# LIGHTNING DETECTION \& RANGING SYSTEM LDAR SYSTEM DESCRIPTION \& PERFORMANCE OBJECTIVES 

```
(NASA-TH-74105) LIGHTNING DETECTION AND N79-33672
RANGING SYSTEM LDAR SYSTEP DESCRIPTIOR AND
PERFORMANCE OBJECTIVES (NASA) 86 p
HC A05/MP A01 CSCL 04A Onclas
G3/46 35873
Dr. Horst A. Poehler
RCA Service Cc.
```

Cari L. Lennon
NASA, John F. Kennedy Space Center


Natıonal Aeronautics and
Space Administration
John F. Kennedy Space Cen er

# LIGHTNING DETECTION AND RANGING SYSTEM, LDAR <br> SYSTFM DESCRIPTION AND PERFORMANCE OBJECTIVES 

$\vdots$
$\cdots$

# LIGHTNING DETECTION AND RANGING SYSTEM <br> LDAR <br> SYSTEM DESCRIPTION AND PERFORMANCE OBJECTIVES 

## ORIGINATORS:



APPROVAL:


## SUMMARY

The performance objectives, the instrumentation, the data processing, the data recording, the data reduction, and the software for the LDAR Lightning Detection and Ranging System are discussed.

## OUTLINE

I. INTRODUCTION ..... 1
II. PERFORMANCE OBJECTIVES ..... 2
III. DETAILED DISCUSSION ..... 4
A. REMOTE SITES ..... 4

1. LDAR Signal Transmission
i. Type 1 Receiving Stationii. Type 2 Receiving Station
2. E-Field Signal
i. Type 1 Receiving station ii. Type 2 Receiving Station
3. Calibration of Remote Transmission Lines
a. Transmission Characteristicsi. Type 1 Receiving Stationii. Type 2 Receiving Station
b. Transmission Line Delaysi. Type 1 Receiving Stationii. Type 2 Receiving Station
B. Central Station ..... 16
4. The LDAR Signal
5. The E-Field Signal
6. The Data Lines
7. The Video Switch
C. Data Processing and Recording ..... 23
8. The Preprocessor
9. Digital Data Processing and Display of LDARSignals
10. Digital Processing of E-Field Data
11. Analog Recording of E-Field Signals
IV. SOFTWARE ..... 34
A. The 2100 S Computer
B. The 2114 ComputerC. The 2116 Computer
V. DATA REDUCTION ..... 37

## LIST OF ILLUSTRATIONS

PAGE
Figure 1 LDAR Receiver Sites ..... 5
Figure 2 Remote Site, Type 1 Receiving Station ..... 7
Figure 3 Remote Site, Type 2 Receiving Station ..... 9
Figure 4 Central Station ..... 17
Figure 5 Digital Data Processing and Recording ..... 24
Figure 6 Preprocessor, Functional Diagram ..... 26
Figure 7 Analog Recording, Signal Flow ..... 32

## I. INTRODUCTION

Valuable lightning and system-performance data we:e collected by LDAR during the 1976 Thunderstorm II project.

Since 1976, the capability and the accuracy of the LDAR system has been improved by reconfiguration of the network, the addition of new ground stations, the addition of electric field sensors, the addition of digital waveform recorders, and the completion of a new software package to collect, process, and record the data.

The addition of electric field sensors gave the system the capability to determine the position, the waveshape, the rate of rise, and the peak current of ground strikes. The addition of two new ground stations to form a new $Y$ configuration gave the system an improvement in reliability and accuracy by providing a completely independent hyperbolic system with which to check the LDAR data. Excessive power line noise at one of the stations was corrected by relocation of the station in 1978.

## II. PERFORMANCE ORJECTIVES

The primary performance obj, tives of the LDAR System are to:

1. Detect and determine the position ( $X, Y, Z$ ) of the numerous electrical discharges associated with thunderstorm activity, and display the position of the electrical discharges on a PPI and RHI plot. Transmit and display the PPI and RHI plots of electrical discharge activity to $\operatorname{cne}$ KSC wedther office for use in tracking the position and movement of thunderstorm activity.
2. Measure and record electric field waveform data in order to:
a. Determine the position of ground strikes at KSC.
b, Determine the rate of rise ard peak currents of ground strikes at KSC.

Uses of the LDAR data are to:
a. track thunderstorms,
b. provide size and a measure of the electrical activity of the storm,
c. help explain interaction of wind flow and electrical activity,
d. establish a firm basis for the relation of field strength/distance to the active electrical centers in a thunderstorm, using airborne electric field measurements,
e. establish the pattern of ground strikes for KSC, clarify the one-to-one cone of protection theory, and investigate the attractive effects of large buildings,
f. determine statistics for the number of strikes per flash,
g. measure the peak curnent per flash,
h. measure the rate of rise of current in ground strikes,
i. measure the velocity of the ground strike current, for ground strixes produced by the triggered-lightning experiment.

## III. DETAILED DISCUSSION

## A. REMOTE SITES

There are six remote stations. The location of the stations is shown in Figure 1. Two basic measurements are made: the time-of-arrival of the envelope of the pulsed 60-80 MHz portion of the RF signal emitted by the lightning, and the elect.ri: field (E-field) waveform. We will discuss the measurement of these two signals separately. 1. LDAR SIGNAL TRANSMISSION

The transmission of the LDAR signal from the remote site to the central station differs, depending on whether a Type 1 or a Type 2 Receiving Station is used. We will discuss these in turn. A Type . Receiving Station differs from a Type 2 in the manner of transmission of the signal to the central station. In the Type $i$ Station instrumentation the LDAR and the E-field signals are sent separately by wideband cable. In the Type 2 instrumentation system, the two signals are combined and sent via microwave link.

i. The Type 1 Receiving Station, Figure 2

Figure 2 shows the signal flox of the LDAR signal at a remote site employing the Type 1 instrumentation.

Starting at the LDAR, vertically-polarized, omnidirectional, 40-100 MHz antenna $A-1^{*}$ the signal passes to a 60-80 MHz bandpass filter $A-2$. The LDAR signal then passes through a $\log$ If amplifier A-3 having an 80 db dynaric range, which amplifies and envelope detects the incoming LDAR signal. The detected LDAR signai then comes to a switch Sls which is used for delay line calibration. Switch 52 permits the substitution of a 1 MHz sine wave test signal in place of the LDAR signal. The purpose of the 1 MHz sine wave signal is to check the data transmission system, as well as to provide a calibration signal for the tape recoraers at the centril site.

Three, W1, W2, and $W 3$, of the six reote stations use Type 1 Receiving Station instrumentatiun. The other three, M1, M2, and M3, use the Type 2 Type.
*The numbers $A-1, A-2$, etc. refer to data sineets given in the Appendix.


Ma
ii. Type 2 Type Receiving Station, Figure 3

In the Type 2 Receiving Station the LDAR signal is not sent separately but is combined with the E-field signal for transmission by micrewave link to the central station.

In the Type 2 Receiving Station instrumentation, Figure 3, the LDAR portion differs by the absence of switches Sland S2, and the absence of $a$ video cable. Data transmission checks previously effected by switch 52 are now accomplished by switch S5, which is used to inject a 1 MHz calibration signal. Before transmission by microwave link A-4 the LDAR signal is combined in a summing amplifier $A-5$ with a second signal (either the 1 MHz calibration signal or the E-field signal). A different microwave frequency, near 7.5 GHz , is used at each of the three remote sites M1, M2, and M3.
2. The E-field Signal Transmission
i. Type 1 Receiving Station Figire 2

The E-field signal is picked up by a sensing plate $A-6$, which is designed to respond to changes in the electrical field over the frequency range 1 KHz to 5 MHz . A 600:124 ohm
Finue 3. Ramens Sin, Type 2 Remiving surion


1. LO. OUTHUT LEVEL OdB
2. CAL. OUTPUT LEVEL ZOV PEAK TO PEAK $50 \Omega$
3. SUM AMPLIFIER CHANNELS HAVE EOUAL GAN


matching transformer $A-7$ couples the signal to a balanced coaxial transmission line approximately 200 meters long. A 124:50 ohm matching transformer $A-8$ converts back to an unbalanced signal. From the transformer the signal goes to a switch S3 designed to permit the insertion of a 1 MHz calibration signal. The output of switch 53 goes to a bipolar logarithmic amplifier $\mathrm{A}-9$. The $\log$ compressed signals pass to switch 54 which is inserted to permit calibration of the line delays, as will be explained later. From the switch the siynal passes to a line driver amplifier (one half of summing amplifier $A-5$ ) to a separate wideband cable $A 2 A-2, A-10$ for transmission to the central site.
ii. Type 2 Receiving Station, Figure 3

The electric field signal flow for a Type 2 Receiving Station is shown in figure 3. The signal flow is similar to that already explained for the Type 1 Receiving Station. Switch 54 is not needed, since the line delay checr.s are accomplished by the summing amplifier $A-5$, and the signal transmission checks are accomplished by use of switch S5. A line driver is not used. Instead the signal passes to a summing amplifier A-5 where it is combined with the LDAR signal. The combined signal modulates the $7.56: \% 2$ microwave
link A-4 for transmission to the central site.
Summing the LDAR signal on a single link without filtering is possible because the two signals are separated in time as well as in frequency.

The electric field signals and the LDAR signals do not occur at the same time on a microsecond scale. The electric field signal corresponds to ground strikes. The LDAR signals correspond to electrical discharges in the clouds. LDAR signals are not observed during ground strikes.

The energy in the electric field waveform signals is primarily confined to frequencies below 1 MHz . The energy in the LDAR is primarily confined to frequencies above 1 MHz . 3. Calibration of the Remote Site Transmission Links

The transmission links to the remote sites require calibration of their transmission characteristics and their time delays.

The transmission characteristics of the links must be checked in order to assure the quality of the data transmission.

The time delays must be measured in order to determine the true difference in the times of arrival. For the LDAR System, this problem is solved by the use of an artificial lightning generator at a fixed, known position, the Vertical Assembly Building, $V A B$. Time delays from the $V A B$ to the remote sites are readily calculated from the survey data. The measured delays will differ from the true delays by the additional delays in transmission from the remote sites to the central station. Knowing the true delay, it is a simple matter to set in appropriate delays in units of 0.05 microseconds steps provided for in the Biomation boxes and further io introduce even smaller corrections via the software until the measured delays correspond exactly to the delays calculated from the survey data. Having corrected for the transmission line delays in this manner, all that is necessary is to check the delays from time to time. Past experience has shown the delays to be very constant.

