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TWO -DLMESJSIONAL SUPERSONIC WING THEOBY 

By Walter G. Vincenti 

Ames Aeronautical Laboratory 

INTRODUCTION 

The problem of an a i r f o i l  section i n  two-dimensional supersonic 
flow, which is fundamental t o  a consideration of other, more general 
wing problems i n  supersonic f l i gh t ,  was f i r s t  t reated theoret ical ly  i n  
a paper by Ackare t published in Germany in 1925. Shortly thereaf ter  - 
in 1928 - experimental resu l t s  were reported i n  England by Stanton. As 
a r e su l t  of the work of these and a number of l a t e r  investigators,  the 
fundamentals of the problem were well, though perhaps not widely, under- 
stood before the beginning of World W a r  11. D u r i q  the wartime and 
postwar periods, detailed advances i n  both theory and experiment have 
been made, as  well as  increased application of the available knowledge, 
usually on c lass i f ied  projects.  The fundamental ideas i n  the f i e ld ,  
however, can be discussed almost completely i n  terms of r e su l t s  available 
p r io r  t o  1940. 

SUPERSomc F L O W  

Before proceeding t o  the discussion of the theory, it i s  desirakle 
t o  review brief ly  the fundamental difference between subsonic and super- 
sonic flow (references 1 t o  4) .  This difference i s  i l l u s t r a t ed  in  
figure 1, which shows the wave pat tern s e t  up by a disturbance point i n  
both a steady subsonic stream and supersonic stream. In e i the r  case, i f  
the disturbances from the point a re  small, each elementary disturbance 
is propagated spherically at the speed of sound re la t ive  t o  the moving 
stream. Because of the motion of the stream, however, the center of 
each elementary sphere is a t  the same time carr ied downstream re la t ive  
to  the or ig ina l  source of the disturbance. I f  the speed of th s  atream- 
is l e s s  than the speed of sound, as shown on the l e f t  i n  figure 1, the 
elementary disturbances w i l l  t r ave l  upstream against the flow f a s t e r  
than t h e i r  centers a re  swept downstream. A s  a resu l t ,  the disturbances 
move ahead of t h e i r  source and a f f e c t 3 1 1  par t s  of the flow f i e l d .  Xn a 
supersonic stream, as shown on the r ight  9n t h i s  figure,  the centers of 
the disturbance spheres a re  carr ied downstream f a s t e r  than the disturbance 
i t s e l f  can be propagated forward. As a . ' resu l t ,  a l l  disturbances i n  the 
supersonic stream are  confined t o  the in t e r io r  of a cone known as  the 
Mach cone. The flow outside t h i s  region is, so t o  speak, unaware of the 
presence of any disturbance. It is  apparent tha t  the greater  the suDer- 
sonic speed, the smaller the included angle a t  the apex of the Mach cone. 
These simple considerations must be modified somewhat i f  the disturbances 
m e  not  small; h3wever, the resu l t s  serve as a reasonable f i r s t  approxi- 
mation in most actual  cases.. 



The concept of the Mach cone has important implications with regard 
to the applicability of two-dimensional theory and data to parts of 
three-dimensional wings. The relationship of this concept to three- 
dimensional wings is illustrated in figure 2. In the case of the 
straight wing, for example, the effect of the finite span of the wing is 
confined approximately to conical regions extending downstream from the 
leading edge of each tip. The flow over the remainder of the wing 
(shaded area) is not influenced by the presence of the tips and this 
shaded area is thus a region of two-dimensional flow. For the more 
complex plan forme shown, the flow over the shaded regions is similarly 
unaffected by the presence of the tips and, for these examples, of the 
root of the wing as well. Within these regions the flow can be treated 
as essentially two-dimensional by utilizing the components of the flow 
quantities and deflection angles normal to the swept straight-line 
elements which generate the wing surface (reference 3) . 

