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WIND-TUNNEL-WALL CORRECTIONS
By S. Katzoff

Langley Aeronautical Laboratory
BOUNDARY CONDITIONS

When the wind tunnel was first developed as a practical approach to
experimental aerodynamics, it was recognized that the flow about a body
in a wind tunnel was not the same as the flow about the same body in
flight. Since that time, mainly during the past 30 years, there has
appeared a steady stream of research papers, some offering improvements
in recognized corrections in keeping with the improvements in wind-tunnels,
equipment, techniques, and general understanding of aerodynamics and others
deriving necessary corrections for new types of aerodynamic configurations
or new types of measuring techniques.

The problem arises from the fact that, although the differential
equations of the flow are the same in the tunnel as in flight, the
outer boundary conditions are different. In flight, the condition is
simply that the flow at infinity is uniform; in the tunnel, certain
other conditions, depending on the type of tunnel, must be satisfied
at the tunnel boundaries. For the closed tumnel, the condition is
obviously that the velocity component normal to the wall be zero.

For the open tunnel, where the Jet traverses a region of comparatively
qQuiescent air, the condition is that the pressure at the boundary be
wuiform. By Bernoulli's law; it follows that the tunnel velocity must
be uniform on the boundary. If this velocity is considered as the sum
of the undisturbed tunnel velocity U and a small perturbation
velocity (u, v, w) resulting from the presence of the body in the
"~ Jet, the condition is then that (U + u)2 + v2 + w2 m U° + 2Uu
be constant, from which it follows that wu 1is constant over the entire
surface. Furthermore, since u 1is obviously zero far in front of the
body, it must be zero over the entire surface, whence it can be easily
shown that the perturbation potential itself is constant over the
entire surface. The somewhat obvious condition that the perturbation
velocity (u, v, w) is zero far in front of the body may need special
emphasis; neglect of this condlition has in the past sometimes led to
erroneous results (reference 1).

Some attentlon has been directed recently to a third case; namely,
that of an open tunnel in which the body is so far forward in the Jet that
the presence of the closed entrance bell cannot be neglected. This case
involves a mixed-boundary-value problem in which the normal velocity is
zero on the closed portion of the boundary and the longitudinal perturba-
tion velocity u 1is zero (or constant) over the open portion of the bound-
ary. An interesting further boundary condition arises here, namely, that
the flow velocities be continuous at the edge of the entrance bell. This
condition 1s similar to the Kutta condition at the trailing edge of an
alrfoil. It arises because of the finite viscosity of air, and it provides
uniqueness where otherwise an infinity of solutions would exist.
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BASIC VIEWPOINT |

The approach to the problem usually follows a fairly well defined
pattern, although variations are sometimes necessary. In general, no
effort is made to predict the complete flow and the corresponding aero-
dynamic characteristics for the model in the tunnel. These are normally
measured by the wind-tunnel survey apparatus, the wind-tumnel balances,
or other measuring equipment. The usual problem is rather to determine,
primarily, by how much the presence of the tunnel boundaries modifies
the "free-stream" flow at the model location and, secondly, by how much
the model characteristics are altered by this flow modification.

The mathematical approach, for example, is first to assume within
the model a set of singularities - sources, sinks, doublets, vortices -
that, on the basis of model geometry, air-flow measurements, force
measurements, and any other sources of information, are believed to
effectively represent the contribution of the model to the flow field.
These singularities induce a field that, in general, violates the desired
condltion at the tunnel boundary. An additional potential flow is now
sought, having singulerities only on or outside the tumnel boundary, such
that when it is added to the field of the model, the desired boundary
conditions will be satisfied. This additional flow is called the tunnel
interference flow. Its determination and, in particular, its evaluation
in the neighborhood of the model constitutes the previously mentioned
primary provlem. Vertical components of this additional flow are nor-
mally interpreted (after division by the main tumnel velocity) as a
correction to the local flow angle; horizontal components are normally
interpreted as a correction to the tunnel wvelocity.

In figure 1 is indicated an airplane model in a closed wind tunnel,
together with several of the more important components of the inter-
ference flow. Assoclated with the 1lift of the model is a strong down-
flow of the air behind it; and the corresponding tunnel interference
flow is essentially an upflow which neutralizes the downflow at the walls
and, in the neighborhood of the model, introduces the upflow velocities
indicated in the figure. The upflow velocity has a certain value near
the wing, rapidly approaches twice this value behind the wing, and
rapidly approaches zero in front of the wing. Since the 1ift of an air-
foil section in a curved flow is determined roughly by the angle of
attack as measured at the three-quarter-chord point, the upflow at the
three-quarter-chord line is used to correct the angle of attack of the
airplane. Since the 1ift itself (or the bound vorticity) is centered
about the quarter-chord line, however, the drag correction is determined
from the product of the 1lift and the upflow velocity at the quarter-chord
line. This flow curvature is effectively an induced camber of the wing
and results in & corresponding change in the wing moment and in its maxi-
mum 1ift coefficient. Since the upflow at the tall is greater than that
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at the wing three-quarter-chord line, the difference must be applied as
a correction to the stabilizer setting or to the downwash angle. A
correction would also be applied for the additional moment of the fuse-
lage caused by its presence in a curved flow field.

Because the tunnel walls prevent the normal outward displacement of
the streamlines about the model, there is a corresponding effective
increase of the airspeed in the neighborhood of the body (constriction
effect), indicated by the horizontal vector at the left of figure 1. If
the drag of the model becomes fairly high, as In tests with extended flaps
or at supercritical sgpeeds, a large wake of slowly moving air exists
downstream of the model, and the surrounding air of the main stream
experiences a corresponding velocity increase that persists far behind
the model (indicated by the horizontal vector at the right of the figure).
Somewhat over half of this increase is considered to apply in the neighbor-
hood of the model itself, in addition to the normal constriction effect
due to the volume of the body; the sum is indicated by the horizontal
vector near the center of the figure. Assoclated with the longitudinal
increase of velocity along the model resulting from the wake, there 1s a
decrease of stiream static pressure toward the rear of the model. Corre-
sponding to this effect is a longitudinal buoyancy force, roughly equal
to the product of the model volume and the pressure gradient, which should
be applied as a correction to the drag. Normally, however, this last
correction is fairly small, and it may be noted, in any case, that if this
longitudinal pressure gradient is large enough to cause a falrly large
correction, it may also appreclably affect the flow phenomsna, such asg
separation, assoclated with the high drag.

METHODS OF SOLUTION

Almost any Interference problem for two-dimensional closed tunnels
can be solved by complex-variable methods. The interference is merely the
field of the system of mirror images of the model extending to infinity
above and below the model. If the model can be considered as adequately
represented by several simple singularities - for example, a doublet and
a vortex - the interference field is simple to compute since the flow
fields for infinite rows of such singularities are given by relatively
simple expressions (references 2 and 3). For the exact solution of an
airfoil in a closed tunnel, modern cascade theory provides applicable
methods (reference 4). Corresponding solutions for an open two-dimensional
tunnel (that is, a tunnel with vertical walls, but open at the top and
bottom) can be similarly derived. Solutions for singularities in the open
tunnel with closed entrance and exit regions are also readily possible
(references 5 and 6). In all such solutions for an open tunnel, however,
1t 1s assumed that the tunnel boundary is not appreciably deformed by the
gingularities within the Jet. Various experimental results indicate that
this assumption introduces no significant error in the interference flow
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near the airfoll but may lead to some error in the region behind the
airfoil (references 7 and 8). Exact solutions, teking into account the
boundary deformation, have been obtained for special cases (reference 9);
in general, however, the deformation is not considered.

For three-dimensional tunnels the problem is mch more difficult.
For a small-chord, unswept, and unyawed wing, however, the interference at
the wing can be readily shown to reduce to a two-dimensional flow problem -
that of a vortex within a contour having the shape of the tumnel cross
section and on which the normal or the tangential velocity is zero for the
closed or the open tunnel, respectively. Many interesting two-dimensional
problems of this nature have been solved by complex-variable methods (for
excmple, references 10 to 12). For the interference at swept or yawed
wings, or for the problem of corrections to the downwash angle at the tall,
no similar simplification is possible.

For rectangular tunnels with closed, open, or partly open cross
sections, solutions can be obtained by the method of images in which the
interference field is that due to the doubly infinite array of mirror imsges
of the model reflected in the tunnel walls (reference 13). The infinite
summation can generally be readily approximated with adequate accuracy.