The most direct way to determine the delays in the E-field transmission links to the remote sites is to use a lightning yenerator that will simulate a ground strike, inducing a usable signal in the remote E-field sensors. However, such a simulator is not currently available.

We will therefore, use the output from the LDAR receiver to provide a calibration pulse for the electric field measurement portion of the system. Using an LDAR antenna at each remote site, excited by the LDAR lightning simulator at the VAB, we have available signals of know delays at each of the six remote sites. As in the case of LDAR lines, the observed delays at the central station can be compensated to correct the delays in the video cables from the remote sites.

1. Transmission Characteristics of the Data Links

Because of the difference in the switching, we will
discuss the implementation of the calibration and control switching for the Type 1 and the Type 2 Receiving Stations separately.

## i. Type 1 Receiving Station, Figure 3

The schematic for the Type 1 Receiving Station has already been presented in figure 2.

There are two wideband video cables whose transmission characteristics needs to be checked. Energizing switch s2 connects a 1 MHz sine wave signal of know amplitude to the input of the wideband video cable A2A-1, $A-10$. The transmission characteristics are evaluated by measuring the output at the c.entral site.

Energizing switch $S 3$ connects a 1 MHz sine wave signal of known amplitude to the input of the bipolar log amplifier A-9, which feeds the second wideband videocable, $A 2 A-2, A-10$, Measurement of the output at the central site provides us with the transmission characteristics of the combination of the log amplifier and the $A 2 A-2$ line, permitting us to evaluate their performance. Since the input signal is a sine wave, the transfer characteristics of the combination of log amplifier and A2A-2 line can be determined and used by the computer to provide an anti-log function that is required to reconstruct the waveform.
ii. Type 2 Receiving Station, Figure 3

The schematic for the Type 2 Receiving Station has already been presented in Figure 3. No wideband video cables need be monitored here, since the signal is transmitted by a microwave link. The overall transmission characteristic of the logarithmic amplifier $A-9$ and the microwave link $A-4$ determined by applying a 1 MHz signal of known amplitude to the input of the logarithmic amplifier by means of switch S5.

Measurement of the output of the microwav link at the central site provides us with the required transmissic: characteristic.
2. Transmission Line Delays
i. Type 1 Receiving Station, Figure 2

The schematic for the Type 1 Receiving Station was given in Figure 2.

To calibrate the delays in the wideband $A 2 A-1$ video cable $A-10$, the switches $S 1$ and $S 2$ are left in the unenergized position shown. The LDAR signal passes through switches Sl and S2 directly to the A2A cable. Delay calibration is effected by operation the lightning simulator on the VAB and comparing the delay measured at the central station with the calculated delay. The difference between the calcalated and measured delays gives the line delay ccrectiors.

To calibrate the delay in the wideband video cable A2A-2, an LDAR signal is substituted for the E-field waveform signal by enirgizing switches 51 and 54 . This feeds the LDAR signal to the line driver amplifier (one half of summing amplifier A-5) and to the AlA-2 wideband cable. The difference between delay measured at the central site and the calculated delay provides us with the delay of the line driver/A2A-2 line combination.

## if. Type 2 Receiving Station, Figure 3

The link delay for the electric-field waveform signal is the same as that for the LDAR signal, since both signals use the same microwave ilink, figure 3. Therefore, no extra switch or calibration is required. The LDAR link delay is determined In the usual way by operating the lightning simulator and taking the difference between the calculated and the observed delays.

## B. CENTRAL STATION

The interconnection diagram of the central station instrumentation is shown in Figure 4. In addition to receiving data from the remote stations, the central station receives off-the-air signals which are used for comparison with the remote signals to effect the crucial measurement - the difference in the time-of-arrival.

A considerable amount of redundancy is incorporated in the remote stations. Only three of the six remote stations are required in order to obtain data. The other three stations constitute a completely independent hyperbolic system, which is used to check the validity and accuracy of the data.

1. The LDAR Signal flow

The signal flow up to the calibration switch is identical to that already discussed for the remote site. From the LDAR Antenna $A-1$, the signal flows through a $60-80 \mathrm{MHz}$ bandpass filter A-2, a logarithmic amplifier A-3 to a calibration switch S6 which permits the insertion of a 1 MHz signal for calibration purposes. From the calibration switch, the signal is fed into a wideband video switch. In this case the switch is used as a distribution amplifier. One output feeds the LDAR signal directly into the input of a Binmation Model 8100 transient recorder $A-11$. A second output from the video switch (distribution amplifier) A-12 is used to drive a second distribution amplifier $A-13$ which feeds the signal to wideband analog tape recorders $A-14$.



In this instance, the video switch performs no switching function but is included in the circuit primarily to equilize the time delays for all circuits.
2. The E-Field Signal

The central station uses the same type of electric field sensing plate $A-6$ as is used at the remote sites. The signal flow path from the plate sensor to the logarithmic amplifier A-9 is the same as the remote sites with the addition of a step attenuator ( 0 to $12 \mathrm{db}, 1 \mathrm{db}$ steps) prior to the input of the log amplifier. The output of the amplifier is fed to a wideband video switch which acts as both a distribution amplifier and a time delay equalizer. One output from the switch is fed directly to the input of Biomation transient recorcer \#2, A-11.

This transient recorder is used to trigger the system on positive (+) electric field changes and digitally records the waveform data from the E-field plate sensor. The second output from the video switch is used to drive a second distribution amplifier $A-13$. The outputs from this amplifier are fed to a wideband analog recorder A-14 and are also fed to the frequency meter (discriminator) and to peak-reading voltmeter $A-15$. The frequency meter and peak voltmeter are used as ancillary monitoring equipment and are not required for system function.
3.

## The Data Lines

There are nine remote data lines feeding into thr ..rut unit which is located at the rentral LDAR site. Three of the lines originate from remote Type 2 Receiver Station and cuntain composite LDAR and E-field data (LDAR and E-field data are ;ummed together and transmitted by microwave link to the central site). These lines are designated $M-1, M-2$, and $M-3$ on Figure 1. The composite signals enter through microwave receivers located on the roof of the Central site. From there, the signals are sent over balanced coaxial cables (approximately 30 meters long) to minimize the pickup of spurious signals. The balanced signal lines are converted into single-ended signals by the input transformers. The signals are thrn routed through step attenuators to the input of the video switch unit. Since both signals are combined (LDAR and E-field!, it is not necessary to provide a switching function. As in the case of the local signals the video switch is used only as a distr bution amplifier and a signal delay equaiizer. One output from the video switch is fed directly to the input of a Biomation transient recorder. The signal from $M-1$ is fed to Biomation transient recorder \#4, $M-2$ is fed to \#6, and $M-3$ is fed to \#8. The second output from the video switch is used :o drive a distribution amplifier A-13. The output from the distribution amplifier is fed to analog recorders 1 and ?, A-14 (see also Fig. 7).

A third output is fed to a peak-reading voltmeter $A-15$ (one for each channel). The peak voltmeters are to gather data on the level of signas being received and they also provide a realtime indication of the relative signal level from each of the stations. Such an indiceicion is useful ir determining that all stations are functioring. Six additional lines are available from the Type 1 Receiving Stations. he data fros the remote stations is transmitted via wideband A2A lines A-10 (5 MHz bandwidth). The three circuits that carry LDAR data are designated W-1 LDAR, W-2 LDAR, and W-3 LDAR. These circuits are of the balanced configuration and are converted to a single unbalanced configuraiion by an input matching transformer (124:50 ohms) A-8. The signals from the matching transformer are fed through step attenuators to the $\mathrm{J}-1$ input of a wideband video switch.

A second input to each of the video switches comes from the second circuit from each of the Type 1 Receiver remote stations. These circuits carry the E-field data and are designated W-1 E-field, W-2 E-field, and W-3 E-field, in Figure 4. These E-field circuits are of the balanced configuration and are fed directly into a balanced input (input $J 3$ ) of the video switch. The video switch performs both a switching and a feedthrough function. The LDAR signals applied to the input $J 1$ appear on the output connector $J 5$ unswitched. Lixewise the

E-field data which is applied to ingut connector 33 appears a: output connector J 6 as an unswitched signal in an unbalancea (signal ended) configuration. The signal appearing at output connectar $J 4$ is the switthed functior ald can te either of the input sigrals depending upon the switcning command. The normal unswitched output is the LDAR signal. In both cases the unswitched outputs $J 5$ and $J 6$ are both fed to distribution amplifiers A-13 which in turn drives analog recurders 1 and 2 , A-14 and provide an nutput to the peak-reading voltmeter system.

The switchad output 34 is connected directly to the input of a Biomation transient recorder. The signals from the W-1 site is fed to Biomation transient recordsr \#3, W-2 site fo recorder 5, and W-3 site to recorder \#7.

The trigger circuits of Biomation transient recorders \#i and \#2 are used to control the video switch. As previously noted, Biomation transient recorder \#l is used to record the waveform data from the local LDAR signal. When the LDAR signal exceeds a predetermined level, the system is trigyeied. Likewise when the local E-field waveform siglial exceeds a predetermined level, Biomation transient recorder \#2 is triggered, The trigger outputs from transient Biomation recorders \#l and \#2 are combined so that trigger will provide a trigger signal to all other recorders in the system. In addition the trigger
signals from recorders 1 and 2 are logically combined such that a trigger from Biomation transient recorder $\# 2$ (E-field) without a trigger from recorder 1 (LDAR) will trigger the system and cause the wideband video switch to switch to the alternate state (E-field data to the Biomation recorders.) The switch activates when E-field change are detected without detectable LDAR signals.
4. The Video Switch

The video switch shown in Figure 4, fulfills an important function. Depending on the trigger signal it passes either the LDAR or the E-field signal to Biomation Units 3, 5 and 7. There are actually eight switches $A-12$ in the video switch unit. Three switches (3, 5, and 7) are required for actual switching of remote lines. The additional switches are required for the central station LDAR and E-field signals. While these latter two switches do not actually perform a switching function, (since they are connected all the time), they serve an important function in equalizing the time delays and frequency response characteristics.
C. Data Frocessing and Digital Recording

The flow chart for the data processing and digital recording is shown in Figure 5 , which represents a portion of Figure 4. We show here a preprocessor, threc computers, three digital recorders, and a display terminal.

