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1. Introduction and General Theory

Inhomogeneous turbulence is defined in the literature as turbulence whose
statistics are functions of spatial position. The "statistic" of general
interest in this investigation is the turbulence spectrum, and particulariy
how the shape of the spectrum varies, from point to point in space, as a
consequence of well-defined spatial variations in the turbulence intensity

and/or integral scale.

The intensity, 01(5),1 = 1,2,3, is defined as
0;(x) = <u (x)u,(x)>" (1.1)

where ui(ﬁj is a turbuience velocity component of zero mean value, < >
denotes mean value, X is a three-dimensional vector coordinate defining
spatial position, and the so-called "subscript summation convention" is

not intended here. The integral scale, Aij](gj, 1,3,1 = 1,2,3, is defined as

Aij](ﬁ) = é Q-ij(ﬁ’f(]))dr (1.2)

where Qij(iat) is the "normalized" correlation function of the turbulence,
and rqy = (r,0,0) for 1 =1, r) = (0,r,0) for 1 =2, ryy = (0,0,r) for
1 = 3. The normalized correlation function itself is defined through the

fundamental equation+

Ci3(%p2p) = <ui())us(%5)> = 040%9)05(%5)Q;5(2 %) (1.3)

+For a complete derivation of Equ. (1.3) see Appendix A.



+n

which, by means of the coordinate transformation

X = {Xy¥xo) 5 1= XomXy (1.4)

becomes

Ciybxn) = cuy(x-r/2)us(xtr/2)> = op (x-r/2)o;{xtr/2)Q, (x,r) (1.5)
Again, the subscript summation convention is not intended in Eqs. (1.2}~
(1.5). It follows from Eqs. (1.1) and (1.2) that fully three-dimensional
inhomogeneous turbulence has three distinct intensities and twenty-seven

different scales.

In view of the definition of inhomogeneous turbulence, it can be shown

through the continuity condition for an incompressible fluid,

ol ou au
Voes=te 24 3=0 (1.6)

axl ax2 3X3
that, for fully three-dinﬁnsional inhomogeneous turbulence, changes in
the intensity of the turbulence are not independent of changes in the
integral scale. This circumstance exists by virtue of the fact that
spatial changes in the function Cij(ﬁlﬁ) arise from spatiai changes 1in
the turbulence intensity as well as spatial changes in the function Qij'
Indeed, the continuity condition yields two sets of partial differential
equations {see Appendix B) which together govern the complete kinematical
behavior of Cij’ and which clearly demonstrate the scale-intensity coupling.
This characteristic of inhomogeneous turbulence is of paramount importance
becauge it signifies that inhomogeneous turbulence is remarkably different

from homggeneous turbulence, where the respective values of the scale and
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intensity are quite independent of one another. It should also be pointed
out that inhomogeneous turbulence, by its very definition, is also noniso-
tropic, sinre even in its simplest forin, viz. the case where there is only
one direction of inhomogeneity, there will always exist a "preferred
direction" to the turbulence, that direction being the direction of inhomo-

geneity.

The space-varying spectrum of inhomogenecus turbulence, defined as the multi-

. . . 4
dimensional Fourier transform

\"15(2‘.’5) = f C”(i,g)e"i-k-'rd_ | (1.7)
of the correlation function Cij’ is expressed as
by3(2e) = ()7 1 oy{xr/2) s (xrr/2)9; j.(_a,_&')e"(-‘i"-'&’)'ﬁd_dg o (1.8)
where
6i5(%:k) = 1 Qps(xr)e”  hdp (1.9)

k is a three dimensional wave-number vector, and 1 ("iota") = V-1,

Note that the turbulence spectrum, as:givan-Hyvfga. (1.8), is not a ¥imple
product of the intensity and the energy spectrum of the normalized
correlation function, but rather is a multi-dimensional convo]ution'of

the spectral distribution

Si5(x:K) = s oi(i-g/z)gj(m_/z)e“ﬁ'ﬁdr (1.10)
and the tensor ¢ij(5,5). Indeed, N
P‘) = 1.3 1 t [
l’b'ij()-(-’-" = (EH—) S S1J(£:_I_<_"_li )¢1-j(_§_:_ )d__ (1-11)

tUnless otherwise indicated the Timits on all integrals are -« to 4=,
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which indicates that the distribution of energy in inhomoyeneous
turbulence is dependent upon the spectral distribution of the turbu-

lence intensity as well as the spectral distribution of Qij(i,g).



2. Correlation Function and Spectrum for Simple Inhomogeneous Turbulence

In order to investigate and understand the essential nature of inhomogeneous
turbulence, viz. varying scale and intensity and scale-intensity coupling,
and the effects of this nature on the shape of the spectrum, a simple one-
dimensijonal representation of inhomogeneous turbulence, with well-defined
variations in both the scale and intensity, is introduced here. Since it
wWill be necessary to compare the spectrum of inhomogeneous turbulence to

the spectrum of homogeneous turbulence, the formulation suggested by

Equ. (1.5) will be employed.

