General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA

Technical Memorandum 80324

(NASA-TH-80324)A USER ORIENTED COMPUTERN79-30478PROGRAM FOR THE ANALYSIS OF MICROWAVEMIXERS, AND A STUDY OF THE EFFECTS OF THEUnclassSERIES INDUCTANCE AND DIODE CAPACITANCE ONUnclassTHE PERFORMANCE OF SOME SIMPLE MIXERS (NASA) G3/3336076

A User Oriented Computer Program for the Analysis of Microwave Mixers, and A Study of the Effects of the Series Inductance and Diode Capacitance on the Performance of Some Simple Mixers

P. H. Siegel and A. R. Kerr

JULY 1979

National Aeronautics and Space Administration

Goddard Space Flight Center Greenbelt, Maryland 20771

A USER ORIENTED COMPUTER PROGRAM FOR THE ANALYSIS

OF MICROWAVE MIXERS

IJ,

V

e,

ť

AND

A STUDY OF THE EFFECTS OF THE SERIES INDUCTANCE

AND DIODE CAPACITANCE ON THE PERFORMANCE OF

SOME SIMPLE MIXERS

ΒY

P. H. SIEGEL AND A. R. KERR

NASA Goddard Institute for Space Studies Goddard Space Flight Center New York, N. Y. 10025

JUNE 1979

ABSTRACT

This report describes a user oriented computer program for analyzing microwave and millimeter-wave mixers. The program can be used for mixers with a single Schottky-barrier diode whose I-V and C-V characteristics are known. The diode mount is assumed lossless but may have external loads at any number of sideband and LO harmonic frequencies.

The program first performs a nonlinear analysis to determine the diode conductance and capacitance waveforms produced by the local oscillator. A small-signal linear analysis is then used to find the conversion loss, port impedances, and input noise temperature of the mixer. In the noise analysis thermal noise from the series resistance of the diode and shot noise from the periodically pumped current in the diode conductance are considered.

Examples are given, including a study of the effects of the series inductance and diode capacitance on the performance of some simple mixer circuits using (i) a conventional Schottky diode, (ii) a Schottky diode in which there is no capacitance variation, and (iii) a Mott diode. It is shown that the parametric effects of the voltage dependent capacitance of a conventional Schottky diode may be <u>either</u> detrimental <u>or</u> beneficial depending on the diode and circuit parameters.

TABLE OF CONTENTS

SECTION	PAGE	
1. Introduction	1	
2. Outline of the Necessary Theory		
2.1 Solution of the Large Signal Problem		
2.2 Small Signal Analysis	14	
2.2.1 Frequency and Subscript Notation	14	
2.2.2 Small Signal Conversion Matrix	15	
2.2.3 Mixer Port Impedances	20	
2.2.4 Conversion Loss	22	
2.3 Mixer Noise Theory	24	
2.3.1 Shot Noise	27	
2.3.2 Thermal Noise	29	
2.3.3 Total Mixer Noise	31	
2.4 Summary of Mixer Theory	33	
2.4.1 Comment on the Effect of the Number of Frequencies Considered	34	
3. Description of the Mixer Analysis Program	35	
3.1 Program Implementation	35	
3.2 Running the Mixer Analysis Program	41	
4. Examples Using the Mixer Analysis Program: A Study of the Effects of the Series Inductance and Diode Capacitance on Some Simple Mixer Circuits	47	
4.1 Program Alterations for Running the Examples	47	
4.2 Computed Results and Discussion	52	
5. Summary and Concluding Remarks	55	

Carlo and

5

1

0

V

ά

Ū

í,

Appendix I.	Listing and Sample Run of the Mixer Analysis Program	57
Appendix II.	Modifications to the Mixer Analysis Program for Running the Examples in Section 4.	95
Appendix III.	Results of Program Runs to Study the Effects of Series Inductance and Diode Capacitance on the Performance of Some Simple Mixer Circuits Described in Section 4.	101
ACKNOWLEDGEMENT		113
REFERENCES		115

ينتحق

PAGE

۵

Ŷ

ø

 \mathcal{O}

1. Introduction

'n

As a result of recent work on the theory of microwave and millimeter-wave mixers [1,2], it is now possible to predict their performance with reasonable accuracy. The purpose of this report is to make available a user oriented computer program for determining the performance of single-diode mixers. The relevant mixer theory is reviewed and the implementation of the Fortran code described. To illustrate the operation of the program a study of the performance of three simple mixers is presented. These are: an ideal Schottky-diode mixer in which the junction capacitance has the usual voltage dependence, a Schottky-diode mixer in which the junction capacitance is assumed independent of voltage, and a Mott-diode mixer for which the junction capacitance is an experimentally determined function of applied voltage.

The mixer analysis is carried out in three parts. First, the diode conductance and capacitance waveforms produced by the local oscillator are determined using a nonlinear circuit analysis. Next, a linear small-signal analysis is used to find the input and output impedances and the conversion loss between the mixer ports. Finally, the shot and thermal noise contributions from the diode are determined.

The most difficult step in analyzing a mixer is finding the diode waveforms produced by the local oscillator. In earlier work by Torrey and Whitmer [3] and others, a sinusoidal driving voltage across the diode junction was assumed, with the implication that the harmonics of the local oscillator were short circuited. Fleri and Cohen [4] used a numerical integration algorithm to obtain the voltage waveforms for a diode with nonlinear conductance and capacitance in a simple lumped element embedding network. However this method can not be used if the embedding circuit contains distributed elements, which is usually the case for microwave mixers. Egami [5], using a harmonic

]

balance technique, was able to consider arbitrary embedding impedances, but convergence was difficult to achieve when more than three local oscillator harmonics were considered. In another approach, developed by Gwarek [6], the embedding network is represented as a simple lumped element circuit in series with a string of voltage sources one at each harmonic of the local oscillator. The amplitudes and phases of these generators are adjusted to keep the apparent terminal impedance of the circuit equal to that of the actual embedding network. Although the scheme works well for many mixers, it is strongly dependent on the guessed values of the lumped circuit elements and does not converge for all embedding impedances. A final technique, based on an earlier one developed in our laboratory [7], solves the nonlinear problem as a series of reflections between the diode and embedding network. The algorithm operates in the time domain when considering the diode and in the frequency domain when dealing with the embedding network. Although this multiple reflection technique often requires more time than Gwarek's method, solutions have been obtained for all the mixer circuits we have tried and no initial guesses are required. As a result this method is used in the large-signal section of the mixer analysis program described in this report.

Π

Ŵ

Ü

The small-signal analysis follows that of Held and Kerr [1] which is an extension of the original theory of frequency conversion put forward by Torrey and Whitmer [3]. The small-signal properties of the mixer are derived from a knowledge of the large-signal waveforms at the diode terminals and the impedance of the embedding network.

In analyzing the noise properties of a mixer it is important to take into account the partial correlation of the periodically varying shot noise at the various sideband frequencies. Following earlier work by Strutt [8], van der Ziel [9], Kim [10].

Dragone [11], and Uhlir* [12], the theory of noise in Schottky diode mixers was investigated by Held and Kerr [1] and put into a form suitable for computer analysis. This noise theory is used in the computer program presented in this report.

The mixer analysis program allows arbitrary embedding impedances at the harmonics of the local oscillator and the sideband frequencies, and any Schottky diode can be used. The diode series resistance includes a frequency dependent component due to skin effect. The program cannot handle diodes with voltage dependent series resistance or in which charge storage effects are significant, i.e. it is assumed that the carrier recombination time is small compared with the period of the local oscillator. In all cases the diode mount is assumed lossless and reciprocal. The run time for the program as listed in Appendix I is 32 seconds on an IBM 360/95 computer.

Ŷ

ģ

* The authors thank Dr. Uhlir for bringing his excellent paper to their attention.

5

2. Outline of the Necessary Theory

S.

The parameters most often used to characterize the small signal performance of a mixer are: the conversion loss between the signal and intermediate frequencies, the input and output impedances, and the equivalent input noise temperature. These quantities can all be determined if the Fourier coefficients of the diode conductance and capacitance waveforms and the embedding impedance at each sideband frequency are known. The first step in the analysis is therefore to determine the conductance and capacitance waveforms produced at the diode by the local oscillator.

2.1 Solution of the Large-Signal Problem

The equivalent circuit of the mixer is shown in Fig. 1. Expressions for the

Fig. 1: The equivalent circuit of the mixer.

PRECEDING PAGE BLANK NOT FILMED

diode conductance current and capacitance current are well known:

$$i_{g_{j}} = i_{s} [exp(\alpha v_{d}) - 1]$$
, (1)

$$i_{c_j} = c_j \frac{dv_d}{dt}$$
,

$$\alpha = q/\eta kT , \qquad (3)$$

(2)

ρ

Ŷ

Ď

and

$$c_j = c_0 (1 - v_d / \phi)^{-Y}$$
 (4)

The differential conductance is obtained from (1):

$$g_{j} = \frac{\alpha_{d}}{dt} = \alpha i_{s} \exp(\alpha v_{d}) = \alpha (i_{g_{j}} + i_{s}) \approx \alpha i_{g_{j}} .$$
 (5)

The voltage and current at the diode can be written in terms of their Fourier coefficients as follows:

$$\mathbf{v}_{\mathbf{d}}(\mathbf{t}) = \sum_{\mathbf{n}=-\infty}^{+\infty} \nabla_{\mathbf{d}_{\mathbf{n}}} \exp(\mathbf{j} \mathbf{u} \mathbf{w}_{\mathbf{p}} \mathbf{t}) , \quad \nabla_{\mathbf{d}_{-\mathbf{n}}} = \nabla_{\mathbf{d}_{\mathbf{n}}}^{*} , \quad (6)$$

·招望起来。

and the Appendigues S

$$i_{d}(t) = i_{g_{j}}(t) + i_{c_{j}}(t) = \sum_{n = -\infty}^{+\infty} I_{d_{n}} \exp(jn\omega_{p} t), I_{d_{-n}} = I_{d_{n}}^{*}$$
 (7)

where w_{p} is the local oscillator frequency.

Ŷ

 \mathbf{r}

The conditions imposed on the steady state response of the mixer circuit by the embedding network can more conveniently be expressed in the frequency domain. Referring to Fig. 1:

$$\frac{V_{d}}{I_{d_{n}}} = - \left[Z_{e}(n \omega_{p}) + R_{s}(n \omega_{p}) \right], \quad n = 2, 3, \dots \infty$$
(8a)

$$\frac{\mathbf{V}_{\mathbf{d}_{1}} - \mathbf{V}_{1}}{\mathbf{I}_{\mathbf{d}_{1}}} = -\left[\mathbf{Z}_{\mathbf{e}}(\boldsymbol{w}_{\mathbf{p}}) + \mathbf{R}_{\mathbf{s}}(\boldsymbol{w}_{\mathbf{p}})\right], \qquad (8b)$$

$$\frac{V_{d_0} - V_0}{I_{d_0}} = - [Z_e(0) + R_s(0)] , \qquad (8c)$$

where V_1 and V_0 are the Thevenin equivalent LO and dc voltages seen by the diode. The frequency dependence of R_s is due to the skin effect which we will assume to be represented by

7

- R.A.

(j.)

 $R_{s}(f) = R_{s}(dc) + R_{skin} \sqrt{f} , \qquad (9)$

Ø

 \mathbb{P}

12. 化合物管理 网络联络学家 医静脉管 医脊髓管 化合物管理 化合物合物 化合物合物 化合物合物合物合物合物 化合物合物 化合物合物 化合物合物 化合物合物 化合物合物 化合物合物 化合物合物 化合物合物

where R_{skin} (Ohms/ \sqrt{Hz}) is a constant for a particular diode. The effects of diode heating on the series resistance* will not be included in this report.

If (6) and (7) can be solved for $v_d(t)$ and $i_d(t)$ then (1)-(5) can be used to find $i_{g_j}(t)$, $g_j(t)$ and $c_j(t)$ which along with $Z_e(\omega)$ determine the small signal behavior of the mixer. As mentioned in the introduction, a method of solution which works well for a broad range of embedding impedances is the multiple reflection technique [7] which is described below.

The circuit of Fig. 1 is modified by inserting a transmission line of arbitrary characteristic impedance Z_0 between the diode and the embedding network as shown in Fig. 2. By making the transmission line an integral number of wavelengths long at the LO frequency, and hence at the harmonics of the LO, the steady-state waveforms in the modified network will be the same as those in the original circuit. The desired voltages and currents can then be obtained by alternately solving the two circuits shown in Fig. 3 in an iterative procedure.

^{*} Decker and Weinreb (see ref. [1]) have shown that the dc series resistance of the diode determined from a dc log I-V plot includes a negative component due to heating of the diode by the test signal. When the resistance is determined at microwaye frequencies this effect is no longer present and thus the deduced value of dc resistance will be larger than the apparent value obtained from the dc log I-V plot.

В

V

٥

Û

9

 \bigcirc

Fig. 3. The two circuits which must be solved iteratively to obtain the steady state solution to the network of Fig. 2. The linear network (a) is analyzed in the irequency domain while the nonlinear circuit (b) is solved in the time domain. V_0 and V_1 are the Thevenin equivalent dc and LO source voltages.

如果,如此,如此有一些。""你们,你们就是是你的,你们是你们的。""你们,你们也能能能能。""你们,你们就是你们的,你们就是你们,你们就是你们,你们们就是你们,你们们们们,你们们们们,你们们们们,你们

Q

b

Initially a wave propagates along the transmission line towards the diode in Fig. 2. This wave contains voltage components only at the local oscillator frequency and dc. The initial dc wave incident on the diode is

$$V_{i_0} = V_0 Z_0 / (Z_0 + Z_e^{(0)} + R_s^{(0)}), \qquad (10)$$

and the initial incident wave at frequency w_n is

Ð

$$V_{i_{1}} = V_{1} Z_{0} / (Z_{0} + Z_{e}(1) + R_{s}(1)), \qquad (11)$$

where V_0 and V_1 are the Thevenin equivalent dc and LO source voltages seen by the diode and $Z_e(n)$ represents the embedding network impedance at harmonic n (frequency $n w_p$) of the local oscillator.

After the steady state has been reached between the transmission line and the diode, the wave reflected from the diode contains components at all harmonics of the local oscillator. Denoting the incident and reflected voltages at frequency $n w_p$ by V_{i_n} and V_{r_n} we have at the diode:

$$V_{d_n} = V_{i_n} + V_{r_n} , \qquad (12)$$

$$I_{d_n} = (V_i - V_r)/Z_0$$
 (13)

 V_{d_n} and I_{d_n} are the Fourier coefficients of the diode voltage and current as given in (6) and (7). They can be determined by solving the state equation of the network in Fig. 3b in the time domain and then performing a Fourier analysis. Inspection of Fig. 3b yields the state equation:

$$\frac{dv_{d}(t)}{dt} = \left(\frac{v_{s}(t) - v_{d}(t)}{Z_{0}} - i_{g_{j}}(t)\right) / c_{j}(t) , \qquad (14)$$

Note that $v_s(t) = V_0 + V_1$ on the first cycle.

Equation (14) can be solved for $v_d(t)$, and then $i_d(t)$, V_{d_n} , and I_{d_n} can be found using (6) and (7). Now (12) and (13) can be used to determine V_{r_n} :

$$\mathbf{V}_{\mathbf{r}_{\mathbf{n}}} = \mathbf{V}_{\mathbf{d}_{\mathbf{n}}} - \mathbf{V}_{\mathbf{i}_{\mathbf{n}}}$$
(15)

 $(g_{i})_{i} \in \{g_{i}\}_{i=1}^{n} \in [g_{i}], g_{i}] \in [g_{i}], g_{i} \in [g_{i}], g_{i} \in [g_{i}], g_{i}] \in [g_{i}], g_{i}\}$

ŗ

I

Þ

9

 \mathbf{or}

$$V_{r_n} = (V_{d_n} - I_{d_n} Z_0) / 2$$
 (16)

The wave represented by V_{r_n} travels back towards the embedding network where it is reflected and a new wave is launched towards the diode. The amplitude of this newly reflected wave is determined by the embedding network reflection coefficient at each LO harmonic:

$$p_{n} = \frac{Z_{e}^{(n)} + R_{s}^{(n)} - Z_{0}}{Z_{e}^{(n)} + R_{s}^{(n)} + Z_{0}} , \qquad (17)$$

and is

$$V_{i_n} = \rho_n V_{r_n}$$
 (18)

The wave now incident on the diode is the sum of the reflected wave given in (18) and that of the previous reflection cycle, i.e. $V_{i_n} \rightarrow V_{i_n} + \rho_n V_{r_n}$. At the diode a new state equation can be written and solved to obtain the voltage and current in the time domain. The Fourier coefficients can be calculated and the wave reflected from the diode found from (15) and (16). The prw incident wave is again determined using (18) and the cycle is repeated until the voltages and currents at the two ends of the transmission line are equal, that is (referring to Fig. 2):

$$|V_{d_n}| = |V_{e_n}|$$
 for $n > 1$ (19)

and

$$\left| I_{d_n} \right| = \left| I_{e_n} \right| \quad \text{for } n > 1 .$$
(20)

At this point the solution has completely converged and

$$\frac{|v_{d_{n}}|}{|I_{d_{n}}|} = \frac{|v_{e_{n}}|}{|I_{e_{n}}|} = |Z_{e}(n) + R_{s}(n)|, \text{ for } n > 1.$$
(21)

Û

Ð

いたいとなった。 - Andrew An Andrew Andrew

In practice perfect convergence will not be achieved in a finite time. However, a convergence parameter can be formed to indicate when the waveforms at the two ends of the transmission line are sufficiently close to one another to merit halting the iteration procedure:

$$\delta(n) = \{ | (V_{d_n} / I_{d_n}) | / | Z_e(n) + R_s(n) | \} - 1, \text{ for } n > 1.$$
(22)

The solution is considered to have converged when $\delta(n) \leq \varepsilon$ for all n > 1, where ε is an arbitrarily set limit.

2.2 Small-Signal Analysis

2.2.1 Frequency and Subscript Notation

If a mixer is pumped at frequency ω_p and has an intermediate frequency ω_0 , the only small-signals which can produce an IF response are at the sideband frequencies $(\omega_0 + n\omega_p, n = 0, \pm 1, \pm 2 \dots)$. Following Saleh [13] it is useful to define the sideband frequencies by:

\$

$$w_n = w_0 + n w_n$$
 $n = 0, \pm 1, \pm 2, \pm 3, \dots$ (23)

For $n \le 1$ the sideband frequencies are seen to be negative. A brief comment on the meaning of these negative frequency terms is given in the footnote. *

Saleh's frequency notation leads to a considerable simplification of the mixer theory. Using this notation all upper sideband frequencies $(\omega_0 + |n| \omega_p)$ are considered positive, while all lower sideband frequencies $(\omega_0 - |n| \omega_p)$ are negative. The sideband frequency index n is used as a subscript with the various electrical quantities and hence the upper sideband, intermediate, and lower sideband frequencies are: $\omega_{+1} = \omega_0 + \omega_p, \omega_0$, and $\omega_{-1} = \omega_0 - \omega_p$; and V_{+1}, V_0 and V_{-1} represent voltages at these frequencies.

2.2.2 Small-Signal Conversion Matrix

Using the sideband notation described in the previous section let δI and δV denote the vectors of the small-signal sideband currents (δI_n) and voltages (δV_n) at the terminals of the intrinsic diode (the diode excluding its series resistance). Then

$$\widetilde{\delta I} = [\ldots, \delta I_1, \delta I_0, \delta I_{-1}, \ldots]^t$$

^{*} Electrical quantities are frequently described by a single complex quantity associated with some frequency, assumed positive. For example, a voltage of frequency ω may be described simply by its complex half-amplitude V, implying an instantaneous voltage v(t) = V e^{j wt} + V* e^{-j wt}. It is just as meaningful to work with a negative frequency (-w) and the conjugate of the complex half-amplitude (V*), provided the convention is clearly understood. Impedances and admittances are then simply the conjugates of their conventional positive frequency values, i.e. $Z(-w) = V*/I^* = Z*(w)$.

and

$$\widetilde{\delta V} = [\ldots, \delta V_1, \delta V_0, \delta V_{-1}, \ldots]^t$$
(25)

Torrey and Whitmer [3] have shown that $\widetilde{\delta I}$ and $\widetilde{\delta V}$ are related via a conversion admittance matrix \widetilde{Y} defined by

$$\widetilde{\delta I} = \widetilde{\Upsilon} \ \widetilde{\delta V}$$
 . (26)

If the row and column numbering of the square matrix \widetilde{Y} correspond with the sideband numbering, \widetilde{Y} can be written out as

$$\widetilde{\mathbf{Y}} = \begin{bmatrix} \vdots & \vdots & \vdots \\ \cdots & \mathbf{Y}_{11} & \mathbf{Y}_{10} & \mathbf{Y}_{1-1} & \cdots \\ \cdots & \mathbf{Y}_{01} & \mathbf{Y}_{00} & \mathbf{Y}_{0-1} & \cdots \\ \cdots & \mathbf{Y}_{-11} & \mathbf{Y}_{-10} & \mathbf{Y}_{-1-1} & \cdots \\ \vdots & \vdots & \vdots \end{bmatrix} , \quad (27)$$

with element values given by [3]:

$$Y_{mn} = G_{m-n} + j(w_0 + mw_p) C_{m-n}$$
 (28)

₽

Ø

ð

 G_{m-n} and C_{m-n} are the (m-n) th Fourier coefficients of the diode conductance and capacitance waveforms, $g_i(t)$ and $c_i(t)$, and are defined by:

$$g_{j}(t) = \sum_{n = -\infty}^{\infty} G_{n} \exp[jn \omega_{p} t], G_{-n} = G_{n}^{*}, \qquad (29)$$

$$c_{j}(t) = \sum_{n = -\infty}^{\infty} C_{n} \exp[jn\omega_{p} t], C_{-n} = C_{n}^{*}. \qquad (30)$$

 G_{m-n} and C_{m-n} are given by:

$$G_{m-n} = \frac{1}{T} \int_{0}^{T/2} g_{j}(t) \exp[-j(m-n)\omega_{p}t] dt, \qquad (31)$$
$$-\frac{T}{2}$$

$$C_{m-n} = \frac{1}{T} \int_{-\frac{T}{2}}^{T/2} c_{j}(t) \exp\left[-j(m-n)\omega_{p}t\right] dt, \qquad (32)$$

where the integration is taken over one period T of the local oscillator.

The matrix \widetilde{Y} can be regarded as the admittance matrix of a multifrequency multiport network, as shown in Fig. 4, in which there is one port for every sideband frequency ω_n . If the embedding impedances Z_{e_n} and diode series resistance R_{s_n} corresponding to the sideband frequencies ω_n are now connected in parallel with the intrinsic diode an augmented network is formed as shown by the broken line in Fig. 4.

Л

9

ð

Fig. 4: The small signal representation of the mixer as a multifrequency linear multiport network. The voltage and current δV_m and δI_m are the small-signal components at frequency (w₀ + mw_p) at the intrinsic diode. Each port represents one sideband frequency. The conversion matrix Ỹ is the admittance matrix of the intrinsic diode. The augmented network includes all the sideband embedding impedances Z_e and is characterized by the augmented admittance matrix
Ỹ'. δI'₁ is the equivalent signal current generator which is connected at port 1 during normal mixer operation, the other ports being open circuited. During the noise analysis equivalent shot and thermal noise current sources δI'₁ and δI'₁ m^m

are connected to all ports.

The ports of the augmented network correspond to the terminals of the intrinsic diode at the various sideband frequencies and do not represent physically accessible ports in the real mixer. The augmented network can be described by the admittance matrix \tilde{Y} , defined by

$$\widetilde{\delta I'} = \widetilde{\Upsilon}' \quad \widetilde{\delta V} \tag{33}$$

where

£

$$\widetilde{\delta}I' = [\ldots, \deltaI'_1, \deltaI'_0, \deltaI'_1, \ldots]^{\mathsf{t}}$$

and

$$\widetilde{\delta V} = \left[\dots, \delta V_1, \delta V_0, \delta V_{-1}, \dots\right]^t , \qquad (34)$$

 δV_m and $\delta I'_m$ are the small signal voltage and current, at sideband $w_m = w_0 + m w_p$ (port m), of the augmented network. The elements of the augmented admittance matrix \widetilde{Y}' are given by

 $Y_{mn}^{t} = Y_{mn} \quad m \neq n \tag{35a}$

and

 $Y'_{mm} = Y_{mm} + [Z_{e_m} + R_{s_m}]^{-1}, m = n$. (35b)

Inverting (33) gives

$$\widetilde{\delta V} = \widetilde{Z}^{1} \quad \widetilde{\delta I}^{1} \quad , \tag{36}$$

where

$$\widetilde{Z}' = (\widetilde{Y}')^{-1} \quad . \tag{37}$$

The impedance matrix \widetilde{Z}' enables us to calculate the conversion loss and the input and output impedances of the mixer and is also needed in computing the noise temperature.

2.2.3 Mixer Port Impedances

The impedance Z_m of any port of the intrinsic diode (see Fig. 4) can be found by open circuiting the corresponding embedding impedance Z_{e_m} and then forming the \widetilde{Z}' matrix defined by (36). The desired port impedance is given by the mm-th element of the newly formed \widetilde{Z}' matrix:

$$Z_{\rm m} = Z_{\rm mm}^{\prime}, \quad (38)$$

o

where the subscript \simeq indicates that \widetilde{Z}' has been formed with $Z_{e_{m}}$ open circuited. The corresponding mixer input impedance seen by the embedding circuit includes the diode series resistance and is

$$Z_{in} = Z_{m} + R_{s} = Z'_{mm}, \infty + R_{s}.$$
(39)

In particular the IF output impedance is given by

$$Z_{IF_{out}} = Z_{in_0} = Z_0 + R_{s_0} = Z_{00, \infty} + R_{s_0}$$
 (40)

Throughout the remainder of this report it will be assumed that the IF load impedance Z_{e_0} is conjugate-matched to the IF output impedance of the mixer, thereby minimizing the conversion loss. Once the mixer performance with matched IF is known it is a simple matter to calculate the performance with any other IF termination. The value of the conjugate-matched IF load impedance is, using (40),

$$Z_{e_0} = Z_{IF_{out}}^* = (Z_{00, \infty}^* + R_{s_0})^* = Z_{00, \infty}^* + R_{s_0}, \quad (41)$$

where $Z'_{00,\infty}$ is the center element of the \widetilde{Z}' matrix with $Z_{e_0} = \infty$. Rather than reforming the \widetilde{Z}' matrix each time an input impedance is calculated, the intrinsic diode port impedance Z_m can be found from (referring to Fig. 4):

$$\mathbf{Z'_{mm}} = (\mathbf{Z}_{e_{m}} + \mathbf{R}_{s_{m}}) \parallel \mathbf{Z}_{m}, \qquad (42)$$

where Z'_{mm} is the mm-th element of the mixer impedance matrix formed with the IF load impedance conjugate-matched to the IF output impedance. The corresponding mixer input impedance is then

$$Z_{in_{m}} = R_{s_{m}} + \frac{\binom{Z_{e_{m}} + R_{s_{m}}}{m} Z_{mm}}{\binom{Z_{e_{m}} + R_{s_{m}}}{m} - \frac{Z'_{mm}}{m}} .$$
(43)

2.2.4 Conversion Loss

The conversion loss from sideband j to sideband i in a mixer is

$$L_{ij} \triangleq \left(\frac{\text{power available from the signal source at sideband } \omega_{j}}{\text{converted power from the signal source, delivered to}} \right)$$

the load at sideband ω_{j} .

Consider for the moment only the intrinsic diode shown in Fig. 4. The power available from impedance ($Z_{e_j} + R_{s_j}$) at the j-th sideband is

$$P_{\text{available}} = \frac{1}{4} \left| \delta I_{j}^{\prime} \right|^{2} \operatorname{Re} \left[Z_{e_{j}} + R_{s_{j}} \right] .$$
(44)

The power delivered to a load impedance (Z $e_i + R_s$) at sideband i is, using (36)

$$P_{\text{delivered}} = \operatorname{Re}\left[\delta V_{i} \delta I_{i}^{*}\right] = \frac{\left|Z_{ij}^{\prime}\right|^{2} \left|\delta I_{j}^{\prime}\right|^{2} \operatorname{Re}\left[Z_{e_{i}} + R_{s_{i}}\right]}{\left|Z_{e_{i}} + R_{s_{i}}\right|^{2}} .$$
(45)

Dividing (44) by (45) gives the conversion loss $L_{ij}^{!}$ of the intrinsic diode:

٥

Ċ

$$\frac{P_{available}}{P_{delivered}} = L'_{ij} = \frac{\left| Z_{e_i} + R_{s_i} \right|^2 \left| Z_{e_j} + R_{s_j} \right|^2}{4 \left| Z'_{ij} \right|^2 \operatorname{Re} \left[Z_{e_j} + R_{s_j} \right] \operatorname{Re} \left[Z_{e_i} + R_{s_i} \right]} . \quad (46)$$

To find the conversion loss of the actual mixer, the additional loss in the series resistance at the input and output frequencies must be included. This is accounted for by two terms:

$$K_{j} \stackrel{\Delta}{=} \frac{Power Available from Z_{e_{j}}}{Power available from Z_{e_{j}} + R_{s_{j}}} = Re[Z_{e_{j}} + R_{s_{j}}] / Re[Z_{e_{j}}] \quad (47)$$

$$K_{i} \stackrel{\Delta}{=} \frac{\text{Power delivered to } Z_{e_{i}} + R_{s_{i}}}{\text{Power delivered to } Z_{e_{i}}} = \text{Re}[Z_{e_{i}} + R_{s_{i}}] / \text{Re}[Z_{e_{i}}]. \quad (48)$$

Multiplying K_i and K_j by L_{ij}^{t} gives the expression for the loss of the mixer in converting from sideband j to sideband i:

$$L_{ij} = K_{i} K_{j} L_{ij}' = \frac{|Z_{e_{i}} + R_{s_{i}}|^{2} |Z_{e_{j}} + R_{s_{j}}|^{2}}{4 |Z_{ij}'|^{2} Re[Z_{e_{i}}] Re[Z_{e_{j}}]}, \quad (49)$$

where $Z_{ij}^{!}$ is the ijth element of the impedance matrix $\widetilde{Z}^{!}$ of the augmented network as defined in (36).

