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A REVlEW OF APPROXIMATE METHODS IN SUBSONIC COMPRESSIBIZ FLOW 

By C a r l  Kaplan 

Langley Aeronautical Laboratory 

The pmpose of t h i s  paper i s  t o  review several methods 3eveloped 
i n  recent years f o r  the calculation of the flow of a compressible f l u i d  
past  a prescribed body. Thess msthods hsve evolved largely bscalxse of 
the inherent d i f f i cu l ty  of handling the nonlinear p a r t i a l  d i f f e ren t i a l  
equati'ons which govern the flow of a compressible f lu id .  Ln the dis- 
cussion of these meth3ds several points of mathematical i n t e re s t  w l l l  be 
noted f o r  possible future investigations. 

The study of fluid-flow phenomena a t  high speeds requires  the 
consideration of compressibility and thwefore  of the  thermodynamics of 
the f luid.  For a r e a l  f luid,  t h i s  would be a prac t ica l ly  impossible 
problem. In  t h i s  review, therefore, the f l u i d  i s  considered t o  be a 
perfect one with vanishingly small viscosi ty  an& heat conductivity, The 
discussion i s  confined,moreover, mainly t o  i r ro t a t iona l  flow i n  two 
dimensions with a subsonic undisturbed flow. 

It i s  assumed t h a t  the  f l u i d  i s  a perfect  gas so t h a t  the equation 
of s t a t e  i s  

P = RTP 

The equations of motion f o r  the f l u i d  a r e  

. 

and t h s  eqlmtion of continuity i s  

apu apv 
---+-A=() 

ax as 
where 

x, y rectangular coordinates i n  plane of flow 

u, v companents of velocity vector 

P pressure i n  f l u i d  



P density of fluid 

T temperature of fluid 

R gau constant 

With the assumption of vanishingly small viscosity and heat 
corductivity, the behavior of the fluid in motion is closely isentropic 
so that; p and p are related by the equation 

where 7 is the ratio of specific heats at canstant-pressure and constant 
volwne and k is an arbitrary constant. The Bernoulli integral of the 
equations of motion (2) then becomes 

where 

c local velocity of sound (C = @(= E)) 
c03 velocity of sound in undisturbed strean 

itude of fluid velocity 

U velocity of undisturbed stream 

Ma, Mach nwnber in undisturbed stream 

With the a~sumption of irrotatianslity, a velocity potential # can be 
introduced, where 



T3e~i the elimillation of p from equations (2) ~ t l d  (3)  y ie lds  the 
fundmental d i f f e ren t i a l  equation govsrning the flow; namely, 

a nonlinear, second-order p a r t i a l  d i f f e ren t i a l  equation. 

METHODS OF PSPROXIMATE SOLUTION 

The rigorous treatment of the  fundamental d i f f e ren t i a l  equation ( 7 )  
fo r  nonlinearized flow past closed shapes with general boundary conditions 
has up t o  the present time proved t o  be impossible. In place of rigorous 
analyt ical  solutions it i s  necessary t o  be aa t i s f ied  in general with 
approximation methods essent ial ly  based on the l inearizat ion of 
equation (7). The mathematical d i f f i c u l t i e s  a r e  considerably greater  f o r  
subsonic flow ( e l l i p t i c  potent ial  equation) than f o r  supersonic flow 
(hyperbolic potent ial  equation), f o r  which the  theory of charac ter i s t ics  
leads t o  very simple approximation methods. Three of the methods which 
have been u t i l i zed  for  subsonic flow w i l l  be described i n  the remainder 
of t h i s  paper. 

Method of Expansion i n  Powers of the Mach Number 

In the RayleighJanzen method the velocity potent ia l  $$ i s  expanded 
2 in a ser ies  of powers of M[oo , 

2 4 $ = $ 0 + ~ w 4 + ~ m $ 2 +  ... (8 

where a(0 i s  the velocity potent ial  of the incompressible f l u i d  flow 

and thus s a t i s f i e s  the boundary conditions. The appropriate form of 
the d i f f e ren t i a l  equation f o r  , $  i s  obtained by rewriting equation (7)  
with the a id  of equation (5). Thus 



where the symbol A denotes tha Laplacian operator 

\ 

The expression f o r  9 from equation (8) i s  then inser ted i n  equation ( 9 )  
and coeff ic ients  of corresponding powers of M, on e i ther  s ide a re  equated, 
yielding successively tho 8quations f o r  go, 4, . . . . Thus 

where qo i~ the magnitude of the  incompressible flow velocity. 