. For singularities within circular tunnels, solutions can be found by
cxpansions in Bessel functions (references 14 to 16); either the open or
the closed tunnel, or- the open tumnnel with closed entrance and exit
regions, can be treated in this way (reference 17). Solutions for ellip-
tical tunnels are found in terms of Mathieu functions (reference 1k4).

For tunnels of other cross-section shapes, as the NACA full-scale
tunnels or the octagonal tunnels, results for the nearest rectangle or the
nearest ellipse or, perhaps, an average of the results for the nearest
rectangle and the nearest ellipse may be used. An indication of the accu-
racy of such an approximation (and also some indication of the direction
in which further modification might be made) can be found by comparing the
estimated interference flow at an unswept lifting line with that for the
true shape (whlch as previously mentioned, can be rigorously solved as a
two-dimensional prdblem)

It may also be mentioned that solutions of the boundary-value problems
that arise in the study of tunnel interference can be found by electrical-
analogy methods (references 18 and 19) or by empirical comparisons between
the characteristics of the model in the tunnel and those of the same model
in a tunnel that is so large relative to the model that interference 1is
negligible (reference 7).

It i1s not possible in the present paper to describe in’ further detail
any of the solution procedures that have Just been mentioned or the analy-
tical studies that have been made of the reaction of the model to the
interference flows (for example, reference 20). Instead, in the remainder of
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the paper are dilscussed several problems that may be of interest to those
currently associated with wind-tumnel laboratories, namely, tunnel inter-
ference for swept wings, compressibility corrections, and choking.

TUNNEL INTERFERENCE FOR SWEPT WINGS

It might be supposed that, in order to be prepared with tunnel-
interference calculations for any swept wing that might be proposed for
test in a given tumnel, calculations would be needed for a series of wings
having a range of sweep angles and a rangs of spans - that is, a two-
parameter set of calculations. Actually, however, such extensive calcu-
lations are quite unnecessary, at least for rectangular tunnels. Consider
the sweptback wing (yawed for greater gpnerality) shown at the top center
of figure 2. Associated with some point concentration of 1ift on the wing
is a horseshoe vortex of zero span (that is, a doublet line) extending
dovnstream to infinity from the point. The lower part of figure 2 shows
the rear view of the wing in the tunnel, together with the doublet line
and the image system of tumnels and doublet lines. The doublets are marked
plus or minus according as they are the same as or opposite toc the wing
doublet. Examination of the doublet system shows that it is composed of
two superimposed lattices, one of which is indicated by circles and the
other, by squares. The vertical spacing in each lattice is equal to the
tunnel height; the lateral spacing in each is equal to twice the tunnel
width. The two lattices are thus identical and, furthermore, are deter-
mined only by the tunnel dimensions and not by the location of the lifting
element in the tunnel. Accordingly, once the field of such a lattice has
been calculated for the horizontal center plane of the tunnel, it can be
used for determining the complete flow field regardless of the location
of the lifting element. The interference flow field for the given lifting
element is found by subtracting from the field of the two complete lattices
the field of the single doublet that trails from the lifting element itself.
Finally, by repeating the indicated procedures for a series of lifting
oelements on the wing, distributed according to the estimated wing 1lift
distribution, the net tunnel interference is obtained.

Contour charts of the vertical component of the flow in the field
of the lattice have been prepared for several NWACA tunnels, including
the 7- by 10-foot tunmels. '

This procedure would not apply to nonrectangular tunnels. For cir-
cular tunnels, the NACA has published fairly complete interference fields
for 1ifting lines of various spans and various sweep angles (reference 15).
The sweep angles do not exceed 45°; however, it should be pointed out that,
when necessary, interference calculations for any sweep angle can be used
for any other sweep angle. This fact follows from the observation that a
reasonably rough approximation to the wing loading is generally adequate
for predicting tunnel interference; and the procedure is illustrated in
figure 3. In the left half of the figure is shown how the loading on a
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60° swept wing may be approximated by a single horseshoe vortex and two
pairs of unswept horseshoe vortices, where the inner vortex of each pair
has the same strength as the superimposed outer vortex but has opposite
rotation. In the right half of the figure is shown similarly how a palr
of horseshoe vortices and a single horseshoe vortex, all swept h5°, might
be used for the same purpose.

