NASA Contractor Report 2854

A Program for Calculating Load Coefficient Matrices Utilizing the Force Summation Method, L218 (LOADS) Volume II: Supplemental System Design and Maintenance Document

L. R. Anderson and R. D. Miller

CONTRACT NAS1-13918 SEPTEMBER 1979

.

-- . .

NASA Contractor Report 2854

A Program for Calculating Load Coefficient Matrices Utilizing the Force Summation Method, L218 (LOADS) Volume II: Supplemental System Design and Maintenance Document

L. R. Anderson and R. D. Miller Boeing Commercial Airplane Company Seattle, Washington

Prepared for Langley Research Center under Contract NAS1-13918

and Space Administration

Scientific and Technical Information Branch

1979

·• --

CONTENTS

- -

ľ

		Pa	ge			
1.0	SUN	1ARY	1			
2.0	INT	DDUCTION	2			
3.0	PRC	RAM DESIGN AND STRUCTURE	4			
	3.1	Overlay (218,0,0) – L218vc	7			
	3.2	rimary Overlay (L218,1,0) - RGEN	10			
	3.3	rimary Overlay (L218,2,0) - AVD	11			
		.3.1 AVD Programming Specifications	14			
	3.4	rimary Overlay (L218,3,0) – NPLDS/PLDS	25			
		.4.1 NPLDS/PLDS Programming Specifications	29			
	3.5 Primary Overlay (L218,4,0) - VBMT					
		.5.1 VBMT Programming Specifications	38			
	3.6	Pata Bases	47			
		.6.1 Input Data				
		.6.2 Output Data				
		.6.3 Internal Data	48			
4.0	ЕХТ	NT OF CHECKOUT 8	35			
REF	ERE	CES {	89			

iii

TABLES

Page

Page

1	Routines Called by L218vc	9
2	Routines Called by RGEN	13
3	Routines Called by AVD	16
4	Routines Called by NPLDS/PLDS	27
5	Routines Called by VBMT	36
6	Common Blocks in Each Overlay	53
7	Contents of Common Blocks	54
8	AVD Checkout Summary	86
9	NPLDS/PLDS Checkout Summary	87
10	VBMT Checkout Summary	88

FIGURES

No.

Dyloflex Flow Chart 1 3 $\mathbf{2}$ Overlay Structure of L218 (LOADS) 5 3 Input/Output of L218 Overlays 6 4 5 Macro Flow Chart of Overlay (L218,1,0) RGEN 12 6 Macro Flow Chart of Overlay (L218,2,0) AVD 15 7 Macro Flow Chart of Overlay (L218,3,0) NPLDS/PLDS 26 Macro Flow Chart of Overlay (L218,4,0) VBMT 35 8 9 10 11 Read/Write Activity on MERGMB in VBMT 52

No.

1.0 SUMMARY

Γ

The program L218 (LOADS) is structured as five overlays, one main overlay and four primary overlays. Input into the program is made via cards and magnetic files (tapes or disks). Output from the program consists of printed results and magnetic files containing load coefficient matrices for use in either L219 (EQMOD) or L221 (TEV156).

Although L218 (LOADS) serves as a module of the DYLOFLEX system, it can be operated as a stand alone program. Subroutines used by L218 include routines embedded in the program code and routines obtained from the standard FORTRAN and the DYLOFLEX libraries.

2.0 INTRODUCTION

The computer program L218 (LOADS) was developed for use as either a standalone program or as a module of a program system called DYLOFLEX (see fig. 1) developed for NASA under contract NAS1-13918 (ref. 1). Because of the DYLOFLEX contract requirements defined in reference 2, a program was needed to calculate dynamic load coefficient matrices for use as sensors in active control analyses and/or for use in calculating design loads.

The objective of this volume is to aid those persons who will maintain and/or modify the program in the future. To meet this objective, the following items are defined:

- Program design and structure
- Overlay purpose and description
- Input, output and internal data base descriptions
- Extent of checkout

Figure 1. – Dyloflex Flow Chart

- -----

3.0 PROGRAM DESIGN AND STRUCTURE

The program is structured as a system of five overlays (fig. 2):

Main overlay (L218,0,0)	L218vc
Primary overlay (L218,1,0)	RGEN
Primary overlay (L218,2,0)	AVD
Primary overlay (L218,3,0)	NPLDS/PLDS
Primary overlay (L218,4,0)	VBMT

The main overlay L218vc controls reading of general data cards by the primary overlay (1,0) RGEN, and calls the proper primary overlay to perform the execution requested. The main overlay does not read input cards.

The (1,0) primary overlay RGEN reads the general input data and the module cards (\$AVD, \$NPLDS, \$PLDS, or \$VBMT), which selects the primary overlay for execution.

The (2,0) primary overlay AVD reads the AVD card and tape input data, performs the AVD calculations, and writes the AVDTAP output tape.

The (3,0) primary overlay NPLDS/PLDS reads the NPLDS (or PLDS) card and tape input data, performs the NPLDS (or PLDS) calculations, and writes the NPTAP (or PTAP) output tape.

The (4,0) primary overlay VBMT reads the VBMT card and tape input data, performs the VBMT calculation, and writes the LTAP output tape.

Although L218 serves as a module of the DYLOFLEX system, it can be operated as a standalone program. When the program is run by itself, it becomes the user's responsibility to generate input data in the format required by L218; see figure 3 for the external file requirements and volume I of this document for the file contents and formats.

This program requires subroutines that are not part of the L218 code. Some routines are automatically obtained from the standard FORTRAN library when the program is loaded. Others, however, are stored in the DYLOFLEX alternate subroutine library, which must be declared at the time of loading. Subsequent sections describe each overlay separately and contain tables displaying the routines called and the library in which they are located. All subroutines are single entry point routines.

This volume describes the program in a macro sense. A more detailed discussion appears in the comments contained in the program source code. Each routine contains a preface describing the routine's purpose, author, analytical steps, modification history, input data, output data, glossary of variables, and list of other routines called. Embedded within the executable code are comments labeling each section and explaining logical branches.

Figure 2. – Overlay Structure of L218 (LOADS)

- - --

Figure 3. – Input Output of L218 Overlays

3.1 OVERLAY (218,0,0) - L218vc

The main overlay of L218 is itself named L218vc where v is a letter indicating the program version and c is an integer number indicating the correction number that applies to the v version.

Purpose of L218vc

Overlay L218vc directs the execution of the primary overlays and aids communication between primary overlays via labeled common blocks.

Analytical Steps of L218vc

Overlay L218vc performs its task in the following steps:

- 1. Overlay (L218,1,0), RGEN, is called to read general input and/or a keyword card \$AVD, \$NPLDS, \$PLDS, or \$VBMT.
- 2. L218 determines the next overlay to call.
 - a. If the keyword is \$AVD, jump to step 3.
 - b. If the keyword is \$NPLDS, jump to step 4.
 - c. If the keyword is \$PLDS, jump to step 4.
 - d. If the keyword is \$VBMT, jump to step 5.
 - e. If the keyword is \$QUIT, jump to step 6.
- 3. Overlay (L218,2,0) is called to read input data and perform calculations for AVD (acceleration, velocity, displacement). When finished, program control returns to step 1.
- 4. Overlay (L218,3,0) is called to read input data and perform calculations for NPLDS/PLDS (net panel loads or panel loads). When finished, program control returns to step 1.
- 5. Overlay (L218,4,0) is called to read input data and perform calculations for VBMT (shears, bending moments, and torsions). When finished, program control returns to step 1.
- 6. L218 program stop.

The macro flow chart of this overlay is shown in figure 4. The subroutines called are displayed in table 1.

I/O Devices of L218vc

There is no I/O performed in the (0,0) overlay. It is all performed in the primary overlays.

• • • •

Figure 4. – Macro Flow Chart of Overlay (L218,0,0) L218 vc

OVERLAY (L218,0,0)

PROGRAM L218vc

I

 RGEN
 OVERLAY
 (L218,1,0)

 AVD
 OVERLAY
 (L218,2,0)

 NPLDS
 OVERLAY
 (L218,3,0)

 VBMT
 OVERLAY
 (L218,4,0)

3.2 PRIMARY OVERLAY (L218,1,0) - RGEN

Purpose of RGEN

The L218 (LOADS) program's first primary overlay is named RGEN. RGEN reads general input data from cards and may write a J-MATRIX and a MASS MATRIX tape. Upon reading a keyword defining the LOADS module to be executed, control is returned to L218vc.

Analytical Steps of RGEN

RGEN performs its task in the following steps:

- 1. If this is not the first call to RGEN, jump to step 4.
- 2. The header matrix array (IQLTAP) is initialized. The subroutine PRGBEG is called to place the program header on the printed output.
- 3. A data card is read. It must begin with \$LOAD to assure that the card input file is correctly positioned. If it does not contain \$LOAD the fatal error counter is incremented and the program tries to process additional cards; however, module execution will not occur.
- 4. A program directive card is read, printed, interpreted, and acted upon according to the following conditions:
 - a. If the keyword is \$TITLE, begin step 4 again.
 - b. If the keyword is \$GEN, jump to step 5.
 - c. If the keyword is \$AVD, \$NPLDS, \$PLDS, or \$VBMT, jump to step 11.
 - d. If the keyword is \$END, jump to step 4.
 - e. If the keyword is \$QUIT, jump to step 11.
- 5. A general input directive card is read, printed, interpreted, and acted upon as follows:
 - a. If the keyword is JMAT, jump to step 6.
 - b. If the keyword is MASS, jump to step 7.
 - c. If the keyword is TRAN, jump to step 8.
 - d. If the keyword is MAXSUR, jump to step 9.
 - e. If the keyword is AVDTAP, EOMLOD, JTAPE, LTAPE, MASSTP, NPTAP, IPTAP, or SATAP, jump to step 10.
 - f. If the keyword is \$----, jump to step 4a.

- 6. Subroutine RGEN2 is called. This subroutine reads the J-matrix data and writes it on JTAPE. Program control returns to step 5.
- 7. Subroutine RGEN1 is called. This subroutine reads the MASS matrix data and writes it on MASSTP. Program control returns to step 5.
- 8. The transformation order is set. Program control returns to step 5.
- 9. The maximum number of surfaces is set. Program control returns to step 5.
- 10. The appropriate tape name is changed. Program control returns to step 5.
- 11. The appropriate keyword code is set. If the keyword was not \$QUIT, jump to step 13. If it was a \$QUIT card, jump to step 12.
- 12. Copy the final general output from IOUT to IUTFIL. Call PRGEND to place the program termination message on the printed output.
- 13. Return control to (L218,0,0).

The intended order of card input for RGEN is: \$LOAD card, \$TITLE card, \$GEN card, all GEN input for this execution run, \$module card.

The macro flow chart of this overlay is shown in figure 5. The subroutines called are displayed in table 2.

I/O Devices of RGEN

RGEN reads general loads card input and may write the J-matrix (JTAPE) and mass matrix (MASSTP) magnetic files.

3.3 PRIMARY OVERLAY (L218,2,0) - AVD

Purpose of AVD

The L218 (LOADS) program's second primary overlay is named AVD (acceleration, velocity, and displacement). AVD processes modal deflections (ϕ), modal slopes (ϕ_{θ}), and geometry data (BS, BBL, WL, θ_{X} , θ_{y} , θ_{z}) to generate the appropriate coefficient matrices required by L221 (TEV156) to calculate loads. The loads consist of translational and/or angular accelerations, velocities, and displacements at selected points on the structure. The axis system may be either reference or local (that system defined by the angular data (θ_{X} , θ_{y} , θ_{z}) in the geometry input, or by (θ_{X} , θ_{y} , θ_{z}) from card input. The resultant loads matrices are written on tape (AVDTAP).

Analytical Steps of AVD

AVD performs its task in the following steps:

- 1. It initialize FETS for disk storage files MERGE 1, MERGE 2, and MERGE 3.
- 2. The subroutine RAVD is called to read the AVD card input.
- 3. If matrices were card input, jump to step 9.
- 4. The subroutine DISK is called to read geometry, modes, and SA array from (SATAP).

Figure 5. – Macro Flow Chart of Overlay (L218, 1,0) RGEN

OVERLAY (L218,1,0)

PFOGRAM RGEN

FETAED + FETDEL + NAMFIL + PRGBEG + PRGEND + RGEN1 WRTETP + RGEN2 WRTETP +

- + indicates a routine in the DYLOFLEX alternate subroutine
 library
- All others are local to L218 (LOADS).

- 5. If interpolation is required, jump to step 8.
- 6. If transformation (rotation) is not required, jump to step 9.
- 7. The subroutine ROTATE is called to perform the required axis transformation (rotation); jump to step 9.
- 8. The subroutine NTERP is called to perform the necessary interpolation.
- 9. The subroutine MERGE is called to merge the matrices for this surface.
- 10. If more surfaces are to be processed, jump to step 2.
- 11. The subroutine AVDTAP is called to write the final tape (AVDTAP).
- 12. The subroutine RETURNF is called to return all scratch files.
- 13. Return control to (L218,0,0).

The macro flow chart of this overlay is shown in figure 6. The subroutines called are displayed in table 3.

