/3) + f' (b2 + b' )

Taking the sine of both sides

sin (g' + h) = sin ( go, + ho 1 cos e v(T - Toll
/	 2	 \	 /J

+ cos (go + ho) sin e v(T - Tot

	

2	 /

12



Now because (D ' = 0'0 	 constant and G' = Go = constant, multiply both sides

by	 2(	 - G') to obtain

\	 \	 e
2(^' - G') sin (g' + h') = 	 200 - Go Isin (go + h o') Cos - v T - Tol

/	 2	 /

+	 2 ((D o - 
Go/

cos (go + ha I sin
J /

v^T	 Tol
2	 J

using equations (17)

Q2 = -^'- sin g' + h'l

Q20 = - 2 (^o - Go ) 	 ( go'sin 	 + ho /

P20 = 2 (^o - Go 
I cos (go + ho)

Finally

^2 - X20 cos	 v 
C

T - Tol - A20 sin 
2 

v 
C

T - 'C
	

(30)
 0)].

By a similar procedure

P2 = P20 cos
2 v(T - TO) + Q20 sin

2 
v (T - TOl (31)

Q 3 = a;0 cos 2 f 1 b3 (T - To I - P3 0 sin	 2 f 1 b3	 (T - To) (32)

P3 = P30 cos 2 f 1 b3 (T - T Q30 sin 2 f 1 b3	
C

T -
 

T

0)]

(33)

13



Because from equation (17) Q4 =
	 it follows from equation (27) that

a4 = 040 +	 u 3/2 \T - 
T 0

) 
+ 2 f4(b' - 213) (T - To )	 (34)

(2L'o)

And also from the fact that (P' and L' are constant, from equation (17)

P 1	 V - P 10	 (35)

P^ = L ' = Lo = Pk o 	 (36)

The first-order DSO solution transformed by substitution into the PSG solu-
tion equation (29) through equation (36) provides the means of propagating the

initial perturbed values, Pk o and Qko forward to their values Pk and 6k
at a specified (or otherwise determined) value of the independent variable.

THE METHOD OF SOLUTION

The unprimed and primed PSG elements are related through the generating
function S(p',Q) by equation (24). If, for example, the initial unperturbed
elements have been obtained from, say, Cartesian coordinates, then the initial
perturbed elements may be computed from

3S1
r

Gko 6ko + ET
k	 °

3S1

Pk. = Pko 	 k = 1 .... ,4	 (37)
aQk 

To

Because the primed (perturbed) elements are related to the unprimed through
order e, either the primed or the—unprimed values of Pk and 6k may be used
in evaluating the derivatives of S 1 on the right hand side of equation (37).
The resulting error will be of order E 2 , which is beyond the accuracy of the
first-order solution.

Similarly, after a prescribed propagation interval, the unperturbed PSG
elements may be computed again by using equation (24).

14



as1
Qk ( T ) = Gk ( T ) - E

a P 	 T
k

Pk ( T ) = Pk (T) + E aS
k I T	 k = 1,..., 4 	 (38)

As in the initialization described in equation (37) either primed or unprimed
values of Pk and 6k may be used in numerically evaluating the derivatives
of the generating function in equation (38).

The computation procedure can be visualized by referring to figure 1. The
conversion from Cartesian coordinates to PSG elements and its inverse are
given in the appendix.

SPECIFIED TIME

Because time is not the independent variable in the DSO and PSG theories,
provision must be made for propagating forward to a specified time. The proce-
dure for accomplishing this is iterative. The following equations are evaluated
with the perturbed (primed) values of Pk and Qk . The prime is omitted for
convenience.

From the appendix, the time equation is

	

u	 r V

	

t(T) = 64 + -- -	 E - ^ - - 1	 e 2 e sin	 (39)

	

C2p4\ 3/2	 p

A standard Newton iteration procedure is now used to solve for the value
of T, which corresponds to the specified value of time, T

T- 411/T = T 1 -
(dt/dT)1

The derivative is given by

	

dt	 2
— = r /q
dT

(40)

15



E

P (2L ') 3/2 + 2 f4 (b' - 2/3)

T 1 - T O = (41)

which is known at T 1 . The iteration is continued until T - T 1 is less than
a previously specified tolerance. Each time the tolerance is not met, T i ( the
initial guess of T) is set equal to the last computed value of T from equation
(40).

The first value of the initial guess T 1 , is chosen by referring to equation
(27). To a good approximation

T	 0
' Qo

The denominator of this equation is computed at the same time that the other
,quantities in the DSO solution are computed.

SOME NUMERICAL RESULTS

The solution for the J 2 problem in the singularity-free PSG variables
has been programed on the Univac 1110 computer and is available for public use.
This prototype program is called PSANS (for Poincare-Similar analytical short-
period eliminated solution).

