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The purpose of t h i s  paper is t o  iocua nftention on s m  recent 
inmatigations that  have been cohoerrled wlth longitud-d s tab i l i ty  
problew both a t  hi& speed0 and at low speeds and. t o  s-ize briefly 
the current s tate of &fairs in regard t o  them problems. 

Stat ic  Stabil i ty and Control 
< .  

Recent invest ipat ions .- A number of longitudind s tab i l i ty  
imestigationa of various a l q l e e  conf?iguratiom have been conducted 
a t  hi@ suhsonic Mach nunibera In the  Ccmmitteegs M-peed wind tlmne 
.d st transonic Mach ntrmbers up t o  1.2 u t i l i z i n g  the WLCA wbg-flow 
method and the associated wind;t,un~ml trsnaonic-brrmp techniqua. The86 
imestlgaticwr an, contained in references 1 t o  15, and s m  of the 
c ~ i g u r a t i o n s  inves$igated together wlth the Mach number ran* f o r  
which data are available are sunmaxized in figure 1. 

For the t a i l l e s s  conf'iguration (a), Langley high-speed 7- by 
l+foot tunnel data fo r  a sting supported model and fo r  a e e m i s p ~  . 
model exist  up t o  a Mach number of 0.95, and wing-flov data are 
available up t o  a Mach nmiber of 1.20. The three eets of data s+e 
in  general qudf ta t ive  agmement, although the Wnersase i n  the l i f t -  

.curve slope with Maoh nmber was somwhat more rapid fo r  the sting- 
supported tunnel model than for  the semispan tunnel model and eemiapan 
win&-flcrw model. 

. - C & q f l v t i c m  (b). ww immetigated 6s a ~ e m i a p ~  w w f l o v  model 
a d  was also tested on a transonic bump in the Langley hi&-dpeeb 7- 
10- foot tamel. Thts modal 1% simfiar t o  the X S - 1  model for which 
Lmgley a f o o t  high-+peed tunnel data are available t o  a Mach number 
of 0.92. The agreemsnt between the data obtained by the wing-flw 
method and the transgnic4uml) method was satisfactory throughout most 
of the Mach number TarY:8. 
. .. .- _.: .. . . .  . . & , . .  .. . . - 

Mob1 (dl V L L ~  si&&"to mddli ( 3 )  except fir t h e  ewegt t a i l .  It 
also was tested as  a wing-flow model. 



Model (c)  was investigated on the transonic b q ,  model ( e )  a s  a 
semispaa model In the Amee &foot tunnel-, and mcdel ( f )  was investigated 
a s  a stiag-supported model in the  La.ngl.0~ &foot h l g w p e e d  tunnel. 

Despite the fac t  t ha t  m o d  of the resu l te  available th~zs  far are 
limited t o  re la t ive ly  few configurations, it is  interest ing t o  observe 
in the data 'certain trends 131' regard t o  the manner i n  which s t a b i l i t y  
and t r im changes with Mach nuinber are  'manifested. 

Characteristic data.- Data representative of the var iat ion of 
p i tchhg+mwnt  coefficient xith lift coefficient f o r  several Mach 
numbere-for a s t r a i a t -wing  design a m  sham in figure 2. Although 
these data apply t o  the design indfcated, similar trends i n  the data, 
f o r  other straighLwing desigm have been observed. The data a t  M = 0.6 
are typical  of the behavior before force break, and some comments 
regarding the predlcabi l i ty  of the character is t ics  In t h i s  ran@ is 
probably gertinent a t  t h i s  point. 

The important changes longitudinal s t a b i l i t y  f o r  s t ra ightwing 
designs a t  high Y!ch numbera are, of course, not indicated by formules 
based on l b a r - p e r t u r b a t i o n  t h e o q .  Such fomulaa, however, are useful 
in interpreting experhental trends a t  subcr i t ica l  k c h  numbers. In 
coaeidersti'an of the &ch number e f fec t s  an a wing a n d  t a i l  combination, 
t he  trends-indicated by the theory may be divided in to  three categories: 

I 1 )  d i rec t  changes i n  the posit ion of the wing aero-c center, 
2) changes in the damwash a t  the t a i l ,  and (3 )  disproportionate changes 
in the l if t-curve elopes of the w i n g  and t a i l  moult ing from the differ- 
ences in aspect ra t io .  For a f l a t  e l l i p t i c  wing of a.spect r a t i o  4, 
theory indicates a forward s h i f t  of the aerodynamic center of only about 
1.4 percent a t  8 Mach number of 0.8 (reference 16). Earever, forward 
ehifts of the  aerodynamic center of 5 percerrt or  more have teen obtained 

i erperimentally oa s t ra ight  wing% at high Mach numbem part icular ly 
far tho84 employFng sections having large trailing-9dge anglee. At 
t b  m e e n t  time, therefore, it appeare that the changes in wfng 
aerodynamic-center posit ion with Mach number ausb be determined experi- 
merrtally even at subcri t ical  speeds, A l imited amount of German data 
has indicated that t h i s  e f fec t  i a  minimized f o r  aiaU trailing-edge angles. 

. -.The t h e o r b e  r u m  the change in downwash chaz9ctez"istics at 
the  ta i l  and the change in the l i f t -curve .  slopes of ' the  wing and t a i l  
with Mach number, however, appear.to agree f a i r l y  well with experiment 
a t  aubcri t ical  Mach numbers (referencee 17 and 18).  These two ef fec ts  
have indicated forward s h i f t s  i n  the neutrgl point of the order of 
5 percent in some cases, A t  Mach numbers approachlrg tha t  of force 
break and a t  supercr i t ica l  Mach numbers, recourse muat be made t o  
experiment. 
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- k r b d  changes id the .variation of the'bseic w&fuBelage pitching 
m o b i t  wfth l i f t .  coefficient i s  apparent a t  a ~ a c h  number of 0.965 
and 0.931, snd the eppearence of f l a t   pots in the resultant pi tchine 
moment curve in the lower lift range 1s gomewhut cheracteriqtic f o r  t h i s  
tgpe of design at Bupercritical w e d s .  In many instances local reversals 
in slope have been encou@ered, @sticularlf f o r  different &abillzer 
and elevator sett-s. The nortpaLleliam of the pitching-momnt c w e e  
i n  thie range fo r  the different gtabflizer settings is  eignificant and 
evidences the nonlinear contribution of the  t a i l  t o  stability. Conae- 
quently, in evaluating. the &abil i ty  .characteristics of a design p08egesing 
dWfneaFitiee of th le  Mnd', it is eaeentia.1, of conrse; t o  consider 
conditloma a$ t a i l  eettings in the vicini ty of trim a t .  the p&,fo?.alar lift 
cmff icient inquestLon and d e o  the lift-coeif2cient range: over which the 

- . ~nml'inearitles extend, 1 

Similar -b ta  far a sweptback ta iUess  coxafiwation are ehown in  
f i v e  3. The data for M ' = B  0.7 a x  0.95 were obtained from Langley 
high-epeed 7- by 10-iooC tuxawl t e s t s  of a aemlspan model. The data 
for M '= 1.00 ' were obtained from w i w f l o w  .tests of' a smaller model. 
The increase6 slope of the pLtohlng-mc?nent curves a t  the higher Maoh 
numbelis is again evident. A t  M r 0.95 the control effectiveriess 
has beep coae$derably reduced and appreciable trlm changes occur, but  
th4 vicious changes ip s tab i l i ty  that are fkequently man$feeted by 
emightwiw daaigae a t  supercritical speeds are absent, . .  -- 

'h effeeot that mepback cad have ori delasng the *&ch number 
a t  which eitplfficant trim chawee and s tab i l i ty  changes are m. i feeted 
1s further i l lustrated in figure 4. The straight- d e s i s  and tho 
ta1Ueee design are t& 'configurations for which typical data have 
h e n  preeented (figs. 2 .and 3). The model with a 45O ewept w i n d  and 
t a i l  was. an .arbitrary configuratioa iaveetigated on the transonic b~nap. 
In .evaluating thb control settings required fo r  trim a t  the variow Mnch 
numberd, appromate f l ight  gland at' alt.ftu& were a e e m d  f o r  e ~ h  
c&iguration. It i e  intereating t o  note the mAnner in which the 
initial trim changes have been postponed t o  higher bbch numbers fo r  the 
ewew configuratione and in particular the extremely emal l  trim changes 
associated wfth the 45O configuration. Above the i r  risspective c r i t i c a l  
speeds, both the straight-wing design and the t a i l l e s s  configuration 

. _  wtnifeeterd Irregular h i m .  clmn@ebe-It 5s &sirable t o  keep trim cbangee 
as  Bmall as poas.ible, although the amount of trim change that  can ssfely 
be tolerated depe 8 t o  a considerable extent on the type of atabi l i ty  

aaioctaieb "th (3'. For the etraig"wiag ronfl-tlon two boundarieg 

are presented for the parameter ( a t  superc r i t i rd  skcde.  ~ h r  

l&er b& 1s associated wl& the loo&f'lat spots in the pitchi* 



. . . .  
=nt data*previouely diebuassd (fig. i). fiat spots e-.i)ded 
over a 'lift-coef'f ic ient  of h a s ,  than C). 1 and are re'latively - 

- UnlmporfAbnt fo r  the particular' f l igh t  plan employed fo r  t h i s  example, - ibaemCh- as  the minimum lift caeff ic ient  attained i s  about 0.2; The 
b-6 of the a i m  t o  -disturbaacee necessary 'to ef fec t  acceleratione 
of the arbs'r of 2 or 3 g ls  IS pmbably more nearly sesociated -with. 
a m  value between the two' botmdaried; - .  . . . .  

# .. 

l o r  the 350 swept &aim, t h i s  paranatei. i s  more precisely . 
determinable and doe'e not change appreciably up t o  a Mach number 
of 0.88, althaugti it also ~ r e a s e s . r a t h e r  rapidly a t  the higher superc 
critical Mach nuldbere. - I 

For the 450 swept canfiguratlon, change8 In  the ~ t e r  have 
been delayed until a Mach nraxiber of about 0.95 has been reached and . . I .  

then - @I$, &reams rather grrduni ir .  cyzparison iUustrataa 
. 8 

fhs need foiabmplomg a, h g s  dame of sweepback if trim and s t ab i l i t y  
chances in the tranqonlc region are t o  be minimized. 

Two factors greatly affecting the valub :of 
s 

i ~ e i ~ - O - c & t e r  Attion' anti the donnseh st the t a i l .  . 
Ths manner id, which these factor8 changed with Mach number for the, 
e t ra i&bwhg design and the 45O swept design. sre shown i n  figure 5 .  - .  

?.  . 
I .  

The large variations in t local  positio of the w -fuselage-, 

abrcdpbdo-center poel t lon denoted by - - t~il off f o r  the . c . 3 . . .= 
.stkight-&hq b e e f s  is inmsbiatalr appardnt, and this variation i a '  
reflected in the behavior of the tail-on results,  although the mepltude 
of t hb  f111ctuetiona haa bees- decreased bca e. of the increased t a i l  , 
effectiveness effected by the reduction in % a t  the tail. at the .- 

~ C L  
, strpercritical Mach numbers, 

. . . .  
r! . . .  .: .. , , , ; 9.93 .tb ,450 .Syep~.  qpmiigurptlop,; thg l d X l € F f u l e e l 0 @ - ~ ~ -  

c te positSaa"va~ied b d y " a " ' & d ~  am@Unt, anh the . inckase in ' . (1 ( t a u  on) at the higher ~ a c h  n ~ b o r  vaa 1uge1.y due t o  the .+ 

fncr6ased tall effecti+eness cawed by the reduction In downwaah slope 
at  the tail. - . . 



of the short-period lo&;udinal oecillation. 30me computatione fo r  
s few characteristic designs were made i n  order t o  observe the manner. 
in which t h i s  quantity Sleeted t h e  m c  stal j i l i ty characteristics, 
bnd the  result^ of the campuLetiow far a t a i l l e s s  design investigated am 
presented in figure 6. It is imtmifately apparent that  a l t i t u h  has 
a proMwoed effect  on the period of the oscil lat ion and t h a t  the 
period becomes shorter as  the s-ed i s  ,%,. incrsased. % The period varies 

s somewhat hgperbolfc mmmr with ( 3 M  so that  for  tho valws 

- ( b e a  t b  aq period rill ~ r e a e e  very r a p i ~ y ,  whereas 

fop Paluea of - greater than 0.15 the period w i l l  change only 

slightly. The import-ance of the frequency of the short-period oscil lat ion 
wlll probably have t o  await f l igh t  experience, inasmuch as it w i l l  depend 
t o  sam extent on the damping characterietics. It w i l l  be noted that  
while the  damping, as evaluated by the number of seconds t o  damp 

- 

t o  1/2 amplitude, depends t o  a considerable ..- . extent on altitude and speed 

it I s  Wepsndent of the pasameter - . It i e  influenced significantly, 
(2Jl. 

hmver,  by the ~ B J Z Q ~  in pitch, and fo r  a2rplanea with a t a i l  the damping 
w i l l  be mre'rapid than that  i w c a t e d  here, For a particulas design 
the ~harac te r i s t i ce  of the ahorbperiod oscillation can be rapidly 
evausted inaamuch as one needs only t o  determine the roots of the second- 
degree equation usually associated with t h i s  made of the longitudinaj 
nrotian. 

. . m- ma- 
., , , .. , Stat ic  Stability in High LUt  Range 

One of the factors-that has limited the mount of ewleepback that  
can be beneficially employed on transonic designs has been the di f f icul ty  

. . .of grqvi- satiefgctary, a t a b u t y  @. control ch~tracteristica In 
the landing condition. 

Basic win@umacteristics.-At l i f t  coefficients prior t o  that 
a t  which separated flow enems on the wine, the position of the a e r v  
dynamic conter of the wlng can be estimated fa i r ly  reliably, and 
s gaper entitled ' '~rediotion of the ,AeroQnnmic Characteristics or' Wings 

. of Witrsry - .  Plan FomW . . . by - victor . a 1. Stevens baliq with th le  subject 



has already been p r e m t e d .  The sh i f t  i n  the aemdpmlc+enter 
position that occuro a t  high l i f% coefficients is l e s s  amenable t o  
theoretical camputations, and nuusrow exprircerrtal investi-tions have 
been concerned with this effect,  Front& data e x k d  thus far it 
appears that  a ~ p e c t  ra t io  aad & e p - a P a ? 6  the two mo8t 
important factors that  Influence the type of pitchlng-mbmnt variation 
t o  be expected at the stall, The familiai. manner in which sweep angle 
and aspect r a t i o  affect the characte~ of the pitchinvament variation 
a t  the s t a l l  is illustrated in figure 7, which ie taken from reference 19. 
Combhatione of sweep and aspect ra t io  that f a l l  6b0ve the 1- on the 
figure have been found t o  y t d d  the characteris5ically unstable pitching- 
mcamxrt variation indicated. Other factors euch as  a i r f o i l  section, w i n g  
taper, Reynolds number, and 8Urf-e roughness have been found t o  
influence the lift coefficient a t  which i n s t a b i 1 i t y . i ~  first manifested, 
but the ultimate varfation a t  that  &all has st311 been found t o  be 
consistent w i t h  tbt Fpdicated on the figure. 

While figure 7 ref lects  the Wbavior of plain uings it has been 
f OW that the addition of trailing-edge f laps hss m a t e d  i n  an 
m b l e  pitc&Lng+nomat vtwiation even f o r  wing0  Zaltling in  the stable 
region on figure 7. A considerable number of investigations have 
thsrei0x-e been concerned with the bvelopaent o f  devfc~e deeignsd t o  
al leviste the t i p  sta l l ing  that is responsible f o r  this behavior 
(references 20 t o  24). 

S t a l l  control &vices.- A t  the present tims &all control devices 
have been successfully applied t o  w i n g s  with leading--8dge sweep angles 
up t o  420, S a b  of the results of 'an investiga,tion (references 20 and 21) 
covering the effect of e t 0  control devices on the p i t c h i w m e n t  
characteristics of a 420 m e m a c k  w i n g  equipped with a epl i t  f lag  are 
ahom in figure 8. This wing has an WCA + - ~ 2  section and an aepect 
r a t i o  af 4. Thia insreetigatian was conducted in the Langley 19-foot 
pressure tunnel a t  a Reynolds n-r of about 6,W,000. The basic 
wing-fuaelam c&irrstion exhibitea an unstable p i t c h i w z u e n t  variation 
a t  the s ta l l .  The addition of l ead lnvdge  f laps of the type indicated 
cmering about 60 percent of the  pan resulted in a stable break of the 
pltching+mmnt curve a t  the &al l ,  and t h i s  type of l e a d i w d g e  dsvice 
was the moat sattsfactory tested. Similar effects were also obtained 
Kfth a,leadingiedge Ellat arrangement which covered 60 percent of the 
span except fo r  a small region of instabil i ty just before C k .  This 
unstable redan was removed by the addition of a fence located a t  the 
inboard end of the slot .  This effect is oomewhat typical of fence 
behayior. If Located properly, fences, i n  general, have been found 
helpful in minimizing local unstable variations in the p i t c h i n e  
mcrmsnt curve up t o  the. max3mm l i f t  coef~ ic ien t  but do not appreciably 
af'fect the ultimate character of the p i t c w m e n t  variation a t  the -. 



Effect of fuselage.-The percent apan of leading-edge f lap  or  slat 
required t o  effect satfBfmtory pitchIng-moment behavior at the s t a l l  
depends sggewhat on the size of the f w e l e  t o  which the wing i a  
.attached and,to a lesser extent,on the position of the wing on the 
fuselage. The effect; is FllW,ratad i n  figure 9 (raference 21). The 
c0nf'ie;uratton represented by 0.575 leading-edge slot% is the 8sme wing 
configuration discweed ia figure 8 m d  the ftxzelae 1s saen 
t o  have l i t t l e  effect o n t b  character of pitching-momnt variation 
a t  the stall. When the leading-edge f lap  span was increased t o  0.72$, 
however, the wlng-fuselage combination was unstable a% the o t a l l ,  
whereaa the l&q alone still e H o i t e d  favorable chamcteristics.  Similar 
results were obtained for a h i e  snd low- azmngement. It appears 
from tuft atudiea of these configurations t h a t  the flow aver the fueelage 
delays the &all- of the center section t o  euch an extent that  initial 
separation again b e p  over the flapped portion of the wing. 

Effect of t a i l  location.- Thus far w have discussed only the 
characteristics of the basic wing-fuselage combination. The addition 
of a tail adds furt'her cornplicatione but, i n  gonerd-, it has been 
found that  &able behavior of the resultant pitching-nt at  the stall 
18 mod l ikely  t o  be achieved when the basic wing-fusela& ?itcang 
mment exhibits a ata'ole variation. The location of the tai l ,  however, 
is an import& consideration and the effect of addm a t a i l  t o  the a- , 
f~aslags configuration with 0.579 leadiagadge f laps and 0.59 tmil- 
e w  i+ps i e  ahown in ii- 10 Preference 22). 

A Btudy of these data  indicate that  the mod sat isfact  ory pitching- 
m~llrent behavior a t  the a t d l  was actuallg achieved with the l o w  t a i l  
poeition by virtue of the decreased m t e  of change of damwash asaociated 
with thls tail locatian. This low goaition was c l a w  t o  the adgo af fka 
W.IPg w&, hawever, and may be objectionable fi.om otner canoideratians. 
The more desirable midtail location possessed a loce l  region of ins tabi l i ty  
Just before C h  which waa remo~ed by the addition of a fence. 

CONCLUSIONS 

Iac recapitulaticm, the fdLlavLng rnneral izat iou can be made: 

1. The incorporation of large amounte of sweepback on both the 
wing and the horizontal ta i l  has been found t o  increase the Mach number 
at which trim chsngee and s tab i l i ty  changes are first manifested and 
t o  greatly reduce the trim changes and s tab i l i ty  changes encountered 
at eupercrltical speeds. . . 



2. Longltudbal stabilltg in the landing condition has been attained 
f o r  configurations with m c p  angles of the order of 450 u t i l i z ing  
varioue &all-control devices, but at the present time optimum arrangements 
for them deviceo must be determined experbentally. 
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