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Abstract

The solution of the differential system Bx = Ax + £ wnere

A and B are n xn uabrices and A - AB is not a singular
pencil may be expressed in terms of the Drazin inverse, It is
shown that there is a simple reduced form for the pencil

A - AB which is adequate for the determination of the general
solution and that although the Drazin inverse could be determined

efficiently from this reduced form it 1s inadvisable to do so.
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1 INTRODUGTION

In a recent paper[:2 ] the solution of the differential system
B = Ax + (%) , (1.1)

where B and A are n % n matrices and f is an n-vector has been discussed in
terms of the Drazin inverse, Although this work gives considerable insight
into the nature of the general solution of (1.1) it should not be assumed that
because the explicit solution can be expressed directly in terms of the Drazin

inverse that economical algorithms will involve its explicit computation.

Numerical analysts will be familiar with this in comnexion with the simpler
problem Ax = b where A is non-singular. Although the solution is given by
X = A"1b it is seldom advisable to compute the inverse explicitly, However
algorithms for solving Ax = b based on direct methods do provide the basic

! if that should be required; we

tools for the efficient computation of A~
might therefore expect that practical algorithms for solving (1.1), or
closely related algorithms, would provide effective methods for computing the

Drazin inverse and this is indeed true.

2 THE DRAZIN INVERSE

If A is an n % n matrix then the Drazin inverse Ed ] of A ig the matrix X

satisfying the relations

(i) AX =1Xa
(ii) XAX = X
(111) A" 2 4¥ where k = Ina(a).

Ind(A), the index of A, is the smallest non-negative integer for which
rank (&%) = rank (A7),

The existence and uniqueness of A may be proved as follows. The proof is
given in matrix terms since we shall need to work in these terms in subsequent
sections., Let J be the Jordan canenical form of A, and supnose J is expressed
as the direct sum of C and N where C is associated with the non-zero
eigenvalues and N is associated with the gero eigenvalues and is therefore

nil-potent, We may write



il (2.1)

where C is non-singnlar and W is nil-potent, If k is the smallest integer for
which'Nk it Q it is clear that k is the index of A since

(2.2)

and rank (AX) = rank (A1) - order of C. On the other hand ramk (AP) >
rank (Ap+1) when p < k. Ubviously k is the dimension of the largest Jordan

submatrix associated with a zero eigenvalue,

1

Any n % n matrix X may be expressed in the form X = TYT ' and relations (i),

(ii) and (iii) are satisfied if and only if

(iv) J¥ =1
(V) YJY = Y
(vi) Y3t .o gk
where

. - (2.3)

Y - . (2.4)
Equation (iv) then gives
CP=PC (a) , CQ = QI (b)
. (2.5)
NR = RC (c) , NS = s¥ (d)
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From (b) we have
o - -0 . (2.6)

Hence QNk"1 = O since C is non-singular., Continuing in this way we have
successively QN° 2 = 0, a3 - 0, «v., @ = 0. Similarly from (c) R = O.
Now from {v) and (d)

SNS = S and SN = S . (2.7)

Hence

Pr* = s giving s = 0. (2.8)
Continuing in this way SR | 0, SNx_3, veey S =0, Finally from (vi)
led- k -1

P ' = € giving P = O (2.9)

and hence

XaT T, (2.10)

showing that X is uniquely determined. In proving this result we did not make
use of the fact that C and N were the direct sum of Jordan matrices but merely
that they were non-singular and nil-potent respectively. Hence to derive the
Drazin inverse it is not necessary to obtain the Jordan canonical form itself

but merely the identification »f the nil-potent part, a much simpler objective.