FIRST-ORDER COMPRESSIBILITY CORRECTIONS

Consider a streamline obJect (fig. 4, upper left) in the (x, y, z)
space, to be flown or tested at Mach number M and velocity U. It is
desired to predict the perturbation velocities (u, v, w) at varlous
points on the obJect or in the field about the obJect. According to the
Glavert-Prandtl method, which takes into account only the first-order
compressibility effects, the procedure for predicting the perturbation
velocities involves the three following steps. (A short derivation of
this procedure is given in the appendix. See also references 21 to 23.)°

1. An obJect is constructed in the x', y', z' space that is related
to the physical obJject according to the relations

X':-—-:—x—-—-
1-M

yl.zy

z' = 2

Essentially, this corresponds merely to a longitudinal stretching of the

obJect by the factor ___JL___ . For the model indicated in the figure,

Vi
the fineness ratio of the fuselage, the wing chord, and the sweepback
angle are increased by this stretching; the aspect ratio, the wing thick-
ness ratio, and the angle of attack are reduced. If the model 1s in a
tunnel, the cross section of the tunnel remains unchanged. :

2. The incompressible flow about this elongated body is found.
Specifically, the perturbation velocities u', v', w' .on, or near, the
obJect are found for an incompressible flow of stream velocity - U. The
problem of determining this flow may, of course, be quite difficult; how-
ever, since 1t is an incompressible-flow problem, it can presumably be
solved by known methods.
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3. The desired perturbatiocn velocities u, v, w in the desired
compressible flow are related to the perturbation velocities u', v', w
in the incompressible flow about the elongated object at corresponding
points by the following equations:

1

u = u
1-M

V"‘—-——-—--—-v‘
Vi-wm

W = 'w?

To within the accuracy of the firgt-order approximation, this
procedure applies for determining veloclitles on the object in flight or
in the tumnel, or for determining tunnel interference velocities. In
particular, constriction corrections are found by first determining the
constriction effect in the x', y', z' space and then multiplying

by ——iL——. Angle-of-attack or downwash-angle corrections are found by

1 - M2

first determining the correction in the x', y', z' space and then

mltiplying by -V==§&==§. The measured 1ift multiplied by dl - M2
V1l-Mm ’

gives the value of the lift that should be assumed for the incompressible
flow in the x', y', z' 9gpace. Because the aerodynamic characteristics
of the elongated obJect, in general, may bear no simple relation to thosze
of the actual object in low-speed flight, combining the preceding thres
steps into a simple formula for the "compressibility effect" on tunnel
interference is not possible for most cases. The constriction effect on
short obJjects, however, does permit such a simple correction formula.

Congider an airfoil in a two-dimensional closed tunnel. It is
roughly represented by a source-sink body on the left side of figure 5,
where are also shown the nearest images. The constriction effect is
merely the velocity contributed by these images in the region of the body.
For incompressible flow, the constriction of the first upper image is
indicated by the wvelocity vectors shown. The lower vector is due to the
Source at the nose of the image; the upper vector is due to the sink at
the rear of the image; and the short horizontal vector is the resultant.
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A similar construction applies to all the other images. Now, if the
constriction effect at some Mach number M 1is desired, it is first
necesgssary to construct an elongated body and determine i1ts interference
in incompressible flow. Examination of the right side of figure 5

shows that, if the body is elongated by ———t—, the constriction
: 1. M
velocity due to the first image is roughly — 31 as much as before,
2
- l1-M

and similarly for the constriction velocity due to all the other images.
If now, according to step 3 of the indicated procedure, this increase is

multiplied by ——JL——,' it follows that the constriction effect for a

1 -

reasonably short body in the tunnel varles as . Furthermore,

-1
ANTIE

although the preceding derivation was for an airfoil in a two-dimensional
tunnel, it can be readily seen that the ildentical derivation method and
final formule would apply for the open two-dimensional tunnel or for a
body in a threse-dimensional tunnel, elther open or closed (reference 24).

From considerations of the field of the airfoill and its images in
the two-dimensional closed-tunnel case, a simple rule can be derived for
the body-constriction effect in the absence of an appreciable wake, namely,
that the constriction effect at the airfoll is one-third the total wveloc-
ity increase at the wall opposite the airfoil. This ruie, which applies
for both compressible and incompressible flow, provides a means of esti-
mating the constriction effect from simple pressure measurements at the
wall. For bodies in thres-dimensional tunnels the factor is about one-
half.