FLOW FDLD ABOUT AN AIRFOIL SECTIOIJ 

With this background, consider the general character of the two- 
dimensional flow field about an airfoil section at supersonic speed. 
Figure 3 is a diagram of the idealized, inviscid flow around a simple, 
double-wedge section at angle of attack for a free-s~ream Mach number of 
approximately 2. The pattern shown is that predicted by theory when the 
local velocity in the flow field is everywhere supersonic. In accordance 
with the previous considerations of supersonic flow, the oncoming stream 
(fig. 3) continues undisturbed until it reaches the region of influence 
of the airfoil. Within this region the flow changes are of two general 
kinds. When the flow is turned around a concave corner, as on the lower 
surface at the leading edge, a comression takes place. When the flow 
is turned around a convex corner, as on the upper surface at the same 
location, an expansion results. The compression from the concave corner 
taken place discontinuously through an oblique shock wave with an accom- 
panying dissipation of energy - that is, with an increase in entropy. 
The expansion takes place continuously and isentropically in a fan-shaped 
region originating at the convex corner. Thus, if the flow is along a 
streamline some distance above the present airfoil, the air first under- 
goes reductions in pressure through two successive expansion regions, one 
originating at the leading edge and one at the ridge line, and is then 
recompressed by a shock wave originating at the trailing edge. The air 
beneath the lower surface is, in the same general mmner, first compressed 
through a shock wave and then successively expanded through two expansion 
regions. It is interesting to note that along the surface of the airfoil 
itself the expansions as well as the compressions take place discontinu- 
ously. Thus, contrary to the condition which would exist in subsonic flow, 
there is no stagnation point in the vicinity of the leading edge and no 
tendency toward an infinite velocity at the sharp convex corners. 

As the angle of attack of the airfoil is changed, the flow pattern 
will, of course, change correspondingly. Ln particular, the flow 



disturbance on a given surface a t  the leading or  t r a i l i n g  edge w i l l  
change from an expansion t o  a compression, o r  vice versa, as the 
required deflection of the stream is al tered.  Of more importance, as 
the angle of a t tack is  increased, a condition is eventually reached in 
which the flow behfid the shock wave at  the leading edge .is no longer 
supersonic but becomes subsonic instead. A t  a s l igh t ly  higher angle of 
attack, the wave detaches and moves forward of the a i r f o i l .  These 
l a t t e r  e f fec ts  a l so  occur a t  a given angle of a t tack  when the Mach 
nmiber is reduced toward unity. Once such changes have taken place, the 
en t i re  character of the flow pat tern is a l te red  and the purely supersonic 
considerations of the foregoing discussion no longer apply. 

For simplicity, the discussion herein has been carr ied out i n  t e r m  
of a simple, f la t -s ided section. The same considerations apply t o  a 
c w e d  p ro f i l e  so 'long as the leading edge i s  sharp, except that  i n  such 
a ease the expansion along the convex curved surface takes place gradu- 
ally ra the r  than discontinuously. (The r e s t r i c t ion  of the discussion t o  
a i r f o i l s  with a sharp leading edge is  of no serious consequence, since an 
edge of t h i s  type appears desirable f o r  optimum performance i n  the two- 
dimensional case when the velocity is more than s l igh t ly  supersonic.) 

Several theore t ica l  methods are available f o r  determining the 
character is t ics  of an a i r f o i l  in a two-dimensional supersonic flow. The 
methods a l l  assume tha t  the f l u i d  is inviscid, t ha t  the leading and 
t r a i l i n g  edges of the a i r f o i l  a r e  sharp, t ha t  any shock waves originating 
from these edges are attached t o  the a i r f o i l ,  and tha t  the flow behind 

. the lead--edge shock wave is supersonic. They d i f f e r  only i n  the 
degree of mathematical accuracy involved. In order of decreasing 
accuracy, the  methods may be described as the shock-expansion theory, 
the second-order theory, and the l inea r  (or f i r s t -o rde r )  theory. 

Shock-Expansion Theory 

The shock-expansion method follows d i rec t ly  from the application to  
the a i r f o i l  problem of known analyt ical  resu l t s  f o r  an  oblique shock 
wave and an expansion region (references 1 t o  3 and 6 t o  9 ) .  From simple 
considerations of momentum, energy, and continuity, the change i n  
pressure and Mach number across a single shock wave can be calculated i n  
t e r n  of the Mach number of the oncoming Plow and the angle of def lect ion 
of the flow i n  passing through the wave, Similar r e su l t s  can be obtained 
f o r  an isolated expansion region. On the basis of these r e su l t s  together 
with the assumgtion th t  interact ion ef fec ts  between the individual 
shock waves an3 expansion regions are  negligible, the pressure d iskr i -  
bution over the a i r f o i l  surface can be calculated by a step-by-step 
procedure beginning a t  the leading edge and proceeding rearward ( r e fe r -  
ences 10 and 11). For example, on the lower surface of the double-wedgf~ 



section in figure 3, if the free-stream Mach number and the deflection 
angle at the leading edge are laown, the pressure and Mach nmber on the 
forward lower surface can be found from the equations for an oblique 
shock wave. By use of these quizntities to provide the initial conditions 
for the flow approaching the ridge line, the pressure 03 the rear lower 
surface can then be found from the known results for an expansion. 
Because of the nature of the equations for,an expansion, the procedure 
applies equally well to a section with a curved profile. Once the 
conlplete pressure distribution is known, the lift, pitching moment, and 
pressure drag of the airfoil are determined by graphical or numerical 
integration. 