2.3 Mixer Noise Theory

The noise observed in a Schottky diode comes mainly from three sources, (i) shot noise due to the statistical nature of the current flow across the depletion layer, (ii) thermal noise due to the random motion of the charge carriers in the undepleted semiconductor material and (iii) noise due to lattice scattering, which occurs in regions of high current density. At room temperature the noise contribution due to lattice scattering is usually small enough to be approximated by a slight increase in the temperature of the diode series resistance to T_{eq} [1,2]. In cryogenic mixers however, scattering noise may account for a more substantial part of the overall noise and a more complex analysis than is performed here is required to take account of its partially correlated components.

The equivalent circuit of the Schottky diode, including noise sources, is shown in Fig. 5(a). T_{eq} is the equivalent temperature of the series resistance and includes the effects of lattice scattering and pump heating. k is Boltzmann's constant and q the electronic charge. In Fig. 5(b) the thermal and shot noise are both represented as equivalent current sources in parallel with the intrinsic diode. $\overline{\delta i}_T^2$ and $\overline{\delta i}_S^2$ are the mean-square values of the thermal and shot noise currents in the frequency range f to f+ Δf . These current sources can be regarded as generating a multitude of quasisinusoidal frequency components, each with its own amplitude and phase. In the multifrequency multiport equivalent circuit of the mixer, Fig. 4, the noise sources can be included by connecting a uoise current source at each sideband frequency to the appropriate port of the augmented network.

פ

Fig. 5: (a) The equivalent circuit of the diode including noise sources. T_{eq} is the equivalent temperature of the series resistance and takes into account pump heating and lattice scattering noise. (b) The equivalent circuit with the thermal noise source δv_T^2 transformed into a current source δl_T^2 . The sideband components of the noise sources are treated in the same way as the equivalent small-signal current sources δl_m^1 applied at the ports of the augmented network of Fig. 4.

25

As seen by the intrinsic diode, the thermal noise current source in Fig. 5(b) is

$$\overline{\delta i}_{T}^{2} = \frac{4 k T_{eq} R_{s_{m}} \Delta f}{\left| Z_{e_{m}} + R_{s_{m}} \right|^{2}} .$$
(50)

í

At the intermediate frequency (m = 0) the mixer is conjugate matched with $Z_{e_0} = (Z_0 + R_{s_0})^*$. As seen by the IF load Z_{e_0} the equivalent thermal noise current source connected to the IF port of the augmented network is

$$\overline{\delta i}_{T}^{2} = \frac{4 k T_{eq} R_{s_{0}} \Delta f}{|z_{0}|^{2}} = \frac{4 k T_{eq} R_{s_{0}} \Delta f}{|z_{e_{0}} - R_{s_{0}}|^{2}} .$$
(51)

Since the noise performance of the mixer is determined from the total noise power delivered to the IF load Z_{e_0} , (51) rather than (50) must be used to account for IF noise in the series resistance that is delivered to the IF load.

The mean square value of the shot noise current source in Fig. 5(b) is given by the usual expression:

$$\overline{\delta i}_{S}^{2} = 2 q i_{g_{j}} \Delta f \qquad (52)$$

2.3.1 Shot Noise

The shot noise in a mixer arises from the current produced in the diode conductance by the local oscillator and dc bias. It can be considered as white (Gaussian) noise, amplitude modulated by the LO waveform. Dragone [11] and Uhlir [12] have investigated the properties of this modulated noise and shown that there is partial correlation between the quasi-sinusoidal components at the various sideband frequencies. The correlated components at these sidebands are down converted in the diode to the intermediate frequency where they add vectorially.

Let $\delta I_{S_n}^{\prime}$ represent the quasi-sinusoidal component, at frequency ω_n , of the periodically pumped shot noise current source in Fig. 5(b). Each of the sideband components $\delta I_{S_n}^{\prime}$ is connected to the complete equivalent circuit of the mixer, Fig. 4, at the appropriate sideband port. We define δI_{S}^{\prime} and δV_{S} as the vectors of the input shot noise currents and voltages at the ports:

$$\widetilde{\delta}I'_{\mathbf{S}} = \left[\dots \delta I'_{\mathbf{S}_{1}} \delta I'_{\mathbf{S}_{0}} \delta I'_{\mathbf{S}_{-1}} \dots \right]^{t}$$

5

and

¢,

۱

$$\widetilde{\delta V}_{S} = [\dots \delta V_{S_{1}} \delta V_{S_{0}} \delta V_{S_{-1}} \dots]^{t}$$
(53)

Using (36) the output noise voltage at the IF is

$$\delta V_{S_0} = \widetilde{Z}'_0 \quad \delta \widetilde{I}'_S \quad , \tag{54}$$

고 아파 가지 않는 것 ~ 가

tigen to set the state of the set of the set of the set

where Z_0^i is the zeroth or center row of the augmented impedance matrix \widetilde{Z}^i defined in equation (36). It follows that

$$\delta V_{S_0} \cdot \delta V_{S_0}^* = \widetilde{Z}_0^{i} \quad \widetilde{\delta I}_{S}^{i} \cdot (\widetilde{Z}_0^{i} \quad \widetilde{\delta I}_{S}^{i})^* = \widetilde{Z}_0^{i} \quad \widetilde{\delta I}_{S}^{i} \quad \widetilde{\delta I}_{S}^{i\dagger} \quad \widetilde{Z}_0^{i\dagger} \quad , \qquad (55)$$

where † indicates the conjugate transpose of a matrix.

Taking the ensemble average* of (55) yields

$$\langle |\delta V_{S_0}|^2 \rangle = \widetilde{Z}_0^{\dagger} \langle \widetilde{\delta I}_S^{\dagger} \widetilde{\delta I}_S^{\dagger} \rangle \widetilde{Z}_0^{\dagger}$$
 (56)

 $\langle \widetilde{\delta I}_{S}^{I}, \widetilde{\delta I}_{S}^{I} \rangle$ is the shot noise current correlation matrix and has the general element $\langle \delta I_{S}^{I}, \delta I_{S}^{I} \rangle$. It can be shown that [11], [12]:

 $\langle \delta I'_{S_{m}} \delta I'_{S_{n}}^{*} \rangle = 2 q I_{m-n} \Delta f$, (57)

where I_{m-n} is the (m-n)th Fourier coefficient of the diode conductance current is defined by

Taking the ensemble average is equivalent to considering a small but finite bandwidth as must be used in any physical measurement. The finite bandwidth contains a multitude of quasi-sinusoidal noise components with random amplitudes and phases.

*

$$i_{g_j}(t) = \sum_{n = -\infty}^{\infty} I_n \exp[jn\omega_p t], \quad I_{-n} = I_n^* \quad .$$
 (58)

 I_{m-n} is then given by:

$$I_{m-n} = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} i_{g_{j}}(t) \exp[-j(m-n)w_{p}t] dt, \qquad (59)$$

where the integration is taken over one LO cycle.

2.3.2 Thermal Noise

Thermal noise generated in the diode series resistance has components which are uncorrelated at the various sideband frequencies. Let $\delta I'_{T_n}$ represent the quasisinusoidal component at sideband frequency ω_n of the thermal noise current source in Fig. 5(b), and let δV_{T_n} be the sideband noise voltage produced by $\delta I'_{T_n}$. The noise voltage produced at the IF port of the augmented network (Fig. 4) by the thermal noise at all the sidebands can be found using equation (36):

$$\delta V_{T_0} = \widetilde{Z}_0^{\dagger} \quad \widetilde{\delta} I_T^{\dagger} \quad , \qquad (60)$$

where $\delta I'_T = [\dots, \delta I'_{T_1}, \delta I'_{T_0}, \delta I'_{T_{-1}}, \dots]$ is the vector of input thermal noise currents at the sideband ports of Fig. 4 and \widetilde{Z}'_0 is the center row of the augmented impedance matrix \widetilde{Z}' . From (60)

$$\delta V_{T_0} \cdot \delta V_{T_0}^* = \widetilde{Z}_0^{\dagger} \quad \widetilde{\delta} I_T^{\dagger} \cdot \left(\widetilde{Z}_0^{\dagger} \quad \widetilde{\delta} I_T^{\dagger} \right)^* = \widetilde{Z}_0^{\dagger} \quad \widetilde{\delta} I_T^{\dagger} \quad \widetilde{\delta} I_T^{\dagger} \quad Z_0^{\dagger} \quad .$$
(61)

Taking the ensemble average gives

$$\langle | \delta V_{T_0} |^2 \rangle = \widetilde{Z}_0^{\dagger} \langle \widetilde{\delta I}_T^{\dagger} \widetilde{\delta I}_T^{\dagger} \rangle Z_0^{\dagger}$$
 (62)

Į

Ű

Ø

The square matrix $\langle \widetilde{\delta I}_{T}^{i} \quad \widetilde{\delta I}_{T}^{i} \rangle$ is the thermal noise current correlation matrix. Since the thermal noise components at the various sideband frequencies are uncorrelated the elements $\langle \delta I_{T}^{i} \\ m \rangle = 0$ unless m = n, i.e. the matrix is diagonal. From equations (50) and (51):

$$\langle \tilde{r}_{m} \delta I_{T}^{*} \rangle = \frac{4kT_{eq} R_{s} \Delta f}{|Z_{e_{m}} + R_{s_{m}}|^{2}}, m \neq 0$$
 (63a)

$$\langle \delta I'_{T_0} \delta I'_{T_0}^* \rangle = \frac{4kT_{eq} R_{s_0} \Delta f}{|Z_{e_0} - R_{s_0}|^2}, m = 0$$
 (63b)

$$\langle \delta I'_{T_{m}} \delta I'^{*}_{T_{n}} \rangle = 0 , m \neq n .$$
 (63c)

 \mathbb{C}

2.3.3 Total Mixer Noise

The total output noise voltage of the mixer is obtained by combining the thermal and shot noise components. From (56) and (62):

$$\langle | \mathbf{V}_{\mathbf{N}_{0}} |^{2} \rangle = \widetilde{\mathbf{Z}}_{0}^{\prime} [\langle \widetilde{\delta I}_{\mathbf{S}}^{\prime} \ \widetilde{\delta I}_{\mathbf{S}}^{\prime\dagger} \rangle + \langle \widetilde{\delta I}_{\mathbf{T}}^{\prime} \ \widetilde{\delta I}_{\mathbf{T}}^{\prime\dagger} \rangle] \widetilde{\mathbf{Z}}_{0}^{\dagger\dagger} .$$
(64)

It follows that the noise power delivered to the matched IF load Z_{e_0} from the mixer itself is

$$P_{0} = \langle |V_{N_{0}}|^{2} \rangle \operatorname{Re}[Z_{e_{0}}] / |Z_{e_{0}} + R_{s_{0}}|^{2} .$$
(65)

The equivalent input noise temperature T_{M} of the mixer is the temperature to which the signal source conductance must be heated to give the same output noise from a noiseless but otherwise identical mixer as the actual mixer would produce when its signal source conductance was maintained at absolute zero temperature. Thus,

 $T_{M} \triangleq P_0 L_{01} / k \Delta f$ (66)
Using (65) and equation (49) for L_{01} (the conversion loss from the signal frequency to the IF)

$$T_{M} = \frac{\langle |V_{N_{0}}|^{2} \rangle |Z_{e_{1}} + R_{s_{1}}|^{2}}{4k \Delta f |Z_{01}'|^{2} Re[Z_{e_{1}}]}, \qquad (67)$$

where Z'_{01} is an element of the augmented impedance matrix \widetilde{Z}' defined in (36).

 T_{M} is the single-sideband input noise temperature of the mixer, meaning that all the noise of the mixer is attributed to a hypothetical source at the signal frequency. It is related to the single sideband noise figure by:

$$F_{SSB} = 1 + \frac{T_M}{290^{\circ}K}$$
 (68)

如此,如此是一些人们的"你们"。 "你们,你们不是是是你的事件,你们就是你是一个人们的,你们就是你们。" "我们不是你们,我们们们是不是你的,你们不是你们的?" "你们,你们们们们,你们们们们们,你们们

When describing the performance of a mixer whose physical input port is coupled to both the signal and image frequencies, it is more convenient to talk in terms of a double-sideband noise temperature $T_{DSB} \cdot T_{DSB}$ is the temperature to which the signal and image source conductances must be heated to give the same output noise from a noiseless but otherwise identical mixer as the actual mixer would produce when its signal and image source conductances were maintained at absolute zero temperature. For mixers in which the conversion loss from the signal and image frequencies L_{01} and L_{0-1} are equal

$$T_{\rm DSB} = T_{\rm SSB}/2 \tag{69}$$

and when $L_{01} \neq L_{0-1}$

$$T_{\text{DSB}} = \frac{T_{\text{SSB}}}{1 + \frac{L_{01}}{L_{0-1}}}$$
(70)

2.4 Summary of Mixer Theory

The performance of a mixer can be characterized by its conversion loss and equivalent input noise temperature. These quantities depend on the large-signal waveforms at the diode and on the embedding impedances of the mixer at the small-signal sideband frequencies. The diode waveforms can be found using the multiple reflection technique described in section 2.1. Once a steady state solution has been obtained, the Fourier coefficients of the conductance and capacitance waveforms can be extracted and used to find the conversion admittance matrix which relates the small-signal sideband currents and voltages of the intrinsic diode. An augmented admittance matrix can then be formed, which describes the multiport network consisting of the intrinsic diode, the diode series resistance, and the sideband embedding impedances. The inverse of this matrix is the augmented impedance matrix \tilde{Z}^{\dagger} , whose elements are used to calculate the conversion loss at the various sideband frequencies and the input impedances of the mixer ports. It is assumed throughout that the IF load impedance is conjugate-matched to the IF output impedance.

33

 $\hat{\Box}$

In the noise analysis, two components are considered: shot noise in the junction, and thermal noise in the series resistance. These are represented by equivalent noise current sources in parallel with the intrinsic diode. The periodically varying shot noise has correlated components, while the thermal noise does not. Correlation matrices are formed and evaluated for both shot and thermal noise sources. The shot noise correlation matrix has elements related to the Fourier coefficients of the largesignal diode conductance current, while the thermal noise correlation matrix depends upon the embedding impedances at the sideband frequencies. The two matrices together yield the total output noise voltage from which the equivalent input noise temperature of the mixer can be calculated. The analysis is complete at this point.

and the second second second

Ω

2.4.1 Comment on the Effect of the Number of Frequencies Considered

In transforming these procedures into a workable computer program there is a practical limit on the number of harmonics of the local oscillator which can be used. This means that the small-signal admittance matrix \tilde{Y} will be truncated above some finite harmonic number, which is equivalent to short circuiting the intrinsic diode at all higher sideband frequencies. In the nonlinear analysis the restriction on the number of harmonics is equivalent to terminating the intrinsic diode in an impedance Z_0 , the characteristic impedance of the hypothetical transmission line, at all higher frequencies. As long as the number of harmonics considered is not too small this approximation is a reasonable one.

In the next section the computer program based on this analysis is described.

3. Description of the Mixer Analysis Program

Using the theory given in the previous sections, a user oriented computer program was written which can readily accommodate a variety of mixer problems.

The program requires as inputs (i) the embedding impedances seen by the diode at each harmonic of the local oscillator and at the harmonic sidebands, (ii) the diode characteristics, including an arbitrary capacitance-voltage dependence, and (iii) the operating conditions for the mixer, i.e. the bias voltage applied to the diode, rectified current, pump and intermediate frequencies, and the equivalent diode temperature. Other variables which can be input to change specific program operations will be discussed later in this section.

The output includes (i) the large signal current and voltage waveforms at the diode, (ii) the Fourier coefficients of the diode conductance and capacitance, (iii) the conversion loss between every pair of sideband frequencies, (iv) the IF output impedance, (v) the input impedance at each sideband, and (vi) the equivalent single-sideband input noise temperature.

The remainder of this section explains the program in detai¹ and illustrates the steps used for running it. A complete annotated listing of the program appears in Appendix I and a general flowchart is given in Fig. 6. A list of the main program variables and their counterparts in the theory developed in parts one and two of this report can be found in Fig. 7.

3.1 Program Implementation

The program begins with a call to subroutine LGSIG to do the nonlinear analysis using the multiple reflection method described in section 2.1. The embedding network

(<u>@</u>) -

.

 2^{-1}

a the goal that is not before a first set of the first set of the set of the

1 4 1

시 1988년 1989년 1 1989년 198 1989년 198

は高雄などの教育は、大都なない。 ない、「ため」を発展したがあっていたが、「たっていた」のでは含まっていた。 ので、「ため」を発展していたがでしたが、たっていたが、「たい」、「

1.11.11.1.14

Chart illustrating the general flow of the mixer analysis program and the Fig. 6: operations of the subroutines.

VARIABLE	PROGRAM NAME	VARIABLE	PROGRAM NAME
°o	CO	Z'(o/c. IF)	A
°)	CJ	Z' (matched IF)	A
C _{m-n}	FC(in-n+1)	Z ₀ (T. line imp.)	ZO
s _j	GJ	Z _e (0) + R _s (dc)	ZEMBDC
G _{m-n}	FG(m-n+1)	$Z_e(nw_p) + R_a(nw_p)$	ZEMB
ⁱ c _j	ICJ	Z _e ^{(π ψ} p)	ZER + jZEI
1 _{da}	IDCOS(n+1)-JIDSIN(n+1)	Z _{em}	ZEMBSB
ⁱ d	IGJ + ICJ	ZIFout	ZIFOUT
^I g _j	IGJ	z _{ij}	A(NHD2P1-i, NHD2P1-j)
I _{m-n}	FG(m-n+1)/ALP	z _{in}	ZIN
is	JS	Z'mm	A(NHD2F1-m, NHD2Pi-m)
k	BOLTZ	2' mm, ~	A(NHD2P1-m, NHD2P1-m)
L _{ij}	LIJ	α.	ALP
q	QEL	Y	GAM
R _s	RS	δ	ZQ-1
R _s (đe)	RS	e	ZQACC
R _s (nw _p)	RSLO	π	Pl
R sm	RSSB	ρ	RHO
P.skin	RSKIN	₽o	RHODC
T _{eq}	TEQ	ø	РНІ
$\mathbf{\hat{r}_{M}}$	тм	μ ^ω ο	WIF
v _o	VDC	μ ^ω p	WP
vı	VLO	(õis õis)	COR
v _{ďn}	VDCOS(n+1) = jVDSIN(n+1)	(آن آن آ	COR
* _d	Y (1)	(sv _{N0} ²)	VSQ
v _{io}	VIDC	(اهv _{so}) ²)	VSQ
v _{in}	VI(n) = AV(n) - jBV(n)	$\langle \delta V_{T_0} ^2 \rangle$	VSQ
v _{r0}	VRDC or DVRDC	dv _d /dt	DERY (1)
v _r	VR or DVR		
Y	A		

0

Alphabetical list of the main variables used in the theory in this report, and Fig. 7: their counterparts in the mixer analysis program.

A

A

÷,

**** 0

Ŧ

0

۲ı

n

37

ş

÷:

1000 Co. 100

impedances $Z_e(n)$ (ZER + jZEI) and the sideband impedances Z_{e_m} (ZEMESE) are input in the BLOCK DATA program or formed, up to the highest harmonic of the LO (NH), assumed even, in subprogram ZEMBED. The real and imaginary parts of the embedding impedance $Z_e(n)$ at harmonic n become elements n of the arrays ZER and ZEI. The dc term is considered separately. The embedding impedance Z_{e_m} at sideband m becomes, in the notation of section 2.2.1, array element 如果我们就是这个时候,你们们是你们的你们的。""你们们的你们的你们是你们的。""你们们们们们们们们们们的?""你们们们们们们们们们们们们们们们们们们们们们们们们们

attain guilde and the

8

 $\left(\frac{NH}{2} + 1 - m\right), m = 0, \pm 1, \pm 2, \dots \pm \frac{NH}{2}$ of ZEMBSB. The diode series resistance at each LO harmonic (RSLO) and at the sideband frequencies (RSSE) is also formed in subprogram ZEMBED using equation (9). The array element notation for RSLO is the same as that used for ZER and ZEI, that is R_s at harmonic n becomes array element n of RSLO. Similarly, the notation used for RSSE is the same as that of ZEMBSB, R_s at sideband m becomes array element $\left(\frac{NH}{2} + 1 - m\right)$ of RSSB.

The reflection coefficients, (RHO) of the embedding network at the various LO harmonics are found using (17) for a given value of the transmission line characteristic impedance $Z_0(Z0)$. After initializing the incident voltage at the diode from (10) and (11), the input data are printed through subroutine PRINT1.

The next step in the nonlinear analysis is to find the local oscillator voltage $V_1(VLO)$ at which the desired rectified diode current (IDBIAS) is obtained. An outer loop (JLO) is established which zeros in on the required LO voltage. To do this, ten reflection cycles of the large signal analysis are run after which the dc current (IDCOS(1), the first Fourier coefficient of the total current in the diode) is compared with the desired value IDBIAS, and VLO is appropriately changed. The loop continues until the desired and calculated currents agree within a preset accuracy (IDCACC).

The time domain calculation of the current and voltage at the diode is accomplished by using the IBM SSP routine DRKGS which solves the network state equation

See . Prairie

(14) for the circuit of Fig. 3b using a Runge-Kutta algorithm. The problem is time scaled so that the LO period is 2T seconds. Each LO cycle contains a fixed number of points (NPTS) and DRKGS is called separately to integrate the circuit equations over each of the (NPTS-1) intervals per LO cycle. Subroutine FCT, called by DRKGS, supplies the state equation (14). The resulting values of the total diode current in (IGJ + ICJ), voltage v_d (Y(1)), conductance g_i (GJ), and capacitance c_i (CJ) for each point are stored in arrays. The integration loop is repeated NLO times to allow a steady state to be reached and then the IBM SSP routine FORIT is used to find the Fourier coefficients of the final voltage and current waveforms. At this point the voltages reflected from the diode at each LO harmonic can be found from (15) or (16) and the new incident voltages determined from (17) and (18). The convergence of the solution is checked using (22) and if more iterations are required (ZQFLAG \neq 0) the procedure is repeated from the beginning of the DRKGS integration. However, if the impedances at both ends of the transmission line are equal within some fixed accuracy 6 (ZQACC) at all harmonics of the LO above the first, then the large signal analysis is complete. The results of the last iteration are printed via subroutine PRINT2 and subroutine POWER is called to calculate and print the required LO power.* The Fourier

We have found that convergence of the nonlinear analysis can generally be made more rapid if the embedding impedances at dc and the LO frequency, $Z_e(0)$ and $Z_e(1)$, are artifically set equal to the characteristic impedance Z_0 of the hypothetical transmission line. Provided the LO and dc bias sources are appropriately adjusted this has no effect on the steadystate waveforms. In computing the LO power required to drive the mixer (i. e. available power from the LO source), the correct value of $Z_e(1)$ must be replaced and the LO source voltage adjusted accordingly. It follows that, in terms of the LO source voltage V_{LO} , when $Z_e(0) = Z_0$, the LO power required to drive the actual mixer (with $Z_e(1)$ at its original value) is:

$$P_{LO} = \frac{|V_{LO}|^2}{8Re[Z_e(1)]} \frac{|R_s(1) + Z_e(1) + Z_0 * ZQ(1)|^2}{|Z_0 * (1 + ZQ(1))|^2}, \quad (71)$$

where ZQ(1) is the convergence parameter given in (22) when n = 1.

coefficients of the diode conductance and capacitance are now found using FORIT, after having un-time-scaled the frequency dependent terms. Finally, the diode conductance and capacitance, total diode current, and voltage across the diode are plotted over one LO cycle using subroutine PLOT.

B

After the large-signal analysis is finished subroutine SMSIG is called to perform the small-signal analysis described in section 2.2. The Fourier coefficients of the diode conductance and capacitance (GJCOS, GJSIN, CJCOS, CJSIN) obtained in the large-signal section are converted to complex form (FG, FC) and printed in subroutine PRINT3. Calculation of the conversion loss matrix (XLMAT) and input and output impedances then begins by forming the small-signal admittance matrix \widetilde{Y} (A in the program) of equation (26) using (28). The IF load impedance is open circuited at this stage and the augmented admittance matrix of (33) \widetilde{Y}' is formed in subroutine YPRIME by adding $(Z_{e_m} + R_{s_m})^{-1}$ to the diagonal terms of \widetilde{Y} (A). \widetilde{Y}' (A) is inverted to obtain $\widetilde{\mathbf{Z}}'$ (A) using the IBM SSP routine MINV (matrix inversion), slightly modified to handle a complex matrix (CMINV). The IF output impedance (ZIFOUT) is the center element Z_{00}^{\dagger} (A(NHD2P1, NHD2P1)) of this matrix plus the diode series resistance R_{00}^{\dagger} (see eq. (40)). If IF load impedance is set equal to the complex conjugate of ZIFOUT and the augmented admittance matrix is again formed and inverted to give \widetilde{Z}^{i} (A) for the mixer with a matched IF load. The elements of the conversion loss matrix (LIJ) and the input impedances at the sideband ports (ZIN) are then found using (43) and (49).

The noise analysis proceeds according to section 2.3 and begins with the formation of the shot noise correlation matrix $\langle \delta I'_S \ \delta I$

 $\langle | \delta V_{S_0} |^2 \rangle$ as given by (56) and (57). The total mixer output noise voltage is found, using subroutine TNOISE, by adding the shot noise correlation matrix to the thermal noise correlation matrix given by (63) - see equation (64). Subroutine TMIX is then used to find the total equivalent input noise temperature (TM) at the signal port. The thermal component (THERM) is found by subtracting the shot noise contribution (SHOT) from the total noise temperature (TM). The results of the conversion loss and noise analyses are printed using subroutine PRINT4. This completes the program.

For a more detailed description of the operation of the program the reader is referred to the comments in the program listing and the general flow chart of Fig. 6.

3.2 Running the Mixer Analysis Program

A listing of the mixer analysis program in its simplest form appears in Appendix I along with the output of a run. Using the IBM Fortran IV-H compiler, the execution time for this particular listing is 32 seconds on an IBM 360-95 computer. The comments in the listing provide a step by step description of the Fortran coding and explain the meanings of the variables. To run the program the following information must be supplied by the user via the BLOCK DATA subprogram:

- (1) The embedding network impedances at the LO frequency and the higher harmonics as real and imaginary parts (ZER, ZEI) in Ohms.
- (2) The sideband impedances in complex form(ZEMBSB)in Ohms, where sideband m corresponds to array element (NH/2 + 1 - m) and there are NH+1 array elements in all. Note that for all lower sidebands (m<0) the sideband frequency is negative and the ZEMBSB(NH/2 + 1 - m) is therefore the conjugate of the positive frequency impedance.

41

(4) The dc bias voltage across the diode (VDBIAS) in Volts.

(5) The desired rectified current (IDBIAS) in Amperes.

- (6) The equivalent temperature of the diode series resistance (TEQ) in degrees Kelvin.
- (7) The diode series resistance at dc (RS) in Ohms.
- (8) The diode skin resistance constant (RSKIN) in Ohms/ $\sqrt{\text{Hertz}}$.
- (9) The reverse saturation current of the diode (IS) in Amperes.
- (10) The diode contact potential ϕ (PHI) in Volts.
- (11) The diode capacitance at zero volts (C0) in Farads.
- (12) The diode capacitance law exponent Y (GAM).
- (13) The diode I-V law exponent $\alpha \triangleq q/\eta kT$ (ALP) in (Volts)⁻¹.

The values of the remaining variables are somewhat arbitrary and have been optimized for the example given in Appendix I. The following information may prove useful in choosing values for these variables when running other examples.

The characteristic impedance $(\mathbb{Z}0)$ of the hypothetical transmission line inserted between the diode and the embedding network for the nonlinear analysis has a significant effect on the number of reflection cycles required for convergence. Values near 200 Ohms result in a fairly rapid rate of convergence for the example in Appendix I and also for the examples in section 4.1 in which the embedding impedances above the first harmonic are open circuited. However a lower value (50 Ohms) gave somewhat faster convergence when the embedding impedances above the first harmonic were short circuited. The initial value of the local oscillator voltage (VLO) and the initial increment (VLOINC) used to zero in on the desired dc rectified current can be chosen so as to avoid many time consuming loops in the large signal analysis. If, as in the examples in the next section, many runs are desired with only slight variations in the circuit parameters VLO will change very little between each run and VLOINC should be made fairly small.