Rayleigh (reference 1 )  and Janzen (reference 2) were the  f i r s t  t o  
consider the second of equations (10) and gave a se r i e s  solution f o r  $fl 
in the case of the  flow past a c i rcu lar  cylinder. Later, Poggi 
(reference 3)  introduced a method t h s t  consis ts  essent ial ly  in considering 
the conrpressible f l u i d  t o  be an inconipressible f l u i d  with a continuous 
d is t r ibut ion  of sinks and sources in the en t i r e  region external t o  the 
so l id  boundary. According t o  Poggi, the right-hand s ides  of equations (10) 
represent successive terms in an i n f i n i t e  se r i e s  giving t h i s  sink-source 
dis t r ibut ion.  Poggi and la%er Kaplan (references 4 and 5 )  and Imai 
(reference 6)  obtained the solution from t h i s  point of view f o r  the flow 
pas t  such shapes as a c i rcu lar  cylinder, an e l l i p t i c  cylinder, anrl a 
Jo~jkowski p ro f i l e  with angle of a t tack and circulation. The calculations 
proved t o  be extremely laborious, involving a large nuniber of double 
in tegra ls ,  Ib order t o  ease the labor involved i n  the or iginal  Poggi 
method, Irnai and Aihara (reference 7) and Kaplan (reference 8)  developed 
elegant and useful methods which u t i l i zed  t h s  theory of functions of a 
complex variable. The one t o  be described i n  t h i s  review i s  t h a t  due t o  
Kaplan, which makes use of the calculus of residueo. Thus, i f  nev 
independent var iables  z = x + i y  and B = x - i y  a re  introduced, the 
expression fo r  the  strength of the  sink-source dis t r ibut ion obtained from 
the right-hand s ide of the  ssoonl of equations (10) may be wri t ten as 
follows : 



where wo and To are, respectively, the complex and conjugate col3lplex 
velocities of the incompressible f lu id  past the prescribed shape; that  
is, wo = -U + i v  an8 To = -u - i v  and these are, reapectively, 

functions of z and 55' 'only, since they are obtained from solutions of 
Laplace@s equation. Now, the expression, equation ( l l ) ,  Fnvol~es non- 
analytic functions of z and Z. In order, however, t o  u t i l i z e  the 
methods of the calculus of residues, functions of only a single complex 
variable must appear. For t h i s  purpose the pl=e z of the obstacle 
is  represented conformally on the plane Z of the corresponding circle,  
Since the strengths of the sink-source distribution of correqonding 
elements of the two planes are equal, the expression for  the strength 
of the sink--8ource distribution of an element of the plane Z i s  

where Wo  and^ To are, reepectively, the complex and conjugate complex 
velocities of the incompressible f lu id  past the circular profi le  in the 
plane 2. 

It i s  a simple matter t o  obtain an expression for  the comp;Lex 
velocity W1 induced a t  any point external t o  the circular boundmy 
by a sink-source distribution originating in the physical plane z and 
a t  the e m  time t o  preserve the boundary conditions of zero n 
velocity a t  the circular boundary and zero induced velocity a t  fnfinity, 
The essential fac t  t o  remember i s  that  corresponding t o  a unit  external 
source there i s  unit eowce a t  the fiveree point with respect t o  the 
c3rcl.e a d  a .unit sink a t  the canter of the circle. The actual 
velocity wl of the f lu id  i n  the physical plane z i s  related to  the 

velocity W1 a t  the corresponding point i n  the plane Z of the cjircle 
by the equation 

The expression for  W1 consists of double integrals  whose integran5s 
are non-analytic functions of Z and z. The double Integrations over 
the entire region external t o  the circular boundary can be replaced by 
l ine  integrals involving functions of Z and 2 only by the use of 
StokesVhsorem for  the plane. Thuo, it can be shown that  if F(z,z) 



i s  a function of Z and E, continuous and different iable  i n  the area S 
enclosed by the  contour C, then 

The l b e  integrals,  in the  present case, a re  t&en around the  c i rcu lar  
boundary corresponding t o  the  actual  p ro f i l e  i n  the z-plane, around 
an i n f i n i t e l y  amall c i r c l e  eurroundizq the  point a t  which W1 i s  t o  
be evaluated, and around an in f in i t e ly  large c i r c l e  concentric with the 
in te rna l  c i rcu lar  bounda.ry. The important point t o  note i s  that,  since 
a l l  the contours involved in the l i n e  integrations a r e  circular ,  the  
integrands can be made analytic i n  Z or  5, since on a c i rcu lar  
boundary Z% = Canstant. It then follows t h a t  the  l i n e  in tegra ls  can be 
evaluated by means of Cauchy's theorem on residues. This theorem s t a t e s  
that ,  2f a funetion i s  analytic on a contour C and throughout i t s  
in t e r io r  except at  a nuniber of poles inside the  contour, then 

where M etnd N are, respectively, the sum of the residues a t  those 
poles which l i e  within the contour C. 

The clevice of introducing z and Z as independent variables, 
then u t i l i z ing  the canformal mapping of the plane of the obstacle in to  
the plane of a c i rc le ,  and f i n a l l y  replacing the double in tegra ls  by l i n e  
in tegra ls  thus enables one t o  evaluate by the method of residues the 
f i r s t  e f fec t  of compressibility on the velocity of the  f l u i d  past  an 
arb i t ra ry  shape. The point of in t e re s t  t o  an applied mathematician i s  
t h a t  here i s  a method whereby a Poisson equation involving ra ther  
complicated boundary canditions can be solved M t h  the a i d  of analytic 
functions of a single complex variable. The subject i s  cer tainly worthy 
of fur ther  in-vestigatian. 



Method of Sslall Perturbations 

Whereas the preceding' treatment s ta r ted  with the incompressible 
flow, the Prandtl-8usemann or  Ackeret method starts with the undisturbed 
flow. It i s  applicable t o  the flow past  th in  shapes placed in a uni fom 
stream, i n  which the  changes i n  the  velocity of the  f l u i d  as it passes 
over the body are Bmali compared with the main stream velocity. The 
velocity potent ial  i s  developed in a power se r i e s  of a perturbation 
parameter E (which may be the thickness coefficient,  the camber coeffi- 
cient,  or  the angle of at tack)  in which the  f i r s t  term is the velocity 
p o t e n t i d  of the undisturbed stream go = TJ%. Thus, it is  assumed that 

where the  are  functions of x, y and of M& and show success~vely 

the  ef fec ts  of compressibility on the  flow. 

The assumed series,  equation (16), i s  inserted in to  tha combined 
nonlinear equations (7) and ( 5 )  and the successive l inea r  equatfons 
f o r  , , . can then be obtained by equating the coeff icients  of 

successive powers of the  perturbation parameter E . The f i r s t  two 
equations obtained by t h i s  procedure a re  

These d i f f e r a t i d  equations may be put in to  m r e  f a n i l i a r  f o m  by 



introducing a new s e t  of independent variables X and Y by means of 
the following af f ine  transformation: 

Thus, f o r  M < 1, the  f i r s t  of equations (17) is transformed in to  a 
Laplace equation and the succeeding equations f o r  , , . . i n to  
Poisson equations i n  which the right-hand s ides  a re  known functions of X 
and Y determined from the preceding approximations. Ths solution of 
the f j r s t  of equatians (17) yields  the  well4mown Prandtl-Glauert rule,  
whereas the solutions of the  succeeding Poisson equations provide higher 
approximations t o  the  flow of the coqress ib le  f l u i d  and thus w i l l  apply 
fo r  larger  departures from the undisturbed uniform flow. 

The general procedure followed i n  solving equations (17) i s  simple 
in  principle. The f i r s t  s tep is t o  obtain an expression fo r  the velocity 
potent ial  of the incompressible flow past  the  prescribed b o ~ d a r y  i n  the  
form of a power se r i e s  i n  the perturbation parameter E .  Then the solution 
f o r  the first approximation 4 t o  the  compressible flow i s  easi ly  obtained 

by analogy from the coeff ic ient  of the  f i r s t  power of 6 .  The higher 
approximations #*, 4, . . . a re  obtained by solving the corresponding 

Poisson equations, a t  the same time sat isfying the boundmy conditians t o  
the  same power of the perturbation parameter E as i s  involved i n  the  
expression for  the velocity potent ial  g. 

Thus, consider the  f irst approximation 4; if 

represents the  incompressible flow past  a body, then t o  the same order 
of ~cpproximation, 

represents the compressible flow past the sane body. 



Now, i f  q, and q i  denote the magnitudes of the velocity a t  the 

surface of the prescribed shape f o r  the  compressible and incompressible 
flows, respectively, then t o  the f i r s t  power of 6 the perturbation 
term (evsluated at  the boundary) i s  the same f o r  the  two casss. The 
r e s u l t  i s  a re l a t ion  between qc and qi, independent of the 

par t icular  shape irescribed; namely, 

Equation (21) represents the so-called velocity correction f orIlpxla f o r  
the Prandtl-Glauert approximation. 

This method of i t e ra t ion  by powers of a perturbation parameter 6 
has been applied t o  a family of symmetrical shapes (bumps, reference 9 )  
and t o  a family of c i rcu lar  a rcs  (reference lo) ,  specif ical ly  chosen 
because they possess no stagnation points and hence sa t i s fy  the primary 
assumption of the method; namely, arnall distwbances t o  the oncoming 
uniform stream. . The i t e ra t ions  included the t h i r d  power of t h s  thickness 
coeff ic ient  in the case of the family of symmetrical shapes and the  t h i r d  
power of the camber coeff ic ient  in the  case of the family of c i r c u l w  
arcs. It is important t o  remark that ,  although extensive use w a s  made 
of the a f f ine  transformation, equation (18), the boundary conditions 
were always sa t i s f i ed  in the plane of the  actual  profi les .  

In general, the a f f ine  transformation, equation (18), introduces 
a, distor t ion of the so l id  boundary which depends on the stream Mach 
number. This clistortion, therefore, i n  general precludes the use of 
analytic function methods. In the case of a family of e l l i p t i c  profi les ,  
however, the a f f ine  transformation produces another family of e l l i p t i c  
profiles.  Since one e l l ip se  d i f f e r s  from another only with respect t o  
the thickness coefficient,  it i s  possible t o  t r e a t  the  problem in  the 
plane of the c i r c l e  corresponding t o  the plane of the  a f f ine  e l l ipse .  
For t h i s  purpose it is  simpler, from the point of view of sat isfying the 
boundary conditions, t o  t r e a t  tha equations f o r  the stream function 
corresponding t o  equations (17). The r e s u l t s  obtained i n  the plane of 
the c i rc le ,  making extensive and elegant use of functions of a single 
complex variable, a re  easi ly  t r h s f e r r e d  in to  the physical plane of the 
actual  e l l i p t i c  profi le .  Such calculations have been performed f o r  the  
case of an e l l i p t i c  cylinder with both angle of a t tack  and circulat ion 
(references 11, 12, and 13). Typical of the  r e s u l t s  obtained i s  the 
following formula re la t ing  the l i f t  on an e l l i p t i c  cylfnder in a 
compressible and an incompressible flow: 



where 

y r a t i o  of specif ic  heats at constant pressure an3 a t  constant volums 

eh proportional t o  radius of c i r c l e  conformal t o  actual  e l l i p se  i n  
physical plane 

Equation ( 2 2 )  i s  an extension of the well-bown Prandtl-Glauert ru l e  t o  
thicker prof i les  a d  i s  applicable not only t o  an e l l ip se  but t o  an 
arb i t ra ry  syllrnetrical shspe. 

The method just  described, u t i l i z ing  the powerful too l  of complex- 
function theory, could be extended t o  a rb i t ra ry  prof i les  if  the answer 
t o  the pxeely mathematical question of the e f fec t  of an af f ine  trans- 
formation on the coeff ic ients  of the conformal mapping function t o  a 
c i r c l e  were known. Another interest ing an3 important problem i s  the 
convergence of t h s  precedure herein described. Calculations indicate 
tha t  the power-series development of the velocity potent ial  or of the 
stream function i n  powers of a perturbation parameter may converge somewhat 
beyond the c r i t i c a l  stream Mach number, but a rigorous dissussion of t h i s  
question has yet  t o  be given. 

In order t o  show the entent t o  which the methods of Rayleigh and 
Janzen and of Prandtl  and B u s e m  apply t o  prac t ica l  a i r fo i l s ,  f igure 1 
has been prepared. The stream Mach number M, i s  the abscissa and the 

thickness coeff ic ient  t i s  the ordinste. The c r i t i c a l  stream Mach 
number cwve bounds the subsonic flows. The method of Rayleigh an9 
Janzen proceeds i n  t h s  direction of increasing stream Mach number and 
yields  a t  each stage exact information with regard t o  the geometry of 
the profi le .  Ths ve r t i ca l  l i n e s  separate the regions of the second and 
t h i r d  approximations, the Tine & = 0 being the incompmssible solution. 
It i s  clear  tha t  many approximations would be necessary t o  penetrate in to  
the region of in t e res t  t o  aeronatltics, t h a t  is, between t = 5 percent 
=cl t = 15 percent. 

The method 'based on the Prandtl-Glauert l inear ized r e s u l t  proceeds 
in the direction of increasing thickness and yields  a t  each s t w e  exact 
information with regard t o  the stream Mach number. The horizontal l i n e s  
separate t h s  regions i n  which ths  Pradt l -Glauer t  correction holds and 
the f i r s t  additional step. This f igure shows c lear ly  that ,  a l r e a w  by a 
first-step improvement of the Prandt lGlauert  result ,  s ignif icant  r e s u l t s  
are  obtained i n  the region of in t e res t  t o  aeronautics whsreas similar 
success by means of the Rayleigh-Jsnzen method would e n t a i l  a prohibitive 
amo'ant of labor. 



Method of the Hodograph 

It i s  c lear  from the discussion in the foregoing sections t h a t  both 
the Rayleigh-Janzen and the Prandtl-Busemann procedures becom ra ther  
laborious a f t e r  one or two steps; moreover, such calculations must be 
repeated from the beginning f o r  each prescribed so l id  boundary, Conse- 
quently, many attempts have been made t o  s e t  up a correspondence betweer 
incompressible flows and compressible flows of the nature of correction 
factors.  Among the be t t e r  known r e s u l t s  of such attempts are  t h e  
Prandtl-Glauert (reference l4) ,  von ~&rm&-~sien (reference 15),  Temple- 
Yarwood (reference 16),  and Garrick4aplan (references 17 and 18) velocity 
correction formulas - a l l  of which depend only on the  incompressible f l u i d  
velocity and the stream Mach number. 

Before proceeding with the discussion of velocity correction 
formulas, a rather  instruct ive comparison i s  given of the  compressi'bility 
e f fec t  on the maximum velocity of a se r i e s  of bumps and c i rcu lar  mcs.  
The thickness coeff ic ients  of the bumps and the camber coeff ic ients  of 
the corresponding c i rcu lar  a rcs  were so chosen t h a t  the incoqress ib le  
speeds were the  same. Table I shows the  r e s u l t s  calculated by the Prandtl- 
Busemann i t e ra t ion  method - the calculations included the t h i r d  power of 
the thickness and camber coefficients.  For moderate values of thickness 
and caniber the differences a re  seen t o  be negl igible  over most of the 
subsonic range. These calculations indicate that ,  t o  a very good approxi- 
mation, the e f fec t  of compressibility in the subsonic range depends 
essent ial ly  only on the incompressible f l u i d  veloci ty  and on the undisturbed 
stream Mach number and i s  largely independent of the  par t icu lar  so l id  
boundary treated. This r e s u l t  substantiates the  f e a s i b i l i t y  of velocity 
correction f o m l a s  in the subsonic range of speeds, 

From the nature of velocity correctian formulas it would seem t h a t  
the hodograph plane variables a r e  the  appropriate ones t o  consider. The 
hodograph variables a re  q, the  magnitude of the f l u i d  velocity, and 0, 
the angle included by the veloci ty  vector and the  posi t ive direct ion of 
the x-axis. Corresponding t o  qk in the incompressible case, there 
appear functions pk(q) and &k(q) i n  the compressible case, where 

1 log Pk = log q + gk(7) 
k 

The functions pk(q) and Q ~ ( Q )  a r e  associated, respectively, with the 

velocity potent ial  and -tihe stream function i n  the compressible case; the 
functions fk(r)  and gk(r)  a re  re la ted  t o  the  par t icu lar  solutions of 

Chaplygint s basic d i f f e ren t i a l  equation of the hypergedmtric type 



f o r  compressible flow. The variable T i s  a 5imnsionless speed variable 
de f ined~as  follows: 

where 
q- i s  the  maximm f l u i d  velocity correspanding t o  expansion in to  

a vacum. Figure 2 shows the graphs of several of the  (hy-pergeometric) 
functions f k  and gk f o r  posi t ive values of k with the  Mach number 

as abscissa. The value of 7 chosen w a s  1.4 f o r  air. Note that ,  as the 
subscript k i s  increased, both s e t s  of functions approach the single 
function f, = q, = h(7) defined between the  limits M = 0 and M = 1. 

According t o  equations (23) then, as k G a ,  

The nature of the correspondence between incompressible and . 

compressible flow i s  assumed t o  be such t h a t  

where 3r denotes the stream function and the  subscripts i and c refer ,  
respectively, t o  incompressible and compressible flow. In order t o  obtain 
a correspondence of veloci t ies ,  it i s  necessary t h a t  a l so  f o r  the coqress-  
i b l e  case the apeed variable be the same f o r  both the velocity potent ial  
and the stream function. The f'unction h(7) separating, as it does, the 
two seta  of functions fk(7) and gk(7) is peculiarly suited f o r  t h i s  

purpose. Thus, the correspondence of ve loc i t ies  in the incompressible 
and the compressible case is given by 

Equation (126) const i tutes  the geometric+man type of velocity correction 
fords introduced i n  reference 16 and i s  limited t o  the subsonic range 

< < 
0 = M = 1. As already noted, f o r  posit ive values of k, h(7) l i e s  



between f k ( ~ )  and g k ( ~ )  i n  ma~ylitude. Moreover, the deviation 

of e h(T) from e 
fk(7 9 

and e 
gk(') 

i s  quite small i n  the en t i re  
sub sonic range. 

The geometric-mean type of velocity correction formula contains the 
r e s u l t s  of Chaplygin, von K&& and Tsien, Temple and Yarwood, and, i n  
the  l imit ing case of small disturbances t o  the main flow, the exact Praadtl- 
Glauert rule .  For example, the van Kdhdnqs ien  velocity correction 
formula i s  obtained from the geometric-mean type of approximation by 
taking y = -1. The geometric-mean type of velocity correction fornula 
just  described seems t o  be the  most logica l  one from a mathematical point 
of view. It is  intereoting t o  note, however, t h ~ t  the choice of y = -1, 
yielding the K&&-Tsien fo rmla ,  appears t o  cancel tha effect  of boundary 
dis tor t ion inherent i n  the correspondence equations (25). This for tui tous 
circumstance, together with the simplicity of the calculations involved., 
makes it very useful fo r  most purposes. Figure 3 i l l u s t r a t e s  i n  general 
the usefulness of velocity cprrection formulas i n  par t icular  the one 
given by von K&& and Tsien. The so l id  curves show the  vaxiation of 'the 
m a x i m  pressme coeff icient  with the strearm Mach nuniber f o r  several 
members of a family of symmetrical profi les  (bumps) calculated bjr means 
of the Prandtl4useaann i t e ra t ion  in Towers of the  t h i c h e s s  coeff ic ient  
(reference 9 ) .  The small c i r c l e s  show the  r e s - d t s  obtained by means of 
the von ~&mh-~sien velocity correctian formula. The agreement between 
the two mthods over such a wide range i n  thickness coeff ic ients  and 
stream Mach nunibers i s  remaskable. Lndeed, the  development of velocity 
correction formulas and t h e i r  use i n  the  prediction of compressibility 
e f fec ts  should be considered a s  an outstanding achievenent of theore t ica l  
aerodpamics, For, consider t h a t  the  problem of compressible flow involves 
a nonlinsar d i f f e ren t l a l  equation f o r  which very l i t t l e  mathematical treat-  
ment i s  available; nevertheless, wfth the a id  of a few simple fdeas and 
very l i t t l e  labor the  essent ia l  r e s u l t s  can be obtained by means of velocity 
correction formulas. One must be cautioned, however, t ha t  t h e i r  use i s  
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TABU I.- VALUES OF MAXIMUM YELOCITY FOR CORRESPONDING 

BUMP AND CIRCULAR ARC PROFILE 
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Figure 1.- Regions of application of the approximation methods. 
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Figure 2.- The fk and gk functions against M. 
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Figure 3. - Maximum pressure coefficient a s  function of Mach number. 
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