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TWO -DIMENSIONAL SUPERSONIC WING THEORY
By Walter G. Vincenti

Ames Aeronautical ILaboratory
INTRODUCTION

The problem of an airfoil section in two-dimensional supersonic
flow, which is fundamental to a consideration of other, more general
wing problems in supersonic flight, was first treated theoretically in
a paper by Ackesret published in Germany in 1925. Shortly thereafter -
in 1928 - experimental results were reported in England by Stanton. As
a result of the work of these and a number of later investigators, the
fundamentals of the problem were well, though perhaps not widely, under-
stood before the begimning of World War II. During the wartime and
postwar periods, detailed advances in both theory and experiment have
been made, as well as increased application of the available kmowledge,
usually on clasgified projects. The fundamental ideas in the field,
however, can be discussed almost completely in terms of results available
prior to 1940.

FUNDAMENT AL CONSIDERATIONS OF

SUPERSONIC FLOW

Before proceeding to the discussion of the theory, it i1s desirable
to review briefly the fundamental difference between subsonic and super-
sonic flow (references 1 to 4). This difference is illustrated in
figure 1, which shows the wave pattern set up by a disturbance point in
both a steady subsonic stream and supersonic stream. In either case, if
the disturbances from the point are small, each elementary disturbance
is propagated spherically at the speed of sound relative to the moving
stream. Because of the motion of the stream, however, the center of
each elementary sphere is at the same time carried downstream relative
to the original source of the disturbance. If the speed of the stream
is less than the speed of sound, as shown on the left in figure 1, the
elementary disturbances will travel upstream against the flow faster
than their centers are swept downstream. As a result, the disturbances
move ahead of their source and affect all parts of the flow field. In a
supersonic gtream, as shown on the right in this figure, the centers of
the disturbance spheres are carried downstream faster than the disturbance
iteelf can be propagated forward. As a result, all disturbances in the
gupersonic stream are confined to the interior of a cone known as the
Mach cone. The flow outside this region i1s, so to speak, unaware of the
presence of any disturbance. It is apparent that the greater the super-
sonic speed, the smaller the included angle at the apex of the Mach cone.
These simple congsiderations must be modified scmewhat if the disturbances
are not smally however, the results serve as a reasconable first approxi-
mation in most actual cases..
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The concept of the Mach cone has important implications with regard
to the applicability of two-dimensional theory and data to parts of
three-dimensional wings. The relationship of this concept to three-
dimensional wings is illustrated in figure 2. In the case of the
straight wing, for example, the effect of the finite span of the wing is
confined approximately to conical regions extending downstream from the
leading edge of each tip. The flow over the remainder of the wing
(shaded area) is not influenced by the presence of the tips and this
shaded area 1s thus a region of two-dimensional flow. For the more
complex plan forms shown, the flow over the shaded regions is similarly
unaffected by the presence of the tips and, for these examples, of the
root of the wing as well. Within these regions the flow can be treated
as essentislly two-dimensional by utilizing the components of the flow
quantities and deflection angles normal to the swept straight-line
elements which generate the wing surface (reference 5).

FLOW FIELD ABOUT AN ATRFOIL SECTION

With this background, consider the general character of the two-
dimensional flow field about an airfoil section at supersonic speed.
Figure 3 is a diagram of the idealized, inviscid flow around a simple,
double-wedge section at angle of attack for a free-stiream Mach number of
approximately 2. The pattern shown 1s that predicted by theory when the
local velocity in the flow field is everywhere supersonic. In accordance
with the previous considerations of supersonic flow, the oncoming stream
(fig. 3) continues undisturbed until it reaches the region of influence
of the airfoil. Within this region the flow changes are of two general
kinds. When the flow is turned around a concave corner, as on the lower
surface at the leading edge, a compression takes place. When the flow
is turned around a convex corner, as on the upper surface at the same
location, an expanslon results. The compression from the concave corner
takes place discontinuously through an obligue shock wave with an accom-
panying dissipation of energy - that is, with an increase in entropy.