When & is non-singular X is obviously A“1, the usual inverse, Notice that it
is not generally true that AXA = A and hence a solution of a compatible system

Ax = b is not, in general, given by x = Xb,

3 COMPUTATION OF THE DRAZIN INVERSE

We have shown that the Drazin inverse of A is available if we have expressed

A in the form



I C o'i
A= + U (3.1)
Lol

where C is non-singular and N ie nil-potent. A factorization of that form in
which T is unitary has in fact been derived by Golub and Wilkinson [ 6J]. In
that factorization the singular value decomposition was used so as to give

the maximum numevical stability. A similar reduction could be achieved ty a
whole range of elementary transformations and this we now describe in general

terms,

We denote the original matrix by A(1). in the rth step a similarity

transformation, based on multiplications with elementary matrices is applied to
A(r) to give A(r+1)
illustrated by the fact that

. The general form of the matrices 4 T s adequately

HONIROERORRON
TR IR E R B VE A
(4) 1 ,(4)
(4) ) o O A32 A31 } n3
A (1) s (3.2)
0 0 0 A21 } n2
0 0 0 0 } n1
- I S
n3 n2 n,]

where the significance of the n, will become apparent in the description of

the rth step which is as follows,

If the matrix A£§) is non-singular the reduction is complete, Otherwise premult:iply

(7

with a sequence of elementary transformationg, the product of which is
dencted by Q(r), such that

o) Aﬁi) - : (3.3)

where n, is the nmullity of A£§). The matrices involved in Q(r) may be unitary
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(orthogonal, if real) or may be elementary matrices corresponding to elimination

(1) had small integer elemenis the use of rational numbers

techniques, If A
enables this reduction to he done exactly. Note that B(r) need not be trapezcidal
so that this reduction can be achieved entirely by pre-multiplications, If we

row post-mltiply by (Q(r))—1 we may write

T (o) | (o)
\ i, r+1 r+1,r
Q(T) Agi) (Q(rl)“1 - . (3.4)
o | o
Writing

KOS
15 I R , (3.5)

0 I

where TF) ig of order n, then alm1) _q(r) 4 (=) (T(r))_1 is again of the
required form, Notice that the pre-multication with T T/ affects only the
leading block row of A r)’ while the post-multiplication affects only the
principal leading submatrix, Ye must have n, = L since if n.o>n. g, this
would imply that in the preceding stage n, 4 was not the full nullity.

Indeed the Aif must be of full row rank at every stage for the same reason.

1,1
If the matrix A(1) is entirely nil-potent then we must reach an Aﬁi)

null and the final matrix is of the block form illustrated by

which is

. (3.6)

o O o o
©C O O K
O O XN M
© ko e

Otherwise we terminate with an A£E§1i+1 which is non—sin?ular. (In using the
-
)). In this second

case we can annihilate all blocks in the Tirst row except A£f§1i+1 by further
H

symbol k we are anticipating that this is the index of A 1

gimilarity transformations, This is adequately illustrated by the case when
k = 3 for which A(4) is as in (3.2) with A&j non-singular. Post-multiplication
with



[~ -1
R
0 I
Py = (3.7)

I

—

anmmihilates A(4) and leaves all other submatrices unaltered, Pre-multiplication

o (-1) A3 . (4) (1)
with P3 pregerves all the null matrices and changes A42 and A41 « The (4,2)
and (4,1) blocks may be annihilated successively in a similar way.
?

(1)

one or other of the forms illustrated by

Thus aocording ag 4 is entirely nil-potent or not we achieve a reduction to

0 X X X c 0 0 0
0O 0 X X c 0 X X
o 0o 0 x[%|lo o 0 x (3.8)
O 0 ¢ © 0O 0 0 o
J - .
with C non-singular, We may denote thie final matrix by
H
N or (3.9)

N

in the two cases, Obviously Nk = 0 while it is eagy to see that since the
(1,i+1) blocks are all of full row rank N¥/ 0 (£ <k), Hence k is indeed the
index,

The Drazin inverse could now be computed explicity using the product of all the
transformation matrices but it would usually be more expedient %o keep it in

factorized form,

4 THE SOLUTION OF THE DIFFERENTIAL SYSTEM
When B is non-~singular the system (1.1) may be written in the form

1 1

=8 Ax+ BT f , (4.1)

-

" There is a solution corresponding to any f and for arbitrary initial values X

This solution mey be expressed in terms of exp(B-1At). Singularity of A in no
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way affects the explicit form of the solution, Although this is a non-~trivial
matter we shall assume, in common with the paper we have referred to, that we

have satigfactory algoritums for it,

When B is singular but A is non-singular (1.1) may be written in the form
" ~1
AT'Bx=x+ AT'f (4.2)
ie Kk=x+ g (say) . (4.3)