Functionally the system processes LDAR at a limited rate, displays it locally, and also transmits a display to the weather office, and to Patrick AF Base. In addition the system records LDAR data at a much higher rate in a digital format for later processing and analysis, and records electric field waveform data.

1. The Preprocessor

The preprocessor fulfills an important function in that it greatly expedites the data flow rate, by a factor of at least 10 to l. The preprocessor receives serially-digitized data in parallel fromeight Biomation Units. Biomation Unit 1 supplies the digitized, central station LDAR signal. Biomation Unit 2 supplies the digitized central station electric field waveform signal. The next six Biomation Units supply the digitized remote station data, which can be either iDAR or E-field waveform signals, depending on the video switch positions.

fIGURE 5. DIOITAL DATA PROCESSING ANO RECORDING

The preprocessor determines the time to peak and the peak value of each of the LDAR signals, and delivers this data to output $A$, and also to rutput $B$. $I \hat{t}$ delivers the digitized waveform of each of the E.field waveform signals at the output terminal $C$, and it delivers a sync pulse.

The preprocessor also conducts several data checks. By conducting these tests in hardware, rather than software, pro.. cessing time is reduced. $4 m p l i t u d e ~ c h e c k s ~ o f ~ t h e ~ d a t a ~ a s s u r e s ~$ that it is above a selected minimum level and below the saturation level. Time checks assure that the delays for each station lie within the limits dictated by system geometry. The amplitude check eliminates noizy as well as saturated data. The time check eliminates false data points.

The operation of the preprocessor clarified by Figure 6 , in which a protion of figure 4 is also shown, in particular. the video switch which switches from LDAR to E-fie!d waveform data since the operation of the preprocessor depends on whether the data is LDAR or E-field waveform data.

Video switch 58 is shown linked to switch $S 9$ in the preprocessor. In operation, a signal from the video switch unit operated a gate $S 9$ in the preprocessor. When the video switch is in the LDAR position, the gate $S 9$ is open. When the video switch is in the E-field data positior, the gate $S 9$ is closed, connecting the Time and Amplitude sut-unit to the data storage register.

When operating in the LDAR data mode (switch S8 up), switch 59 is open, interrupting the data flow to the storage registers. Hence there is no output at terminal $C$ in this mode. Instead the data output appears at terminal $A$, and consists of the time to peak, amplitude of the peak and GMT, to a resolution of one millisecond.

In the E-field waveform mode, the gate $S 9$ is closed, and data flows from the Time and Amplitude sub-unit to the storage registers, here shown as $A 1-A 8$ and $B 1-B 8$, since there are eight A and eight $B$ registers, one for each of the eight Biomation units (Units 1-8) that feed their input into the preprocessor in a manner similar to the one unit that is illustrated in the figlire. Digitized waveform data, buffered by the storage registers, appears at output terminal $C$. Time to peak data is available at output $A$ figure 5 during waveform processing. The switch signal overrides the amplitude and time constraints.

For E-field signals, switch $S 10$ is initially in the Al-A8 position. The preprocessor loads memory A1 with the 2048 8-bit words (100us of data) that make up the E-field waveform. When memories Al-A8 are completely loaded, switch S10 moves to the B1-B8 position, and the preprocessor is ready to load the next E-field waveform into memories Bl-B8. Since the loading time is 2 milliseconds and the unloading time is some 7 seconds, the above arrangement makes is possible to record two E-field signal waveforms as close as 2 milliseconds. However, the third waveform must wait 7 seconds.

Data from Biomation box 1 has the time of day coded into the last 25 words of the 2048 words of output data.
2. Digital Data Processing and Display of LDAR Signils,

## Figure 4

In real time either LDAR or electric field waveform data is processed by the Biomation Units, depending on the position of the video switch.

If the video switch is in the LDAR position (see Figure 4) the Biomation transient recorders capture $100 \mu s$ segments of LDAR data, which they pass over to the Preprocessor Unit for processing.

The times of arrival and amplitudes of the peaks of the seven LDAR signals are determined by the preprocessor from the digitized input waveforms. The time required by the preprocessor to scan the incoming Biomation data and to determine the peak and the time to the peak is 2.048 milliseconds, which is considerably less than the 40 milliseconds that it takes the 2100 computer to process the data. To avoid losing data in periods of high density data bursts, a data buffer is provided that will permit the system to accept high density data up to a data rate of 500 per second corresponding to a 2 millisecond interval. The buffer function is fulfilled by a 240 word by 16-bit First-In-First-Out (FIFO) buffer.

The output of the FIFO buffer feeds the preprocessor output terminal A (Figures 5 and 6), supplying time to peak, and local GMT time data to the $2: 00 \mathrm{~S}$ computer $\mathrm{A}-16$.

The 2100 s computer stores the incoming data in a word buffer within the 2100 computer. When the buffer is full, the data is recorded on the 7970 digital tape recorder A-17 at 800 BPI.

The 2100 S software attempts to compute the $X, Y, Z$ for all valid data, as time permits, using an assembly language program that takes some 40 milliseconds to solve the hyperbolic equations that determine the position $X, Y, Z$. Data is read sequentially from the buffer. If the buffer fills up before all the data is processed, the buffer contents are stored on the 7970 digital tape recorder A-17. New data is then stored in the buffer and real time processing continues. When the data is stored it is lost to real time processing.

The computed $X_{1}, Y_{1}, Z_{1}$, squared and $X_{2}, Y_{2}, Z_{2}$ squared data is fed to the 2116 computer $A-18$, which conducts a number uf checks on the quality of the data and in particular compares the position determined by the two independent LDAR networks. Unless the data from the two independent systems agrees closely, the data is rejected. This is a very important feature of the system and assures that only high quality data will be presented on the display to the weather uffice. The programs in the 2116 computer plot the data in a PPI presentation
on a Tektronix 2025 Terminal A-19. Remote data is provided by a TV compatible video signal which is sent by wideband cable to the Weather Office and to Patrick AF Base.

Data recorded by the 7970 recorder A-17 can be played back, post test, to the 2100 S computer $A-16$ which solves the hyperbolic equations, and passes the $X, Y, Z$ position data onto the 2116 computer $\mathrm{A}-18$ for checks and for plotting in the manner already discussed. This data processing is serial. All valid data is processed.

## 3. Digital Processing of E-Field Data

When the video switch is in the electric-field waveform position, Biomation Units No. 2 to 8 capture 100 microsecond segments of electric-field waveform data. The LDAR waveform is also recorded. This data is fed to the preprocessor in parallel at a rate of one word per microsecond. The preprocessor formats the data and passes it onto the HP 2114 Computer $\mathrm{A}-20$, which packs eight Biomation unit waveforms, together with GMT time, (to a resolution of 1 millisecond) into a matrix for recording on the $T M-7$ digital recorder $A-21$.

When the system is triggered by Biomation unit $\# 2$, the video switches are programmed to switch to the E-field position. Biomation units $\# 2,3$, and 5 will then record E-field data. Biomation unit $\# 1$ records normal LDAR data from the central site, and Biomation units \#4, 6 , and 8 will record a composite E-field and LDAR data.

## Analog Recording of E-Field Waveform Data

Analog recorders are used to record incoming electric field and LDAR waveform data.

Recording of the electric field waveform data is shown in Figure 7. The signal can represent any of six remote lines or any of two central station signals, as shown earlier in Figure 4. For illustrative purposes we show, and we discuss, only one of the eignt signals.

We start with the raw E-field signal at the distribution amplifier A-13 shown in Figure 4. As we show in Figure 7, output of the distribution amplifier $A-13$ goes to the input of an Ampex FR 1800, 1 inch. 120 IPS, 100 Hz to 1.5 MHz analog tape recorder A-14, labeled Recorder 1. Output 2 consisting of the same signal is fed to another Ampex FR 1800 analog tape recorder, labeled Recorder 2. The functions of the two recorders is to permit the continuous recording of data. As Recorder 1 nears the end of its tape, Recorder 2 is readied, and is switched in at the moment Recorder 1 ceases. In turn, while Recorder 2 is nearing the end of its tape, Recorder 1 is readied to take over as Recorder 2 reaches the end of its tape. The channel assignments used are given in Table I. Output 3 goes to a peak reading voltmeter, A-18 which is used to check system operation.

As Figure 7 shows, we also record the sync pulse, radar signals, and housekeeping data on channels 12,13 , and 14. The sync pulse is provided as a marker to show which data is being processed by the LDAR system.


FIGURE 7 ANALOG RECORDING, SIGNAL FLOW

## TABLE I

CHANNEL ASSIGNMENT, ANALOG RECORDERS 1 AND 2

```
Channel 1 Raw LDAR, Site 0
    2 Raw E-Field, Site 0
    3 Raw LDAR, Site W-1
    4 Raw E-Field, Site W-1
    5 Raw LDAR and E-Field, Site M-1
    6 Raw LDAR, Site W-2
    7 Raw E-Field, Site W-2
    8 Raw LOAR and E-Field, Site M-2
    9 Raw LDAR, Site W-3
    10 Raw E-Field, Site W-3
    11 Raw LDAR and E-Field, Site M-3
    12 Sync
    13 Composite Data
        (a) IRIG B Timing
        (b) Multiplexed Data
        (c) Audio Notes, Annotation
```

IV. SOFTWARE

Three Hewlett Packard computers, Numbers 2100S, 2114 , and 2116 are used to process the digital data, as illustrated in Figure 5. The software for these computers will be discussed in turn.

1. The 21005 Computer, A-20

Program 1 performs several functions: (1) it inputs data from the fIfO buffer (see Section III C.2) and stores it in an internal buffer. As long as data is available from the fifo buffer, the prograin will continue to input data into the internal buffer. When the internal buffer is filled, the program records the data in the buffer on the 7970 digital tape recorder, A-1\%. If the program finds ro new data in the fifo buffer, (2) it proceeds to the next unprocessed data point in the internal buffer and tests the data for sign, and for the difference in the time of arrivals. The signs may not all be of the same sign, and the maximum difference in the time of arrival for each leg must be less than the length of the leg diriates. If the test is passed, (3) the program calls up an assembly language subroutire which solves the hyperboiic equations and computes $X, Y$, and $Z$ squared two times, once for each of two independent sets of three remote receining staticns. The program passes this data to the 2116 computer A-18 for plotting. If either test fails, the program goes back to get new data from the fifo buffer. If the 2116 B is busy and cannot accept data, it returns to FIFC.