The expansion takes place continuously and isentropically in a fan-ghaped
region originating at the convex corner. Thus, i1f the flow is along a
streamline some distance above the present airfoil, the air first under-
goes reductions in pressure through two successive expansion regions, one
originating at the leading edge and one at the ridge line, and 1s then
recompressed by a shock wave originating at the trailing edge. The air
beneath the lower surface is, in the same general manner, first compressed
through a shock wave and then successlvely expanded through two expansion
regions. It is interesting to note that along the surface of the airfoil
itself the expansions as well as the compressions take place discontinu-
ougly. Thus, contrary to the condition which would exist in subsonic flow,
there is no stagnation point in the vicinity of the leading edge and no
tendency toward an infinite velocity at the sharp convex corners.

As the angle of attack of the airfoil is changed, the flow pattern
will, of course, change correspondingly. In particular, the flow
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disturbance on a given surface at the leading or tralling edge will
change from an expansion to a compression, or vice versa, as the
required deflection of the stream 1s altered. Of more importance, as
the angle of attack is increased, a condition is eventually reached in
which the flow behind the shock wave at the leading edge is no longer
gupersonic but becomes subsonic instead. At a glightly higher angle of
attack, the wave detaches and moves forward of the airfoil. These
latter effects also occur at a given angle of attack when the Mach
number is reduced toward unity. Once such changes have taken place, the
entire character of the flow pattern is altered and the purely supersonic
considerations of the foregoing discussion no longer apply-.

For simplicity, the discussion herein has been carried out in terms
of a simple, flat-gided section. The same considerations apply to a
curved profile so long as the leading edge is sharp, except that in such
a case the expansion along the convex curved surface takes place gradu-
ally rather than discontinuously. (The restriction of the discussion to
airfoils with a sharp leading edge is of no serious consequence, since an
edge of this type appears desirable for optimum performsnce in the two-
dimensional case when the velocity is more than slightly supersonic.)

METHODS OF ANALYSIS

Several theoretlcal methods are available for determining the
characteristics of an airfoll in -a two-dimensional supersonic flow. The
methods all assume that the fluid is inviscid, that the leading and
trailing edges of the airfoll are sharp, that any shock waves originating
from these edges are attached to the airfoil, and that the flow behind
the leading-edge shock wave is supersonic. They differ only in the
degree of mathematical accuracy involved. In order of decreasing
accuracy, the methods may be described as the shock-expansion theory,
the second-order theory, and the linear (or first-order) theory.

Shock-Expansion Theory

The shock-expansion method follows directly from the application to
the airfoil problem of known analytical results for an oblique shock
wave and an expansion region (references 1 to 3 and 6 to 9). From simple
considerations of momentum, energy, and continuity, the change in
pressure and Mach number across a single shock wave can be calculated in
terms of the Mach number of the oncoming flow and the angle of deflection
of the flow in passing through the wave. ‘Similar results can be obtained
for an isclated expansion region. On the basis of these results together
with the assumption that interaction effects between the individual
shock waves and expansion regions are negligible, the pressure distri-
bution over the airfoil surface can be calculated by a step-by-step
procedure beginning at the leading edge and proceeding rcarward (refer-
ences 10 and 11). For example, on the lower surface of the double-wedge
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section in figure 3, if the free-stream Mach number and the deflection
angle at the leading edge are known, the pressure and Mach number on the
forward lower surface can be found from the equations for an oblique
shock wave. By use of these gquantities to provide the initial conditions
for the flow approaching the ridge line, the pressure oa the rear lower
gurface can then be found from the known results for an expansion.
Because of the nature of the equations for an expansion, the procedure
applies equally well to & section with a curved profile. Once the
complete pressure distribution is kmown, the lift, pitching moment, and
pressure drag of the airfoil are determined by graphical or numerical
integration.