Several typical trajectories for satellites orbiting the Earth were
computed for times corresponding to 1, 10, 50, and 100 revolutions of the satel-
lites for each case. The initial conditions (in terms of classical orbital
elements) are given, and the results of comparisons between the analytical solu-
tion computed by this method (PSANS) and double-precision numerical integration
are given in table I. It is seen that for a wide range of inclinations (0 to
II/6 radians (0 to 30 degrees)) and eccentricities (0 to 0.1) the maximum errors
Eire less than 1 kilometer. The errors were computed from the formula

Error 
= I r PSANS rINTEG

at several points during each revolution. The maximum value of the error during
a given revolution were output for the presentation in table I.

CONCLUDING REMARKS

From the numerical results presented, it can easily be seen that the
analytical solution to the J2 satellite problem in the PSG variables

16



overcomes the nuisance of the singularities due to small eccentricities and in-
clinations that exist in the solution when Delaunay variables are used.

The problem that remains is to systematically extend the solution to in-
clude the cases (1) where both short- and long-period terms are included in the
solution, (2) where the effects of the higher order zonal terms are included,
and (3) where the effects of atmospheric drag are included. All of these new ex-
tensions are currently being developed. The present version (PSANS), however,
has demonstrated that it has a remarkable accuracy for medium lifetime satel-
lites (less than 1 kilometer error in approximately 7 days).

17
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TABLE I.- ANALYTICAL SOLUTION AND NUMERICALLY INTEGRATED SOLUTION

COMPARING SIX TEST CASES

(a) Initial conditions

Orbital elements

Case a e I w M

1 1.050486 0.015 0 Tr/9 Tr /9 Tr /9
2 1.050486 0 Tr /6 Tr/9 Tr /9 Tr /9
3 1.050486 .001 Tr /6 Tr /9 Tr /9 7r /9
4 1.160238 .1 Tr/6 7r/9 Tr/9 Tr/9
5 1.070560 0 0 0 0 0
6 1.070560 0 Tr/6 0 0 0

aThe orbital elements are defined as folows:

a = semimajor axis in Earth radii
e = eccentricity
I = inclination in radians
w(or g) = argument of perigee in radians
W or h) = argument of ascending node in radians
M = mean anomaly in radians

19



TABLE I.- Continued

(b) Revolution number, time function, maximum errors

Rev Time,	 days Max error, m

Case 1

1 0.06 8
10 .63 50
50 3.15 254

100 6.30 511

Case 2

1 0.06 11
10 .63 100

50 3.15 498
100 6.30 995

Case 3

1	 0.06 11
10	 .63 100

50	 3.15 498
100	 6.30 995

Case 4

1	 0.07 10

10	 .73 84

50	 3.66 432

100	 7.32 872

Case 5

1	 0.06 8

10	 .65 48
50	 3.24 239

100	 6.48 479
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TABLE I.- Concluded

(b) Concluded

Rev	 Time, day	 Max error, m

Case 6

1	 0.06 12
10	 .65 94

50	 3.24 470

100	 6.48 940
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Input initial conditions

and either T (final true

anomaly) or T (final time).

Convert initial conditions

to PKO' aKO (see appendix).

Compute initial values of

primed PSG elements (0K0'

cK0)(eq—((24))— — —
Compute DSO derivatives

equations (27).

Propagate 
oK0' PKO to

specified (or initial guess)

T (eqs. (29)-(36)).

Compute final values of

unprimed PSG elements

aK (T), PK (T) equations (24).

ro'-10	 i

TorT

	

I	 XTOPS	 I

aS

°K0-QKO
+E 

PKT0

aw lPKO - P KO - E aa K To

	

d(p'	 d9 ,	dh 	 d¢'

	

di	 dT	 di	 j-7

	°Kp >	 0K0	 GK(T)sPK(T)

°K( T ) = aK(T) - E as
K

PK( T ) = PK(T) + E aS'
Do 

K

u

Finai	
No

time
specifies

Yes

Compute trial value of T by

Newton iteration.

t(T)	
dtd

T = T	 T—t1( TL

1	 (dT/T1

1 _ T	 Yes

<TOL 
I

No

Update T.	 T1 = T	 PSTOX

r, V

Convert PS¢ elements to 	 T. T

coordinates (see appendix).	 a

Figure 1.- Computation procedure for PSANS.
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APPENDIX

COMPUTATIONAL PROCEDURE

The equations that transform from position and velocity in Cartesian coordinates
and the time to the PSG elements and the inverse transformation are listed
below.

