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VARIATIONAL DESCRIPTION OF THE POSITIVE COLUMN

i
WI111 1140-STEP IONIZATION

F. W. Crawford
Institute for Plasma Research

Stanford University
Stanford, California 94305

ABSTRACT

The ionization balance in diffusion-dominated discharges may depend

on both one- and two-step ionization processes. The Spenke diffusion

equation (DV2n + -in + kn2 = 0) describing such conditions is solved in

this paper by the Rayleigh-Ritz variational method. Simple analytic

approximations to the density profile,and the similarity relation

between v,k,D and the discharge dimensions,are derived for planar

and cylindrical geometry, and compared with exact computations for

certain limiting cases.
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1. INTRODUCTION

In 1924, Schottky 1 published a theory of the steady state positive

column appropriate to neutral gas pressures high enough for ambipolar

diffusion to control the loss of electron-positive ion pairs to the dis•-

eharge wall. His diffusion equation,

D02n + vn = 0	 (Schottky Equation), (1)

implies that the ambipolar diffusion coefficient, D , is spatially

independent; v(>O) represents the effective (one-step) electron-neutral

ionizing collision frequency, and n is the charge number density in the

mi
	

quasineutral, weakly-ionized column.

Equation (1) is readily solved in planar and cylindrical geometry,

subject to she boundary conditions n = n0 and do/dr. = 0 (or do/dr = 0)

at x = 0 (or r = 0) , to obtain the familiar results,

	

n = n
0 Cos( _12aa^	 '	 (2a12 D

	M)	 y1 2 v

	

n - n0 
JO ^yl '	 '	 (a ,	 D

(Planar geometry),

(2)

(Cylindrical geometry),

where yl (= 2 . 405) is the first root of the JO Dessel function. The

discharge wall is generally taken arbitrarily to be at x = a (or r = a),

and cannot exceed this dimension since n a 0 .

In 1950, Spenke2 extended the analysis to include two-step ioniza-

tion processes via the equation,

D0 2n + vn + kn 2 = 0	 (Spenke Equation).	 (3)

Unfortunately, analytical solutions as simple as those of Eq. (2) cannot

generally be obtained, though the solution in planar geometry can at least

be expressed in terms of elliptic functions. 2 For this case, Spenke plotted

the density profiles for kn0 /v = 0 , 0.5 and m , and obtained

an approximate relation between a , v/D , and kn0 /D. An analogous

approximate relation was obtained for cylindrical geometry, and density

profiles were plotted for kn0/v = 0 and -

A thorough numerical study of Eq. (3) has been undertaken only very

recently, by Rogoff. 3-5 He has enumerated a variety of ionization,

2



recombination and attachment processes described by the deceptively simple

Spenke Equation, 4 and has clarified the similarity properties of axially-

uniform (V II = 0) discharges obeying it by introducing the solution

n = nog , and integrating over the cross-sectional area, A , to obtain

-	 o2s
^v A + () N =	 dA = S (Rogoff Equation), 	 (4)

A

where N is the total number of electrons (or ions) per unit length of

the column. The integral is a dimensionless number, S , depending only

on the shape of the cross-section and the parameter kn 0/v . To deter-

mine S , it is necessary to first solve Eq. (3). This has been done

numerically by Rogoff for rectangular and cylindrical geometry.5

It would be very useful if good analytic approximations could be

obtained for the density profile, g , and the Rogoff equation. A possible

means of obtaining such approximations is suggested by the fact that the

numerical solutions for g show little change in shape as kn0/v varies

from 0 to w : in this paper„ we shall investigate by variational

methods the perturbations on the solutions obtained with kn 0/v = 0

(= Eq. (2)) resulting from variation or kn 0/v from - 1 to w , corres-

ponding to the range investigated numerically by Rogoff.5

The plan of the paper is as follows. In Section 2 we examine the

properties of the Spenke Equation for different combinations of positive

and negative v and k , and demonstrate the significance of the range

- 1 s kn0 /v s w . A variation principle suitable for use in this range

is presented, and it is shown how it may be applied in conjunction with

the Rayleigh-Ritz method to solution of the Spenke Equation. Section 3

carries out this procedure for planar geometry, and presents computations

of the density profile in the column, a similarity relation between

v, k, ll and a, and useful working analytic approximations to these results.

Section 4 repeats the procedure for cylindrical geometry. Our similarity

relations are not obtained in the Rogoff form of Eq. (4). It is shown

in Section 5, by suitable rearrangement of the terms, that they are identi-

cal, however, and analytic approximations are derived for the Rogoff form.

Section 6 closes the paper with a brief discussion.

3
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2. BASIC EQUATIONS

We shall write Eq. (3) as

.=	 V2g + ag + OnOg2 = 0	 ,	 a = D , S = D ,
	 (5)

and first investigate some of its general properties in planar and

cylindrical geometries. We shall then show how its solution can be

approximated by the Rayleigh-Ritz method.

2.1. Planar Geometry

Equation (5) and its first integral are given by

a+ ag + SnOg2 = 0	 (71 2 = a
rl-g2) + 23n0 (1-g3)•	 (G)

We require, then, for a physical solution

2 =
all-g) (1-g+) ( 1-g-) Z 0 	 g^ ° i 2

\

\1 + 20n0 ) 2Sn0
- 311

/J

^- 2
	 I7. + 23Sn0 1 .4

On (7)

We note that	 g+	are real for - 2 < <
a0

and complex outside this

range.g The	
2

quantity (dg/dx) /a	 is plotted in Fig. 1.

Case 1:	 a, 8 ? 0:	 Figure 1(a) (or Eq.	 (7)) shows that (dg/dx) 2 /a ? 0

for	 0 s g< 1	 A simple special case is

g= 1- 3 tanh2(0.658 x^

2
(1.3171 - a

In
0	 1

(8)

where the numerical factor 1.317 = cosh -l2. For future reference, we

note that the second relation can be written as,

!n

) 2 = a + 0.845 On	
0 __ 1	 (9)

2a	 0	 a	 2

- Case 2:	 a e. 0 , - 1 5 On /a s 0:	 As	 Ono
 
/a	 becomes more negative,	

9

2there is a change of behavior at (3n0/a = - 1 , at which point (dg/dx)/a

' is apparently positive for	 , <•, 1!, Examination of E q.	 (G) shows, however,

that	 d 2 g/'dx2 n dg/dx = 0	 for	 g = 1 , i.e.	 the column density is indepen-

dent of	 x	 for the condition	
8n0

/a

4

T\

1 I
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There is an additional range of values of g > 1 for which

(dg	
2

/dx) /a > 0 (for example, g > BA for an0/a = - 0.75 in Fig. 1(a))•

i%	 It- is not accessible, however, from g = 1 through real values of dg/dx.

Fi

Case 3: a z 0 , an0/a < -1: As an 0/a decreases further, solutions

can only be found for g a 1 , so the wall can no longer be arbitrarily

located at g = 0 , but must be assigned a non-zero value of g 	 Taking

On	 3 as a simple special case, we have
a	 2

g = sec2 ^2a) 	'	 ^2a^z= a	 = -	 (10)\a-	 2
I

if the wall is located where 	 g	 m

For -2< 	 an0/a < -1	 there is a range of solutions with	 0 < g < 1

2for which	 (dg/dx)/a > 0	 for example,	 0 s g s g 	 for	 an0 /a = - 1.25

in Fig. 1(a)), but it is not accessible through real values of 	 dg/dx.

Case 4:	 a,a < 0:	 For	 a < 0	 , Pig. l(b)	 is appropriate.	 Solutions

are obtainable for 1 5 g .<_ W 	 The solution for	 an0/a = 1/2, analogous

to Eq.	 (8)	 is,

S = 1 + 3 tang 12x^
	 ,	 ^

71
^
2 

=	 a
	 (!no = 

2), (11)

if the wall is located where	 g } m .

Case 5:	 a < 0 , - 1 < an0/a < 0:	 In this range, solutions are

possible for	 1 < g < -	 (for example,	 1 < g < a 	 for	 8n0/a = - 0.75

in Fig. 1(b)). As	 an0/a -} -1,	 the upper density limit decreases towards

g = 1	 and we obtain again the uniform density solution of Case 2 at
F

all /a = - 1
an0'

3 <Case 6:	 a < 0	 an0/a < -1:	 For -	 < -1, uolutione. are }
2	 a

possible with	 0 < g < 1 (for example, 9B 5 g !: 1 	 for	 an
0
/a = - 1.25

in Fig. l(b)),so the wall must be assigned a non-zero density. 	 For
an

solutions with	 0 s g -e 1	 are obtainable, i.e.	 the wall	 .a
can bg arbitrarily located where	 g = 0 .	 The simple special solution

for	 = -.1
	

analogous to Eq.	 (10),isn0
, r`

nx	 nr	 2	
an

g	
2

sech	 ^2a^	 ^2a^ 	
a	 (12)

\ a0	 2)

}sere,	 a	 is a scale length, since	 g + p	 only as	 x

C
_	 5



The obvious conclusion to be drawn from this brief survey of

Cases 1-6 is that there is a very rich variety of solutions to the Spenke

Equation. In this paper, we shall consider only those for which 0 <- g :1 1 .

Such solutions are associated with the ranges a ? 0 , - 1 <- On 0 /a :E

(Case 1) and a < 0 , On0/a < - 2 (Case G); we shall limit our consideration

to the first of these, for which Rogoff has obtained numerical solutions in

rectangular and cylindrical geometry.5

2.2. Cylindrical Geometry

It is reasonable to suppose that the six cases just discussed

will appear for cylindrical geometry with qualitative similarities and

quantitative differences. We shall not pursue the question here, but

simply note that in cylindrical geometry, Eq. (5) is

rdr rr dr I+ 	 ag + tin0g 2 = 0
	

(13)

and is satisfied by g = 1 when On0/a = - 1 	 The range of interest

to us is consequently the same as for planar geometry: a > 0 , - 1 < On0/a

It may be remarked, in passing, that the paramett-r On0/a(= kn0/v),

which will figure prominently throughout this paper,may be interpreted

physically as the :,atio of the number of charges produced at the center of

the discharge by two-step (kn2) and one-step ( ,ono)  processes.

2.3. Variational Solution

Equation (5) is the variational solution to (see Appendix)

2	
2	 0 31

(^	 2Sn	 l
I = A I ^V1g^ - ag - 3 g dA	 (14)

where the column is axially uniform (V U = 0) , and A is its cross-

sectional area. This implies that if a trial solution differing by dg

from the exact solution is substituted in Eq. (14) the error in I is

0(6g2) In our application of the Rayleigh-Ritz method, 6 our trial function

will be the first t!•+o terms of a Fourier expansion for g of the form

g = n0 91 + n0 92
	

(15)

where gl(a)
	 g2 ( 

-1) = 0 at the wall, and g'(0) = g 2'(0) = 0 . Here, a

pr.imc denotes a derivative with respect to x (or r).

G
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I

Since	 I	 is an extremum with respect to the trial function, we require
dI/dnl = dI /dn2 = p	 .	 Substituting Eq.	 (15) in Eq. (14), and carrying out
the differentiations, leads to the two equations,

11 + n1
1
1 2 = On 	 rI3+2in2114 q (;i 1 2 I5)'

\nl/ I6 + 12 = On  (14 + 2 `nl ) 15 + `	 2 17)	 >	 (16)n1 ,

where I1 - 1 7 are defined by

11 = I A ^g1 2 - ag 2 1dA , IZ = I ^gig2 - oolg2)dA	 ?6 = 

1 
^g a 2 •. ag 2 dA ,

J	 1A	 A

I3 	 g1dA	 I4 =	 g2dA , I5 = glg2 dA	 g3dAA
	 jAg 2

	

 
17 =	

2
A	 A

(17)

The use of Eq. (16) will be central to the following sections.

5
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3. PLANAR OFOMMY

A suitable trial function is

	

^0 cos(2a)4 no 
cosV2ax)

	
(18)

As Ono/a •} 0 , we expect n 2 /n0 -r 0 , nl/n0 - 1 , to recover the simple
solution of Eq. (2). 11The integrals of Eq. (17) may be evaluated as

11	 22 [^2u / - a]	 12 - 0 ' 
16	 2 Cl2a ^2 a^

	

1 - 4a	 1 = 4a	 1 - 36a	
I = - 4a
	

(19)

	

3 - 37	 4	 157	 5	 357	 7	 971

and substituted in Eq. (16) to yield

) 2	 = 8Rn1 ^.
	 2• (n?1 27 (n?/2J1\2a	

a	
37	 + 5 nl + 35 n 

n2	 SRn	 ^	 n2 2

(n
	 5	

l(ual
)[(..3

 a)	 a^ 15ir1 1 + ^4 \
n
1j - 3 \ °1/	 (20)

	As R - 0 , these yield correctly (7/2a) 2- a	 and n2/nl ^ 0 .

3.1. Determination of n2/n1

Eliminating (7/2a) 2 from Eq. (20), and replacing n l by

n0 /(1 + n 2 /n,) gives

 n

	

On	
157 

1' 32
. 

^, + n2

	

a	 1 - 26,3. ( n2) 	 (n2.)n

	

- 243 ('2 )3

]	1

This relation is shown in Fig. 2(a). For Rn0/a > 0 , an asymptotic

value of n2 /n1 = 0.0264 is approached. For - 1 < Rn0/a < 0 , n 2 /n] is

negative and increases in magnitude as Rn0/a 	 - 1. Equation (21)

actually predicts a turning point at Rn0/a = - 0.959, n. ) /nl = - 0.157

but the two-term expansion is unlikely to be accurate for n 2/n1 < 1/9

for the following reason.

8
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For	 g :s 1	 everywhere, it is necessary that g"(0)' S 0	 , which

implies - 9 < n2/nl .	 For	 g Z 0	 everywhere, it follows from Eq.	 (18)

that	 n2 /nl < 113 , corresponding to	 g'(a) s 0 . We have,	 then, the	 C

R
limits n

_ g <	 < 2n2 (22)
1

For	 Ono/a > 0 , Fig. 2(a) shows that	 n 2/nI	 is well below the upper

limit.	 For Ono /a < 0 , the lower limit is reached at	 Ono/a = - 0.941.

3.2.	 Determination of Discharge Dimensions

The first expression in Eq.	 (20) may be written as

2
n	 =a+P 

8n02a^

2

27 ( n2
35 n1

(23) .

1+5(
n
n2 +

__ 8	 ` 1
P	 3n	 n2

1+-
nl

where the factor p depends ea On o/a via Eq. (21). It is plotted in

Fig. 3(a). For Ono/a > 0 , Lhe asymptotic limit of p = 0.8362 is

approached. This may be compared with the value of 0.8366 given by

Spenke. 3 At pn 0/a = 0 , p = 0.849 . For On o/a < 0 , p increases

rapidly towards unity at Ono/a = - 1 , the dashed curve being extra-

polated for n2 /nl < - 1/9. The exact value of p for the special case of
Eq. (9) is shown on the figure, and lies precisely on the curve.

3.3. Density Profile

We now test the quality of the approximation represented by

Fig. 2(a) by comparing exact solutions of Eq. (6) with Eqs. (18) and (23).

This has been done by solving numerically

2	 2 ag + Sn g2

dg2+ 2	 a+P Ono = 0	 _ (24)

using the value of p appropriate to the value of On  
chosen.

We then ,find g = 0 at g = F, 0 . If it turns. out that g 0	 1	 then

the correct value of p should have been

9
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p1 _	 9 Rn0 (6p - l)	

(25)

The profile is then recalculated using p' in Eq. (24)

Figure 4(a) shows the exact and variational (dashed) , solutions for the

extreme cases of Rn0/a -r - (n 2InI = 0.0264, p = 0.836) and Rn0/a = - 0.94:

(n2 /nl = - 119 , p = 0.922). No difference is visible on the curve for

Rn0/a + m the error is generally much less than 1 per cent. For

Rn0 /a = - 0.941, the error is observable, but is always less than 5 per ce.1t.

It is characteristic of variational solutions that eigenvalues are obtained

more accurately than eigenfunctions. In this case, p' = 0.901 for

R"0
 /a = - 0.941, so the variational solution (p = 0.922) is only in error

by 2 per cent.

If we restrict use of the variational solution to - 0.050 s n2/nl

- 0.8 S all 	 , further calculations show that the errors are much

reduced. Figure 4(a) shows Oil /a = - 0.794 (n 2In, = - 0.050, p = 0.877),

for which p' is found to be 0.873 and the separation between the exact

and variational solutions is generally 1 per cent; or less.

3.4. F' •,= ' e r App roximati ons

;:ar, we have obtained results without simplifying Eq. (20).

Since n 2/nI is found to be small, we may write the first relation

of Eq. (20) and Eq. (21) as

n2

a l2	 80110	 _ 3 n2	
On  N 1511 (n 1

^2aJ - a
	

311	

8 (

 5 n 9'	 a	
(n

	
(26)

f	

1	
1 - 27117}

1

The second equation rearranges to give an approximate version of Eq. (21),

ai	 /	
On

11
1
2 ^ 0.0212 f a + OU812 On 0

	
(27)

\ 

which may be substituted in the first equation to give an approximate

value for p of Eq. (23),

	

/a + 0.800 Rn0	 (28)
p c 0.849{a + 0.812 an

10
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r	 The expressions of Eqs. (27) and (28) are adequate over the range

P	 - 0.80 A<I Bn0/a < m	 though empirical adjustment of the constants mightn
t

effect some improvement in their accuracy, particularly over any more

restricted range.

In practice, the mean number density in the column, n , may be a
j:

more useful parameter than the axial density, n 0	it can be measured

from outside the column, for example, by microwave cavity perturbation

methods, or inferred from current density measurements and estimated

axial electron drift velocities. For the trial function of Eq. (18),

we have

n2

2n 1 3n
n = n0 — n 1	 (,29)

1 + 1

n2

so that Eq. (21) becomes

On 
30 

1 nl/ \1	 3n1)
a

(30)

a 261In
2)	

59( n 2 2 	 243 n2
13

1	

__

7 \°1/	 3	 nl^	 nl/
a

This equation has been used to obtain the dashed curve in Fig. 2(a).

- The first expression in Eq. (20) becomes

2
n2	 272	 n2)

1+	 +5	 35( n 12

\2a/
= a

\ nl /	 n 4	 \l/
+ q an-	.	 q =	 (31)

n

1- 3n1

II
^,

Y The quantity q has been plotted in Fig. 3(b). 	 It depends on	 6n/a
1

via Eq.	 (30), and drops from an asymptotic value of 1.36 towards unity

at	 an/a = - 1 . We shall discuss Eq. (31) further in Section 5.

Equation (30) may be approximated for small 	 n2 /n1 , and rearranged

to give, .i

i

^il

^J,:: ̂ `.L 	 r^:... .-:u vL. 3 _. :'v.a
r-1	 r'n	

^!`	 n3 t^	
1Nei.M. A.aJ^d::1.'.-YY+l.3 ..fix+.G^1.^1/.}X^'.:-1'uwin..-3 -Sr^f.L`s^`±.F+" 	 .	 ,..-

yrvT	 ..
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12

n2

an —3^

n1	
n2	 1 (3n

1 _ 21 / nl \	
nl 30 `a + 1.23 Bn)	

(32)

Substituting in Eq. (31), and retaining only first-order terms,yields

the usuful expression,

+ a+1.26l3n
9 ^' 3	 _

a -h 1.23 (3n
(33)



4.	 CYLINDRICAL GEOMETRY

A suitable trial function is

-n	 n
6 =	 J0 (Y1 a^ + n2 JO (Y2 a^n0 (34)

I

where	 y l (= 2.405) and y2 (= 5.520)	 are the first two zeros of the 	 JC

Vessel function. 	 The simple solution of Eq.	 (2) will be recovered if

n /n	 -} 0	 and	 n /n	 1	 as	 Bn /a -- 0	 The integrals of Eq.2	 0 (17)1	 0	 0
may be evaluated as

it	 [(
y	

y^
	

2	

!a2-)12- 

	 2

/	 a	 J l (Yl)	 I2 = 0	 I6 = ^^  	 a I 2al Jl (Y2)2

I3 = 0.0975 a 2 	I4 = 0.0186 a 2 	,	 I5 = 0.0366 a 2 	,	 I 7 = 0.00760 a2

(35)

the last four results being obtained numerically. 	 Substituting in Eq.	 (16)

yields

( 	 2 	 n	 n(2.1051	
_a^=0.723 

6n1 
+ 0.3$2 (2/+ 0.376	

2

)21
°11

1	 (5.520 1 2	 l
( ni^+_ al= 0.322 $n1 	1 + 3.93	 0.408 

(n. 

12nl

(36)

As	 (3	 0 , these yield correctly (2.405/a) 2 r a	 and	 n/n> 0 .
2	 1

4.1.	 Determination of	 n2/n1

Eliminating	 a2 	from Eq.	 (36), and replacing	 n1	by

n0/(1 + n2/n1)	 gives:

13.3	 +	 Ion0	 \all \1	 q1

n2	

n2 3
1 - 7, 91 ( n2 ) - 4.12	 ^2 - 4.46 u

:t

nl	 nl	 n1
1	

\
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This relation is shown in Fig. 2(b). A turning point at 8n0 /a = - 0,895

n2 Inl = - 0.275, indicates breakdown of the two-term variational approxi-

mation, so we should assess reasonable limits for n2In1 . For 8"(0) 5 0
2

we require - (y, /y,) <- n 2InI and for g'(a) -< 0 we require

n2InI <- Y 1 J 1 (Y 1 )/Y2 J1 (Y2) . We have, then, the limits ,

	

- 0.190 <- n 2 In1 < 0.665.	 (38)

For On0/a > 0 , Fig. 2(b) shows that n 2/n1 is well below the upper

limit. For On0/a < 0 , the lower limit is reached at On0/a = - 0.856.

4.2. Determination of Din:charge Dimensions

The first expression in Eq. (36) may be written as

/ \	 r	 2

2	 1 +0.3821 
n 
n2	

n
I + 0.376 f n21

J2.a051 = 
a + p Ono,	 P = 0.723 —	 ` n	 \ 1 /``	 jj
	 1 + 2

nl

(39)

where the factor p depends on 
On  

via Eq. (37). It is plotted in

Fig. 3(a), and rises rapidly from its asymptotic limit of p = 0.679

towards unity as 
Ono 

/a decreases below zero towards - 1	 It is

interesting to note that Spenke 2 obtained p -* 0.724 as Sn0/a -* 0,and

p -r 0.675 as 8n0/a - - , by approximate methods

4.3. Density Profile

We have obtained some numerical solutions of Eq. (5), in the

form

d2	 1 d	 2 a  + On  g 2
	

(40)

d2 + di Y1 ag+pInp 	 -0'

for comparison with our variational solutions. Figure 4(b) shows the

exact and variational (dashed) solutions for the extreme cases of

On0/a -^ m (n 2 /nl = 0.118, p = 0.679) and 8n0/a = - 0.856 (n 2 /nl = - 0.190,

p = 0,840). Agreement for On is -^- - is generally to well within 1 per cent
0

up to r/a ti 0.9, and then to within 2 per cent; p' is found to be 0.676. 	 {

For 8n0 Icn = 0.856, the discrepancies are m- -h larger, though p' is

found to be 0.798, which differs from the approximate solution (p = 0.840)

by only 5 per cent.

i	 14
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j-	 If we restrict use of the variational solution to - 0.125 < n2/nl

- 0.751 1 Ono/a , the errors are considerably reduced, as shown in Fig. 4(b)

for Sn0/cc	 - 0,751 (n 2/nl	- 0.125, p = 0.792). For this case, p' = 0.775,
}	

which agrees with the variational result to within about 2 per cent.
1	 "

4.4, Further Approximations

Since n2/n1 is typically several times greater than for the

planar case, for a given value of the parameter Ono/a , quadratic terms

s
in Eq. (37) should be retained. The equations analogous to Eq. (26) for planar

geometry are then 	

(	 l(2.x0512 a	 0.723 ono I - 0.618 I n2^ + 0.994 ^ n 2 ^2 I11	 JJ	 ` 1	 1 f

13.3(
n
2Ono

^	
nl	

(41)
n \\	 na	

1- 8.91^n2I+4.79 (n2^2 .
1	 ` 1

Solving for n2/nl , and eliminating between these two expressions leads

to

n2	 0.0754 Ono (a + 0.671 (n0)

n 	 (a + 0.507 
$no) 

(a + 0.836 $no)

On 
%	 8n12

1 i• 1.30 1 q0) + 0.398 (a0/
p ^ 0.723	 \	 —	 (42)

/8n	 5n 2
	 .

1 + 1.34 I a^) I- 0.424 ! x01

jf.
which are adequate approximations over the range - 0.75 S sn0/a

but are probably subject to improvement by empirical adjustment of the

constants to fit the exact results.

If we wish to work in terms of the mean number density,

15



n = 2 ^n l J1 YY1J + n2
 J, (Y,

 ) ] 0.432 n0
1	 2

W

(n2
1-0.286(-1n^

nl -
	 (43)

1 + 11
1

then Eq. (37) becomes

an	
5.73(nil (1 - 0.286 ( nl 1,

	

l̀̀ //	 ``

/	 1 \
	

(	
(44)a	

1- 7.91+	 -4.12(n2I2- 4.45(nl)3/n 2/ 1	 \ 1	 ` 2

This equation has been used to obtain the dashed curve of Fig. 2(b).

The first expression in Eq. (36) becomes

r	 \	
2

1 + 0.382 I n2 1 + 0.376 r n21
2.405 2 = a + On 	

°^_	 `nll

a	 q	 , q = 1.68 / n2
1 - 0.286 I n  }	 (45)

The quantity q has been plotted in Fig. 3(b). It depends on Rn/a

via Eq. (44), and drops from an asymptotic value of 1.82 towards unity

at Rn/a = - 1 . We shall discuss Eq. (45) further in Section 5.

Equation (44) may be approximated for small n 2 /nl by dropping terms

in (n2/n1) 3 and rearranging to give

/n
5, 731 n2^

Rn	 1 1/
a	 2

n	 n
1 - 7.62 (

nl l- 	
6.30 \nI

n2	 0.175 (nn> (1 + 1.33 ànt

nl # 1 + 2.66 (Rn 1 + 1.96 /Rn 12J
`tt )	

t
o 111

(46)
Substituting in Eq. (45) yields the useful expression

/ - 2
1 + 2.78 .ate` + 2.1.4 I un)

q	 1.68	
-	

1 -^2

(.1 + 2.66 lafn^ + 1.96 (a

16
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t 4	 5. THE ROGOFF EQUATION

We may write the Rogoff Equation Eq. (4)) in the form

4

	
a+6n = S (4a)

Comparison with Eqs. (31) and (45) indicates that it differs from them

in form in that the effect of the fu((nctionstlq 
Rnn 

in those equations

is exerted by the function S
( a O ^lor S ( a ), in the Rogoff Equation.

In what follows, we shall determine appropriate values of S using the

variational results of Sections 3 and 4.

5.1. Planar Geometry

For the trial function of Eq. (18), we obtain directly

2 .
S =	 & dA = n2	 9 -	

8\
\ 	ll, ,
	 (49)

A gdx2	 C(]. + n2)(1 - 3n2/J
1	 1

where we take A = 4a 2 . In this open geometry, there is some arbitrari-

ness in defining the width of the area under consideration, and hence the

value of S	 Our choice implies a width 2a equal to the separation

between the planar walls. With this choice, when On 0 and n2 /nI -r 0

we retrieve the simple res
(
Nilt

)
of Eq. (2) with S = n 2 .

Figure 5(a) shows SI ail and S (a— obtained by using Eqs. (21)

and (30). In general, n/n0 < 1 , but Fig. 5(b) confirms the prediction

of Section 2 that the column becomes uniform (g;+ 1) as Sn0/a + - 1, i.e.

n/n0 -. 1	 Since we are simply rearranging the same data, we should

expect results for n 2/aI < - 0.05 to be subject to significant error, as

discussed in Section 3.3.

Approximate forms of Eq. (49) can be obtained by expanding for

n2 /nI small,

2 ( d2'

	

S	 n	 j 1-	 (50)
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and substituting from Eqs. (27) and (32),

	

ra A- 0.642 Oil 	
2	 a d- 0.965 RnS	

n2 Ca + 0.812 Oil	 n	 a + 1.23 OA	
(51)

0j	
I

5.2. Cylindrical Geometry

For the trial function of Eq. (34) we have

1

	

J() (Y 	 9(n2)2 JO(Y2r

:i	 it 2	 1
= Y1

	

	 .n	 2f d0

0 Jp(Y 1 0) + l nl )Jp (Y20

n

(Y2 2	 1 (n^Jp^Y20^
n Yi 1 - 2 ((--) - 11	 OdF,Y 11 11

 
JO (Y10 /n2\ JJ `y20

l	 1 
-

1\ 1/1 	 /

(52)

Unlike the planar case, this cannot be integrated directly, nor expanded

easily for n2 /n1 small. We consequently take a different approach,

starting from Eq. (36). The first expression may be written as

2	 /	 n	 n 21
a + R^ _ (2 ' ai05)	 + f Rn - 0.723 Rn 1 ;1 + 0.382 (^l̂' + 0.376 

(n l^ ^^
/	 2

	

= j2.a05^2 _ On 	 0.291 + 0.400 I n2 ) + 0.272 ^n2) 1	 (53)ll	
111 1	 1

	

where: we have used Eq. (33) 	 Next, we eliminate a from Eq. (36) to

obtain a relation between 
On  

and a 2 ,

n2

	

76.7	 nl
On	

76.
 

3	n 	 2	
°2L,. + 1.69 (?) - 0.451 ^ n?^ - 0.854	 )

	

G.	
nl	 '^1	 (54)
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'	 Since the right-hand side of Eq. (53) is S/na 2 , wtk obtain finally
from Eqs. (53) and (54),

	

't	 n2	 2	 )l 3

2 1 - 2.18 (71-)l) - 5.76 I 
n 
nl^ - 4.46 ^ 

n

n21S - 71(2.405)2

(t
n 	 n	 n2

	

f	 1 + 1.69 12) -0.451 /112, 
2 

-• 0.854(111)
	1 	 lj

We Inve made no approximations in the algebra to this point. Thwkgh more

complicated in form, Eq. 655)1 is analogous to Eq. (49) for planar geometry.
Figure 5(c) shows S^ 

a0/ and S`°n/ obtained by using Eqs. (37),
(44) and (55). It can bè compared with exact calculations published by

Rogoff3 for 0 5 Rn 0/a r - . There is, of coursol, taxact agreement for
Rn0/a - 0	 As nearly as call 	 determined from the published curves,

S = 15 at S n0/a = 1 , and S + 10 as Rn 0 /a -t	 Our variational

analysis gives S	 15.0 and 10.0.

Approximate forms of Eq. (55) can be obtained by expansion for small

n2 /nl ,

	

 n
	 n 2

S ^ (2.405) 2 
L
1 - 3.87	 2) + 1.22 ^ ?,	 (56)

	

n l 	 n).

and elimination of n2/nl by use of the first expression in Eq. (39) 	 This
yields the alternative relations

0	 11 + 1.05 ^RaO) + 0.235 (It111'__2
S^ 71(2.405) In.0// 2

1 +1.34
(In.)

+0.424 C	 )a a
2

.\an )	 + 1.102(2.405) [.1 -71Rn IV2	 (57)1 + 2.66 1.9G (a

Of these, the second should be the more useful in practice, since the

Rogoff Equation is expressed most conveniently in terms of it 	 (48)).

We have given both forms throughout this section to facilitate comparison

with Rogoff's calculations made in terms of at, 0/a.3

19
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6. DISCUSSION

The most significant new results of this paper are Eqs. (27) and

(28) (or their alternative forms, Eqs. (32) and (33)), for planar geometry,

and Eq. (42) (or the alternative forms, Eqs. (46) and (47)), for cylindri-

cal geometry. These provide good working analytic approximations to the

density profiles and similarity relations over the range -0.75 S an 0/a <

They could probably be improved somewhat by empirical adjustment of the

constants in them for best fit with exact calculations. If the Rogoff

form of the similarity relations is preferred, it is given approximately

by Eqs. (51) and (57).

For the range - 1 < an0/a _< - 0,75, the variational method breaks

down. This is because the density profile is rapidly becoming flat

everywhere (g 4 1 as an0/a -)- -1, see Section 2), and cannot be accurately

approximated by a two-term Fourier (- Bessel) expansion. This analytical

shortcoming is likely to be mitigated in experimental practice by the

fact that discharge operation in this range would be difficult: if a

is to remain finite as 6n0/a -r - 1, then we require a k - and an  -r -ro .

Given the importance of two-step ionization processes in common dis-

charges, it is surprising that the Spenke Equation ties received so little

attention over the last thirty years. For example, two-step processes are

important in the mercury-vapor positive column  - it is estimated that at

pressures above a few mTorr, and electron number densities above about

5 x 1010 cm-3 , more than half of the total ionization rate is contributed

by two-step processes 8,9 - yet the author is only aware of the. experiments

of Howe directed towards verifying the applicability of the Spenke

Equation in such parameter ranges.

Future theor_tical and experimental work should be directed towards

exploring and verifying the solutions of the Sponke Equation for a(=v/D)

and ti(=k/D) positive and negative. All four combinations are possible

in practice 3 . a may contain positive contributions from one-step electron-

neutral impact ionization, and two-step electron impact, excited state-

ground state collisions and excited state-excited state collisions; these

contributions may be offset by attachment. Similarly, 8 may contain

positive contributions from two-step electron-neutral impact and excited

state - excited state collisions; these contributions may be offset by

i
	

electron-ion volume recombination.

.1
')0

I

.a

p



i

Some parameter ranges do not describe self-sustained discharges,

of course, e,8. a,p < 0 . They may still be of considerable practical

Interest, however, since they may apply to a plasma diffusing from a

source region, taken as the "wall", into a region where it decays. A

point which will. require special care for a < 0 is the modifying effect

on D of the negative ions produced by attachment. 10
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APPENDIX: FORNIÌLATION OF THE VARIATION PRINCIPLE

Consider the expression,

JA 

L	 I

[(Vlg)2 + a
Og2 + Sn0g11dA ,	 (A.1)

and let g = G + 6G , where G is the exact solution to Eq. (5) and

6G is a small space-dependent discrepancy from it. Ile have

r
I + 6I =	 I LLLL(V1	

2
(G + 6G)) + a0 (G + 6G) 2 + Sn0 (G + SG) 1 dA,

A	 (A, 2)

which separates into

I =

	

	 71G)2 + a0G2 + On0C dA
ALLL

6I =

	

	 r2vlC-VSC + 6G(2a0G + 30n0C2) dA + 0(SG 2)	 (A.3)

AL

By use of the relations

t

(v16) 2dA =	 V1•(GV1G)dA -	 GV1GdA =	 GV2C dA

A	 JA	 JA	 A

	

vi C • V6GdA = vl • (acvlG)dA -	 6GV1dA = -	 6GV2C dA

A	 A	 A	 JA	 (A.4)

I

which assume that G(a) = 6G(a) = 0_, Eq. (A,3) reduces to
s

i

4
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I =V2G + a 0G + gnOG 21CdA

A`

l C + a0G 1• 3SdI = 2 [-v	 Zn0 G2^dG • dA I. 0(6(;2).

A

From comparison with Eq. (5), we see that dI = 0(6G ?) if a0 = -a

and 0 = - 3 B . This establishes the variation principle in the form

of Eq. (14).
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FIG. 1. Planar Geometry. Effects of Sn0/t on range of &
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I IC

1	 ^
I 	c `1 Cf

^I Qj

^^	 1 c ^c
I

Ir-

N	
I 1	 c

r c/;	 1

l^	 1

^	 1
,	 1

(14 U
C)	

0co 	 O

O O p	 O	 O
cli

n O	 ( -- ._____
------

b

IL

v
D
N

r-1

t^ ro

^ U

^ t~
v

u
n v
^ c
orn

0

.^	 I

.f	 c-
ro

N r.
>~ roi
w
O

(7	
CYN

.J
u I

ro
'^	 II

^ r

N
r

(V

O
H

26



I

n: N }
r ] n: G	 a	 ..

h -t^ v	 ^

'	 ) M J
a.'	 .0	 R

)	 .-^

°
2

r v	 u

iC	 .0	 V
V	 E^

N	 v

t0
cu	 v

S	
t'

4.1

tT v	 y

O u
'd	 cr
r.	 r,
^	 u

ti N
r.

	

curi 14,

1
n.

} -	 ^'7 4r

a t ^) o
H U

C	 Q	 r1
°	 rau

(U
•.4	 u
sa

\ ;a0 u	 o

U	 0. p^ - - - a--1 __
_1 __

. a	 aJ
++

^ ^ n p n

jo

^	 N n

cj
w

f

27

--l'l



.	 '^VYn.	 "^••RM'Ab

•

r

	

1.0 	 —0794	 i.0
0.941	

Z-,— ^ ^ r-0 856

	

Arl o
 : p	 Q^ 	 0.751

	

0.5- 	
05-

	

(a) PLANAR 	 (b) CYLININDRiCAL

	

0	 0.5	 --^ p	 0

	

z/a	
0.5

f 1a

	

F1G. 4. DcnaitY pro.'iles On /n	 - 0.^^0	 41 (planar) and
. 0.856 (cyiiridr ic;il) Coll'^

, 5pc ld to n /n =	 e2 l	 1/^
and - O.1 n0; an 

0 /a _ - 0.794 (planar) and - 0.751
( cyli ndrical) correspond to 11 2 /1 1 1l _ - 

0.050 and - 0.125,

wliicl, m.av he taken to be the l.ijnits for which the
^ ari utional theory is adequate.)

1.0

28



•"

I	 ^

I'
I	 ;

I	 '

S	 1

U	 ^^1

/ m'

N

In

	r 	 Ir_

K.

l)	 0 1 ,	 C1
tC ^
l
r I;

Z	 I

} r1
C>	 ^^ o	 I ' CV

C'' ^	 I 1
 

00
.7

u

G 'J

IC r

L+

>, r
u ^
•^ h

LC

r
c^c ^

v
I

'v	 u

U N
u ^

C%

E?
O

^. L

I	 G

Lr	 CJ
u

^ X

U

4.

C W
t L) >

U r

O	 ..
•4

o ^ r

(J
•.•I

N •p `v.

j C

^ ^ c

^ 1H

i	 r in ty
ic- Ir

O	 I 1C+(—	
C

Ql
Q

Q
G	 IC

C1 Q1	 I 2 f1
r:

Z I S
^	 cam)^ O	 ^.

^ l/)	 lIJ	 I Z ^._ ^	 '

IC^ °	 t

R I	 :v
rti 1 (

! I'

-	 - C7
'^^

cu_ a7 i^	 Ir -
1------------^ p

it

29


	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A03_.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf

