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VARIATIONAL DESCRIPTIOR OF THE POSITIVE COLUMN
WITH TWO-STEP IONIZATION
F. W, Crawford
Institute for Plasma Research

Stanford University
Stanford, California 94305

ABSTRACT

The ionization balance in diffusion-dominated discharges may depend
on both one- and two-step ionization processes. The Spenke diffusion
equation (DV2n 4 vn + kn2 = 0) describing such conditions is solved in
this paper by the Rayleigh-Ritz variational method. Simple analytic

approximations to the density profile,and the similarity relation

between v,k,D and the discharge dimensions,are derived for planar

and cylindrical geometry, and compared with exact computations for

certain limiting cases.



1, TNTRODUCTION

n 1924, Schottkyl published a thecry of the steady state positive
cclumn appropriate to neutral gas pressures high enough for ambipolar
diffusion to control the loss of electron-positive ion pairs to the dis-

charge wall. His diffusion equation,
Dv2n 4+ vn = 0 (Schottky Equation), (1)

implies that the ambipolar diffusion cocfficient, D , is spatially
independent; v(>0) represents the effective (one-step) electron-neutral
ionizing collision frequency, and n is the charge number density in the
quasineutral, weakly-ionized column. _

Equation (1) is readily solved in planar and cylindrical geometry,
0 and dn/dx = 0 (or dn/dr = 0)

at x =0 {oxr r =0) , to obtain the familiar results,

subject to Lhe boundary conditions n = n

= :I.r.__:_{.. 1_2‘:2 bl -
n = n, cos[2 a) ' (Za) D (Planar geometry),
(2)
3 ¥y 2 v
= I —— = 7 .
n no JO(Tl a) s [a ] D (Cylindrical geometry),

vhere yl(= 2°405) is the first root of the J0 Bessel function. The
discharge wall is generally taken arbitrarily to be at x = a (or r = a),
and cannot exceed this dimension since n = 0 .

In 1950, Spenke2 extended the analysis to include two-step ioniza-

tion processes via the equation,

DV2n + vn + kn? = 0 (Spenke Equation). (3

Unfortunately, analytical solutions as simple as those of Eq. (2) cannot
generally be obtained, though the solution in planar geometry can at least
be expressed in terms of elliptic functions.2 For this case, Spenke plotted
the density profiles for knO/v =0, 0.5 and = , and obtained
an approximate relation between a , v/D , and knO/D. An analogous
approximate relation was obtained for cylindrical gecometry, and density
profiles were plotted for knO/v =0 and o© :

A thorough numerical study of Eq. (3) has been undertaken only very

recently, by Rogoff.3—5 He has enumerated a variety of dondzation,



recombination and attachment processes described by the deceptively simple
Spenke Equat:ion,4 and has eclarified the similarity properties of axially-
uniform [V" = 0) discharges obeying it by intreducing the solution

n = ngg, and integrating over the cross—sectional area, A , to obtain

2
Vg
[—%]A + (-lki]N = - A'—'Lé—- dA = § (Rogoff Equation), (4)

where N is the total number of electrons (or ions) per unit length of
the column. The integral is a dimensionless number, 5 , depending only
on the shape of the cross-section and the parameter kno/n . To deter-
mine S , it is necessary to first solve Eq. (3). This has been done
numerically by Rogoff for rectangular and cylindrical geometry.s
It would be very useful if good analytic approximations could be

obtainad for the density profile, g , and the Rogoff equation. A possible
means of obtalning such approximations is suggested by the fact that the
numerical solutions for g show little change in shape as knO/v varies
from 0 to = : in this paper, we shall investigate by variational
methods the perturbations on the solutions obtained with knO/v = 0
[= Eq. (2)) resulting from variation of kno/v from - 1 to = , corres-
ponding to the range investigated numerically by Rogoff.5

The plan of the paper is as follows. In Section 2 we examine the
properties of the Spenke Equation for different combinations of positive
and negative v and k , and demonstrate the significance of the range
-1lzx kno/v £« , A variation principle suitable for use in this range
is presented, and it is shown how it may be applied in conjuncticon with
the Rayleigh-Ritz method to solution of the Spenke Equation. Section 3
carries out this procedure for planar geometry, and presents computations
of the density profile in the column, a similarity relation between
v, k, D and a, and useful working analytic approximations to these results.
Section 4 repeats the procedure for eylindrical geometry. Our similarity
relations are not obtained in the Rogoff form of Eq. (4). It is shown
in Section 5, by suitable rearrangement of the'terms, that they are identi-
cal, however, and analytic approximations are gerived for the Rogoff form.

Section.ﬁ closes the paper with a brief discussion.



2. BASIC EQUATIONS
We shall write Eq. (3) asg
' v k ;
Vzg+ag+3n032=0 , u='ﬁ,B=-ﬁ y 5)
and first investigate some of its general properties in planar and

cylindrical gecmetries., We shall then show how its solution can be

approximated by the Rayleigh~Ritz method.

2.1. Planar Geometry

Equation (5) and its first integral are given by

d? 2 dg 2 ffmg? 28ng 3

E;§-+ ag + Bnog =0 , (de = ol [~g J + 3 (l~g J. (6)
We require, then, for a physical solution

2 o
a2 " L e - el B N[ 3 _£(1 sa)_
(7 =e@-g)(lg)(l-g) >0 , 8, -2[(1 + Zong ) | Zeny - > 2+ Zon
fn : (7N

We note that g are real for - %‘S -ag-g %-, and complex outside this

range. The quantity (dg/dx)zla is plotted in Fig. 1.

Case 1: o, B = O: Figure 1(a) (nr Eq. (7)] shows that (dg/dx)zla =0

for 0 sg <1 . A simple special case i52

F)e (-3

(8)

g=L1-3 tauh2(0.658 ia ’

, -1
where the numerical factor 1.317 = cosh "2, For future reference, we

)- (9)

Cage 2: o020, ~-1c¢ Bno/a £ 0: As Bnola becomes more negative,

note tihat the second relation can be written as,

(

Bn
J?= a + 0.845 gn, (- 0 -

s}

b
P

there is a change of behavior at Bno/a = - 1 , at which point (dg/dx)zla

is apparently positive for p ¢ 1. Examination of Eq. (6) shows, however,
-2

that dzg/dx = dgfdx = 0 fer g=1, i.e. the column density is indepen-

dent of x for the condition Bno/a = - 1 .



Thcre is an additional range of values of g > 1 for which
(dp/dx) /u > 0 (for example, g > g, for Bnola = - 0,75 in Fig. 1(a)).
It is not accessible, however, from g = 1 through real values of dg/dx.

Case 3: a= 0 , Bnofa < =1l: As Bnola decreases further, solutlons

can only be found for g = 1 , se the wall can no longer be arbitrarily

located at g = 0 , but must be assigned a non-zero value of g . Taking
Bn
-?;— =-7 asa simple special case, we have
2 rux 72 (B“o - 3
ec (23 s (28 = - "3 (10)

if the wall is located where g - = ,

For - % < Bﬁ /u < -1 there is a range of solutions with 0 ¢ g < 1
for which (dg/dx) /a > 0 (for example, 0 < g s 8y for BnO/a = -~ 1.25

in Fig, l(a)J, but it 1s not accewmsible through real values of dg/dx.

Case 4: w,B < 0: For a < O , PFig. 1(b) is appropriate. Solutions

are obtaingble for 1 < g £ » . The solution for Bnofa = 1/2, analogous

to Eq. (8) is,

" /Bn
2 mx LW 1y .
=1 <+ 3 tan {'i—a") s (-5) R 1 (—'a—'- = ':2‘): (11)

if the wall is located wvhere g o ,

Case 5: a <0, -1c¢% BnO/u < 0: In this range, solutions are

possible for 1 ¢ g < » (for example, 1 < g < Bs for Bnoja = - 0,75

in Fig. 1(b)). As BnO/u + =1, the upper density limit decreases towards

g = 1 , and we obtain again the uniform density solution of Case 2 at

Bo./o =~ 1.
0
3 P
Case 6: a < 0 , Bno/a < -l TFor - 5 <% < -1, solutione are
possible with 0 < g ¢ 1 (for example,g, < g < 1 for Bnula =~ 1,25
in Fig. 1(b)),so the wall must be assigned a non-zero density. For

gn
a*g-s - %—, solutions with 0 £ g <« 1 are obtainable, i.e. the wall
can bg arbitrarily located where g = 0 . The simple special solution

g 3
for —=-5, analogous to Eq. (10),is
2 rux n 32 = fn
¢ = soch ligJ ’ 28] = -q (,_u.ga_g.) (12)

Here, a d1s a scale length, since g+ 0 only as x -+ =,

5



The obvious conclusion to be drawn from this brief survey of
Cases 1-6 1s that there is a very rich variety of solutions to the Spenke
Equation. 1In this paper, we shall consider only those for which 0 < g < 1.
Such selutions are associated with the ranges w 20 , - 1 g Bnola g w
(Case 1) and o < 0 , Bnola < - %— (Case 6); we shall limit our consideration
to the first of these, for which Rogoff has obtained numerical solutions in

5
rectangular and cylindrical geometry.

2,2, Cylindrical Geometry

It is reasonable to suppose that the six cases just discussed
will appear for cylindrical geometry with qualitative similarities and
quantitative differences. We shall not pursue the question here, but

simply note that in cylindrical geometxy, Eq. (5) is

1d { dg 2 1
i (r dr) + ag + Bn,g o, (13)
and 1s satisfied by g = 1 when Bno/a = =1 . The range of interest

to us 1s consequently the same as for planar geometry: o >0, -~ 1 g Bnola £ o,
It may be remarked, in passing, that the parameter Bnola(= knO/v),

which will figure prominently throughout this paper,may be interpreted

physically as the watio of the number of charges produced at the center of

the discharge by two-step [kné) and one-step [vno) processes.

2.3, Variational Solution

Equation (5) is the variational solution to (see Appendix)

2Rn '
2 2 0 3
1= [[ng) - ag” - —3 g:ldA, (14)
A
where the column is axially uniform (V“ = O) » and A dis its cross-

sectional area. This implies that if a trial solution differing by &g
from the exact solution is substituted in Eq. (14} the errvor in I is
0(532) In our application of the Rayleigh-Ritsz method,6 our trial funetion

will be the first two terms of a Tourier expansion for g of the form

n n
i i 2
n0 1 n0 2

where gl(u) = gz(n) = 0 at.the wall, and gi(O) = gé(O) = . Here, a

prime denotes a derivative with respect to x (or r).



Since I is an extremum with respect to the trial function, we require

and carrying out

dI/dn

1 = dI/dn2 =0 . Substituting Eq, (15) in Eq. (14),

the differentiations, leads to the two equations,

n, /“2) n,.\2
I '+("—)T = fin I +2y—=]1T + (——) I ) ’
1 "\n; /2 1 (3 \ v/ T \ng) s
2
n n2) n,
(-E-—) 16 + 12 = Bnl (Il, + 2 (.1-1— 15 + (n"") 17) ’ (16)
1 1 1
vhere Il - I7 are defined by
- '2 2 ~ ) _ ‘2 2
I1 = (gl - agleA . 12 = (gigé - UOngJdA s 16 = (gz - aglJ dA ,
A A A
I, = dA I, = 2 dA I = 4 dA I = 3 dA
3 B84 » 1, 818, *ots T | BBy Sy B -2
A A A

The use of Eq. (16) will be central to the following sections.



3. PLANAR GFOMETRY

A suitable trial function is

n n
! X 2 3nx )
e Ew-cos(iz)+ ;*-cos(g;*) . (18)

0 0

As Bnolu > 0 , we expect n2/"0 + 0, nl/n0 + 1 , to recover the simple
solution of Eq, (2). The integrals of Eq. (17) may be evaluated as

2 2

a fim - =4 (3n)
11“5[(25)')* I,=0, 16_2[(2::) ]’

4a _ 4ha . 36a L ba
375 0 Lt 0 IseEsr 0 It oo (19)

and substituted in Eq. (16) to yield
LR 2 —a = EEEl.rE + 2 23 + 27 Eg 2]
2a 3a i' 5 ni 35 \n !

n 2 88n n,\ . 5 (% 2
21\1(3 1 54 12V L2 t<
() b)) e

As B8 + 0 , these yield correctly (n/2a)2> a  and n2/nl + 0 .