The number of LO cycles needed to reach a steady state (NLO) for the circuit of Fig. 3b in the nonlinear analysis, need not be greater than one for the examples given in this report (bear in mind that the solution will continue settling in successive reflection cycles) but some circuits may require additional settling time. NLO can be increased by changing the appropriate statement in the BLOCK DATA routine.

If the dc current reached after ten reflection cycles in the nonlinear analysis is not sufficiently close to its ultimate value it may be necessary to increase the reflection cycle number at which the LO voltage is adjusted. This is accomplished by changing the program step which follows statement label 10 in subroutine LGSIG.

The results of any of the reflection cycles in the nonlinear analysis can be printed by adjusting the parameter NPRINT in the BLOCK DATA subprogram which causes results to be written out every NPRINT cycles. Upper limits on other program loops such as the total number of allowed nonlinear analysis cycles (NITER) or VLO adjustments (NVLO) can be increased or decreased as desired by changing the variables appearing in the common block labelled LOOPS.

The local oscillator cycle was divided into 50 parts (51 points) in these examples to yield a reasonable number of data points for plotting the diode current, voltage,

43

capacitance and conductance waveforms and to avoid aliasing.* If the number of points (NPTS, assumed odd) is altered some of the array dimensions must also be changed. In subroutine LGSIG the variables VDDATA, IDDATA, IGJDAT, ICJDAT, CJDATA and GJDATA all have dimension NPTS.

If other than eight harmonics of the local oscillator are to be considered the variable NH (assumed even) must be set to that number in the BLOCK DATA subprogram. Also the following array dimensions must be changed in subroutines LGSIG, SMSIG, FCT, and BLOCK DATA to the value NH, if they represent LO harmonics, or to NH + 1, if they refer to the sidebands:

ZER, ZEI, RSLO, AV, BV, ZEMB, RHO, VI, VR, DVR, ZQMAG and ZQPHA must be dimensioned NH and ZEMBSB, RSSB, CJCOS, CJSIN, GJCOS, GJSIN, VDCOS, VDSIN, IDCOS, IDSIN, A, COR, FG, FC, T, ZIN, XLMAT, GJMAG, GJPHA, CJMAG, CJPHA, WK1 and WK2 must be dimensioned NH + 1. In addition certain print formats will also have to be altered.

9

The relationship chosen to represent the variation of diode series resistance with frequency due to the skin effect involves the determination of a constant (RSKIN) which will be different for every diode. An increase in the resistance at 100 GHz. of 30% of

్ చిస్

The sampling theorem indicates that if NH harmonics are considered, it should only be necessary to consider 2 * NH + 1 points in the diode waveforms. This would be true if the waveforms produced by the Runge-Kutta integration contained only NH harmonics. However the integration solves the circuit of Fig. 3(b) quite faithfully and, because of the exponential nonlinearity of the diode, harmonics above NH are present in the waveform. These are ignored in successive reflection cycles of the nonlinear analysis. If only 2* NH + 1 points are considered in the waveforms, the phenomenon of aliasing will occur, by which higher frequency components are "mixed" with harmonics of the sampling frequency thereby causing errors in the computed Fourier coefficients.

the dc value has been assumed in the example in Appendix I of this report. RSKIN can be changed via the BLOCK DATA subprogram. A frequency dependent reactive term may also be added to the diode series resistance by making RSKIN, RSSB, and RSLO complex.

It is also possible to use a different capacitance-voltage law for the diode than that given in equation (4). This is illustrated by the Mott diode examples discussed in the next section.

بلتو

8.

4. Examples Using the Mixer Analysis Program: A Study of the Effects of the Series Inductance and Diode Capacitance on Some Simple Mixer Circuits

In this section the mixer analysis program is used to study the effects of the series inductance and diode capacitance on the performance of the simple mixer circuits shown in Figs. 8 and 9. The embedding networks were chosen to simulate mixers in which there is inductance due to the diode package or contact whisker. Higher harmonics are either short circuited outside the series inductance, or open circuited as shown. The mixer performance is investigated for three different diodes: (i) a Schottky diode with Y = 1/2, (ii) the same Schottky diode but without a voltage-dependent capacitance (Y = 0), and (iii) a Mott diode with an experimentally determined capacitance-voltage relationship (see Figs. 10 and 11). The program in Appendix I was modified to allow multiple runs with varying values of series inductance (LS) or diode capacitance (C0). As these changes are typical of the alterations which might be made by other users of the program they are detailed in the next section.

4.1 Program Alterations for Running the Examples in this Section

The main driver program was altered to allow repeated runs with different values of diode capacitance C0 or series inductance LS and to enable the results to be stored on a disk file. The impedances at the LO harmonics and the sideband frequencies are formed at the start of each new run in subroutine ZEMBED rather than inputting them through the BLOCK DATA program, and the diode series resistance is taken to be independent of frequency (RSKIN=0). The capacitance-voltage relationship of the Mott diode (Fig. 11) was determined from the doping profile* (Fig. 10) using a piece-wise linear

PRECEDING PAGE BLANK NOT FILMED

The data on the doping profile of the Mott diode was supplied by M. V. Schneider of Bell Telephone Laboratories, Holmdel, N. J.

Fig. 8: The equivalent circuit of a simple mixer. The filter passes all frequencies above the signal and image, thus shorting out the higher LO harmonics and sideband frequencies.

Fig. 9: The equivalent circuit of a simple mixer. The filter stops all frequencies above the signal and image, thus open circuiting the higher LO harmonics and sideband frequencies.

Fig. 10: Piecewise-linear approximation to the doping profile (donor concentration vs. depth) for the Mott diode used in the examples. The data (dots) were kindly supplied by M. V. Schneider, Bell Laboratories, Holmdel, N. J.

Fig. 11: Piecewise-linear approximation to the capacitance-voltage relationship of the Mott diode whose doping profile appears in Fig. 10. The slope and C axis intercept for each of the linear regions is supplied to the mixer analysis program for the calculation of the diode capacitance at any given voltage.

÷.,

approximation. The C-V dependence was incorporated into the program by defining an internal function C(VD) whose value is the capacitance at a given diode voltage Y(1). The function routine is handed the value of the diode voltage by subroutine FCT and a search is conducted through a series of predefined voltage regions until the one in which Y(1) lies, is found. Then, data for the slope and intercept of the C-V straight line approximation in that region is used to calculate the value of C(VD). Appendix II contains

Appendix Π contains a list of the modifications which must be made to the program in Appendix I to run each of the examples.

4.2 Computed Results and Discussion

The simple mixer circuits of Figs. 8 and 9 were analyzed with three different diedes: a Ga As Schottky diode (including nonlinear capacitance), a Ga As Schottky diode with constant capacitance, and a practical Ga As Mott diode. In each case the diode was forward biased at 0.4 V and the LO level was adjusted to give a rectified de current of 2.0 mA. The signal frequency (taken as the upper sideband) was 119 GHz while the LO and intermediate frequencies were 115 GHz and 4 GHz respectively. The conversion loss (upper sideband to IF), equivalent input no se temperature, and real part of the IF output impedance were plotted as functions of the series inductance, which was allowed to vary from 0.01 nH to 0.25 nH. These results are given in Appendix III, section A III. 1. Note that skin effect was not taken into account in these examples.

The effect of the junction capacitance on the mixer perfromance was then investigated for the Schottky diode (with and without nonlinear capacitance) in the same two circuits-Figs. 8 and 9. To isolate the effects of the diode capacitance and series inductance, the series resistance was assumed constant at 4.4 Ohms. It should be noted that this leads to some unrealistically high (and low) diode cutoff frequencies. C0 was varied from 1 to 20 fF for each of nine values of LS between 0.04 and 0.2 nH.

Again the noise temperature, conversion loss and output impedance were plotted, this time as functions of the junction capacitance for each value of LS (Appendix III, Section A III.2).

In Appendix III, section A III.1, the performance of the Schottky, Mott, and $\gamma = 0$ diode mixers operating with an LO frequency of 115 GHz and an IF of 4 GHz are compared. It is assumed that each diode has a zero-bias capacitance (CO) of 11.8 fF. No-tice that the minimum noise temperature is achieved with the constant capacitance diode; however this should not be assumed to be a general result, as will be demonstrated below. Except for the Schottky diode with constant capacitance, the minimum in the noise temperature and conversion loss for each mixer circuit do not occur at the same value of LS.

A broader view of the performance of these mixers is obtained from the graphs in Section A III.2, in which LS is held constant while C0 is varied. In all cases the effect of increasing series inductance is to sharpen the noise temperature and conversion loss minima and shift them towards smaller values of C0. Better performance is obtained for larger values of LS, with a corresponding increase in the IF output impedance.

Amongst the results there are some points, particularly for low values of series inductance, which appear to be randomly scattered. This is due to the fact that for low values of the series inductance each increment in LS causes a large change in the resonant frequency of the diode with the external circuit. If these resonances fall near harmonics of the LO the diode waveforms can be strongly affected, and so can the embedding impedance seen by the small-signal sidebands near these harmonics.

The LO power required was between 1 and 7 mW in every case.

٩.

53

このです。 スート・スート しゅうしん 一般 しゅうかん 大学 かんかい かんしゅう かんしゅう かんしゅう しゅうしゅう しゅうしゅう

Allowing Street

计算机学校理论的 化合成合合物 建建设的 化碳酸化化碳化化化碳酸化化物 化化化化化化化化化化化化化

An interesting result of this analysis is that the parametric effects of the junction capacitance do not necessarily degrade the mixer performance.

D

3

≬ 5

.

5. Summary and Concluding Remarks

1997年に見たり おいろをやったり

In this report a user oriented computer program for the analysis of microwave and millimeter-wave mixers has been presented. The necessary mixer theory was briefly described and used as the basis of the mixer analysis program. The operation of the program was discussed as well as some useful modifications.

As an example of the program's use, a study of the effects of the series inductance and diode capacitance on the performance of two simple mixer circuits was undertaken. Three different diodes were used: a Schottky diode, a Schottky diode with no capacitance variation, and a Mott diode.

The results show clear minima in the conversion loss and noise temperature as the inductance and capacitance are varied. The parametric effects of the voltage dependent diode capacitance are found to have <u>either</u> beneficial <u>or</u> detrimental effects on the mixer performance, depending on the circuit and diode parameters.

an the transition of the second se

Listing and Sample Run of the Mixer Analysis Program

APPENDIX I

This program calculates the performance of a mixer, given the embedding network impedances at the harmonics of the LO and the sideband frequencies. The theory is described in section 2 of this report and section 3 outlines the program operation. The flow chart (Fig. 6) and table of variables (Fig. 7) may be found helpful in understanding the workings of the program and are repeated in this appendix for convenience.

PRECEDING PAGE BLANK NOT FILMED

Chart illustrating the general flow of the mixer analysis program and the operations of the subroutines.

an han a ntet i s

ادى دىغار شارى بىلى

ORIGINAL PAGE IS OF POOR QUALITY

a 🚓 the fact which is the fact of the fac

والمراجع ويعتر ويرود والمتحم مستحد المتحم والمحمد فالمحمد المتحم والمحمد المحمد

VARIABLE	PROGRAM NAME	VARIABLE	PROGRAM NAME
° ₀	Co	Z'(0/0. IF)	A
°j	Cl	Z ¹ (matched IF)	A
C _{m-n}	FC(m-n+1)	Z ₀ (T. line imp.)	20
£j	GJ	2 ₀ (0) + R ₃ (do)	ZEMBDC
G _{m-n}	FG(m-n+1)	$Z_{e}^{(nw_{p})} + R_{s}^{(nw_{p})}$	ZEMB
1. ()	1CJ	2 _e (n w _p)	ZER + JZEI
I _{dn}	IDCOS(n+1)-JIDSIN(n+1)	z _{om}	ZEMRSB
i _d	IGJ + ICJ	z _{IPout}	ZIFOUT
ⁱ ¤j	IGJ	\mathbf{z}_{ij}	A(NHD2P1-I, NHD2P1-J)
I _{m-n}	FG(m-n+1)/ALP	\mathbf{z}_{in}	ZIN
i,	IS	Z'mm	A(NHD2P1-m, NHD2P1-m)
k	BOLTŽ	Z' _{mm,∞}	A(NHD2P1-m, NHD2P1-m)
L	LIJ	٩	ALP
q	QEL	Y	GAM
R _s	RS	δ	ZQ-1
R _s (dc)	RS	c	ZQACC
$R_{s}(n\omega_{p})$	RSLO	π	PI
R _{sm}	RSSB	ρ	RHO
$\mathbf{R}_{\mathbf{skin}}$	RSKIN	٥	RHODC
T _{eq}	TEQ	ø	PHI
T _M	TM	۰ ^۳ 0	WiF
v _o	VDC	υ P	WP
v ₁	VLO	الانتان مَنان م منابع منابع مناب	COR
v _d "	VDCOS (n+1) - jVDSIN (n+1)	(šir šir)	COR
^v d	¥ (1)	$\langle _{\delta V_{N_0}} ^2 \rangle$	VSQ
v _{io}	VIDC	(إە v _{s0} ²)	VSQ
v _{in}	VI(n) = AV(n) - jBV(n)	$\langle \delta v_{T_0} ^2 \rangle$	VSQ
v _{r0}	VRDC or DVRDC	dv _d / dt	DERY (1)
v _{rn}	VR or DVR		
¥	A		
Y'	A		

Alphabetical list of the main variables used in the theory in this report, and their counterparts in the mixer analysis program.

MIXER ANALYSIS PROGRAM

1.

2.

з.

4.

5.

7.

8.

ıø.

11.

12.

13.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26. 27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

4Ø.

41.

42.

43.

44.

45.

46.

47.

48.

49.

5Ø.

51.

52.

53.

54.

55.

56.

57.

۱

P.H.SIEGEL AND A.R.KERR GODDARD INSTITUTE FOR SPACE STUDIES NASA-GODDARD SPACE FLIGHT CENTER 2880 BROADWAY NEW YORK,N.Y. 10025

GENERAL INFORMATION

THIS PF GRAM ANALYZES MIXERS WITH A SINGLE SCHOTTKY-BARRIER DIODE WHOSE I-V AND C-V CHARACTERISTICS ARE KNOWN. ARBITRARY EMBEDDING IMPEDANCES AT THE SIDEBAND AND LO HARMONIC FREQUENCIES ARE ALLOWED. THE DIODE MOUNT IS ASSUMED LOSSLESS AND RECIPROCAL.

THE PROGRAM IS ORGANIZED INTO TWO MAIN SECTIONS. THE FIRST PER-FORMS A NONLINEAR ANALYSIS TO DETERMINE THE DIODE WAVEFORMS PRO-DUCED BY THE LOCAL OSCILLATOR. THE SECOND PERFORMS A SMALL-SIGNAL AND NOISE ANALYSIS TO COMPUTE THE CONVERSION LOSS, PORT IMPEDANCES, AND NOISE TEMPERATURE OF THE MIXER.

THE NONLINEAR ANALYSIS IS BASED ON THE MULTIPLE RELECTION METHOD (A.R.KERR,IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL.NTT-23,NO.10,PP.828-831,OCT.1975) DEVELOPED EARLIER IN OUR LABORATORY, MODIFIED TO TAKE INTO ACCOUNT THE NONLINEAR CAPACITANCE OF THE DIODE.

THE SMALL-SIGNAL ANALYSIS IS BASED ON THAT OF D.N.HELD AND A.R.KERR, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL.MTT-26,NO.2,PP.49-61,FEB.1978.

PROGRAM NOTES

Sec. 21.

ي کور

TWO MAIN SUBROUTINES CONTROL THE ANALYSIS: LGSIG WHICH PERFORMS THE NONLINEAR ANALYSIS AND SMSIG WHICH COMPUTES THE SMALL-SIG-NAL AND NOISE PROPERTIES OF THE MIXER. EACH OF THESE CALLS A NUM-BER OF SECONDARY SUBROUTINES WHICH PERFORM SPECIFIC CALCULATIONS OR CONTROL THE OUTPUTTING OF RESULTS. DATA IS INPUT VIA THE BLOCK DATA SUBPROGRAM. THE FOLLOWING INFORMATION MUST BE SUPPLIED BY THE USER:

 THE EMBEDDING IMPEDANCES AT THE LO FREQUENCY AND THE HIGHER HARMONICS AS REAL AND IMAGINARY PARTS (ZER,ZEI) IN OHMS.
THE SIDEBAND IMPEDANCES IN COMPLEX FORM (ZEMBSB) IN OHMS,WHERE SIDEBAND M IS ARRAY ELEMENT (NH/2+1-M) AND THERE ARE NH+1 ARRAY ELEMENTS IN ALL.NOTE THAT,BECAUSE ALL LOWER SIDEBANDS ARE TREATED AS NEGATIVE FREQUENCIES,VALUES OF ZEMBSB FOR LOWER SIDEBANDS MUST BE THE CONJUGATES OF THEIR USUAL POSITIVE FREQUENCY VALUES.
THE LO FREQUENCY (FP) AND THE INTERMEDIATE FREQUENCY (IF) IN HZ.
THE DESIRED RECTIFIED CURRENT (IDBIAS) IN AMPERES.

C C

č

С

C C

C

c c

Ċ

С

Ç

C C

Ċ

С

C

C C

C

C

Ċ

C

С

C

С

¢

С

С

С

C

С

С

¢

С

С

C

Ċ

С

С

С

С

С

С

С

¢

C

С

C

С

C

C C

С

P	EN THE DO DIAD VOLTAGE ACCORD THE DIGRE (NODIAR) IN VOLTO	EO
C	6) THE DIODE SERIES RESISTANCE AT DC (RS) IN OHMS.	6Ø.
Ċ.	7) THE DIODE SKIN RESISTANCE CONSTANT (RSKIN) IN OHMS/SQRT(HZ).	61.
C .	9) THE DIODE EQUIVALENT TEMPERATURE (TEW) IN DEGREES K. 9) THE DIODE REVERSE SATURATION CURRENT (IS) IN AMPERES.	63.
ē	10) THE DIQUE CAPACITANCE AT ZERO VOLTS (C0) IN FARADS.	64.
ç	11) THE DIODE CONTACT POTENTIAL (PHI) IN VOLTS.	65.
č.	13) THE DIODE I-V LAW EXPONENT (ALP=Q/NKT) IN I/VOLTS.	67.
C		68.
C C	THERE ARE SEVERAL OTHER VARIABLES WHICH MAY BE ADJUSTED TO CONTROL THE OPERATION OF THE PROGRAM. THEIR VALUES HAVE BEEN	69. 70.
č	OPTIMIZED FOR THE LISTING WHICH FOLLOWS AND MAY BE ALTERED	71.
C	WHEN THE PROGRAM IS USED FOR OTHER PROBLEMS. THESE VARAIBLES ARE:	72.
č	ACC: THE ACCURACY OF THE RUNGE KUTTA INTEGRATION USED TO SOLVE THE	74.
C .	STATE EQUATION OF THE DIODE NETWORK.	75.
C C	DESIRED VALUE (IDRIAS).	70.
ĉ	NLO: THE NUMBER OF LO CYCLES NEEDED TO REACH A STEADY STATE IN THE	78.
C.	NONLINEAR ANALYSIS ROUTINE. SINCE SETTLING OCCURS IN SUCCESSIVE	79. 80
č	NPRINT: THE NUMBER OF CYCLES BETWEEN PRINTOUTS OF THE INTERMEDIATE	81.
C	RESULTS IN THE NONLINEAR ANALYSIS.	82.
C	FOR THE INTEGRATION AND STORAGE OF DATA POINTS, TO AVOID	83.
Č.	ALIASING NPTS SHOULD BE CHOSEN CONSIDERABLY LARGER THAN	85.
ç	(2*NH+1) THE VALUE REQUIRED BY THE SAMPLING THEOREM.	86.
č	VLOINC: THE INITIAL INCREMENT SIZE USED TO ZERO IN ON THE DESIRED	88,
C	DC RECTIFIED CURRENT (IDBIAS).	89.
C C	LINEAR ANALYSIS.	90. 91.
Č	ZØ: THE CHARACTERISTIC IMPEDANCE OF THE HYPOTHETICAL TRANSMISSION	92.
C C	LINE INSERTED BETWEEN THE DIODE AND EMBEDDING NETWORK. ZØ HAS A Significant refect on the pate of convergence of the nonlinear	93.
č	ANALYSIS.	95.
C		96.
C	NONLINEAR ANALYSIS, IS NOT SUFFICIENTLY CLOSE TO IDBIAS. THE CYCLE	97.
0	NUMBER AT WHICH THE LO VOLTAGE IS ADJUSTED MUST BE INCREASED. THIS	99.
C C	IS ACCOMPLISHED BY CHANGING THE STEP AFTER STATEMENT LABEL 10 IN	100.
č	HE Eddid Kooline.	102.
C	THE USER MAY FIND IT NECESSARY TO ALTER OTHER PROGRAM VARIABLES	103.
C	(EXCEPT THOSE INTERNAL TO THE IBM'SSP ROUTINES USED IN THE PROGRAM).	104.
. Ç	SUBROUTINES AND COMMON BLOCKS USED IN THE PROGRAM FOLLOWS.	106.
C C		107.
č	LIST OF VARIABLES	109.
C	A. THE CMALL_CIONAL AHOMENTED ADMITTANCE (VII) OD INDEDANCE (71)	110.
с С	MATRIX OF THE MIXER.	112.
Č	ACC: THE INTEGRATION ACCURACY USED IN DRKGS.	113.
C C	ALP: THE DIODE I-V LAW EXPONENT (Q/NKT). Aux: DRKGS STORAGE ARRAY OF DIMENSION (R NDIM)	114.
Ċ.	AV: REAL PART OF THE VOLTAGE WAVE INCIDENT ON THE DIODE AT EACH	116.

(T. 1947)

.

76/

. . .

С HARMONIC. 117. C BLANK: A NUMERIC USED FOR PLOTTING A BLANK. 118. BOLTZ: BOLTZMANN'S CONSTANT (1.38 E-23). BV: IMAGINARY PART OF THE VOLTAGE WAVE INCIDENT ON THE DIODE AT C 119. 120. EACH LO HARMONIC. £ 121. CJ: FREQUENCY SCALED DIODE JUNCTION CAPACITANCE USED IN LGSIG. CJCOS: FOURIER COSINE COEFFICIENTS OF THE DIODE CAPACITANCE. CJDATA: STORAGE ARRAY CONTAINING THE DIODE CAPACITANCE FOR EACH OF THE NPTS POINTS IN THE LOCAL OSCILLATOR CYCLE. 122. С 123. 124. C 125. CJMAG: THE MAGNITUDES OF THE FOURIER CAPACITANCE COEFFICIENTS. CJPHA: PHASES OF THE FOURIER CAPACITANCE COEFFICIENTS (IN DEGREES). CJPOS: POSITION OF CJ IN THE PLOT OF DIODE CAPACITANCE. CJSIN: FOURIER SINE COEFFICIENTS OF THE DIODE CAPACITANCE. COR: THE NOISE CURRENT CORRELATION MATRIX USED IN THE NOISE ANALYSIS. C 126. 127. C 128. C 129. 13Ø. CØ: THE DIODE CAPACITANCE AT ZERO VOLTS (IN FARADS). 131. C CØPOS: POSITION OF CØ IN THE GRAPH OF THE DIODE CAPACITANCE. DERY: INITIALLY THE RKGS ERROR PARAMETER AND LATER THE DERIVATIVE Ċ 132. С 133. IN THE NETWORK STATE EQUATION (DY(1)/DT). DET: DETERMINANT OF THE A MATRIX AS RETURNED BY THE CMINV ROUTINE. C 134. 135. C DOT: A NUMERIC USED FOR PLOTTING A DOT. DVR: DIFFERENCE IN THE REFLECTED VOLTAGE BETWEEW TWO CYCLES. 136. Ċ 137. DVRDC: DIFFERENCE IN THE DC REFLECTED VOLTAGE BETWEEN TWO CYCLES. 138. С С FC: COMPLEX FOURIER COEFFICIENTS OF THE DIODE CAPACITANCE (HALF 139. AMPLITUDE). С 140. FG: COMPLEX FOURIER COEFFICIENTS OF THE DIODE CONDUCTANCE (HALF С 141. AMPLITUDE). С 142. FP: THE LOCAL OSCILLATOR OR PUMP FREQUENCY IN HERTZ. 143. C GAM: THE DIODE CAPACITANCE EXPONENT. С 144. GJ: THE DIODE CONDUCTANCE. c 145. GJ: THE DIDDE CONDUCTANCE. GJCOS: FOURIER COSINE COEFFICIENTS OF THE DIDDE CONDUCTANCE. GJDATA: STORAGE ARRAY CONTAINING THE VALUES OF THE DIDDE CONDUCTANCE FOR EACH OF THE NPTS POINTS IN THE LO CYCLE. GJMAG: MAGNITUDES OF THE FOURIER CONDUCTANCE COEFFICIENTS. GJPHA: PHASES OF THE FOURIER CONDUCTANCE COEFFICIENTS (IN DEGREES). GJENA: FOURIER SINE CONFERMENT OF THE DIDDE CONDUCTANCE. С 146. C 147. 148. C 149. С 150. GJSIN: FOURIER SINE COEFFICIENTS OF THE DIODE CONDUCTANCE. C 151. I: A'RAY ELEMENT OR COUNTING VARIABLE. ICJ: THE CURRENT THROUGH THE DIODE CAPACITANCE. С 152. 153. C ICJDAT: STORAGE AFRAY FOR ICJ AT EACH POINT IN THE LO CYCLE. С 154. C IDBIAS: DESIRED RECTIFIED CURRENT AT WHICH THE MIXER IS TO BE 155. Ċ OPERATED (IN AMPS). 156. С IDCACC: DESIRED ACCURACY OF THE CALCULATED DC CURRENT, MEASURED AS 157. THE MAXIMUM TOLERABLE DEVIATION FROM THE DESIRED DC CURRENT Ċ 158. С IDBIAS. 159. IDCOS: FOURIER COSINE COEFFICIENT OF THE TOTAL DIODE CURRENT. IDDATA: STORAGE ARRAY CONTAINING THE VALUES OF THE TOTAL DIODE CURRENT FOR EACH OF THE NPTS POINTS IN THE LO CYCLE. IDPOS: POSITION OF ID ON THE GRAPH OF TOTAL CURRENT IN THE DIODE. IDSIN: FOURIER SINE COEFFICIENT OF THE TOTAL DIODE CURRENT. Ċ 160. С 161. С 162. С 163. С 164. IER: THE ERROR MESSAGE CODE OF SUBROUTINE DFORIT. IF: THE INTERMEDIATE FREQUENCY IN HERTZ. 165. 166. C С IGJ: THE CURRENT THROUGH THE DIODE CONDUCTANCE. 167. IGJDAT: STORAGE ARRAY CONTAINING VALUES OF THE DIODE CONDUCTANCE CURRENT FOR EACH OF THE NPTS POINTS IN THE LO CYCLE. IGJPOS: POSITION OF IGJ ON THE GRAPH OF DIODE CONDUCTANCE CURRENT. С 168. C 169. C 17Ø, INTERVAL HAS BEEN HALVED OR DOUBLED. IMZIN: IMAGINARY PART OF THE INPUT IMPEDANCE AT EACH SIDEBAND. IS: DIODE SATURATION CURRENT (IN AMPS). С 171. С 172. Ċ 173. 174.

Į.

2

Ţ

4

ŝ

.

N.

់ស្ត

Sector States

en de la companya de

ITER: LOOP REPRESENTING THE REFLECTION CYCLES IN THE NONLINEAR ¢ 175. ANALYSIS 176. IVLO: COUNTING VARIABLE USED TO SIGNAL THE END OF THE JLO LOOP. C 177. J: ARRAY ELEMENT OR COUNTING VARIABLE. 178. 179. JH: LOOP OVER THE LO HARMONICS. C JLO: LOOP OVER THE LO HARMONICS. JLO: LOOP OVER THE LO CYCLES OF INTEGRATION TO OBTAIN STEADY STATE. JPRINT: KEEPS TRACK OF THE CYCLES WHOSE RESULTS ARE TO BE PRINTED. JFT: LOOP OVER THE INTERVALS FOR WHICH DRKGS WILL INTEGRATE. JVLO: LOOP FOR ZEROING IN ON THE DESIRED RECTIFIED CURRENT (IDBIAS). K: ARRAY ELEMENT OR COUNTING VARIABLE. C 18Ø., 181. C C 182. 183. C 184. LIJ: CONVERSION LOSS FROM SIDEBAND J TO SIDEBAND I. LOFLAG: A FLAG TO KEEP COUNT OF THE NUMBER OF TIMES VLO HAS BEEN LOWERED TO TRY AND OBTAIN THE DESIRED RECTIFIED CURRENT. C 185. Ċ 186. С 187. LOPWR: THE REQUIRED LO POWER FOR A RECTIFIED CURRENT OF IDBIAS. С 188. LOVLO: THE LOWER BOUND OF THE VLO ADJUSTMENT DONE IN SUBROUTINE 189. C C ADJLO. 19Ø. MAXID: MAXIMUM VALUE OF ID IN AN LO CYCLE (USED FOR PLOTTING). MAXIGJ: MAXIMUM VALUE OF IGJ IN AN LO CYCLE (USED FOR PLOTTING). 191. С 192. C MAXCJ: MAXIMUM VALUE OF CJ IN AN LO CYCLE (USED FOR PLOTTING). MAXVD: MAXIMUM VALUE OF VD IN AN LO CYCLE (USED FOR PLOTTING). MINCJ: MINIMUM VALUE OF CJ IN AN LO CYCLE (USED FOR PLOTTING). 193. 194. C С 195. NDIM: THE NUMBER OF DIFFERENTIAL EQUATIONS TO BE SOLVED BY DRKGS. NH: TOTAL NUMBER OF LO HARMONICS CONSIDERED IN THE ANALYSIS. NHARM: USED IN PRINTI AS THE TOTAL NUMBER OF LO HARMONICS. 196. 197. С 198. C NHD2: THE TOTAL NUMBER OF LO HARMONICS DIVIDED BY TWO. 199. C NHD2P1: THE TOTAL NUMBER OF LO HARMONICS DIVIDED BY TWO, PLUS ONE. NHP1: THE TOTAL NUMBER OF LO HARMONICS PLUS ONE (# OF SIDEBANDS). С 200. С 201. NHP2: THE NUMBER OF LO HARMONICS PLUS 2. 202. С NHF2: THE NUMBER OF ID HARMONICS PLOS 2. NITER: TOTAL NUMBER OF ITERATIONS ALLOWED FOR ACHIEVING FULL CONVER-GENCE AFTER THE DESIRED RECTIFIED CURRENT HAS BEEN OBTAINED. NLO: THE TOTAL NUMBER OF LOCAL OSCILLATOR CYCLES TO BE INTEGRATED THROUGH IN ORDER TO REACH A STEADY STATE. NPRINT: CONTROLS THE REFLECTION CYCLE NUMBER AT WHICH THE PRINTING С 2Ø3. 2Ø4. Ĉ Ċ 2Ø5. С 206. C 207. OF THE INTERMEDIATE RESULTS OCCURS. 208. С NPTS: THE NUMBER OF INTERVALS + 1 OVER WHICH DRKGS INTEGRATES. NSB: SIDEBAND TO WHICH THE EQUIVALENT NOISE TEMPERATURE OF THE MIXER IS REFERRED TO IN SUBROUTINE TMIX. 2Ø9. С С 21Ø. C 211. NVLO: THE NUMBER OF TIMES THE LO VOLTAGE IS ALLOWED TO BE ADJUSTED. С 212. С PHI: DIODE CONTACT POTENTIAL (IN VOLTS). 213. PI: THE CONSTANT PI. С 214. ¢ PRMT: ARRAY USED BY RKGS CONTAINING THE FOLLOWING VARIABLES: 215. PRMT(1): THE LOWER BOUND OF THE INTEGRATION INTERVAL. PRMT(2): THE UPPER BOUND OF THE INTEGRATION INTERVAL. С 216. С 217. С PRMT(3): THE INITIAL INTEGRATION INTERVAL STEP SIZE. 218. PRMT(4): THE INTEGRATION ACCURACY. С 219. PRMT(5): ALLOWS HALTING OF THE RKGS ROUTINE IF SET TO Ø. С 22Ø. QEL: THE CHARGE OF THE ELECTRON (1.6 E-19 COULOMBS). С 221. REZIN: REAL PART OF THE INPUT IMPEDANCE AT EACH SIDEBAND. RHO: THE COMPLEX VOLTAGE REFLECTION COEFFICIENT OF THE EMBEDDING NETWORK (INCLUDING:RS) AT EACH LO HARMONIC. С 222. 223. 224. С RHODC: THE DC REFLECTION COEFFICIENT OF THE EMBEDDING NETWORK (IN-С 225. С CLUDING RS). 226. RS: LOW FREQUENCY DIODE SERIES RESISTANCE MEASURED AT A HIGH ENOUGH 227. С FREQUENCY THAT THERMAL EFFECTS ARE NEGLIGIBLE BUT SKIN EFFECTS С 228. HAVE NOT YET BECOME SIGNIFIGANT. С 229. С RSKIN: CONSTANT WHICH DETERMINES THE SKIN RESISTANCE FOR A 23Ø. C PARTICULAR DIODE, WHERE RS=RS+RSKIN*SQRT(F) AT FREQUENCY F. 231. RSLO: VALUES OF RS AT THE LO HARMONICS. 232. \odot

1.1

7

 $\sqrt{2}$

.

Ŷ

RSSB: VALUES OF RS AT THE SIDEBAND FREQUENCIES. 233. C SHOT: THE SHOT NOISE CONTRIBUTION TO THE TOTAL MIXER TEMPER URE. STAR: A NUMERIC USED FOR PLOTTING AN ASTERISK. 234. C C 235. 236. C T: INTERMEDIATE VARIABLE IN THE MIXER TEMPERATURE CALCULATION. TEQ: THE EQUIVALENT TEMPERATURE OF THE DIODE SERIES RESISTANCE238.TEQ: THE EQUIVALENT TEMPERATURE OF THE DIODE SERIES RESISTANCE237.INCLUDING THE EFFECTS OF LATTICE SCATTERING AND LO HEATING.238.THERM: THE THERMAL NOISE CONTRIBUTION TO THE TOTAL MIXER TEMPERATURE.239.TM: THE TOTAL EQUIVALENT INPUT NOISE TEMPERATURE OF THE MIXER.240.UPFLAG: A FLAG TO KEEP COUNT OF THE NUMBER OF TIMES VLO HAS BEEN241. C C RAISED TO TRY AND GET THE DESIRED RECTIFIED CURRENT IDBIAS. UPVLO: THE UPPER BOUND OF VLO DURING ADJUSTMENTS DONE IN ADJLO. 242. Ĉ 243. C V: THE SUM OF THE INSTANTANEOUS SOURCE VOLTAGES AT ALL LO HARMONICS. VDBIAS: THE DC BIAS VOLTAGE ACROSS THE DIODE AND SERIES RESISTANCE. VDC: THE DC VOLTAGE SEEN BY THE DIODE. 244. 245. Ċ C 246. VDCOS: FOURIER COSINE COEFFICIENTS OF THE VOLTAGE ACROSS THE DIODE. VDDATA: STORAGE ARRAY CONTAINING Y(1), THE VOLTAGE ACROSS THE DIODE C 247. 248. C AT EACH OF THE NPTS POINTS IN THE LO CYCLE. 249. C VDINIT: INITIAL GUESS FOR THE VOLTAGE ACROSS THE DIODE. VDPOS: POSITION OF VD ON THE GRAPH OF THE VOLTAGE ACROSS THE DIODE. VDSIN: FOURIER SINE COEFFICIENTS OF THE VOLTAGE ACROSS THE DIODE. 25Ø. C 251. 252. VI: COMPLEX VOLTAGE WAVE INCIDENT ON THE DIODE AT EACH HARMONIC. VIDC: DC VOLTAGE INCIDENT ON THE DIODE. 253. C 254. C VLO: AMPLITUDE OF THE LOCAL OSCILLATOR VOLTAGE. C 255. VLOINC: AMOUNT BY WHICH THE LO VOLTAGE IS INCREMENTED WHEN TRYING 256. C TO OBTAIN THE DESTRED DC CURRENT IDBIAS. 257. VR: COMPLEX VOLTAGE WAVE REFLECTED FROM THE DIODE AT EACH HARMONIC. VRDC: DC VOLTAGE WAVE REFLECTED FROM THE DIODE AT EACH HARMONIC. VSQ: MEAN SQUARE OUTPUT NOISE VOLTAGE. VX: INTERMEDIATE VARIABLE FOR THE COMPLEX VOLTAGE WAVEFORM. 258. С 259. С 26Ø. 261. C VXDC: INTERMEDIATE VARIABLE FOR THE DC VOLTAGE WAVEFORM. С 262. WIF: 2*PI*INTERMEDIATE FREQUENCY. 263. WK1: WORK SPACE USED IN THE MATRIX INVERSION POUTINE CMINV. Ċ 264. WK2: WORK SPACE USED IN THE MATRIX INVERSION ROUTINE CMINV. 265. C WP: 2*PI*PUMP FREQUENCY. C 266. X: THE DEPENDENT VARIABLE IN DRKGS (X=2*PI*FP*TIME). C 267. XLMAT: THE CONVERSION LOSS MATRIX WHICH GIVES THE CONVERSION C 268. LOSSES BETWEEN PAIRS OF SIDEBANDS. 269. C Y: DRKGS VARIABLE TO BE FOUND (Y=VOLTAGE ACROSS THE DIODE WITHOUT 27Ø. C THE SERIES RESISTANCE). 271. C YCPOS: USED FOR PLOTTING THE DIODE CAPACITANCE. YGPOS: USED FOR PLOTTING THE CURRENT THROUGH THE DIODE CONDUCTANCE. 272. C 273. YIDPOS: USED FOR PLOTTING THE TOTAL DIODE CURRENT. 274. C YPT: A DO LOOP VARIABLE USED FOR PLOTTING POINTS ACROSS A PAGE. 275. C YVDPOS: USED FOR PLOTTING THE VOLTAGE ACROSS THE DIODE. ZD: THE EFFECTIVE DIODE IMPEDANCE AT EACH HARMONIC (VD/ID). ZEI: IMAGINARY PART OF THE EMBEDDING IMPEDANCE AT EACH LO HARMONIC. 276. 277. C 278. С ZEMB: COMPLEX EMBEDDING IMPEDANCE AT EACH LO HARMONIC INCLUDING 279. C THE DIODE SERIES RESISTANCE. С 28Ø. ZEMBSB: THE EMBEDDING IMPEDANCES AT THE SIDEBAND FREQUENCIES. 281. ZER: REAL PART OF THE EMBEDDING IMPEDANCE AT EACH LO HARMONIC. C 282. ZERO: A NUMERIC USED FOR PLOTTING AN O. ZIFOUT: IF PORT IMPEDANCE INCLUDING THE DIODE SERIES RESISTANCE. 283, С 284. ZIN: INPUT IMPEDANCES AT THE SIDEBANDS INCLUDING THE DIODE 285. C SERIES RESISTANCE. 286. C ZQ: IMPEDANCE QUOTIENT (ZD/ZE) AT EACH HARMONIC (USED AS THE LARGE 287. С SIGNAL CONVERGENCE PARAMETER). 288. ZQACC: DESIRED DEGREE OF CONVERGENCE MEASURED AS THE DEVIATION FROM С 289. UNTIY OF (THE IMPEDANCE AT THE DIODE/EMBEDDING IMPEDANCE). C 29Ø.

4

-4)

÷È

-4

si.

£

0

.

C ZQFLAG: THE NUNBER OF HARMONICS WHICH HAVE NOT YET CONVERGED IN A 291. C PARTICULAR CYCLE OF THE NONLINEAR ANALYSIS. 292. ZQMAG: MAGNITUDE OF THE IMPEDANCE QUOTIENT (ZQ). ZQPHA: PHASE OF THE IMPEDANCE QUOTIENT (ZQ) IN DEGREES. С 293. Ċ 294. 20: CHARACTERISTIC IMPEDANCE OF THE HYPOTHETICAL TRANSMISSION LINE INSERTED BETWEEN THE DIODE AND THE EMBEDDING NETWORK. С 295. 296. 297, C 298. LIST OF SUBROUTINES C 299. 300. Ċ ADJLO: SUBROUTINE FOR ADJUSTING THE LOCAL OSCILLATOR VOLTAGE UNTIL 3Ø1. C THE DC CURRENT IS CLOSE ENOUGH TO THE DESIRED VALUE, IDBIAS. 3Ø2. CMINV: IBM SSP FROGRAM SLIGHTLY MODIFIED TO INVERT A COMPLEX MATRIX. CORREL: SUBROUTINE FOR FORMING THE NOISE CORRELATION MATRIX. 3Ø3. C 304. DFORIT: DOUBLE PRECISION VERSION OF AN IBM SSP PROGRAM WHICH PERFORMS A FOURIER ANALYSIS ON A PERIODIC WAVEFORM. С 3Ø5. 3Ø6. DRKGS: AN IBM SSP PROGRAM WHICH SOLVES A SYSTEM OF DIFFERENTIAL. С 307. EQUATIONS USING A RUNGE-KUTTA ALGORITHM. FCT: SUBROUTINE,FOR USE WITH DRKGS,CONTAINING THE NETWORK STATE 308. C 3Ø9. EQUATION. C 310. LGSIG: CONTROL PROGRAM FOR THE LARGE-SIGNAL, NONLINEAR ANALYSIS. C 311. OUTP: OUTPUT ROUTINE REQUIRED BY DRKGS BUT NOT USED IN THIS PROGRAM. PLOT: SUBROUTINE FOR PLOTTING THE LARGE-SIGNAL DIODE WAVEFORMS. POWER: CALCULATES THE LO POWER REQUIRED FOR THE ACTUAL MIXER. С 312. 313. С 314. PRINT1: CONTROLS THE PRINTING OF INITIAL VALUES. PRINT2: CONTROLS THE PRINTING OF VARIABLES FOR A PARTICULAR CYCLE OF THE NONLINEAR ANALYSIS. C 315. 316. C 317. PRINT3: WRITES THE FOURIER COEFFICIENTS OF THE DIODE CONDUCTANCE С 318. C AND CAPACITANCE. 319. PRINT4: PRINTS THE RESUL C THE SMALL-SIGNAL AND NOISE ANALYSIS. 32Ø. SMSIG: CONTROL PROGRAM F P HE SMALL-SIGNAL AND NOISE ANALYSIS. 321. C TMIX: SUBROUTINE FOR CALL, ...TING THE EQUIVALENT NOISE TEMPERATURE 322. OF THE MIXER. 323. TNOISE: ADDS THE THERMAL NOISE COMPONENT TO THE CORRELATION MATRIX. С 324. C YPRIME: SUBROUTINE FOR FORMING THE AUGMENTED MATRIX Y' 325. ZEMBED: FORMS THE EMBEDDING IMPEDANCES AT THE HARMONICS OF THE LO AND AT THE HARMONIC SIDEBANDS AND THE SERIES RESISTANCE 326. 327. Ċ AT THESE FREQUENCIES. 328. 329. 330. С LIST OF COMMON BLOCKS 331, 332. COMMON/ADJVLO/:CONTAINS VARIABLES USED IN THE ADJUSTMENT OF THE LO 333. VOLTAGE TO GIVE A DC CURRENT OF IDBIAS. 334. С COMMON/CONST/:CONTAINS CONSTANTS USED IN THE PROGRAM. 335. COMMON/DIODE/:CONTAINS DIODE PARAMETERS. COMMON/FORITS/:CONTAINS VARIABLES RETURNED BY DFORIT. 236. 337. COMMON/IMPED/:CONTAINS INPUT EMBEDDING IMPEDANCES AND THE DIODE 338. SERIES RESISTANCE AT THE VARIOUS FREQUENCIES. COMMON/IVMAG/:CONTAINS THE FOURIER COEFFICIENTS OF THE DIODE CON-339, 34Ø. DUCTANCE AND CAPACITANCE IN MAGNITUDE AND PHASE. 341. COMMON/LOOPS/:CONTAINS THE LIMITS OF THE VARIOUS PROGRAM LOOPS. 342. COMMON/RKG/:CONTAINS THE INITIAL VALUES FOR THE DRKGS INTEGRATION. COMMON/TLINE/:CONTAINS PARAMETERS EFFECTING THE CONVERGENCE OF THE 343. 344. NONLINER ANALYSIS. 345. C COMMON/VOLTS/:CONTAINS VALUES OF THE CIRCUIT VOLTAGES AND CURRENTS. 346. Ç 347, C 348.

C

C

Ċ

C

Ċ

C

Ċ

C

С

C

C

65

-

a si

. . .

-3

'n

4

10000

Section and the section of the secti

. .

وميتر أشاما المحافث التطويك المحال فأنفأ ومتشير والمحمط فالبيرية وتصب بالمتزاري وتتأبه الإستان وحظام

C BEGIN THE MIXER ANALYSIS. 349. C 35Ø. Ċ 351. -CALL LGSIG TO DO THE LARGE SIGNAL ANALYSIS 352. С CALL LGSIG 353. C---CALL SMSIG TO DO THE SMALL-SIGNAL AND NOISE ANALYSIS 354. 355. CALL SMSIG STOP 356. END 357. 358. 359. 36Ø. SUBROUTINE LGSIG 361. C 362. LGSIG PERFORMS THE NONLINEAR ANALYSIS OF THE MIXER TO DETERMINE C 363. THE DIODE CONDUCTANCE AND CAPACITANCE WAVEFORMS PRODUCED BY THE LOCAL OSCILLATOR. THE MULTIPLE REFLECTION METHOD IS USED, (A.R.KERR, IEEE TRANS.ON MICROWAVE THEORY AND TECH., VOL.MT^{*}-23, NO.1Ø, PP.828-831, 364. Ċ 365. C C 366. OCT.1975) MODIFIED TO INCLUDE THE NONLINEAR CAPACITANCE OF THE DIODE. 367. ALL INITIALIZED VARIABLES ARE INPUT THROUGH THE BLOCK DATA PROGRAM 368. AND ARE TRANSFERRED THROUGH COMMON STATEMENTS. 369. C 368. С С 369. THE OUTPUT INCLUDES: 1) VALUES OF THE INITIALIZED VARIABLES AND INPUT DATA. 2) THE EMBEDDING IMPEDANCES AND DIODE SERIES RESISTANCE AT THE 37Ø. Ċ С 371. 372. C LO HARMONICS AND SIDEBAND FREQUENCIES. 373. C 3) THE RESULTS OF SOME OR ALL OF THE REFLECTION CYCLES. 4) THE RESULTS OF THE FINAL REFLECTION CYCLE. 5) THE REQUIRED LO POWER OF THE MIXER. С 374. 375. С С 376. 6) THE FOURIER COEFFICIENTS OF THE DIODE CONDUCTANCE AND CAPACITANCE. 377.
7) PLOTS OF THE DIODE VOLTAGE, TOTAL CURRENT, CONDUCTANCE CURRENT, 278. AND CAPACITANCE OVER A SINGLE LO CYCLE. 379. С Ċ ¢ TO CHANGE THE DIMENSIONS OF ANY ARRAY SIMPLY CHANGE THE APPROPRIATE 380. VARIABLE IN THE TYPE STATEMENT IN THIS ROUTINE, SUBROUTINE SMSIG, AND 381. SUBPROGRAM BLOCK DATA. (AV AND BV MUST ALSO HAVE THEIR DIMENSIONS 382. C С С 383. С ADJUSTED IN SUBROUTINE FCT). THE SUBROUTINES DRKGS, DFORIT AND CMINV ARE IBM SSP PROGRAMS AND С 384. ALL EXCEPT DRKGS HAVE BEEN SLIGHTLY ALTERED FOR USE IN THIS ANALYSIS. 385. C 386. C---THE VARIABLES USED IN THIS SUBROUTINE ARE AS FOLLOWS: 387. C---FOR COMMON/ADJVLO/: 388. REAL*8 LOVLO, UPVLO, VLOINC, IDCACC 389. INTEGER UPFLAG, LOFLAG 390. C---FOR COMMON/CONST/: 391. REAL*8 GEL, BOLTZ, PI, TEQ 392. C---FOR COMMON/DIODE/: 393. 394. REAL*8 ALP, PHI, GAM, CØ, IS, RS, RSKIN, FP, IF, IGJ, ICJ, GJ, CJ C---FOR COMMON/FORITS/: 395. REAL*8 GJCOS(9),GJSIN(9),CJCOS(9),CJSIN(9),VDCOS(9),VDSIN(9) 396. REAL*8 IDCOS(9), IDSIN(9) 397. INTEGER IER 398. C---FOR COMMON/IMPED/: 399. COMPLEX*16 ZEMBSB(9) 4ØØ. REAL*8 ZER(8), ZEI(8), ZEMBDC, RSLO(8), RSSB(9) 4Ø1. C---FOR COMMON/LOOPS/: 402. INTEGER NH, NLO, NVLO, NPTS, NPRINT, NITER 4Ø3. C---FOR COMMON/RKG/: 404. REAL*8 ACC, VDINIT 4Ø5. INTEGER NDIM 4Ø6.

.

11

 \bigcirc

3

. X. 192

.

ş,

CFOR COMMON/TLINE/:	4Ø7.
REAL*8 ZØ.ZQACC	4Ø8.
INTEGER ZOFLAG	409.
CFOR COMMON/VOLTS/:	410.
REAL *8 AV(8) BV(8) VIDC VID, VDBIAS IDBIAS	411.
CFOR VARIABLES NOT IN ANY COMMON BLOCKS:	412
	413
DEAL MO WILL DEWILL DOWLES ANYOIS DAVIS ANY	415.
NEAL O TTI7, DENTTI7, FRUIT37, AUATO, 17	****
	410.
REAL & ICJDAT(51), IGJDAT(51), CJDATA(51), GJDATA(51)	410.
REAL*8 VDDATA(51), 1DDATA(51), 20MAG(8), 20PHA(8)	417.
INTEGER IHLF, ITER, IVLO, JVLO, JLO, JPT, JH, NHP1, NHD2, NHD2P1	418.
CTHE COMMON BLOCKS USED ARE:	419.
COMMON/ADJVLO/LOVLO,UPVLO,LOFLAG,UPFLAG,VLOINC,IDCACC	42Ø.
COMMON/CONST/QEL,BOLTZ,PI,TEQ	421.
COMMON/DIODE/ALP, PHI, GAM, CØ, IS, RS, RSKIN, FP, IF, IGJ, ICJ, GJ, CJ	422.
COMMCM/FORITS/GJCOS.GJSIN.CJCOS.CJSIN.VDCOS.VDSIN.IDCOS.IDSIN.IER	423.
COMMON/IMPED/ZER.ZEI.ZEMBDC.ZEMBSB.RSLO.RSSB	424.
COMMON/LOOPS/NH.NLO.NVLO.NPTS.NPRINT.NITER	425.
COMMON/RKG/ACC VDINIT NDIM	426.
	427.
COMMON //CITE/20,240/CAP/200 / DDD145 IDD145	128
COMMONY VOLISYAV, BV, VIDC, VLO, VDDIAS, IDDIAS	420+
C-SINCE THE FCT AND OUTP SUBPRUGRAMS ARE CALLED BY DRRGS THEY MOST BE	429.
CDEFINED EXTERNALLY	430.
EXTERNAL FCI, OUTP	431.
CDEFINE SOME USEFUL CONSTANTS	432.
NHP1=NH+1	433.
NHD2=NH/2	434.
NHD2P1=NH/2+1	435.
CCALL ZEMBED TO FORM THE EMBEDDING IMPEDANCES	436.
CALL ZEMBED(ZER.ZEI.ZEMBDC.ZEMBSB.RS.RSLO.RSSB.RSKIN.FP.IF	437.
1.PI.NH.NHP1.NHD2P1)	438.
CSET THE IMPEDANCE AT DC AND THE FIRST HARMONIC TO ZØ TO SPEED THE	439.
CANALYSIS, THIS DOES NOT FEFECT THE BLODE WAVEFORMS PROVIDED THE	ΔΔØ.
CBIAS VOLTAGE IS ADJUSTED TO GIVE THE DESIDED DO VOLTAGE AT THE	441
CDIODE TERMINALS THIS IS DONE BLINES BEFORE STATEMENT (ABE) 2	112
7 START ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	442.
76MD 10-76	443.
ZENDUCZZO C. Jorn Tur pet of complex indepances vith the sedies restation added	444.
CFORM THE SET OF COMPLEX IMPEDANCES WITH THE SERIES RESISTANCE ADDED	4434
	440.
1 ZEMB(JH)=DCMPEX(ZER(JH)+RSLO(JH),ZEI(JH))	44/.
CCALCULATE THE REFLECTION COEFFICIENT OF THE EMBEDDING NETWORK AT	448.
CEACH LO HARMONIC	449.
RHODC=(ZEMBDC-ZØ)/(ZEMBDC+ZØ)	450.
DO 13 JH=1,NH	451.
13 RHO(JH)=(ZEMB(JH)-ZØ)/(ZEMB(JH)+ZØ)	452.
CINITIALIZE THE VARIABLES FOR THE VLO ADJUSTMENT LOOP	453.
JVLO=1	454.
IVLO=NVLO	455.
UPFLAG=Ø	456.
LOF LAG=Ø	457.
CINITIALIZE VARIABLES FOR THE INTEGRATION BY DRKGS	458
PRMT(A)=ACC	459
PRMT(3)=2 GDG*P1/DELGAT(NPTS)	160
DBMT/3 \-DBMT/3 \-DBMT/3	461
	401.
Γ Γ Γ Ι Ι Ι Ι	402.
	403.
DFKA(1)=1.NDN	464.

5

́.

يجهون المراجع

المراجع المرجع مرجع المرجع ا

CCALCULATE THE DC SOURCE VOLTAGE FROM THE GIVEN BIAS VOLTAGE, VDBIAS, 4	105.
CACROSS THE DIODE PLUS SERIES RESISTANCE 4	466.
VDC=VDBIAS+IDBIAS*(ZEMBDC-RS) 4	467.
CSET THE INITIAL INCIDENT AND REFLECTED VOLTAGES	468.
DO 2 JH≂1.NH 4	469.
VI(JH)=DCMPLX(Ø.ØDØ.Ø.ØDØ) 4	47Ø.
$VR(JH) = DCMPL X(\vec{\alpha}, \vec{\sigma} D\vec{\alpha}, \vec{\sigma}, \vec{\sigma} D\vec{\alpha})$	471.
$\Delta V(JH) = G$ give $\Delta V(JH) = G$	472

	73

	4/5.
VIDC=VDC*ZØ/(ZØ+ZEMBDC)	176.
CRETURN HERE IF THE LO VOLTAGE HAS BEEN ADJUSTED 4	477.
15 ITER=Ø	478.
CSET THE INCIDENT VOLTAGE AT THE LO FREQUENCY AND STORE THE RESULTS 4	479.
VX=VLO*ZØ/(ZEMB(1)+ZØ) 4	48Ø.
AV(1)=DREAL(VX) 4	481.
BV(1) = -DIMAG(VX)	482.
VI(1) = VX	483.
CCALL PRINT1 TO WRITE THE INITIAL CONDITIONS	484.
IE(JVIO.NE.1) GOTO 3	485.
CALL PRINT1(ZEMB, ZEMBDC, ZER, ZEI, ZEMBSB, PRMT, V. DERV, VIO, VDBTAS	486.
	187
CTABLING, ROBING COUNTRY AND THE DECISION OF COUNTRY	100
O TEED TEED TO CICLE	400. 400.
S TIERTTIERTI DINT ONLY AFTER MULTIDIES OF NUDINT OVOLES HAVE BEEN COMBLETED	+07. 108
CPRINT UNLY AFTER MULTIPLES OF NFRINT GYCLES HAVE BEEN COMPLETED	458.
UPRINTEMOD(TER, NPRINT)	491.
CBEGIN THE LO CYCLE EOOP FOR REACHING STEADY STATE BETWEEN THE	492.
CDIDDE AND TRANSMISSION LINE AND SET THE INTEGRATION INTERVAL	493.
DO 5 JLO=1, NLO	494.
$PRMT(1) = \mathscr{O} \cdot \mathscr{O} D \mathscr{O}$	495.
PRMT(2)=PRMT(3)	496.
DO 5 JPT=1,NPTS	497.
CALL DRKGS(PRMT,Y,DERY,NDIM,IHLF,FCT,OUTP,AUX)	498.
CRESET THE DRKGS ERROR WEIGHT FOR THE NEXT INTERVAL	499.
DERY(1) = 1.0D0	5ØØ.
IF(JLQ.NE.NLO) GOTO 14	5Ø1.
IF(JPT.EQ.NPTS) GOTO 4	5Ø2.
CSTORE THE RESULTS FOR FACH POINT STARTING AT TIME T=0	503.
VDDATA(JPT+1)=V(1)	504
	505.
	SãS.
	500. 607
	507.
GUDATA(UFITI)-GU GU	500. E00
	509. 510
	510. 11
4 VDDATA(1)=V(1)	511.
1DDATA(1) = 1GJ + 1CJ	512.
GJDATA(1) = GJ	513.
CJDATA(I)=CJ	<u>.</u> 14.
IGJDAT(1)=IGJ	515.
ICJDAT(1)=ICJ	516.
CGO ON TO THE NEXT TIME INTERVAL	517.
14 PRMT(1)=PRMT(2)	518.
PRMT(2)=PRMT(2)+PRMT(3)	519.
5 CONTINUE	52Ø.
5 CONTINUE	521.
CCALL DEORIT TO FORM THE FOURIER COEFFICIENTS OF THE DIODE CURRENT	522

. . .