The existence and nature of the solution may be examined in terms of the
Drazin inverse of K but there seems to be lititle point in compuiting the latier

explicitly, Indged if

o [c J 7 (
. 3 4.4)
N

then
¢
T% = Tx + Tg , (4.5)
L N
or
r .
C y—l ¥ P
I = + ’ (4. 6)
B N Z | z q
—y'- ‘—p
J = MPx , [ o Tg . (4'7)
— 4 ‘ q
Hence
Cy=y+p (4.8)
Nz=2z+g . (4.9)

Since N° = 0, (4.9) sives

0=+ Nk”1q . ; (4.10)

g

A A T A T T T,

S



Multiplying (4.9) by N5 2 and substituting from (4.10)
T (4.11)

and continuing in this way

2= ~[I+ND+ ... +Nk—1Dk_1:lqwhereD=£-'b-. (4.12)
Notice that we must have
2= (~[T+ WD+ ..+ ¥T0R] 7). (4.13)

and since the components of z, are linear combinations of those of X, this
means that the initial X, must satisfy certain conditions for a solution to be
possible. Provided these consistency conditions are satisfied there is then a
unique solution corresponding to any q, assuming that it has k-1 derivatives,
We observe that in the homogeneous case q = G, and the only selution of (4.9)

is gz =0,

Since € is non-s.ngular the system (4.8) has a unique solution corresponding

to any initial Ys and this may be expressed in terms of exp(C—1t).

The selution described above has been given in the spirit of the work based on
the ume of the Drazin inverse, but we would submitv that even here too much
atteniion has been pa:d to obtaining explicit expressions, It is more economical
to work with the form exemplified in (3.2). We describe this below and for
convenience of presentation we assume that k = 3 and omit upper suffices. A

transformation of variables has then reduced the original system to one of the

form
r 9 0 s 9 - . 1
Ao Py M2 A Yy ¥y | &
0 0 A32 A31 y3 ys g3 ( )
. = + 4.14
© 0 0 Aoy Yo T2 )
. O 0 0 o J | 5’1 | |, g




where the blocks on the diagonal are square and A 4 is non-singular. The

4
mabrix
0 Ay 4y
0 0 Ay (4.15)
0 o 0

is the N and A,, is the C of our previous analysis.

44

The relation (4.,14) gives successively
Yi = <Biy ¥ = By = hyy¥ys ¥y = 83 = Aydy —Ayi, (4.16)
Finally we have
» = + - L] - [ — A 3 .
Bygdp =y % (&g = &ygdy = Byo¥p = 8573) (4.17)

and at this stage y,, y, and ¥ and hence ¥4 §o and &3 have already been
determined. Notice that when we describe the solution in these terms there is
no rieed to annihilate the blocks A and A ] as we did in section 3 when

13 442 4

describing a reduction to the form
. (4.18)

Now we merely have terme involving these A4i on the right of (4.17). At the
end of the nexi section we show how the volume of work may be reduced even

further.

5 SINGULAR A AND B

When both A and B are singular one cannot proceed as in the previous section,

The use of the Drazin inverse has been concerned with the case when det(A-\B) ?ZO
ie when the pencil A-AB is non-singmlar in the Kronecker sense (see eg E3,5,8 ] ).
The matrix A-cB is then non-singular for any c which is not a root of the
equation det(A-\B)
equivalent to

il

0. If one takes any such c¢ then the system (1.1) is
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(A-GB)_1BJ'C = (A-cB)'1Ax + (A-cB)-1f (5.1)

or
B = Ax+ F. (5.2)

It may be readily verified that BA = A8, The explicit solution of (5.2) may
be expressed in terms of the Drazin inverse of B. Although, of course, the
derived solution must be independent of ¢, its introduction is undesirable.

In practice it would be important for A~cB to be, not merely non-singular, but
well conditioned with respect to inversion, otherwise there will be a loss of
accuracy which may be far greater than that resulting from the inherent

gsensitivity of the problem.