As compared with the theories to be discussed later, the shock- 
expansion method has the advantage of greater mathematical accuracyj in 
fact, in instances for which the assumption of no effective interference 
between the shock waves and expansion regions is satisfied, the method 
provides the complete inviscid solution to the problem. (The case 
illust~ated in figure 3 can be shown to be of this type since the regions 
of flow influenced by the eventual intersections of the different dis- 
turbances lie completely downstream of the airfoil.) In other instances, 
notably on airfoils with curved surfaces, some interference does occur ' 
with a resulting approximation in the theory. The main disadvantage of 
the method, however, is that no analytical expressions are provided for 
the section characteristics, a separate set of calculations being 
required for each airfoil at each angle of attack. 

Second-Order and Linear Theories 

The disadvantage of the shock-expansion theory is overcome, at the 
expense of further approximation, by the second-order and linear 
theories (references 12 to 15). The relationship upon which these 
theories are based is given as equation (1) in figure 4. This equation, 
which is derived by series approximation to the complete equations for 
two-dimensional oupersonic flow, eqresses the pressure coefficient P 
at any point on the airfoil in terms of ascendLng powers of the local 
deflection angle 7 .  The coefficients of the terms in the series are 
functions primarily of the free-stream Mach number Mo and, secondarily 

of the ratio of the specific heats of the gas 7 .  By proper definition 
of the sign of the angle 7 - positive when the surface is facing toward 
the oncoming free stream m d  negative when facing away froa the oncomirg 
free strbam (see diagram ln fig. 4) - and by limitation of the power 
~eries to the first two terms, the same equation can be made to serve 
for Loth a comprsss;on and i d  expansion. This result illustratc;~ the 
fact that in a given supersonic stream the pressure at a point Tn an alr- 
foil in two-diriensional flow is, to the second ord~r of approximation, 
dt-t,cm;ned cl7l-r ly by the loclzl inclination of the airfril surface. TnLs 
lu contrary to t he  r:it.uaLion in su't)sonic theory, in which tho condi~inrm 
at cine poht ,a '3~1 airfoil zection depend, even to the f irrt, firder, upon 
ci<nd; ti om at, F very ctther point. 



On the basis of the foregoing simple result for the surface pressure, 
general second -order express ions for the lift, pitching-moment, and 
pressure-drag characteristics of any airfoil section can be obtained by 
direct integration. The final equations involve the coefficients Cy 
mil C2, the ang;le of attack of the airfoil, and certain shple integrals 

which depend upon the airfoil shape only. These equations have been 
worked out in their most general form by Lock (references 15 and 8) + For 
cases in which the shape of the airfoil can be expressed analytically, 
the 5.ntegra.h involved are readily evaluated to obtain direct equations 
for the airfoil characteristics in tern of the parameters which define 
the profile. These results are especially useful in studying the effects 
of systematic variation in thickness arnd camber for fdlies of sections. 

When both the term C1 and C g  are retained, the general equations 
(see fig. 4) constitute the second-order theory. If the coefficient C2 

is in all cases set equal to zero, a linear (or first-order) theory is 
obtained. This latter approximation, which is sufficient for many pur- 
poses, is also known as the Ackeret theory since the linear theory was 
first proposed by Ackeret in his original treatment of the supersonic 
airfoil problem (reference 12). This elementary theory leads to certain 
exceedingly simple results. It indicates, for example, that the aero- 
dynamic center of the airfoil is at midchord irrespective of the shape 
of the section and that the minimum pressure drag for a family of sections 
of given thickness distribution varies as the square of the thickness 
ratio. The second-order approximation, which modifies these results some - 
what, was developed by Busemam (reference 14) at a later date when it was 
found that certain of the first-order results were not in complete accord 
wfth experiment. It is interesting to note, however, that even to the 
second order the lift-curve slope (per radian) for any airfoil section 

has the simple value of XI or 4 

COMPARISON BEIMEXN TEEORY AND 

Since the various theoretical methods have been reviewed, a 
comparison of the theoretical and experimental results for specific air- 
foils can now be made. 