As compared with the theories to be discussed later, the shock-
expansion method has the advantage of greater mathematical accuracy; in
fact, in instances for which the assumption of no effective interference
between the shock waves and expansion regions is satisfied, the method
provides the complete inviscid solution to the problem. (The case
illustrated in figure 3 can be shown to be of this type since the regions
of flow influenced by the eventual intersections of the different dis-
turbances lie completely downstream of the airfoil.) In other instances,
notably on airfoils with curved surfaces, some interference does occur -
with a resulting approximation in the theory. The main disadvantage of
the method, however, is that no analytical expressions are provided for
the section characteristics, a separate set of calculations being
required for each airfoil at each angle of attack.

-

Second -Order and Linear Theories

The disadvantege of the shock-expansion theory is overcome, at the
expense of further approximation, by the second-order and linear
theories (references 12 to 15). The relationship upon which these
theories are based is given as equation (1) in figure 4. This equation,
which 1s derived by series approximation to the complete equations for
two-dimensional supersonic flow, expresses the pressure coefficient P
at any point on the airfoil in terms of ascending powers of the local
deflection angle mn. The coefficients of the terms in the series are
functions primarily of the free-stream Mach number Mb and, secondarily

of the ratio of the specific heats of the gas 7. By proper definition
of the sign of the angle 7 - positive when the surface is facing toward
the oncoming free stream and negative when facing away from the oncoming
free stream (see diagram In fig. 4) - and by limitation of the power
series to the first two terms, the same equation can be made to serve

for both a compression and an expansion. This result illustrates the
fact that In a given supersonic gtream the pressure at a point on an air-
foil in two-dimensicnzl [low 1s, to the second order of approximation,
determined solely by the local inclination of the airfeil surface. This
i8 contrary to the situation in subsonic theory, in which the conditions
atl one point n an alrfoil section depend, even to the first order, upon
conditions al every other point.
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On the basis of the foregoing simple result for the surface pressure,
general second-order expressions for the 1lift, pitching-moment, and
pressure-drag characteristics of any airfoil section can be obtained by
direct integration. The final equations involve the coefficients Cl

and CE’ the angle of attack of the airfoll, and certain simple integrals

which depend upon the airfoll shape only. These equations have been
worked out in their most general form by Lock (references 15 and 8). For
cases in which the shape of the airfoil can be expressed analytically,
the integrals involved are readily evaluated to obtain direct equations
for the airfoil characteristics In terms of the parameters which define
the profile. These results are especlally useful in studying the effects
of systematic variation in thickness and camber for families of sections.

When both the terms C; and Co, are retained, the general equations
(see fig. 4) constitute the second-order theory. If the coefficient Cs

is in all cases set equal to zero, a linear (or first-order) theory is
obtained. This latter approximation, which is sufficient for many pur-
poses, is also known as the Ackeret theory since the linear theory was
first proposed by Ackeret in hils original treatment of the supersonic
airfoil problem (reference 12). This elementary theory leads to certain
exceedingly simple results. It indicates, for example, that the aero-
dynamic center of the airfoil 1s at midchord irrespective of the shape

- of the section and that the minimum pressure drag for a family of sections
of given thickness distribution varies as the square of the thickness
ratio. The second-order approximation, which modifies these results some-
what, was developed by Busemann (reference 14) at a later date when it was
found that certain of the first-order results were not in complete accord
with experiment. It is interesting to note, however, that even to the
second order the lift-curve slope (per radian) for any airfoil section

N
V2 -1

COMPARTSON BETWEEN THEORY AND EXPERTMENT

has the simple value of 2C; or

Since the various theoretical methods have been reviewed, a
comparison of the theoretical and experimental results for spec1f c air-
foils can now be made.

Pressure Distribution

Of first interest is an examination of a typical pressure distri-
bution. Calculated and measured results are shown in figure 5 for a
10-percent -thick symmetrical, biconvex section at a Mach number of 2.13

and an angle of attack of 10°. The local pressure is plotted in
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coefficient form as a function of the chordwise position; positive
pressures are plotted below the horizontal axis and negalive pressures,
above. The pressure distributions calculated by the three theories are
indicated by different lines in the figure. Experimental data obtained,
as part of an extensive investigation, by Ferri (reference 16) are
shown as individual points.