The program utilizes the characteristics of lighining data to minimize data loss during the $40 \mathrm{millisec} \mathrm{m}_{\mathrm{d}} \mathrm{that}$ is required to solve the hyperbolic equations. During bursts of data, wilon there is no time to take 40 milliseconds to solve the hyperbolic equations, all the data coming in is stored for recording. Solution of the hyperbolic equations (and nence plott'ng of the data) is delayed for an instant, unilil there $i$ : a momentary paure in the incoming data.

Progran No. 2 is an offiline program winch computes the constants used in the hyperbolic solution for any given gec. metric configuration on the thres remote and the ine central station. This program is required when a new site is set up, or when an established site is moved.
2. The 2114 Computer, $A-20$

Program 3 inputs wayeform data from the preprocessor. Waveform data is inputted by the program from the preprocessor as a l6-bit word. The program also supplies a signal to the preprocessor to unpack data from the $A$ ard $B$ storage buffers ar soon as it makes use of this data, Waveform data is stored in a storage area, and is outputted to a digital tape recorder TM-7, A-25 in a matrix suitable for recording, each time the matrix is filler.
3. The 2116 Computer, $A-18$

Program 4 performs cherks on the input data points and plots them on an lDAR display. The program inputs data from the 2100 S A-15, and compares the $\mathrm{X} 1, \mathrm{Y}, \mathrm{Zl}$ coordinates computed by the 2100 S computer for LDAR configuration No. 1 with the $X 2, Y 2, Z 2$ coordinates computed for the independent configuration No. 2. Unless the coordinates agree, the data point is rejected.
v. DATA REDUCTION

1. LDAR Data

As discussed in Section III C. 2 under LDAR Data Processing and Digital Recording all LDAR data points greater than 2 milliseconds apart are recorded by a 7970 Digital Recorder A-17 A-17 in a format that provides the peaks, the time to peaks, and GMT time to a resolution of one millisecond for all six remote and one central station site. To play this data back, we use the 7970 digital tape recorcier A-17 shown in Figure 5, to input the data to the 2100 S computer $\mathrm{A}-16$. The 2100 S computer calculates $X, Y$, and $Z$ and outputs this data to the 2116 computer, A-18. Tris processing is the same as that already described in Section IV.

The displayed data, if desired, can be recorded on a magnetic disc, facilitating data analysis by allowing rapid access for slicing. 2. Kaveform Data

Waveform data that was recorded on the TM-7 recorder A-21 (see Section III C.3) is played back on the 7970 recorder A-17 and fed into the $2100 S$ computer A-16 (see Figure 5). The time delays required for ground strike location is determined by the cursor readout features of the display terminal A-22.

Ground strike positions $X, Y$ are computed from the time delays using the assembly language subroutine for solving the hyperbolic equations, with modified constants to account for the difference in the placement of the sensors.

## APPENDIX

```
A-1 LDAR Antenna
A-2 Bandpass Filter
A-3 Log IF Amplifier
A-4 Microwave Link
A-j Line Driver Summer 9804
A-6 Electric Field Sensing Plate
A-7 Matching Transformer
A-8 Matching Transformer
A-9 Bipolar Logarithmic Amplifier
A-10 A2A Wideband Video Cable
A-11 Biomation Transient Recorder
A-12 Video Switch/Distribution Amplifier
A-13 Telemet Distribution Amplifier
A-14 Ampex FR 1800 Analog Recorder
A-15 Peak-Reading Voltmeter
A-16 HP 2100S Computer
A-17 }7970\mathrm{ Digital Tape Recorder
A-18 HP 2116 Computer
A-19 Tektronix Terminal
A-20 HP 2114 Computer
A-21 TM-7 Digital Tape Recorder
A-22 4010 Computer Display Terminal
```

$$
\therefore-2 \quad \therefore \therefore \because \text { enra }
$$

$$
\underset{2}{2}
$$

$$
\approx
$$



$!$ Orneinh pace is
OF POOR QUALITY


FHEQUENGY, M_Mz*

9


Test Data is provided on all RHG products. Additionally, RHG will provide dependable and rapid service, technical assistance and assure product support to our clstomers. Warranty provisions are outlined on the attached sheet.

## ELECTRICAL TEST DATA

MODEL NO:_LST4OHH27MAT _D__DATE: March 21, 1977
SERIAL NO: $10-680-1 B$ DATA TAKEN BY: $\qquad$

| CENTER FREQUENCY: | 40 MLIz |
| :---: | :---: |
| 3 OB BANDWIDTH: | 25 MHz |
| INPUT IMPEDANCE: | $50:$ |
| INPUT VSWR: | 1.2:1 |
| LINEAR IF GAIN: | OK |
| DYNAMIC RANGE: | $>80 \mathrm{~dB}$ |
| LOG ACCURACY: | $< \pm 1 \mathrm{~dB}$ |
| OUTPUT VOLTAGE RANGE: | SEE CURVE |
| RISETIME: | $\leq 50$ nsec |
| POWER DRAIN: | $\begin{aligned} & 12 \mathrm{~V} \text { at } 50 \mathrm{~mA} \\ & 12 \mathrm{~V} \text { at } 55 \mathrm{~mA} \end{aligned}$ |

COMMENTS:
LIMITED LF OUT +3 dBm
MATCHING DATA SEE 10-680-1A


## A-4 Microwave Link

## RHG ELECTRONICS LABORATORY

```
MODEL NO. MLRW7.1AG91
SER「"L NO. 8-626-1B
```

6.0 SIGNAL STRENGTH AND NOISE


DITE 8/18/75

DATA BY LMW

[^0]A-5 Line Driver Summer 9804



## Page 2

FRAME ASSEMBLY
(MAKE FROM ALUMINUM CHANNEL)


MATMRIAL

Page 3

## PLATE ASSEMBLY

(MAKE FROM 3/16" ALUMINUM - T6 HARDNESS)


WIDEBAND TRANSFUMMERS

Balread sezendaries center-tapped and de-isolated from primomea Mid-band insertion loss less than O.5 dB. Bandwidth cofition it law froquency and by 3 dB droo from mid-band resporese, at hith end by max. VSWR of 1.25 .
LOW POTHR SERIES (IW)


## Torth Hills Electronics, ING.

A-8<br>Line Matrhing Transformer

## mideband transformeas

YMPMAMCTD TO RALAMCED mAMERORGERE
Balenced secondaries center-tappad and de-isolated from polmarias Mio-band insertion loss less than 0.5 UB. Bancwidth defined at low frequency end by 3 dB drop trom middand resporse, at high ent by max. VSWR of 1.25 .
LOW POWIS SERIES (IW)

|  |  |  | M ditain Pramaty |  | V1/ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cases |  | - 2 年 | A, Et. |  |  |  |
| $18$ |  | nere | Thatme | Frater |  |  |
| $\begin{aligned} & 50: 50 \\ & 50073 \\ & 50: 40 \end{aligned}$ | $\begin{aligned} & 0001 \\ & 3: 35 \\ & 6200 \\ & \hline \end{aligned}$ | $\begin{aligned} & .1 .123 \\ & .1 .125 \\ & 1.23 \\ & \hline \end{aligned}$ | $\begin{aligned} & 6010 \\ & 0111 \\ & 0202 \\ & \hline \end{aligned}$ | $\begin{array}{r} 01 \cdot 90 \\ 91 \cdot 0 \\ .01 \cdot 0 \\ \hline \end{array}$ | $\begin{aligned} & 0001 \\ & 100 \\ & 0203 \\ & \hline \end{aligned}$ | .001 .25 <br> .021 .25 <br> .001 .20 |
| $\sin _{200}$ | $\begin{aligned} & 0300 \\ & =027 \end{aligned}$ | :-100 | $\begin{aligned} & 0301 \\ & 0907 \end{aligned}$ | . 01.60 | 0311 | . $2081-20-$ |
| gily | 338 | 1.160 | 0512 | . $01 / 6$ | 0301 | . 623.11 |
|  | $\begin{aligned} & 0402 \\ & 0500 \\ & 0502 \\ & \hline \end{aligned}$ | $\begin{array}{r} 1.199 \\ 1-100 \\ .1 .100 \\ \hline \end{array}$ | $\begin{aligned} & 0601 \\ & 0520 \\ & 0921 \end{aligned}$ | $\begin{aligned} & .61 \cdot 60 \\ & .01 .0 \\ & 21.60 \end{aligned}$ | $\begin{aligned} & 0415 \\ & 2011 \\ & 0817 \end{aligned}$ | $.001-18$ $.001-15$ .001 .12 |
| $\begin{aligned} & 50.450 \\ & 5: 1000 \\ & 50: 000 \end{aligned}$ | $\begin{aligned} & 020 \\ & \text { e780 } \\ & 3: 80 \end{aligned}$ | $\begin{aligned} & !95 \\ & \vdots .6 \\ & 1.60 \end{aligned}$ | $\begin{aligned} & 0602 \\ & 0703 \\ & 0801 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1:-40 \\ & .01 .22 \\ & 01.25 \end{aligned}$ | $\begin{aligned} & 05 \mathrm{CJ} \\ & 0708 \\ & \hline \mathbf{e n g e} \end{aligned}$ | $\begin{aligned} & .001 \cdot: 0 \\ & .001 .8 \\ & 001.7 \end{aligned}$ |
| $\begin{aligned} & 90.120 \\ & 73.50 \\ & 3: 783 \end{aligned}$ | $\begin{aligned} & : 900 \\ & : 90 \\ & :: 30 \\ & \hline \end{aligned}$ | $\begin{gathered} \therefore \cdot 5 \\ \therefore: 100 \\ : 150 \end{gathered}$ | $\begin{aligned} & 6992 \\ & : 011 \\ & 1:!2 \end{aligned}$ | $\begin{aligned} & 2.15 \\ & 3.15 \\ & 31.40 \\ & \hline 1.40 \end{aligned}$ | $\begin{aligned} & 0505 \\ & 1008 \\ & 1192 \end{aligned}$ | $\begin{aligned} & 001.8 \\ & .001: .48 \end{aligned}$ $.001-20$ |
| $\begin{aligned} & 7 \times 10 \\ & 7106 \\ & 7=126 \end{aligned}$ | $\begin{aligned} & 1290 \\ & 1300 \\ & 130 \\ & \hline \end{aligned}$ | $\begin{array}{r} .1 \cdot 100 \\ .+100 \\ .+100 \\ \hline \end{array}$ | $\begin{aligned} & 1201 \\ & 1310 \\ & 1311 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2.60 \\ & 01.60 \\ & 01.60 \end{aligned}$ | $\begin{aligned} & 1202 \\ & 1314 \\ & 1201 \\ & \hline \end{aligned}$ | .001-88 |
| $\begin{aligned} & \text { Fils: } \\ & \text { Hatse } \\ & 7, ~ \end{aligned}$ | $\begin{aligned} & 1437 \\ & 1446 \\ & 1300 \end{aligned}$ | $\begin{aligned} & .1-100 \\ & .1 .900 \\ & .1 .100 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 1315 \\ & 1+65 \\ & 1513 \\ & \hline \end{aligned}$ | $\begin{aligned} & 01 \cdot 00 \\ & .01 \cdot 00 \\ & .0 .40 \end{aligned}$ | $\begin{aligned} & 1912 \\ & 1490 \\ & 151 \pi \end{aligned}$ | .001 .231 .007 .18 .001 .85 |
| $\begin{aligned} & 7 \operatorname{ling} \\ & 7 \mathrm{secse} \\ & 75: 100 \end{aligned}$ | $\begin{aligned} & 2508 \\ & 1 \times 00 \\ & 1700 \end{aligned}$ | $\begin{aligned} & .1 \cdot 110 \\ & .8 \cdot 0 \\ & .8 .6 ? \\ & \hline \end{aligned}$ | $\begin{aligned} & 1514 \\ & 1801 \\ & 1707 \\ & \hline \end{aligned}$ | $\begin{aligned} & 9.50 \\ & 0.40 \\ & 3: .22 \\ & \hline \end{aligned}$ | $\begin{aligned} & i 562 \\ & 1602 \\ & : 705 \\ & \hline \end{aligned}$ |  |
|  | 1800 1800 1500 | .1 .38 .1 .35 .1 .19 | $\begin{aligned} & 1201 \\ & 1905 \\ & 1901 \end{aligned}$ | $.01-29$ .01 .15 01.8 | 1802 $: 002$ 1803 | $\begin{aligned} & .021-16 \\ & .021 .9 \\ & \hline 091-4 \end{aligned}$ |