Pressure Distribution 

Of first interest is an exdnation'of a typical pressure dlstri- 
bution. Calculated and  measured results are shown in figure 5 for a 
10-percent-thick symmetrical, biconvex section at a Mach number of 2.13 

and an angle of attack of 10'. The local pressure is plotted in 



coefficient form as a function of the chordwise positionj positive 
pressures are plotted below the horizontal axis and negative pressures, 
above- The pressure distributions calculated by the three theories are 
indicated by different lines in the figure. Experimental data obtained, 
as part of an extensive investigation, by Ferri (reference 16) are 
shown as individual points. 

A noticeable improvement is seen in the accuracy of the theoretical 
calculations in going from the linear to the more refined theories. 
Over most of the section, both the second-order and shock-expansion 
theories show reasonable agreement with experiment although the check is 
slightly better when the shock-expansion theory is used. Over the rear 
40 gercent of the upper surface, however, the experimental pressures 
depart noticeably from the values given by any of the theories. 

The discrepancy between the theoretical pressure distributions 
calculated by t h ~  linear theory and those calculated by the more precise 
theories has, curiously enough, little effect upon the value of the 
integrated lift. In fact, the area between the curves for the upper and 
lower surfaces, which gives a representation of the lift, is exactly the 
same for the linear and second-order theories. In other words, these 
two theories, although they disagree in chordwise lift distribution, 
agree in the value of the total lift for the present section. It is 
a~parent from the difference in lift distribution, however, that the 
second-order theory gives a position of the center of pressure (or aero- 
dynamic center) forward of that predicted by the linear theory. (The 
discrepancies noted between the various theories would, of course, be 
smaller for thinner airfoils and at lower angles of attack.) 

The failure of even the higher-order theories to predict the 
pressure distribution over the rear part of the upper surface is known 
to be due to shock-wave, boundary-layer interaction (reference 16). As 
was previously indicated (see fig. 3 ) ,  the idealized inviscid flow over 
a lifting airfoil section is characterized by an oblique compression 
wave originating on the upper surface at the trailing edge. In the 
real, viscous fluid the flow pattern is modified by an interaction 
between this trailing wave and the boundary layer on the airfoil surface 
The boundary layer separates from the upper surface some distance ahead 
of the trailing edge, with the formation of a weak compression wave at 
the separation point and a consequent increase in pressure between this 
point and the trailing edge. 

The difference between the pressure distributions shown herein and 
those characteristic of an airfoil in subsonic flow is apparent. &re, 
the pressures on both surfaces of the section decrease progressivel;. 
toward the tralling edge with no pressure recoverj such as that which 
occurs in the subsonic cast;. This lack of pressure recover3 over the 
rear of the scction at supersonic speeds glves rise, even :A the theo- 
retical inviscid fluw, to an appreciable pressure drag. In the subsonic 
case the drag in a two-dimensional inviscid flow is, cf couruc, exactly 
zer13. 



Over-All Aerodywn3.c Characteristics 

With the foregoing results in mind, consider the over-all charac- 
teristics of a typical airfoil. Figure 6 presents theoretical and 
experimental lift and moment results, at the same h c h  number as before, 
for a canbered, double-wedge airfoil of 6.3 percent thickness. A 
straight-sided airfoil was chosen here, instead of the previous biconvex 
section, in order to simplify the calculations by the shock-expansion 
method. 

As indicated from the plot of lift coefficient and angle of 
attack, the three theories give approximately the s w  lift-curve slope, 
at least at small angles. A curve through the experimental points, 
taken again from the results of Ferri (reference 16), would have a slope 
about 10 percent less than the common theoretical value. This reduction 
is due to the shock-wave, boundary-layer interaction previously 
discussed. With regard to the angle of zero lift, the linear theory 
shows a value of exactly zero.. The higher-order theories show a small 
positive value in agreement with experiment. (This experimental result, 
incidentally, is in direct contra& with the result in subsonic flow, 
where positive camber leads to a negative angle for zero lift. ) In 
general, it may be said that the check between theory and experiment 
with regard to lift is within acceptable practical limits. 