A noticeable improvement is seen in the accuracy of the theoretical
calculations in going from the linear to the more refined theories.
Over most of the section, both the second-order and shock-expansion
theorles show reasonable agreement with experiment although the check is
slightly better when the shock-expansion theory is used. Over the rear
LO percent of the upper surface, however, the experimental pressures
depart noticeably from the values given by any of the theories.

The discrepancy between the theoretical pressure distributions
calculated by the linear theory and those calculated by the more precise
theories has, curlously enough, little effect upon the value of the
integrated lift. In fact, the area between the curves for the upper and
lower surfaces, which gives a representation of the lift, is exactly the
same for the linear and second-order theories. In other words, these
two theories, although they disagree in chordwise 1lift distribution,
agree in the value of the total 1lift for the present section. It is
apparent from the difference in 1ift distribution, however, that the
second -order theory gives a position of the center of pressure (or aero-
dynamic center) forward of that predicted by the linear theory. (The
discrepancies noted between the various theories would, of course, be
smaller for thinmner alrfoils and at lower angles of attack )

The failure of even the higher-order theories to predict the
pressure distribution over the rear part of the upper surface is known
to be due to shock-wave, boundary-layer interaction (reference 16). As
was previously indicated (see fig. 3), the idealized inviscid flow over
a lifting airfoil section is characterized by an oblique compression
wave originating on the upper surface at the trailing edge. In the
real, viscous fluid the flow pattern is modified by an interaction
between this trailing wave and the boundary layer on the airfoil surface.
The boundary layer separates from the upper surface some distance ahead
of the trailing edge, with the formation of a weak compression wave at
the separation point and a consequent increase in pressure between this
point and the trailing edge.

The difference between the pressure distributions shown herein and
those characteristic of an airfoll in subsonic flow is apparent. Hers,
the pressures on both surfaces of the section decrease progressively
toward the trailing edge with no pressure recovery such as that which
occurs Iin the subsonic case. Thisg lack of pressure recovery over the
rear of the section at supersonic speeds gives rise, even in the theo-
retical inviscid flow, to an appreciable pressure drag. In the subsonic
case the drag in a two-dimensional inviscid flow is, of course, exactly
Zerd.
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Over-All Aerodynamic Characteristics

With the foregoing results in mind, consider the over-all charac-
teristics of & typical airfoil. Figure 6 presents theoretical and
experimental 1ift and moment results, at the same Mach number as before,
for a cambered, double-wedge airfoil of 6.3 percent thickness. A
gtraight -sided airfoil was chosen here, instead of the previous biconvex
section, in order to simplify the calculations by the shock-expansion
method.

As Indicated from the plot of 1lift coefficient and angle of
attack, the three theories give approximately the same lift-curve slope,
at least at small angles. A curve through the experimental points,
taken again from the results of Ferri (reference 16), would have a slope
about 10 percent less than the common theoretical value. This reduction
is due to the shock-wave, boundary-layer interaction previously
discussed. With regard to the angle of zero lift, the linear theory
shows a value of exactly zero.' The higher-order theories show a small
positive value in agreement with experiment. (This experimental result,
incidentally, is in direct contrast with the result in subsonic flow,
where positive camber leads to a negative angle for zero lift.) In
general, 1t may be said that the check between theory and experiment
with regard to 1ift is within accepteble practical limits.

The agreement with regard to pitching moment is generally less
satisfactory. In figure 6 the moment coefficient of the double-wedge
airfoil - for moments taken sbout the midchord point - is plotted as
a function of the 1lift coefficient. The inclination of the moment
curves toward the right may be teken as an approximate measure of the
displacement of the aerodynamic center forward of the midchord. The
experimental moment coefficients are seen to be more positive than the
theoretical at all 1lift coefficlents. A straight line through the
experimental data would indicate a position of the aerodynamic center
forward of the midchord by about 9 percent of the airfoil chord. This
displacement ig significantly greater than the theoretical displacement
of zero according to the linear theory or of 4 percent according to the
gecond -order and shock-expansion theories. Both the general positive
shift in the experimental moment coefficients and the relatively forward
displacement of the aerodynamic center are attributable to shock-wave,
boundary-layer interaction on the upper surface near the trailing edge.