I/O Devices of AVD

AVD reads card input. Geometry, mode shapes, slopes, and SA arrays are read from SATAP, which is normally written by the DYLOFLEX interpolation program L215 (INTERP), described in reference 3.

Regular and general print options control the printed output.

The coefficient matrices are written on the final output tape (AVDTAP) in a format acceptable to L219 (EQMOD) and L221 (TEV156) (refs. 4 and 5, respectively).

3.3.1 AVD PROGRAMMING SPECIFICATIONS

AVD Modal Data Interpolation Methods

When the interpolation option is selected, axis transformation (rotation) is not allowed. Interpolation is performed in the local axis system to an arbitrary (x,y,z) reference axis coordinate.

There are three interpolation methods available, one method for thin bodies and two methods for slender bodies. Their description is as follows.

1. Interpolation of Thin Bodies (INTER=1): Where $\phi_X = \phi_y = \phi_{\theta Z} = 0$, $\phi_Z, \phi_{\theta X}$, and $\phi_{\theta y}$ are obtained by calling AINTG, a subroutine in the DYLOFLEX library, with the appropriate SA array and multiplying the results by -1 to retain the proper sign convention of the modes.

۰,۰

Figure 6. – Macro Flow Chart of Overlay (L218,2,0) AVD

· – ---

15

Table 3. - Routines Called by AVD

OVERLAY (L218,2,0)

PRCGRAM AVD

ŗ

			و و چ خ و خ چو و د و و ک از او و و ک از او و ک ک ک ک ک ک ک ک ک		
AVETAP	FETDEL +				
	FETADD +				
	WRTETP+				
DISK	DISK1	DISK5	READT P+		
	DISK2	DISK5	READTP+		
	DISK5	READTP+			
FETADD+					
MERGE	MERGE 1				
NTEPP	NTERP1	AINTG+			
	NTERP5				
	NTERP6				
RAVE	RAVD1 {	RAVDIA	PAVD6		
		RAVC6			
	RAVD2 {	RAVD6			
		KOMSTR+			
	l	RAVD5B			
	RAVD3 {	RAVE58			
	l l	RAVD6			

+ Indicates a routine in the DYLOFLEX alternate subroutine library.

____. .

.....

Table 3. – (Concluded)

- ----

17

- -

2. Interpolation of Slender Bodies (INTER=2). This linear interpolation method between points is suitable for elastic axes that are straight and, preferably, parallel to the reference axis. To interpolate to a point x, given two structural node points I and I+1 and their coordinate locations (BS, BBL, WL):

$$I = \frac{I}{(x - BS_{I})/(BS_{I+1} - BS_{I})}$$

$$\phi_{x_{x}} = \phi_{x_{I}}$$

$$\phi_{y_{x}} = A(\phi_{y_{I+1}} - \phi_{y_{I}}) + \phi_{y_{I}} + LTT \quad \phi_{\theta_{x_{x}}}$$

$$\phi_{z_{x}} = A(\phi_{z_{I+1}} - \phi_{z_{I}}) + \phi_{z_{I}} + LT \quad \phi_{\theta_{x_{x}}}$$

$$\phi_{\theta_{x_{x}}} = A(\phi_{\theta_{x_{I+1}}} - \phi_{\theta_{x_{I}}}) + \phi_{\theta_{x_{I}}}$$

$$\phi_{\theta_{y_{x}}} = A(\phi_{\theta_{y_{I+1}}} - \phi_{\theta_{y_{I}}}) + \phi_{\theta_{y_{I}}}$$

$$\phi_{\theta_{z_{x}}} = A(\phi_{\theta_{z_{I+1}}} - \phi_{\theta_{z_{I}}}) + \phi_{\theta_{z_{I}}}$$

where:

-

 $LT = BBL_X - BBL_I$

$$LTT = WL_X - WL_I$$

To interpolate to a point x, given only one structural node point I and its coordinate locations (BS, BBL, WL):

then:

$$\phi_{\mathbf{x}_{\mathbf{X}}} = \phi_{\mathbf{x}_{\mathbf{I}}}$$

$$\phi_{\mathbf{y}_{\mathbf{X}}} = \phi_{\mathbf{y}_{\mathbf{I}}} - \mathbf{LB} \quad \phi_{\theta_{\mathbf{z}_{\mathbf{I}}}} + \mathbf{LTT} \quad \phi_{\theta_{\mathbf{x}_{\mathbf{X}}}}$$

$$\phi_{\mathbf{z}_{\mathbf{X}}} = \phi_{\mathbf{z}_{\mathbf{I}}} + \mathbf{LB} \quad \phi_{\theta_{\mathbf{y}_{\mathbf{I}}}} + \mathbf{LT} \quad \phi_{\theta_{\mathbf{x}_{\mathbf{X}}}}$$

$$\phi_{\theta_{X_{X}}} = \phi_{\theta_{X_{I}}}$$
$$\phi_{\theta_{Y_{X}}} = \phi_{\theta_{Y_{I}}}$$
$$\phi_{\theta_{Z_{X}}} = \phi_{\theta_{Z_{I}}}$$

where:

 $LB = BS_{X} - BS_{I}$ $LT = BBL_{X} - BBL_{I}$

 $LTT = WL_X - WL_I$

3. Interpolation of Slender Bodies (INTER=4). A linear interpolation method that interpolates to a node using rigid links attached to a reference node. To interpolate to a point x using only one structural reference node I:

$$\phi_{x_{x}} = \phi_{x_{I}}$$

$$\phi_{y_{x}} = \phi_{y_{I}} - LB \phi_{\theta_{z_{I}}} + LTT \phi_{\theta_{x_{I}}}$$

$$\phi_{z_{x}} = \phi_{z_{I}} + LB \phi_{\theta_{y_{I}}} + LT \phi_{\theta_{x_{I}}}$$

$$\phi_{\theta_{x_{x}}} = \phi_{\theta_{x_{I}}}$$

$$\phi_{\theta_{y_{x}}} = \phi_{\theta_{y_{I}}}$$

$$\phi_{\theta_{z_{x}}} = \phi_{\theta_{z_{I}}}$$

where I, LB, LTT, and LT are card input using the relationship defined in method 2.

Transformation of Axis

To transform the modal data from the local axis to the inertia (or arbitrary) axis requires that each mode ϕ_X , ϕ_Y , ϕ_Z , ϕ_{θ_X} , ϕ_{θ_Y} and ϕ_{θ_Z} at each node for the surface be transformed to the axis defined by θ_X , θ_Y , θ_Z as follows:

where T is the Euler transformation matrix for θ_X , θ_y , θ_z (see vol. I, sec. 5).

Note: All ϕ 's must be present; they are assumed zero if null.

Selection of Modes

In general, ϕ_X , ϕ_y , ϕ_z , ϕ_{θ_X} , ϕ_{θ_y} and ϕ_{θ_z} are available, but for a normal case only some will be selected. Keywords will be input to select the required modes and final \overline{M}_1 , \overline{M}_2 , and \overline{M}_3 matrices.

For the acceleration matrix (\overline{M}_3) , either translation (ϕ_x, ϕ_y, ϕ_z) and/or rotation $(\phi_{\theta_x}, \phi_{\theta_y}, \phi_{\theta_z})$ may be required. Furthermore, any combination of ϕ_x , ϕ_y , and ϕ_z may be required (similarly for $\phi_{\theta_x}, \phi_{\theta_y}$ and ϕ_{θ_z}). The same is also true for the \overline{M}_2 and \overline{M}_1 matrix.

As an example, if an \overline{M}_3 translational matrix for x, y, z is required, then \overline{M}_{3x} , \overline{M}_{3y} . \overline{M}_{3z} will be selected. If the \overline{M}_3 rotational matrix for Z is required, then \overline{M}_{3z} (rotational) will be selected.

Merging of Matrices

I

Matrices for a given surface are merged in the order x, y, z translational, x, y, z rotational. Any matrix that is null is omitted. If all of the matrices \overline{M}_3 were nonzero for surface IS, \overline{M}_3 for surface IS would merge as:

and similarly for $\overline{M_2}$ and $\overline{M_1}$. This is further illustrated by the following examples:

Assume the number of modes is three and that nodes 1 and 4 are selected from ϕ_X , ϕ_y , ϕ_x and ϕ_{θ_x} , ϕ_{θ_y} , ϕ_{θ_z} for translational and rotational acceleration mode shapes, respectively.

Then the merged matrix would appear as:

f

$$\begin{bmatrix} \phi_{x_{11}} & \phi_{x_{12}} & \phi_{x_{13}} \\ \phi_{x_{41}} & \phi_{x_{42}} & \phi_{x_{43}} \\ \phi_{y_{11}} & \phi_{y_{12}} & \phi_{y_{13}} \\ \phi_{y_{11}} & \phi_{y_{42}} & \phi_{y_{43}} \\ \phi_{z_{11}} & \phi_{z_{12}} & \phi_{z_{13}} \\ \phi_{z_{11}} & \phi_{z_{12}} & \phi_{z_{13}} \\ \phi_{z_{11}} & \phi_{z_{42}} & \phi_{z_{43}} \\ \phi_{\theta_{x_{11}}} & \phi_{\theta_{x_{12}}} & \phi_{\theta_{x_{13}}} \\ \phi_{\theta_{x_{41}}} & \phi_{\theta_{x_{42}}} & \phi_{\theta_{x_{43}}} \\ \phi_{\theta_{y_{11}}} & \phi_{\theta_{y_{12}}} & \phi_{\theta_{y_{13}}} \\ \phi_{\theta_{y_{41}}} & \phi_{\theta_{y_{42}}} & \phi_{\theta_{y_{43}}} \\ \phi_{\theta_{z_{11}}} & \phi_{\theta_{z_{12}}} & \phi_{\theta_{z_{13}}} \\ \phi_{\theta_{z_{11}}} & \phi_{\theta_{z_{12}}} & \phi_{\theta_{z_{13}}} \\ \phi_{\theta_{z_{41}}} & \phi_{\theta_{z_{42}}} & \phi_{\theta_{z_{43}}} \\ \phi_{\theta_{z_{43}}} & \phi_{\theta_{z_{43}}} \\ \phi$$

If nodes 1 and 4 are selected from ϕ_y and ϕ_z for translational velocity only, \overline{M}_2 would merge as:

$$\begin{bmatrix} \overline{M}_{2y} \\ \overline{M}_{2z} \end{bmatrix} = \begin{bmatrix} \phi_{y_{11}} & \phi_{y_{12}} & \phi_{y_{13}} \\ \phi_{y_{41}} & \phi_{y_{42}} & \phi_{y_{43}} \\ \phi_{z_{11}} & \phi_{z_{12}} & \phi_{z_{13}} \\ \phi_{z_{41}} & \phi_{z_{42}} & \phi_{z_{43}} \end{bmatrix}$$

22

AVD's Final Output Tape

After all surfaces have been processed and the matrices merged, the final tape will contain the merged matrices $[\overline{M}_1]$, $]\overline{M}_2]$, and $[\overline{M}_3]$. The maximum size of $[\overline{M}_1]$ is (100 x 70), similarly for $[\overline{M}_2]$ and $[\overline{M}_3]$.

To illustrate the format for final output, consider a load set of one surface with all matrices required (no zero matrices). Then:

These matrices would be written on the tape as:

The physical size of the matrices \overline{M}_1 , \overline{M}_2 , and \overline{M}_3 are equal and are appropriately loaded with zero rows as follows.

In general there may be several surfaces in a load set. Then:

where zero rows are added as required.

ų.

3.4 PRIMARY OVERLAY (L218,3,0) - NPLDS/PLDS

Purpose of NPLDS/PLDS

The L218 (LOADS) third primary overlay, NPLDS/PLDS, reads the specific card input data for net panel loads or panel loads. A net panel loads run will result in loads matrices written on tape NPTAP. A panel loads run will result in loads matrices written on tape PTAP.

Analytical Steps of NPLDS/PLDS

NPLDS/PLDS performs its task in the following steps:

- 1. It initializes FETS for disk storage.
- 2. The subroutine OPENMS is called to initialize a random access file, MERGB.
- 3. The subroutine NPLDA is called to read card input data.
- 4. The subroutine NPLDB is called to calculate \overline{M}_3 and/or read geometry for this surface (PLDS reads geometry but does not calculate \overline{M}_3).
- 5. The subroutine NPLDD is called to calculate \overline{M}_4 , \overline{M}_5 , and $\overline{\phi}$ for all frequencies.
- 6. If more surfaces are to be processed, jump to step 3.
- 7. The subroutine NPLDH is called to merge the matrices and write the final output tape NPTAP or PTAP.
- 8. The overlay closes all FETS and returns scratch files.
- 9. Return control to (L218,0,0).

The macro flow chart of this overlay is shown in figure 7. The subroutines called are displayed in table 4.

I/O Devices of NPLDS

NPLDS reads card input. Geometry and modal data is read from tape (SATAP) as provided by L215 (INTERP) (ref. 3). Equations of motion data is read from tape (EOMLOD) as provided by L217 (EOM) (ref. 6). Mass matrix data is read from tape (MASSTP) as provided by (L218,1,0), RGEN.

Note: Both SATAP and EOMLOD are required for either NPLDS or PLDS.

Regular and general print options control the printed output. For net panel loads, the loads matrices are written on tape (NPTAP) in a format acceptable to L219 (EQMOD) (ref. 4) and L221 (TEV156) (ref. 5).

For panel loads, the loads matrices are written on tape PTAP in a format acceptable to L219 (EQMOD) and L221 (TEV156).

Figure 7. – Macro Flow Chart of Overlay (L218,3,0) NPLDS/PLDS

OVERLAY (L218,3,0)

PROGRAM NPLDS/PLDS

_____ _____ ____ FETADD+ FETDEL+ FETADD+ NPLDA NPLDA1 KOMSTR+ NPLDA6 NPLDA6 NPLDA2 READTP+ NPLDA4 NFLDA3 NPLDA6 NPLDA6 READTP+ NPLDB NPLDB1 NPLDB2 WRITMS*

+ Indicates a routine in the DYLOFLEX alternate subroutine library.

* Indicates a routine in the FORTRAN subroutine library.

READTP+

27

Table 4. – (Concluded)

RETURNE+

- -----

3.4.1 NPLDS/PLDS PROGRAMMING SPECIFICATIONS

NPLDS (net panel loads) uses the modal deflection ϕ_Z with the mass matrix to obtain the inertia forces (\overline{M}_3 matrix) on each subsurface. It also uses the aerodynamic force matrices generated in the Equations of Motion program from which selected nodes are extracted to form the \overline{M}_4 , \overline{M}_5 , and $\overline{\phi}$ matricies. The resulting matrices are in the local axis only. PLDS is identical to NPLDS except that the $[\overline{M}_3]$ matrix is omitted. The following information is useful in understanding the program generation of the required matrices.

For each requested surface and selected nodes:

- 1. Calculate $[\overline{M_3}]$ and write it on NPTAP.
- 2. Form $[\overline{M}_4]$, $[\overline{M}_5]$, and $[\overline{\phi}]$ for all frequencies (k) and write them on NPTAP (also on PTAP if requested).

To calculate M₃:

- 1. Read the mass matrix.
- 2. Read scalars for $[\overline{\mathbf{M}}_3]$.
- 3. Read $\phi_{\mathbf{Z}}$ from disk (also geometry).
- 4. Read nodes to be used.
- 5. Calculate:

$$[\overline{\mathbf{M}}_3]_z = \mathrm{SCALR1} \begin{bmatrix} \mathbf{m}_1 \phi_{z_{11}} \cdots \mathbf{m}_1 \phi_{z_{in}} \\ \cdot & \cdot \\ \cdot & \cdot \\ \mathbf{m}_i \phi_{z_{i1}} \cdots \mathbf{m}_i \phi_{z_{in}} \end{bmatrix}$$

There is no contribution from ϕ_x and ϕ_y . \overline{M}_3 is in the local axis only. To calculate $[\overline{M}_4]$, $[\overline{M}_5]$, and $[\overline{\phi}]$:

- 1. Read nodes.
- 2. Read $F_{PL}(\dot{q})$, $F_{PL}(\ddot{q})$, $F_{PL}(\dot{\alpha}_g)$ from the EOM tape.
- 3. Read scalars for $[\overline{M}_4]$, $[\overline{M}_5]$, and $[\overline{\phi}]$.

4. If the structural and aero node points are identical:

where g = number of gust zones.

5. If the structural and node points are *not* identical, there are two options available in NPLDS for interpolating the aerodynamic forces from the aerodynamic nodes to the structural nodes.

Option 1: (OPT1)

Required data is as follows:

1. Card input of the force weighting matrix [P] (weighting matrix of aerodynamic forces from aerodynamic nodes to structural nodes).

2. $F_{PL}(\dot{q}), F_{PL}(\ddot{q}), F_{PL}(\dot{\alpha}_g)$, read from the EOM tape

The program calculates:

$$[\overline{M}_{4}] = \text{SCALR2} [P] \left[F_{PL}(\mathbf{q})\right]$$
$$[\overline{M}_{5}] = \text{SCALR2} [P] \left[F_{PL}(\mathbf{q})\right]$$
$$[\overline{\phi}] = \text{SCALR3} [P] \left[F_{PL}(\mathbf{a}_{g})\right]$$

where the size of:

E

[P]	is the number structural loads by the number of aerodynamic panels
$\left[F_{PL}(\mathbf{\dot{q}})\right]$	is the number aerodynamic panels by the number of modes
$\left[F_{PL}({{\vec{q}}}) \right]$	is the number aerodynamic panels by the number of modes
$\left[{\rm F}_{\rm PL}(\dot{\alpha}_g) \right]$	is the number aerodynamic panels by the number of gust penetration panels
Limitations:	

Number of structural loads \leq structural nodes \leq 100

Number of aero panels $\leq 100 \leq$ number structural node

Number of modes ≤ 70

Number of gust penetration panels ≤ 35

Number of structural nodes ≤ 100

Option 2: (OPT2)

Required data is as follows:

Read card input structural areas corresponding to structural nodes: $[a_S]$. 1.

2. Read structural (X, Y, Z)_S coordinates from INTERP.

Read local aero $(X,Y)_L$ coordinates from EOM. 3.

4. Read local aero areas
$$[A]_L = \begin{cases} A_1 \\ \cdot \\ \cdot \\ \cdot \\ A_i \end{cases}$$
 from EOM.

Read $F_{PL}(\mathbf{\dot{q}})$, $F_{PL}(\mathbf{\ddot{q}})$, $F_{PL}(\mathbf{\dot{\alpha}_g})$ from EOM. 5.

Program operations are as follows:

1. Calculate:

$$[P]_{L} = \begin{bmatrix} F_{PL_{11}}/A_{1} & \cdots & F_{PL_{1n}}/A_{1} \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ F_{PL_{11}}/A_{1} & \cdots & F_{PL_{1n}}/A_{1} \end{bmatrix}_{q, q, \alpha_{g}}$$

where:

 $\mathbf{F}_{in} = \mathbf{F}_{PL}(\mathbf{\dot{q}}), \mathbf{F}_{PL}(\mathbf{\ddot{q}}), \mathbf{F}_{PL}(\mathbf{\dot{a}}_g)$

 $[P]_{L}$ = matrices of aerodynamic pressures at aerodynamic nodes for \dot{q} , \ddot{q} , and $\dot{\alpha}_{g}$.

- 2. Call PLATEI using $[P]_L$ and $(X,Y)_L$.
- 3. Get SA from INTERP, extract transformation.
- 4. Insert transformation in SA array from step 2.
- 5. Call AINTG using (X,Y,Z) to interpolate $[p]_S$ (aerodynamic pressures on structural areas).
- 6. Calculate aerodynamic force at structural nodes due to \dot{q} , \ddot{q} , and $\dot{\alpha}_{g}$ as

$$\left[\mathbf{F}_{\mathbf{PL}}(\mathbf{\dot{q}}) \right]_{\mathbf{s}} \left[\mathbf{F}_{\mathbf{PL}}(\mathbf{\ddot{q}}) \right]_{\mathbf{s}}, \quad \left[\mathbf{F}_{\mathbf{PL}}(\mathbf{\dot{\alpha}_g}) \right]_{\mathbf{s}} = \begin{bmatrix} a_1 \\ a_j \end{bmatrix} \begin{bmatrix} p_1 \\ a_j \end{bmatrix} \begin{bmatrix} p_1 \\ a_j \end{bmatrix}$$

where $[P]_S$ is the aerodynamic pressure due to $\dot{q},\,\ddot{q},$ and $\dot{\alpha}_g$

7. Then:

$$[\overline{M}_4] = SCALR2 [F_{PL}(\dot{q})]_s$$

Similarly

$$[\overline{M}_{5}] = \text{SCALR2} [F_{PL}(\mathbf{\ddot{q}})]_{s}$$
$$[\overline{\phi}] = \text{SCALR3} [F_{PL}(\mathbf{\dot{q}})]_{s}$$

*Warning: This option is only valid over regions where $\frac{dp}{dx}$ and $\frac{dp}{dy}$ are equal or approximately equal to constants.

A LOAD-SET is a result of processing all surfaces requested following the \$NPLDS card, but before the next \$ card.

Note: The final output of PLDS is identical to that for NPLDS described above except that \overline{M}_3 matrix is omitted.

3.5 PRIMARY OVERLAY (L218,4,0) - VBMT

Purpose of VBMT

The L218 (LOADS) fourth primary overlay is named VBMT. VBMT reads the specific card input data to calculate shears, bending moments, and torsions and writes the load matrices on the magnetic file LTAP.

Analytical Steps of VBMT

VBMT performs its task in the following steps:

- 1. VBMT initialize FETS for disk storage.
- 2. The subroutine VBMTA is called to check all data for this load-set.
- 3. The subroutine OPENMS is called to initialize a random access file.
- 4. The subroutine VBMTA is called to read data for one load for this surface.
- 5. The subroutine VBMTC is called to calculate \overline{M}_3 for this load.
- 6. The subroutine VBMTD is called to calculate \overline{M}_4 , \overline{M}_5 , and $\overline{\phi}$ for this load.
- 7. If more loads or surfaces are to be processed, jump to step 4.
- 8. The subroutine VBMTF is called to merge the matrices and write the final tape LTAP.
- 9. If another load-set is to be read, jump to step 2.
- 10. Close all FETS and return scratch files.
- 11. Return control to (L218,0,0).

The macro flow chart of this overlay is shown in figure 8. The subroutines called are displayed in table 5.

I/O Devices of VBMT

VBMT reads card input. Geometry and modal data is read from tape SATAP as provided by L215 (INTERP) (ref. 3). Equations of Motion data is read from tape EOMLOD as provided by L217 (EOM) (ref. 6). J-matrix data is read from tape JTAPE as provided by (L218,1,0), RGEN.

Note: J-matrix data on JTAPE can also be used by NPLDS, since the mass matrix is the first record of each file.

Regular and general print options control the printed output. Loads matrices are written on tape LTAP in a format acceptable to L219 (EQMOD) (ref. 4) and L221 (TEV156) (ref. 5).

Figure 8. – Macro Flow Chart of Overlay (L218,4,0) VBMT

Table 5. - Routines Called by VBMT

.....

+ Indicates a routine in the DYLOFLEX alternate subroutine library.

* Indicates a routine in the FORTRAN subroutine library.

ľ

I

· · · · · · --- - ·

_

3.5.1 VBMT PROGRAMMING SPECIFICATIONS

To calculate $[M_3]$ for a given surface number (IS), the inertia forces at the structural nodes and in local axis are:

1

$$\begin{bmatrix} F_{x_i} \end{bmatrix}_{\text{local axis}} = [m_i J [\phi_x] - [m_i z_i J [\phi_{\theta_y}] - [m_i y_i J [\phi_{\theta_z}]]$$
$$\begin{bmatrix} F_{y_i} \end{bmatrix}_{\text{local axis}} = [m_i J [\phi_y] + [m_i z_i J [\phi_{\theta_x}] - [m_i x_i J [\phi_{\theta_z}]]$$
$$\begin{bmatrix} F_{z_i} \end{bmatrix}_{\text{local axis}} = [m_i J [\phi_z] + [m_i y_i J [\phi_{\theta_x}] + [m_i x_i J [\phi_{\theta_y}]]$$

where $[F_{x_i}]$, $[F_{y_i}]$, and $[F_{z_i}]$ are the matrices of inertia forces in the x, y, and z directions. ϕ_x , ϕ_y , ϕ_z , ϕ_{θ_x} , ϕ_{θ_y} and ϕ_{θ_z} are obtained from the INTERP tape (SATAP) and m_i , $m_i x_i$, $m_i y_i$, and $m_i z_i$ are obtained from the J-matrix (general card input or tape). These local axis forces are transformed to the inertia axis by:

$$\begin{bmatrix} F_x \\ F_y \\ F_z \end{bmatrix}_{inertia} = SCALS [T] \begin{bmatrix} F_x \\ F_y \\ F_z \end{bmatrix}_{local}$$

where:

$$[F_{x}] = \begin{bmatrix} F_{x_{11}} & \cdots & F_{x_{1n}} \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ F_{x_{i1}} & \cdots & F_{x_{in}} \end{bmatrix}$$
 n = number of modes
i = number of nodes

 $[F_y]$ and $[F_z]$ are similar to $[F_x]$. [T] = the coordinate transformation matrix using θ_x , θ_y , θ_z from the geometry data provided by INTERP.

The matrix is formed using the Euler transformation triad [X] [Y] [Z] or some other combination, where [X], [Y], [Z] are the individual axis transformation matrices making up the triad (see sec. 4.0, vol. I).

SCALS = 1.0 or SCALE from card 6.9.3 (sec. 6.3, vol. I) for the specific structural panels.

The forces in the inertia axis are summed at all required nodes to calculate shears at point A (load station or dummy load station).

$$v_{x_{A}} = \text{SCALE1} \Sigma_{i} \quad F_{x_{i}} + \Sigma_{j} \quad \text{SCALED}_{j} \quad F_{x_{D_{j}}}$$
$$v_{y_{A}} = \text{SCALE1} \Sigma_{i} \quad F_{x_{i}} + \Sigma_{j} \quad \text{SCALED}_{j} \quad F_{x_{D_{j}}}$$
$$v_{z_{A}} = \text{SCALE1} \Sigma_{i} \quad F_{x_{i}} + \Sigma_{j} \quad \text{SCALED}_{j} \quad F_{x_{D_{j}}}$$

where:

i = required structural node numbers.

j = required dummy node numbers

SCALE 1 is from card set 6.0 (sec. 6.3, vol. I)

and

$$F_{x_{D_{j}}} = V_{x_{D_{j}}} = SCALE1\Sigma_{i} F_{x_{i}}$$

$$F_{y_{D_{j}}} = V_{y_{D_{j}}} = SCALE1\Sigma_{i} F_{y_{i}}$$

$$F_{z_{D_{j}}} = V_{z_{D_{j}}} = SCALE1\Sigma_{i} F_{z_{i}}$$

$$dummy node forces at dummy node j$$

Note: If $SCALED_j = +2.0$ (see vol. 1, sec. 6.3, card 6.9),

$$F_{y_{D_j}} = M_{x_{D_j}} = M_{z_{D_j}} = \Delta_y \text{ is set} = 0$$

If SCALED_j = -2.0,

$$F_{x}D_{j} = F_{z}D_{j} = M_{y}D_{j}$$
 is set = 0

and $SCALED_j = |-2.0|$.

ł

The moments at the structural nodes are obtained by $[J] [\phi]$ (local axis) as follows: $[M_{-}] = [m_{2},][\phi_{-}] + [m_{2},][\phi_{-}] + [Ixx_{2}][\phi_{0}] + [m_{2}, y_{2}][\phi_{0}] - [m_{2}, y_{2}][\phi_{0}]$

$$\begin{split} &[\mathsf{M}_{x_{i}}] = [\mathsf{m}_{i}z_{i}][\phi_{y}] + [\mathsf{m}_{i}y_{i}][\phi_{z}] + [\mathsf{Ix}_{x_{i}}][\phi_{\theta_{x}}] + [\mathsf{m}_{i}x_{i}y_{i}][\phi_{\theta_{y}}] - [\mathsf{m}_{i}x_{i}z_{i}][\phi_{\theta_{z}}] \\ &[\mathsf{M}_{y_{i}}] = [\mathsf{m}_{i}z_{i}][\phi_{x}] + [\mathsf{m}_{i}x_{i}][\phi_{z}] + [\mathsf{m}_{i}x_{i}y_{i}][\phi_{\theta_{x}}] + [\mathsf{Iy}y_{i}][\phi_{\theta_{y}}] + [\mathsf{m}_{i}y_{i}z_{i}][\phi_{\theta_{z}}] \\ &[\mathsf{M}_{z_{i}}] = [\mathsf{m}_{i}y_{i}][\phi_{x}] - [\mathsf{m}_{i}x_{i}][\phi_{y}] - [\mathsf{m}_{i}x_{i}z_{i}][\phi_{\theta_{x}}] + [\mathsf{m}_{i}y_{i}z_{i}][\phi_{\theta_{y}}] + [\mathsf{Iz}z_{i}][\phi_{\theta_{z}}] \end{split}$$

ALL IN GROUTING

ļ

These moments are transformed to the inertia axis system by:

$$\begin{bmatrix} M_{x_i} \\ M_{y_i} \\ M_{z_i} \end{bmatrix} \stackrel{\text{inertia}}{\underset{axis}{\text{axis}}} = SCALS [T] \begin{bmatrix} M_x \\ M_y \\ M_z \end{bmatrix} \stackrel{\text{local}}{\underset{axis}{\text{axis}}}$$

The bending moments at point A (load station or dummy load station) are now obtained by summing over all required nodes.

$$M_{x_{A}} = \text{SCALE1} \sum_{i} (\Delta_{y_{i}}F_{z_{i}} + \Delta_{z_{i}}F_{y_{i}} + M_{x_{i}}) + \sum_{j} MX_{j}$$
$$M_{y_{A}} = \text{SCALE1} \sum_{i} (\Delta_{x_{i}}F_{z_{i}} - \Delta_{z_{i}}F_{x_{i}} + M_{y_{i}}) + \sum_{j} MY_{j}$$
$$M_{z_{A}} = \text{SCALE1} \sum_{i} (-\Delta_{y_{i}}F_{x_{i}} - \Delta_{x_{i}}F_{y_{i}} + M_{z_{i}}) + \sum_{j} MZ_{i}$$

where:

$$\begin{split} \Delta_{x_{i}} &= BS_{i} - BS_{A} \\ \Delta_{y_{i}} &= BBL_{i} - BBL_{A} \\ \Delta_{z_{i}} &= WL_{i} - WL_{A} \\ MS_{j} &= SCALED_{j} \left(\Delta_{y_{D_{j}}}F_{z_{D_{j}}} + \Delta_{z_{D_{j}}}F_{y_{D_{j}}} + M_{x_{D_{j}}} \right) \\ MY_{j} &= SCALED_{j} \left(\Delta_{x_{D_{j}}}F_{z_{D_{j}}} - \Delta_{z_{D_{j}}}F_{x_{D_{j}}} + M_{y_{D_{j}}} \right) \\ MZ_{j} &= SCALED_{j} \left(-\Delta_{y_{D_{j}}}F_{x_{D_{j}}} - \Delta_{x_{D_{j}}}F_{y_{D_{j}}} + M_{z_{D_{j}}} \right) \\ \Delta_{x_{D_{j}}} &= BS_{D_{j}} - BS_{A} \\ \Delta_{y_{D_{i}}} &= BBL_{D_{j}} - BBL_{A} \\ \Delta_{z_{D_{i}}} &= WL_{D_{j}} - WL_{A} \end{split}$$

D_i is the jth dummy node

Note: See the previous note on SCALED_i.

The dummy node forces and moments at each dummy load station are saved for future use.

For load stations, the shears and moments are now transformed to the requested orientation. The angles θ_X , θ_y , and θ_z used to calculate $[T^{-1}]$ for the transformation are obtained from card input (see card 6.7, sec. 6.3, vol. I).

Thus, we have \overline{M}_3 at point A:

For a surface with two load points (A and B), and with all components $(V_X, V_y, V_z, M_X, M_y, \text{ and } M_z)$, the structure of $[\overline{M}_3]$ as placed on LTAP would be:

2

If one or more component is missing, the matrix would close up; also, each surface is treated separately and is merged onto the preceding surface.

To calculate $[\overline{M}_4]$, $[\overline{M}_5]$, and $\{\overline{\phi}\}$, obtain the aero force coefficient matrices $F_{PL}(\dot{q})$, $F_{PL}(\ddot{q})$, $F_{PL}(\dot{\alpha}_g)$ from the Equations of Motion tape and transform the forces into the matrix axis system. Then:

$$\begin{bmatrix} F_{x_{i}}(\dot{q}, \ddot{q}, \dot{\alpha}_{g}) \\ F_{y_{i}}(\dot{q}, \ddot{q}, \dot{\alpha}_{g}) \\ F_{z_{i}}(\dot{q}, \ddot{q}, \dot{\alpha}_{g}) \end{bmatrix} = SCALA_{i} \qquad \begin{cases} T_{1} \\ T_{1} \end{cases} \qquad \begin{bmatrix} F_{PL_{i}}(\dot{q}, \ddot{q}, \dot{\alpha}_{g}) \\ axis \\ axis \end{cases}$$

where $\{T_1\}$ is the transpose of the third row of [T] with $\theta_z = 0$, or:

$$\begin{split} F_{x_i}(\dot{q}, \ddot{q}, \dot{\alpha}_g) &= \text{SCALA}_i \text{ T}(3, 1) \text{ F}_{\text{PL}_i}(\dot{q}, \ddot{q}, \dot{\alpha}_g) \\ F_{y_i}(\dot{q}, \ddot{q}, \dot{\alpha}_g) &= - \text{SCALA}_i \text{ T}(3, 2) \text{ F}_{\text{PL}_i}(\dot{q}, \ddot{q}, \dot{\alpha}_g) \\ F_{z_i}(\dot{q}, \ddot{q}, \dot{\alpha}_g) &= \text{SCALA}_i \text{ T}(3, 3) \text{ F}_{\text{PL}_i}(\dot{q}, \ddot{q}, \dot{\alpha}_g) \end{split}$$

SCALA_i = 1.0 or SCALE from card 6.93 (section 6.3, volume 1) for the specific aerodynamic panels.

L

42

.

The aero forces in the inertia axis are summed at all required nodes to calculate shears at point A (load station or dummy load station, inertia axis):

$$V_{x_{A}} = \text{SCALE } \sum_{i} F_{x_{i}} + \sum_{j} \text{SCALED}_{j} F_{x_{D_{j}}}$$
$$V_{y_{A}} = \text{SCALE } \sum_{i} F_{y_{i}} + \sum_{j} \text{SCALED}_{j} F_{y_{D_{j}}}$$
$$V_{z_{A}} = \text{SCALE } \sum_{i} F_{z_{i}} + \sum_{j} \text{SCALED}_{j} F_{z_{D_{j}}}$$

where:

i = required aerodynamic node numbers

j = required dummy node numbers

 $SCALE = SCALE2 \text{ for } \overline{M}_4 \text{ and } \overline{M}_5$

= SCALE3 for
$$\phi$$

and

$$\begin{array}{l} F_{\mathbf{x}_{D_{j}}} = V_{\mathbf{x}_{D_{j}}} = \mathrm{SCALE}\boldsymbol{\Sigma}_{i} \ F_{\mathbf{x}_{i}} \\ F_{\mathbf{y}_{D_{j}}} = V_{\mathbf{y}_{D_{j}}} = \mathrm{SCALE}\boldsymbol{\Sigma}_{i} \ F_{\mathbf{y}_{i}} \\ F_{\mathbf{z}_{D_{i}}} = V_{\mathbf{z}_{D_{j}}} = \mathrm{SCALE}\boldsymbol{\Sigma}_{i} \ F_{\mathbf{z}_{i}} \end{array} \right\} \quad \text{dummy node forces}$$

`

Note: See the previous note on $SCALED_i$.

For slender bodies (Z bodies) where the force is in the Z direction:

$$F_{x_{inertia axis}} = 0$$

 $F_{y_{inertia axis}} = 0$
 $F_{z_{inertia axis}} = F_{z_{aero local axis}}$

For slender bodies (Y bodies) where the force is in the Y direction:

$$F_{x} = 0$$

inertia axis
$$F_{y_{inertia}} = -F_{y_{aero}}$$
 local axis
$$F_{z_{inertia}} = 0$$

The force coefficient matrices from EOM are partitioned for slender bodies to contain F_y and F_z . For example, $F_{PL}(\dot{q})$ for a slender body with y and z forces would appear as follows:

香油

$$[F_{PL}(\dot{q})] = \begin{bmatrix} F_{PL}(\dot{q})_{y} \\ \vdots \\ F_{PL}(\dot{q})_{z} \\ \vdots \end{bmatrix}$$

Note: $F_{\mathbf{y}}$ or $F_{\mathbf{Z}}$ may be zero, but both $F_{\mathbf{y}}$ and $F_{\mathbf{Z}}$ will be on the magnetic file.

This is possible since the maximum possible number of nodes for slender bodies is less than 50. Thus, the maximum number of nodes for $[F_y \text{ and } F_z]$ would be less than 100.

The bending moments at point A (load station or dummy load station) are obtained by summing over all required nodes:

$$M_{x_{A}} = \text{SCALE } \sum_{i} (\Delta_{y_{i}} F_{z_{i}} + \Delta_{z_{i}} F_{y_{i}}) + \sum_{j} MX_{j}$$
$$M_{y_{A}} = \text{SCALE } \sum_{i} (\Delta_{x_{i}} F_{z_{i}} - \Delta_{z_{i}}^{T} F_{x_{i}}) + \sum_{j} MY_{j}$$
$$M_{z_{A}} = \text{SCALE } \sum_{i} (-\Delta_{y_{i}} F_{x_{i}} - \Delta_{x_{i}})F_{y_{i}} + \sum_{j} MZ_{j}$$

where:

-. . - .

$$\begin{split} \Delta_{x_i} &= BS_i - BS_A \\ \Delta_{y_i} &= BBL_i - BBL_A \\ \Delta_{z_i} &= WL_i - WL_A \\ \\ M_{x_j} &= SCALED_j \left(\Delta_{yD_j} F_{zD_j} + \Delta_{zD_j} F_{yD_j} + M_{xD_j} \right) \\ M_{y_j} &= SCALED_j \left(\Delta_{xD_j} F_{zD_j} - \Delta_{zD_j} F_{xD_j} + M_{yD_j} \right) \\ M_{z_j} &= SCALED_j \left(-\Delta_{yD_j} F_{xD_j} - \Delta_{xD_j} F_{yD_j} + M_{zD_j} \right) \end{split}$$

$$\Delta_{x_{D_{j}}} = BS_{D_{j}} - BS_{A}$$

$$\Delta_{y_{D_{j}}} = BBL_{D_{j}} - BBL_{A}$$

$$\Delta_{z_{D_{j}}} = WL_{D_{j}} - WL_{A}$$

$$D_{j} \text{ is the } j^{\text{th}} \text{ dummy node}$$

$$SCALE = SCALE2 \text{ for } \overline{M}_{4} \text{ and } \overline{M}_{5}$$

$$= SCALE3 \text{ for } \overline{\phi}$$

Note: See the previous note on SCALED_j.