CHOKING

The choking speed of a closed tunnel contalning & model is that speed
for which the passage around the model serves roughly as a sonic throat
and prevents further increase of the flow. Although all the flow in this
minimum section may not be precisely at sonic speed, the choking speed is
usually fairly accurately predicted, on the basls of the one-dimensional
flow equations, from the ratio of the tunnel cross-sectlional area to the
minimim cross-sectional area of the passage around the model. After this
condition has been reached, any further reduction of the back pressure
results merely in an increase in the extent of the supersonic flow region
Just after the minimum without increasing the flow quantity or the up-
stream Mach number. Any measurements made under such conditions will
obviously bear no relation to the characteristics of the model in flight.
The question still remains, however, as to whether results obtained Jjust
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at choking are meaningful, or, if not, what is the highest Mach number
for which meaningful results can be obtained. Certain investigators

havé concluded that tunnel Mach numbers should not be closer than 0.02

to 0.03 to the choking Mach numbers; others, by comparing results for
models of different size in the same tunnel, have concluded that the

safe margin is 0.04 to 0.05, depending on the model size (reference 25)3
still others have concentrated on the study of constriction effects almost
up to choking itself, presumably with the hope of using the measure-
ments made under such conditions. A review of these studies seems %o
indicate some variations among the types of results obtained in the differ-
ent tunnels. Possibly the differences are related to the differences in
relative boundary-layer thicknesses on the tunnel walls; in any case, 1t
seems desirable, for the present, that further studies be made in the
different wind tunnels where the problem arises.

Figure 6 illustrates the nature of the phenomena observed. Several
5-inch-chord airfoils were mounted across the Langley 2h-inch high-speed
tunnel and pressures were measured on the wall opposite the models
(reference 26). On the left side of the figures, these pressures, inter-
preted in terms of local wall Mach number, have been plotted against
distance along the wall for several tunnel indicated Mach numbers. It )
can be seen that the constriction effect is guite small at Mindicated = 0.602

but begins to become appreciable at 0.705. At higher Mach numbers it
becomes quite large and, in addition, the weke constriction effect becomes
very large (indicated by the fact that the wall Mach number downstream of
the model never returns to the wall Mach number upstream of the model).
Finally, Just before choking, the peak Mach number rises very rapidly
toward 1.0. On the right side of figure 6, the peak Mach number at the
wall has been plotted against tunnel indicated Mach number in order to show

more clearly how rapidly the peak Mach number rises Just before the tunnel
chokes. ’

In the case of the lifting airfoil (fig. 7, left side), a variation of
the choking problem arises. The stagnation streamline effectively splits
the flow into two parts which pass, respectively, above and below the
airfoil. The distribution of cross-sectional areas, generally, 1s such that
choking of the upper passage, in the region just above the airfoil leading
edge, occurs before choking of the lower passage. In this case, the tumnel
flow quantity can continue to increase until the lower passage is also
choked, although, obviously, any data obtained in this flow regime bears no
relation to the true airfoil characteristics. It is therefore desirable to
determine, by some means other than observation of the tunnel indicated
Mach number, the existence of a chcked condition in the upper passage.
Pregsure orifices on the wall opposite the model should be useful to detect
the approach of choking, as shown in figure 6. It may also be possible to
compute the streamline pattern by the method previously discussed (indicated
on the right of fig. 7) - the airfoil is considered to be elongated in the

V1o

gtream direction by the factor and the incompressible flow
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pattern about this airfoil 1s determined. The area ratios above the
stagnation streamline in this flow should apply to the compressible flow.
Determination of the location of this streamline involves the solution

of the flow in the infinite double cascade of airfoils consisting of the
airfoil and all its mirror images. (The cascade 1s referred to as
"double” because it consists of two superimposed cascades, one containing
alrfoils at a positive angle of attack and one containing airfoils at a
negative angle of attack.) Although modern cascade theory can provide
exact solutions to this flow, an approximate solution, such as that calcu-
lated in reference 27, should be satisfactory for this purpose.

Unsymmetrical choking of a type similar to that just discussed is a
basic characteristic of any test setup in which the model supports extend
below the model tc the floor of the tummel. The normal slight asymmetry
introduced by such supports at low speeds becomes progressively more
pronounced as the Mach number increases, and, finally, choking occurs in
the region between the supports or perhaps in most of the region below
the wing. Such a support system therefore becomes quite unacceptable at
high speeds, and other arrangements have accordingly been developed. In
one of these, a half-span model 1s mounted from the tunnel wall or, to
avoid the thick wall boundary layer, from a plate in the center of the
tunnel. In another arrangement, the complete model is supported from a
sting at the rear.

