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SUMMARY

A test program is currently being conducted to determine thin solar cell
annealing effects using a laser energy source. A CO» continuous-wave (CW)
laser has been used in annealing experiments on 50- um-thick silicon solar
cells after proton irradiation. Test cells were irradiated to a fluence of
1.0x1012 protons/cm2 with 1.9 MeV protons. After irradiation, those cells
receiving full proton dosage were degraded by an average of 30% in output
power. In annealing tests laser beam exposure times on the solar cell varied
from 2 seconds to 16 seconds reaching cell temperatures of from 4000C to
5009C. Under those conditions annealing test results showed recovery in cell
output power of from 33% to 90%.*

INTRODUCTION

Past investigations have shown positive annealing effects when radiation
damaged silicon solar cells were heated to above 400°C for longer than 10
minutes (ref. 1 and 2). More recently, manufacturing process induced defects
in semiconductors have been annealed using directed beam energy to obtain the
desired annealing time and temperature (ref. 3). The coherent beam of a laser
may provide an ideal energy source for solar cell annealing space applications

*This work has been supported by NASA under Contract NAS9-15636.
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where annealing ovens or array enclosures (ref. 4) might not be practical. A
laser provides the added benefit of directing the annealing beam to any por-
tion of a large array when required (such as a Solar Power Satellite). This
would allow the annealing device to scan the array continuously without |
disrupting panel power generation as only a small segment of the array is
affected. In-situ annealing of solar arrays in space has been a topic of
technical scrutiny for some time.

BACKGROUND

Preliminary laser annealing studies were conducted to determine feasibil-
ity of laser annealing principles as applied to the annealing of radiation
damage in silcon solar cells.* These studies showed positive annealing
results for uncovered solar cells annealed with a scanned DC electron beam
(fig. 1) and with a pulsed Nd:YAG laser (fig. 2). Glass covered solar cells
with electrostatically bonded (ESB) Corning 7070 cover glasses were annealed
using a CO» laser (fig. 3). These early solar cell laser annealing tests
involved exposure periods of from 10w sec for the electron beam to 2 sec for
the CO» laser. No attempt was made to optimize beam parameters or to deter-
mine what effect, if any, the short duration, high intensity laser exposure
had on the cell or the annealing process (ref. 5).

LASER ANNEALING OF THIN CELLS

Further testing of solar cell annealing using a CO» laser has been
conducted to address the questions of laser beam effects on solar cells and
reproducibility of laser annealing in an individual cell. In particular, 50-
um-thick solar cells were tested as a lTow mass advanced cell with potential
for application in the development of large space power generating systems.
Solar cell types used in the annealing tests are described in table 1.

*This work was performed by Spire Corp., Bedford, MA, under contract to Boeing
Aerospace Company, Seattle, WA.
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Initial laser annealing test parameters were derived from thermodynamic
analysis of a 50- wm-thick silicon solar cell with a 50- wm-thick integral-
glass cover. This steady state thermodynamic model shows in figure 4 the
laser beam energy density required to maintain a desired annealing tempera-
ture. The amount of time required for a laser beam to raise the temperature
of a solar cell, as a function of laser beam energy density, from room tempera-
ture (289C) to an annealing temperature of 5000C is plotted in figure 5.
Although early theoretical analysis was done for a 50- wm-thick cell with 50-um-

thick integral-glass cover, unglassed 50- uwm-thick solar cells were used in
these annealing tests as integral-glass covers on thin cells are not
completely developed.

TEST PROCEDURES

Figure 6 shows schematically the test set-up. A COp laser capable of
greater than 150 watts CW was used as the laser source. A mechanical shutter
was used which utilizes two knife edge shutter Teaves and a light emitting
diode, photo cell to generate a pulse of laser radiation and an electrical
timing pulse, respectively. The electrical pulse was measured with a counter
to determine the exact laser beam pulse length. With the shutter held open,
a sampling mirror was placed in the beam to deflect the beam into the refer-
ence power transducer which was used to measure the total raw beam power as a
reference.

A zinc selenide lens with a 5.0 inch focal length was used to spread the
beam. Distance C in figure 6 was adjusted to give the required power density
at the test plane.

The beam travels through a motor-driven mirror arrangement which was com-
puter controlled and can be used for aligning and centering the beam and for
scanning the beam across the aperture plate (2mm aperture) to provide power
density profile maps of the beam. The laser test facility and Coherent
Optics, Everlase 150 laser with the test set-up on the work table above the
laser cabinet are pictorially illustrated in figure 7.
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Electrical parameters of each cell are measured before and after every
test to provide comparative test parameters. A Spectrolab X-25 Mark II
solar simulator provides illumination on the test cell during electrical
measurements.

Each cell is electrically degraded by irradiation of 1.9 MeV protons to
a fluence of 1.0x1012 protons/cm? at Boeing's Radiation Effects Laboratory.