1. From r, v, t, to P, Q, (XTOPS).
compute the perturbing potential V,

G = r x v	 (the angular momentum vector)

G = IGI

H - G3

r = Irl

u
L	 v•v+ - -V

2 — — r

P 4 = L

a3 = -2G 1 / 2(G + H)

P3 = -2G2/ 2(G + H)

u
P 1 = G +	 -	 G2 + 2r2V

x
R = 3

r	
1
_2	 2

1	 4G 
Q3 

+ P3

x2	R

r + 2G P3

61 = tan-1

x1	 R

r + 2G ^3
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q = - p 1 - G + '	
1

	

2	 2L

P=u -(p1 -G)+u/2L2

	

(	 1/2
Q	

2u
=	 - ` p1 - Gl

11	 \	 //

1
Z1	

p
=- -- 1
Q r

r • v	 p
Z2 =

r	 2
r

Q V — + G
q

a 2 = Z2 cos a 1 - Z 1 sin a1

p 2 = Z2 sin 61 + Z 1 cos a1

e cos = Q(p 2 cos a 1 sin a1)- a 2

e sin = Q(p2 sin a1 cos Q1)+ a2

2 2e 2 =	 (e cos C	 + (e sin ^)

_1 e sin
E - ^ _ -2 tan

1	 + V 1	 - e 	 + e cos

u
a 4 = t - E - - r 1	 - e2 e sin

(2L)3/2 p
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2. From Q, P to r, v, t (PSTOX)

P 2u ^

^2
Q =	

u	
-2  p221

2P4 	 //

R = P 3 sin Q 1 + a3 cos cs1
2

1	 1	 u	 2

P = u - 2 (CF22 +P2 2 I+
 /	 2P

/	 \	 1 u
q= - 2 1 6 22 + p 2 2 I+ 2 P 1 +

\	 /	 22p

• cos	 = Q (p2 cos o1 - a2 sin 61)

• sin	 = Q (p2 sin Q 1 + 02 cos c111

r = p/ ( 1 + e cos f )

x 1 = r (cos o1 - a3R/2G)

x2 = r (sin a 	 p3R/2G)

x3 
= rR (^_

2 VT

G = p 1 - 2 ( p 22 
+ G22)

H	 G 2 (P 32 + 632)

G /

R = r2 
/p3 

cos o1 - Q 3 sin o1/l

r = Q (2q - G) (Q 2 cos o 1 + p 2 sin o11
p	 \	 /

x 1 	G	 Q3R
x 1 = r— - r— sin Q 1 +

r	 r2	 2G
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X2	 G	 P 
3 
R

x2 = r — + r — cos Q -
r 	 r2	 2G

x3 = (rR + rR)

e 2 = (e cos 
^)2 

+ (e sin	
2

-^	 e sin
E	 -2 tan

	

1 +	 e cos

t = a
4 

+	 u	 E	
P	 1 - e2 e sin

(2p413/2

4

26



1.	 Report No. 2. Government Accession No 3.	 Recipient's Catalog No.

NASA TM-58221

4.	 Title and Subtitle 5.	 Report Date

July 1979
AN ANALYTICAL SINGULARITY-FREE SOLUTION
TO THE	 J 2	PERTURBATION PROBLEM

6.	 Performing Organization Code

JSC-13128

7.	 Author(s) 8.	 Performing Organization Report No.

Victor R. Bond
10. Work Unit No.

910-44-LH-00-72
9. Performing Organization Name and Address

Lyndon B. Johnson Space Center 11.	 Contract or Grant No.
Houston, Texas	 77058

13. Type of Report and Period Covered

Technical Memorandum12. Sponsoring Agency Name and Address

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 14. Sponsoring Agency Code
WASHINGTON, D.C.	 20546

15. Supplementary Notes

16. Abstract

The development of a singularity-free solution of the 	 J 2	problem in satellite theory is
presented.	 The procedure resembles that of Lyndane who rederives Brouwer's satellite
theory using Poincar6 elements.	 A comparable procedure is used in this report in which

the satellite theory of Scheifele, who used elements similar to the Delaunay elements but
in the extended phase space, is rederived using Poincare elements also in the extended
phase space.	 Only the short-period effects due to	 J2	 are included.

17. Key Words (Suggested by Author(s)) 18.	 Distribution Statement

Satellite theory STAR Subject Category:
Analytical theory 13	 (Astrodynamics)

Perturbation theory
Canonical variables

19.	 Security Classif. (of this report) 20.	 Security Classif. (of this page) 21.	 No. of Pages 22.	 Price*

Unclassified Unclassified 29 $4.00

'For sale by the National Technical Information Service, Springfield, Virginia 22161

JSC Form 1424 (Rev Nov 75)	 NASA -- JSC