It will be appreciated that one will not necessarily know in advance whether
A and B are singular or indeed whether det(A-B) £ 0. The method described

below, which is analogous to that described in section 3 for the computation of

the Drazin inverse of a matrix, does not require any previous knowledge and

does not require th i3 of the arbitrary scalar c.

We observe that if P and Q are non-singular then pre-multiplication of the
system (1.1) with P and the transformation x = Qy transforms it to the

equivalent system
PEQy = PAQy + PF (5.3)

In our algorithm P and @ are determined as products of elementary matrices

in such a way that (5.3) is typically of the form illustrated by

0 A0 D 0] (3] [ 0 0 0] (] [
o o B s |y, o af AP WPy &
oo o e Tle 0 Wy e
Lo o o o |[#5] [0 o o Ag?)_ 3 g,

The diagonal blocks are square and A$$), Agg), Agg) and ng) are non-singular,

(5.4)
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The matrices 3(4) and 3(4) are of full row rank, 1In g2neral there are k steps
21 32 ’

s (k1) ;
the process coming to an end when Bk+1,k+1 18 non-singular.

Supgose we have performed p-1 steps and Bﬁrg is still <ingular. In this cage
2
Bﬁrr may be reduced fo the form
H

()

5 } . (5.5)

by pre~multiplication with elementary matrices, Here n_ is the mullity of

Brrr and E'Y/ ig not required to be of upper trapezoidal form. If the same

operations are performed on Ar; the resulting matrix may be denoted by

()

-y

o) _,_}nr ‘

Now G(r) must be of full row rank n., since otherwise A(i) and Bgi) share
common left-hand null vector and this would imply that det (Aﬁi) -kB(i)) =0,

Hence G‘\F may be multiplied on the right by elementary matrices to give

(5.6)

o

[o] i (5.7)

1
where A£§+‘) i1s non-singular, If these right-hang transformations are applied
to the full matrices

() 1 NS

o | o)
the resulting matrices may bhe denoted by
B )
g(r+1) alr+1) A(re1) A{re1)
T+, 1 r+1, 7 r+1, 1 ™+, r
and | . (5.9)
L o | o | 0 ! Af‘;'”)
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The rth step is completely determined by the matrices Bii) and Agi) but if we

apply the transformations to the full n x n matrices and to the ourrent foreing
veotor we arrive at an rth derived system of the same form as the {r-1)th system
from which we gtarted. The B£r213
determined in the previous stage would have been incorrect.

must be of full row rank otherwise the n._

If det{A-\B) # 0 we must either reach a Bii) which is non-singular or one which
is acompletely null with Agi) non-singular, If however det{A-\B) = O this would
be detected by the algorithm since we would reach a stage at which the G Tl of
(5.6) was not of, full rank and this would reveal itself when performing the

elementary operations on G(r).

Por simplicity of presentation let us assume that the process terminates when
k = 3 so that the final system is as given in .5.4). We suppress the upper

suffix for convenience. The solution is then given by

Ay = - &
Roo¥p = = 8y = Anq¥y ~ By, (5.10)
Ayg¥y = = 8y = Ayyy =~ Ay, = Byvy = Byoy,

g0 that the components of Yir ¥o and yy are all uniquely determined and the

initial values must satisfy equations (5.10) for consistency. Finally

V. o= + (A + A+ A -B, .y, -B, .y, ~B, ¥y, + .11
Bygly = Agq¥y ¥ (Rga¥y * Aoty * Ayqry = Bygly = Buody = Byt gy) (51)
and the vector in parenthesis is already'determined. Since 344 ig non-singular
thrs hag a unique solution for arbitrary initial y4 whicl: mny be expressed in

terms of exp(B, t).

1
A
44 “ 44
The elementary transformations on G(r)
way that A§§+1 would be at least triangular (though possibly even diagonal)

would usually be carried out in such a

according to the method used. The computation of the vectors Vs Yor ¥y from
relations (5, 10) would therefore be particularly convenient. As we remarked above
if at any stage G T/ is not of full rank this would be exposed automatically in
the execution of the algorithm, (We assume here that the algorithm used to
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reduce G(r) is stable enough to deteot rank reliably!), This can happen only
if det(A-\B) = 0. This situation is not usually covered by the use of the
Drazin inverse. When G''/ has a rank deficiency of p then p linear relations
must hold between components of f for the differential equations to be
compatible, This is discussed in detail in[ 8], However the %eneral
glination may be illustrated by considering what happens when G 1) has a .enx
deficiency of p. This means that the original system is equivalent to a system

of the form

K

n,-p { _—O" y = n1-p{
{

SiDED

where M is of full rank, n,=p. Hence the last p components of g must be zero

(1L
M y+eg , (5.12)
0

for the equations to be compatible, and the components of g are linear combinations

of the original components of f.

When both A and B are singular but det(A-\B) # O, then when we reach the
terminatirg non-singular Bgi the corresponding Ari must be singular. This
follows because the earlier Ai; were non-singular and if Ari were non-singular

this would imply non-singularity of A,

We have remarked that the soluilion may be expressed in terms of the Drazin
inverse of (A-cB)“1B and the form of ‘the solution is determined by the index

of (A—cB)_1B. The k introduced above is in fact this index as we now show,
Denoting the successive n X n matrices derived by the algorithm by A(r) and B(r)

(kt1) _ _g(e+1)

respectively, A has as its diagonal blocks

(k1) _ (e+1) , (kr1) alert) ) (er1)

Ak*1,k$1 kb1, kEq? Tk 0 Tt 22 0 U . (5.13)

(let1)
The last k of these and Bk$1,k+1

are non-singular b% deginition(of ghe algorithm,
. . . . k1 et
The first is non-singular for any c¢ for which det - ¢B 0 ie
(heet et = Bt dow) F

for almest all c. Obviously

% = [ alk) 03(1&1):, -1 (k1)
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is block upper-triangular and its diagonal blocks are

(kt1) (k1) ]-1 (k1)
Bkt k1™ Pt ior | T Bt s O vey 0, 0, (5.14)

. o (alkr) =1 (kw1) ; ,
Further xi,i—1 = (Aii ) Bi,i—1 and hence is of full row rank fop

2 ¥ i €k since this ig true of the ngilg » Hence the k of our algorithm is
2
the index of [A(k*1) - cB(k+1)] -1 B(k*1) and since A(k+1) = PAQ, B(k+1) = PBQ

for some non-singular P ang Q, our k is the index of (A-CB)“TB.

matrices are affected by the transtormation, We have presented the algorithm
in this way in order to give a closer tie up with earlier work involving the
Drazin inverse. However, if one were concerned with only one forcing vector f,
or if indeed one were interested in several different forcing functions all of
which were known at whe time when the redustion was performed then s
coneiderable economy would be achieved ag follows., Suppose we have completed

one stage of the reduction and have reached the reduced systen

~5’2 ’:Agg) Aéf) | ry21 85 (5. 15)
= + . 5.15
0 0 Lj"i '- 0 Aﬁ)- Ly'l &1

At this stage the variables in ¥, are completely determined and these variables

D o

undergoe no further transformations, We have then
2 )} y~1
¥y = - (A‘S")) g (5.16)

and

(2), _ ,(2) {" (2). (2)
P'tp = Ayt |8, - Bo1 ¥y + 4507y,

Agg)yg + £, (say) . (5.17)

Hence we can continue with a system of lower -rder, In this way we avoid



performing any transformations on 321 51
stage is wholly typical; in the rth stage we determine n_ more variables and

are left with a system in n, fewer variables,

15

(2) 2na 482) 5y the next step. The rirst

Obvicusly if we are interested
in the effect of several forcing functions we can deal with them all

simultaneously., A similar reduction of effort may be achieved with the

gimpler algorithm of section 4.

6 NUMERICAL EXAMPLE

As an illustration of ocur algorithm we describe its performance on the example

used by Campbell et al [2].

The system of differential equations is

Ax+ Bx =D
-1 0 2 27 —22 -7 2
2 3 2 [x+| 18 14 0 lx=1{0 , (6.1)

0 1 2 1

—

where we have reordered the equations in order to aveid a row permutation
This makes the process a little easier to

during the course of the solution.
The authors

follow., Naturally we have used rational elimination technigues,

gave the general solution to the homogeneous system as well asg that

corresponding to the forcing function b. For convenience of comparison we

have followed the notation Ax + Bx = b used by Campbell et al.

Exposing the row nullity of A gives

-1 0 2 ~27 =22 17 2
2 3 2 |x+ 18 14 10 | x= |0 . (6.2)
0 0 O 27 =21 15 L3

We now reduce the rows of B corresponding to the null rows of A,

is only one such row and to facilitate comparison with Campbell et al we leave

(3,1) as the non-gero element rather +than (3,3). Thisg involveg the

transformation

In fact there



_L _3 _ 1 3
1 ) 9 y1 = x1 + 5 X, + x3
% = 4 yor y,= X, (6.3)
1 y3=x3
and leads to
o1 o231 ] T[]
-1 9 9 ~27 1 2 2
o B 8 154 18 o oly=lol . (6.4)
9 9
.o o0 o | 27 0 0] EN

At this stage the singularity of B is exposed, The third equation gives
2Ty, = 3 e 9+ Txy + 5xy+ 1= 0 (6.5)
whi . for the homogeneous system
9%, + Ty + 5%y = 0 . (6.6)
Notice that these relations must hold for all values of t and therefore in

particular for t = 0; at t = O they are in fact equations (35) and (29)
respectively of Campbell et al.

Substituting ¥y= - 1/9 into the first two equationr and remembering that
Yo = Xgy ¥y = X3 We have

L 423 -
9x2+ 5 x3—x2—23.3a—1

(6.7)
liic2+-g-5c3 =2

and the solubtion is now trivial. The general solution is

- ok (x,(0) + 2x3(0))e2/313 - =& (13%,(0) + 8x,(0)) - ¢ _;-

B
it

%y = - “118' (8x,(0) + 16x3(()))e32/3’13 + :,35 (26x,(0) + 16x,(0)) + 2t (6.8)

75 (136,0) + 261,(0))e?/ 3% ~ - (135,(0) + Bxy(0))- ¢

]
("
I



L

For the homogeneous case the general solution consists merely of the terms in
(6.8) involving xE(O) and xB(O) with the others omitted. The solutions given
here differ somewhat from those given by Campbell et al; this results from a
trivial error made by them in the execution of their algorithm,

Of course this example is in some ways deceptively simple; however this is
equally true of the solution obtained via the Drazin inverse., In general the
system (6,7) above in which the matrix involving the derivatives is non-singular
would be reached only after several stages of reduction (in fact k stages where
k is the index associated with the relevant Drazin inverse), The solution of
this reduced system can be expressed in terms of an exponential invelving only

an ordinary inverse.



s e e o et T et
e+ - e e g k! T4 A g et i g
SRSV . Pt s pthite o O RIS _ SVSVRSAE sk RSV SR

18

REFERENCES

BEN-ISRAEL, A and GREVILLE, T N E. Generalized inverses-theory and
application, New York, Wiley-Interscience, 1972.

CAMPBELL, S L, MEYER, C D and ROSE, N J,  Applications of the Drazin
inverse to linear systems of differential equations with singular
congtant coefficients. SIAM J, Appl. Math, 1976, 31, 411-425.

VAN DOOREN, P, The computation of Kronecker's canonical form of a
singular pivot, To be published in Linear Algebra Appl.

DRAZIN, M P. Psendo inverses in associative rays and semigroups,
Am, Math, Mon., 1958, 65, 506=514.

GANTMACHER, F R, The theory of matrices, Vol II, New York, Chelsea,
1964.

GOLUB, G H and WILKINSON, J H, Ill-conditioned eigensystems and ihe
computation of the Jordan canonical form.  SIAM Rev, 1976, 18, 578-619.

GREVILLE, T N E, Spectral generalized inverses of square matrices,

M R G Technical Science Rep, 823 Mathematics Research Center,

University of Wisconsin, Madison, 1967,

WLLKINSON, J H, Linear differential equations and Kronecker's cancnical
form, Invited paper at Symposium on Recent Advances in Numerical Analysis
at Mathematics Fesearch Center, Madison, 12782, To be published.



	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A02_.pdf
	0001A03.pdf
	0001A03_.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf

