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A REVIEW OF APPROXIMATE METHODS IN SUBSONIC COMPRESSIBLE FLOW
By Carl Kaplan

Langley Aeronautical Laboratory
INTRODUCTION

The purpose of this paper is to review several methods developed
in recent years for the calculation of the flow of a compregsgible fluid
past a prescribed body. These methods have evolved largely bscause of
the inherent difficulty of handling the nonlinear partial differential
equations which govern the flow of a compressible fluid. In the dis-—
cussion of thege methods several points of mathematical interest will be
noted for possible future Investigations.’

The study of fluid—flow phenomena at high speeds requires the
congideration of compressibility and therefore of the thermodynamics of
the fluid. PFor a real fluid, this would be a practically impossible
problem. In this review, therefore, the fluid is considered tc be a
perfect one with vanishingly small viscosity and heat conductivity. The
discussion 1is confined,moreover, mainly to irrotational flow in two
dimensions with a subsonic undisturbed flow.

It is assumed that the fluid is a perfect gas so that the equation
of state is .

P = RTp (1)

The equations of motion for the fluld are

U= + Vo = — =
ox dy P ax
) (2)
u—a‘l-{-v-é-—v-:—-_l;é’i .
ox dy P dy
/
and ths equation of continuity is
dpu v
—+ =0 (3)
ox  Jy
where |
X, ¥ rectangular coordinates in plane of flow
U, v components of velocity vector

P pregsure In fluild
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o density of fluid
T temperature of fluld
R gas constant

With the assumption of vanishingly emall viscosity and heat
conductivity, the behavior of the fluid in motion is clossly isentropic
gso that p and p are related by the eguation

p = kp’ | (&) ’

where 7 1s the ratio of specific heats at constant pressure and constant
volume and k is an arbitrary constant. The Bernoulll Integral of the
equations of motion (2) then becomes

@ - o2h-152uH(5 )] o)

where

. dp P
c local velocity of sound | c = a; = 7;

velocity of sound In udisgturbed stream

Q

magnitude of fluid velocity
U velocity of undisturbed stream

M Mach number in undisturbed stream <§L>

oo
oo

With the assumption of irrotationality, a velocity potential ¢ can be
introduced, where

'\

¥

> (6)

<
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Then the elimination of p from equations (2) and (3) yields the
fundamental differential equation governing the flow; namely,

24 32 2
<c2 - u2> g;g - 2uv g;%§+ (c2 - v2> g;g =0 (1)

a nonlinear, gecond-order partial differential equation.
METHODS OF APPROXIMATE SOLUTION

The rigorous treatment of the fundamental differential equation (7)
for nonlinearized flow past closed shapes with general boundary conditions
has up to the present time proved to be impossible. In place of rigorous
analytical solutions it is necessary to be satisfied in general with
approximation methods essentially based on the linearization of
equation (7). The mathematical difficulties are considerably greater for
subsonic flow (elliptic potential equation) than for supersonic flow
(hyperbolic potential equation), for which the theory of characteristics
leads to very simple approximation methods. Three of the methods which
have been utilized for subsonic flow will be described in the remainder
of this paper.

Method of Expansion in Powers of the Mach Number

In the Raylelgh—Janzen method the velocity potential ¢ is expanded
in a series of powers of Mme,

=g+ M0 + M0, - ... (8)

where @, is the velocity potential of the incompressible fluid flow
and thus satisfies the boundary conditions. The appropriate form of

the differential equation for ,¢ ig obtained by rewriting equation (7)
with the aid of equation (5). Thus
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where the symbol A denotes the Laplacian operator

2 2
§—§+§_§
x- oy
The expression for ¢ from equation (8) ie then inserted in equation (9)

and coefficients of corresponding powere of M, on either side are equated,
yielding successively the equations for ¢O’ ¢l’ eeeo Thus

&gy =0

B¢ 2 5¢ 2 A
_1{% 93 | 03 (%
29 = 23 ox\ g2 Y & <U2> ) (10)

/7

where gq, 1is the magnitude of the incompressible flow velocity.

Rayleigh (reference 1) and Janzen (reference 2) were the first to
congider the second of equations (10) and gave a series solution for ¢l

in the case of the flow past a clrcular cylinder. Later, Poggi

(reference 3) introduced a method that consists essentially in considering
the compressible fluid to be an incompressible fluid with a continuous
distribution of sinks and sources in the entire region external to the
solid boundary. According to Poggi, the right-hand sides of equations (10)
represent successive terms in an infinite series giving this sink—source
distribution. Poggi and later Kaplan (references 4 and 5) and Imai
(reference 6) obtained the solution from this point of view for the flow
past such shapes as a circular cylinder, an elliptic cylinder, and a
Joukowskl profile with angle of attack and circulation. The calculations
proved to be extremely laborious, involving a large number of double
integrals. In order to ease the labor involved in the original Poggi
method, Imai and Aihara (reference 7) and Kaplan (reference 8) developed
elegant and useful methods which utilized the theory of functions of a
complex variable., The one to be described in this review 1s that due to
Kaplan, which makes use of the calculus of residues. Thus, if new
independent variables z =x + 1y and Z = x — iy are introduced, the
expression for the strength of the sink—source distribution obtained from
the right-hand side of the seconi of equations (10) may be written as
follows: . .

aw aw :
-t w02 — +'ﬁ62 ——9>dx dy (11)
Lyt \ az dz
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where W, and 'ﬁb are, respectively, the complex and conJjugate complex

velocities of the incompressible fluld past the prescribed shape; that
is, W, = =u 4+ iv and ﬁb = —u — 1v and these are, respectively,

functions of z and Z ‘only, since they are obtained from sclutiocns of
Laplace's equation. Now, the expression, equation (11), involves non-
analytic functions of z end %Z. In order, however, to utilize the
methods of the calculus of residues, functions of only & single complex
variable must appear. For this purpose the plane =z of the obstacle

is represented conformally on the plane Z of the corresponding circle.
Since the strengths of the sink—source distribution of corresponding
elements of the two planes are equal, the expression for the strength

of the sink—source distribution of an element of the plane Z 1is

1 2dz a4 (= a&Z\, =24z d az
W W,o— |+ W," = — = ) |a&xX ay 12
hﬂﬁ °© dzdz< 0dz>+ ° zdz<> z> (12)

where W, and“ﬁb are, respectively, the complex and conjugate complex

velocities of the incompressible Pluid past the circular profile in the
plane Z. .

It is a simple matter to obtain an expreasion for the complex
velocity Wi induced at any point Zp external to the circular boundary

by a sink—source distribution originating in the physical plane =z and
at the same time to preserve the boundary conditione of zero normal
velocity at the circular boundary and zero induced velocity at iInfinity.
The essential fact to remember is that corresponding to a unit external
gource there is a unit source at the inverse point with respect to the
circle and a unit sink at the center of the circle. The actual
velocity wy of the fluid in the physical plane z 1is related to the

velocity W; “at the corresponding point in the plane Z of the circle
by the equation

W = Wl - (13)

The expression for W, consists of double Integrals whose integrands

are non—analytic functions of Z and Z. The double integrations over
the entire region external to the circular boundary can be replaced by

line integrals involving functions of Z and Z only by the use of
Stokes! thsorem for the plane. Thus, it can be shown that if F(Z,Z)
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is a function of Z and 32, continuous and differentiasble in the area S
enclosed by the contour C, then

j
f ¥(2,2)dZ = — 21[91': as
C S o2
| S (1)
fF(z,”z‘)dz = eij“é?; as
C Vg oZ
J/

The line integrals, in the present case, are taken around the circular
boundary corresponding to the actual profile in the z~plane, around
an infinitely small circle surrounding the point at which Wi is to

be evaluated, and around an infinitely large circle concentric with the
internal circular boundary. The important point to note is that, since
all the contours involved in the line integratiens are circular, the
integrands can be made analytic in Z or Z, since on a circular
boundary ZZ = Constant. It then follows that the line integrals can be
evaluated by means of Cauchy's theorem on residues. This theorem states
that, if a funetion is analytic on & contour C and throughout its
interior except at a number of poles inside the contour, then

f G(2)az = 2xiM

¢ \ (15)
f H(Z)dZ = —2riN

Y J

where M and N are, respectively, the sum of the residues at those
poles which lie within the contour C.