The agreement with regard to pitching moment is generally less 
satisfactory. In figure 6 the moment coefficient of the double-wedge 
airfoil - for moments taken about the midchord point - is plotted as 
a function of the lift coefficient. The inclination of the moment 
curves towmd the right may be taken as an approximate measure of the 
displacement of the aerodynamic center forward of the midchord. The 
eqerimentalmoment coefficients are seen to be more positive than the 
theoretical at all lift cosfficients. A straight line through the 
experimental data would indicate a position of the aerodynamic center 
forward of the midchord by about 9 percent of the airfoil chord. This 
displacement is significantly greater than the theoretical displacement 
of zero according to the linear theory or of 4 percent according to the 
second-order and shock-expan~ion theories. Both the general positive 
shift in the experimental moment coefficients and the relatively forward 
displacement of the aerodynamic center are attributable to shock-wave, 
boundary-layer interaction on the upper surface near the trailing edge. 

Drag results for the double-wedge airfoil are shown in figure 7 as 
a function of the lift coefficient. Theory indicates that the variation 

. of pressure drag with lift is essentially parabolic - exactly so in the 
case of the linear and second-order theories, nearly so in the case of 
the shock-expansion method. The second-order and shock-expansion 
theories give virtually coincident curves. It is seen that the experi- 
mental data agree fairly closely with these latter results. The exact 
agreement in the magnitnde of the minimum drag is at first surprising. 
The effect of skin friction, which is completely neglected in the theory, 
would be expected to raise the measured m i n i m  drag relative to t h e  



theoretical value. This tendency is opposed, however, by the uneqectedly 
high pressures in the vicinity of,the trailing edge as the result of shock- 
wave, boundary-layer interaction.. These two effects are probably compon- 
sating in the present case. Such compensation is not to be expected, how- 
ever, on all airfoils or at all Mach ntrmbers and Reynolds numbers. 

The results of the foregoing figures are all for a single Mach number. 
Flgure 8 illustrates the typical effect of variation in Mach number upon 
a given section characteristic, in this case the drag coefficient st, 
zero an&e of attack. The theoretical curves show an increase in the 
pressure drag coefficient as the Mach number decreases toward unity. (The 
linear and second-order theories give identical results in the present 
case, though this fact is not always true.) The two available experi- 
mental points confirm the theoretical tendency. The theoretical results 
are, as previously inplied, valid down to the Mach number at which the 
flow behind the leading-edge shock wave becomes subs~nic. Below this 
point, the problem is one of mixed subsonic a.nd supersonic flow; the 
theorezical solutions to this problem are only now being developed. 

CONCLUDING luwmss 

Only a brief outline of existing knowledge regarding the basic two- 
dimensional wing problem at supersonic speeds has been presented. m y  
sudsidiary problems have been studied on the basis of the available 
theories, including the effects of systematic variations in airfoil 
shape (reference 17), the properties of flaps (reference 18), the 
influence of sweepback for cases in which two-dimensional theory is 
applicable (reference lg), and the characteristics of two-dimensional 
biplanes (references 20 and 21). For many such problems, valuable 
results have been obtained with one or another of the inviscid theories, 
depending upon the degree of, accuracy required. In other cases, however, 
such as those concerning the determination of the optimum airfoil shape 
for a given operating condition, consideration of the effects of viscosLty 
and the boundary layer is essential (reference 22). In the study of the 
effects of viscosity and the boundary layer, in particular, there is an 
opportunity for much valuable research. 



SYMBOLS 

coefficients in series expans'on for P 

sect ion lift coefficient 

section pitching-moment coefficient for moments about the 
midchord point 

section drag coefficient 

section drag coefficient at zero angle of attack 

free-stream Mach nwLber 

local static pressure at point on 4irfoil 

local pressure coefficient 
( p  iopo) 

free -atream static pressure 

free -stream dynamic pressure 

angle of attack 

ratio of specific heats of gas 

specific heat at constant pressure 

specific heat zt constant volume 

local inclination of surface of airfoil measured relative to 
frecj-strtnm direction 
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Figure 1. - Disturbance point in subsonic flow and supersonic flow, 
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Figure 2. - Regions of two -dimensional flow. 



Figure 3. - Idealized flow pattern about a double-wedge section a t  Mo z 2. 

WHERE 6,. 2 m (ACKERET) (2) 
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C2= (Y+ I )MO - 4 (M: - I )  
(BUSEMANN) (3) 
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Figure 4.- Basic equations for linear and second-order theories. 
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Figure 5. - Pressure distribution for symmetrical biconvex section. 
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Figure 6. - Lift and pitching moment for cambered double-wedge section. 
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Figure 7.: Drag for cambered double-wedge section. 
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Figure 8. - Variation with Mach number of drag a t  zero angle of attack. 