Inhomogeneous Turbulence with Varying Scaie Only

Accordingly, the correlation function of interest, say the correlation

between "upwash" components at two points along the x-axis, is written as
C3s(x,r) = < Wx-r/2)w(x+r/2) > = c3(x~r/2)03(x+r/2)033(x,r) (2.1)

where x and r are simple scalar variabies. In the following discussion

the subscript "3" will be omitted for brevity from the notation, and

it will be tacitly assumed that the turbulence component of interest is
always the upwash component. The normalized correlation function appearing

in Equ, (2.1) is now decomposed into the form

a(x,r) = o r) + 9Bk, (22
where Q(l) is a function of "r" only and defines the "homogeneous"

(2)

(i.e., constant) part of the turbulence scale, while Q is a function
of both x and r and defines the "inhomogeneous" (i.e., space-varying) part of
the turbulence scale, In their simplest form the functions Q(l), Q(z), and

Q have the shapes depicted respectively in Figs. l.a, 1.b, and 1l.c.
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In the form given by Equ. (2.2) it is possible to determine what effect
changes in the integral scale have on the shape of the spectrum of

inhompgeneous turbulence., To do so requires a Fourier transformation of

the form
d{x,k) =/ Q(x,r)e"krdr (2.3)
= o Uk + 6@ (x,0) (2.4)
where
¢(1)(k) = f Q(l)(r)e"‘krdr (2.5)
, and
32 k) = 5 ol (x,rpe Ky (2.6)

Choosing the functional form of Q(l) to be that given by the Dryden

approach, i.e.

ot (r) = (1-r/an))e7/2h (2.7)
M being the so-called "lateral” scale of the turbulence, and the

functional form of 0(2) to be

Q' (%) = e{x) [1-cos(—)1,|r| < an
aA
1
(2.8)
=0, |r[>ar
the resulting functions ¢(1) and ¢(2) are
2
2A,(1+30%)
o Wie) = 2" 0= apk (2.9)
(1+0%)2
and
A,sina
2w 1
o Bxa) = 2ol —r— (2.10)
& an—) -e%
a
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In Eqs. (2.8) and (2,10) the parameter "a" is a positive numher that defines
the domain of definition of 0(2) while ¢(x) is a function yet to be determined.

In view of this, the integral scale, defined here as

Alx) = 5 Q(x,r)dr = s Q(l)(r)dr + f Q(zkx,r)dr (2.11)
0 0 0
is written as
A(x) = Ayt AA{X) (2.12)
where
Ay = o (r)r (2.13)
0
and
an(x) = £ 02 (x,r)dr (2.14)
0
Choosing the functional form of A(x) to be
A(x) = Ay + (AZ-AI)U(X) - (2.15)
where U{x) is the unit step function, it follows that
| Aoty
e{x) = ( JU(x) (2.16)
ah,

Substituting Egs. (2.9), (2.10}, and (2.16), into Equ. (2.4), the complete

spectrum for this type of inhomogenecus turbulence becomes

P 13?  Mohy 21 2 sinaq
p{x,2) = 2h;074 > 2+ (=——)U(x)(—) —~--—-E*-J (2.17)
OB ' (140%) ak, a QI(EEJ “92]
where ?Aloz = p(x,0) , x<0.
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Inhomogeneous Turbulence with Varying Intensity Only

The effects of varying intensity on the shape of the spectrum will be
investigated by considering the case where
o{x) = 01+(az-u1)sinax (2.18)

For this case (see Appendix C)

S(x,k) = [65+{0,7a,) *sinax] 2ns (k) +o, (o,-0, )5 ines: [2n6 (a/2-k)+2n6 (a/2+k)]

02'01 2

+( ) {2ns({a-~k)-4nms{k)+2n6(atk)] (2.19)

and
2

%27%
) +(02—u1) sin ax]¢( )( +01(02-ul)sinax

2

qn(x;k) = [ég—?(

92791 2
(60 (k-a/2)00 P (ktes2)] + () 681 (km) b6 1 (o) (2.20)
where ¢(2) z 0 since there is no scale variation. MNote that even for the

case where (oz-ol)/ul<<1,

p{x,k) 01¢(1)(k)+0 {0 -cl)s1nax[¢ 1)(k a/2)+¢( )(k+a/2)] (2.21)
Expressing o as
2x
o5 —— (2.22)
chy

where "¢" is a positive number that effectively defines the wavelength

of the oscillatory part of the turbulence, Equ. (2.21) reduces to

p{x,0)=0 ¢(1)( 1(uz—cl)sinax[cp(l)(n-n/c)+¢(1)(n+n/c)] (2.23)

where, recall, Q= Alk.



