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LARGE EDDY SIMULATION OF TURBULENT CHANNEL FLOW —
ILLIAC IV CALCULATION

John Kim* and parviz Moin'
Ames Research Center, NASA, Moffett Field, California 04035, U.S.A.

SUMMARY

The three-dimensional time-dependent equations of motion have been numerically integrated for fully.
developed turbulent channel flow. The large-scale flaw field is obtained directly from the solution of

these equations, and the small-scale field motions are simulated through an eddy viscosity model. The calcu-
lations are carried out on the ILLIAC IV computer with 64 x 64 x 64 grid points.

The computed flow patterns show that the wall layer consists of coherent structures of low-speed and
high-speed streaks alternating in the spanwise direction. These stru ctures were absent in the regions away
from the wall. Mot spots, small localized regions of very large turbulent shear stress, are frequently
observed. Very close to the wall, these hot spots are associated with B" > 0 and G < 0 (sweep): away from
the wall, they are due to B" < 0 and G > 0 (burst). The profiles of the pressure velocity-gradient correla-
tion& show a significant transfer of energy from the normal to the spanwise component o; turbulent kinetic
enerny in the immediate neighborhood of the wall ("the splatting effect"),

NOMENCLATURE

The overbar (-) denotes the filtered component and the prime (') denotes subgrid scale (SOS) component.

Cs	Smagorinsky's constant	 B"	 = B - <B>

G(x - x') filter function	
U	 velocity in the 4-direction

h i	mesh size in the i-direction

h +
	 = htur

1	 v

k	 wave numbe,• a 3k 1 = +

k i	wave number to the i-direction

Lx length of the computational box in the
x-direction xi coordinate in the 1-direction

Lz length of the computational box in the x,	 x' coordinate vector
z-direction

1 SGS length scale
y, xz coordinate in the direction normal	 to the walls

N number of mesh points in the y-direction yw
distance to the nearest wall

p pressure y+ ywur
v

1!	 R kk z,	 x 3 spanwise coordinate
P

_

¢i,ik
the completely antisynmetr i c tensor of rank 3

_ R
P* e o + 2 Bd 0' + 3 A mean streak spacing

p Fourier transform of p AI spacing of the turbulent structures in the
i-direction

q root-mean-square velocity + .iu,

Re Reynolds number based on channel half- aI
v

width and the centerline velocity Au

Re Reynolds number based on channel half- vr
width and shear velocity

41 nth meshpoint in the vertical direction of the
transformed (uniform mesh) space

R if = u i 'u^' + uj	
I + Bfui'

P density

1	 au i	au

1-
Rkk 61S id =	

ex	 + ax	 strain rate tensor
Ti,i R 1.13	 i

Tw mean wall Eherr stress

t dimensionless time
at dimensionless time step

u streanlwise velocity
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a i	Fourier transfam of 51

U
T
	shear velocity " 47—a

v	 velocity in the vertical direction

W	 velocity in the spanwise direction

x, x 3 streamwise coordinate
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V	 kinematic viscosity

vT	eddy viscosity

W4	vorticity in the i-direction

wx	vorticity in the x-direction

1	 1=J

aiJ	
0	 IIIJ

1. INTRODUCTION

I >	 horizontal average (x-z plane)

t > t time average

Subscripts

w	 wall value

SOS	 subgrid scale

Superscript

n	 time step

The technique of lane eddy simulation (LES) 1s a relatively new method for computing turbulent flows.
The primary motivation for its undertaking Is that the large eddy turbulence structures are clearly flow-
dependent (e.9., Jets vs boundary layers) and hence they are difficult if not impossible to model. On the
other hand, there is ex perimental evidence (e.g., Ref. 1) that small eddies are universal to character, and
consequently much more amenable to general modeling.

In LES, the large-scale motions are computed directly using three-dimensional time-dependent computa-
tioa, and the small-scale motions are modeled. The dynamical equations for the large-scal y field are
derived by averaging the Navier-Stokes equations over volumes in space that are small compered to the overall
dimensions of the flow field. This averaging 1s to provide sufficient smoothing of the flow variables, so
they can be represented on a relatively coarse mesh. The resulting equations for the large eddies contain
terms that involve small-scale turbulence. These terms are replaced by models that are to represent the
interaction between the resolved and unresolved (subgrid scale, SGS) field motions.

One of the most extensive applications of LES has been to the problem of decay of homogeneous isotropic
turbulence (see Refs. 2-4), A variety of numerical methods and subgrid-scale turbulence models was incorpo-

rated to compute this flow. Both the pressure-velocity and the vorticity-stream function formulations of
the dynamical equations were used. These studies have shown that homogeneous turbulent flows call 	 reason-
ably simulated using simple eddy-viscosity models.

The first application of LES was made by Deardorff (Ref. 5), who simulated a fully developed turbulent
channel flow at a very large Reynolds number. Utilizing a modest number of grid points (6,720), he showed
that three-dlmens tonal numerical simulation of turbulence (at least for simple flows) 1s feasible. His
calculations predicted some of the features of turbulent channel flow with reasonable success and demon-
strated the potential of LES for prediction and analysis of turbulent flows.