3.1. Determination of nz/nl

Eliminating (n/2a)2 from Eq. (20), and replacing ny by
nO/(l + n2/n1) gives
n n
on 1571(-“—‘?-) (1 + ;—2)
0 _ 1 1
= 5 (21)

This relation is shown in Fig. 2(a). For Bno/a > 0, an asymptotic
value of n,/n. = 0,0264 is approached. For - 1 < BnO/u <0, n2/nJ is

277
nepative and increases in magnitude as BuO/a + - 1. Equation (21)
actually predicts a turning point at Bno/u = - 0.959, n.,/nl = - 0.157

but the two-term expansion is unlikely to be accurate for n2/n1 < 1/9

for the following reason.



For g < 1 everywhere, it is necessary that g"(0) < 0 , which

"

implies =~ % 3 nzlnl . For g2 0 ecverywhere, it follows from Eq. (18)
that n2/nl < 1/3 , corresponding to g'(a; < 0 . We have, then, the
limits

n
. (22)

A
o=

“ie

3

For Bnola > 0 , Fig. 2(a) shows that nzinl is well below the upper
limitr. For EnO/u < 0 , the lower limit is reached at Bnolu = ~ 0,941,

3.2. Determination of Discharpge Dimensions

The first expression in Eq. (20) may be written as

2
n n
() 36
. 2 8 1 1
(55) =q + Pp Bno y P = y {23).
l+'€I

where the factor p depends cu Bnolu via Eq. (21). It is plotted in
Fig. 3(a)., Tor Bnofa > 0 , che asymptotic limit of p = 0.8362 is
approached., This may be compared with the value of 0.8366 piven by
Spenke.3 At BnU/a =0, p=0,89 . For BnO/a <0, p ingreases
raplidly towards unity at Bnolu = -~ 1 , the dashed curve being extra-
polated for n2/nl < = 1/9. The exact value of p far the special case of

Eq. (9) is shown on the figure, and lies precisely on the curve.

3.3, Density Profile

We now test the quality ef the approximation represented by
Fig. 2(a) by comparing exact soluticns of Eq. (6) with Egqs. (18) and (23).

This has been done by solving numerically

2
dzg_+ (i)z ag + Bnog
2 a + p Bn

=0 , g =X (24)

using the value of p approprviate to the value of Bno chosert.
We then find g =0 at £ = Eg if it turns. cut that 50 # 1 , then

the correct value of p should have been
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*

Va1
"R g (1;2 ) 2
(4] 4]

The profile {s then recalculated using p' din Eq. (24)

Figure 4(a) shows the exact and variational (dashed) solutions for the
extreme cases of Bno/u + @ (n2/n1 = 0,0264, p = 0.83?) and Bnolu = ~ 0.941
(nzfn1 =~ 1/9 , p = 0,922). No difference is visible vn the curve for
BnO/u + w 3 the error 15 generally much less than 1 per cent. Tor
6n0/u = - 0.941, the error is observable, but is always less than 5 per ce.t.
It is characteristic of variational solutions that eigenvalues are obtained
more accurately than eilgenfunctions. In this case, p' = 0,901 for
ﬁuolu = - 0.94), so the variational solution (p = 0.922) is only in error
by 2 per cent.

If we restrict use of the variational solution to -~ 0,050 g n2/“1 R
- 0.8 S‘Bnola , further calculations show that the errors are much
reduced., TFigure 4(a) shows Bnola = « 0,794 (nzln1 = - 0,050, p = 0.877),
for which p' is found to be 0.873 and the separation between the exact

and variational solutions is generally 1 per cent or less,

3.4, TFr:iher Approximatinns

i v lLar, we have obtained results without simplifying Eq. (20).

Since nzfnl is found to be small, we may write the [irst relation

of Eq. (20) and Eq. (21) as
n
gn 157 (;ﬁé)
o _ 1

ﬂ;‘Z _,BBHO £ 3 n2
(%) -5 -3 o) x - a8
) 1! l_.2_@_8......?:_
7 ny
The second eguation rearranges to give an approximate version of Eq. (21),
2 & o002 o ) (21)
ny ) a + 0.812 Sno. !

which may be substituted in the first equation to give an approximate
value for p of Eq. (23),

w -+ 0,800 Bn
el 0 (28)
p= 0‘8“9\0‘ ¥ 0.812 sno)' .

10



The expressions of Eqs. (27) and (28) are adequate over the range

- 0.80 ¢ Bnola < o , though empirical adjustment of the constants might
effect some improvement in their accuraecy, particularly over any more
restricted range.

In practice, the mean number density in the column, o, nay be a
more useful parameter than the axial density, ng ¢ it can be measured
from outside the column, for example, by microwave cavity perturbation
methods, or inferred from current density measurements and estimated
axial electron drift veleecities, Tor the trial function of Eq. (18),

we have

-
2n In '
A= 1 (29)
m nl ).
1 +'t*1'—-
2

Bn _ ' : (30)

v w—— —

This equation has heen used to obtain the dashed curve in Fig. 2(a).

The first expression in Eq. (20) becomes

- 1. (31)

L 3n

The quantity q has been plotted in Fig. 3(b). It depends on Br/a

via Eq. (30), and drops from an asymptotic value of 1.36 towards unity

at Bﬁ[a_= - 1. We shall discuss Eq. (31) further in Section 5.
Equation (30) may bg épproximated for small n2/nl , and rearranged

to give,

11



631 1 2 1 fn ;
o T3 796 7y 0w "‘-"3‘“( ) - B
I"TT{‘) 1 o+ 1,23 gn
1

Substituting in Eq. (31), and retaining only first-order terms, yields
the useful expression,

qog|ot L2660 (33)
a -+ 1.23 Bn

12
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A suitable trial

4

where vy;(= 2.405) and

4. CYLINDRICAL GEOMETRY

funetion is

™,
-.:;[')-JO (Yl a

Y, (= 5.520)

)+

are the first two zeros of the J

Bessel function., The simple solution of Eq.

nZ/nO -+ 0 and nl/no

may be evaluated as

¥q)" 2 Y
=Ly - et 42 - = [ =2
Il - [Ka ] ;} 2 J1 (71) ! I2 =0, IG [(a ) ;]

2

1, = 0.0975 a®

the last four results being obtained numerically.

yields

(2.405 2
a

n 2
(—3- (54239 - af=0.322 gn |1+ 3.93
SRR ot o

As R+ 0 , these vield correctly.(Z.&OS/a)2.+ a

+ 1, as Bno/

)'- u]= 0.723 gn; 1 + 0. 382(

4,1, Determination of n,/n

21

Eliminating
ng/ (1 + nzlnl) gives

=

= 0.01846 a

a4+ 0.

n

-'.Jl
L V)

I

5

n
o J (Yz a)

(34)

¢

(2) will be recovered if
The integrals of Eq. (17)

= 0.0366 a°

n
) + 0.376 (-J5
™M

=]
=)

l

=

aZ from Eq. (36), and replacing n

n T
o 13.3 (;f)(l +-—3)
0 _ n,
o Y n,\3
1 - 7.91 ( 2) - 4,12 (-i%) - 4.46 (435) |
neo Rl A |

13

)+-0.408 (
1 .

Il

1

az 2
7 (72)» ‘

L
(35)

Subgtituting in Ea. (16)

(36)

and n2/nl >0 .

by

(37)

= 0.00760 a

2



This relation is shown in Fip. 2(¢(b). A turning point at Bnola = ~ 0,895 ,

n2/nl = - 0.275, indicates breakdown of the two-term variational approxi- 1

mation, so we should assess reasonable limits for n2/nl . TFor g"(0) 50,
2

we require - [Y]IYZ) < n2/n1 and for g'(a) € 0 we require

nzlnl £y, J](yl)le J (Yz) . We have, then, the limits

$ 0.663. (38)

Fox Bnolu >0, Fg. 2(b) shows that nZ/n1 is well below the upper
limit. For Bng/o < 0, the lower limit is reached at Bny/e = - 0.856.

4,2, Determination of Dircharge Dimensions

The first expression in Eq. (36) may be written as

n2 n, 2
1-+0.382(——) + 0.376 ("—)
2 n n
2.405 1 1
> = a+ p Bno s P =0.723 ‘32 '

i+ Py
1

(39

where the factor p depends on Bno via Eq. (37). It.ig plotted in
Fig. 3(a), and rises rapidly from its asymptotic limit of p = 0.679
towards unify as BnO/a decreages below zero towards - 1 . It is
interesting to note that Spenke obtained p + 0.724 as SnO/u + O,and

p+ 0.675 as BnO/q + w , by approximate methods

4.3. Density Profile

We have obtained some numerical solutions of Eq. (5), in the

form

2

2

dg, Lldg, 2f38FhEn 8
27 a

dg

Yi\egFpen, | 70 (40)

for comparison with our variational solutions. Tigure 4(b)} shows the
exact and variational (dashed) solutions for the extreme cases of
6n0/a + (nzfnl = 02118, p = 0.679) and GnO/q = - 0.856 (nzlnl = - 0,190,
p = 0,840}. Agreement for Bnofu + = ig penerally to well within 1 per cent
up to r/fa ~ 0.9, and then to within 2 per cént; p' is found to be 0.676.
Yor Bno/a = 0.856, the discrepancies are w.-h larger, though p' is
found to be 0.798, which differs from the apgroximate solution (p = 0,840)
by only 5 per cent,

14



If we restrilct use of the variational solution to - 0.125 ¢ n2/n1 ;
- 0.751 ¢ BnO/u , the errors are considernbly reduced, as shown in Fig. 4(b)
for BnO/u =~ 0,751 (nzlnl = - 0,125, p = 0.792). Tor this case, p' = 0,775,

which agrees with the variational result to within about 2 per cent.

4.4. Further Approximations

Since n2/n1 is typically several times greater than for the
planar case, for a given value of the parameter BnO/a » quadratic terms
in Eq. (37) should be retained. The equations analogous to Eq. (26) for planar

geometry are then

2

2 _ n n
(3——4—05-) -« = 0.723 gn, |1 - 0.618 (-—2) + 0.994 (-2—\) ,
a 0 n n
_ 1 S
n
on 13.3(;—2)
cLo N 1 . )

2
n n
1 - 8.91 (53-) + 4.79 (3«2—‘)
_ 1 i3
Solving for nzlnl , and eliminating between these two expressions leads

to

n, 0.0754 Bny (o +0.671 fny)

N

|

~

1 («+0.507 gng) (o + 0.836 Bno],

o]

Bn..\ Bno\z
14 1,30 (—"—) + 0.398 —E_/

o
p =~ 0.723 —_ 3 , (42)
Bno Bn
1+ 1.34 (*~—) + 0.424 (“"—)
’ & oo

— .

which are adequate approximations over the range - Dﬁ75 2z Bno/a g m
but are probably subject to improvement by empirical adjustment of the
constants te fit the exact results.

If we wish to work in terms of the mean number density,
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3, (v,) 3, (v,) n
1N 1175 1
- = Q. 4
n=2 ; " + n, Y, 0.432 g " y  (43)
1 +T-
M
then Eq., (37) becomes
n n
) 5.73(;13)(1 - 0.286(-{1—%))
%_n 1 1 5 - (44)
n n n
1-7.91 (—3) - 4,12 (;\—2-) - 4,45 (h—l—)
™ 1 2

This equation has been used to obtain the dashed curve of Fig. 2(b).

The first expression in Eq. {(36) becomes

Ny ny ?
2 1l 4+ 0.382 (E--) 4+ 0,376 ('ﬁ-—)
24057 Ly 4 qeR, q=1.68 1 1.
da 112
1 - 0.286 (-n—) 45

1

The quantity q has been plotted in Fig. 3(b). Tt depends on Bn/a

via Eq. (44), and drops from an asymptotic value of 1.82 towards unity

at Bn/o= -~ 1 . We shall discuss Eq. (45) further in Section 5,
Equation (44) may be approximated for small nz/nl by dropping terms

in (nz/n1)3 and rearranging to give

iT1
2 - -
B _ ny | ny. 0175 (¢ (1+1.33 ¢
8 2 ] n : - - 2
" n 1 {8n (_1_
1= 7.62 (-52).. 6.30 (_ﬁg) 1+ 2.66 (a )+ 1.96 o
] 1
(46)

Substituting in Eq. (45) yields the useful expression

‘- ~\2
1+ 2.78 (SB) + 2.4 (-2—“-)

q =] 1068 * - - 2 . (47)
14 2.66 (ﬁﬂ) + 1.96 (-B—‘l)
41 o

16



5. THE ROGOFF EQUATION

We may write the Rogoff Equﬁtion (Eq. (4)] in the form

- [ ,
o+ Bn =, _ ) (48)

Comparison with Eqs. (31) and (45) indicates that it differs from them

in form in that the effect of the functioanq[ gﬂ ) " in those equations
is exerted by the function S( gﬂ-J ar 5 (FEQ in the Rogeff Equation,

In what follows, we shall determine appropriate values of 5 using the

variational results of Sections 3 and 4.

5.1. Plapnar Geomet:iy

For the trial function of Eq. (18), we obtain directly

, -
s=] 25 an=+ [o- ne =z ¢49)
A Bdx . [(1 + i) (1 - ———2—)]
ﬂl lll

' 2 , . .
where we take A = 42~ . 1In this open geometry, there is some arbitrari-

ness in defining the width of the area under consideration, and hence the
value of S . Our choice implies a width 2a equal to the separation
between the planar walls. With this choice, when B8n + 0 and n2/n1 + 0

we retrieve the simple resylt of Eq. (2) with § = “2
B i

Figure 5(a) shows 8§ _EQ and § [ %E} obtained by using Eqs. (21)
and (30). In general, n/n0 < 1 , but Fig, 5(b) confirms the prediction
of Section 2 that the column becomes uniform (g = 1) as Buo/a + -1, i.e,
n/no + 1 . Since we are simply rearranging the same data, we should
expect results for n2/n1 < - 0.05 to be subject to significant error, as
discussed in Section 3.3.

Approximate forms of Eq. (49) can be obtained by expanding for

n2/nl small,

5 8n
8~ 2 [1-;-—"1, (50)

17



and substituting from Eqs. (27) and (32),

+|F

0.965 Bn
P

o 4+ 0.642 pn,.’
§ = “2 0 s ﬂ2 o]
o + 0.812 Bno a

5.2, Cylindrical Geometry

For the trial function of Eq. (34) we have

1 N\ (Y) 2
§ = HY% 1 26 dE

»nz

"2
2 Vp\2 ) (EZDJO(ngl
oo B
RN )
(52)

Unlike the planar case, this cannot be integrated directly, nor expanded
easily for nz/nl small. We consequently take a different approach,

starting from Eq. (3g). The first expression may be written as

2
2 t 4 n n \
- 2 -
o+ g7 = (é;igi) + (Bn - 0.723 8n, [1 + 0.382 (=2} + 0.376 (—3) [)
a 1 n n
_ \ [ 1
' v 2 i,y n ’
- (2-405) - Bn (0.291 + 0.400 (_g) +0.272 (—3) ) (53)
a 1 " 1

where we have used Eg. (33) Next, we eliminate « from Eq, (36) to

obtain a relation between Bnl and a2',

_2
n
o, = 76é7 1
a A n, 2 n s
L1+ 1.69 (E“? ~ 0.451 (;-) - 0.854 (73)
1 1 "1 (54)

18



Since the right-hand side of Eq. {53) is S/nn2 , we obtain finally
from Eqs. (53) and (54),

n 1 M, 13
- 2] . 2 2
1 2,18 (“ ) 5.76 (n \ - 4,46 (1—)

1
S = u(2.405)2 e L L. (9
‘n n, 12 2
1+ 1,69 (-3-)—0.451 (--2-\ - 0. sm(n )
ny xl) 1

We Imve made no approximations in the algebras to this point. Though more
complicated in form, Eq. 555) is amalogous to Eq. (49) for planar geometry.
Figure 5(c) shows 3._J2 and S(ﬁn) obtained by using Egs. (37),

(44) and (55). It can be COmp&LEd with exact calculations published by
Rogoff3 for 0 2 Bno/a € = , There is, of course, cxact agreement for
Bno/a = 0 . As nearly as can be determined from tha published curves,
= 15 at Bnola =1, and 8§+ 10 as BnO/a + 0o , Qur variational
analysis gives $ = 15.0 and 10.0,
Approximate forms of Eq. (53) can be chtained by expansion for small

n2/nl s

o s3] 37
S {(2.405) [l - 3.87 ('nl + 1,12 (]1) . (56)

and elimination of u2/nl by use of the first expression in Eq. (39). This

yields the alternative relations

S = 1r(2.405)2

m'n(2.405)2

e : P - S (57)
E) +1.96 (51‘—)2 _
o a

0f these, the second should be the more useful in practice, since the
Rogoff Equation is expressed most conveniently in terms of n (Eq. (48)).
We have given both forms throughout this section to facilitate comparison

with Rogoff's calculations made in terms of Bnopa 3

19
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6. DISCUSSION

The most significant new results of this paper are Eqs. (27) and
(28) (or theilr alternative forms, Eqs. (32) and (33)), for planar geomelry,
and Eq. (42) (or the alternative forms, Eqs. (46) and (47)), for cylindri-
cal geometry, These provide good working analytic approxiﬁntions to the
density profiles and similarity relations over the range -0.75 g BnO/u L w
They could probably be improved somewhat by empirical adjustment of the
constants in them for best fit with exact calculations. If the Rogoff
form of the similarity rclations is preferred, it is given approximately
by Eqs. (51) and (57).

For the range - 1 ¢ BnO/a < - 0.75, the variational method breaks

down., This is because the density profile is rapidly becoming flat
everywhere (g =+ 1 as BnO/u + =1, see Section 2), and camnot be accurately
approximated by a two-term Fourier (- Bessel) expansion. This analytical
shortcoming 1s likely to be mitigated in experimental practice by the
fact that discharge operation in this range would be difficult: if a
is to remain finite as Bno/a -+ -~ 1, then we require & + = and Bno +o—e
Given the importance of two-step jonization processcs in commoun dis-
charges, it is surprising that the Spenke Equation has received so little
attention over the last thirty years. TFor example, two~step processes are
important in the mercury-vapor positive column7 ~ it is estimated that at
pressures above a few mTorr, and electron number densities above about

5= 1010 cm*3, more than half of the total ionization rate is cgontributed

8,9 yat the author is only aware of the exporiments

by two-step processes
of Howe9 directed towards verifying the applicability of the Spenke
Equation in such parameter ranges.

Yuture theorztical and experimental work should be directed towards
exploring and verifying the solutions of the Spenke Equation for a(=v/D)
and B(=k/D) positive and negative. All four combinations are possible
in practicesz ¢ may contain positive contributions from one-step electron-
neutral impact ionization, and two~step electron impact, execited state-~
grdund state collisions and excited state-excited state collisions; these
contributions may bhe offset by attachment. Similarly, B may contain
positive contributions from two-step electron-neutral impact and excited
state - excited state collisions} these contributions may be offset by

eloctron-ion volume recombination,



Some parameler ranges do not deseribe self-sustained discharges,

of course, e.g. a,8 < 0 . They may still be of conslderable practical

Interest, however, since they may apply to a plasma diffusing from a
source region, taken as the "wall', into a region where it decays. A
point which will require special care for a < 0 is the modifying effect

on D of the negative lons produced by attachment.
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APPENDIX: TORMULATION OF THE VARTATION PRINCIPLE

Consider the expression,

q .
I = [(\71;;,)2 + uog?' + Bnog"]dA , (A.1)
A

and let g =G + 6G , where G is the exact solution to Eq. (5) and

§G 1s a small spécewdependent discrepancy from it, We have

2 2 3
I+ 4= [(vl(c + 8G)) + ¢y (G + 866)" + Bny (G + §G)~[da,
A (A.2)

which separates into

(
Ja

f

24~mhcﬂdA,

§1

2 2
[2vlc-v.sc; + 86(20,6 + 3BnyG ) ] dA + 0[sc%) . (5.3)
A

o

By use of the relations

~—
——

[
.
(v,6) da = | v,-(cv;6)da - | @viGda = - | cv3G aa

A A A A

v L o

V,G-v6GdA = | v,-(66v,G)dA - | s6vidA = ~ | &cv3G dn ,

‘A C7A ‘A A (A.4)

which assume that G(a) =6G(a) = 0 , Eq. (A.3) reduces to

22



I= [.. V3G + a G + BnyG 2](::11\ ,

A

0

-~

380"0

61 = 2 [—vf G+ a G+ Gz]GG_dA + 0{s66%).
A
From comparison with Eq. (5), we see that &I = 0(602] if @y =
and BO = - %-B . This establishes the variation principle in the form

of Eq. (14).
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FIG. 4. Density profiles (ﬁnO/n = = 0.941 (planar) and
- 0.856 (eylindrical) correspond to n2/n1 = - 1/9
and - 0.190; Bnofa = = 0.794 (planar) and - 0.751
(cy]indricnl) correspond to nzlnl = = 0.050 and - 0.125,
which may be taken to be the limits for which the

variational theory is adequate,)
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