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Abstract

The solution of the differential system Bx = Ax + f ,,mere

A and B are n x n iaatrices and A - aB is not a singular

pencil may be expressed in terms of the Drazin inverse. It is

shown that there is a simple reduced form for the pencil

A - TB which is adequate for the determination of the general

solution and that although the Drazin inverse could be determined

efficiently from this reduced form it is inadvisable to do so.
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I	 INTRODUCTION

In a recent paper L 2 1 the solution of the differential system

BA, = Ax + f(t) ,

e

r
rr, '

(1. 1)

where B and A are n x n matrices and f is an n vector has been discussed in

terms of the Drazin inverse. Although this work gives considerable insight

into the nature of the general solution of (1.1) it should not be assumed that

because the explicit solution can be expressed directly in terms of the Drazin

inverse that economical algorithms will involve its explicit computation.

Numerical analysts will be familiar with this in connexion with the simpler

problem Ax b where A is non—singular. Although the solution is given by

x = A
-1 
b  it is seldom advisable to compute the inverse explicitly. However

algorithms for solving Ax = b based on direct methods do provide the basic

tools for the efficient computation of A-1  if that should be required; we

might therefore expect that practical algorithms for solving (1. 1), or

closely related algorithms, woald provide effective methods for computing the

Drazin inverse and this is indeed true.

2	 THE DRAZIN INVERSE

If A is an n x n matrix then the Drazin inverse E4 I of A is the matrix X

satisfying the relations

(a	 ( i ) AX = XA

`	 (ii) XAX = X

(iii) XAk+1 = Ak, where k = Ind(A).
,

Ind(A), the index of A, is the smallest non—negative integer for which

rank (Ak ) = rank (Ak+1)•	

v

The existence and uniqueness of A may be proved as follows. The proof is

'm	 given in matrix terms since we shall need to work in these terms in subsequent

'	 sections. Let J be the Jordan canonical form of A, and sup pose J is expressed

as the direct sum of C and N where C is associated with the non—zero

eigenvalues and N is associated with the zero eigenvalues and is therefore

nil—potent. We may write

i
y „^Y* 1E}kv



(2.5)

f((	 2

C 0

A = T	 T-1	 (2. 1 )

0 N

where C is non—singular and N is nil—potent. If k is the smallest integer for

which Nk ^, 0 it is clear that k is the index of A since

Lk 
0	

Ck+1 0

Ak = T	 T-1 '	 Ak+1 = T	 T-1 	 (2.2)

0	 0	 0	 0

and rank (Ak) = rank (Ak+1 ) = order of C. On the other hand rank (Ap ) >

rank (Ap1 ) when p G k. Obviously k is the dimension of the largest Jordan

submatrix associated with a zero eigenvalue.

Any n x n matrix X may be expressed in the form X = TYT 1 and relations (i),

(ii) and (iii) are satisfied if and only if

(iv) JY = YJ

(v) YJY = Y

(vi) YJk+1 = Jk

where

C 0

J =

	

(2. 3)
^`	 0	 N

1	 Partitioning Y conformally with J we may write

U;

+RS
Y _	

(2.4)

Equation (iv) then gives
	 ES

CP = PC (a) r CQ = QN (b)

NR = RC (c) NS = SN (d)

1

t

uv;
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3r' •

t ` From (b) we have

e

^ ,̀d CQN -^ =	 _QNk 	0 (2.6)

w

's
-1

Henc e nmk - 0 since  C i	 on in	 lar	 Co ti	 i	 this	 a	 i	 hac	 - 	 8	 -s gu	 n nu 	 n	 w y ve ve

successively QN
k-2	

0, Q}v -3 = 0, ..., Q 0. Similarly from (c) R = 0.

Now from (v) and (d)
j

3

SNS = S and S 
2 
N = S	 (2.7)

Hence

S2Nk = SNk-1 giving SNk-^ = 0 .	 (2.8)

Continuing in this way SN
k-2 

= 0^ SNK-3 , ...^ S 0. Finally from (vi)

PCk+1 Ck giving P = C	 (2.9)

and hence

i

C 1 0

X T	 T-1
	

(2.10)

0	 0

showing that X is uniquely determined. In proving this result we did not make

use of the fact that C and N were the direct sum of Jordan matrices but merely

that they were non-singular and nil-potent respectively. Hence to derive the

Drazin inverse it is not necessary to obtain the Jordan canonical form itself

but merely the identification )f the nil-potent part, a much simpler objective.
i
J

i

	

	 When A is non-singular X is obviously A -1 , the usual inverse. Notice that it

is not generally true that AXA = A and hence a solution of a compatible system

Ax = b is not, in general, given by x = Xb.

3	 COMPUTATION OF THE DRAZIN INVERSE

We have shown that the Drazin inverse of A is available if we have expressed

A in the form



A(4) A(4) A(4) A(4)
44 43 42 41

0 0 A(4)
32

A(4)
31

0 0 O AW

0 0 0 0

A(4) =
e

J n3

J n2

n1

(3.2)

B(r)

1	 ^
0	 } n 

Q(r) A(r)rr (3.3)

4

[+ 7
where 0 is non—singular and N is nil—potent. A factorization of that form in

which T is unitary has in fact been derived by Golub and Wilkinson E 6 J. In

that factorization the singular value decomposition was used so as to give

the maximum numerical stability. A similar reduction could be achieved. by a

whole range of elementary transformations and this we now describe in general

terms.

We denote the original matri4: by A (1) . In the rth step a similarity

transformation,, based on multiplications with elementary matrices is applied to

A(r) to give 
A(r+1). 

The general form of the matrices A (r) is adequately

illustrated by the fact that

n3	 n2	 n1

where the significance of the ni will become apparent in the description of

the rth step which is as follows.

If the matrix AM is non—singular the reduction is complete. Otherwise premultrsply

I Pr
1) with a sequence of elementary transformations, the product of which isI^.

r	 denoted by Q(r) , such that

where nr is the nullity of A^r). 	 The matrices involved in Q (r) may be unitary

H t
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(orthogonal, if real) or may be elementary matrices corresponding to elimination

techniques, If A(1) had small integer elements the use of rational numbers

enables this reduction to be done exactly. Note that A (r) need not be trapezoidal

so that this reduction can be achieveO entirely by pre-multiplications. If we

rota post-multiply by (.Q(r) )
-1 

we may write

A(rF1 )	 A(ri-1)
rF1,r+1	 rh1,r

Q(r) Arr)	 ( Q(r) )
-1 

=	 (3,4)

0	 0

Writing

Q(r)	 0

T 	 (3.5)

0	 I

where T(r) is of order n, then A (:r+1) = T (r) A(r) (T (r) )-1 is again of the

required form. Notice that the pre-multication with T (r) affects only the

leading block row of A (r) , while the post-multiplication affects only the

principal leading submatrix, :.Is must have n  = n r-1 since if n  > nr-1 , this

would imply that in the preceding stage nr-1 was not the full nullity.

Indeed the 
Ai+1,i 

must be of full row rank at every stage for the same reason.

If the matrix A(1) is entirely nil-potent then we must reach an A,k+ which is

null and the final matrix is of the block form illustrated by

0	 X	 X	 k

0	 0	 X	 X
( 3 .6) 

0	 0	 0	 X

0	 0	 O	 0

Otherwise we terminate witb an Ak;k1^k+1 which is non-singular.	 (In using the

symbol k we are anticipating that this is the index of A	 ),	 In this, second

case we can annihilate all blocks in the first row except Ak4111)c^1 by further

_	 similarity transformations. This is adequately illustrated by the case when

k = 3 for which A(4) is as in (3.2) with A44 ) non-singular,	 Post-multiplication

with s

y
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I	 -(A(4))-1A(4)
44	 43

0	 I

P3 =	 (3.7)
I

T

annihilates A(4) and leaves all other submatrices unaltered. Pre-multiplication
43

with P3-1) preserves all the null matrices and changes AW and A ( ' ) . The (4,2)
42

and (4,1) blocks may be annihilated successively in a similar way.

Thus according as A(1) is entirely nil-potent or not we achieve a reduction to

one or other of the forms illustrated by

0 x x x	 0 0 0 0

0 0 x x	 0 0 x x

0 0 0 X or 0 0 0 X	 (3.8)

0 0 0 0	 0 0 0 0

with C non-singular. We may denote this final matrix by

C
N or

	

	 (3.g)
N

in the two cases. Obviously N k = 0 while it is easy to see that since the

(i i i+1) blocks are all of full row rank N' 7 / 0 (P. < k). Hence k is indeed the

index.

The Drazin inverse could now be computed explicity usin; the product of all the

transformation matrices but it would usually be more expedient to keep it in

factorized form.

4 THE SOLUTION OF THO DIFFEF MIAL SYSTEM

When B is non-singular the system (1. 1) may be written in the form

x = B-1 Ax+ B-1 
f  .	 (4.1)

There is a solution corresponding to any f and for arbitrary initial values xo.

This solution may be expressed in terms of exp(B 1At). Singularity of A in no



(4.8)

A:l

(4.9)

y

(4.10)

7

way affects the explicit form of the solution. Although this is a non-trivial

matter we shall assume, in common with the paper we have referred to y that we

have satisfactory algor;it:nm for it.

When B is singular but A is non-singular (1.1) may be written in the form

A 'Bic=x+A 1f
	

(4.2)

is Ki - x + g (say) .	 (4.3)

The existence and nature of the solution may be examined in terms of the

Drazin inverse of K but there seems to be little point in computing the latter

explicitly,	 Indeed if

C

K_T 1

	

	T	 (4.4)
N

^	 9

then

C

L	 Ti-_Tx+Tg.

N,

•	 or	

f

w

IC N1 L zj	 [yz
	 q
j +	 j	 9

Y1	 P[
[	 Tx	 I 1	 Tg .

z	 qll

(4.5)

(4.6)

(4.7)

3

7
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Multiplying (4,9) by Nk-2 and substituting from (4.10)

- Nk-1 q - Nk-2
z + Nk-2q 	 (4.11)

and continuing in this tray

z - [I + ND + ,,, + Nk-1
Dk-1 I 

q where D = dt .	 (4,12)

Notice that wo must have

-o - (- CI + ND + ... + Nk-1
Dk-1 ]

 q ) 0 	 (4.13)

and since the components of z o are linear combinations of those of x o this

means that the initial x  must satisfy certain conditions for a solution to be

possible. Provided these consistency u,)nditions are satisfied there is then a

unique solution corresponding to any q, assuming that it has k-1 derivatives.

We observe that in the homogeneous case q = 0} and the only solution of (4,9)

isz-0.
Since C is non-s_ yigular the system (4.8) has a unique solution corresponding

to any initial ye and this may be expressed in terms of exp(C-1t).

The solution described above has been given in the spirit of the work based on

the use of the Drazin inverse, but we would submit that even here too much

atterition has been pa +d to obtaining explicit expressions.. It is more economical

to work with the form exemplified in (3.2). We describe this below and for

convenience of presentation we assume that k = 3 and omit upper suffices. A

transformation of variables has then reduced the original system to one of the

form

A44 A43 A42 A41	 y4	 y4
	

94

0	 0	 A3^ A37	
y3	 y3
	

93

+	 (4.14)0	 0	 0	
A21	 y2	 -	 Y2	 g2

0	 0	 0	 0	 Y1	
y1
	

91

t.

t
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where the blocks on the diagonal are square and A44 is non-singular. The

matrix

0	
A32	 A• a 1

0 0	
A21

0 0	 0

is the N and A44 is the C of our previous analysis.

The relation (4.14) gives successively

y1 = -g  y2 = -g2 - A21y 1 ; y3 
	
A31y1 - A32y2

Finally we have

A44 = y4 + (94 - A41y1 - A42y2 - A43y3)

(4.15)

(4.16)

(4.17)

and at this stage y 1 , y2 and y 3 and hence y 1 , y2 and y3 have already been

determined. Notice that when we describe the solution in these terms there is

no need to annihilate the blocks A43' A42 and A41 as we did in section 3 when

describing a reduction to the form

C	 0

0	 N
(4.18)

Now we merely have terms involving these A 
4 

on the right of (4.17). At the

end of the next section we show how the volume of work may be reduced even

further.

5	 SINGULAR A AND B

When both A and B are singular onr, cannot proceed as in the previous section.

The use of the Drazin inverse has been concerned with the case when det(A -?,B) 0

is when the pencil A -?,B is non-singular in the Kronecker sense (see eg '3,5,8 a ).

The matrix A-cB is then non-singular for any c which is not a root of the

equation det(A-NB) = 0. If one takes any such c then the system (1.1) is

equivalent to

a^

-y.	 .,•.y.:,r'; ....	 .,^s.w._^ ^ ,.,—x. x:'t'^..ti'^ 	 11t....,i-:x.;..:.ri :++e`^rf'wrin
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(A-GB) -1Bx = (A-cB) -'Ax + (A-cB) -1 f	 (5.1)

or

Bx = Ax + f	 (5.2)
.	 II	 M

It may be readily verified that BA AB. The explicit solution o f (5.2) m•ay
A

be expressed in terms of the Drazin inverse of B. Although, of course, the

derived solution must be independent of c, its introduction is undesirable.

In practice it would be important for A-cB to be, not merely non-singular, but

well conditioned with respect to inversion, otherwise there will be a loss of

accuracy which may be far greater than that resulting from the inherent

sensitivity of the problem.

It will be appreciated that one will not necessarily know in advance whether

A and B are singular or indeed whether det(A-?,,B) 2 0. The method described

below, which is analogous to that described in section 3 for the computation of

the Drazin inverse of a matrix, does not require any previous knowledge and

does not require tk - nl'. i of the arbitrary scalar c.

We observe that if P and Q are non-singular then pre-multiplication of the

system (1.1) with P and the transformation x = Qy transforms it to the

equivalent system

PB* = PAQy + Pf .
	

(5.3)

In our algorithm P and Q are determined as products of elementary matrices

in such a way that (5.3) is typically of the form illustrated by

B(4)	 B(4) 13(4) ;g(4)
y

A(4)	 A(4)	 A(4) A(4)
y	

_g

44	 43 4.2 4 1 4 44	 43	 42 41 4	 4

o	 o B (4)
32

B(4)
31 y3

(4)	 (4)0	
A33	 A32

(4)
A31

I

y3	 g3

0	 0 0 1324)
Y2 0	 0	 A22) A24)

y2	
+	

g2

0	 0 0 0 y'1 0	 0	 0 A^4) y1	 91j
`-	 The diagonal blocks are square ai-d A(4)	 A (4)	 A(4) and B(4)

11	 22 f	 33	 44
are non-singular.

i;

(5.4)

_.
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The matrices B2d ) and B(4) 
are of full row rank, In general there are k steps^

the process coming to an end when B(k+1)
kh1 k l is non-singular.

7^} may be reduced to the form

ose we have performed r-1 steps and B^

'

r^ is still angular, In this case3 

E(r)

0	 n 	 (5.5)

by pre-multiplication with elementary matrices. Here nr is the nullity ofBr r r and E(r) is not required to be of upper trapezoidal form. If the sameoperations are performed on A^r ) the resulting matrix may be denoted by

F(r) I

	

G (r )	 n	 (5.6)
r

	

Now G (r) must be of full row rank nr' since otherwise A r	

(

rand Bcommon l
eft-hand null vector and this would imply that det (A

(r) _ aB(r)) a 0,

) 
share

	

rr	 rr

Hence G (r) 
may be multiplied on the right by elementary matrices to give

	

C 
G 

I Err 1)	
(5. 7)

where Arr}1) is non-singular. If these right-hand transformations are applied
to the full matrices

E(r) IF(r)
I and

0	 J	 G(r)	 (5.8)

the resulting matrices may be denoted by

ri-1$rF1r+1^r I

0	 0

A(r+1)	 (r E1)
rf 1 r 1	 ArF 1 r

and	 '

0	 A(ry,1) (5.9)
rr 0
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The rth step is completely determined by the matrices B (r) and A(r) but if werr	 rr
apply the transformations to the full n x n matrices and to the current forcing

vector we arrive at an rth derived system of the same form as the (r-4)th system

from which we started. The 
B(r1-11 

must be of full row rank otherwise the nr-1
a

determined iii the previous stage would have been incorrect.

If det(A XB) ^ 0 we must either reach a B^r ) which is non-singular or one which

is completely null with AH non-singular. If however det(A aB) =_0 this wouldrr
be detected by the algorithm since we would reach a stage at which the G (r) of

(5.6) was not of,full rank and this would reveal itself when performing the

elementary operations on G(r).

Dior simplicity of presentation let us assume that the process terminates when

k = 3 so that the final system is as given in (5.4). We suppress the upper

suffix for convenience. The solutiozi is then given by

A11 y1 = - 91

A22Y2 - - 62 - A21Y1 - B21Y1	 (5.10)

A33Y3 = - 63 - A31 Y1 - A32Y2 - '31Y1 - B32Y2

so that the components of y 1 , y2 and y3 are all uniquely determined and the

initial values must satisfy equations (5.10) for consistency. Finally

B44  = A44 y4+ (A43 
y
3 + A4^-^ 

+ A41 
y

1
- B43 Y 3 - B4^ y2 - B4 

1
Y

1 + g4 ) (5.11)

and the vector in parenthesis is already determined. Since B 44 is non-singular

th2ts has a unique solution for arbitrary initial y 4 which rnly be expressed in

terms of exp(B4 A4 44t).

The elementary transformations on G(r) would usually be carried out in such a

way that A^r 1) would be at least triangular (though possibly even diagonal)

according to the method used. The computation of the vectors y1 , Y22 Y3
 from

relations(5-10) would therefore be particularly convenient. As we remarked above

if at any stage G(r) is not of full rank this would be exposed automatically in

the execution of the algorithm. (We assume here that the algorithm used to

^^a..Ya•"` 3+q,.:i:i?'^'ry}y.„, «.a.rasL^::%t^w"v_^^'̂kLb"Sia^i.......^.^_
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reduce G(r) is stable enough to detect rank reliably!). This can happen only

if det(A-'JAB) a 0. This situation is not usually covered by the use of the
Drazin inverse. When G (r) has a rank deficiency of p then p linear relations

must hold between components of f for the differential equations to be

compatible. This is discussed in detail in C8 J. However the qe^neral

situation may be illustrated by considering what happens when G`' ) has a ^^uc

deficiency of p. This means that the original system is equivalent to a system

of the form

K	 L

n1 -P	 0	 Y= n 1 -p	 M	 Y+ g	 (5.12)

p	 0	 p 1 0

where M is of full rank, n 1 -p. Hence the last p components of g must be zero

for the equations to be compatible, and the components of g are linear combinations

of the original components of f.

When both A and B are singular but det(A XB) ^ 0, then when we reach the

terminating non-singular B (r) the corresponding A(r) must be singular. This

follows because the earlierrA^i ) were non-singularrand if AM wer e non-singular
4	

this would imply non-singularity of A.

We have remarked that the solution may be expressed in terms of the Drazin

inverse of (A-cB) -1 B and the form of the solution is determined by the index

of (A-cB) -1B. The k introluced above is in fact this index as we now show.

Denoting the successive n Y, n matrices derived by the algorithm by A(r) and B(r)

respectively, A (k+1) - cB (k+1) has as its diagonal blocks

A(kF1)
	 -CB (k+1 ) 	 A(k+1)	 A(kF1) A(kF1) .

	 (5.13)k-1^kF1	 kF1,kFJY kk	 222	 11

t .

k

r

,d

i
1

a

M
y

The last k of these and B(k+1 k+I are non-singular by definition of the algorithm.

The first is non-singular for any c for which det(A^ ;k+1 - cBk+llk+ 1 ) 0 is
for almost all c. Obviously

X = [ A (k+1) - cB(kF1 )1 -1 B (k+1 )

_.. ^ N'w". t ^...w.	 w...t '-"''^"l'^^t... ^ .. i.L^...--.^.:w. ^1^.^`df..^^h^{.b•'.st.Ms.a..,,....^_.,.e.w. ....	 _ _.. _	 ^ ;.—z.-'T°'y
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is block upper-triangular and its diagonal blocks are 1

1

	

[
A(k+1) - 

cB(kF1)	 -1 (k+1)k+1,kt1	 kF1^kF1	 Bk l)kF1' 0; .•.^ 02 0 . 	 ( 5 .14)

)Further 
Xi s i-1	 (Aii

(k+1)1-1 

Bi
(kF1

i-1 and hence is of full row rank for

2 = i k since this is true of the B(kF1)

1c+1)	 1	
Hence the k of our algorithm is

	

(	
)+1)

the index of [A	 cB	 I
(	 -1 B ( 

i
k+1 and since A(k+1) = PA B(kF1)

Q0	 - 
PBQfor some non-singular P and Q, otir k is the index of (A-cB)-1B.

The algorithm we have described works in terms of full n k n matrices at all

stages in the reduction, though to be sure in later stages only parts of these
matrices are affected by the transformation. We have presented the algorithm
in this way in order to give a closer tie up with earlier work involving the

Drazin inverse. However, if one were concerned with only one forcing vector f,

or if indeed one were interested in several different forcing functions all of

which were known at the time when the reduction was 
performed then a

considerable economy would be achieved as follows. Suppose we have completed

one stage of the reduction and have reached the reduced system

B22)	 B21 )	 I Y2	
[','(22)
	 A(2)	 Y2 I	 g21	 2

0	 0	

L y	 L 0	
A(2)	 I	 +	 (5.15)

	

1	
11	 Y1	 g1

At this stage the variables in y 1 are completely determined and these variables
undergo no further transformations. We have then

Y1 = - (A (2) )
-1 

g1

(5.16)

and

(2)	 _ (2)

B22 `r2 - A22 Y2 + 192 - B(2)1 ) y1 + A21 )y1 	 J1

A22)Y2 + f2 (say) .	
(5.17)

Hence we can continue with a system of lower "rder. In this way we avoid

	 f 

I'd
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performing any transformations on B21 ) and A21 ) in the next step. The first

stage is wholly typical; in the rth stage we determine n  more variables and

are left with a system in n  fewer variables. Obviously if we are interested

in the effect of several forcing functions we can deal with them all

simultaneously. A similar reduction of effort may be achieved with the

simpler algorithm of section 4.

6	 NUMERICAL EXAMPLE

As an illustration of our algorithm we describe its performance on the example

used by Campbell et al [2].

The system of differential equations is

Az+Bx=b

—1	 0	 2 ^-27

2	 3	 2 x+ 18

1	 0	 —2 0

	—22	 —17	 ^ 2 ]

	

14	 10	 x = 0

	

1	 2	 _1

(6.1)

where we have reordered the equations in order to avoid a row permutation

during the course of the solution. This makes the process a little easier to

follow. Naturally we have used rational elimination techniques. The authors

gave the general solution to the homogeneous system as well as that

corresponding to the forcing function b. For convenience of comparison we

have followed the notation Az + Bx = b used by Campbell et al.

Exposing the row nullity of A gives

—1	 0 2-27 —22 —17	 [2

2	 3 2 x+	 18	 14	 10 x=	 0	 (6.2)

0 0 0	 —27 —21	 —15	 L 3

We now reduce the rows of B corresponding to the null rows of A. In fact there

is only one such row and to facilitate comparison with Campbell et al we leave

(3,1) as the non—zero element rather than (3,3). This involves the

transformation

{
_ -	 .,, ,. ...^-r+*..-....., . 	 ,r.::.L a.: - «, .:;?:rAG lrr...^<.^..^.,,.+=^:^`.;^tcSk:•,t^ie'ft3"ftarx^<^	 _.__	

._.. ^.	

._	 A3
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1	 9	 9	 y1 _x1 +9 x2+
9

x3

x =	 1	 y or y2 x2	(6.3)

1	 Y3 = x2

and leads to

	

—1 9 
9	

—27 —1 —2	 2

2 9 9	
y+	 18	 0	 0 y= 0	 (6.4)

0 0 0	 —27	 0	 0	 3

At this stage the singularity of B is exposed. The third equation gives

	

—27Y 1 = 3 is 9x1 + 7x? + 5x3 + 1 = 0	 (6.5)

whi, for the homogeneous system

9x1 + 7x2 + 5x3 0	 (6.6)

Notice that these relations must hold for all values of t and therefore in

particular for t = 0; at t = 0 they are in fact equations (35) and (29)

respectively of Campbell et al,

Substituting y1 = — 1/9 into the first two equation: and remembering that

Y2 = x2e y3 = x3 we have

s2 + 9 X3 
x2 — 2x3 = _1	

i

(6.7)

9 X2+0x3	 =2

and the solution is now trivial. The general solution is

Xi = — 11 (x'2(0) + 2x3(0))e2/3t _ 18 ('13x 2 (0) + 8x3 ( 0 )) - t - 9
x2 = —  1

6
	 + 16:3(0))e2/3t + ^. (26x2 (0) + 16x3(0)) + 2t	 (6.8)

x3 = 18 (13x2 (0) + 26x3 (0))e2/ot — 18 (13x2 (0) + 8x3 ( 0 )) — t
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For the homogeneous case the general solution consists merely of the terms in

(6.8) involving x2 (0) and x3 (0) with the others omitted. The solutions given

here differ somewhat from those given by Campbell et alp this results from a

trivial error made by them in the execution of their algorithm.

Of course this example is in some ways deceptively simple; however this is

equally true of the solution obtained via the Drazin inverse. In general the

system (6.7) above in which the matrix involving the derivatives is non—singular

would be reached only after several stages of reduction (in fact k stages where

k is the index associated with the relevant Drazin inverse). The solution of

this reduced system can be expressed in terms of an exponential involving only

an ordinary inverse.

Y

r;

.r_
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