The dummy node forces and moments at each dummy load station are saved for future use. For load stations, the shears and moments are then transformed to the requested orientation (for a dummy load there is no transformation). The angles θ_X , θ_y , and θ_Z are obtained from card input (see card set 6.0, sec. 6.3, vol. I).

$$\begin{bmatrix} V_{x} \\ V_{y} \\ V_{z} \end{bmatrix}_{A, \text{ requested}}^{= \{T^{-1} \ \}} \begin{bmatrix} V_{x} \\ V_{y} \\ V_{z} \end{bmatrix}_{A, \text{ inertia}}^{\text{axis}}$$

and:
$$\begin{bmatrix} M_{x} \\ M_{y} \\ M_{z} \end{bmatrix}_{A, \text{ requested}}^{= \{T^{-1} \ \}} \begin{bmatrix} M_{x} \\ M_{y} \\ M_{x} \end{bmatrix}_{A, \text{ inertia}}^{\text{axis}}$$

Thus:
$$\begin{bmatrix} \overline{M}_{4} \end{bmatrix}_{A} = \begin{bmatrix} V_{x} \\ V_{y} \\ V_{z} \\ M_{x} \\ M_{y} \end{bmatrix}_{A}^{=} \begin{bmatrix} V_{x} - \cdots - V_{x_{n}} \\ \vdots & \vdots \\ M_{z_{1}} & M_{z_{n}} \end{bmatrix}_{A}^{\text{axis}}$$

where \mathbf{p} = number of modes. Similarly for \overline{M}_{5} :
$$\begin{bmatrix} \overline{\phi} \end{bmatrix}_{A} = \begin{bmatrix} V_{x} \\ V_{y} \\ V_{z} \\ M_{x} \\ M_{z} \end{bmatrix}_{A}^{\text{axis}} = \begin{bmatrix} V_{x_{1}} - \cdots - V_{x_{g}} \\ \vdots & \vdots \\ M_{z_{1}} - \cdots - M_{z_{g}} \end{bmatrix}$$

where g = number of gust zones.

VBMT Output TAPE (LTAP)

Note: A load set is the result of processing all surfaces requested following the LOAD-SET card, but before the next LOAD-SET or \$ card.

$$\left\{ \begin{array}{c} \left[\begin{array}{c} Header \right] \\ \left[\begin{array}{c} \overline{M}_{3} \right] \\ \left[\begin{array}{c} \overline{M}_{4} \right] \\ \left[\begin{array}{c} \overline{M}_{5} \right] \\ \left[\begin{array}{c} \overline{\phi} \right] \end{array} \right\} \\ \left[\begin{array}{c} \overline{M}_{5} \right] \\ \left[\begin{array}{c} \overline{M}_{5} \right] \\ \left[\begin{array}{c} \overline{\phi} \right] \end{array} \right\} \\ EOF \\ \left[\begin{array}{c} Header \right] \\ \left[\begin{array}{c} \overline{M}_{3} \right] \\ \left[\begin{array}{c} \overline{M}_{3} \right] \\ \left[\begin{array}{c} \overline{M}_{3} \right] \\ \left[\begin{array}{c} \overline{M}_{4} \right] \\ \vdots \end{array} \right] \\ \left[\begin{array}{c} \end{array} \right] \\ k=1 \end{array} \right\} \\ Load set 2 \\ \end{array}$$

Maximum size of $[\overline{M}_3] = [\overline{M}_4] = [\overline{M}_5]$ is 100 x 70; of $[\overline{\phi}]$ is 100 x 2(35).

Expansion of $\left[\,\overline{M}_3\,\right]$ on LTAP (the first output on LTAP):

$$[\overline{M}_{3}] = \begin{pmatrix} V_{x_{1}} & \text{point 1} \\ \cdot & \cdot \\ \cdot &$$

Similarly for $[\overline{M}_4]$, $[\overline{M}_5]$, and $[\widetilde{\phi}]$ and for all values of k.

Local to Reference Coordinates

The coordinate locations (X,Y,Z) of the loads from card 6.9.2 (sec. 6.3, vol. I) are always in reference coordinates. Thus it can be directly compared with the reference coordinates from INTERP to determine the structural nodes to be included in the summation for $[\overline{M}_3]$.

However, the coordinates (X,Y) associated with the aero data (from the EOM tape) are in local coordinates. They must be changed back to structural coordinates before being compared to load coordinate locations (X,Y,Z) in the selection of the aero nodes to get summation for $[\overline{M}_4]$, $[\overline{M}_5]$, and $[\overline{\phi}]$.

This is accomplished by LTOGT from the DYLOFLEX library. CALL LTOGT (X,Y,Z, NPTS, R,T), where (X,Y,Z) input is (X,Y) from EOM with Z being zero, and R and T are from the SA array from INTERP (rotation and transformation). LTOG will then return (X,Y,Z) in structural coordinates. (LTOGT is an entry point in AINTT).

For slender bodies, the Z coordinate in (X,Y,Z) from LTOGT may be replaced by the Z from input card 6.6.

3.6 DATA BASES

L218 (LOADS) data bases include input and output files plus internal scratch files and common block storage.

3.6.1 INPUT DATA

The input data is from two sources, cards and magnetic files.

Card Input Data

For a complete description of all the card input formats, see section 6.3 in volume I of this document.

Tape Input Data

For a complete description of the tape input data see section 6.4 in volume I of this document.

3.6.2 OUTPUT DATA

The output data may be of two types, printed and magnetic files.

Printed Output Data

For a complete description of the printed output data, see section 6.5.1 in volume I of this document.

Magnetic Files (Tape or Disk)

For a complete description of the magnetic file output data, see section 6.5.2 in volume I of this document.

3.6.3 INTERNAL DATA

Common blocks and blank common (dynamic storage) are used to pass data from one routine to another within an overlay. Temporary (scratch) disk files are used in (L218,2,0), AVD. Random access disk files are used in (L218,3,0), NPLDS, and (L218,4,0), VBMT.

AVD Internal (Temporary) Disk Storage

FETADD is used to initialize buffer storage. FETDEL and RETURNF are called to delete the files after they are no longer needed. Three files are used:

- o IFM₁ contains merged \overline{M}_1 data.
- o IFM₂ contains merged \overline{M}_2 data.
- o IFM₃ contains merged \overline{M}_3 data.

These data are written on these three files in subroutine MERGE with FORTRAN write statements and read in subroutine AVDTAP. The files are initialized and deleted in AVD. The record structure (fig. 9) for IFM_1 , IFM_2 , and IFM_3 is identical.

NPLDS/PLDS Internal (Temporary) Disk Storage

All temporary disk storage in this overlay is accomplished on the file MERGMB using random access methods. The file MERGMB is initialized and deleted in NPLDS. The subroutines that call WRITEMS to write on MERGMB are NPLDB2 and NPLDD4. NPLDB2 writes the matrix \overline{M}_3 , and NPLDD4 writes the matrice \overline{M}_4 , \overline{M}_5 , and $\overline{\phi}$. The subroutine that calls READMS from MERGMB is NPLDH1.

The matrices or records are indexed with the following numbers:

MatrixRandom access key \overline{M}_3 1to ISMAX \overline{M}_4 ISMAX + 1to 21(ISMAX) \overline{M}_5 21(ISMAX) + 1to 41(ISMAX) $\overline{\phi}$ 41(ISMAX) + 1to 61(ISMAX)

where ISMAX is the maximum number of surfaces.

The read/write activity on MERGMB in NPLDS/PLDS is displayed in figure 10.

NSURF is the last surface MODES is the number of modes NROWS is dependent on the number of selected nodes, and the selected matrix components.

Figure 9. – Record Structure of IFM₁, IFM₂, and IFM₃

Record No.	Record Size	Written In	Read In	Contents
l : ISMAX	NODES (MXMODE+1)	NPLDB2	NPLDH1	\overline{M}_3 - Surface 1 : \overline{M}_3 - Surface ISMAX
ISMAX+1 +2 : +20 +21 :		NPLDD4		$ \overline{M}_{4} - Surface 1, freq 1 freq 2 $
21(ISMAX)+1 41(ISMAX)+1 	NODES (COL+1)			\overline{M}_5 - Surface 1, freq 1 $\overline{\delta}$ - Surface 1, freq 1 \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots

Figure 10. – Read/Write Activity on MERGMB in NPLDS/PLDS

VBMT Internal (Temporary) Disk Storage

All temporary disk storage in this overlay is accomplished on the file MERGMB using random access methods. MERGMB is initialized and deleted in VBMT. The subroutines that call WRITEMS to write on MERGMB are VBMTC2, VBMTD3, and VBMTD4. The subroutines that call READMS to read from MERGMB are VBMTC2, VBMTD4, and VBMTF1. The read/write activity on the file MERGMB in VBMT is displayed in figure 11.

Common Blocks

Table 6 displays the common blocks used in the program and the overlays in which they are used.

The LABELED common blocks are used for communication between the main and primary overlays, and for communication between routines in a primary overlay. The block names and contents are described in table 7. The "T" heading in table 7 refers to variable type. The codes used are as follows:

- I Integer
- R Real
- C Complex
- L Logical
- H Hollerith

Blank common is used in the primary overlays as a variable length working storage area. The length of required arrays is calculated, and the first word address and variable dimension of the array is passed through the subroutine calling sequence for those routines which require it.

Record No.	Record Size	Written In	Read In	Contents
1	IROW (MXMODE+2)	VBMTC2	NPLDH1	\overline{M}_3 for load No. 1
: MXLOAD				
MXLOAD+1				\overline{M}_{4} for load No. 1, freq 1
MXLOAD(1+NK)+1				\overline{M}_5 for load No. 1, freq 1
MXLOAD(2+NK)+1				$\overline{\delta}$ for load No. 1, freq 1
MXLOAD(3+NK)+1				Dummy load No. 1
LAST		•	ł	

where

MXLOAD	is the number of loads for this load set
NK	is the number of frequencies
IROW	is the number of rows in this matrix
MXMODE	is the number of modes
LAST	= MXLOAD(3+NK)+MXDUM(1+NK)
MXDUM	is maximum number of dummy loads

Figure 11. – Read/Write Activity on MERGMB in VBMT

and the second second

COMMON BLOCK OVERLAY	CGEN	CGENI	CGFN2	RWBUFF	CAVD	CLOC	CITMRM	CMAT	CARRAY	Q3	CNPLD1	CNPLD2	CVBMT 1	CVBMT2	CVBMTF1	BLANK
(L218,0,0) L218	x	х		x												
(L218,1,0) RGEN	x	x	X	x		-										x
(L218,2,0) AVD	x	x	x	х	У	x	х	х	x	х					-	x
(L218,3,0) NPLDS	x	x	х	x							x	x				x
(L218,4,0) VBMT	x	x		x									х	х	x	x

- -

BLA	BLANK COMMON: _AVD Dynamic Storage									
DES	CRIPTION:	V	ariably	dimension	ed arrays					
NO.	VARIABLE	Т	DIM.	ENG. NOM.	DESCRIPTION					
1	INODE	I	100	i	Contain selected nodes					
2	LFMl	I	LBUF		FET buffer for IFMl					
3	LFM2	I	LBUF		FET buffer for IFM2					
4	LFM3	I	LBUF		FET buffer for IFM3					
5	LARRAY	I	LBUF		FET buffer for IDISK					
6	XYZCOR	R	3*NODES	w_{X}^{BS} , b_{X}^{BBL}	(X,Y,Z) coordinates for sur- face IS (card input)					
7	ALB	R	NODES	LB	(LB) interpolation coefficient					
8	ALT	R	NODES	LT	(LT) interpolation coefficient					
9	ALTT	R	NODES	LTT	(LTT) interpolation coefficient					
10	ISUB	I	NODES		Requested nodes					
11	GEOM	R	3*NODES	BS _I ,BBL _I , WL _I	(X,Y,Z) coordinates from INTERP					
12	BS2	R	NODES	^{BS} i+1	X coordinate from INTERP for the (I+1) node					
13	THXYZ	R	3*NODES	^θ x' ^θ y' ^θ z	$\theta_{x}, \theta_{y}, \theta_{z}$ for surface IS					
14	РХ	R	NODES* MXMODE	[¢] ×₁	[¢] x					
15	PX2	R	NODES* MXMODE	[¢] x _{i+1}	$\phi_{\mathbf{x}}$ for (I+1) node					
16	РҮ	R	NODES* MXMODE	[¢] y _i	φ _y					
17	PY2	R	NODES* MXMODE	[¢] y _{i+1}	ϕ_{y} for (I+1) node					
18	ΡZ	R	NODES* MXMODE	¢ _{zi}	^φ z					
19	PZ2		NODES* MXMODE	¢ _{zi+l}	ϕ_z for (I+1) node					
20	PPX		NODES* MXMODE	• _{0x}	^φ θx					

:

DESCRIPTION:													
NO.	VARIABLE	т	DIM.	ENG. NOM.	DESCRIPTION								
21	PPX2	R	NODES* MXMODE	φ _{θxi+1}	$\phi_{\theta x}$ for (I+1) node								
22	PPY	R	NODES* MXMODE	Φ _{θYi}	φ _θ γ								
23	PPY2	R	NODES* MXMODE	¢ _{0yi+1}	$\phi_{\theta y}$ for (I+1) node	•							
24	PPZ	R	NODES* MXMODE	φθzi	φ _{θz}								
25	PPZ2	R	NODES* MXMODE	¢ _{θzi+1}	$\phi_{\theta z}$ for (I+1) node								
26	SA	R		SA	SA array from INTERP								
		1											

Γ

.

I

ï

LABI	LABELED COMMON NAME: CGEN								
DESC	CRIPTION:	C	ontains	general d	lata required by all overlays.				
NO.	VARIABLE	Т	DIM.	ENG. NOM.	DESCRIPTION				
NO.	VARIABLE		DIM.						
1	TDUM	н	8		Temporary input array				
2	INFIL	I	1		Name of card input file (=5)				
3	IUTFIL	I	1		Name of card output file (=6)				
4	IGPRNT	I	1		General print control				
5	KMOD	I	1		Module option control (AVD=1, NPLDS=2, PLDS=3, VBMT=4)				
6	IOUT	I	1		Name of temporary general output file.				
7	IGS	I	1		Load-Set counter				
8	NERROR	I	1		Fatal Error Counter				
9	ISMAX	I	1		Maximum Number of surfaces for this load-set				
10	WAR	Н	3		Warning Message				
11	FAT	Н	3		Fatal Error Message				
12	LBUF	I	1		Dimension value for OUTBUF-buf- fer length.				
13	IAVD1	Н	1		AVD output tape name				
14	NPTAP	н	1		NPLDS output tape name				
15	IPTAP	н	1		PLDS output tape name				
16	LTAP	Н	1		VBMT output tape name				
17	IEOMLD	H	1		File name for EOM tape from L217(EOM)				
18	IDISK	H	1		File name for interpolation tape from L215(INTERP)				
19	MASSTP	Н	1		File name for mass tape				
20	JTAPE	Н	1		File name for the J-Matrix tape				
21	IXYZ	I	1		Indicator defining transforma- tion order				
22	LC	I	1		Line Count for FETADD				

-

LABI	LABELED COMMON NAME: CARRAY									
DESC	CRIPTION:	A`	VD subro	outine fil	e names and buffer lengths					
NO.	VARIABLE	Т	DIM.	ENG. NOM.	DESCRIPTION					
NO. 1 2 3 4 5 6 7	VARIABLE IFM1 IFM2 IFM3 LFM1 LFM2 LFM3 LARRAY	TIIIII	DIM. 1 1 1 1 1	ENG. NOM.	DESCRIPTION File name for $\overline{M_1}$ merged File name for $\overline{M_2}$ merged File name for $\overline{M_3}$ merged Buffer length for IFM1 Buffer length for IFM2 Buffer length for IFM3 Buffer length for IDISK					

LABELED COMMON NAME: CAVD									
DESC	CRIPTION:	A	VD subro	outine opt	ions and scale factors				
			. <u> </u>						
NO.	VARIABLE	Т	DIM.	ENG. NOM.	DESCRIPTION				
1	ICARD	I	1		<pre>=1 for matrix input by card; =0 otherwise</pre>				
2	IIS	I	1		<pre>=1 if another surface is to be input; =0 otherwise</pre>				
3	INTER	I	1		Interpolation control				
4	IPRINT	I	1		Print control				
5	IROT	I	1		=1 for rotation; =0 otherwise				
6	IS	I	1		Current surface number				
7	IUNIT	I	1		=1 for Metric; =2 for English				
8	NIS	I	1		Not used				
9	NRR	I	1		Diagnostic error variable				
10	SCALR1	R	1		Matrix scale factor				
11	SCALR2	R	1		Matrix scale factor				
12	SCALR3	R	1		Matrix scale factor				
13	IANGLE	I	1		Theta input control				
14	ISP	I	1		Previous surface number				
1									
		Ì							
	l								

••

LABI	LABELED COMMON NAME: CGEN1									
DESC	CRIPTION:				verlay. Contains the header					
		m	atrix da	ta for fi	nal tape output.					
NO.	VARIABLE	Т	DIM.	ENG. NOM.	DESCRIPTION					
<u>1</u>	IQLTAP	T	30 30	ENG. NOM.	DESCRIPTION Matrix for the first record of output to tapes IAVD1, NPTAP, IPTAP and LTAP.					

LABE	ELED COMMO	N NA	AME: <u>CG</u>	EN2						
DESC	CRIPTION:	Co	ntains f	ile d	count	variabl	es			
NO.	VARIABLE	Т	DIM.	ENG.	NOM		DESCR	IPTION		
1	IFILEA	I	1			Loadset				
2	IFILEP	I	1			Loadset				
3	IFILENP	I	1			Loadset	file	count	for	NPLDS
					Í					
										[
]					

LABI	ELED COMMON	N NZ	ME: CI	TMRN	
DESC	CRIPTION:	AV	D subrou	tine tran	slation and rotation direc-
		ti	ves.		
NO.	VARIABLE	т	DIM.	ENG. NOM.	DESCRIPTION
1	ITM3X	I	1		Code for translational matrix
2	ITM2X	I	1		Code for translational matrix
3	ITMIX	Ι	1		Code for translational matrix
4	ITM3Y	I	1		Code for translational matrix
5	ITM2Y	I	1		Code for translational matrix
6	ITMlY	I	1		Code for translational matrix
7	ITM3Z	I	1		Code for translational matrix
8	ITM2Z	I	1		Code for translational matrix
9	ITM1Z	I	1		Code for translational matrix
10	IRM3X	I	1		Code for rotational matrix
11	IRM2X	I	1		Code for rotational matrix
12	IRM1X	I	1		Code for rotational matrix
13	IRM3Y	I	1		Code for rotational matrix
14	IRM2Y	I	1		Code for rotational matrix
15	IRMLY	I	1		Code for rotational matrix
16	IRM3Z	I	1		Code for rotational matrix
17	IRM2Z	I	1		Code for rotational matrix
18	IRM1Z	I	1		Code for rotational matrix
				l	

Ι.

Table 7. – (Continued)

j.

LABELED COMMON NAME: CLOC							
DESCRIPTION: AVD subroutine matrix sizes and locations							
NO.	VARIABLE	Т	DIM.	ENG. NOM.	DESCRIPTION		
1	NODES	I	1		Number of nodes requested		
2	MXNODE	I	1		Total number of nodes		
3	MXMODE	I	1		Total number of modes		
4	LXYZ	I	1		Dynamic storage location for XYZCOR		
5	LLB	I	1		Dynamic storage location for ALB		
6	LLT	I	1		Dynamic storage location for ALT		
7	LLTT	I	1		Dynamic storage location for ALTT		
8	LCODE	I	1		Not Used		
9	LISUB	I	1		Dynamic storage location for ISUB		
10	LGEOM	I	1		Dynamic storage location for GEOM		
11	LBS2	I	1		Dynamic storage location for BS2		
12	LTH	I	1		Dynamic storage location for THXYZ		
13	LPX	I	1		Dynamic storage location for PX		
14	LPX2	I	1		Dynamic storage location for PX2		
15	LPY	I	1		Dynamic storage location for PY		
16	LPY2	I	1		Dynamic storage location for PY2		
17	LPZ	I	1		Dynamic storage location for PZ		
18	LPZ2	I	1		Dynamic storage location for PZ2		

LABE	LABELED COMMON NAME: CLOC (continued)						
DESCRIPTION:							
NO.	VARIABLE	т	DIM.	ENG. NOM.	DESCRIPTION		
19	LLPX	I	1		Dynamic storage location for PPX		
20	LLPX2	I	1		Dynamic storage location for PPX2		
21	LLPY	I	1		Dynamic storage location for PPY		
22	LLPY2	I	1		Dynamic storage location for PPY2		
23	LLPZ	I	1		Dynamic storage location for PPZ		
24	LLPZ2	I	1		Dynamic storage location for PPZ2		
25	LTM3X	I	1		Not used		
26	LTM2X	I	1		Not used		
27	LTM1X	I	1		Not used		
28	LTM3Y	I	1		Not used		
29	LTM2Y	Ι	1		Not used		
30	LTM1Y	I	1		Not used		
31	LTM3Z	I	1		Not used		
32	LTM22	I	1		Not used		
33	LTM1Z	I	1		Not used		
34	LRM3X	I	1		Not used		
35	LRM2X	I	l		Not used		
36	LRM1X	I	1		Not used		
37	LRM3Y	I	1		Not used		
38	LRM2Y	I	1		Notused		
39	LRM1Y	I	1		Not used		
40	LRM3Z	I	1		Not used		
41	LRM2Z	I	1	ļ	Not used		
42	LRM1Z	I	1		Not used		

.

LABELED COMMON NAME: <u>CLOC (concluded)</u> DESCRIPTION:							
NO.	VARIABLE	т	DIM.	ENG. NOM.	DESCRIPTION		
43	LSA	I	1		Dynamic storage location for SA		
44	LAST	I	1		Last location of dynamic stor age		

LABELED COMMON NAME: <u>CMAT</u> DESCRIPTION: <u>AVD subroutine problem size.</u>						
NO.	VARIABLE	Т	DIM.	ENG. NOM.	DESCRIPTION	
1	ITOTAL	I	1		Total number of rows for this load-set.	
2	ITOTIS	I	1		Total number of rows for sur- face IS.	
3	ISTOT	I	1		Current number of surfaces for this load-set.	
4	ISM3	I	100		Total rows written on FM3 per surface	
5	ISM2	I	100		Total rows written on FM2 per surface	
6	ISMl	Ι	100		Total rows written on FM1 per surface	

ł

NO. V 1 N 2 M 3 M	IPTION: ARIABLE HODES		LDS/PLDS ale fact DIM.	cors.	routi	ne array sizes, location and
1 N 2 M 3 M	ODES		p	r		
1 N 2 M 3 M	ODES	т	DIM.			
1 N 2 M 3 M	ODES	Т 	DIM.			
2 M 3 M				ENG.	NOM.	DESCRIPTION
3 M	XNODE	I	1			Number of nodes requested
		I	1			Total number of nodes
	XMODE	I	1			Total number of modes
	лмз	I	1			Dynamic storage location for NM3
5 L	NM4	I	1			Dynamic storage location for NM4
6 L	NM5	I	1		ļ	Dynamic storage location for NM5
7 L	NC3	I	1			Dynamic storage location for NC3
8 L	IEOM	I	1			Buffer location for IEOMLD
9 L	IDISK	I	1			Buffer location for IDISK
10 L	NPTAP	I	1			Buffer location for NPTAP
11 L	MERG	I	1			Buffer location for OPENMS
12 LI	MASS	I	1			Buffer location for MASSTP
13 L	PTAP	I	1			Buffer location for IPTAP
14 L	INODE	I	1			Dynamic storage location for INODE
15 L	XMASS	I	l			Dynamic storage location for XMASS
16 L	AREA	I	1			Dynamic storage location for AREA
17 LI	PMAT	I	1			Dynamic storage location for PMAT
18 LC	GEOM	I	1			Dynamic storage location for GEOM
19 LI	PZ	I	1			Dynamic storage location for PZ
20 L)	XYL	I	1			Dynamic storage location for XYL

_

Γ

Ι.

LABI	LABELED COMMON NAME: CNPLD1 (continued)							
DESCRIPTION:								
NO.	VARIABLE	т	DIM.	ENG. NOM.	DESCRIPTION			
21	LAREAL	I	1		Dynamic storage location for AREAL			
22	LXKVAL	I	1		Dynamic storage location for XKVAL			
23	LFPL	I	1		Dynamic storage location for FPL			
24	LSA	I	1		Dynamic storage location for SA			
25	LAST	I	1		Last location of dynamic stor- age			
26	NK	I	1	NK	Number of frequencies			
27	NAERO	I	1		Number of aeropanels			
28	NLOAD	I	1		Number of structural loads			
29	ICARD	I	1		<pre>=1 for matrix input by cards; =0 for matrix input by tape.</pre>			
30	IIS	I	1		=l for another surface; =0 otherwise			
31	IOPT	I	1		Option control			
32	IPRINT	Ι	1		Print control			
33	IS	I	1		Current surface number			
34	ISP	I	1		Previous surface number			
35	ISTOT	I	1		Number of surfaces for this load-set			
36	ITOTAL	I	1		Total number of rows for this load-set			
37	IUNIT	I	1		=1 for Metric; =2 for English			
38	IM3	I	1		Random Access Key Number - \overline{M}_3			
39	IM4	I	1		Random Access Key Number - \overline{M}_4			
40	IM5	I	1		Random Access Key Number - \overline{M}_5			
41	IC3	I	1		Random Access Key Number - $\overline{\delta}$			
42	NGUST	I	1	g	Number of gust panels			

LABELED COMMON NAME: CNPLD1 (concluded)								
	DESCRIPTION:							
				f				
NO.	VARIABLE	Т	DIM.	ENG. NOM.	DESCRIPTION			
43	LROW	I	1		Dynamic storage location for NROW			
44	MERGMB	I	1		Random Access File			
45	SCALR1	R	1	SCALR1	Scale factor for \overline{M}_3			
46	SCALR2	R	1	SCALR2	Scale factor for \overline{M}_4 and \overline{M}_5			
47	SCALR3	R	1	SCALR3	Scale factor for $\overline{\delta}$			
48	UNIT	н	1		Metric or English units			
ł								
1								
[
1								
[

į

LABI	LABELED COMMON NAME: CNPLD2								
DESCRIPTION: NPLDS/PLDS subroutine linkage (temporary stor-									
	age)								
NO.	VARIABLE	Т	DIM.	ENG. N	NOM .	DESCRIPTION			
1	Q3	R	1000 0			Temporary storage			
					1				
					i				
		j							

Γ

I . .