Schumann (Ref, 6) has also performed numerical simulation .f turbulent channel flow. In addition, he
has applied LES to cylindrical geometries (annuli). He used up to 10 times more grid points than Deardorff
and a much more complex subgrid-scale model. In that model, an additional equation for SOS turbulent kinetic
energy was integrated. lWever, the results showed no significant improvement over the case in which eddy-
viscosity models were used (Ref. 6).

In the calculations of channel flow described above, no attempt was made to compute the flow in the

vicinity of the walls. A great portion of turbulent kinetic energy production takes place in this region
(sea Ref, 7). Therefore, by using artificial velocity boundary conditions well beyond the viscous sublayer
and buffer layer, a significant fraction of the dynamics of turbulence in the entire flow was effectively
modeled. In addition, it should be noted that the boundary conditions used in the latter calculations

assume that in the, log layer, the velocity fluctuations are in phase with the wall shear stress fluctuations.
This assumption is not supported by experimental measurements (Ref. 8),

Main at al. (Ref, 9) simulated the channel flow, including the viscous region near the wall. The exact
no-slip boundary conditions were used at the walls, III 	 computations, only 16 uniformly spaced grid
points we re used in each of the streamwise (x) and spanwlse (z) directions and 65 nonuniformly spaced mesh
points were used in the y-direction. The grid resolution was especially Inadequate in the z-direction to
resolve the now well-known streaky structures in the vicinity of the wall. In spite of this, computations
aid display some of the well-established features of the wall region. In particular, the results showed
coherent structures of low-speed and high-speeC fluid alternating ii the viscros region near the wall, though
not at their proper scale. Tire overall agreement of the computed m!lan-velocity profile and turbulent statis-
tics with experimental data was satisfactory.

Encouraged by the results of the above conrse calculation, the present numerical simulation of channel
flow with 262,144 grid points (64 x 64 r. 64) was undertaken. Tire ILLIAC IV computer, a parallel processor,
was chosen for this purpose. Although the grid resolution in the spanwise direction is still not sufficient
for an adequate representation of the wall-layer streaks, it 1s a ,ignificant improvement over the earlier
calculation. This, in turn, allows a nore realistic and comprehensive study of the structure and mechanics
of this flow.

This paper 1s the result of a work that is now in progress and is essentially intended to demonstrate
some of the capabilities of LES in the prediction and analyses of wall-bounded turbulent shear flows. In
Sec. 2, the dynamical equations for large-scale field motions are derived. The subgrid model that was used
is described in Sec. 3; Section 4 describes the computational grid network and its relation to the observed
physical length scales in the flow. The numerical method is briefly outlined in Sec. 5; the data management
process is taken up in Sec. 6; and in Sec. 7, we exumine some aspects of the mechanics and structure of the
flow, both in the vicinity of the wall and in regions away from the wall, and an attempt is made to correlate
numerical results with laboratory observations. In Sec. 8, we present the computed flow statistics, which
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Include thu mean-velocity profile, turbulent intensities, and turbulence shear stress. in that section, we
wilt point out some of the deficiencies of the subgrid . scale model used and suggest improvements. Finally,
conclusions are presented in Sao, G.

2. GOVERNING EQUATIONS FOR THE LARGE-SCALE FIELD

Tile first step in LFS is the definition of the large-stale field, Each flow variable f 1s decomposed
as followsi

	

f•f+f'	 (1)
Para, the overbar denotes the large-scale or "filtered" field and the prime indicates the residual or "sub-
grid" field. Following Leonard (Ref, 10) we define the large-scale field as:

r(x ) • f G(x,g')f(X')dx' 	 (2)
0

where G 1s the filter function and the integral 1s extended over the whole flow field. In the horizontal
planes (x-z), several possible choices for the filter function are Ave i l abl e. Unless otherwise stated, most
of the calculations reported here were carried out using a Gaussian filter, G(x-x',z-z'). The width of the
Gaussian function characterizes the smallest scales of motion retained in the filtered field (the largest
scales in the residual field). We assume that the filtering in the planes parallel to the walls provides
sufficient smoothing in the vertical directions as well; our computations support this assumption. in addi-
tion, it should be noted thatwe use second-order finite difference schemes to approxinmte partial derivatives
In the x 2-direction and such schemes have an implicit filtering effect associated with them. For further
details see Main at al. (Ref, 9).

After applying the filtering operation (Eq. (2)) to the incampress Ible Navier-Stokes and the continuity

equations, the governing equations for the filtered field may be written

Au	 a
aCi a tik uJ'"k 

_ J + a il - Jxi TiJ + 1^ axiaxi	 (3)

'1ax • 0	 (4)

where we have decompot^d u i as in (1) and

Du^

wk ° clack axle

T iJ = R	
Rkksi

iJ

R iJ = uI ui + uJ'ui + uiui'

P* ° p 
f

+ 1 uiui	
3

+ Rkk	
+ 1 uJuip	 ' p

[fare, the variables are nondimensional using the channel half-width 6 and the shear velocity u 3 ^• ,T,P.