The use of an open instead of a closed tunnel is also of interest
with regard to choking (reference 28). At the lower speeds, the tunnel
constriction effect is, In any case, about half as much as for a closed
tunnel (and of opposite sign); and at very high speeds it offers the
advantages that the wake constriction effect is inappreciable and that
choking in the sense previously described camnot occur. The disadvantages
of the open tunnel are, of course, the greater flow irregularity and the
lower energy ratio, as compared with the closed tunnel.
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APPENDIX
THE PRANDTL-GLAUERT METHOD FOR THREE-DIMENSIONAL FLOW

A brief derivation of a form of the Prandtl-Glauert method, correct
for three dimensions, may be given as follows: A first-ordsr approxi-
mation to the subsonic compressible flow about a thin body B, the sur-
face of which has the equation

S(x, y, z) =0

may be obtained by finding a solution of the linearized differential
equation for the potential @ of the Incremental velocities,

By + Pyy + Pyy = O (A1)

. where the x-axis is in the stream direction and the increméntal velocities
Py s cpy, and @, are small compared with the stream veloclty TU. At all

points on the surface of B, the potential ¢ must satisfy the boundary
condition

(U + qJX) Sg + @3Sy + 9,5, = 0 (a2)

which states that the flow is tangential to B. Since B 1is assumed
thin, Sx is small compared with Sy and S, consequently, the second-

order term @45, may be neglected, and the boundary condition becomes

USy + PySy + 9,8, = 0
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In order to solve the boundary-value problem given by equations (Al)
and (A2) in terms of incompressible flow, the following transformation of
variables is used

j (43)
Bo

Under this transformation, equations [Al) and (A2) become, respectively,

M
I
™|

cpi

q)'xlxl + q)'y—y- + q)'zz = O (A)'")

\

st' + @'ysy + @'ZSZ =0 (a5)

Equations (AL) and (A5) are, respectively, the differential equation and
boundary condition for the potential @' of the incremsntal velocities o
an incompressible flow with free-stream velocity U, in the x', J, 2
space, about a thin body B', the surface of which has the equation

sS(Bx', y, z) =0

The incremsntal velocities in the compressible flow are thus given Yy

-

u:cpx—gj;e.q)‘xl"_ﬁg'éu'
- _ Lot _ 1 1
V—pr—EQ)y-—B-V

where u, v, and w and u', v', and w' are the incremental velocities
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at corresponding points in the compressible flow about B and the
incompressible flow about B', respectively.

The foregoing analysis establishes the Prandtl-Glauert method for
three-dimensional flow in the following form: The incremental velocities
at a point P on the surface of a thin body B in compressible flow may
be obtained in three steps:

(1) The x-coordinates -of all points of B are increased by the factor
1/B, whers

8= {1 -2

and where the x-axis 1s in the stream direction. This transformation
changes B into a stretched body B'.

(2) The incremental velocities u', v', w', in the direction of the
X-, y-, and z-axes, respectively, at the point P' on B' corresponding
to the point P on B are calculated as though B' were in an incompress-

ible flow having the same free-stream velocity as the original compressible
flow.

(3) The values u, v, and w of the incremental velocities at the
point P on the original unstretched body B in compressible flow are
then found by the equations

B
V=£V"
B
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Figure 1.~ Airplane model in closed wind tunnel. Several of more
important components of interference flow shown.
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Figure 2.- Image system of doublets for a lifting element in a closed
rectangular wind tunnel.
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Figure 3.- Representations of the loading on a 60° swept wing by means
of horseshoe vortices of other sweep angles.
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Figure 4.~ Scheme for calculation of first-order compressibility effects.
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Figure 5.- Source-sink body in a two-dimensional tunnel, and its
nearest images.
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Figure 6.- Variation of wall Mach number with tunnel indicated Mach number.
Five-inch chord airfoils in the Langley 24 -inch high-speed tunnel.
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Figure 7.- TFigure illustrating calculation of choking for a lifting airfoil in a
closed two-dimensional tunnel.