OR:G/NA:
OF POOR
OUGAE IS
OUALIS

## A-9 Bipolar Logarithmic Amplifier

Page 1
1.0 SPECIFICATION OF MODEL ..... 2540
1.1 Transfer Function Biploar Logarithmic Amplifier
1.2 Dynamic Range
1.3 Maximum Logarithmic Error
60dB minimum each input100dB minimum cascaded
$+3 \%$ of oustput maximum$\mp 1 \%$ of output typical
1.4 Input
1.4.1 Dynamic Range
1.4.2 Resistance
1.4.3 Polarity1.4.4 Offset Voltage1.4.5 Bias Current
1.4.6 Power Supply Sensitivity
1.4.7 Warm-Up Time
1.4.8 Warm-Up Time
1.5 Output
1.5.1 Dynamic Range
1.5.2 Coefficient
1.5.3 Dynamic Resistance
1.5.4 Minimum Luad Resistance
1.5.5 Polarity$\pm 10$ volts full scale
1.5 volts/decade typical
20 ohms inaximum
250 ohms for full output swing
non-inverted or inverted
$\pm 0.15 \% /{ }^{\circ} \mathrm{C}$ maximum
1.5.6 Temperature Coefficient
OEI
Optical Electronics Inc. P.O. Box 11140 * Tucson, Arizona 85734
Phone (502) 624-8358

### 1.6 Frequency Response

1.6.1 Lower -3dB Frequency Externally determined, see Section 5.0
SPECIFICATIONS OF MODEL $2540^{1}$
1.6.2 Upper - 3dB Frequency - Large Signal
1.6.3 Upper - 3dB Frequency - 10 MH z minimum Incremental
1.6.4 Slewing Rate1.7 Temperature Enyiromnental
1.7.1 Operating Range $.55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
1.7.2 Storage Range ..... $-65^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
1.7.3 Thenmal Resistance of Module $12^{\circ} \mathrm{C} /$ watt maximum
1.\%.4 Quiescent Temperature Rise $49^{\circ}$ above ambient maximum
1.8 Power Required
1.8.1 Minimum Voltage ..... $\pm 12$ volts
1.8.2 Nominal Rated Voltage ..... $\pm 15$ volts
1.8.3 Maximum Voltage ..... $\pm 16$ volts
1.8.4 Quiescent Supply Current $\pm 135$ milliamps maximum
1.8.3 Quiescent Power nissipation
4050 milliwatts maximum
1.10 Weight
1.9 Size 3.125 inches by 2.625 inchesby 0.625 inch high7.94 am by 6.67 on by1.59 cm high
5.3 ounce150 gm
1.11 Socket OEI Model 11028
NOTES: 1 - The above specifications are measured at +15 volts supplyand $25^{\circ}$ ambient.
OEI
Optical Electronics Inc. P.O. Box 11140 * Tucson, Arizona 85734
Phone (502) 624-8358

Page 3
1.12 MTBF-per-MIL-HDBK-217B-G: 87,000 hours
SPECIF ICATICNS OF MOCEL 98011
1.8.2 Nominal Rated Voltage

$\pm 15$ volts
1.8.3 Maximum Voltage$\pm 18$ volts
1.8.4 Quiescent Supply Current $\pm 33$ milliamps maximum
1.8.5 Quiescent Power Dissipation 990 milliwatts maximum
1.9 Size 1.125 inch square by0.375 inch high
2.86 cm square by 0.95 cm
high
1.10 Weight 0.6 ounce
17 gm
1.11 Socket ..... OEI Model 11026
1.12 MTBF-per-MIL-HOBK-217B-GF ..... 275,000 hours
1.13 SPECIFICATIONS OF MODEL 9804M3
All specifications are identical except for the following:
1.5.1 Outphi Swing $\pm 10$ voits minimum into a 500 ohm load
1.5.2 Maximum Load Resistance1.5.4 Minimum Load Resistance
1.7.1 Operating Temperature Range1.7.2 Storage Temperature RangeNOTES: 1 - The above specifications are measured at $\pm 15$ volts supplyand $25^{\circ}$ ambient.

cincuit Lavour
VUTE: AT SRE UT85-8 (T85-578) is 345 Equip.

$\qquad$ cse romm Taxitinev.erent



REAL-TIME 8-BIT A-D CONVERSION AND STORAGE AT 100 MHz

FEATURES - High speed data acquisition with 2000 point buffer storage.


- Captures transient waveforms or recurriny signals.
- Wide frequency response of DC to 25 MHz .
- Versatile Arm and Trigger circuits with settable delays.
- Selectable sample intervals; 10 nsec. 10 sec. or external sampling.
- Two differential inputs: 50 mV to 5 V full scale input ranges.
- Flexible record modes including unique prior-event "pre-trigger" oparation and dual sample rate recording.
- Analog output for CRT, plot or strip chart recorders.
- Binary output for digital processors or bulk storage devices.
- Fully programmable via 16 -bit instruction-axchange intertace.
- "Tri-state" output lines and "address" field allow up to 8 units on single I/O bus.


### 1.4 Specifications

Ameles Imput Chwocteristias:

| lowit gramads | Two independent channels, each differential or sungle-ended Dual chennel aperation finpule ampled alter rataly is per imssibie for semple intervals of 100 nsec or greater. |
| :---: | :---: |
| Ieput Impelamee | 50 ohn., esch input to ground. Unit will accommodete stendard FET active probes to achive 10 magohm, 10 pl input impedance with $10: 1$ voltage division. |
| Input Vontega Reney | $\pm 50 \mathrm{mV}$ to $\div 5 \mathrm{~V}$ full scale ( 100 mV to 10 V peak to-peak). Independent selection on each channel by 7 position ( 1.25 sequence) lever switch. Attenuator accuracy $\pm 3 \%$ on any position. |
| Moxumumin Inpus Vereye | 25 V peak, $8 \cup$ RHS |
| Inent Cocmplio | AC or $D C$ for each input of each channel Time constant of $100 \mu s$ on $A C$ coupling. |
| mapt Offint | 0 to 0.99 of full scaie, selaction in increments of 0.01 of full scale. |
| fruet Imienters | $\pm$ offscale indicators to indicate segnals beyond range of ADC |
| Inert Bumiwidt | OC to 25 MHz for DC coupling on all ranges. Luw frequancy 3 do cutoff of 1.5 kHz on AC coupling. |
| Oumbed Recevery | Less than 10 as for :ecovery from $500 \%$ ( 5 X ) overioad. Less than 50 ns for 10 X overlaad. Subject to maximum ingut voitages abave. |
| Commen Mele Rajuction | 40 db from DC !o 10 MHz . |
| DC Sebility | Drits, including atiset of less than 5\% of full scale over 24 hours. |
| Gaim Subility | Gain changes !ess than 3\% over 24 hours, less than 1\% over 10 minutes. |

Amerore-Digiten Converter:

| Rescrutien |
| :---: |
| Aperture Tiuse |
| En Rate |
| Timen lene and |


| somito interval | Internal: $0.01 \mu$ s to 10 sec in 1.2 .5 sequence with range multipliers of $\mu \mathrm{s}$, ms and sac. |
| :---: | :---: |
|  | External: from seperate signal source. Pulse of +3 V to 0 V ; risatime $<$ pulse width or 50 ns , whichever is smaller, minimum width of 10 ns , restricted to sample intervals of 20 ns or longer. Nonlinear rates must remein in bands of $<0.25 \mathrm{~ms}, 0.25 \mathrm{~ms}$ to $1.0 \mathrm{~ms},>1.0 \mathrm{~ms}$. |
| Mamery Lenath | 2024 data words, shared 1012 per channel in dual channal uperation. Firgt 50 words store events immediately preceding trigger. |
| Tetal Recerl Time | $2048 \times$ Sample Interval; varies frum $20 \mu$ s to 20,000 sec $(5.55 \mathrm{hr}$.) when using internal sample interval salection. |
| Tiven lase | 100 MH z ciysial controlied oscillator. |
| Arw and Tringer Charecteris |  |
| Aute | Arm/Trigger pr, terl periodically by internal circuiss. |
| Ingent | A. Manual by pis button. <br> B. Internal from ather channal. <br> C. External front separate $50 \Omega$ and $1 K \Omega$ input connectors. |
| 8 B | Positive or negative selictable. |
| Centring | AC or DC selectable (OC oaly for internal, dual channel). |
| Level | Adjustable from 0 to $\pm 9.95$ in increments of 0.01 of input range for internal; incroments of 0.05 V ( $50 \Omega$ input) or $0.5 \vee$ (1 $K \Omega$ input) for external. |
| Whent | $>50 \mathrm{~ns}$. |
| Ampursede Cluano | $>200 \mathrm{mV}$ external at 5\% of input range for intarnal. |
| Mreimmen Inpers | 50 S 2 input. 25 V peak or 8 V RMS; $1 \mathrm{~K} \Omega 2$ input, 100 V peuk or 30 V RMS. |
| Bexy | 0 to 9990 Semple intervals, selectabid in increments of 10 Semple Interveis. |
| Doluy thatimy/hemuracy | $\pm$ one Semple Interval. |
| Syramuenising Conmections | Aes pand BNC connections to permit simultaneous Arming and/or Triegering of multiple Moded 8100 units. |

SPECIFICATIONS (CONT.)
Datu Recording Modes:

| Normal | Trigger input is enabled after (delayed) Arm signal. Recording begins at (deiayed) Trigger signal. Recording stops after 2048 sample intervals. |
| :---: | :---: |
| Pretrinew | Recording begins at Arm sıgnal. Recording stops at (delayed) Trigger signal. This mode provides storage of wave-shapas preceding the trigger and allows user to "look back in time." |
| Ound Time Bose | This mode permits the recording to start at one sampling rate and switch to another sampling rate during the sampling time. It is useble with either Normal or Pre-trigger operatio-. This mode is not usable when one sample interval is grater than 0.5 ms cnd the other sample interval is less than 0.5 ms or whenever the second sample interval is $0.01 \mu \mathrm{sec}$. |

Display Output:
Horizontal Dofiection Voltage (X) Sweep ramp of +1 V paak amplitude, 1 ms duration. Origin adjustable between -1 V and +0.2 V . Expansion of seeep selectable at XI, X2, X5 or X10 (1 V, $2 \mathrm{~V}, 5 \mathrm{~V}, 10 \mathrm{~V}$ ramp).

Vortical Deflection Voltage
$(\mathrm{Y}) .8 \mathrm{~V}$ full scaip, amplitude adjustable from .5 to 1.2 V . Origin adjustable $\pm 1 \mathrm{X}$ full scaie. Independent level adjustments for :thannels $A$ and $B$.
Trigner

Display Calibrate
(Z) 0 to +5 V puise for blanking, or for triggering scopes with internal time base. Also output as a 5 V to 0 pulse (Z).

Full scale square wave with period of $\mathbf{4 0 0}$ samples.
Plot and Digital Outputs:
Off
Auto

## Edit

Mot Output

## Pen Output

Digital Output

## Digital Interfocas:

Programmability
Programi Input
Dats Output

Comerol Signals

Mincallameous:

| Size | Height: $6.25^{\prime \prime}(16 \mathrm{~cm})$ <br> Width: $\left.17^{\prime \prime} 143 \mathrm{~cm}\right)$ <br> Depth: $21^{\prime \prime}(53 \mathrm{~cm})$, exclusive of front panel controls and connectors. |
| :---: | :---: |
| Weight | Approx. $60 \mathrm{lbs}(27.2 \mathrm{Kg}$. |
| Power | Apprex. $200 \mathrm{~W}, 115 / 230 \mathrm{~V}$ RMS, 5060 Hz . |
| Werminty | Ail Biomation products are warranted against defocts in materials and workmanship for one veer from date of delivery. |
| Accesserims | Each unit is supplied with a line-cord extender cards, two copies of the Operating and Service Manual and a digitel interface mating connector. |



## OESCRIPTION AND PURPOSE


#### Abstract

The Telechrave VIdeo DIstribution Ampllfler Madel 3200-AI Is'I iterded for video signal distributlon In both color and monochrone TV sysiams. neslgrad, primorliy, as a unity galn davice; esch Model 3200-Al provides four identical and iscinted outputs for a simie composite or now composite Iput. Up to elght ampliflers may be ! istalled on on frame to provide atal of 32 artputs for 8 imputs.

The Model 3200-Al is a nor-i merting Il me driving amplifier for feedig video equipme in requirIma nominal 1.0 v p-p impt trana 75 cm trarmission lime. Its gain is continuously verlable from 0.8 to 2.0; frequency response is flat +0.5 db from 30 Hz to 10 MHzo Each amplifler has its on internal regulated power supply and is क्षerated from a 105-125 vac 11 ne supply connect ed through the frowe.


SPECIFICAT' ONS


Tramfer Characteristics (Unity Gainat i volt nomlnal)


Physical Charecteristics


EQUIPMENT SUPPLIEO
Since the model 3200-A1 is a completely self-contalned unit designed to plug into the Madel 4000-A1 or 4000-81 trame, accessories are supplied for the frame rather than the ampllfler. Quentitios of accessories are determl ned by the I nividual purchase order a nd may ilrciude the folloul is itams which are classified optional:


TEIGMET CDMPANY
MMITYVILLE, N. Yo

- Brand Name


Figure 1.1-1 FR-1800H Recorder/Reproducer

Table 1.2-1. Specifications - FR-1800H Recorder/Reproctucer (Continued)


Table 1.2-1 Specifications - FR-1800H Recordez/Reproducer (Continned)


Track Widdh:
C. $050( \pm 0.005)$ in.

Track Spacing:
0.070 in.

Head Spacing:
$1.500( \pm 0.01 \mathrm{in}$.
Head LIfe:
1000 hours
Gap Azir:3th:
$\pm 1$ minute of arc.

## AMPEX

Table 1.2-1. Specifications - FR-1800H Recorder, Reproducer (Continued)


[^1]Tabie 1. 2-1. Specifications - FR-180CH Recorder/Reproducer (Continued)

| DESCRIPTION | CHATMCTE TITICS |
| :---: | :---: |
| Direct System 1.5 MHz (Continued) | Input impedance: <br> 1000 ohms ( $420 \%$ ) urbalanced to mionir 150 pf maximum capanitance. |
|  | Outpuc Level and Lead: |
| Frequency Shift Modulation (FSM) | PCM Transfer Rate: <br> 2400 bits per inch per track with not muse than one bit error in $10^{4}$ oits ber digital rack and 1000 bils per inch par track with no more than 1 hit crror in $10^{\overline{0}}$ bits per digital track. |
|  | Input Lcvel and Format: <br> $0.0( \pm 1)$ volt producos lower frequeacy. S to 20 V (selestable either polarity) froduces bigher frequency. Norma! input format is ARZ change or NRZ Mark digital. |
|  | Ir, $\quad$ Iise Time: <br> 1. $5 \mu \mathrm{sec}$ between $10 \%$ and $90 \%$ levels. |
|  | Irput Impedance: <br> 1000 ohras, unbalanceu to ound in parallal with 150 p' 'paximum cafacitance. |
|  | Ouppat Level and Format: <br> Binary catpur of $0.0( \pm i)$ volt and -11 ( $\pm 1$ ) Dolt. Th: bigher recorded frequency may be chosen to represent either the aominal $0 V$ or the -11V. |



3in f=wornand


MODEI 52010

## MA-UHON METER REAOOUT TMANSTENT VOLTMETER

The Moded minC Transient Voltmater is :be basic nastrement til a fomils of ingmuments that Micro lasorovear Co. Bus drreloped and asoed "Memory Voltrieters.- fuse as the anme implimen chose astramenis have circulty that sereen. bexs the mactronen applied peak valtage. C'seful in may mes. seremente that wiert previously cwahersome or impracical. thang inctuanepts are in wide ase throughout the Powet Uuthty and Beetroaic Industrien

Thas beice inpromeat covers s mage of voltagest toon ivolts to 1000 valies fall scale. It will measere asy voltage withe serv resse and bold the highest peak reading uatul resec. Froqueneles that may be measurnd ane from DC to appross-
 prolem as short as 50 a apopeoceds (ies microsecoads,. Featrom iaclude a surdy dual-ahielded portable cabsat con. stinetion: seiverable sunumum írequency response coars:1 gate circus sor special moasuremeats and optional High Voltage Ramge Exteader Probes , adudios 1 kV . : 0 al ad 35) $£ V$ full seale. The instremeat way be hatrer; opertiod for ramote locinion work. see Modal szi for detals.

### 1.2 SPECIFICATIONS -

Input

Voltage Range

Input Impedance

Pulse Widîh Range
Accuracy

Readout

Reset Modes

Reset Time

Operating Modes

Mesiory

- Single-ended BNC ungrounded input. May be operated up to loonv peak above ground. Case grounded.
$-0-3,10,30,100,300,1000 \mathrm{~V}$. To 30 kV with opt innal rootes.
- 10 megohnis ( 1000 V Range) to 30K ohms (3V Range) depending on range.
- DC to 50 nsec (single pulse).
- $+3 \%$ of full scale, do to 50 nsec.
- 5" taut-band, mirror-backed 1\% meter.
- 1) Manual, with front panel switch or remote contact closure.

2) Automatic ( 50 msec intervals, adjustable up to 5 sec after end of measurement).
3) Recorder (automat ic reset adjustable from 50 msec to 5 sec after end of measurement).

- 100prec nominal, with no dead-t ime or loss of response during reset.
- 1) Reads peak pos:tive.

2) Reads peak negative.
3) Reads maximum peak of posirive or negative.

- Electronic memory retains readings penmanently, until reset by operator or camand signal, or until advanced to a higher reading due to a greater amplitude inout signal. Readings held durias mementary power interruptions.

| DC Analog Output | - 0 to 1 V or 3 V positive, $\mathbf{2 \%}$, depending on range. Short circuit safe. |
| :---: | :---: |
| AC Analog Output | - Simultaneous peak positive and negative outputs. 2 1/2 nomina?, decaying to zero in 100 mis at full scale. |
| Response | - Five selectable positions: NORM (wide band), $1,10,100$ ms and 1 ms pulsc widths. Response is approximatel: 3 dB down at these points and limits the respunse at approximately $0 \mathrm{~dB} / \mathrm{docta}^{2} \mathrm{ve}$ rate. |
| Gate Ciruit | - Permits sample-and-hold or synchronized measurements via externally appiied gating pulses of approximatel; 5 to 10 V . |
| Temperature Range | - $0^{\circ}$ to $50^{\circ} 0$ operating. |
| RFI and Noise Rejection | - Internal multistage 10 pi line filter provided. |
| Input Power | - 115 V or $230 \vee A C$, $=10 \%, 50-$ $400 \mathrm{H}_{3}, 15 \mathrm{VA}$, or $=24 \mathrm{VDC}$, 100 mA maximum, battery operation. |
|  | Model 5201CR - 115 V AC, $60 \mathrm{~Hz}_{z}$ standard. $230 \vee \mathrm{AC}, 50 \mathrm{~Hz}$ or $\pm 24$ V DC optionaliy available. |
| Mechanical | - 5201C-i, 5201C-2, 5201CR Dual shielded rack mounting enclosure $7^{\prime \prime} \times 19^{\prime \prime} \times 12^{*}$. |
| Accessories | - $31 / 2$ foot shielded input cable and technical manual provided. |
| Options | - High voltage projes: $3 \mathrm{kV}, 10$ kV and 30 kV probes supplied with insulated shieided cable frequency compensated for pulse applications. |

## ORIGINAL PAGE IS OF FOOR QUALTV



## GENERAL SPECIFICATIONS

## EACIE CHARACTERLSTIE

- 16-bit word length; 17th ott for memory parity checkims
- FemRal lopic
- Pume hil intercupt, with automatic restur
- Raer-mountable


## 3MORY

- Mempitic corestorep
- Seb manoscond cyelo th.0
- Endiy pencration and choctong is standard in $2 \Pi$ units
- Thue memory siges anniake, 16K; 24R, or 32 K moids.
boldexpandstin by plosein cands
- 1024-mord paye size
- Froceeted 64-word bloet for stored loader


## PROCESSOR

- 88 bede instructions, inctritiog extended arithmetic.
- Up to right instructions in ${ }^{\text {a }}$ be combined ints one word (2ajoter rufermes (exom)
- Onfmitad levels of indiract addreving allowed
- Huminated control pushbutans allow sinfultancous disphay and coectol of infenel troctions
- All instructions fully expertad in 1.96 microsecoads, esempt ISZ and exteceded athmotic (29n to 16.7 microceconds)
- Onty 980 amomerends alded for each leval of indirect
- addrading
- Al emeroingtuctions amapt theo parforming //O or cone momiry acienes are fuly exacutad in 196 annosaconds
- Memory and IO protection is standas.


## REGISTERS

- 8 Stondard Rugistess
-Acrumulaton. Two (A and. B), 16 bits each Disectly addreseable. .
Memory Contool Thene ( $\mathrm{T}_{2}$ P, MD), 16 bits each
3upplementary: Two (Overoiv and. Extend), one hit each
Manual Dats: Ono 16-tit suitch majester
- 7 Mamprocemsor Registers

Acenmulators: Six (Q, F, and Cour scratch pad), 16 bition ench
Intemapt Contsol: Central Intemupt Register, 6 bits

## softidiare

- FOLETRAN, FORTRAN IV, ALGOL, and BASNC Inogues
- Erteadod Ascombly lagguate
 roction
- Semed Operating systerns, including

Basic Coutral System (BCS)
Mapmetic Tape Systam (MYS)
Diac Operatios Syssem (DOS)
Tima-Siand BASIC System
Ren-The Erecutive System (RTE)

## macroprageranaing software

- Mcreverember (BCS or DOS)
- Mero Debuy Editor (BCS or DOS)
- Progarmomble ROM Writar (BCS)
- Didvers and Dixmostres (BCS or DOS)
- Watabir Coatrol Stor Input/Output Uitlity Roatina (BCS or DCS)
- Libray of Contibuted Microprogams


## INPUT/OUTPUT SYSTEM

- 12 intamat. I/O chanaels, extarnally expandable to 43
- Optionar multiplexed LO axtends capacity to :54 chameto may be plugred into $80 y$ slot
- All chmonels buffered and ti-directional
- Muitifend priority interrupt for device servieng
- Periphecris intertaced sionply with plag-in ards
- Dus-shtani dirsect memory. zeopss, exn transfas. $1,020,4 \mathrm{4} 3$ words per second
- General-purpose incertace crrds arailable


# OPERATING AND SERVICE MANUAL 

## PART 1

## 7970B/7970C

dIGITAL MAGNETIC TAPE UNITS
OPERATION AND GENERAL INFORMATION

Sertal Numbers Preaxed: 1329

Note
This manual may be backdated to cover eatier mexions of the tape unit by incorporaniag appropriate bectedatis information from appendix $A$.

### 1.1. MANUAL SCOPE.

1.2. This manual prondes operating and serrice informactan tor standard product conagurations of the HP 7970B/ 7970C Ditita Magnac Tape C'nus. (See Ifgur 1-1.) Special poocher condifurations are desconbed by manul supplements atkeched to this maual. The 9970 B is recopnized under the componat program of the Underwaters Laboratories Inc., and is similas to the 7970C. This mmual is applieable to boch modets.
1.3. This casoul is dinded into $\overline{5}$ parts. Part: contans peors' information, installation inscructions, and operaturs proendurs. Part 1 is applicable to all standard tape units. Pert 2 concurs a deserption of the trasport, trasport theory. performance checrout procedures, adfusment procedurs. and an illuscrated pars breakdown of the tape tramport portuon of the tape unt. Part 2 is applicable to all standerd tape units. Pert 3 contains a descaptoo of the med dera modules and prondes maintenasee information for cape units eqripped with read data modules furt 4 confatm a dremption of the write data modules and provides manceeance informastion for tape unets equipped mith wnte deca sodules. Pere 5 contains a deseription of che read. read (sevie. np ana-(rack read only) modules and prondes rasissrayser :uformation for tape unts equaped with read, read moda's.

## 14. IDENTIFICATION.

1.3. Each tape unt has a model plate and a serial aumber piate aterched to the trisformer ascembly. The model plate indicater the tupe speed of the unit and the model condyration.
1.6. Table 1.1 lists the standard configuration option numbers that will be shown on the moded plate. The model plate also lists eactory installed olective options. (Refor to table 1-2) Special condiguration and special factory insealled opecess also appeer on the model plate. Then special product coonidrateos exist (indieated by alghanumeric option anmbest the information is provided by special modifes. uon sodkes, supplamental to the stasdard manul.
1.i. The serial number plate contans a two-section serial oumber (0000A-00000). The arst four degic ate a senal number proix. The Ive-digat number ideatstes a spec.nc upe ifure. If the senal number predx on the iape unit does sot serow with the number on the tule pages of this ranaud. there are sifferences between the iape unt and the information cracuned in this manual. These differpacm are desented in manul supplements avallabie at the coarost $H P$ shes and Sertice otfice.

Table 1-1. Scandand Conffgiration Option Numbers

| SPEEDS | R/W | R'O | BASE | thacks |
| :---: | :---: | :---: | :---: | :---: |
| 10.20.9 1PS | 121 | 122 | 123 | NINE |
| $21 \cdot 37.51$ PS | 570 | 125 | 128 |  |
| 37.6-45 IPS | 127 | 128 | 129 |  |
| 10-20.9 IPS | 130 | 137 | 132 | SEVEN |
| 21.375 IPS | 133 | 134 | 135 |  |
| 376.45 IPS | 136 | 137 | 138 |  |
| 10-20.9 IPS | - | 139 | - | SEVEN NINE (R/R) |
| 21-37.5 IPS | - | 140 | - |  |
| 37.6-45 IPS | - | 141 | $\cdots$ |  |

- 

Table 1-2. Excire Opnon Numbers

| NUMBER | QESEAIPTION |
| :---: | :---: |
| 008 | Triple Density Selact |
| 007 | Unit Select |
| 012 | HP Lago |
| 013 | Read Parity (Sever- or Nine-Track) |
| 014 | Wrime Parity (Nine-Track) |
| 015 | Whie Parity (Seven-Track) |
| 016 | Door Intertock Swith |
| 017 | Black Paint |
| 023 | instalation Kit |

18. Prineed-cireuit ascemblies are idantified by a letter. a series code, and a dirtsion code on the assombly (ef. A-$1010-42)$. The lecter identides the rension of the ecched crece pattern on the undoaded printed-circuit board. The tour-dipt series code perians to the elertncal charactenstics of the loaded printedersuit asembly and the positions of the components. The dirsion code identifies the Hewlett. Packard division that wacufacruad the printednareuit assecably. If the senes numbers of the cape unit printed-circuit sambilies do not agree with the series numbers shown on the senematics and title pages of this maniala, there are differences between the lape uait and the information ta this manual. These differences as described in manual suppiemente avalable at the nearest HP Sales and Service Oface.

Par 1

| TAPE SPEED |  |  |
| :---: | :---: | :---: |
| 890:45: |  |  |
| REEL DIAMETER |  |  |
| Uo e 10.50 nehes 260.7 mm |  |  |
| TAPE (Compucer Grade) |  |  |
| W.atm: $\quad 0.5$ inenes $: 2.7 \mathrm{~mm})$ <br> Therekness: 1.5 mils |  |  |
| TAPE TENSION |  |  |
| 8.5 oz. nominal |  |  |
| REWINO SPEED 160 :ps |  |  |
|  |  |  |
| FAST FORWARD |  |  |
| 160 ps |  |  |
| INSTANTANEOUS SPEED VARIATION |  |  |
|  |  |  |
| LONG-TERMSP , VARIATION $=18$ |  |  |
|  |  |  |
| FAST FORWARD. FAST REVERSE, START/GTOP CHARACTERISTICS |  |  |
| Distance: 40 inches, nominal stare ( 25 ios) 69 inches, nominal start ( 37.5 and 45 ps) 31 inches, nominal stop ( 37.5 and 45 ips) |  |  |
| Time: 0.7 secord, maximum |  |  |
| STARTISTOP TIMES |  |  |
| 15 ms (at 25 ipa) 10 ms (at 37.5 ips) <br> 8.33 ms (at 45 ims$)$ |  |  |
| START/STOP TAPE TRAVEL |  |  |
| $0.187=0.020 \operatorname{meh}(4.7625=0.508 \mathrm{~mm})$ |  |  |
| REEL MOTOR BRAKING |  |  |
| Dynamic |  |  |
| RECORDING MODE |  |  |
| NFiZI lindustry compatiblel |  |  |

## MAGNETIC HEAD ASSEMBLY

Standard: seven- or menetracx. erase. wiltic and read G:o Scatter i:feasured Ootical:, 1
Read Stack: 150 min. Raximum
Write Stack: :50 min. maximum

## SKEW

Slaric Skew: The per channe. one-shor ceskewing technicue is ubli.zed in the write iforwardl and raad "orward and neversel circuitry effect vely eliminating stat:c skew.

Dynamic Skew: $\pm 200$ uin. (read atrer write). maximum

HEAD GUIDE SPACING
Incustry compatible

Write head to read head crosstalk
$<5 \%$ (of read signal)

READ HEAD CHANNEL TO READ HEAD CHANNEL CROSSTALK
$<-30$. 8

EEGINNING-OF.TAPE AND END-OF.TAPE REFLEC TIVE STRID DETECTION

Photorlectric̈. industry compation

OPERATING ENVIRONMENT

> Ambient Temperature: $-32^{3}: 0-131^{3} \mathrm{~F}\left(0^{3}\right.$ io $\left.55^{3} \mathrm{C}\right)$ Relative Humidity: 20 to 80 in (non-condensing) Altitude: $10.000 \div(3.048 \mathrm{~m})$

## POWER REQUIREMENTS

115 or $230( \pm 10 \%)$ Vac
48 to 66 Hz , single phase
400 VA. maximum (on high line)

## DIMENSIONS

Height: 24 iqenes ( 609.5 mm )
Width: 19 inches ( 482.6 mm )
Depth: 12 inches (304.8 mmi - -xek space)
Overall Depth: 15.75 incres ( $35: 7 m)$

WEIGHT
130 ib maximum (56.7 is lograrr:s

TRANSPORT MOUNTING
Vertical: Standard 19 .nchas $(482.5 \mathrm{~mm})$ Re:ma Jck


If inflace Kits



| Mant | caplillaty | $\begin{aligned} & \text { EASIC KIT } \\ & \text { MO. } \end{aligned}$ | PRIIPHLAL | $15 \mathrm{~V}, \mathrm{Ef} \mathrm{Hz}$ | $\mathrm{V}, \mathrm{CoHz}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -TPE BASE GENERATOR | Generates ras time iatervals in decade steps from 100 ms to 1000 sace (derived from erystal orallamen. Used as seuret of timed interrupts for zefluare ctock | 12539A | Nane fequred | Leno | 1.000 |
| - | iatertacescomputer with Bell System Oata Phona sames. | 125401 | ! Sell Systum Oata Set :03A | 1.7) | Noe Avalable |
| RUAY OUTMT REGISTER | Provices :5 form. A contacts for operatung exurnal sevices. Interface hit indudes 48. -pin mabny sominector.) | :25518 | Determuned oy usep | 50 | 600 |
| LREIT CCMERAL PURPOSE oumax ReGister | Oual 16.0it nip-floo register. Permiss Ji-diree tuonal transter of information terween comouter and external devices. intertace alt inctudes 43-oin mitans comnector.) $\qquad$ | 12554 A | Defermined by dsap | 3 | 750 |
| an cosiverter <br> menericurt inteaface O | Promaces two $0 . \AA$ conversion cramels. 8 गta chamal. | 12556A | Determaned by user | . $0^{\circ}$ | 1.20 |
|  | Dued 16.ar nia. hios register. Permits bi-dirac. boum date tramiter betmem computior and ea. tram demes a OTL TTL valtase levods. (Inter. teie wit wetudes cuble and matins connetal.; | 12sota | Dotermined by usar | 3 | 780 |
| - 2Man mimose $\qquad$ |  | 12597A | Dotermand gy usay | 00 | 00 |

## TEKTRONIX

## From Alphanumerics to Graphics. Now your termina's can keep pace with your needs.

## Computer Display Terminal

Lanzinn fing is<br>OF POUN QUALTY

The $\mathbf{4 0 2 5}$ takes you beyond alphanumerics. When you're ready to go beyond data entry and editing, the 4025 is the terminal that can take you there The 4025 gives you the unique ability to expand your terminal from basic alphanumerics, to forms ruling and then into graphics No other terminal has such versatiity. Witn all its options, the 4025 provides unmatched report generation capability

## Start with an ASCII character sot

 and finger tip editing. The 1025 can display a full 34 ines of 80 characters each on its 12 -inch diagonal display screen The complete upper and lower case ASC: character set is provided The green-on-black display with adjustable brightness level is easy on the eyesThe keyboard is arranged in an office typewriter contiguration. making il familiar to new users. Predetined editing keys allow you to insen. delete and inpul lines and characters Thirteen user definable keys plus virtually any other key on the keyboard can be redefined to generate a command or character string at the touch of a finger

A 4 K memory is standard with the 4025. expandable to 32 K , allowing buttering aria scrolling of hundreds and even thousands of words
Add the versatile Forms Ruling option. The 4025 Forms Ruling optron can duplicate essentially any form Visual attributes include enhanced. blank, blinking. inverted and underined fields Logical attibutes inci:dee protected fields. modified. alphanumeric or numeric only The 'send modily' com and siream lines data entry by transterring only the moditied. keyed $n$ data to the host The fixed format ,emans.
ready for the next series of entries Develop or duplicate forms of any complexity with a variety of sin. le and multiple horizontal and verical rules selected from the Ruling Character Set. Expandable memory and scrolling let you create forms far beyond the length of the display screen
To make data entry and editing easier, you can divide the display screen into two separate display areas each with independent scroiling You use the monitor area to cominunicate with the host and the workspace area tor the torm itself

## GENERAL INFORMATION

### 1.1. INTROOUCTION.

1-2. Volume iwo is the second in a series of three publications that document the Hewlett-Packard Model 21148 Computer (Figure 1-1). This volume contains decaled descriptions, instructions, and diagrams applicable to installation maintenance, troubleshooting, and repair. Cindess otherwise noted, or to the extent specified unfucure wpdating or backdating supplemencs, this publication is applicable to HP 21148 Computers having serial number prefle 930- and subsequent.

1-3. The information in Volume Two is inceaded for users who have been trained in, or are familiar mith, the operation and maintenance of this or simular Computers in the Hewlett-Packam line. A thorough understandiag of the informanon presented in the Specifications and Basic Operation manual. Volume One in thas series of publications

13 excontal :o !sicf ade inderanading the netructions presented.
1.4. The purpose of V'eluane Two is twofold: ilrst it provides general information, inctallation instructions, and overall manntenane data for the Computer and its accessory items: second it provides testing, troubleshooting, and repar instructions for major functional areas within the Computer isee Figure 1-2). These are the Central Processor. the Memory Syrem, the Tiniag System, the Control Dispiay System, and the Power Supply. The Input: Outpat System is documented separately in the Input/Output System Operation manual, Volume Three in this series of publications. Computer upnons are documented in separate manuals :hat supplement tre information given in Yolime Two and Three. as apolicable.
1.5. The Sections and Appendixes of Volume Tno contan the followng inforceanos:


Figue 1.1. Hemiect-Packard Modd 2114B Computar

|  |
| :--- | :--- | :--- | :--- |

[^2]

Figure 1-1.


TM-7 Tape Transport

TABLE $1-1$.
PERFCRMANCE CHARACIERISTI?

| TAPE WIDTY | $1 / 2$ inch tape <br> Ampex, IBM, oL NAB $r \in e 1^{\circ}$ |
| :---: | :---: |
| TAPE SPEEDS | 36 ifs stanadid <br> speeds to 45 lps optional |
| REWIND SPEED | $2,400 \mathrm{ft}$. can be rewcund in less than 3 minutes |
| START/STOP TIME | Stact Til o: (0) ms Stop Time: 10 ms |
| START DIS'IANCE AT 36 IFS | $0.156 \mathrm{mia},$.0.21 max. |
| STOP DISTANCE AT 36 IPS | $0.133 \mathrm{min},. 0.195 \mathrm{max}$. |
| IONG TERM SFEET VARIATION | $3 \%$ or less of onerational speed |
| INS TANTA ${ }^{\text {THAUS }}$ SPEED VARIATION SHORT TERM | ISV $=5 \%$ or less of operational speed 10 uss after start command |
| INTERCHANNEL TIME DISPTACEITENT (ITD) A'T 36 IPS | Peak Dynamic Skew: 6 lisec Static biew: $7 \mu \mathrm{sec}$ <br> ITD: 10 . sec |
| POWER REQUIREMENTS | Voltage: 117 'C nominal, or 200-250 vir imerementally tapped <br> Frequency: 48 to 62 eps |



fig. 11. 4010 Compurer Display 7 erminal.


Fe 212 HeadCopr Onenstron

HARD COPY MODE (Make Copy) 4010.1. The Hard Copy Mode is used to generate a permanent coply of the Terminal display. With the 40101 and a Hard Copy unit, the user can obtain a hard ony as follows

Step 1. Cher $k$ to be sure that the hard copy unit is connected to the 4010 i
 COPY switch on the 4010 1. The Hard Copy unit then sends a signal that sweeps the entire 4010 - 1 display in abutt 5 seconds. A copy is thus generated. A copy can also be initiated from the computer if the program calls for one.
or poring shat is


[^0]:    * NOISE MEASURED WITH VIDEO GAIN SET TO PRODUCE IV p-p OUT INTO 75 OHM WITH A DEVIATION OF 8 MHz .

[^1]:    *Meastired at output of a bandpass filter having $18 \mathrm{db} /$ octave attenuatin beyond limits stated.

[^2]:    