ंत

C---AND VOLTAGE 523. 524. CALL DFORIT(VDDATA, NPTS/2, NH, VDCOS, VDSIN, IER) CALL DFORIT(IDDATA,NPTS/2,NH,IDCOS,IDSIN,IER) C---SET THE FLAG FOR THE CONVERGENCE TESTS 525. 526. 527. ZQFLAG=Ø C---FIND THE DIODE IMPEDANCES AND CALCULATE THE REFLECTED VOLTAGE 528. C---WAVEFORMS 529. DO 7 JH-1,NH 53Ø. ZD=DCMPLX(VDCOS(JH+1),-VDSIN(JH+1))/DCMPLX(IDCOS(JH+1), 531. 1-IDSIN(JH+1)) 532. VX=DCMPLX(VDCOS(JH+1),-VDSIN(JH+1))-DCMPLX(AV(JH),-BV(JH)) 533. C---FIND THE CHANGE IN THE REFLECTED VOLTAGE SINCE THE LAST CYCLE 534. DVR(JH)=VX-VR(JH) 535. VR(JH)=VX 536. $C{-}{-}{-}CALCULATE THE IMPEDANCE RATIOS AT EACH LO HARMONIC TO DETERMINE <math display="inline">C{-}{-}{-}{THE}$ DEGREE OF CONVERGENCE 537. 538. ZQ=ZD/ZEMB(JH) 539. ZQMAG(JH)=CDABS(ZQ) 54Ø. ZOPHA(JH)=DATAN2(DIMAG(ZQ),DREAL(ZQ))*57.29577951DØ 541. 542. IF(JH.EQ.1) GOTO 7 IF(ZQNAG(JH).GT.1.ØDØ+ZQACC) ZQFLAG=ZQFLAG+1 543. IF(ZQMAG(JH).LT.1.0D0-ZQACC) ZQFLAG=ZQFLAG+1 544. 7 CONTINUE 545. C---THE DC REFLECTED VOLTAGE AND ITS CHANGE SINCE THE LAST CYCLE 546. VXDC=Ø.5DØ*(VDCOS(1)-ZØ*IDCOS(1)) 547. DVRDC≓VXDC-VRDC 548. VRDC=VXDC 549. IF(JPRINT.NE.#) GOTO 9 550. C---CALL PRINT2 TO WRITE THE RESULTS OF THIS REFLECTION CYCLE 551. IF(JVLO.NE.IVLO) GOTO 9 552. CALL PRINT2(RHO,VI,VR,DVR,VDCOS,VDSIN,IDCOS,IDSIN,ZQMAG,ZQPHA, 553. 1VRDC, DVRDC, VIDC, RHODC, AV, BV, ITER, ZQFLAG, JVLO, NH, NHP1) 554. 9 CONTINUE 555. C---FIND THE NEW VOLTAGE INCIDENT ON THE DIODE AT THE LO AND HARMONICS 556. DO 10 JH=1.NH 557. VX=VI(JH)+RHO(JH)*DVR(JH) 558. VI(JH)=VX 559. AV(JH)=DREAL(VX) 56Ø. 10 BV(JH)=-DINAG(VX) 561. C---FIND THE NEW DC VOLTAGE WAVE INCIDENT ON THE DIODE 562. VIDC=VIDC+RHODC*DVRDC 563. C---DON'T ADJUST THE DC CURRENT UNTIL WE HAVE RUN FOR ENOUGH CYCLES TO 564. C---REACH A STEADY STATE 565. IF(ITER.NE.10) GOTO 11 566. C---ADJUST THE DC CURRENT TO THE DESIRED VALUE BY CHANGING VLO 567. CALL ADJLO(JVLO,IVLO,VLO,IDCOS,IDBIAS,NHP1) C---WAS THIS THE LAST VLO ADJUSTMENT LOOP? 568. 569. IF(JVLO.EQ.IVLO) GOTO 11 570. C---REPEAT THE ANALYSIS WITH A NEW VALUE OF VLO 571. JVLO=JVLO+1 572. **GOTO 15** 573. C---WAS THIS THE LAST REFECTION CYCLE ALLOWED? 574. 11 IF(ITER.EQ.NITER) GOTO 12 575. C---HAS THE SOLUTION CONVERGED? 576. IF(ZQFLAG.EQ.Ø) GOTO 12 577. C--- GO ON TO THE NEXT REFLECTION CYCLE 578. GOTO 3 579. C---CALL PRINT2 TO WRITE THE RESULTS OF THE FINAL REFLECTION CYCLE 580.

C C

the second second

۰<u>۲</u>۰

1

 $(1,1) \in \mathbb{R}^{n}$

ä. K
<pre>12 CALL PRINT2(RHO,VI,VR,DVR,VDCOS,VDSIN,IDCOS,IDSIN,ZQMAG,ZQPHA, 1VRDC,DVRDC,VIDC,RHODL,AV,BV,ITER,ZQFLAG,JVLO,NH,NHP1) CCALL POWER TO FIND THE REQUIRED LO POWER CALL POWER(ZQMAG(I),ZQPHA(I),ZER(I),ZEI(I),RSLO(I),VLO,ZØ,LOPWR) CUNSCALE THE CAPACITANCE VALUES (THEY WERE SCALED IN SUBROUTINE FCT CWHICH IS CALLED BY THE DRKGS INTEGRATION ROUTINE). DO 19 JPT=1,NPTS 19 CJDATA(JPT)=CJDATA(JPT)/(2.ØDØ*PI*FP) CFINISH THE ANALYSIS BY OBTAINING THE FOURIER COEFFICIENTS OF THE CDIODE CONDUCTANCE AND CAPACITANCE. CALL DFORIT(GJDATA,NPTS/2,NH,GJCOS,GJSIN,IER) CALL DFORIT(CJDATA,NPTS/2,NH,CJCOS,CJSIN,IER) CCALL PLOT TO PRINT THE DIODE WAVEFORMS IN THE TIME DOMAIN CALL PLOT (IGJDAT,CJDATA,VDDATA,IDDATA,NPTS,ITER,CØ) RETURN END</pre>	55555555555555555555555555555555555555
SUBROUTINE ZEMBED(ZER,ZEI,ZEMBDC,ZEMBSB,RS,RSLO,RSSB,RSKIN, 1FP,IF,PI,NH,NHP1,NHD2P1)	599. 500. 601.
C ZEMBED FORMS THE EMBEDDING IMPEDANCES AT THE HARMONICS OF THE C LO AND AT THE SIDEBAND FREQUENCIES (ASSUMING THEY HAVE NOT BEEN INPUT VIA THE BLOCK DATA PROGRAM). IT ALSO FORMS THE SERIES C RESISTANCE, INCLUDING SKIN EFFECT, AT THESE FREQUENCIES. C NOTE THAT IF YOU WISH TO INPUT THE SIDEBAND EMBEDDING IMPEDAN- C CES THROUGH THE BLOCK DATA SUBPROGRAM THE SIDEBAND FREQUENCY NO- C TATION MUST BE TAKEN INTO ACCOUNT. ALL LOWER SIDEBAND EMBEDDING C IMPEDANCES (ZEMBSB(I), I.GT.(NH/2)+1) SHOULD BE FORMED AS THE C COMPLEX CONJUGATES OF THEIR POSITIVE FREQUENCY VALUES. THIS IS C CONSISTANT WITH THE USE OF NEGATIVE FREQUENCIES FOR ALL LOWER C SIDEBANDS. NOTE THAT SIDEBAND I IS ARRAY ELEMENT (NH/2 + 1 -I) C IN THIS FREQUENCY NOTATION. CTHE VARIABLE TYPES USED IN THIS SUBROUTINE ARE AS FOLLOWS: C COMPLEX*16 ZEMBSB(NHP1) REAL*8 ZER(NH),ZEI(NH),ZEMBDC,RS,RSKIN,FP,IF,PI REAL*8 RSSB(NHP1),RSLO(NH) INTEGER NH,NHP1,NHD2P1,K,I CIN THIS EXAMPLE THE EMBEDDING IMPEDANCES AT THE LO HARMONICS CAND AT THE SIDEBAND FREQUENCIES HAVE BEEN INPUT VIA THE BLOCK DATA CSUBPROGRAM AND THUS THEY WILL NOT BE FORMED IN THIS SUBROUTINE	500 500 500 500 500 500 500 500 500 500
CFORM THE SERIES RESISTANCE OF THE DIODE AT THE LO HARMONICS AND CTHE SIDEBAND FREQUENCIES. THE FREQUENCY DEPENDENCE DUE TO THE CSKIN EFFECT IS ASSULD TO HAVE THE FORM RS(F)=RS+RSKIN*SQRT(F) DO 4Ø I=1,NHP1 K=NHD2P1-I RSSB(I)=RS+RSKIN*DSQRT(DABS(FP*K+IF)) IF(I.EQ.NHP1) GOTO 4Ø RSLO(I)=RS+RSKIN*DSQRT(I*FP) 4Ø CONTINUE RETURN END	525. 527. 528. 538. 538. 538. 538. 538. 538. 538. 53

5.

And the second

A. 16 6. 6 8

639. SUBROUTINE POWER(ZQMAG,ZQPHA,ZER,ZEI,RSLO,VLO,ZØ,LOPWR) 64Ø. C----641. C---POWER CALCULATES AND PRINTS THE REQUIRED LO POWER USED BY THE 642. C---MIXER WITH THE ORIGINAL VALUE OF ZE(1) (BEFORE IT WAS SET TO ZØ), 643. C---644. C---THE VARIABLE TYPES USED 'IN THIS SUBROUTINE ARE AS FOLLOWS: 645. COMPLEX*16 ZQ,ZE 646. REAL*8 ZER, ZEI, ZQMAG, ZQPHA, RSLO, VLO, ZØ, LOPWR, D 647. C---TRANSFORM ZQMAG AND ZQPHA INTO THE REAL AND IMAGINARY PARTS 648. C---OF A COMPLEX NUMBER 649. D=DSQRT(1+(DTAN(ZQPHA/57.29577951DØ))**2) 65Ø. ZQ=DCMPLX(ZQMAG/D,ZQMAG*DTAN(ZQPHA/57.29577951DØ)/D) 651. ZE=DCMPLX(ZER,ZEI) 652. C---CALCULATE THE LO POWER L'OPWR=(CDABS(VLO*(RSLO+ZE+ZQ*ZØ)/(ZØ+ZØ*ZQ))**2)/(8.ØDØ*ZER) 653. 654. C---PRINT THE RESULTS 655. WRITE(6,100) LOPWR 100 FORMAT(//2X,'REQUIRED LO POWER:',1PE10.3//) 656. 657. RETURN 658. END 659. 660. 661. 662. SUBROUTINE ADJLO(JVLO, IVLO, VLO, IDCOS, IDBIAS, NHP1) 663. C---664. C---SUBROUTINE ADJLO ADJUSTS THE LOCAL OSCILLATOR VOLTAGE UNTIL 665. C---THE RECTIFIED CURRENT IS WITHIN IDCACC OF THE DESIRED VALUE, IDBIAS. 666. C--667. C---THE VARIABLE TYPES USED IN THIS SUBROUTINE ARE AS FOLLOWS: 668. C---FOR COMMON/ADJVLO/: 669. REAL*8 LOVLO, UPVLO, VLOINC, IDCACC 67Ø. INTEGER UPFLAG, LOFLAG 671. C---FOR VARIABLES NOT IN ANY COMMON BLOCKS: 672. REAL*8 IDCOS(NHP1),VLO,IDBIAS INTEGER JVLO,IVLO,HHP1 673. 674. C---THE COMMON BLOCKS USED ARE: 675. COMMON/ADJVLO/LOVLO,UPVLO,LOFLAG,UPFLAG,VLOINC,IDCACC C---IF THIS IS ALREADY THE LAST VLO LOOP THEN DON'T OUTPUT 676. 677. IF(JVLO.EQ.IVLO) GOTO 25 678. WRITE(6,100) JVLO, IDBIAS 100 FORMAT(/' VALUES OF THE DC CURRENT AND LO VOLTAGE FOR CYCLE ', 112,' OF THE LOOP FOR ADJUSTING VLO TO GIVE ',F8.6,' AMPS ARE:') 679, 68Ø. 681. WRITE(6,110) IDCOS(1),VLO 682. 11% FORMAT(1%X,' IDCOS(1)=',F8.6,T35,' VLO BEFORE ADJUSTMENT:',F8.5) IF(IDCOS(1).GT.IDBIAS+(IDBIAS*IDCACC)) GOTO 1% 683. 684. IF(IDCOS(1).LT.IDBIAS-(IDBIAS*IDCACC)) GOTO 15 685. IVLO=JVLO 686. GOTO 2Ø 687. 10 UPVLO=VLO 688. C---KEEP TRACK OF THE NUMBER OF TIMES VLO IS GREATER THAN ITS DESIRED 689. C---VALUE 69Ø. UPFLAG=UPFLAG+1 691. C---IF WE HAVE NOT YET PASSED THE DESIRED VLO CHANGE VLO 692. IF(LOFLAG.EQ.Ø) GOTO 11 693. VLO=VLO-(UPVLO-LOVLO)/2.0DØ 694. GOTO 2Ø 695. 11 VLO=VLO-VLOINC 696.

and the content of the second state of the second state of the second state of the second state of the second s

8

A.

(1,1)

Ţś.

÷.

IF(VLO.LT.Ø.Ø) VLO=Ø.ØDØ GOTO 2Ø	697. 698.
15 LOVLO=VLO CKEEPING TRACK OF THE NUMBER OF TIMES VLO IS LESS THAN ITS DESIRED CVALUE	699. 7øø. 7ø1.
LOFLAG=LOFLAG+1 CIF WE HAVE NOT YET PASSED THE DESIRED VLO,CHANGE VLO IF(UPFLAG.EQ.Ø) GOTO 16	7Ø2. 7Ø3. 7Ø4.
GOTO 20 16 VLO=VLO+VLOINC	705. 706. 707.
2Ø WRITE(5,12Ø) VLO 12Ø FORMAT(T35,' VLO AFTER ADJUSTMENT: ',F8.5) 25 RETURN END	7Ø8. 7Ø9. 71Ø. 711.
	712.
SUBROUTINE DRKGS(PRMT, Y, DERY, NDIM, IHLF, FCT, OUTP, AUX)	714.715.
CDRKGS IS AN IBM SSP PROGRAM WHICH SOLVES A SYSTEM OF DIFFERENTIAL CEQUATIONS BY THE RUNGE-KUTTA ALGORITHM. IT HAS NOT BEEN ALTERED CFOR THIS ANALYSIS. C	717. 717. 718. 719. 720.
DIMENSION Y(1), DERY(1), AUX(8,1), A(4), B(4), C(4), PRMT(1) DOUBLE PRECISION PRMT, Y, DERY, AUX, A, B, C, X, XEND, H, AJ, BJ, CJ, R1, R2,	721. 722.
DO 1 I=1,NDIM 1 AUX(8,I)=.Ø666666666666666666666666666666666666	724. 725. 726.
H=PRMT(3) PRMT(5)=Ø.DØ	728. 729.
IF(H*(XEND-X))38,37,2 2 A(1)=.5DØ	731.
A(2)=.29289321881345248DØ A(3)=1.7Ø71Ø67811865475DØ A(4)=.16666666666666666667DØ	733. 734. 735.
B(1)=2.DØ B(2)=1.DØ	736.
B(3)=1.00 B(4)=2.00	738.
C(1)=.500 C(2)=.2928932188134524800 C(2)=.272185791195547507	740.
C(3)=1.707106781186547500 C(4)=.500	742.
AUX(1, I) = Y(I)	745.
$AUX(3, I) = \emptyset . D\emptyset$	747.
	749.
0-070 IHLF=-1 ISTED-0	751.
IEND=Ø 4 IF((X+H-XEND)*H)7.6.5	753.

, . . .

Ŀċ,

₿.¢. j.e.

١<u>٢</u>

2

5	H=XEND-X
6	IEND=1 CALL OUTBACK & DEBY IDEC NDIM BONT)
	IF(PRMT(5))4Ø.8.4Ø
8	ITEST=Ø
9	ISTEP=ISTEP+1
1ø	AJ=A(J)
	BJ=B(J)
	CJ=C(J)
	DU II I=1,NDIM R1=H*NFRV(T)
	R2=AJ*(R1-BJ*AUX(6,I))
	Y(I)=Y(I)+R2
11	R2=R2+R2+R2
11	IF(J-4)12.15.15
12	J=J+1
1 2	IF(J-3)13,14,13
14	CALL FCT(X.Y.DERY)
• •	GOTO 10
15	IF(ITEST)16,16,20
10	DU 17 1=1,NDIM AUX(d.T)=V(T)
• •	ITEST=1
	ISTEP=ISTEP+ISTEP-2
18	1HLF=1HLF+1 X=X-H
	H=.5DØ*H
	DO 19 I=1,NDIM
	Y(I)=AUX(I,I) DERV(I)=AUX(2 I)
19	AUX(6,I)=AUX(3,I)
·	GOTO 9
20	IMOD=15(EP/2 IF/ISTEP-IMOD-IMOD)21 23.21
21	CALL FCT(X,Y,DERY)
	DO 22 I=1,NDIM
22	AUX(5,1)=Y(1) AHX(7 T)=DERV(T)
	GOTO 9
23	DELT=Ø.DØ
28	DU 24 1=1,NDIM DELT=DELT+AUV/8 TI*DARS(AUV/6 TI+V(TI))
њ т	IF(DELT-PRMT(4))28,28,25
25	IF (IHLF-1Ø)26,36,36
20	DU 27 1=1,NDIM AUX(A.T)=AUX(5.T)
	ISTEP=ISTEP+ISTEP-4
	X=X-H
	1END=0 COTO 18
28	CALL FCT(X,Y,DERY)
	DO 29 I=1,NDIM
	AUX(1,I)=Y(I)
	AUX(3,1)=AUX(6,1)

.

1.14

đ

755. 756. 757. 758. 759. 76Ø. 761. 762. 763. 764. 765. 766. 767. 768. 769. 77Ø. 771. 772. 774. 775. 776. 778. 779. 78Ø. 781. 782. 783. 784. 785. 786. 787. 788. 789. 79Ø. 791. 792. 793. 794. 795. 796. 797. 798. 799. 800. 8Ø1. 802. 803. 804. 8Ø5. 805. 8Ø7. 8Ø8. 8Ø9. 81Ø. 811. 812.

1

- ----

9

્યુ

0

.

29	Y(I)=AUX(5,I) DERY(I)=AUX(7,I) CALL OUTP(X-H V DERV INCE NOIM BRMT)	813 814 815
3ø	$IF(PRMT(5))4\emptyset, 3\emptyset, 4\emptyset$ $BO 3I I=1, NDIM$ $V(I)=0$	816 817 918
31	DERY(I)=AUX(2,I) IREC=IHLF	819 82Ø
32	IF(IEND)32,32,39 IHLF=IHLF-1 ISTEP=ISTEP/2	821 822 823
33	H=H+H IF(IHLF)4,33,33 IMOD=ISTEP/2	824 825 825
34	IF(ISTEP-IMOD-IMOD)4,34,4 IF(DELT#2D#*PRMT(4))35,35,4	827 828
30	ISTEP=ISTEP/2 H=H+H	83Ø 831
36	GOTO 4 IHLF=11 CALL FCT(X,Y,DERY)	832 833 834
37	GOTO 39 IHLF=12 GOTO 39	835 836 837
38 39	IHLF=13 CALL GUTP(X,Y,DERY,IHLF,NDIM,PRMT)	838 839
4.0	END	840 841 842
	SUBROUTINE ECT(X,V,DERV)	843 844 845
C	Source int i official and interesting the second seco	846
CFC CBE CSC	CT IS REQUIRED BY DRKGS AND SUPPLIES THE NETWORK STATE EQUATION T(E SOLVED. NOTE THAT THE JUNCTION CAPACITANCE HAS BEEN FREQUENCY CALED BY 2*PI*FP SO THAT ONE LO CYCLE OCCURS IN 2*PI SECONDS	D 847 848 849
C CTI CF(HE VARIABLE TYPES USED IN THIS SUBROUTINE ARE AS FOLLOWS: OR COMMON/CONST/:	85Ø 851 852
CF(REAL*8 QEL,BOLTZ,PI,TEQ OR COMMON/DIODE/: BEAL*8 ALB BUL CAM OF IS DEVIN ED TE ICT ICT CT CT	853 854
CF(COMMON/LOOPS/: INTEGER NH,MLO,NVLO,NPTS,NPRINT,NITER	856 857
CF(JR COMMON/TLINE/: REAL*8 ZØ,ZQACC INTEGER ZØFLAG	858 859 860
CF(OR COMMON/VOLTS/: REAL*8 AV(8),BV(8),VIDC,VLO,VDBIAS,IDBIAS	861 862
	REAL*8 X,Y(1),DERY(1),V INTEGER JH	863 864 865
CTI	HE COMMON BLOCKS USED ARE: COMMON/CONST/QEL,BOLTZ,PI,TEQ COMMON/DIQDE/ALP.PHI.GAM.CØ.IS.RS.RSKIN.FP.IF.IGJ.ICJ.GJ.CJ	866 867 858
	COMMON/LOOPS/NH,NLO,NVLO,NPTS,NPRINT,NITER COMMON/TLINE/ZØ,ZQACC,ZQFLAG	869 87Ø

COMMON/VOLTS/AV, BV, VIDC, VLO, VDBIAS, IDBIAS C---CALCULATE THE TOTAL VOLTAGE ON THE TRANSMISSION LINE INCIDENT ON 871, 872. C---THE DIODE 873. V=VIDC 874. DO 1 JH=1,NH 875, V=V+AV(JH)*DCOS(JH*X)+BV(JH)*DSIN(JH*X) 876. 1 C---MULTIPLY BY 2 TO FIND THE EQUIVALENT SOURCE VOLTAGE ASSOCIATED 877. C---WITH THE TRANSMISSION LINE IMPEDANCE ZO 878. V=V*2.000 879. C---FIND THE FREQUENCY SCALED JUNCTION CAPACITANCE. C---NOTE THAT THE DIODE VOLTAGE Y(1) IS ARTIFICIALLY CLAMPED IF IT 880. 881. C---EXCEEDS .999*PHI. THIS AVOIDS ERROR MESSAGES DURING THE INITIAL C---TRANSIENT IN THE NUMERICAL SOLUTION. 882. 883. CJ=2.ØDØ*PI*FP*CØ/(1.ØDØ-DMIN1(Y(1),Ø.999*PHI)/PHI)**GAM 884. C---FIND THE CURRENT THROUGH THE DIODE CONDUCTANCE IGJ=IS*(DEXP(ALP*DMAX1(-174.\$D\$/ALP,DMIN1(Y(1),174.\$D\$/ALP))) 885. 886. 1-1.ØDØ) 887. C---DVD/DT 888. $DERY(1) = ((V-Y(1))/Z \mathscr{G} - IGJ)/CJ$ 889. C---FIND THE CURRENT THROUGH THE DIODE CAPACITANCE AND THE DIODE 89Ø. C---CONDUCTANCE 891, ICJ=DERY(1)*CJ 892. GJ=IGJ*ALP+IS*ALP 893. RETURN 894. END 895. 896. 897. 898. SUBROUTINE OUTP(X, Y, DERY, IHLF, NDIM, PRMT) 899. C---9ØØ. C---OUTP IS REQUIRED BY DRKGS BUT IS NOT USED IN THIS PROGRAM 9Ø1. C~--902. REAL*8 X,Y(1),DERY(1),PRMT(5) 9Ø3. INTEGER IHLF, NDIM 9Ø4. RETURN 9Ø5. 906. END 9Ø7. 9Ø8. 909. SUBROUTINE DFORIT(FNT, N, M, A, B, IER) 91Ø. C----911. C---DFORIT IS A DOUBLE PRECISION VERSION OF FORIT, AN IBM SSP ROUTINE 912. C---THAT PERFORMS A FOURIER ANALYSIS ON A PERIODICALLY VARYING FUNCTION. C---IT COMPUTES THE COEFFICIENTS OF THE TERMS IN THE SERIES WHICH 913. 914. C---IS GIVEN BY:A(1)+SUM(A(N)COS((N-1)X)+B(N)SIN((N-1)X)) N=2,3,4... 915. C---916. C---THE PARAMETERS USED ARE: 917. C---FNT/: TABULATED VALUES OF THE FUNCTION TO BE ANALYSED 918. C----NOTE THAT FNT(1) CORRESPONDS TO TIME T=Ø 919. C---M/: THE MAXIMUM ORDER OF THE HARMONICS TO BE FITTED C---N/: DEFINES THE INTERVAL OVER WHICH THE POINTS ARE TAKEN. THE C--- INTERVAL GOES FROM Ø TO 2*PI AND 2N+1 POINTS ARE TAKEN AS DATA. 920. 921. 922. C---A/: THE FOURIER COSINE COEFFICIENTS 923. C---B/: THE FOURIER SINE COEFFICIENTS C---IER/: THE RESULTANT ERROR MESSAGE CODE WHERE IER=Ø MEANS NO ERROR, 924. 925. C---IER=1 MEANS N IS LESS THAN M. AND IER=2 MEANS M IS LESS THAN Ø 926. c---' 927. REAL*8 A(1), B(1), FNT(1), CONST 928.

 $\Delta P_{\rm s} = 0.5$

a the second second

ne na standar e na standar e s Na standar e standar e

ant have been a start of the st

 $^{\circ}$

臣義

5

÷., 1

e e da da Alexan Alexandre e

÷

	REAL*8 COEF,C,S,C1,S1,AN,FNTZ,UØ,U1,U2,Q
	INTEGER N,M
	IER=Ø
2Ø	IF(M) 30.40.40
20	TER-2

0,40,40 50 RETURN 40 IF(M-N) 60,60,50 5Ø IER=1 RETURN 6Ø AN=N COEF=2.ØDØ/(2.ØDØ*AN+1.ØDØ) CONST=3.14159265358979DØ*COEF S1=DSIN(CONST) C1=DCOS(CONST) C=1.ØDØ S=Ø.ØDØ J=1 FNTZ=FNT(1) 7Ø U2=Ø.ØDØ U1=Ø.ØDØ I=2*N+1 75 UØ=FNT(I)+2.ØDØ*C*U1-U2 02 = 01U1=UØ I = I - 1IF(I-1) 80,80,75 8Ø A(J)=COEF*(FNTZ+C*U1-U2) B(J)=COEF*S*U1 IF(J-(M+1)) 90,100,100 9Ø Q=C1*C-S1*S S=C1*S+S1*C C≈Q J=J+1

GO TO 7Ø 100 A(1)=A(1)*0.5D0 RETURN END

SUBROUTINE SMSIG

С

C

С

¢

С

¢

С

С

С

C

С

С

C С

С

C

C

SMSIG PERFORMS THE SMALL-SIGNAL AND NOISE ANALYSIS OF THE MIXER TO DETERMINE THE CONVERSION LOSS BETWEEN ALL PAIRS OF SIDEBANDS, THE INPUT AND OUTPUT IMPEDANCES, AND THE EQUIVALENT INPUT NOISE TEMPERATURE. THE THEORY IS BASED ON THAT OF D.N.HELD AND A.R.KERR, IEEE TRANS.ON MICROWAVE THEORY AND TECH., VOL.MTT-26, NO.2, PP.49-61, FEB.1978. ALL INITIALIZED VARIABLES ARE INPUT THROUGH THE BLOCK DATA SUB-PROGRAM AND ARE TRANSFERRED THROUGH COMMON BLOCKS. THE OUTPUT INCLUDES: 1) THE CONVERSION LOSS BETWEEN ALL PAIRS OF SIDEBANDS (PRINTED AS A CONVERSION LOSS MATRIX).

929.

93Ø. 931.

932. 933.

934.

935.

936.

937.

938.

939.

94Ø.

941.

542.

943. 944.

945.

946.

947.

948.

949.

95Ø.

951.

952.

953.

954.

955.

956.

957.

958.

959.

96Ø.

961.

962.

963.

964.

965.

966. 967.

968.

969.

97Ø.

971.

972.

973.

974.

975.

976.

977.

978.

979.

98Ø.

981.

982.

983.

984.

985.

986.

- A state of the second state of the state of the state of the second state of the

Start and stated and stated and stated and stated and the second stated and the second stated and the second st

÷.

araata/Mahara Nga di Samu

1 9

đ

- 2) THE INPUT IMPEDANCES OF THE MIXER AT EACH SIDEBAND. 3) THE OUTPUT IMPEDANCE AT THE IF.
- 4) THE EQUIVALENT INPUT NOISE TEMPERATURE AND ITS SHOT AND THERMAL COMPONENTS.
 - THE SUBSCRIPT NOTATION USED IN THE PROGRAM TO IDENTIFY THE NH+1

 $\{ a, b \} \in \mathcal{C}$

State State

na na sang sa

às 18

ومعو

C SMALL-SIGNAL SIDEBANDS IS THAT OF A.A.M. SALEH, THEORY OF RESISTIVE C MIXERS'.M.I.T. PRESS.CAMBRIDGE.MASS1971. SIDEBAND EREQUENCY	987.
C (IF+N*LO) IS DENOTED BY THE ARRAY SUBSCRIPT (NH/2 + 1 - N). THE	989.
C LOWER SIDEBANDS ARE TREATED AS NEGATIVE FREQUENCIES CONSIDERABLY	99Ø.
C IF ARRAY DIMENSIONS ARE ALTERED THEY MUST BE CHANGED HERE. IN	991.
C SUBROUTINE LGSIG AND IN THE BLOCK DATA PROGRAM, IN ADDITION THE	993.
C PRINT FORMAT OF THE CONVERSION LOSS MATRIX MUST BE ALTERED IF	994.
C OTHER THAN EIGHT LU HARMUNICS ARE CONSIDERED.	995.
CTHE VARIABLE TYPES USED IN THIS SUBROUTINE ARE AS FOLLOWS:	997.
CFOR COMMON/CONST/:	998.
REAL®B QEL,BULTZ,PI,TEQ CFOR COMMON/DIGDE/*	999.
REAL*8 ALP, PHI, GAM, CØ, IS, RS, RSKIN, FP, IF, IGJ, ICJ, GJ, CJ	1001.
CFOR COMMON/FORITS/:	1002.
REAL*8 GJCOS(9),GJSIN(9),CJCOS(9),CJSIN(9),VDCOS(9),VDSIN(9) REAL*8 IDCOS(9) IDSIN(9)	1003.
INTEGER IER	1004.
CFOR COMMON/IMPED/:	1006.
COMPLEX*16 ZEMBSB(9) REA1*9 ZERVEN ZEVENE BELOVEN BEERVEN	1007.
CFOR COMMON/LOOPS/:	1008.
INTEGER NH, NLO, NVLO, NPTS, NPRINT, NITER	1010.
CFOR VARIABLES NOT IN ANY COMMON BLOCKS:	1011.
COMPLEX*16 T(9).ZIN(9).ZIFOUT.DET	1012.
REAL*8 XLMAT(9,9),TM,THERM,SHOT,LIJ	1514.
REAL*8 GJMAG(9),GJPHA(9),CJMAG(9),CJPHA(9)	1015.
CTHE COMMON BLOCKS USED ARE:	1010.
COMMON/CONST/QEL, BOLTZ, PI, TEQ	1018.
COMMON/DIODE/ALP, PHI, GAM, CØ, IS, RS, RSKIN, FP, IF, IGJ, ICJ, GJ, CJ	1019.
COMMON/FORIES/GJCOS,GJSIN,CJCOS,CJSIN,VDCOS,VDSIN,IDCOS,IDSIN,IER COMMON/IMPED/7ER ZEI ZEMBDC ZEMBSB BSLD BSSB	1020.
COMMON/IM ED/2ER,2EI,2EMBDO,2EMBBO,2EMBBO,RSEO,RSBB	1022.
COMMON/LOOPS/NH, NLO, NVLO, NPTS, NPRINT, NITER	1023.
CDEFINE SOME USEFUL CONSTANTS	1024.
NHD2=NH/2	1025.
NHD2P1=NHD2+1	1027.
CFORM THE COMPLEX FOURIER COEFFICIENTS OF THE DIODE CONDUCTANCE	1.028.
DO 10 JH=2.NHP1	1029.
FG(JH)=DCMPLX(GJCOS(JH),-GJSIN(JH))*Ø.5DØ	1Ø31.
10 FC(JH)=DCMPLX(CJCOS(JH),-CJSIN(JH))*0.5D0	1032.
FC(1)=DCMPLX(GJCOS(1),Ø.ØDØ)	1033.
CCALL PRINTS TO WRITE THE FOURIER COEFFICIENTS	1035.
CALL PRINT3(FG,FC,GJMAG,GJPHA,CJMAG,CJPHA,NH,NHP1)	1036.
ZEMBSB(NHD2P1)=DCMPLX(1,ØD1Ø,Ø,ØDØ)	1037.
CFORM THE Y' MATRIX WITH THE OPEN CIRCUITED IF BY CALLING YPRIME	1039.
CALL YPRIME(FG,FC,NHD2,NHD2P1,NHP1,FP,IF,A,ZEMBSB,RSSB)	1040.
CALL CMINVERSE OF THE Y' MATRIX TO FIND THE OUTPUT IMPEDANCE CALL CMINVERSE OF THE Y' MATRIX TO FIND THE OUTPUT IMPEDANCE	1041.
CTHE IF OUTPUT IMPEDANCE IS THE CENTER ELEMENT OF THE Z' MATRIX+RS	1043.
ZIFOUT = A(NHD2P1, NHD2P1) + R3SB(NHD2P1)	1044.

8. S. **.**.

an Ang mang sa Ang mang sa Ang mang sa Ang mang sa Ang

en de ja

C---CONJUGATE MATCH THE IF LOAD IMPEDANCE TO THE IF PORT IMPEDANCE 1045. ZEMBSB(NHD2P1)=DCONJG(ZIFOUT) 1046. C---FORM THE Y' MATRIX WITH A MATCHED IF LOAD 1047. CALL VPRIME(FG,FC,NHD2,NHD2P1,NHP1,FP,IF,A,ZEMBSB,RSSB) C---INVERT THE Y' MATRIX TO OBTAIN THE Z' MATRIX 1048. 1049. CALL CMINV(A,NHP1,DET,WK1,WK2,NHP1*NHP1) C---FORM THE CONVERSION LOSS MATRIX AND INPUT IMPEDANCE AT EACH SIDEBAND1051. DO 5Ø I=1,NHP1 1052. ZIN(1)=RSSB(1)+A(1,1)*(RSSB(1)+ZEMBSB(1))/(RSSB(1)+ZEMBSB(1) 1053. 1Ø54. $1 - A\{I, I\}\}$ 1055. DO 4Ø J=1,NHP1 IF(I-J) 20,30,20 1Ø56. 2Ø LIJ=((CDABS(RSSB(I)+ZEMBSB(I))*CDABS(RSSB(J)+ZEMBSB(J))/ 1057. 1(2.ØDØ*CDABS(A(I,J))))**2)/(DREAL(ZEMBSB(I))*DREAL(ZEMBSB(J))) 1058. C---CONVERT TO DB WHEN FORMING THE LOSS MATRIX 1Ø59. XLMAT(I,J)=1Ø.ØDØ*DLOG1Ø(LIJ) 1Ø6Ø. GOTO 4Ø løei. C---THE DIAGONAL ELEMENTS HAVE NO OBVIOUS MEANING AND ARE ZEROED FOR 1062. C---CONVENIENCE 1063. 3Ø XLMAT(I,J)=Ø.ØDØ 1Ø64. 4Ø CONTINUE 1065. 1066. 5Ø CONTINUE C---BEGIN THE NOISE ANALYSIS BY FORMING THE SHOT NOISE CORRELATION 1067. C---MATRIX 1068. CALL CORREL(ALP,FG.COR,NHP1) C---CALCULATE THE EQUIVALENT INPUT NOISE TEMPERATURE CONSIDERING THE C---SHOT NOISE ONLY 1069. 1070. 1Ø71. CALL TMIX(NHD2,SHOT,T,COR,A,RSSB,ZEMBSB,NHP1,NHD2P1) 1072. C---ADD THE THERMAL NOISE COMPONENT TO THE SHOT NOISE CORRELATION MATRIX1073. CALL TNOISE(COR,RSSB,ZEMBSB,NHP1,NHD2P1) 1074. C---RECALCULATE THE EQUIVALENT NOISE TEMPERATURE NOW INCLUDING BOTH 1075. C---SHOT AND THERMAL NOISE CONTRIBUTIONS 1Ø76. CALL TMIX(NHD2,TM,T,COR,A,RSSB,ZEMBSB,NHP1,NHD2P1) C---FIND THE THERMAL NOISE COMPONENT OF THE EQUIVALENT INPUT NOISE 1077. 1078. C---TEMPERATURE OF THE MIXER 1079. THERM=TM-SHOT 1Ø8Ø. C---CALL PRINT4 TO PRINT THE RESULTS OF THE SMALL-SIGNAL AND NOISE 1081. C---ANALYSIS 1082. 1Ø83. CALL PRINT4(XLMAT,ZIN,ZIFOUT,TM,THERM,SHOT,NHD2,NHP1,NHD2P1) 1084. RETURN 1085. END 1086. 1087. 1088. SUBROUTINE YPRIME(FG,FC,NHD2,NHD2P1,NHP1,FP,IF,A,ZEMBSB,RSSB) 1Ø89. 1090. C----1091. C----YPRIME FORMS THE AUGMENTED ADMITTANCE MATRIX Y' (A) OF THE MIXER C----1092. C---THE VARIABLE TYPES USED IN THIS SUBROUTINE ARE AS FOLLOWS: 1093. C---FOR COMMON/CONST/: 1094. 1Ø95. REAL*8 QEL, BOLTZ, PI, TEQ C---FOR VARIABLES NOT IN ANY COMMON BLOCKS: COMPLEX*16 ZEMBSB(NHP1),A(NHP1,NHP1),FG(NHP1),FC(NHP1) 1Ø96. 1097. 1098.

r.,

. .

ų.

÷.,

 \mathcal{G}_{1}

1910 - Sala

1Ø99.

1100.

1101.

1102.

પ્રદુ કું દ્વિત્ર પ્રુપ્ત અનું પિક્ષ તું પાંડા અભિનાર્થક પ્રદાર્શ અને દ્વારા પ્રાપ્ત પ્રાપ્ત પ્રાપ્ત અને ત્યાર

REAL*8 FP, IF, WP, WIF, RSSB(NHP1) INTEGER NHD2, NHD2P1, NHP1, I, J C---THE COMMON BLOCKS USED ARE: COMMON/CONST/QEL, BOLTZ, PI, TEQ WIF=2.ØDØ*PI*IF

	1103.
CHARTER ADMITTANCE MATRIX V OF THE INTRINCIC DIODE	1100
bo 64 t-1 Must	1105
	1105.
	1100.
$C_{\text{C}} = C_{\text{C}} + C_{\text{C}} $	1107.
C FIND THE LOWER HALF OF THE Y MAINING OF THE UNBERNING THE	1108.
30 A(1,0)=DCONG(FG(1-0+F))+DCMPLX(0.0D0,W1F+WP*(NHD2P1-1))	1109.
1*DCONJG(+C(1-J+1))	1110.
	1111.
CFIND THE UPPER HALF OF THE Y MATRIX	1112.
4Ø A(I,J)=FG(J-I+1)+DCMPLX(Ø.ØDØ,WIF+WP*(NHD2P1-I))*FC(J-I+1)	1113.
5Ø CONTINUE	1114.
5Ø CONTINUE	1115.
CADD 1/(RS+ZEMBSB) TO THE DIAGONAL ELEMENTS OF Y TO FORM THE	1116.
CAUGMENTED ADMITTANCE MATRIX Y' OF THE MIXER	1117.
DO 7.0° I=1,NHP1	1118.
7Ø A(I,I)=A(I,I)+1,ØDØ/(ZEMBSB(I)+RSSB(I))	1119.
RETÚRN	1120.
END	1121.
	1122.
	1123.
	1124.
SUBROUTINE CORRELIALE EC COR NHPL)	1125
C	1126
C	1127
CCORREL FORMS THE NOISE CORRENT CORRELATION MAIRIA FOR THE SHOT	1120
C NOISE, THE THERMAL NOISE COMPONENTS ARE ADDED IN SUBROUTINE	1120.
	1129.
	1130.
CTHE VARIABLE TYPES USED IN THIS SUBROUTINE ARE AS FOLLOWS:	1131.
COMPLEX*16 FG(NHP1), COR(NHP1, NHP1)	1132.
REAL*8 QEL, BOLTZ, PI, TEQ, ALP	1133.
INTEGER NHP1, I, J	1134.
CTHE COMMON BLOCKS USED ARE:	1135.
COMMON/CONST/QEL,BOLTZ,PI,TEQ	1136.
CFORM THE SHOT NOISE CORRELATION MATRIX USING I=FG/ALP	1137.
$DO 1 \mathscr{G} I = 1, NHP 1$	1138.
DO 2Ø J=1,i	1139.
COR(J, I)=2.ØDØ*QEL*FG(I-J+1)/ALP	114Ø.
20 COR(I,J)=DCONJG(COR(J,I))	1141.
10 CONTINUE	1142.
RETURN	1143.
END	1144.
	1145.
	1146.
	1147.
SUBROUTINE THOISE(COR.RSSB.ZEMBSB.NHP1.NHD2P1)	1148.
	1149.
CTNOISE FORMS THE THERMAL NOISE CURPENT CORPELATION MATRIX AND	1150
CADDS IT TO THE SHOT NOISE CORPELATION MATRIX AND	1151
Carle and the one of the contract connection partition	1152
CTHE VARIARIE TYPES USED IN THIS SUPPORTING ARE AS FOLLOWS.	1159
COMPLEYALE COLUMN AUDI ZEMBED MUDIA	1154
DEALES TO CONTART, MARTY, 2005DIMARTY	1165
$\mathbf{R} = \mathbf{G} = $	1100.
COMPANY CONTRACT DOLLAR DELTART TO	1100.
CONTROCT THE THERMAL NOISE MATERIAL AS STACOUNT AND THESE DEPENDENCE TO	1160
CT-SINCE THE INERVAL NOISE MAINIX IS DIAGONAL ADD THESE ELEMENTS TO	1158.
CTTTINE DIAGONAL TERMS OF THE SHUT NOISE CORRELATION MAIRIX	1123.
DU 35 I=I,NHPI	1160.

. بالأنفق والماري 79

4

्रिति होत्तु केंद्रा व्यक्ति होत्र भाष भारत

IF(I.EQ.NHD2P1) GOTO 30 COR(I,I)=COR(I,I)+4.0D0*BOLTZ*TEQ*RS5B(I)/ //CDARS(ZEMDSD(I)+8.5D/I))**2	1161
GOTO 35 CAT THE IF THE THERMAL NOISE TERM IS GIVEN BY:	1164
3Ø COR(I,I)=COR(I,I)+4.ØDØ*BOLTZ*TEQ*RSSB(I)/ 1(CDABS(ZEMBSB(I)-RSSB(I))**2	1166. 1167.
SS CONTINGE RETURN FND	1168. 1169. 1170
	1171
SUBROUTINE TMIX(NSB,TM,T,COR,A,RSSB,ZEMBSB,NHP1,NHD2P1)	1173
CTMIX COMPUTES THE EQUIVALENT SINGLE SIDEBAND INPUT NOISE	1175
CNOTE THAT SIDEBAND NSB IS ARRAY SUBSCRIPT NH/2 + 1 - NSB. C	1178. 1179
CTHE VARIABLE TYPES USED IN THIS SUBROUTINE ARE AS FOLLOWS: COMPLEX*16 COR(NHP1,NHP1),A(NHP1,NHP1),ZEMBSB(NHP1),VSQ,T(NHP1)	118Ø 1181
REAL ** & GEL, BOLTZ, PI, TEG, TM, RSSB(NHPI) INTEGER I, J, NSB, NHP1, NHD2P1	1182
COMMON/CONST/QEL,BOLTZ,PI,TEQ C~POST MULTIPLY COR BY THE CONJUGATE TRANSPOSE OF THE CENTER ROW	1185
COF THE Z' MATRIX (ROW \emptyset) BO $1\emptyset$ I=1, (HPI	1187 1188
$T(1) = \emptyset . \emptyset D \emptyset$ DO 2\00 J=1, NHP1 2\00 T(1) = T(1) + COP(1, 1) * DCON 2C(A(NUD2D1, 1))	1189. 119Ø.
10 CONTINUE CONTINUE CPREMULTIPLY COR BY THE CENTER ROW OF THE MIXER Z' MATRIX	1192
VSQ=Ø.ØDØ DO 3Ø I=1,NHP1	1194 1195
30 VSQ=VSQ+A(NHD2P1,I)*T(I) CCOMPUTE THE EQUIVALENT INPUT NOISE TEMPERATURE OF THE MIXER	1196
1(BOLTZ*4.ØDØ*OREAL(ZEMBSB(NSB))*(CDABS(A(NHD2P1,NSB))**2)) RETURN	1199
END	12Ø1 12Ø2
CURROUTING CMINN(A.N.D.L.M.NCO)	1203. 1204.
C C CCMINV IS A SLIGHTLY MODIFIED VERSION OF THE IBM SSP ROUTINE MINV	1205
CFOR INVERTING A COMPLEX MATRIX. ONLY THE FIRST TWO STATEMENTS AND CTHOSE NUMBERED 10 AND 45 HAVE BEEN ALTERED.	12Ø8 12Ø9
COMPLEX*16 A, D, BIGA, HOLD DIMENSION A(NSO) (N) M(N)	121Ø 1211 1212
D=1.ØDØ NK=-N	1213
DO 80 K=1,N NK=NK+N	1215 1216
L (K)=K M (K)=K	1217

	KK=NK+K
	BIGA=A(KK)
	DO 20 J=K.N
	IZ=N*(J-1)
	DO 20 I=K.N
	IJ=IZ+I
1 ឆ	IF(CDABS(BIGA)-CDABS(A(IJ))) 15.20.20
15	BIGA=A(IJ)
	I (K)=1 °
	M(K) = J
28	CONTINUE
	J=L(K)
	IF(J-K) 35,35,25
25	KI=K-N
	DO 30 T=1.N
	KI=KI wo
	HOLD=-A(KI)
	JI=KI-K+J
	A(KI) = A(JI)
3Ø	A(JI) =HOLD
35	I=M(K)
	IF(I-K) 45.45.38
38	JP=N*(I-1)
	DO 4Ø J=1.N
	JK=NK+J
	JI=JP+J
	HOLD=-A(JK)
	A(JK)=A(JI)
4Ø	A(JI) =HOLD
45	IF(CDABS(BIGA)) 48,46,48
46	D=Ø.ØDØ
	RETURN
48	DO 55 I=1,N
	IF(I-K) 50,55,50
5Ø	IK=NK+I
	A(IK)=A(IK)/(-BIGA)
55	CONTINUE
	DO 65 I=1,N
	IK≒NK+I
	HOLD=A(IK)
	IJ=I-N
	DO 65 J=1,N
	19=19+W
	1F(1-K) 50,65,50
69	IF(J-K) 52,85,62
62	KJ=IJ=I+K
	A(1J)=HULD*A(KJ)+A(1J)
65	CONTINUE
	KU=K~N
	NO YO JEI,N
	NJ = NJ T() プログラービス ラヴ フロ コヴ
70	1F1JTNJ /8,/2,/8
14	ALKU /=ALKU //BIGA CONTINUT
75	
	U-U-DIGA A/VV)-1 0D0/DICA
00	ALKK/-1.000/DIGA CONTINUE
96	K=N
	N=11

Ż

General Provide .

e a general de la companya de la com

Î.

7

Same

1

1219. 122Ø. 1221. 1222. 1223. 1224. 1225. 1227. 1228. 1229. 123Ø. 1231. 1232. 1233. 1234. 1235. 1236. 1238. 1239. 124Ø. 1241. 1242. 1243. 1244. 1245. 1246. 1248. 1249. 125Ø. 1251. 1252. 1253. 1254. 1256. 1257. 1258. 1259. 1260. 1261. 1262. 1263. 1264. 1265. 1266. 1267. 1268. 1269. 127Ø. 1271. 1272. 1273. 1274. 1275. 1276.

Concentration of the second

÷

....

- 112 a

and a state of the state of the

	1 <i>ØØ</i>	K=(K-1)	1277.
	1.00	IF(K) 15Ø,15Ø,1Ø5	1278.
	192	I=L(K) IF(I=K) 120 108	1279.
	1Ø8	JQ=N*(K-1)	1281.
		JR=N*(I-1)	1282.
		DO 110 J= 1, N	1283.
		UK=UQ+U 40(D=A(JK)	1284.
		JI=JR+J	1286.
		A(JK) = -A(JI)	1287.
	110	A(JI) ≈HOLD	1288.
	120	J=M(K) JE(J=K) 188 188 125	1289.
	125	KI=K-N	1291.
		DO 13Ø I=1,N	1292.
		KI=KI+N	1293.
		HUL D=A(K1) JI=KI=K+J	1294.
		A(KI) = -A(JI)	1296.
	13Ø	A(JI) =HOLD	1297.
	1 5 0	GO TO 100	1298.
	130	-END	1300.
			1301.
			1302.
		SUDDOUTINE PRINTLYTEMD TEMPOR TED TEL TEMPOR DOMT V DERV VIO	1303.
		1VDBIAS.IDBIAS.RSSB.RSLO.NHARM.NHP1.NHD2)	1305.
Ċ-		· · · · · · · · · · · · · · · · · · ·	13Ø6.
C	Pi	RINTI WRITES THE VALUES OF THE INPUT VARIABLES AND THE INITIAL	1307.
ເ- ເ-		UNDITIONS FOR THE WONLINEAR AWALYSIS SECTION OF THE PROGRAM.	1300.
Č-	TI	HE VARIABLE TYPES USED IN THIS SUBROUTINE ARE AS FOLLOWS:	131ø.
¢-	F	OR COMMON/ADJLO/:	1311.
		KEAL*8 LOVEO,UPVLO,VLOINC,IDCACC	1312.
c-	F(OR COMMON/CONST/:	1313.
		REAL*8 QEL, BOLTZ, PI, TEQ	1315.
C-	·F	OR COMMON/DIODE/:	1316.
c	FI	REAL^8 ALP,FHI,GAM,CØ,IS,RS,RSKIN,FP,IF,IGJ,ICJ,GJ,CJ OR COMMON/LOOPS/:	1317.
•		INTEGER NH, NLO, NVLO, NPTS, NPRINT, NITER	1319.
C-	F(OR COMMON/RKG/:	1320.
		REAL*8 ACC, VDINIT	1321.
с-	F	OR COMMON/TIINF/:	1322.
		REAL*8 ZØ,ZQACC	1324
_	-	INTEGER ZQFLAG	1325.
¢-	•F	UK VAKIABLES NOT IN ANY COMMON BLOCKS:	1326.
		REAL*8 VDBIAS.IDBIAS.VLO.ZQACC.ZØ.ZEMRDC.PRMT(5).V(1).DFRV(1)	1328.
		REAL*8 ZER(NHARM), ZEI(NHARM), RSSB(NHP1), RSLO(NHARM)	1329.
_	-	INTEGER NHARM, NHP1, NHD2, I, K, J	1330.
C-	T	HE COMMON BLOCKS USED ARE: COMMON/ADJVLO/LOVLO UBVLO LOFLAC UBELAC VLOINC INCACC	1331.
		COMMON/CONST/QEL.BOLTZ.PI.TEQ	1333.
		CONMON/DIODE/ALP, PHI, GAM, CØ, IS, RS, RSKIN, FP, IF, IGJ, ICJ, GJ, CJ	1334.

n

ې مد.

12.2

c c	OMMON. OMMON	/L00 /RK(DPS G/A	ZNH	, NL VDI	0, NI	NVI T.I	.0. נפע	NP M	TS	, N	PR.	INT	r,I	TI N	ΓEF	र									
С	OMMON	TL:	INE.	/Żģ	.zc	AC	Ċ.,	ZQF	LA	G																
CPRI	NT TH	E'T	ITL.	E	,																					
v	RITEO	6.50	ສ່	FP																						
50 E	OPMAT	(111	1.1	ייע	ΔN	AT.	VQ.	21	0F	Δ	1		app	R.	2.	ŧ	сH	7	MTI	2RC	าษณ	VF	. 1	1 T X	FR	17
*1	X.50(121	ŝ		- 633		ι <u>Ψ</u> .		0.			,			• •		414				0 117					•
C1/8 1	TE TU	E 1//	λíπ		OF	тυ	= 1	1 2 4	εv	C N	T	VA 1	рт /	121	t c											
5 WK4 14	12 110 10 TTC .		781		Ot-	111	<u> </u>			611	•	Y CI	1.14	101	- 5 6	7 4										
76 6	ODMAT	/ 2 1 1	1 1	тмо	1177	DA.	ተለ	• •																		
70 5	DAMAI	C 1/	201	THE	01	UA	IA	1																		
100 F	00845	0 g 1 k 7 7 7 7	10		100	-					θ.		T O P			n 1						57 F	• ~-		A 14	
7 001	UKMA I			· U	100	E .	r Ai	(AP		<u>- к</u>	51	<u>`</u> †	125	· .	AL	.۲	. a t	4 I	9 T	۲n.	Ι.,	15	10,	, ' G	AM	•
1.	/1, 'K)	5.	185	, U	<i>w</i> .	14.	ษต		5	<u>, i</u>	Ϊ.T	3.	. К	iΚ.	ŦŃ.	1										
	KIJEC	6,1.	103	. AL	Ρ,Ρ	нī	, G/	١M	RS	÷ C	ø,	18	. KS	sκ.	IN.											
110 F	ORMAT	(19)	Χ,4	([]	Ø.3	,5	X)	,20	1 P	E 1	ø.	з,	5X.),	IPE	12	ð.3	1								
W	RITE	6,12	20)	FP	. I F	, T	ΕQ		_						_											
12Ø F	URMAT	(71)	K - '	OP	ERA	TI	NG	FF	εEQ	UΕ	NC	IE	s A	/NI	ן נ	E₽	1FE	RA	TU	RΕ	: ' .	TE.	ø,	'F	μ,	•
17	65, I		79	, <u>'</u> T	EQ	/T	45	,2(1P	E 1.	ø.	3,!	5X)),(JP F	10	Ø.3)								
W	RITE(5,13	ΞØ)	VD	BIA	s,	IDI	3 I A	1S		_															
13Ø F	ORMAT	(/1)	κ,'	ΒĨ	AS	SE	TT	I N C	:5:	۰,	Τ2	4,	' VE	DB (IAS	s°,	, Т З	8,	'Ii	DB:	IAS	517	T2	ø,		
1F	10.3,	5X,F	-1Ø	.6)																						
W	RITE()	5,14	4Ø)	VL	0,V	'LO	INC	2,1	DC	AÇ	С															
14Ø F	ORMAT	(71)	Κ,'	AD	JVL	0	٧AI	l I A	۱BL	ES	: '	, Τί	25,	۱۱,	/LC	۲,	, T3	9,	' VI	.0	INC	γ,	TE	54,		
1'	IDCAC	C'/1	Γ21	,3(F10	.6	, 5:	())																	
W	RITE(5,18	5Ø)	PR	MT (1)	, P I	T M5	1 2),	PR	MT ((3)),E	PRM	1T (4)	γ,	(1),1	DEF	ί٧(1)),N	DIN	М
15Ø F	ORMAT	(71)	K.'	DR	KGS	- V.	ÁR I	(AE	s L E	S:	۰.,	T2:	1,'	PF	τM۶	1)	י (ו	Τ,	35	, ⁱ I	የጽዞ	11 (2)	÷.,	T5/	ø,
1'	PRMT(:	3)'.	, Ť6	5.'	PRM	ΤC	4 >	۰.1	`8Ø	. •	Υć	1 }	• . 1	195	5.'	DE	ERY	(1	<u>۲</u>	.Τ	1 1 Ē	ÿ, '	ND	ΠŃ	11	
27	20, 1()	LOW	LI	мjч	•T3	5.	י ((JĖ	LI	Ń)	1	T5.	Ø.	1	IŃC	R))'.	T6	6.	iù	ACC	÷۲	. 1	18Ø		
3'	(VĎ)'	. T99	5.'	(DV	ŻDŤ	÷ΣΈ	. Т	løs), i	(N	ΕÓ	S)	٠Ż.						-						•	
4T	22.F1	9.8	.íx	.2(F1	ø.	8.9	5X 3	.1	PE	īø	.3	. 2)	ι.2	2(0	rp F	1.0	.3	. 63	$\langle \rangle$. 43	(.1	2))		
Ŵ	RITE	5.16	SØ)	ΝĪ	TER	N	ιó.	.NI	πĹā	. N	ΡT	s.i	NHA	NR N	4 N	IPR	ET N	Ť	,	•••						
16Ø F	ORMAT	(/1)	έ. i	ΪÖ	OP	ĹĪ	MIC	rs :	11	Ť2	1	ĨŃ.	ITE	R	٠. T	31	177	NL	יס	. T	ıø.	1	IVL	01		
1 T	51.'N	PTS	ί.Τ	62.	ĪNH	AR	MĪ.	Ť7	2	ίÑ	PR	TN	τī	/Τ?	21	14	เวิด	x.	žĊ	12.	Ŕ)	\mathbf{n}	1 3	i.		
21	2.09X	. i 2.	. 8x	Ĩí)				-,		• ••		• •				.,-							•••		
Ξŵ	RITE(5.1	701)	Ża	ίzο	ACI	-																			
170 F	ORMAT	$\overline{(/1)}$	ί.Ť	co	NVE	RC	F Nr	1F	ÞΔ	RΔ	MF	TF	253	. *	τı	α .	17	יואי	, π)	57	. • 7	'04	n n			
17	34.F1	7.2	ia	¥ . 1	PFI	្រា	3)	- 14	. "	ann.	• • • •							~	* * *		, d.					
1.1	RITEI	5.70	รด์เ	75	MRD	č i	25 75	/R n	C.	Nμ	פת	.71	5 MB	125	27.1)										
180 5	ORMAT		ííý.		FMR	Fn	a ri	ເລເ	тM	PF	ΠAI	ىتىر. NCI	- 116 6 Q 1	201 21	т л	Ŕ	14	ΔR	мон		22	<u>م</u> ه	ъ	υF	1.0	٩Ū
11	105 1	HQ RA	NON.	ic	510	μ. Έ.α.	2 N I	19 19	JT	25	1	НΔ	2 M.4	4.ι	73	17	17	5 R R		F R (γ ⁰	Q.,	'	** **		.
× 1 × 1	761 ·	271	17	FMP	1 7	02	4,19 1,19	215		AN	'n.#	1	51110 T # 1	2	, 13		1 ~ 1 D C	R I	14	, U, 26	1.	יסו	7	-20		
* 1	PEIG	2 7	, <u>-</u> '	105	าต่	~~.	705	, 1	2	71	ส้า	- 11	, 1 1 1		, <u>, </u>	יום- ייךי	14	្តែ	р с 10 р с 1	ia	່ວ່າ	-	• •	ل ل	1	
ń	ດີ່ເຕັ	-, T=1	ึ่งบ.	ΔpM	1 1 1	Ξ,	1.25			л 4.	a Cl	+ 7	للشلا		· • •	11		÷ +								
U V	-NUD2.		1.111	m154'																						
	-1141 ⇔T≑1	+																								
ាត ហ		5 10	301	Ŧ	750	1 7	、 -	75''		١.	75	моч			/		4D P	07	π١.							
107 5	00 M A TA	3411 194	700 TO	e ' '	251	11	194	- C. J	. L 1 1871	ά,	25) 7	1101 712	111	/ , f /	1.4	. C. (Y	100 D F	10	5		<i>.</i> ۲	T (E	тņ		
100 5	1009 11	2514	, 16° מיצ	~÷:	4,1 1E	10	9 2 1 17 1 7	. 1 F	. E 1	К .	ς,	aλ	/ ,	01	• • 4	1		τø	• 3	, J /	۰ <i>i</i> ,	12	, D +	12	•	
	400,11 0 T T C / /	: L 4 8 2 - 19 4	2 • 3 707 •	,11	10,	8 P -	5 1 k 5 4	1.1		、																
	ለ1 (ይጓ ዕክጠላም	3 , ZX	1021	-K2	1111		, κ ι	55	1)	'			* * *	10.5	· / ·		-	~		• ••	101			05	-	11 PP
<i>CND</i> F		1551	, IX	•	NO-3	UE	St	K I	ES.	NC	25	15	1AI	¢ÇĘ	:51		13	4	្តដ	١٨I	100	10	ີຼ	- UF	11	нc
<u>‡</u> !	LU	, 164	¥•'!	nak	MUN	10	51		BA	ЧŅ	S	75	34	<u>'</u>	IAR	(M#	۲ <u>:</u>	14	4,	. <u>к</u>	s (F	1.	, <u> </u>	62	٠	
2	PIDER	AND#	₹ <u>`</u> ,`	1/7	, . 6	\$(i	•)	71	35	• '	DC	٠, ١	141	i., F	8.	4,	, 16	5,	12	, fi	(4,	ŀΕ	i . 4	13		
D	U ZØ	1 <u>=</u>],	NH/	4.RM																						
ĸ	=NHD2	~ I																								
J	=I+1,								_ ·																	
ZØ V	RITE(5,21	(Ø)	1,	RSL	0(۲),	К,	RS	SB	(J)														
ZIØF	ORMAT		, T3	5,I	2,1	41	,F8	3.4	, T	65	, I	2,	T74	ļ, P	-8,	4)	}									
C WR T	TE THE	7 HP	TΔD	T N/C	្រភព	R '	гнр	- h	IF ¥	т	CE.	CTI	፤ ሰነ	ı r	۱F	DR	ΤN	TO	:1T							

جو میں اس

83

The second states and the second second

¥.

,如果我们就能能不能能能是我们的。我们就是我们是我们就是我们们就是我们不能不是不是我们的我们的。""我们就是我们就是我们的?""你们就是你们就能让你们的,你们就能 一个,我们就是我们的,我们就是我们的,我们们就是我们的,我们就是我们们就是我们的,我们们就是我们的,我们就是我们的,我们就是我们的,我们就是你们的,你们们们们就是

220	WRITE(6,220) FORMAT(IHI,'RESULTS OF THE VLO ADJUSTMENTS'//) RETURN END	1393. 1394. 1395. 1395. 1397. 1398.
C	SUBROUTINE PRINT2(RHO,VI,VR,DVR,VDCOS,VDSIN,IDCOS,IDSIN,ZQMAG, 1ZQPHA,VRDC,DVRDC,VIDC,RHODC,AV,BV,ITER,ZQFLAG,JVLO,NH,NHP1)	1399. 1400. 1401. 1402.
CP(C1	RINT2 WRITES THE RESULTS OF EACH REFLECTION CYCLE OF THE LOOP TER IN SUBROUTINE LGSIG.	14Ø3. 14Ø4.
ÇTI	HE VARIABLE TYPES USED IN THIS SUBROUTINE ARE AS FOLLOWS: COMPLEX*16 RHO(NH),VR(NH),VI(NH),DVR(NH) REAL*8 VDCOS(NHP1),VDSIN(NHP1),IDCOS(NHP1),IDSIN(NHP1),ZQMAG(NH) REAL*8 ZQPHA(NH),VIDC,VRDC,DVRDC,RHODC,AV(NH),BV(NH) INTEGER ITER.JVD.NH.NHP1	1405. 1405. 1407. 1408. 1409.
C-~-W	RITE THE RESULTS OF THE REFLECTION CYCLE	1411.
	WRITE(G,100) ITER,JVLO	1412.
1.99	FORMAT(////1X, 'NONLINEAR ANALYSIS RESULTS: REFLECTION CYCLE #'	1413.
	1,14,' IN VLO ADJUSTMENT LOOP NUMBER',137)	1414.
110	WK11E(0,110) Format/200 (AV/T) DV/T))	1415.
114	FURMATIZZZ, AVII, $BV(1)$, $T = 1$ MUN	1410.
120	$\begin{array}{c} watch c(c(s),c(s)) \land t(s,w(t),t(s),t(s)) \land t(s) \land t$	1417.
	$\mathbf{W}_{\mathbf{T}}^{\mathbf{T}} \in [\mathbf{G}, \mathbf{G}] \times [\mathbf{G}]$	1/10
130	FORMATC/282, VR)	1420
1.44	WRITE(6, 120) (1, VR(1), 1=1, NH)	1421
	WRITE(6,140)	1422
149	FORMAT(/2X, 'DVR')	1423.
- 1	WRITE(6.123) (I.DVR(I).I=1.NH)	1424.
	WRITE(6.150)	1425.
150	FORMAT(/2%, 'VDCOS, VDSIN')	1426.
	WRITE(8.120) (1.VDCOS(I+1).VDSIN(I+1).I=1.NH)	1427.
	WRITE(8,160)	1428.
16Ø	FORMAT(/2X,'IDCOS,IDSIN')	1429.
	WRITE(6,12Ø) (I,IDCOS(I+1),IDSIN(I+1),I=1,NH)	1430.
	WRITE(6,170)	1431.
17Ø	FORMAT(/2X, 'ZQMAG, ZQPHA')	1432.
	WRITE(6,18Ø) (I,ZQMAG(I),ZQPHA(I),I=1,NH)	1433.
180	FORMAT(IH+,6(8X,4(I7,1PE12.3,0PF7.0,5X)/1X))	1434.
100	WRITE(5,190) VDCOS(1), IDCOS(1), VRDC, DVRDC, ZQFLAG	1435.
1.90	FORMA (7/2x, 'DC TERMS: VDCOS=', IPE10.3, T35, 'IDCOS=', IPE10.3,	1436.
	1134, VRUCH, IPE10.3, (76, UVRUCH, IPE10.3///2X, ZUFLAGH, 12)	1437.
		1430.
		1439,
		1441
		1442
	SUBROUTINE PRINT3(FG,FC,GJMAG,GJPHA.CJMAG.CJPHA.NH.NHP1)	1443.
C	······································	1444.
CPi	RINT3 WRITES THE FOURIER COEFFICIENTS OF THE DIODE CONDUCTANCE	1445.
CA	ND CAPACITANCE WHICH ARE USED IN THE SMALL-SIGNAL ANALYSIS.	1446.
C		1447.

÷.

Ì.

•

1448. 1449. 1450.

ne og som en skalet er en er førstandet av skalet men en er sen former atter

C---C---THE VARIABLE TYPES USED IN THIS SUBROUTINE ARE AS FOLLOWS: COMPLEX*16 FG(NHP1),FC(NHP1) REAL*8 GJMAG(NHP1),GJPHA(NHP1),CJMAG(NHP1),CJPHA(NHP1)

Statistics & Some

INTEGER NHP1,NH	1451.
CAND PHASES (IN DEGREES)	1452.
DO 107 I=1. NHP1	1454.
GJNAG(I)=CDABS(FG(I))	1455.
CJMAG(I)=CDABS(FC(I))	1456.
GJPHA(I)=DATAN2(DINAG(FG(I)),DREAL(FG(I)))*57.29577951DØ	1457.
10 CJPHA(1)=DA(AN2(DIMAG(FC(1)),DREAL(FC(1)))*57.295/7951D0	1458.
RECENTED TO THE STALL STORE AND VIEW (1459.
WRITE(5.100)	1461.
199 FORMAT(/1X, ' FOURIER COEFFICIENTS OF THE DIODE',	1462.
1' CONDUCTANCE AND CAPACITANCE WAVEFORMS'/)	1463.
WRITE(6,110)	1464.
110 FORMAT($/2x$, 'GJMAG,GJPHA') UNITELE JAGA (I CIMAC(I), CIMUA(I), I -1, NU)	1465.
126 FORMAT(14) - 5(A) / 1 F1/3 - 6 F / 1 F / 2 - 6 F / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /	1467
WRITE(6,13Ø)	1468.
13Ø FORMAT(/2X,'CJMAG,CJPHA')	1469.
WRITE(6,120) (I,CJMAG(I+1),CJPHA(I+1),I=1,NH)	1470.
WRITE(5,14Ø) GJMAG(1),CJMAG(1)	1471.
1 AD FURMATY/2X, DE TERMS: GUMAG = ', IPEID.3,4X, CUMAG = '	1472.
RETURN	1474.
END	1475.
	1476,
	1477.
SUBDOUTINE DOINTAIVIMAT ZIN ZICOUT IM THEDM SUGT NUDZ NUDI NUDZDI	1478.
C	1480.
CSUBROUTINE PRINT4 WRITES THE RESULTS OF THE SMALL-SIGNAL	1481.
CAND NOISE ANALYSIS. THESE INCLUDE THE CONVERSION LOSS MATRIX,	1482.
CTHE INPUT IMPEDANCE AT EACH SIDEBAND, THE IF OUTPUT IMPEDANCE,	1483.
CAND THE EQUIVALENT INPUT NOISE LEMPERATURE OF THE MIXER WITH ITS	1484.
C	1485.
CTHE VARIABLE TYPES USED IN THIS SUBROUTINE ARE AS FOLLOWS:	1487.
COMPLEX*16 ZIN(NHP1), ZIFOUT	1488.
REAL*8 XLMAT(NHP1,NHP1),TM,THERN,SHOT,REZIN(9),IMZIN(9)	1489.
INTEGER NHP1,1,J,K,NHD2P1,NHD2P2,NHD2	1490.
NHD2P2=NHD2P1+1	1431.
WRITE(6,100)	1493.
100 FORMAT(///44X,'CONVERSION LOSS MATRIX (DB)'/)	1494.
WRITE(6,200)	1495.
200 FORMAT(1X,T25,'4',T35,'3',T45,'2',T55,'1',T65,'0',T74,'-1',T84,	1496.
1 - 2 , 194, - 3 , 1104, - 4 //) DO 16 181 NHP1	1497.
	1490.
10 WRITE(6,300) K,(XLMAT(1,J),J=1,NHP1)	1500.
300 FORMAT(9X,14,4X,9F10.2)	1501.
WRITE(6,35Ø) XLMAT(NHD2P1,NHD2),XLMAT(NHD2P1,NHD2P2)	1502.
350 FURMAT(7/2X, UPPER SIDEBAND CONVERSION LOSS: $L(\emptyset, 1) = 1, F7.2$,	1503.
*' DR'/)	1504.
WRITE (6,39Ø)	1506.
39Ø FORMAT(2X,'INPUT IMPEDANCES',T25,'4',T35,'3',T45,'2',T55,'1',	1507.
*丁氏氏 「びり エフオ 「」」」 エロオ 「」マリ エロオ 「」マリ エコのオ 「」オリト	1 ដែលខ

r'r

· .

Ę.

Ĵ,

DO 20 I=1,NHP1 REZIN(I)=DREAL(ZIN(I)) 20 IMZIN(I)=DIMAG(ZIN(I)) ZIFOUT = ', F8.2, ' + J'*F8.2) WRITE(6,600) TM,THERM,SHOT 600 FORMAT(//2X,'EQUIVALENT INPUT NOISE TEMPERATURES:',T52,'TM' 1T67,'THERM',T82,'SHOT',T98/T46,F10.1,T62,F10.1,T77,F10.1) RETURN END SUBROUTINE PLOT(IGJDAT,CJDATA,VDDATA,IDDATA,NPTS,ITER,CØ) C---C---SUBROUTINE PLOT GRAPHS THE CURRENT THROUGH THE DIODE CONDUCTANCE C---(IGJ),THE DIODE CAPACITANCE (CJ),THE TOTAL CURRENT THROUGH THE C---DIODE (IGJ+ICJ), AND THE VOLTAGE ACROSS THE INTRINSIC DIODE TER -C---MINALS (Y(1)) (WHICH DOES NOT INCLUDE THE DIODE SERIES RESISTANCE) C---AS FUNCTIONS OF TIME,OVER ONE LOCAL OSCILLATOR CYCLE. C---C--C---THE VARIABLE TYPES USED IN THIS SUBROUTINE ARE AS FOLLOWS:
 REAL*8 IGJDAT(NPTS),CJDATA(NPTS),VDDATA(NPTS),IDDATA(NPTS)
 REAL*8 MAXIGJ,MAXCJ,MAXVD,MAXID,MINCJ,CØ
 INTEGER ITER,JPT,YPT,NPTS,IGJPOS,CJPOS,CØPOS,VDPOS,IDPOS,C,ZERO
 INTEGER BLANK,DOT,STAR,YGPOS(5Ø),YCPOS(5Ø),YIDPOS(5Ø),YVDPOS(5Ø)
C---DEFINE THE NUMERICS USED IN THE GRAPHS
 DATA BLANK,DOT,STAR,C,ZERO/' ','.','*','C','Ø'/
C---DETERMINE THE GRAPH SCALES
 MAXIGJ=DARS(IGJDAT(1)) MAXIGJ=DABS(IGJDAT(1)) MAXCJ=DABS(CJDATA(1)) MINCJ=CJDATA(1) MAXVD≃DABS(VDDATA(1)) MAXID=DABS(IDDATA(1)) DO 10 JPT=2,NPTS IF(MAXIGJ.LT.DABS(IGJDAT(JPT))) MAXIGJ=DABS(IGJDAT(JPT)) IF(MAXCJ.LT.DABS(CJDATA(JPT))) MAXCJ=DABS(CJDATA(JPT)) IF(MINCJ.GT.CJDATA(JPT)) MINCJ=CJDATA(JPT) IF(MAXVD.LT.DABS(VDDATA(JPT))) MAXVD=DABS(VDDATA(JPT)) IF(MAXID.LT.DABS(IDDATA(JPT))) MAXID=DABS(IDDATA(JPT)) 1Ø CONTINUE C---THE GRAPH HEADINGS WRITE(6,100) ITER 100 FORMAT(1H1,1X,'GRAPHS FOR REFLECTION CYCLE NUMBER ',14/) WRITE(6,110)

1

4

ŝ

÷

-

 $\sum_{i=1}^{n} e_i$

.

1

1

15Ø9.

151Ø.

1511.

1512. 1513. 1514. 1515. 1516.

1517.

1518.

1519. 152Ø. 1521.

1522.

1523.

1524. 1525. 1526.

1527.

1528.

1529.

1530.

1531.

1533.

1534.

1535. 1536. 1537. 1538. 1539.

154Ø. 1541. 1542.

1543.

1544.

1545.

1547.

1549.

155Ø.

1551.

1552.

1553.

1554.

1555.

1557.

1566.

110 FORMAT(/3X, 'IGJ(MA)', 5X, 'DIODE CONDUCTANCE CURRENT VS TIME FOR', 1559. 1' ONE LO CYCLE', T67, ' CJ(PF)', 5X, 'DIODE CAPACITANCE VS', 1560. 2' TIME FOR ONE LO CYCLE'/) 1561. C---THE LOOP FOR THE POINTS TO PLOTTED VERTICALLY DOWN THE PAGE 1562. C---PREVENT A DIVISION BY Ø IF THE CAPACITANCE DOES NOT VARY 1563. IF(MAXCJ.EQ.MINCJ) MAXCJ=MAXCJ+1.ØDØ 1564. C---LET CØ BE THE Y AXIS IF IT IS NOT IN THE RANGE MINCJ TO MAXCJ 1565.

IF(CØ.LT.MINCJ) MINCJ=CØ

TELOG OF MANOLA MANOL-OG	1567
$1 \cap (D,G)$, $MAXCO = CO$	1307.
CBPOS=D1+D1NT(50.BD07(MAXCJ-MINCJ)*(C0-MINCJ)+DSIGN(8.5D9,C0))	1208
DO 2 JPT=1,NPTS	1569
IGJPOS=Ø1+DINT(50.ØDØ/MAXIGJ*IGJDAT(JPT)+DSIGN(Ø.5DØ,IGJDAT(JPT)))	157Ø
CJPOS=Ø1+DINT(50.0D0/(MAXCJ-MINCJ)*(CJDATA(JPT)-MINCJ)+DSIGN(1571.
10.500.CJDATA(JPT))	1572
	1672
	1674
	1974.
IF(IGJPOS.GT.50) IGJPOS=50	12/2
IF(CJPOS.LT.1) CJPOS=1	1576.
IF(CJPOS.GT.49) CJPOS=49	1577.
CCLEAR THE HORIZONTAL LINE	1578.
$DO = 1 \text{ VBT} = 1 \text{ F} \sigma$	1570
	1 2 0 0
TOPOST VPT DELANK	1300
I YGPUS(YPI)=BLANK	1281
CSET THE GRAPH'S Y AXIS	1582
YGPOS(1)=DOT	1583.
YCPOS(CØPOS)≃DOT	1584
CTHE PLOTTED POINTS ARE REPRESENTED AS ASTERIKS	1585
	1506
	1500
YCPUS(COPUS)=STAR	1287
CWRITE 'CD' ON THE Y AXIS OF THE CAPACITANCE GRAPH	1288
IF(CØPOS.EQ.5Ø) GOTO 6	1589.
IF(JPT.EQ.1) VCPOS(CØPOS)=C	159Ø
IF(JPT, EQ, 1) $VCPOS(COPOS+1)=ZERO$	1591
GOTO 7	1592
	1600
	1993.
IF(JPI.EQ.I) YCPOS(CDPOS)=ZERO	1994
7 CONTINUE	1595
CPRINT THIS LINE OF THE GRAPHS	1596
WRITE(6.12Ø) IGJDAT(JPT).(YGPOS(YPT).YPT=1.5Ø).CJDATA(JPT).	1597
1(YCPOS(YPT), YPT=1.50)	1598
120 FORMAT(3PEO 3 2V E001 3V 12PEO 4 2V E001)	1500
2 CONTINUE	1600
	1000
WRITE(6,100) TIER	1001
WRITE(6,130)	16Ø2
13Ø FORMAT(//3X,'ID(MA)',5X,'TOTAL DIODE CURRENT VS TIME FOR ONE LO',	1603.
1' CYCLE'.T67.' VD(VOLTS)'.8X.' DIODE VOLTAGE VS TIME FOR'.	16Ø4
2' ONE LO CYCLE'/)	1605
CTHE DO LOOP FOR THE POINTS TO BE PLOTTED VERTICALLY DOWN THE PAGE	1606
	1607
$VO = 4$ 0 $\Gamma = 1$, $R = 10$	1007
IDPOS=25+DINT(25.0D0/MAXID*IDDATA(JPT)+DSIGN(0.5D0,IDDATA(JPT))	1008
VDPOS=25+DINT(25.ØDØ/MAXVD*VDDATA(JPT)+DSIGN(Ø.5DØ,VDDATA(JPT)))	16Ø9
CSET THE GRAPH LIMITS	161Ø
IF(IDPOS.LT.1) IDPOS=1	1611
IF(IDPOS.GT.50) IDPOS=50	1612
F(VDPOS T 1) VDPOS=1	1613
	1614
	1014
CCLEAK INE NORIZUNIAL LINE	1010
DO 5 481=1,50	1910
YIDPOS(YPT)=BLANK	1617.
YVDPOS(YPT)=BLANK	1618.
5 CONTINUE	1619
CSET THE V AVIS	1620
	1621
1107051207	1041
	1022
CTHE PLOTTED POINTS ARE REPRESENTED AS ASTERIKS	1623
	1624

an an san an Anna 👬 an Alb

4

utanati ng 🤺

danta in

YVDPOS(VDPOS)=STAR 1625. C---PRINT THIS LINE OF THE GRAPHS WRITE(6,14Ø) IDDATA(JPT),(YIDPOS(YPT),YPT=1,5Ø),VDDATA(JPT), 1626. 1627. 1(YVDPOS(YPT), YPT=1,5Ø) 1628. 14Ø FORMAT(3PF9.3,2X,5ØA1.3X,ØPF9.3,2X,5ØA1) 1629. 4 CONTINUE 1630. **3 RETURN** 1631. END 1632. 1633. 1634. 1635. BLOCK DATA 1636. C---1637. C-~-FOR COMMON/ADJLO/: 1638. REAL*8 LOVLO, UPVLO, VLOINC, IDCACC 1639. INTEGER LOFLAG, UPFLAG 1640. C---FOR COMMON/CONST/: 1641. REAL*8 QEL,BOLTZ,PI,TEQ 1642. C---FOR COMMON/DIODE/: 1643. REAL*8 ALP, PHI, GAM, CØ, IS, RS, RSKIN, FP, IF, IGJ, ICJ, GJ, CJ 1644. C---FOR COMMON/IMPED/: 1645. COMPLEX*16 ZEMBSB(9) 1646. REAL*8 ZER(8), ZEI(8), ZEMBDC, RSLO(8), RSSB(9) 1647. C---FOR COMMON/LOOPS/: 1648. INTEGER NH, NLO, NVLO, NPTS, NPRINT, NITER 1649. C---FOR COMMON/RKG/: 1650. REAL*8 ACC, VDINIT 1651. INTEGER NDIM 1652. C---FOR COMMON/TLINE/: 1653. REAL*8 ZØ,ZQACC 1654. INTEGER ZOFLAG 1655. C---FOR COMMON/VOLTS/: 1656. 1657. REAL*8 AV(8), BV(8), VIDC, VLO, VDBIAS, IDBIAS C---THE COMMON BLOCKS USED ARE: 1658. COMMON/ADJVLO/LOVLO, UPVLO, LOFLAG, UPFLAG, VLOINC, IDCACC 1659. COMMON/CONST/QEL,BOLTZ,PI,TEQ COMMON/DIODE/ALP,PHI,GAM,CØ,IS,RS,RSKIN,FP,IF,IGJ,ICJ,GJ,CJ COMMON/IMPED/ZER,ZEI,ZEMBDC,ZEMBSB,RSLO,RSSB COMMON/LOOPS/NH,NLO,NVLO,NPTS,NPRINT,NITER 166Ø. 1661. 1662. 1663. COMMON/RKG/ACC, VDINIT, NDIM 1664. COMMON/TLINE/ZØ,ZQACC,ZQFLAG COMMON/VOLTS/AV,BV,VIDC,VLO,VDBIAS,IDBIAS 1665. 1666. C---VARIABLES ARE INITIALIZED AS FOLLOWS: C---COMMON/ADJVLO/ VARIABLES: 1667. 1668. DATA VLOINC, IDCACC/Ø.5DØ,Ø.Ø2DØ/ 1669. C---COMMON/CONST/VARIABLES: 167Ø. DATA QEL,BOLTZ,PI/1.602192D-19,1.38062D-23,3.14159265358979D0/ 1671. DATA TEQ/296.0D0/ 1672. C---COMMON/DIODE/VARIABLES: 1673. DATA ALP, PHI, GAM/40.0D0, 1.1D0, 0.5D0/ 1674. DATA CØ, IS, RS/2.ØD-13, 5.ØD-9, 5.ØDØ/ 1675. DATA FP, IF/15.0D9, 15.0D8/ 1676. DATA RSKIN/4.7434D-6/ 1677. C---COMMON/IMPED/VARIABLES: 1678. DATA ZER(1),ZER(2),ZER(3)/48.ØDØ,64.48DØ,29.Ø2DØ/ 1679. DATA ZER(4), ZER(5), ZER(6)/59.18DØ, 43.5DØ, 68.31DØ/ 168Ø. DATA ZER(7), ZER(8)/61.45DØ.81.49DØ/ 1681.

DATA ZEI(1), ZEI(2), ZEI(3)/18.74DØ, 99.15DØ, 166.6DØ/

з

arrente de la construcción de la co La construcción de la construcción d

a anti a

3 - <u>1</u>-

ž.,

and the state of the second second

a sheker sheker a sheker ta

1682.

DATA ZEI(4).ZEI(5).ZEI(6)/232.4DØ.299.2DØ.367.8DØ/	1683.
DATA ZEI(7),ZEI(8)/438.5DØ.511.4DØ/	1684.
DATA ZEMBSB(1),ZEMBSB(2)/(59.18DØ,232.4DØ),(29.Ø2DØ,166.6DØ)/	1685.
DATA ZEMBSB(3),ZEMBSB(4)/(64.48DØ,99.15DØ),(48.ØDØ,18.74DØ)/	1686.
DATA ZEMBSB(5),ZEMBSB(6)/(50,0D0,0.0D0),(48.0D0,-18.774D0)/	1687.
DATA ZEMBSB(7),ZEMBSB(8)/(64.48DØ,-99.15DØ),(29.Ø2DØ,-166.6DØ)/	1688.
DATA ZEMBSB(9)/(59.18DØ,-232.4DØ)/	1689.
DATA ZEMBDC/5Ø.ØDØ/	169Ø.
CCOMMON/LOOPS/VARIABLES:	1691.
DATA NH,NLO,NPTS,NVLO,NITER,NPRINT/8,1,51,50,500,100/	1692.
CCOMMON/RKG/VARIABLES:	1693.
DATA VDINIT,ACC,NDIM/Ø,ØDØ,1.ØD~6,1/	1694.
CCOMMON/TLINE/VARIABLES:	1695.
DATA ZØ,ZQACC/2ØØ.ØDØ,Ø.Ø1DØ/	1696.
CCOMMON/VOLTS/VARIABLES:	1697.
DATA VDBIAS,IDBIAS/Ø.ØDØ,Ø.ØØ2DØ/	1698.
DATA VLO/2.5ØDØ/	1699.
FND	1700.

Ť

7

and the state of the state of the state

र्षकार्ष्ट्रेज्य विद्यम् विद्यम् कर्णक

<u>,</u>

ANALYSIS OF A 15.00 GHZ MICROWAVE MIXER

INFUT DATA

CIODE PARAMETERS:	ALP 40≠000	РНІ 1.100	GAM C+500	RS 5 ∎001	C0 2+000D-13	IS 5.0000-09	RSKIN 4•7430-06
CPERATING FREQUEN	CIES AND TH	EMPERATURE:	FP 1.500D+10	IF 1.500D+09	TE0 256.000		
EIAS SETTINGS:	VCBIAS 0.0	1 CBI AS 0 • C02000					· .
ACJVLC VARIABLES:	VLC 2.500000	VL0 INC 0 •500000	I DCACC 0. 02000	0			
CANGS VARIABLES:	PRMT(1) (LOW LIM) 0.0	PRMT(2) (UP LIM) 0.12315971	PRMT(3) (INCR) C.12319971	PRHT(4) (ACC) 1.0000-06	Y(I) (VD) Q+O	DERY(1) (DV/DT) 1+000	NDIM (NEQS) I
LCOF LIMITS:	NITER 500	NLC NVLO 1 SC	NP15 51	NHARM NPI 8 10	TAINT Do		
CENVERGENCE PARAN	ETERS:	20 200•00	20A4 1 • 0000	cc D-02			

ENBEDDING IMPE	DANCES :		HARMONICS C	F THE LO			HARMONIC !	SIDEBANDS
	HARM#	ŽER	ZEI	ZĖ	MB	SIDEEAND#	ZEI	HESE
	DC	2.0000+02		5.000D+05		4	5 9 180+01	2+3240+08
	1	4-800D+C 1	1+8740+01	2.0000+92	0.0	Ė	2.9020+01	1-666D+02
	2	£.448C+01	9.9150+01	7.030D+01	9.9150+01	2	6-4480+01	9-9150+01
	3	2.9020+01	1.6660+02	3.503D+91	1.6660+02	ī	4-8000+01	1 874D+01
	4	5+9180+01	2.3240+02	6.534D+01	2.3240+02	ŏ	5.0000+01	0.0
	5	4.350D+01	2.5920+02	4 980D+01	2-9920+02	-1	A.8000401	-1.2770+03
	6	6+9310+01	3.6780+92	7.473D+01	3.6780+02	-2	6 4480401	-9-5150401
	7	6 •145D+01	4.3850+02	6.799D+01	4.3850+02	-3	2-9020+01	-1-6660+02
	8	E-1490+01	5+1140+02	8.813D+01	5.114D+02	4	5.9180+01	-2.3240+02

.

CIODE	SERIES	RES ISTANCES :	HARHONICS	OF THE	LO	HARMONIC	SIDEBANDS
			F ARM#	RS(F)	· •	SI CEBAND#	85.(F)
			DC DC	5.0000		4	6.1763
			1	5.56(5		3	6+0229
			2	5.8216		2	5.8419
			З	6.0062		1	5+6093
			4	6.1619		o	5+1837
			5	6.2550		-1	5.5511
			6	6+4530		-2	5.8008
			7	6.5376		-3	5.9893
			8	6.6432		-4	6.1473

RESULTS OF THE VLC ADJUSTWENTS

Ð

۰.

VALUES OF THE DC CURRENT AND LO VOLTAGE FOR CICLE 1 OF THE LCOP FOR ADJUSTING VLD TO GIVE 0.002000 AMPS ARE: IDCOS(1)=0.002145 VLD BEFORE ADJUSTMENT: 2.50000 VLD AFTER ADJLSTMENT: 2.00000 VALUES OF THE DC CURRENT AND LO VOLTAGE FOR CYCLE 2 OF THE LCCP FOR ADJUSTING VLD TO GIVE 0.002000 ANPS ARE: IDCCS(1)=9.001749 VLD BEFORE ACJUSTNENT: 2.00900 VLD AFTER ADJUSTMENT: 2.25000 VALUES OF THE DC CURRENT AND LO VOLTAGE FOR CYCLE 3 OF THE LOOP FOR ADJUSTING VLO TO GIVE 0.002000 AMPS ARE: IDCOS(1)=0.001945 VLO BEFORE ACJUSTMENT: 2.25000 VLO AFTER ADJUSTMENT: 2.37500 VALUES OF THE DC CURRENT AND LO VOLTAGE FOR CYCLE A OF THE LCCP FOR ADJUSTING VLO TO GIVE 0.002000 AMPS ARE: IDCOS(1)=0.002044 VLO BEFCRE ACJUSTMENT: 2.37500 VLO AFTER ADJLSTMENT: 2.31250 VALUES OF THE DC CURRENT AND LO VGLTAGE FOR CYCLE 5 OF THE LCCP FOR ADJUSTING VLO TO GIVE 0.002000 AMPS ARE: IDCOS(1)=0.001994 VLO BEFORE ACJUSTMENT: 2.31250 VLO AFTER ADJUSTMENT: 2.31250

NUNLINEAR ANALYSIS RESULTS: REFLECTION CYCLE # 15 IN VLO ADJUSTMENT LOOP NUMBER 5

CC TERXS:	voc	05=-8.844C-03	IDCOS=	1.5540-	·C3 VRDC=-2	.0380-01	DVRD	C=-1.4950-07				
ZGMAG.ZGPHA	1 5	2.1976-01 1.0000+00	-72. 180.	2	1.00CD+90 9.984D-61	18C. -180.	3 7	9.9998-01 1.0050+00	180. -179.	4 8	9•9980-01 1•0030+00	180. -178.
IDCCS, IDSIN	4 1 5	1.0440-02 -6.1800-0¢	-2.053D-03 -1.898D-05	26	-7.873D-04 -2.608D-06	-2.6610↔04 -1.075D*05	3 7	-3.379C-05 -9.241C-07	-1.0430-04 -6.0960-06	4 8	-1.3920-05 -6.0820-07	-3.470D-05 -3.831D-06
VDCC5+VDSIN	4 I 5	2.240D-01 5.9880-03	4.1060-01 -9.0170-04	5	8.173D~02 4.140D-03	-5.936D-02 -1.759D-04	3 7	1 -6560-02 2 -7499-03	-1.965C-03 -2.836C-05	4 8	8.973D-03 2.019D-03	-9.6680-04 -3.3290-05
LVR	1' 5	1+6080-07 1+0930-06	-2.787D-(7 -4.677D-07	2 6	3.5460-07 -1.0950-05	-8.7840-07 -4.2920-07	3 7	5.568C-06 -1.405D-05	-7.0020-06 1.0310-05	4 8	-4.904D-07 -2.184D-05	-1.416D-06 7.265D-06
\F	1 5	-9.3230-01 3.6120-03	-4.106D-01 -1.448D-23	2 E	1 • 19 6D-0 1 2 • 331D-0 3	3.0700-03 -9.8680-04	3 7	1 •2660-02 1 •4670-03	-9.4510-03 -5.9550-04	4 8	5-8780-03 1-0700-03	-2.5870-03 -3.6640-04
≠V(1}₁€V(1)) 1 5	1+156D+00 2+377C-03	0.0 -2.350D-C3	2 6	-3.787D-02 1.804D-03	-5.629D-02 -1.155D-93	3 7	5.908D-03 1.267D-03	-1.1420-02 -6.2060-04	4 8	3.095D-03 9.2980-04	-3.9530-03 -3.9160-04

2GFLAG≈ 0

. การกร้านสาย และสายสาย (การสายสาย (การสายสาย) (การสาย (การกรรม) (การสายสาย (การกรรม) (การสายสาย (การสายสาย) (กา

FEQUIFED LO POWER: 1.4740-03

o ' Ē

4. 1.1

GRAPHS FOR REFLECTION CYCLE NUMBER 19

.

۰

.

à

1.12111月1日には1.1211日に行いていた。1.1211日に、1.1211日に、1.1211日に行いていた。1.1211日に、1.1211日に、1.1211日に、1.1211日に、1.1211日

4

5

- 1 à

1.0

GRAPHS FOR REFLECTION CYCLE NUMBER 19

÷,

.

The second s

. . .

 \mathbf{S}_{ij} .

•

÷,

÷

n en sen de service de la s Associétées de la service d

Ś · , Ā

1+6100-02

7.3590-03

7.7720-16 1.6830-16

Ē

4

-93.

-17-

-8-

RESULTS OF THE SMALL-SIGNAL ANALYSIS

15

~2

-3

-4

GJNAG,GJPHA 1

CJMAG .CJPHA

7•1380[©]02 1•3570-C2

2+1460-14 4+8880-16

52.42

66.72

67.34

۰

۰

FCURIER COEFFICIENTS OF THE CIODE CONDUCTANCE AND CAPACITANCE WAVEFORMS

-38.

-60.

- 5.

55.71

62.22

59.91

CC TERNS:	GJNAG =	7.4760-02	CJMAG	= 2.C62D-	13					
				CENVERS	ION LOSS	MATRIX (D	8)			
		4	3	5	1	0	-1	-2	-3	-4
	4	0.0	38.24	36.71	32+35	32.05	36.30	44.04	59+41	67.43
	3	39+37	C •O	28.59	32.77	34.12	37.60	47.17	61.69	66.77
	2	36.72	30+33	0 + C	14.07	27.47	28.41	36.23	63=34	53.21
	1	35.10	30.77	15+81	0.0	S+87	27.91	27.28	37.84	42•7¢
	0	34.56	37.54	22.24	6.51	0=0	5+95	22.42	36,88	34.21
-	•1	42.58	37.44	27.55	28.72	5.47	0.0	14.60	30.25	34.26

~72. -92.

5+ -8∎

27.37

33.84

31.90

2-853D-02 8-810D-03

1 •9200~15 2 •3300-16

0.0

27.55

35.65

-95+

-93.

-12. -10.

29.34

0.0

37.55

4

.

- O - -----

35.68

38.75

0..0

37

3 7

13.01

32.43

31.70

5.07CD-02 1.135D-02

2-448D-15 3-504D-16

26

26

36.17

48+13

44.72

LPPER	SIDEBAND	COVERSION	LC95: L(0.	1) = 6	•51 DB					
LCWER	SIDEBAND	CONVERSION	LCSS: L(0	-1) = 5	•95 DB					
INPUT	IMPEDARCE	F5 4	З	2	1	C	-1	-2	-3	-4
REA	L{ZIN]:	9.14	£.01	10.16	19.35	94.14	23.38	10.97	8 - 10	9.26
1 🖓 A	G(ZIN):	-9.57	-13.52	-20.55	-38.64	-16.36	44.21	22.60	14.43	9.95
IF OU	TPUT IMPE	DANCE: ZI	FOUT = 94	1+14 + J	-18.36			-		
ECU I V	ALENT INPL	IT NOISE TE	#PEFATURES:		7¥ 458.3	148- 148-	RN • 2	SHOT 310-1		

28.03

37.20

36.34

APPENDIX II

Modifications to the Mixer Analysis Program for Running the Examples in Section 4

The mixer analysis program appearing in Appendix I of this report must be altered slightly in order to use it for the examples described in section 4. The appropriate statement modifications for running each example are listed on the following pages. Line numbers indicate whether the statements are to be inserted between or used as replacements for those in the program of Appendix I.

ŝ

A II.1: Alterations to the program in Appendix I for studying the effects of series inductance on the performance of the simple mixer circuit of Fig. 9 using a conventional Schottky-barrier diode. To represent the circuit of Fig. 8 replace line 622 with DATA ZR/50.0D0, 7*0.01D0, and substitute DATA Z0,ZQACC/ 50.0D0, 0.01D0/ for line 1696. For the Schottky diode whose junction capacitance is independent of voltage set GAM to zero in line 1674.

LS: THE DIODE SERIES INDUCTANCE WHICH WHEN COMBINED WITH ZR AND ZI PRODUCES THE EMBEDDING IMPEDANCES ZER AND ZEI. 190.1 199.2 LSDAT: ARRAY HOLDING THE VALUES OF LS FOR A COMPLETE RUN OF THE ¢ 190.3 С PROGRAM. 190.4 NRUN: COUNTS THE NUMBER OF COMPLETE RUNS OF THE PROGRAM. RESULT: ARRAY FOR STORING RESULTS OF COMPLETE RUNS OF THE PROGRAM. 209.1 221.1 ZI: IMAGINARY PART OF THE IMPEDANCE OF THE DIODE MOUNT WHICH WHEN 283.1 COMBINED WITH LS PRODUCES THE EMBEDDING IMPEDANCE ZEI. ZR: REAL PART OF THE IMPEDANCE OF THE DIODE MOUNT WHICH WHEN 283.2 294.1 C COMBINED WITH LS PRODUCES THE EMBEDDING IMPEDANCE ZER. 294.2 C---THE MAIN DRIVER PROGRAM 351.01 C----351.92 C---THE VARIABLE TYPES USED IN THIS ROUTINE ARE AS FOLLOWS: 351.03 C---FOR COMMON/CONST/: 351.04 REAL*8 QEL, BOLTZ, PI, TEQ 351.05 C---FOR COMMON/DIODE/: 351.06 REAL*8 ALP, PHI, GAM, CØ, IS, RS, RSKIN, FP, IF, IGJ, ICJ, GJ, CJ 351.Ø7 C---FOR COMMON/TLINE/: 351.08 REAL*8 ZØ,ZQACC 351.09 INTEGER ZQFLAG 351.1 C---FOR COMMON/VOLTS/: 351.11 REAL*8 VLO, VDBIAS, IDBIAS, AV(8), BV(0), VIDC 351.12 C---FOR VARIABLES NOT IN ANY COMMON BLOCKS: 351.13 COMPLEX*16 ZIFOUT 351.14 REAL*8 LSDAT(35),LS,RESULT(20,20),LOPWR,SHOT,THERM,TM,XLMAT(9,9) 351.15 INTEGER NRUN 351.16 C---THE COMMON BLOCKS USED ARE: 351.17 COMMON/CONST/QEL,BOLTZ,PI,TEQ COMMON/DIODE/ALP,PHI,GAM,CØ,IS,RS,RSKIN,FP,IF,IGJ,ICJ,GJ,CJ COMMON/TLINE/ZØ,ZQACC,ZQFLAG 351.18 351,19 351.2 COMMON/VOLTS/AV, BV, VIDC, VLO, VDBIAS, IDBIAS 351.21 C---THE VALUES OF LS FOR THE VARIOUS PROGRAM RUNS 351.22 DATA LSDAT/1.ØD-11,1.5D-11,2.ØD-11,2.5D-11,3.ØD-11,3.5D-11 351.23 *4.&D-11,4.5D-11,5.&D-11,5.5D-11,6.&D-11,6.5D-11,7.&D-11,7.5D-11 *.8.&D-11,8.5D-11,9.&D-11,9.5D-11,1&.&D-11,1&.5D-11,11.&D-11, *12.&D-11,13.&D-11,14.&D-11,15.&D-11,16.&D-11,17.&D-11,18.&D-11, 351.24 351.25 351.26 *19.&D-11,20.&D-11,21.&D-11,22.&D-11,23.&D-11,24.&D-11,25.&D-11/ 351.27 NRUN=Ø 351.28 C---RUN THE FROGRAM AS MANY TIMES AS THERE IS DATA 351.29 DO 10 I=1,35 C---SET LS TO ITS VALUE FOR THIS RUN 351.3 351.31 LS=LSDAT(I) 351.32 CALL LGSIG(LS,LOPWR) 353. CALL SMSIG(TM, SHOT, XLMAT, ZIFOUT) 355. C---INCREMENT THE VARIABLE WHICH COUNTS THE NUMBER OF RUNS 355.Øl NRUN=NRUN+1 355.Ø2 C---STORE THE RESULTS OF EACH RUN IN AN ARRAY 355.03 RESULT(NRUN,1)=CØ 355.04 RESULT(NRUN,2)=RS 355.05 RESULT(NRUN,3)=IS 355.06 RESULT(NRUN,4)=FP 355.07 RESULT(NRUN,5)=IF 355.Ø8 RESULT(NRUN, 6)=ALP 355.Ø9 RESULT(NRUN,7)=PHI 355.1 -RESULT(NRUN,8)=GAM 355.11 355.12 RESULT(NRUN,9)=IDBIAS RESULT(NRUN, IØ)=VDBIAS 355.13 RESULT(NRUN, 11)=TEQ 355.14

المتحوين والموجرين

والمحترية والمراجع والمحاج والمواجع

C - 2

and the set of the standard and the standard states and the set

.

RESULT(NRUN,12)=ZØ	355.15
RESULT(NRUN, 13)=VLO	355.16
RESULT(NRUN, 14)=LOPWR	355.17
RESULTINGUN 15)=LS RESULTINGUN 15)-DEAL(7)EOUT)	355.18
	355.2
RESULT(NRUN, 18)=XLMAT(5,4)	355.21
RESULT(NRUN, 19)=TM	355.22
RESULT(NRUN,2Ø)=SHOT	355.23
	355.24
CWRITE THE RESULTS OF ALL THE RUNS	355.25
IST FORMAT(11) IV 'RESHI'TS OF THE PHNS ON THIS PRINTOHT'//SQV 'DATA'/	355.20
1/T5, 'CØ', T16, 'RS', TZ7, 'IS', T38, 'FP', T49, 'IF', T59, 'ALP', T79, 'PHI',	355.28
2T81, 'GAM', T91, 'IDBIAS', T102, 'VDBIAS', T114, 'TEQ', T126, 'Z0')	355.29
WRITE(6,18Ø)(RESULT(1,J),J=1,12)	355.3
180 FORMAT (/12(1PE10.3,1X))	355.31
WKIIE(6,190) 196 Format////For theory to //To the terms to the tail	355.32
1^{2} FORMAT(77736A, RESULTS 7716, VLO, 139, LOPWR, 132, LS , 141, 1/RE(7 FONT)' T54. 'IN(7 FONT)' T54 'YL(9 I)' T84 'TM' T65	355 34
2'SHOT'.TIØ9, 'THERN')	355.35
	355.36
THERM=RESULT(I,19)-RESULT(I,2∅)	355.37
CWRITE THE RESULTS OF ALL THE RUNS ON A DISK FILE	355.38
WRIIE(12) (RESUL(1,J),J≈1,20) VDITE(6,200) (DESULT(1,1),3-12,20) TUEDM	355.39
WRITERS,2007 (RESOLICI,07,0-13,207,10-KM) 200 FORMAT/IV 9()DFT0 3 39))	355.4
2Ø CONTINUE	355.42
SUBROUTINE LGSIG(LS,LOPWR)	361.
REAL*8 LS	418.1
CALL ZEMBED(ZER, ZEI, ZEMBDC, ZEMBSB, LS, RS, RSLO, RSSB, RSKIN, FP, IF	437.
1,1081A3,KSSB,KSLO,LS,NH,NHP1,NHB2) Sherouting Zembel/zem zet Zember is de relo reed rekin	487.
REAL & PERINDI ZER, ZEL, ZENDOU, ZEMDSB, ES, RS, RSLU, RSSB, RSLN, RSLU, RSSB, RSLN, RSLU, RSSB, RSLN,	618
CTHE IMPEDANCES OF THE DIODE MOUNT ARE GIVEN:	621.
DATA ZR/50.000,7+1000.0D0/	622.
DATA ZI/8*0.000/	623.
CFORM THE EMBEDDING IMPEDANCES AT EACH HARMONIC OF THE LO	623.1
200 19 1=1,NM 200(T)	623.2
$1\emptyset$ ZEI(I)=ZI(I)+2.0D0*PI*FP*DFLOAT(I)*1.S	623.4
CFORM THE SIDEBAND IMPEDANCES (SIDEBAND I = ELEMENT NH/2 + 1 - I)	623.5
DO 30 I=1,NHP1	623.6
K=NHD2P1-I	623.7
IF (K, EQ, D) GOTD Z B	623.8
2 = 0 = 0 = 0 = 1 + 0 = 0 = 1 + 0 = 0 = 1 + 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0	624
	624.1
2Ø ZENBSB(1)=DCMPLX(ZENBDC,Ø.ØDØ)	624.2
30 CONTINUE	624.3
SUBROUTINE SMSIG(TM, SHOT, XLMAT, ZIFOUT)	969.
IVUDIAS, IUBIAS, KSSB, KSLU, LS, NHAKN, NHPI, NHD2/ DEALAS, ZED/NUARMA, ZET/NUARMA, BEED/NUBA, DELO/NUARMA, LE	1305.
WEITS (5.175) 1 S	1371.1
175 FURMAT(/1X, ' ADDITIONAL INPUT DATA: '.T5Ø, 'LS'/T46, 1PE1Ø.3)	1371.2
DATA VLOINC, IDCACC/Ø. 1DØ, Ø. Ø2DØ/	1669.
0ATA TEQ/295.0D0/	1672.
UATA ALM, MHI, GAM/34, /800,0.9000,0.500/ DATA COLLS RS/1 100-14 1 40-15 4 40-4	1674.
DATA FP. IF/115.009.4.009/	10/3.
DATA RSKIN/Ø.ØDØ/	1677.
C*** DELETE LINES 1683 TO 1693 SINCE THE EMBEDDING IMPEDANCES ARE	1683.
C*** FORMED IN SUBROUTINE ZEMBED.	1684.
DATA NILO, NPTS, NVLO, NITER, NPRINT/8, 1, 51, 50, 500, 100/	1692.
UATA VUINTI,AUU,NUIN79.909,1,90~6,17 DATA 79 70400/2900 6000 a aida(1694.
DATA VDBIAS, IDBIAS/0, 4D0, M. MIDD/	1698
DATA VLO/I.30D0/	1699.

٠

A DESCRIPTION OF A DESC

1999年には、1999年にあったが、1999年には、1999年には、1999年には、1999年には、1999年には、1999年には、1999年には、1999年には、1999年には、1999年には、1999年には、1999

and the strength of the second

Å.

A II.2: Alterations to the program in Appendix I for studying the effects of the series inductance on the performance of the simple mixer circuits of Figs. 8 and 9, using a Mott diode with the C-V relation given in Fig. 11. Only changes which are additional to those in AII.1 are listed.

.

21

5 <u>-</u>

4

Ċ B: THE Y INTERCEPTS OF THE C-V PIECEWISE LINEAR APPROXIMATION 117.1 ¢ USED FOR THE MOTT DIODE EXAMPLES. 117.2 С C: THE CAPACITANCE AT VOLTAGE Y(1) FOR THE MOTT DIODE. 121.1 C C(VD): FUNCTION WHICH RETURNS A VALUE OF CAPACITANCE FOR A GIVEN 302.1 VOLTAGE AT THE TERMINALS OF THE MOTT DIODE. 302.2 REAL*® X,Y(1),DERY(1),V,C CJ=2.ØDØ*PI*FP*C(DMIN1(Y(1),Ø.999DØ*PHI)) 864. 884. REAL FUNCTION C*8(VD) 898.01 C---898.02 C---C(VD) IS USED FOR THE MOTT DIODE EXAMPLES ONLY. 898.Ø3 C---THIS FUNCTION ROUTINE RETURNS THE PROPER VALUE OF CAPACITANCE FOR 898.04 C---A GIVEN VALUE OF THE DIODE VOLTAGE AS CALCULATED IN DRKGS. C---IT USES DATA FOR THE SLOPE AND C INTERCEPT OF THE PIECEWISE C---LINEAR APPROXIMATION TO THE C-V CURVE OF THE MOTT DIODE. THE DOPING 898.Ø5 898.06 898.07 C--- PROFILE OF THE MOTT DIODE WAS KINDLY SUPPLIED BY M.V.SCHNEIDER, 898.98 C---BELL LABORATORY, HOLMDEL, N.J. 898.09 C---898.1 C---THE VARIABLE TYPES USED IN THIS SUBROUTINE ARE AS FOLLOWS: 898.11 REAL*8 M(17), B(17), VLIM(18), VD 898.12 C---THE SLOPE AND INTERCEPT DATA 898.13 DATA M/I.2D-16,6.D-16,9.D-16,1.1#3D-15,1.783D-15,2.375D-15,3.D-15 898.14 1,3.964D-15,6.615D-15,9.2D-15,1Ø.455D-15,15.833D-15,21.75D-15 898.15 898.16 2,37.5D-15,74.D-15,154.5D-15,4132.657D-15/ DATA 8/9.78D-15,11.1D-15,11.4D-15,11.542D-15,11.753D-15,11.8D-15 898.17 1,11.80-15,11.7420-15,10.8410-15,9.6260-15,9.0360-15,5.9170-15 898.18 2,2.13D-15,-8.50D-15,-36.32D-15,-100.72D-15,-3442.372D-15/ C---THE VOLTAGE LIMITS ON THE REGIONS OF CAPACITANCE VARIATION 898.19 898.2 DATA VLIN/-4.DØ,-2.DØ,-1.DØ,-7.D-1,-.31DØ,-8.D-2,Ø.DØ,6.D-2,.34DØ 898.21 1,.47DØ,.52DØ,.58DØ,.64DØ,.68DØ,.76DØ,.8DØ,.84DØ,.8991DØ/ 898.22 I = 1898.23 IF(VD.LT.VLIM(1)) GOTO 15 898.24 898.25 IF(VD.EQ.VLIM(1)) GOTO 10 IF(VD.GT.VLIM(18)) GOTO 2Ø 898.26 C---FIND THE REGION IN WHICH THE VOLTAGE FROM DRKGS FALLS AND CALC, C 898.27 5 IF(VD.GT.VLIM(I)) GOTO 1Ø 898.28 C=M(I-I)*VD+B(I-1) 898.29 GOTO 25 898.3 1Ø I=I+1 898.31 898.32 GOTO 5 15 WRITE(6,1ØØ) VD,VLIM(1) 898.33 100 FORMAT(////1X,'UNDERFLOW: VD =',F8.4,' IS LESS THAN ',F7.4//) 898.34 898.35 GOTO 25 20 WRITE(6,200) VD,VLIM(18) 898.36 200 FORMAT(////1X,'OVERFLOW: VD =',F8.5,' IS GREATER THAN ',F8.5//) 898.37 **25 RETURN** 898.38 END 898.39 898.4 898.41 898.42 A II.3: Alterations to the program in Appendix I for studying the performance of the Schottky diode mixers when the zero voltage junction capacitance C0 is varied. One value of series inductance is used for each run. Only changes which are additional to those listed in A II.1 are shown here.

С	CØDAT: ARRAY HOLDING THE VALUES OF CØ FOR EACH RUN OF THE ENTIRE	131.1
C	ANALYSIS.	131.2
	REAL*8 CØDAT(2Ø).LS.RESULT(2Ø,2Ø).LOPWR,SHOT,THERM,TM,XLMAT(9,9)	351.15
C-	THE VALUES OF CØ FOR THE VARIOUS PROGRAM RUNS	351.22
	DATA CØDAT/1.ØD-15,,2.ØD-15,,3.ØD-15,4.ØD-15,5.ØD-15,6.ØD-15,	351.23
	*7.ØD-15,8.ØD-15,9.ØD-15,1Ø.ØD-15,II.ØD-15,I2.ØD-15,13.ØD-15,	351.24
	*14.ØD-15,15.0D-15,16.ØD-15,17.0D-15,18.ØD-15,19.ØD-15,	351.25
	*20.0D-15/	351.26
	DATA LS/.Ø4D-9/	351.27
	DO 1Ø I≐1,2Ø	351.3
C-	SET CØ TO ITS VALUE FOR THIS RUN	351.31
	CØ=CØDAT(1)	351.32
	RESULT(NRUN.1)=LS	355.04
	RESULT(NRUN.15)=CØ	355.18
	1/T5,'LS',T16,'RS',T27,'IS',T38,'FP',T49,'IF',T59,'ALP',T7Ø,'PHI',	355.28
	190 FORMAT(///58%, 'RESHLTS'//T6, 'VLO', T19, 'LOPWR', T32, 'C0', T41,	355.33

1. 1. 1.

T'G

<u>____</u>

5.

Sec. 2

¢.

いたが、そうか、いたがいた時、100時代は保護には適応は1000のです。 かんしょう かんしょう しゅうしん しょうしん しょうしょう たいしょう たいぼうさい やく

 $(1,2,1,2,2,2) \in \mathbb{R}^{n}$

APPENDIX III

Results of Program Runs to Study the Effects of Series Inductance and Junction Capacitance on the Performance of Some Simple Mixer Circuits Described in Section 4

This appendix contains graphs of the equivalent input noise temperature, upper sideband conversion loss and IF output impedance as a function of series inductance LS and junction capacitance C0.

The mixer analysis program, with the modifications in Appendix II, was used for each of three diodes in the mixer circuits of Figs. 8 (short circuited harmonics) and 9 (open circuited harmonics). The diodes were forward biased at 0.4 V in all cases, and the LO power adjusted to give a rectified dc current of 2.0 mA. The signal, LO, and intermediate frequencies were 119 GHz, 115 GHz, and 4 GHz respectively. 「「「「「「「「「「」」」」」」「「「「」」」」」」」」

PRECEDING PAGE BLANK NOT FILMED

A III.1: Mixer performance data plotted as a function of series inductance for three different diodes in the simple mixer circuits of (a) Fig. 8 and (b) Fig. 9. In all cases the diodes were forward biased at 0.4, and the LO level adjusted to give a rectified current of 2.0 mA. The signal, LO and intermediate frequencies were 119 GHz, 115 GHz and 4 GHz respectively.

x = Mott diode with a realistic C-V variation

A III.2 Mixer performance data plotted as a function of zero voltage junction capacitance for a conventional Ga As Schottky diode (GAM = .5) and a Ga As Schottky diode with no capacitance variation (GAM=0) in the mixer circuits of (a) Fig. 8 and (b) Fig. 9. The diodes were forward biased to 0.4 V and the LO level adjusted to give a rectified current of 2.0 mA. The signal, LO and intermediate frequencies were 119 GHz, 115 GHz and 4 GHz respectively. Graphs appear for nine different values of series inductance LS.

O = constant capacitance (GAM=0)

103

0 = constant capacitance (GAM=0)

、美国の生活を見ていたのはないないでものでも、

Çe - La para

<u>,</u> 11

107

o and the second se

j,

如此,是不是不是是不是不能。我们就是你们就是我们也能能能。""你们就是你们的。""你们们就是你们的。""你们,你们们就是你们的。""你们们,你们们们们们们们们们们们们们们们们们们们们们们们们们们们们们

 \bigcirc

108

 (\overline{c})

ACKNOWLEDGEMENT

The authors wish to thank M. V. Schneider of Bell Telephone Laboratories, Holmdel, N. J. for supplying the data on the doping profile of his Mott diodes.

PRECEDING PAGE BLANK NOT FILMED

.

REFERENCES

- Held, D. N. and Kerr, A. R., "Conversion loss and noise of microwave and millimeter-wave mixers: Part 1 - Theory" and "Part 2 - Experiment", IEEE Trans. on Microwave Theory and Tech., vol. MTT-26, no. 2, pp. 49-61, Feb. 1978.
- Held, D. N., "Analysis of room temperature millimeter-wave mixers using GaAs Schottky barrier diodes", ScD dissertation, Columbia Univ., New York, N. Y., 1976.
- [3] Torrey, H. C. and Whitmer, C. A., <u>Crystal Rectifiers</u>, MIT Radiation Lab. Series, vol. 15, New York, McGraw Hill, 1948.
- [4] Fleri, D. A. and Cohen, L. D., "Nonlinear analysis of the Schottky-Barrier mixer diode", IEEE Trans. on Microwave Theory and Tech., vol. MTT-21, pp. 39-43, Jan. 1973.
- [5] Egami, S., "Nonlinear, linear analysis and computer aided design of resistive mixers", IEEE Trans. on Microwave Theory and Tech., vol. MTT-22, pp. 270-275, March 1974.
- [6] Gwarek, W. K., "Nonlinear analysis of microwave mixers", M.S. thesis, M.I.T., Cambridge, Mass., 1974.
- Kerr, A. R., "A technique for determining the local oscillator waveforms in a microwave mixer", IEEE Trans. on Microwave Theory and Tech., vol. MTT-23, pp. 828-831, Oct. 1975.
- [8] Strutt, M. J. O., "Noise figure reduction in mixer stages", Proc. IRE, vol. 34, no. 12, pp. 942-950, Dec. 1946.
- [9] van der Ziel, A., <u>Noise: Sources, Characterization, and Measurement</u>, Englewood Cliffs, N. J., Prentice Hall, 1970.

PRECEDING PAGE BLANK NOT FLAND

. . 115

- [10] Kim, C. S., "Tunnel diode converter analysis", IRE Trans. on Electron Devices, vol. ED-8, no. 5, pp. 394-405, Sept. 1961.
- [11] Dragone, C., "Analysis of thermal and shot noise in pumped resistive diodes", Bell System Tech. Journal, vol. 47, pp. 1883-1902, 1968.
- [12] Uhlir, A., Jr., "Shot noise in p-n junction frequency converters", Bell Syst. Tech. J., vol. 37, no. 4, pp. 951-988, July 1958.
- [13] Saleh, A. A. M., <u>Theory of Resistive Mixers</u>, Cambridge, Mass., MIT Press, 1971.