Inhomogeneous Turbulence with Both Varying Scale and Intensity

Combining the two previous analyses into one to determine the overall effects

of varying scale and varying intensity results in
wix,n) = u§[¢(1)(n)+¢(z)(x,n)] + ul(oz-uilsinax[¢(1)(ﬂ-ufc)

+¢(1)(Q+n/c)] + ol(cz-cl)sinaxw(z)(x,n~1r/c)+¢(2)(x,S'a+n/c)] {2.24)

This expression can be written as

o(x,9) = v, (x0)4y (x,0) 4y, (x,9) (2.25)
where wh(x,n), given by Equ. (2.17), describes the effects of varying
scale only, wu(x,ﬂ), given by the last term on the right hand side of

Equ. {2.21), describes the effects of varying intensity only, and

(2)

¢0A(x,9) = ol(uz-ol)sinax[¢ (x,n-n/c)+¢(2)(x,n+n/c)] (2.26)

describes the effects due to scale-intensity coupling. It is instructive
to point out at this point one further reduction in the form of y(x,2)
which results from the case where changes in the scale and changes in the

intensity are both "small." For this circumstance

v(x,0) = v, (x,0) + v (x.0) (2.27)

the scale~intensity coupling being of no importance.



3, IMlustrative Examples and Discussion

The three specific cases of inhomogeneous turbulence analyzed in the
previous section were each studied for selected values of the various
parameters appearing in the respective formulations. Figure 2 is a plot

of Iw(x,u)/Zhlo%] for the set of values, p = (Az'ﬂl)/AI = 0,10,

a = 4n, and x > 0 for the case of varying scale only. (The case for

x<0 is not shown since that case is the well-known Dryden spectrum.)

The normalized correlation function Q{x,r) corresponding to these para-
meters is depicted in Fig. 3. In Fig. 2 note the sTight "dip" in the

shape of the spectrum immediately to the left of the so-called "knee";

this dip wltimately is due to the presence of the term 0(2)(x,r) in the
normalized correlation function and as such can be attributed directly to
the fact that there is a change in the magnitude of the scale of the
turbulence at « = 0. Clearly, the level of the dip depends on the value

of "p" while the Tocation of it, on the Q-axis, depends on the va]ue.of

"a". [Indeed, for the set of values p = 0.20, a = 2r, and x > 0 (see Fig. 4)
the spectrum of inhomogeneous turbulence has the "mild knee" characteristic
introduced and discussed relevant to Figure 19 oy Reference 1. Here, however,
the mild knee characteristic is due not only to the fact that a change in
the scale of the turbulence has occurred at x = 0, but moreso, to the fact
that this change has necessarily been accounted for whereas, in Reference 1,
the mild knee characteristic is due to changes in the intensity of the
turbulence, and results only when a "composite spectrum", j.e., a spectrum
shape that does not depend upon X but rather has the x~variation of the

intensity averaged out, is constructed.

~10-
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Figure 5 is a plot of [w(x,u)/ZAulzl for the case of varying intensity only
for the values, q = £n2~01)/u1 = 0,10 and ¢ = 1.00, The values sinax = 0.00
and sinuX = 1.00 were chosen since these are the cases for which the varia-
tions in the intensity respectively make their minimum contribution and
maximum positive contribution to ¢(x,). Note the presence of the "hump",
in the shape of the spectrum for sinax = 1.00, for the range of values of

2,2.04046,05 this hump is due to the presence of intensity variations of the

form
92791 2nx 21X
Ao = | ) sin{—)= 0,10 sin{~—) (3.1)
01 ch A

Indeed, if c becomes ¢ = 0.50 while q remains unchanged, the hump moves
farther out on the 9-axis and consequently becomes more pronounced (see
Fig. 6). The mild knee characteristic for this case cannot be produced
regardiess of the choice of values of q and c; hence, it may be concluded
that the mild knee characteristic for turbulence with varying intensity

is at best a second-order effect.*

Figure 7 is a plot of [w(x,n)/ZcIZAl] for the values p = 0.10, q = 0.10,
a = 4n, c = 1,00, sinax = 1.00, and x > 0 for the case of both varying
scale and varying intensity. The presence of both the "dip" and the
"hump" is as expected. For the chosen values of p and q the scale-
intensity coupling is a second-order effect and therefore has no notice-

able effect on the shape of the spectrum.

+A thorough analysis of the effects, on the shape of the spectrum, of "slow"

variations in the intensity of turbulence is presented in Reference 2.