	RIPTION: VARIABLE				tion, array sizes, and							
1			cations.									
1		т			locations.							
1		Т										
	ICOMP		DIM.	ENG. NOM.	DESCRIPTION							
$ _{2} $		I	1		Current component number							
4	IC3	I	1		Random Access Key - $\overline{\phi}$							
3	IIS	I	1		Type of input indicator							
4	IL	I	1		Current sequencial load number							
5	ILD	I	1		Current sequencial dummy load number							
6	ILDS .	I	1		Number of Dummy Nodes to sum to this surface							
7	ILDT	I	1		=0 for Dummy Load; =1 otherwise							
8	ILL	I	1		Current load number (not se- quencial							
9	ILS	I	1		Load-Set number							
10	IMD	I	1		Random Access Key - Dummy Loads							
11	IMXX	I	1		=1 for MX comp; =0 otherwise							
12	IMYY	I	1		=1 for MY comp; =0 otherwise							
13	IMZZ	I	1		=1 for MZ comp; =0 otherwise							
14	IM3	I	1		Random Access Key - \overline{M}_3							
15	IM4	I	1		Random Access Key - M4							
16	INTMP	I	1		Temporary input file							
17	IM5	I	1		Random Access Key - $\overline{M_5}$							
18	IPRINT	I	1		Print control							
19	IR	I	1		Error indicator							
20	IRR	I	1	1	Error indicator							
21	IS	I	1		Current surface number							
22	ISLEND	I	1		=1 for a slender body; =0 otherwise							
23	ISP	I	1		Previous surface number							
24	ISTOT	I	1		Number surfaces for this load- set							

`

	LABELED COMMON NAME: CVBMT1(continued) DESCRIPTION:						
		<u> </u>		· · · · · · · · · · · · · · · · · · ·			
NO.	VARIABLE	т	DIM.	ENG. NOM.	DESCRIPTION		
25	ITOTAL	I	1		Total number rows on final matrix		
26	IUNIT	I	l		=1 for Metric; =2 for English		
27	IVBMTA	I	1		=l to check data for load-set =2 to read a load		
28	IVX	I	1		=1 for VX computed; =0 o therwise		
29	IVY	I	1		=1 for VY computed; =0 otherwise		
30	IVZ	I	1		=1 for VZ computed; =0 otherwise		
31	ΙZ	I	1		Number Z override coordinate		
32	LAST	I	1		Last location of dynamic stor- age		
33	LAXYZ	I	1		Dynamic storage location for AXYZ		
34	LDAX	I	1		Dynamic storage location for DAX		
35	LDAY	I	l		Dynamic storage location for DAY		
36	LDAZ	I	1		Dynamic storage location for DAZ		
37	LFPL	Ι	1		Dynamic storage location for FPL		
38	LGEOM	I	1		Dynamic storage location for GEOM		
39	LICOM	I	1		Dynamic storage location for ICOM		
40	LIDISK	I	1		Buffer storage for IDISK		
41	LIDNOD	I	1		Dynamic storage location for IDNOD		
42	LIEOM	I	1		Buffer storage for IEOMLD		
43	LIIZ	I	1		Dynamic storage location for IIZ		
					1		

- - -

Table 7. – (Continued)

II

71

LABELED COMMON NAME: CVBMT1(continued)

DESCRIPTION

:	
---	--

	•				
NO.	VARIABLE	Т	DIM.	ENG. NC	M. DESCRIPTION
44	LILSEQ	I	1		Dynamic storage location for ILSEQ
45	LINODA	I	1		Dynamic storage location for INODA
46	LINODS	I	1		Dynamic storage location for INODS
47	LINTMP	Ι	1		Buffer storage location for INTMP
48	LISEQ	I	1		Dynamic storage location for ISEQ
49	LISLOD	I	1		Dynamic storage location for ISLOAD
50	LJTAPE	I	1		Dynamic storage location for JTAPE Buffer
51	LLNODD	I	1		Dynamic storage location for LNODD
52	LLNODE	I	1		Dynamic storage location for LNODE
53	LLTAP	I	1		Dynamic storage location for LTAP Buffer
54	LMASST	I	1		Dynamic storage location for MASSTP Buffer
55	LMERG	I	1		Dynamic storage location for MERGMB Index
56	LMMXX	I	1		Dynamic storage location for MMXX
57	LMMYY	I	l		Dynamic storage location for MMYY
58	LMMZ Z	I	1		Dynamic storage location for MMZZ
59	LMVX	I	1		Dynamic storage location for MVX
60	LMVY	I	1		Dynamic storage location for MVY

LABELED COMMON NAME: CVBMT1(continued)								
DESCRIPTION:								
NO.	VARIABLE	T	DIM.	ENG. NOM.	DESCRIPTION			
61	LMVZ	I	1		Dynamic storage location for MVZ			
62	LNC3	I	1		Dynamic storage location for NC3			
63	LNMD	I	1		Dynamic storage location for NMD			
64	LNM3	I	1		Dynamic storage location for NM3			
65	LNM4	I	1		Dynamic storage location for NM4			
66	LNM5	I	1		Dynamic storage location for NM5			
67	LNODE2	Ι	1		Dynamic storage location for NODEZ			
68	LPPX	I	1		Dynamic storage location for PPX			
69	LPPY	ī	Ţ		Dynamic storage location for PPY			
70	LPPZ	I	1		Dynamic storage location for PPZ			
71	LPX	I	1		Dynamic storage location for PX			
72	LPY	I	1		Dynamic storage location for PY			
73	LPZ	I	1		Dynamic storage location for PZ			
74	LROW	I	1		Dynamic storage location for NROW			
75	LSAX	I	1		Dynamic storage location for SAX			
76	LSAY	I	1		Dynamic storage location for SAY			
77	LSAZ	I	1		Dynamic storage location for SAZ			

Table 7. — (Continued)

I

73

....

_

LABELED COMMON NAME: CVBMT1(continued) DESCRIPTION: т DIM. DESCRIPTION NO. VARIABLE ENG. NOM. 78 LSCALA Ι 1 Dynamic storage location for SCALA 79 LSCALD Ι 1 Dynamic storage location for SCALD LSCALS 80 Ι 1 Dynamic storage location for SCALS 81 LTHEX Ι Dynamic storage location for 1 THEX 82 LTHEY Ι 1 Dynamic storage location for THEY 83 LTHEZ Ι 1 Dynamic storage location for THEZ 84 LXIXX Ι 1 Dynamic storage location for XIXX 85 LXIYY Ι 1 Dynamic storage location for XIYY 86 LXIZZ Ι 1 Dynamic storage location for XIZZ 87 LXKVAL Ι 1 Dynamic storage location for XKVAL 88 LXMA Ι 1 Dynamic storage location for XMA 89 LXMX Ι 1 Dynamic storage location for XMX 90 LXMXY Ι 1 Dynamic storage location for XMXY 91 LXMXZ Ι 1 Dynamic storage location for XMXZ 92 LXMY Ι 1 Dynamic storage location for KMY 93 LXMYZ Ι 1 Dynamic storage location for XMYZ 94 LXMZ Ι 1 Dynamic storage location for XMZ

Table 7. – (Continued)

_

DES	CRIPTION:				
NO.	VARIABLE	T	DIM.	ENG. NOM.	DESCRIPTION
95	LZ	I	1		Dynamic storage location for Z
96	MERGMB	I	1		Random Access File
97	MXAERO	I	1		Maximum nodes from EOM
98	MXCOMP	I	1		Maximum Load Components for this surface
99	MXDUM	I	1		Maximum number of dummy loads
100	MXLOAD	I	l		Number of loads for this load- set
101	MXMODE	I	1		Number of modes
102	MXNODE	I	l		Maximum number of nodes from INTERP
103	NAERO	I	1		Number of aero nodes requested
104	NGUST	I	1		Number of gust panels
105	NK	I	1		Number of frequencies
106	NODES	I	1		Number of structural nodes requested
107	SCALE1	R	1	SCALE1	Scale factor for $\overline{M_3}$
108	SCALE2	R	1	SCALE2	Scale factor for $\overline{M_4}$ and $\overline{M_5}$
109	SCALE3	R	1	SCALE 3	Scale factor for $\overline{\delta}$
110	Т	R	(3,4)		Transformation and rotation matrix from SA array

···· ___ ___

۰.

|____

.....

.

. ..

.....

ı

•

LAB	LABELED COMMON NAME: CVBMTF1							
DES	CRIPTION:	<u>M</u>	aximum,	first and	last surface numbers			
				*				
NO.	VARIABLE	Т	DIM.	ENG. NOM.	DESCRIPTION			
1	ISMAXX	I	1		Maximum surface number in ISEQ			
2	ISMAX1	I	1		ISEQ subscript, first surface for this load-set			
3	ISMAX2	I	1		Total number of surfaces calcu- lated thus far.			

LAB	LABELED COMMON NAME: CVBMT2								
DES	DESCRIPTION: VBMT subroutine linkage (temporary storage)								
NO.	VARIABLE	Т	DIM.	ENG. 1	MOM	DESCRIPTION			
1	Q3	R	10000			Temporary storage			

Table 7. – (Continued)

Table 7. – (Continued)

	BLANK COMMON: <u>NPLDS/PLDS</u> Dynamic Storage DESCRIPTION: <u>Variably dimensioned arrays</u>									
NO.	VARIABLE	Т	DIM.	ENG. NOM.	DESCRIPTION					
1 2 3 4 5 6 7	NM3 NM4 NM5 NC3 LIEOM LIDISK LNPTAP	I I R R R	ISMAX 20*ISMAX 20*ISMAX 20*ISMAX LBUF LBUF LBUF		Random Access Key for $\overline{M_3}$ Random Access Key for $\overline{M_4}$ Random Access Key for $\overline{M_5}$ Random Access Key for $\overline{\delta}$ Buffer for IEOMLD Buffer for IDISK Buffer for NPTAP					
8 9 10 11 12 13 14 15 16	MERG LMERG LMASS INODE XMASS AREA PMAT GEOM PZ	R	NODES*	^m i [a _s] P (X,Y,Z) _s [¢] z	Buffer for MERGMB Random Access Index for MERGMB Buffer for MASSTP Requested nodes Mass matrix Structural node areas P - matrix Structural Geometry \$\$					
17 18 19 20	XYL AREAL XKVAL FPL	R R R	MXMODE 2*NAERO NAERO NK NAERO* MXMODE		Local (X,Y) coordinates Local aero panel areas Frequencies Force coefficient matrix					

I I	LABELED COMMON NAME: Q3 DESCRIPTION: AVD subroutine linkeage (temporary storage)										
NO.	VARIABLE	Т	DIM.	ENG. NOM.	DESCRIPTION						
<u>NO.</u> 1	Q3	R	DIM. 7100	ENG. NOM.	Temporary storage						

Table 7. -- (Continued)

1	LABELED COMMON NAME: RWBUFF DESCRIPTION: READTP/WRTETP Buffer Area										
NO.	VARIABLE	т	DIM.	ENG.	NOM	DESCRIPTION					
NO.	VARIABLE		DIM.	ENG.	NOM.						
1	IQl	н	1			Code to change buffer size in READTP/WRTETP					
2	122	I	1			New buffer size					
3	XRWB		7000			Buffer array for READTP/WRTETP					

.....

... .. .

Table 7. – (Continued)

80

.