Drag results for the double-wedge airfoil are shown in figure 7 as
a functlion of the 1lift coefficient. Theory indicates that the variation
of pressure drag with 1ift is essentially parabolic - exactly so in the
cage of the linear and second-order theories, nearly so in the case of
the shock-expansion method. The second -order and shock-expansion
theories give virtually coincident curves. It is seen that the experi-
mental data agree falrly closely with these latter results. The exact
agreement In the magnitude of the minimum drag is at first surprising.
The effect of skin friction, which is completely neglected in the theory,
would be expected to raise the measured minimum drag relative to the
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theoretical value. This tendency is opposed, however, by the unexpectedly
high pressures in the vicinity of the trailing edge as the result of shock-
wave, boundary-layer Interaction.. These two effects are probably compen-
sating in the present case. Such compensation is not to be expected, how-
ever, on all airfoils or at all Mach numbers and Reynolds numbers.

The results of the foregoing figures are all for a single Mach number.
Figure 8 illustrates the typical effect of variation in Mach number upon
a glven section characteristic, in this case the drag coefficient at
zero angle of attack. The theoretical curves show an increase in the
pressure drag coefficient as the Mach number decreases toward unity. (The
linear and second-order theories give identical results in the present
case, though this fact is not always true.) The two available experi-
mental points confirm the theoretical tendency. The theoretical results
are, as previously implied, valid down to the Mach number at which the
flow behind the leading-edge shock wave becomes subsonic. Below this
point, the problem is one of mixed subsonic and supersonic flow; the
theoretical solutions to this problem are only now being developed.

CONCLUDING REMARKS

Only a brief outline of exlisting knowledge regarding the basic two-
dimensional wing problem at supersonic speeds has been presented. Many
subsidiary problems have been studied on the basis of the available
theories, including the effects of systematic variations in airfoil
shepe (reference 17), the properties of flaps (reference 18), the
influence of sweepback for cases in which two-dimensional theory is
applicable (reference 19), and the characteristics of two-dimensional
biplanes (references 20 and 21). For maeny such problems, valuable
results have been obtained with one or another of the inviscid theories,
depending upon the degree of accuracy required. In other cases, however,
such as those concerning the determination of the optimum alirfoil shape
for a given operating condition, consideration of the effects of viscosity
and the boundary layer is essential (reference 22). In the study of the
effects of viscosity and the boundary layer, in particular, there is an
opportunity for much valuable research.



333

APPENDIX

SYMBOLS
Cis Co coefficients in series expansicn for P
cy gection 1ift coefficient

section pitching-moment coefficient for moments about the
mc/2 midchord point

Cq gection drag coefficient
cda:O section drag coefficient at zero angle of attack
M, free -stream Mach number
jo! local static pressure at point on airfoil
? local pressure coefficient (Elé%29>
o)
Ps free-stream static pressure
4 free-gtream dynamic pressure
a angle of attack
y ratio of specific heats of gas (cp/cv>
Cp specific heat at constant pressure
Cy specific heat a2t constant volume
1 local inclination of surface of airfoil measured relative Lo

free-stream direction
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SUBSONIC SUPERSONIC
(Mg= 0.5) (Mg=2)

~_NACA —

Figure 1.- Disturbance point in subsonic flow and supersonic flow,

REGIONS OF
TWO-DIMENSIONAL FLOW ‘

{

Figure 2.- Regions of two-dimensional flow.



EXPANSIONS

Figure 3.- Idealized flow pattern about a double-wedge section at Mg = 2.

. Ps Pi:" =c'7')‘+czq)2 4+ .. (1)
WHERE (= —= (ACKERET)  (2)

Y+ Ms — 4 (M2-1)
2(M2-1)2

Ca= (BUSEMANN) (3)

~NACA

Figure 4.- Basic equations for linear and second-order theories.
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Figure 8.- Variation with Mach number of drag at zero angle of attack.