The device of introducing 2z and 7z as independent varigbles,
then utilizing the conformal mapping of the plane of the obstacle into
the plane of a circle, and finally replacing the double integrals by line
integrals thus enables cne to evaluate by the method of residues the
first effect of compressibility on the velocity of the fluid past an
arbitrary shape., The point of interest to an applied mathematician is
that here is a method whereby a Polsson equation involving rather
complicated boundary conditions can be solvad with the aid of analytic
functions of a single complex variable. The subject is certainly worthy
of Pfurther investigation.
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Method of Small Perturbations

Whereas the preceding treatment started with the incompressible
flow, the Prandtl-Busemann or Ackeret method starts with the undisturbed
flow., It is applicable to the flow past thin shapes placed in & uniform
stream, in which the changes in the veloclty of the fluid as it passes
over the body are small compared with the main stream velocity. The
velocity potential is developed In a power series of a perturbation
parameter € (which may be the thickness coefficient, the camber coeffi-—
cient, or the angle of attack) in which the first term is the velocity
potential of the wndisturbed stream ¢O = Ux. Thus, it is assumed that

¢=Ux%e¢l+é2¢l2+e3¢3+ ces (16)

where the ¢n are functions of =x, y and of My énd show successively
the effects of compressibility on the flow.

The assumed series, equation (16), is inserted into the combined
nonlinear equdtions (7) and (5) and the successive linear equations

for ¢, ¢2, ... can then be cbtained by equating the coefficients of

succesglve powers of the perturbation parameter ¢ . The first two
equations obtained by this procedure are

2 2
)
ALY
x?  uP
g, 3 3, 3%

o Py
o ay2 Gay axasi

J

These differential equations may be put into more familiar forms by
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introducing a new set of independent variables X and Y by means of
the following affine transformation:

X

]
L]

(18)

<
il
-
l
83
g

Thus, for M <1, the first of equations (17) is transformed into a
Laplace equation and the succeeding equations for @, ¢3, ... into

Poisgon equations in which the right-hand sides are known functions of X
and Y determined from the preceding approximations. The solution of
the first of equations (17) yields the well-known Prandtl-Glauert rule,
whereas the solutions of the succeeding Polsson equations provide higher
approximations to the flow of the compressible fluld and thus will apply
for larger departures from the undisturbed uniform flow.

The general procedure followed in solving equations (17) is simple
in principle. The first step is to obtain an expression for the velocity
potential of the incompressible flow past the prescribed boundary in the
form of a power series in the perturbation parameter ¢. Then the solution
for the first approximation ¢l to the compressible flow is easily obtained

by analogy from the coefficient of the first power of €. The higher
approximations @, ¢3, ... are obtained by solving the corresponding

Poisson equations, at the same time satisfying the boundary conditions to
the same power of the perturbation parameter ¢ as is involved in the
expression for the velocity potential ¢.

Thus, consider the first approximation @,; if

¢ = UX + E¢l'(X’Y) . ‘(19)

represents the incompressible flow past a body, then to the same order
of approximation,

o
it

Ux + 'EB' ¢l (X:By)

s (20)

w
1l

(i

represents the compressible flow past the same body.
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Now, if q, and gy denote the magnitudes of the velocity at the

surface of the prescribed shape for the compressible and incompressible
flows, respectively, then to the first power of € ths perturbation
term (evaluated at the boundary) is the same Por the two cases. The
result is a relation between 4, and 44 independent of the

particular shape ﬁrescribed; namely,

g-g —1 i — —l- —— i l
4 B <B l> a4 (21)

Equation (21) represents the so-called velocity correction formula for
the Prandtl-Glauert approximation.

This method of iteration by powers of a perturbation parameter ¢
has been applied to a family of symmetrical shapes (bumps, reference 9)
and to a family of circular arcs (reference 10), specifically chosen
because they possess no stagnation points and hence satisfy the primary
assumption of the method; namely, small disturbances to the aoncoming
uniform stream. - The iterations included the third power of the thickness
coefficient in the case of the family of symmetrical shapes and the third
power of the camber coefficient in the case of the famlly of circular
arcg. It is important to remark that, although extensive use was made
of the affine transformation, equation (18), the boundary conditions
were always satisfied in the plane of the actual profiles.

In general, the affine transformation, equation (18), introduces
a distortion of the solid boundary which depends on the stream Mach
number. This distortion, therefore, in general precludes the use of
analytic function methods. In the case of a family of elliptic profiles,
however, the affine transformation produces another family of elliptic
profiles. Since one ellipse differs from another only with respect to
the thickness coefficient, it is possible to treat the problem in the
plane of the circle corresponding to the plane of the affine ellipse.
For this purpose it is simpler, from the point of view of satisfyling the
boundary conditions, to treat the equations for the stream function
corresponding to equations (17). The results obtained in the plane of
the circle, making extensive and elegant use of functions of a single
complex variable, are easily transferred into the physical plane of the
actual elliptic profile. Such calculations have been performed for the
case of an elliptic cylinder with both angle of attack and circulaticn
(references 11, 12, and 13). Typical of the results obtained is the
following formula relating the 1lift on an elliptic cylinder in a
compressible and an incompressible flow:

[

-C
Ly

=

=1,
B

-
/ 282
—2\1-8 1 1 -2
<1_e >(—-——{22 +u(7+1)<--———02 I (22)
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where

p=\1-n2

y ratio of specific heats at constant pressure and at constant volume

el proportional to radius of circle conformal to actual ellipse in
physical plane

Equation (22) is an extension of the woll—known Prandtl-Glauert rule to
thicker profiles and is applicable not only to an ellipse but to an
arbitrary symmetrical shape.

The method Jjust described, utilizing the powerful tool of complex—
function theory, could be extended to arbltrary profiles if the answer
to the purely mathematical question of the effect of an affine trans—
formation on the coefficients of the conformal mapping function to a
circle were known. Another interesting and important problem is the
convergence of the precedure herein described. Calculations indicate
that the power—series development of the veloclty potential or of the
stream function in powers of a perturbation parameter may converge somewhat
beyond the critical stream Mach number, but a rigorous discussion of this
question has yet to be given.

In order to show the entent to which the methods of Rayleigh and
Janzen and of Prandtl and Busemann apply to practical airfoils, figure 1
has been prepared. The stream Mach number M_ is the abecissa and the

thickness coefficient t 1is the ordinate. The critical stream Mach
number curve bounds the subsonic flows. The method of Rayleigh and
Janzen proceeds in the direction of increasing stream Mach number and
yields at each stage exact information with regard to the geometry of

the profile. Ths vertical lines separate the reglons of the secand ani
third approximations, the line M, = O being the incompressible solution.
It is clear that many approximations would be necessary to penetrate into
the region of interest to aeronaatics, that is, between t = 5 percent
and Tt = 15 percent.

The method based on the Prandtl-Glsuert linearized result proceeds
in the directlon of increasing thickness and yields at each stage exact
information with regard to the stream Mach number. The horizontal lines
separate ths regions in which the Prandtl-Glauert correction holds and
the first additional step. This figure shows clearly that, already by a
first-step improvement of the Prandtl-Glauert result, significant results
are obtained in the region of interest to aeronautics whereas similar
success by means of the Rayleigh—Janzen method would entail a prohibitive
amount of labor.
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Method of the Hodograph

It is clear from the discussion in the foregoing sectlions that both
the Rayleigh—~Janzen and the Prandtl-Busemann procedures become rather
laborious after one or two steps; moreover, such calculations must be
repeated from the beginning for each prescribed solid boundery. Conse—
quently, many attempts have been made to set up a correspondence betweer
incompressible flows and compressible flows of the nature of correction
factors. Among the better known results of such attempts are the
Prandtl-Glauert (reference 14), von Kérm#n-Tsien (reference 15), Temple—
Yarwood (reference 16), and Garrick—Kaplan (references 17 and 18) velocity
correction formulas — all of which depend only on the incompressible fluild
velocity and the stream Mach number.

Before proceeding with the discussion of velocity correction
formulas, a rather instructive comparison is given of the compressibility
effect on the maximum velocity of a series of bumps and circular arcs.

The thickness coefficients of the bumps and the camber coefficients of

the corresponding circular arcs were so chosen that the incompressible
speeds were the same. Table I shows the results calculated by the Prandtl-—
Busemann iteration method — the calculations included the third power of
the thickness and camber coefficients. For moderate values of thickness
and camber the differences are seen to be negligible over most of the
gubgonic range. These calculations indicate that, to a very good approxi-—
mation, the effect of compressibility in the subsonic range depends
essentially only on the incompressible fluid velocity and on the undisturbed
-8tream Mach number and is largely independent of the particular solid
boundary treated. This result substantiates the feasibility of velocity
correction formulas in the subsonic range of speeds.

From the nature of velocity correction formulas it would seem that
the hodograph plane variables are the appropriate ones to consider. The
hodograph variables are g, +the magnitude of the fluid velocity, and &,
the angle included by the velocity vector and the positive direction of
the x-axis. Corresponding to qk in the incompressible case, there
appear functions Py(q) and Qc(q) in the compressible case, where

3

1
=1 = 1 ?
= 1log Q = log q + fy(r) L
’ (23)
1 -
£ log Py = log q + g(r)
| /

The functions Py(q) and Qk(q) are associated, respectively, with the

velocity potential and the stream function in the compressible case; the
functions fk(T) and gk(T) are related to the particular solutions of

Chaplygints basic differential equation of the hypergecmetric type
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for compressible flow. The variable 7 1s & dimensionless speed varisable
defined.as follows:

_ 2 M2
T = =

Ayl 2, M2
y =1

where ey is the maximum fluld velocity corresponding to expansion into

a vacuum. Figure 2 shows the graphs of several of the (hypergecmetric)
functions fk and &y for positive values of k with the Mach number

as abscissa. The value of y chosen wae 1.4 for air. Note that, as the
subscript Xk 1is increased, both sets of functions approach the single
function f, = q, = h(T) defined between the limite M =0 and M = 1.

According to equations (23) then, as k>,
i |k
hiT
P ® @ ® Lqe ( )} A (24)

The nature of the correspondence between incompressible and
compressible flow is assumed to be such that

~
i () 1
¢i(qi’ 8) = ¢c Ece k( ): :I
(1) (23)
Wi(qi’ 9) = WC [‘:Ce x 5 Gjl
J

where Vv denotes the stream function and the subscripts 1 and c¢ refer,
respectively, to incompressible and compressible flow. In order to obtain
a correspondence of velocities, it is necessary that also for the compress—
ible case the speed varigble be the same for both the velocity potential
and the stream function. The function h(T) separating, as it does, the
two sets of functions fk(T) and gk(T) is peculiarly suited for this

purpose. Thus, the correspondence of velocities in the incompressible
and the compressible case is given by

g = 3o (26)

Equation (26) constitutes the geometric-mean type of velocity correction
formula introduced in reference 16 and is limited to the subsonic range

0SmMS 1. As already noted, for positive values of k, h(T) lies
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between f(T) and g (T) in magnitude. Moreover, the deviation

(T T
of eh(T) from e k( ) and egk( )

subsonic range.

1s quite small in the entire

The geometric-mean type of velocity correction formula contains the
results of Chaplygin, von Karm#n and Tsien, Temple and Yarwood, and, in
the limiting case of small disturbances to the main flow, the exact Prandtl-—
Glauert rule. For example, the von Kearmdn-Tsien velocity correction
formula is obtained from the geomstric-mean type of approximation by
taking 7 = —1. The geometric—mean type of velocity correction formula
Just described seems to be the most logical one from a mathematical point
of view. It is interes+ing to note, however, that the choice of vy = -1,
yielding the Kérmen-Tsien formula, appears to cancel the effect of boundary
distortion inherent in the correspondence equations (25). This fortuitous
circumstance, together with the simplicity of the calculations involved,
makes it very useful for most purposes. Figure 3 illustrates in general
the usefulness of velocity correction formulas and in particular the one
given by von Kérman and Tsien. The solld curves show the variation of the
maximum pressure coefficient with the stream Mach number for several
members of a family of symmetrical profiles (bumps) calculated by means
of the Prandtl-Busemann iteration in powers of the thickness coefficient
(reference 9) The small circles show the results obtained by means of
the von Kdrmeh-Tsien velocity correction formula. The agreement between
the two mesthods over such a wide range in thickness coefficients and
stream Mach numbers is remarkable. Indeed, the development of velocity
correction formulas and thelr use in the prediction of compressibility
effects should be considered as an outstanding achievement of theoretical
aerodynamics. For, consider that the problem of compressible flow involves
a nonlinsar differential equation for which very little mathematical treat—
ment 1s available; nevertheless, with the aid of a few simple ideas and
very little labor the essential results can be obtained by means of velocity
correction formulas. One must be cautioned, however, that their use is
limited to the subsonic range and mist not be extended into the transcnic
or mixed subsonic and supersonic range of speeds.
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TABLE I.— VALUES OF MAXIMUM VELOCITY FOR CORRESPONDING

BUMP AND CIRCULAR ARC PROFILE
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Figure 3.~ Maximum pressure coefficient as function of Mach number,