-11-
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Second=-Order Effects

Second-order effects come in two varieties, one due to scale-intensity
coupling (see Equ. 2.26), and the other due to large variations in the
intensity such that terms of the form [(02-01)/01]2 are not negligible,
To ascertain which of these two varieties is more prominent the function
[W(x,n)/chzhll is plotted for values of p = 0,59, q = 0,50, a = 4n, and
¢ = 1,00 in Fig. 8 for the case where second-order terms due to scale-
intensity goup1ing are included while second-order terms due to large
variations in the intensity are neglected. The functional form of

o(x,8) for this case is given by Equ. (2.24) when sinex = 1,00. Figure 9
represents the case where secund-order terms due to Targe variations in the
intensity are i::juded while second-order terms due to scale-intensity

coupling are vieglected. The functional form of ¢(x,2) for this case is

| \b(X,9)=012[¢(1)(Q)+¢(2)(x,9)] + 01(02-01) sinax

¢(1)(9—v/c)+¢(1’(n+n/c)] +
{(oz-ol)zsinzax - %(02~02)2]¢(1)(9) +

9979 2

(—) 168D (-2n/c) +e’ D (@r2nsc)) (3.2)

The spectrum shape depicted in Figure 9 is that for sinax = 1.00.
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Appendix A:  Fundamental Form of Velocity Correlation Function

[ty

The correlation function Cij is defined as the mean value

Cij(ﬁl’ﬁz) = “ui(.&l)uj(_ﬁzb (A1)
of the two-point velocity product u1(51)uj(52). For three-dimensional
inhomogeneous turbuience, this quantity is a second-order tensor with

nine (9) distinct components, each component being formed by one of

the various combinations of 1,j = 1,2,3.

The Schwirtz inequality
IR () + uy(%)1% 2 0 (A.2)

for inhomogeneous turbulence demands that

!-

CTJ(*&’I’}-Z) = [Ci'i(i(-]_ ‘ﬁl)cjjtﬁzﬁf_z)] 2 (A.3)

and since .

is i
[C4 4 (XX )12 = [xug (%) Juy(x))>1% = ai(xy) (A.4)
it follows that
Cig(21:2)

<1 (A.5)

0 (-x-l)UJ (,52) -
Equation (A.5) represents nine (9) expressions (the summation convention

is not in effect!), and each one can be written as

= Q5(%.%) =1
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From Equ, (A.6) it follows that

Cij(,ﬁls,ﬁz) = ".i(ﬁl)“‘j(,ﬁz)qij(ilsiz) (A-”

where Qij(-x-l’iz’ is the "normalized" correlation function,

-24-



Appendix B: Derivatiop of Partial Differential Equations Governing
Kinematical Behavior gf.Eii

Beginning with the continuity condition
V‘y_="""_1'=0 (B,l)

where the subscript summation convention is in elTeut, we have

w4 (x,) Ieus (X, Jui{x,)>
sz 9 Cs =g 17 (8.2)
X X
2j 2j
and
u.(x,) Bely (X, UL (X,)>
« U u(gy)e 0= 1T (8.3)
29X X
11 11
With the transtormation
8 = Xr/2 and x, = xr/2, (8.4)
the partiat derivatives in Eqs. {B.2) and (B.3) hecome
3 _ 20X, . 2 o, _ %B 3 (8.5)
By AXj Xy Dy By 8% ary
i i i
g ] o Xa 9 ar. 3 9
_ iy LIRS (B.6)
X aX: 9X ar. ax X or.
23 i Ej i 2J J J

and the partial differential equations that govern the behavior of Cij(ﬁl’ﬁz) are:

aC. . aC. .
i B P R (8.7)
axi ar‘1
St R £ I (5.8)
ax. 3 -
i "]



Appemdix Co Pavivaddamidod Tquation ohadgd

Since
ﬂ(XJ = “1 - (n..k,-ul)sin.xx

it follows that

ol X~ 1/2)o{x+r/2) = ni + "l(“P'"l) [Sina{x=1/2) + sina{xr/2)] ¢

3}
(nq-ul)“Sina(x-PIZ)Sinn(x+P/2)
e
which reduges to

)
LA

a(X=r/2)o(xH1/2) = o t 2n1(n2~nl)sinnxcos(ur13) +

" n
(_na-\‘ 1 ) - Is iu‘“ux-sinz (dl'/g) ]

With the definition
SUxK) = 7 a{x1/2) «(xtr/2)a " KTy
Equ. (C.3) transforms to

S5(x,k) = [n§+(u2-u])25in2ﬂxl2u$(k)+ﬂ1(02-d1)5inﬂx

\‘._,-\‘l o
t= "
F2ns{a/amk)+2ua (/1K) + ( <) R2es{a=K)~dwa (k) + 2aa{atk))
9
i
where § 1is the Dirac Tunction, and sin{ar/2) is written as
o ni‘/?_e-t ar/2

sin{ar/2) = s ot
21
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