EVALUATION OF ELECTRICAL DEGRADATION IN
UNIRRADIATED TEST CELLS DUE TO LASER EXPOSURE

Before formal laser annealing tests began, 50- wm-thick solar cell test
specimens were subjected to various laser intensities and exposure durations
to determine the mechanical effects of thermal shock during laser irradiation.
Unglassed 50-um-thick solar cells were found to physically deform in an
unpredeterminable fashion above 3000C when subjected to a laser beam. Upon
measuring electrical characteristics (figs. 8 and 9) of test cells after a 5
second, 100 watt COp laser exposure that raised the cell temperature to 500°C,
no reduction in the solar cells' electrical characteristics was apparent
within measurement tolerances.

RESULTS AND DISCUSSION

Figures 10 through 16 illustrate laser annealing of charged-particle
irradiated Solarex and 0.C.L.I. 50- wm-thick solar cells. Each cell was to be
irradiated with 1.9 MeV protons to a fluence of 1.0x1012 protons/cm?; however
cells No. 18, 19, 31 and 32 did not receive full irradiation fluence due to a
malfunction of the proton source during the irradiation portion of the test
sequence. Cells No. 18 and 32 had reduced outputs after the laser anneal
portion of the test due to cell damage. Cell No. 18 was broken and 25% of the
cell was lost. Cell No. 31 curied during laser exposure to such an extent
that accurate measurement in our solar simulation test facility was not
possible.
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The average cell degradation in output power due to irradiation was
30%. Recovery of output power as measured at the maximum power point varied
from 33% to 90% after laser annealing. Cells that were moderately degraded
appeared to recover more completely than those more severely damaged.
There was some indication that longer exposure to the annealing temperature
was beneficial.

Figure 17 illustrates repeated annealing under the same test conditions
as applied to those solar cells depicted in figures 10 through 16. Note that -
this cell did not recover as completely after the second annealing as it did
after the first.

Figure 18 is a summary of output power variations, at the maximum power
point, after each step of the annealing test sequence for all cells except
cells No. 18 and 32 which were damaged during laser exposure. '

Test cells were exposed to temperatures greater than 5000C for various
time periods; however, no annealing data was obtained as cells tested above
500-6000C were broken as a result of severe mechanical deformation of the
cell. The suspect cause of this effect is thermal expansion differences be-
tween the silicon of the cell and the metal of the cell back contact. This
back contact covers the entire back of the cell having a greater effect than
the metal grid on the front cell surface.

CONCLUSIONS

Laser annealing of thin cells shows promise; however, basic design altera-
tions are required to minimize thermal shock effects of short duration, high
intensity laser pulses on the 50- um-thick solar cell. Further studies of
annealing temperature and duration of laser annealing on thermo-mechanically
stable thin cells are suggested. N
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Figure4, Laser Annealing of Solar Cells — Test Schematic

Figure 5; Laser Annealing Test Setup With Coherant Optics Everlase 150 CO, Laser
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Figure 8 ; COo Laser Annealed Solar Cell Without Coverglass, Solarex Cell No. 44
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Figure 9 ; CO2 Laser Annealed Solar Cell Without Coverglass, Solarex Cell No. 45
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Figure 10; COo Laser Annealed Solar Cell Without Coverglass, Solarex Cell No. 16
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Figure 11; CO2 Laser Annealed Solar Cell Without Coverglass, Solarex Cell No. 18
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Figure 12; CO2 Laser Annealed Solar Cell Without Coverglass, Solarex Cell No. 19
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Figure12; COg2 Laser Annealed Solar Cell Without Coverglass, Solarex Cell No. 20
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Figure 15 ; CO2 Laser Annealed Solar Cell Without Coverglass, O.C.L.I. Cell No. 32
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Figure 16; CO2 Laser Annealed Solar Cell Without Coverglass, O.C.L.1. Cell No. 33

S5 2058 'a
1 ORIGINAL CURVE
Vo= 558V I = 1457 ma
5
4
w
s
P §
o
>
3t 2 AFTER 1.9 MeV PBOTON IRRADIATION TO A
FLUENCE OF 10'4 PROTONS/cm
Voo = 508V I =117.0ma
3 AFTER CO., LASER ANNEAL OF
5.414 soc T8 550°C
2 Voo =558V I = 1354 ma
4 AFTER SECOND 1.9 MeV PROTON IRRADIATION
T0 A FLUENCE OF 1012 PROTONS/cm?
Vo= 505V 1, =1130ma \‘1
ar 5 AFTER SECOND CO; LASER ANNEAL OF
5.13 sac TO 500°C —~
Vo= 532V 1 = 1267 ma
o 1 1 1 1 1 1 1
o 20 40 60 80 100 120 140 160

mA
Figure17; CO2 Laser Annealed Solar Cell Without Coverglass, Solarex Cell No. 13
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Figure 18; Degradation and Recovery of Maximum Power for Laser Annealed Solar Cells
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