/

|`**-**

BLA	NK COMMON:	V	BMT Dyna	amic Stora	ge
DESC	CRIPTION:		ariably	dimension	ed arrays
			<u> </u>		
NO.	VARIABLE	Т	DIM.	ENG. NOM.	DESCRIPTION
1	LJTAPE	R	LBUF		FET buffer for JTAPE
2	LIEOM	R	LBUF		FET buffer for IEOMLD
3	LIDISK	R	LBUF		FET buffer for IDISK
4	LLTAP	R	LBUF		FET buffer for LTAP
5	MERG	R	LBUF		FET buffer for MERGMB
6	LINTMP	R	LBUF		FET buffer for INTMP
7	ISEQ	I	ISMAX		Sequential order of surface numbers
8	MVX	I	ISMAX		Number of VX components for surface IS
9	MVY	I	ISMAX		Number of VY components for surface IS
10	MVZ	I	ISMAX		Number of VZ components for surface IS
11	MMXX	I	ISMAX		Number of MXX components for surface IS
12	ΜΜΥΥ	I	ISMAX		Number of MYY components for surface IS
13	MMZZ	I	ISMAX		Number of MZZ components for surface IS
14	ISLOAD	I	ISMAX		Sequential number of the first load for surface IS
15	LNODD	I	MXDUM		Load number of defined dummy node (not the sequential number)
16	SCALD	R	MXDUM	SCALED;	Scale factor on dummy node
17	IDNOD	I	MXDUM	-	Dummy nodes to sum to current surface
18	DAX	R	MXDUM	вs _D	X coordinate of dummy node
19	DAY	R	MXDUM	BBL	Y coordinate of dummy node
20	DAZ	R	MXDUM	wl _D	Z coordinate of dummy node

_ _

81

BLA	NK COMMON:	VB	MT Dynam	nic Storag	ge (continued)									
DESC	CRIPTION:	Va	Variably dimensioned arrays											
NO.	VARIABLE	Т	DIM. ENG. NOM. DESCRIPTION											
21	Z	R	IZ		Z override coordinates									
22	NODEZ	I	IZ		Node number for Z override coordinate									
23	LMERG	I	(MXDUM+ MXLOAD) * (1+3NK)		MERGMB INDEX									
24	NM3	I	MXLOAD		Random access key number for $\overline{M_3}$									
25	NM4	Ι	NK*MXLOA	þ	Random access key number for $\overline{M_4}$									
26	NM5	I	NK*MXLOA	þ	Random access key number for M_5									
27	NC3	Ι	NK*MXLOAI	þ	Random access key number for $ar{ar{\phi}}$									
28	NMD	I	MXDUM* (1+3NK)		Random access key number for dummy nodes									
29	XKVAL	R	NK	К	Frequencies									
30	NROW	I	MXLOAD		Number of rows in the matrix for this LOAD									
31	THETX	R	MXLOAD	θ x	THETAX associated with IL									
32	THETY	R	MXLOAD	θ Y	THETAY associated with IL									
33	THETZ	R	MXLOAD	θz	THETAZ associated with IL									
34	SAX	R	MXLOAD	BSA	X coordinate associated with LNODD									
35	SAY	R	MXLOAD	$^{\text{BBL}}$ A	Y coordinate associated with LNODD									
36	SAZ	R	MXLOAD	WL A	Z coordinate associated with LNODD									
37	INODS	I	NODES	i	Structural nodes for this surface									
38	SCALS	R	NODES	SCALES	Scale factor for structural nodes									
39	GEOM	R	6 * NODE	6	$x, y, z, \theta_x, \theta_y, \theta_z$ of structural nodes									
40	INODA	I	NAERO		Aero nodes for this surface									

82

ï

_

BLAN	NK COMMON:	VE	MT Dynam	nic Storag	ge (continued)
DESC	CRIPTION:	_Va	riably d	limensione	ed arrays
ļ			·····	· · · · · · · · · · · · · · · · · · ·	
NO.	VARIABLE	т	DIM.	ENG. NOM.	DESCRIPTION
41	SCALA	R	NAERO	SCALEA	Scale factor for aero nodes
42	AXYZ	R	3*NAERO	^{BS} , ^{BBL} i, ^{WL} i	X,Y,Z in the inertia axis for aero nodes (transformed from local X,Y coordinates)
43	ХМА	R	NODES (or zero	^m i	M from the J-MATRIX
44	ХМХ	R	NODES (or zero	^m i ^x i	MX from the J-MATRIX
45	XMY	R	NODES (or zero	^m i ^y i	MY from the J-MATRIX
46	XMZ	R	NODES (or zero)	^m i ^z i	MZ from the J-MATRIX
47	XIXX	R	NODES (or zero)	I _{xxi}	IXX from the J-MATRIX
48	XIYY	R	NODES (or zero)	I _{yyi}	IYY from the J-MATRIX
49	XIZZ	R	NODES (or zero)	I _{zzi}	IZZ from the J-MATRIX
50	XMXY	R	NODES (or zero)	^m i ^x i ^y i	MXY from the J-MATRIX
51	XMXZ	R	NODES (or zero)	^m i ^x i ^z i	MXZ from the J-MATRIX
52	XMYZ	R	NODES (or zero)	^m i ^y i ^z i	MYZ from the J-MATRIX
53	РХ		NODES* MXMODE	^ф х	ϕ_{x} from INTERP
54	РҮ	R	NODES* MXMODE	фУ	φ from INTERP y
55	ΡZ	R	NODES* MXMODE	¢ z	¢ _z from INTERP
56	РРХ	R	NODES* MXMODE	^φ θ x	¢ _θ from INTERP x

BLAN	NK COMMON:		/BMT Dyna	amic Stora	age							
DESC	DESCRIPTION: Variably dimensioned arrays											
NO.	VARIABLE	Т	DIM.	ENG. NOM.	DESCRIPTION							
57	PPY	R	NODES* MXMODE	^φ θγ	¢ _θ from INTERP y							
58	PPZ	R	NODES* MXMODE	Φ _{θz}	$\phi_{\theta} $ from INTERP z							
59	FPL	R	2*NAERO* MXLOAD	1	Force coefficient matrix from EOM							

Table 7. – (Concluded)

4.0 EXTENT OF CHECKOUT

Each module of L218 (AVD, NPLDS/PLDS, and VBMT) was checked out with preliminary standalone data and then final verification test data, exercising the options indicated in tables 8 through 10.

Boeing Commercial Airplane Company P.O. Box 3707 Seattle, Washington 98124 May 1977

•

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
x 1	2	1	2	X 1	2	1	2	X 1	1	1	1	X 1	1	1	1	1	x 2	1	x 2	1	x 1	1	1
	x					x				x	x			x	x	x			x		·	x	
x x	x	X X X X	x	x x	x	x x x x	х	x	x			x	x				x x	x	X X X X	x	x x	x x x	x
						-											x x	x		2 1 2 2	x x	x x	x
	x x	x x	x x	x x	x x	x x	x x		x x	x x						,	x x	x x	x x	x x			
1.	1. 1.	1.	1.	1.	1.	1.	Į.	x 1 1.	1.	1.	X 1 1. 1.	X 2 1.	X 2 1. 1.	X 2 1.	X 4 1. 1.	x 5 1.	1. 1.	1.	1.	1.	X 5 * 1.	X 2 • 2.	X 4 1. 1.
	x x x x	1 2 x 1 2 x x x x x x	1 2 3 x 1 2 1 x x x x x x x x x x x x x x	1 2 3 4 x 1 2 1 2 x x x x x x x x x x x x x x x	1 2 3 4 5 x x x 1 2 1 2 1 x x x x x x x	1 2 3 4 5 6 X 1 2 1 2 1 2 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	1 2 3 4 5 6 7 X 1 2 1 2 1 2 1 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	1 2 3 4 5 6 7 8 X 1 2 1 2 1 2 1 2 1 2 X <td>1 2 3 4 5 6 7 8 9 X 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 2 1 2 1</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 X 2 1 2 1 2 1 2 1<</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td>	1 2 3 4 5 6 7 8 9 X 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 2 1 2 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 4 5 6 7 8 9 10 11 12 13 14 X 2 1 2 1 2 1 2 1<	$\begin{array}{cccccccccccccccccccccccccccccccccccc$								

86

ممر

Data Case Variable No. or Option		2	3	4	5	6	7	8	9
\$LOADS									
\$NPLDS	х				Х			Х	
\$PLDS									
Surface No.	1	1	1	1	1	1	1	1	2
CARDS	х			х					
TAPE		х	х						х
NODE-ALL			x	Х			х	Х	х
NODE	х	х			х	х			İ
OPT1	х	х						Х	
OPT2					х				
PLDS			х						
(blank)				Х		х	x		
SCALR1	*	*	1.	1.	.002	1.	1.	1.	1.
SCALR2	1.	1.	1.	1.	1.	1.	.1	1.	1.
SCALR3	.1	.1	1.	1.	.1	.1	1.	1.	1.

I

Table 10. – VBMT Checkout Summary

Data case			—						<u> </u>								_			
No.																				
Variable or Option		1		2	3	3	4			5		e	5	7		٤	3		9	
\$LOADS	:	X	[Х							
\$VBMT	:	x											х							
Load Set No.	:	1											1							
Surface No.	:	1		2		4		5		3			1		2		4		3	
SCALE1	,	*		*		*		*		*			*	,	*		*		*	
SCALE2		1.		1.		1.		1.		1	.		1.		1.		1.		1	
SCALE3	:	1.		1.		1.		1.		1			1.		1.		1.		1	.
ZCOORD																		x		
LOAD NO.	1		2	3	4		5		6	7	8	1		2	3	4		5	6	7
VX	x		x							х		x		х	x	х		х		
VY	х						x		х	х	Χ.	x		х	х	x			х	
VZ	х		Х	х	х				х		x	X		x	х	х		x	х	х
MX	x		X	х	х		x		х	х	x	x		x	х	х			x	
МУ	х		х	x	x					х	x	x		х	х	х		х	х	x
MZ	x						х		х	x	x	x		х	x	x		x		
DLOAD No.		1				2		3					1				2			
ALL	х	x			х	х	х	x				X	x			х	х			
"C.F."			Х	х					х	х	x			x	х			х	x	x
STRUCTUREP				х						х					x				х	
AEROP				х						х					x				х	
ADD LOAD				х			Х			x	x				x				х	х
\$QUIT											х									Х

* = .0259

.....

....

REFERENCES

- 1. Miller, R. D.; Kroll, R. I.; and Clemmons, R. E.: Dynamic Loads Analysis System (DYLOFLEX) Summary. NASA CR-2846-1, 1979.
- Miller, R. E.; Richard, M.; and Rogers, J. T.: Feasibility of Implementing Unsteady Aerodynamics Into the FLEXSTAB Computer Program System. NASA CR-132530, October 1974.
- 3. Kroll, R. I.; and Hirayama, M. Y.: Modal Interpolation Program, L215 (INTERP), Volume I: Engineering and Usage. NASA CR-2847, 1979.
- Miller, R. D.; Fraser, R. J.; Mirayama, M. Y.; and Clemmons, R. E.: Equation Modifying Program, L219 (EQMOD), Volume I: Engineering and Usage. NASA CR-2855, 1979.
- 5. Miller, R. D.; and Graham, M. L.: Random Harmonic Analysis Program, L221 (TEV156) Volume I: Engineering and Usage. NASA CR-2857, 1979.
- Kroll, R. I.; and Clemmons, R. E.: A Computer Program To Generate Equations of Motion Matrices, L217 (EOM), Volume I: Engineering and Usage. NASA CR-2851, 1979.

1 Report No	2. Government Access	ion No.	3 Recipient's Catal	og No				
NASA CR-2854				<u></u>				
4. Title and Subtitle A PROGRAM FOR CALCULATI MATRICES UTILIZING THE FO	NG LOAD COEF	FICIENT	5 Report Date September					
METHOD, L218 (LOADS) Volum Design and Maintenance Docume	ne II: Supplement		6. Performing Organ	Lation Code				
7 Author(s)			8. Performing Organ	ization Report No				
L. R. Anderson and R. D. Miller		Bot	D6-44463					
9. Performing Organization Name and Address			10, Work Unit No					
Boeing Commercial Airplane Cor	npany		11 Contract or Grant	No				
P.O. Box 3707 Seattle, Washington 98124			NAS1-13918	3				
			13 Type of Report ar					
12 Sponsoring Agency Name and Address National Aeronautics and	Snace Admini	stration	Contractor May 1975 to	r Report May 1977				
Washington, DC 20546	Space Admini	Stration	14 Sponsoring Agenc					
15. Supplementary Notes Langley Technical Monito	rs: Robert (. Goetz and Boy	yd Perry III					
Topical Report								
16 Abstract		· ····						
The LOADS computer program force summation method. The lo- flight and excited by gusts and/o use with an active control system	ad equations are r control motions	derived for a flight	vehicle in straig	ht and level				
The load coefficient matrices are	calculated for th	e following types of	loads:					
 Translational and rotationa Panel aerodynamic forces Net panel forces Shears, bending moments, a 		velocities, and displa	icements					
Program usage and a brief des document. Volume II contains a those persons who will maintain	description of t	he design and strue	cture of the prop	mel of this gram to aid				
17. Key Words (Suggested by Author(s))		18. Distribution Statement						
Force summation Net forces		··· · ·-·						
Acceleration		Unclassified - U	Inlimited					
Shears Loads								
Bending moments			Subject Ca	tegory 02				
19. Security Classif (of this report)	20. Security Classif. (o Unclassified	of this page)	21. No. of Pages	22 Price				
Unclassified	91	\$6.00						

*For sale by the National Technical Information Service, Springfield, Virginia 22151