The calculations will be carried out for a fixed streamwise mean-pressure gradient which is accounted for
by the ail term in the momentum Eq. (3).

3. RESIDUAL STRESS MODEL

The remaining unknown quantity in Eq. (3) is TiJ• This tern represents the subgrid-scale stresses and
must be modeled. In the present calculations we have used an eddy viscosity model,

	

I ii ° -2vTS
iJ
	(5a)

where

1	 Ju i 	Ju \

	

= 'F axi + Ĵ ' I	 (5b)SiJ 

The small-scale eddy viscosity vT represents the action of the unresolved scales of motion on the
resolved scales. Hence, as the resolution gets better, vT should get smaller. This suggests that vT

should scale on a length scale E which is directly related to the computational resolution. The model

most commonly used for vT and the one we use here is the Smagorinsky model,

vT = (CS t) e S î 	 (e)

where Cs - 0.1 (Ref. 5) is a dimensionless constant and z is a dimensionless representative of the grid

resolution, here assumed to be (Ref. 5);

t • (h; • 112(y ) • 11 3 ) :/3	(7)
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This expression for L Is probably appropriate only for cases in which there is no significant grid
anisotropy (Rof. 6). In the present calculation the computational rid Is very elongated (h 3 h 3 s: bz) in
the vicinity of the walls, and hence use of Eq. (7) is not strictly ^ustifled. However, to gain a bettor
Insight into the role of L and to help guide its selection in future calculations, we have used Eq. (7)
with a modification described below.

Near the wails, the subgrid-scale turbulence Reynolds number, defined as

RSGS
gSGS ' t	 (8)

V

Is very small. and hence one expects the value of the eddy viscosity coefficient to be very small. In out,
calculations, we have found that the damping provided by the presence of (li (y))u I In Eq. (7) Is not suffi-
cient, and excessively large subgrid-stale stresses are farmed near the wall. Therefo re, in+the present
calculations we have multipifeit t (Eq. (7)) by an exponential damping function 1 - exp(-y /50).

The eddy-viscosity model used here is bestrationalized for isotropic turbulence at the scale of the
computational grid. The fundamental assumption behind this model is that the resolution scale lies within
an inertial range with the -5/3 power spectrum (Ref. 11). It is clear that for the moderate Reynolds number
(Bar ° 640) that we are co.,sidering and the nature of the grid volumes used, the above assumptions are not
satisfied. This is particularly true In the highly viscous region In the vicinity of thrt walls. Thus, the
present simulation is viewed as a challenge to the eddy-viscosity model used.

A critical test for the large eddy simulation technique is the rediction of the logarithmic layer
and the van Kansan "constant." This 1s one of the reasons for not u z ng tie mixing-length model to the
Present calculations to account for inhomo^clgeneity due to the mean shear (Ref. 6). Such a model is known to
postdict" the correct mean-velocity preflle,

4. THE COMPUTATIONAL GRID

The availability of computer resources restricts the size of calculations possible. For a given number
of grid points N, we have to choose the grid size(s) based on the known physical properties of turbulent
charnel flow under consideration.

In the vertical direction (-1 c y < 1), a none,, ifonn grid spacing is used. The following transformation
gives the location of grid points in the vertical direction (Ref. 9):

y] ° a tank [Cd tanh-l (a)]	 (9J

where

Ci ° 1 + 20 - 1)/(N - 2)	 (10)

J"1,2, . •	 N

N Is the total number of grid points fit 	 y direction, and the adjustable parameter of trans fo to ti on is a
(0 x a ^ 1). We used a ° 0.98346, N ° 64. This value of a was selected so that the above grid distrlbu-
tfon in the y-direction is sufficient to resolve the viscous sublaye • (y+ x 5).

The length Lx and Lz of the computational box in the streamulse (x) and spanwise (z) direction, in
which periodic boundary conditions are used, should be long enough to include the important large eddies
(Refs. 6, 12)	 paced on the two-point correlation measurements of Comte-Oellot (Ref• 13), we used Lx 	 Yn,
and Lz " 4m/3. We have used 64 uniformly spaced grid points In each of tire	 nrwe streaise and spanwise direc-
tions. With the above choices for Lx and Lz, the nandimensional grid spacings in the horizontal directions
expressed in the wall units are:

III+ ° 63

11 3 + " 42

In the wall region, the lmpo •ta .t large eddies are the "streaks" (Ref. 14). These have a mean spanwise
spacing corresponding to ta + ° 100• It is clear that our grid resolution in the spanwise direction is not
quite sufficient to resolve the streaks. This is especially true when we note that the above value for 33+
is based on an ensemble of measurements, and at a given instant streaks with a finer spacing than d 3+ can
be farmed. As we shall see, however, calculations did reveal these structures, though not at their proper
scale.

With relatively minor modifications to the present computer program, we are able to per form calculations
with 64 x 64 x 128 grid points in the x, y, and z directions, respectively. it 1s expected that in this
simulation the spacing of tire wall-layer streaks will be me re in line with the laboratory observations.

5. NUMERICAL METHOD

A complete description of the numerical method used is given in Ref. 15. Here, we give a brief outline
of the method and minor modifications that were made to enhance the data management process. The partial
derivatives in the xz direction were approximated by second-order central difference formulae. In the
x l and x 3 directions, partial derivatives were evaluated eseudospectrally (Ref. 16). With a given number of
grid points, the use of the pseudospectral method in any given direction gives us the best possible resolution
in that direction. This is particularly useful in the x 3 direction where we face a lack of grid resolution
(Sec. 4).

.•.3.i..	 ...x,..: ^^ v5 , ^.?L-.:.3.,..c.—a._ `-v'^.I.•^4'..t.KS.rc/tiMw..w„... _... ..... ..
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	 Tint advancement is made using a semi-Implicit method, pressure, viscous terns, and part of the subgrid-
scale modal are treated Implicitly, whereas explicit time advancement Is used for the remaining nonlinear
terms. Thu equation of continuity is solved directly. Secand-order Adams Dashforth (Ref, 17) and
Crank-Nicolson (RaL 10) methods are used for explicit and implicit time advancement, respectively.

4
r.	 Next, we Fourier transform the resulting equations in x l and xa directions. This converts the above

sat of partial differential equations to the following set of ordinary differential equations for th q variables
..	 at thne atop n + I. for every pair of Fouler wave numbers k 3 and k 3 , with y • x; as the independent

vartablal

azdn+l
1

•	 'y2. + (PI - k z )li3+t + ik10; 
At ^n+1.

41° 	 (lla)

3 :d3 +1	 n+1
.- e + ( PZ - ke)03+t + a3

 At ?; y._ ° q,	
(tlb)

ay

026 131+1

	+ (il l - O)03 +1
 + Ik3a3 2 

Pn+l . 9
3 n 	(Ile)

ayz

ik163+1 I 

a^znn

ay + ik 3 03} 1 - D	 (11d)

He ro, Gi (1 n 1,2,3) are known functions ofRe, and w Tn>, and ,, n represent the terms involving the
velocity and pressure field at time-step a and n - 1 (see Ref. 15;

In addition to the use of implicit time advancement for all the viscous terms, the algorithin used In the
present study is different Ili one other respect from the one described in Ref. 15. For reasons that will be

explained in the next secCrr„ Eqs. (Ila) and (Inc) were multtplied • by Ik 1 and ik 3 , respectivetyy. Thus,
the dependent variables fat- the tine-advancement equations are ik 3 u, v, and ik 3w rather than U. J. and w.

Thu remaining steps in the solution procedure are as follows. Finite difference operato rs (described
above) are used to approximate a/ay and a zvay z . Thisgives a set of linear algebraic equations for the
Fourier transfmmn of dependent variables, This system is of block tridiagonal form and can be solved very
efficiently. No-slip boundary conditions are used at the solid boundaries. Finally, inve rsion of the
Fou rier transform gives the velocity and pressure field at time-step n + 1.

The initial velocity field was the sonic as the one used in Ref. 9 Interpolated on the finer grid used
here.

G. DATA MANAGEMENT

In large simulations, the high-speed random-access manory of the computer an band may not hold the
entire data base of the problem being considered. In the present case, the co re memory of the ILLIAC IV is
large enough to hold only a few planes of velocity pressure field. The refore, it is essential to manage the
flow of data efficiently between the co re nnennory and the disk memo ry whore the entire data base resides. In
general, sepal-ate passes over the data base are requl •ad fo r each time step and the task is to minimize the
required number of such passes. The following desc ribes a data amnagemenL process employed in the presont
simulation.

The system of Eq. (11) must be solved forboth real and Imaginary parts of the dependent variables.

This necessarily means that two passes through the data base are required: one for real parts of 61 and u.
and imaginary parts of uz and p, and the othe r for Imagina ry par ts of iq and u3 and real pa r ts of it, and P.

To avoid an extra pass through the data base, we multiply Eqs. (Ila) and (llc) by ik; and ik 3 , respec-

tively (Rnf. 19). (These multiplications in Fourier space amount to diffe rentiations In real space.)

a`ll3wt

—+ (P1 ' 
k z ) ur^wn _ klzP1

	
^n+1 . &111	 (12a)

ayz

z.3+1a u	
+ (PZ - k2)d?+1 + P 2 T apay l	 9z17	 (12b)

ayz

a3U3+I
--- + (Pa - k2)53+1 - k3`133,

°tt 
0+1. Qa°	 (12c)

ayz

ado+1

	

u +1 + 
ay 

+ G
1+' 0 0
	 (12d)

l6sre u	 ik u	 u	 u	 u	 ik it	
4 n - ik; Q n ; Uz n - 

D n	 d	 Tz; an	 o = ik Q o .	 he above system of1	 I li 2 ` Ti	 3	 3 3^	 i	 1	 3	 J 3	 Y

ei

i
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equations can be solved with one pass through the data base, but two extra integrations in the Fourier space
are required to obtain u3 and u 3 in physical space. It should be noted, however, that such integrations cost

far less than an 1/0 pass. In addition, to avoid the loss of information, upon differentiation the Fourier
mode associated with a null wave number 1s simply not multiplied by its wave number (i.c„ zerof and,
similarly, it is not divided by its wave number upon integration. This implies that 6 1 , 62, and 0 3 in
Eqs. 12 should be understood as

6i(O,Y.k3); ik l0l( k1,Y,k3), k 1 / 0

62(k3.Y,k3)

113(k3,Y. 0 ); ik 3 6 3 (k3,y .k 3 ).k 3 10 0

The system of Eqs. (12) is-solved by two separate passes through the data base, In PASS 1, the right-
hand sides of these equations, qi (1 - 1,20), are evaluated and in PASS 2, the block tridiagonal system is
solved. To compute the right-hand side vector in PASS 1, differentiations in all spatial directions are
required. Since the pseudospectral method is used in the horizontal - directions (x and z) and a finite-
difference scheme is used in the normal direction (central difference), all the data in an (x - z) plane are
needed for operators in these directions and the data for at least three ad,tacant Planes are needed for finite
difference operators. in the y 11rection, Therefore, in PASS 1, two (x - z) planes are brought into the core
to be handled by a double buffer scheme. One complete pass through the data base is required to compete
PASS 1.

In PASS 2, the block tridiagonal system must be solved for each k 3 and k3, In this pass, two (y - k3)
planes are brought into thecore, A special algorithm had to bo developed to solve the block tridiagonal
matrix because of the limitation on the core size. In a conventional-block tridiagonal solver, all the

results of forward sweep are stored to be used in backward sweep. For the present simulation, this would
require half of the total core size (i.e., 16 x 64 x 64) which is not feasible, Hence, a special algorithm'
was developed so that only a part of the results of the forward sweep is stored In the memory and the rest 1s
recomputed as necessary in the backward sweep. Although this requires extra computations in the backward
sweep, this method is much more efficient than performing the extra 1/0 passes that would otherwise have
been necessary.

The computation described here was carried out on the ILLIAC IV computer at Ames Research Center. The
dimensionless time step, during most of the calculations, was set at at - 0.001. The computer time par

time-step (CPU and 1/0 time) was about 21 sec. This computational speed has been achieved with a full use
of the parallel processing capabilities of the ILLIAC IV and the data management process ,just described.

7. DETAILED FLOW STRUCTURES

In this section, we investigate the detailed flaw patterns by examining contour plots of typical
Instantaneous velocity and vorticity fields in x-z, x-y, and y-z planes. In all these plots positive
values are contoured by solid lines and negative values are contoured by dashed lines. In addition, all
the plots are obtained at a given dimensionless time (t - 1.4).

Figure 1 shows patterns of 6" in an x-z plane very close to the lower wall (y + = 16.1). The striking
feature of this figure is the existence of highly elongated (in the x-direction) °egions of high-speed
fluid located adjacent to low-speed ones. This picture of the flow pattern to the vicinity of the wall is
in agreement with experimental observations (Refs. 20, 21) that the well layer consists of relatively coherent
structures of low-speed and high-speed streaks alternating in the spanwise direction. Examination of the
typical spanwise spacing of these structures shows significant improvement over the earlier simulation
(Ref. 9) where only 16 uniform grid points were used in each of the spanwise and streamwise directions. How-

ever, the typical spacing of these streaks is still about 3 times larger than the experimentally observed
mean value of a3+ . 100. This is expected, since cur computational grid size in the spanwise direction is
too large to resolve the wall layer streaks in their proper scale (Sec. 4),

Figure,,2 shows patterns of 6" in an x-z plane far away from the wall (y16 • 0.73). It is clear
that the 6	 patterns in the regions away from the wall do not show the coherent streaky structures that are

characteristic of wall-layer turbulence. This 1s also in agreement with the experimental observations
(Ref. 20). In fact, it Is difficult to associate a deflnl to structural pattern to 6 	 in the regions away
from the wall.

Since turbulent energy production is directly proportional to -<uv> t , it is important to study the
instantaneous map of 6 11 6, Figure 3 shows the patterns of u"G in the same x-z plane as in Fig, 1;
that is, very close to the wall (y+ • 16.1). Examination of this figure reveals several points related to
the dynamics of wall-layer turbulence that deserve attention. First, it can be seen that the regions with
negative 6"v, which have a positive contribution to the production of average turbulent kinetic energy,
constitute the overwhelming majority of the entire plane. Second, pronounced streamwise elongation, the
characteristic of the wall layer 6" eddies, is absent in 6" g patterns. This indicates that in contrast

to u" eddies, 4 eddies are not significantly elongated in the x-direction. Third, there are several
small regions (hot spots), that are associated with very large values (large concentrations of dashed lines?
of -6"v. These regions are highly localized in spat%., Overlaying Fig. 3 on Fig. 1 reveals that the grep,t
majority of the "hot spots" are associated with u' > 0 (hence, G < 0). Thus, it appears that in the close
vicinity of the wall most of the regions with very large values of (41) are associated with hi C.h-speed
fluid approaching the wall (sweeps) rather than low-speed fluid being ejected from the wall. (bursts). With
combined visual and hot-wire measurements, Falco (Ref. 22) has identified a new flow module in the vicinity
of the wall. These relatively small but energetic structures (called pockets) appear to be footprints of
high-speed fluid moving toward the wall. It is possible that the hot spots identified here may be related

*The original concept was suggested to us by Marshall Merriam, Ames Research Center.
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Figure 5 shows contour plots of V" In an z-x plane far away from the lower wall (y/e " 0- 3). In

contrast to planes located close to the lower wall (Figs, 3. A), where the regions with negative - u'G domi-
nated the entire planes. a significant portion of this plane isassociated with large ppositive u "G as well
as negative. G"6. file regions with the largest positive a"v are associated with high-speed fluid moving
toward the upper wall, and the regions with the largest -G"v seem to bu evenly distributed among higgh-speed
fluid moving toward the lower wall or low-speed fluid moving away from the lower wall. Finally, examination
of the u"v patterns in the mldplane (not shown here) reveals that in contrast to the plane just described

(y/a " 0.73), the regions with the largest 5"; are associated with bursts originating in the uppe r half of
the channel, whereas the regions with the largest 4"i correspond to bursts originating in the lower half
of the channel,

Among the conceptual models of the inner region of turbulent boundary layers 1s the streamwise vorticlty
model. This model portrays the inner region as being composed of pairs of long counter-rotating streamwise
vor tices located adjacent to each other, These long vortical structures, in turn, create low-speed and high-
speed streaks alternatingg in the sppanwise direction. Figure 6 shows the streamwise vorticlty patterns in
the same x-z plane as 1n Fig. 1 (y+ - 16). These patterns do not sllnw elongated regions of positive and
negative +'x alternating In the spanwise direction, Moreover, no def` ifte relationship appears to exist
between the streak patterns shown in Fig, 1 and Wx patterns shown In Fig. 6. Therefore, the present simu-
lation tends to dispute the validity of the vorticlty model.

Figures 7 and 8 show patterns of -u" and z in an x-y plane, z " 1511 3 . For clarity, we have expanded
the region 0 < y/a < O.S. A pronounced feature of Fig. 7 is the two regions of high-speed flu i d (with res-

pact to the local mean velocity) that era inclined at oblique angles with respect to the wall. These struc-
tures are apparently associated with intense shear layers that are also inclined with respect to the wall
(Fig. 8 . Similar large-scale structures have also been obse rved in the laboratory. Rom measurements of
space-time correlation of wall shear stress and velocity fluctuations in a turbulent duct flow, Rajagopolon

and Antonia (Ref. 8) have identified large-scale st ructures that are inclined at a mean angle of about 13"
to the wall. At this time, we have not scanned a sufficient number of x-y planes at widely spaced times
to obtain the mean inclination angle of these structures,

In Figs. 9 through 14, contour plots of the velocities and the streamwise vor ticlty to a y-z plane
(x - 0) are shown. The contour plots In this plane reveal the existence of tu •prisingly welt-organized

structures in the wall region.Figu re 9 bhows a contour plot of !':e streamwise velocity u". Note that the
figure is stretched 4 tiou in the vertical direction and that the contour line patterns are thus distorted
in that direction. Two important features can be observed in this figure. First, away Flom the wall — for

example, y/a > 0.4 --no definite st ructure is discernible. Near the wall, however, an alternating array of
low-speed and high-spaed fluid Is noticeable. This array has a long streaky structure in the streanwise
direction, as was shown in Fig. 1. Second, as we approach the wall, the size of the eddies decrease,
gradually. Figure 10 Is a magnified version of Fig. 9 close to the wall, 0 " y* < 46. Again, the figure 1s

highly stretched in the y direction so that the shapes of the flow structures are distorted. The array of
low-speed and high-speed fluid is clearly discernible to this figure. This strikingly well-organized flow

structure in the will region is consistent with the previous experimental observations (Ref. 20), although
the typical spacing between the streaks is nit correct because of the insufficient spanwise grid spacings
mentioned earlier. In addition to the well-o oanized structu re in the wall region, there exists a very
intense shear layer in the vertical plane where the low-speed and high-speed fluids conic close together.

This could cause free-shear-layer-typpe Instabili^ies in this plane; such instabilities might be related to
the experimental observations that the lifted streaks oscillate not only in the vertical direction but also

in the horizontal planes,

Figure 11 allows a contour plot of the no rmal vehc'ty G in the same plane asin Fig: 10. Ifere, a
positive G (the solid lines) represents fluid moving ,.w"y from the wall, and a negative v (the dashed
lines) represents fluid moving toward the wall. DI this ,Igu •o we notice an array of fluid moving away and

toward the wall. If we align Fig. 10 with Fig. 11, we no , ) -athat, generally, there exists a negative corre-

lation between u" and G. Note that in the vicinity of th..• ,mll, the low-speed fluid elements (G" a 0) are
generally being ejected away from the wall (G > 0), while h.-speed fluid elements are moving toward the
wall, Clearly, the fluid motions just described have a post tn , e contribution to the production of averaged

turbulent kinetic energy.

Figure 12 shows a coni.our plot of the " panwi.d velocity w. A positive w (solid lines) represents

	

fluid moving to the right and a negative 	 (dashed line) represents fluid moving to the left. Note also

that a significantly large spanwise velocity gradient iny — that is, tiv/ay — exists due to the no-slip
boundary conditions at the wall. This results in substantial streamwise vorticlty nea r the wall,although

flow is not actually revolving in this region. We will come back to this later. if we now ali in the con-
tour plot of w with that of 4, we can identify a definite flaw pattern that exists in the wail region.
A schematic illustration of this flaw pattern is given in Fig. 15. This simplified illustration shows how
low-speed streaks are being formed and lifted away from the wall. It is interesting to note that the rota-
tion of the streamwise vorticlty is in the opposite direction to the conventional vorticity model (Ref. 25)

(see also Fig. 15b).
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6. MEAN VELOCITY PROFILE A40 TURBULENCE STATISTICS
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are
urguulc. ' ne calculAtea velocity profile shows a distinct logarithmic rey Ion over an appreciable portion of
the channel width. For comparison, we have also included some of the available experimental data in this
figure, The agreement of the computed mean-velocity profile with experimental data in most of the channel
1s satisfactory. In the vicinity of the wall, however, the values of the computed mean-velocity profile are
rather low. This is due to the presence of an excessively large eddy viscosity coefficient near the wall,
To verify this observation, we carried put a sot of calculations (starting from t * 1.0) where instead of
the eddy viscosity model, we used a subgrid scale model Fimilar to the one used by Fornborg (Ref. 26;
in our numerical experiment, small-scale turbulence is removed by a sharp eu' f , ')ter at each time step).
Although this model is rather Inadequate for proper representation of the lnteractr l + between the subgrid-
scale and resolvable scale nations, It suffices for our present purpose, especially If the total time of
Integration is not large, Figure 17 Dhows the resulting <u> profile at t - I.S. It is clear that the

profile of <u> has attained the proper values in the vicinity of the wall. In addition, the logarithmic
layer is once again evident. Figure lA shows the profiles of resolvable normal turbulent Intensities,
<0"2>1 J2, 441 2, and <Wa>llz at the same Time as in Fig. 16. It can be seen that in aggreement with
experimental measurements, generally, <01 2>1 2 > <62>1/2 > <qz>t /z throughout the channel 	 In addition,46'.2>112 and aw,> Ir2 

attain their maximum values near the wail. Figure 19 shows the profile of the resolv-
able turbulent shear stress, <w>, It call be seen that in the regions away from the wails the profile of

<uv> does not follow the theoretical line, This indicates that the statistically stationary state has not
been reached completely. Note that near the wall viscous stresses are important, and the total shear stress.
must balance the gross pressure gradient. Moreover, in the present calculations, the subgrid-scale shear
stresses are significant only very near We wal (yf < 10). in Fig. 20, profiles of the intensities are com-
pared with some of the availableexperimental data In the vicinity of the wall. The agreement of the computed
<W' 2 0 12 and 4w2>112 

with the data 1s satisfactory. however, as was also the case In Ref. 9, near the wall,
a significant portion of <ve>llz seems to reside in subgrid-scale motions, This is consistent with our
previous observation that vT is still excessively large near the walls.

Figure 21 shows the resolvable portions of the pressure velocity-gradient correlations, <p(au/ax >
<p (a -vlay)>, and <p (a;?/a z)> in the vicinity of the wall (y + < 100, t - 2A). These terms a:e respoasible for
the exchange of energy between the three components of resolvable turbulence kinetic energy) they are of
particular interest to turbulence modelers. Examination of these nrofites reveals that except in the imme-
diate neighborhood of the wall . 	< 20), as expected, energy Is I*ansferrod from 4- 14 to <v-> and <w2 >;
that is, <p(aUax)> < 0 1 and <p av(ay )>, <0(aw/az)> > 0. On the ether hand, as we approach the wall, a sig-
nificantly different behavior can be noticed. Specifically, there is a relatively large rate of energy
transfer from 44, whereas there is a large energy transfer to 4 4 . This rather unexpected result is
consistent nonetheless with our previous discussions of the fluid motions very close to the wall (Sec, 7).
For example, Fig. 15a shows high-speed fluid approaching the wail and spreading laterally, resulting in
relatively large energy transfer from <v2> to 44, On the other hand, the momentum transfer front
lateral to the normal directions, which results in ejection of fluid elements away from the wall, involves
the nonenergetic (slow moving) fluid in the immediate neighborhood of the wall. Thus, there is a net energy
transfer from <64 to 44, as shown in Fig. 21,

It should be mentioned that, to general, the values of the pressure velocity-gradient correlations
computed in the present study are significantly higher than the earlier results using a much coarser grid
(Ref. 9). This may indicate that a substantial portion of the pressure-strain correlation is due to small-
to-medium turbulence scales. To confirm this observation, several computations were tarried out with differ-
ent filter widths. The results of the calculations tend to support this observation. Thus, at present,
and in the absence of a better subgrid-scale turbulence theory, the computed pressure-strain correlations
should be interpreted qualitatively. It should be mentioned, however, that the large-scale flow structures
presented in the previous section are rather Insensitive (qualitatively) to the different fitter widths and
subgrid-scale models used.

Before conch,ding this section, we turn our attention again to the subgrid-scale model used It. the
present study, fo better resolve the relatively small turbulence scales in the vicinity of the walls, the
present calculations were carried out for the case of a relatively lbw Reynolds numller turbulent channel
flow (Rer - 640, Re - 13,800). Therefore, the subgrid-scale turbulence Reynolds number d¢fined in Sec. 3 is
considered to be low in the regions away from the wall and very low in the vicinity of the walls. As was
mentioned in Sec. 3, the arguments used in constructing this model are valid only at a very high Reynolds
number. Numerical results of McMillan and Farziger (Ref. 30) also show that Smagorinsky's model is more
appropriate at high Reynolds numbers. Thus, a low Reynolds number correction seems to be necessary. Note
that because of the use of a much finer grid in this simulation than that used in Ref. 9, the effective
subgrid-scale turbulence Reynolds number is lower than that in Raf. 9. In addition, because of the quasi-
cyclic nature of turbulent channel flow (bursts, sweeps, etc.) the present calculations seem to indicate

I
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that a subgrid-scale model that has a better response to the time history of the flow (a dynamic model) than
the Simple eddy viscosity model uaed here may be necessary, ThT Td T°dceessary for a proper ton,-time inte-
gration of the governin equations. Integrating an additional cluatlon for subgrid-scale turbulence 'energy
s an actractivo possibfltty, In the interim, however, we have found that selectt"ll filtering of the excess

small-scale turbulence may be adequate,

g . CONCLUSIONS

In this study, the three-dimensional time-dependent equations of motion have bean numerically Integrated
for the case of fully-devoloped turbulent channel flow. The calculations were carried out on the ILLIAC IV
computer with 64 mesh points in each of the spatial directions, Detailed f l ow patterns were studied by
examining contour plots of typical instantaneous velocity and vorticlty fields. In summary;

1. The wall layer consisted of coherent structures of low-speed and high-speed streaks alternating in
the spanwtse direction. These structures are absent In the regions away from the wall. In addition, contour

plots of velocities in a typical y-z plane revealed the existence of well-organized flow patterns in the
wall region,

Z. Not spots, small localized regions of vnry large values of turbulent shear stress, G'% were fre-
quently observed. Vary close to the wall, these hot sl- -1 were associated with O" . 0 and 9 . 0 (sweap)t
away from the wall, they were due to D" 4 0 one 9 0 0 (burst). In the central rcufons of the channel,
bursts from both halves of the channel were the sources of the hot spots.

3, No evidence of a direct relationship between streaks and streamwise vorticlty Cx was observed
in the present simulation; very close to the wall, wx was not the result of large-scale revolving fluid
motions but was rather due to the spanwtse velocity gradient, (aw/ay). Though strong vortical regions were
observed away from the wall (ya - 30), <)(411e attained Its maximum value at the wall,

4. The profiles of the pressure velocity-gradient correlation showed a significant transfer of energy
from the normal to the spanwtse component of turbulent kinetic energ y In the Immediate neighborhood of the
wall (tire "splattiny" effect). A large portion of the pressure-strain correlations appears to be due to
small to medium scales of turbulent motions,

the work presented here is still in progress and much more remains to be done. In particular, a more
refined model that dappicts the dynamic nature of the Subgrid-scale motion may become notes al .	Also, more
mesh points, especial ly in the spanwtse direction, are required In order to resolve the streaks at their
proper Scale. A computation with twice as many grid points as in the present calculation (64 + 64 • 128)
will be carried out In the near future.

It IS hoped that this paper has demonstrated some of the capabilities of LES as a research tool for
studying the mechanics and structure of turbulent boundary layers. The authors believe that LES will make
important contributions to the study of turbulent flows by supplementing the experimental data.
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(b) Streaawise vorticity according to (a).

Fig. 15. Schematic diagram of the flow patterns In
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