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UNSTEADY LIFT IN H I G H S E E D  FLIGHT 

By Harvard Lo- 

Ames Aeronautical Laboratory 

The probleme discussed in this paper involve the initial time 
history of forces on a two-dimensional flat-plate wing section, The 
first of these problems is the calculation of the transient pressure 
on the flat plate starting from rest and continuing at a constant 
speed and angle of attack. This can correaponrl physically to a sudden 
anglwf-attack change. The second problem is the calculation of the 
transient pressure on the flat plate entering a sharpedge gust. For 
large values of time, both of these solutions approach the more familiar 
steady-etate value of the lift on the plate at a given angle of attack. 

The problem involving the anglmf--attack change is the same as 
that studied by Wagner (reference 1) for the case of incompressible 
flow. In the present paper, this well-knoTm solution is extended to 
include the effects of both subsonic and supersonic bch numbers. This 
study shows that the effect of Mach number on the load distribution is 
entirely different at the beginning of the motion than at the end of 
the motion when the Prandtl-Glauert or Ackeret formula applies. 

Previous studies have been made in the field of high-speed unsteady 
lift by Garrick and Rubinow (reference 2 ) ,  and by Chang (refkrence 3). 

The method of solution employed in this paper differs from that 
used by Gesrick arad Rubinow in their study of flutter in that empkiasis 
is placed on the development of lift following a sudden unit change in 
angle of attack rather than on the lift of a harmonically oscillating 
wing This unit-angle-of-attack method was used by Eeaslet and LcPm 
(reference 4) and proceeds as follows: First, the basic partial dif- 
ferential equation is obtained and simplified to its linearized form; 
then a solution for a sudden "unit" displacement is fo~nd in terms of 
the pressure distribution; finally, since the basic equation has been 
linearized, these solutions for the unit displacement are superimposed 
with the result that the pressures on a flat plate undergoing any 
arbitrary motion can be found. The usefulness of the result is greatly 
increased by its ready adaptation to the operational methods used in 
similar problems by Jones (reference 5 )  and presented in detail by 
Churchill (reference 6) . 

The solutions which this type of analysis yields is given the 
name "indicial solutions." As an example, consider that the unit 
displacement is the angle of attack of the wing. This means by 
definition that a is zero for negative values of time and equal to 
unity for all positive values of time. The load distribution resulting 
from such a unit displacement is called the indicial angle--of-attack 
load. Similarly, the integrated value of this loading is called the 
indicial angle-of-attack lift. 



Proceeding now in the manner which has been outlined, the basic 
pzrtial differential equation is obtained. This governing equation 
used in the study of' unsteady lift problem comes from a combination 
of the equations of motion, contifiuity, and state. The approximation8 
used in reducing these equations to the linearized form suitable for 
analysis are simply that the induced velocities are small enokgh to 
be neglected in comparison with the free--stream velocity and that the 
velocity gradients are all of similar magnitude, These assumptions 
in simplifying the partial differential equation are consistent 3 i t h  
those of thin airfoil theory in simplifying the bo~ndary conditions - 
namely, that the boundary corditions be specified in the plane Z = 0 
and that the tangent of' the angle of attack he replaced by the angle. 
Such approximations result in an indeterminate error in the induced 
velocities of the solutions, so that for terma like the lift, rrelocity 
of sotind, and entropy which can be expanded in terms of, say, the 
induced velocity u, only the lowest nonzero poier of u should be 
used in the expansion. 

The resulting linearized partial differential equation is the same 
as that studied by the various authors mentioned. The two-dimensional 
form of this equation for the perturbation velocity potential in term 
of the space coordinates X', Z', the time tt and the free-stream 
velocity of so~ind a. and Mach number & can be written as follows: 

IPI such a form, it is rather formidable, but by us3 of the transfor*mation 

it can be reduced to 

t,he normalized form of the wave equation. 



The wave equation, of course, has been extensively studied, since 
it is one of the most important equations of mathematical physics. 
Moat of this study, however, has been directed tovard problems in 
which the boundary conditions are given for t = 0.  (See, for instance, 
reference 7.) In such cases both the function and the initial values 
of its derivatives must be specified in order that a unique solution can 
be obtained. This is the so-called Cauchy problem. In unsteady lift 
problems, on the other hand, the boundary .ralues are known orily in 
the plane Z = 0; that is, the slope of the lifting surface is speci- 
fied for all values of time. This difference in orientatfon com~letely 
changes the nature of the prdblem. And, in fact, it can be shown that 
when boundary values are specified for Z = 0, a unique solution can 
be found, just as in Laplace's equation, by specifying only the deriva- 
tive of the fucction. niis same situation - that of having the data 
given in another than the classical t = 0 plane - arose in the study 
of three-dimensional supersonic liftinesurface problem and a rather 
complete discussion of it in that connection is given in reference 8. 

This analogue with the supersonic lifting-surface problem can be 
quite useful in establishing the data necessary for the unsteady lift 
cases. In order to construct this a~lalogy, however, it is first 
necessary to discuss the boundary values for some typical un8tead.y 
lift problem. Consider a wing at an angl~f'-attack a starting 
suddenly from rest at t = 0 .  (see fig. 1.) In the X,t plane, this 
wing would sweep out a region shorn as the shaded area in figure l(a). 
It is to be remembered from the transformation given as equation (2) 
that the coo~.dinate t represents true time t' except for the 
stretching factor ao, and, for a given t, a change in the coordinate X 

represents a change in the true distance X'. Thus at t = 0, the 
shaded area extends from X = 0 one chord length back to X = co. 
At some later time, the wing will have moved in the negative X--direction 
to a new position such as the point A in f i w e  l(a). The trailfnp edge 
at such a time remaim one chord length behind at the point C. Tkie 
dash lines in the figure represent the traces of the characteristic 
cones. Physically, these lines represent the foremost and rearmoet, 
positions to which a pressure disturbance starting at their apex can 
travel in a gi- en time. ?%us a disturbance starting on the leading edge 
at t = 0 can be felt only between the points B and D when the 
wing has traveled so that its leading edge is at A. Hence, for a 
wing traveling at supersonic speeds, point A will fall to the left 
of the characteristic line and Cor a wing traveling at subsonic speeds 
it will fall to the right. 

If the wing is to attain its unit angle of attack without rotation, 
then the boundary values are such that the vertlcal induced velocity 

, is a constant over the entire shaded region of figure l(a), and the 
- loading is zero over the rest of the plane z = 0. 



Compare these bo~ndary conditions with those for a supersonic 
three-dimensional, flat-plate, lifting-surface problem. If the shadod 
region is thought of as a wing plan form, the problems are identical. 
The characteristic cones represent the familiar h c h  cones; and since 
the dash lines have a 45' slope, the equivalent hch number is \r2-. 
The wing in unsteady lift flying at supersonic speeds has for its 
equivalent a three-dimensional lifting surface with supersonic edges. 
The solution to such a liftinesurface problem is relatively simple 
to find. On the other hand, the wing in unsteady lift flying at 
subsonic speeds has for its equivalent a three-dimensional lifting 
surface with some subsonic edges. Althohgh this complicates the 
problem considerably, still by methods such as those introduced by 
Evvard (reference 9 ) ,  solutions can be found. 

Another type of boundary-value problem is shob:n in figure l(b). 
This figure represents a wing at zero angle of attack traveling at 
supersonic speeds entering a sk-mpdge g~st the front of which is 
situated along the line X = 0. The vertical induced velocity over 
the shaded region is a constant, the value of which is equal and 
opposite to the gust intensity, and is zero in the unshaded region 
between the t-axis and the trailing-edge trace. Over the rest of the 
plane, the loading met be zero. Again by constructing the analogue 
with the t'hree-dimensional lifting-surface problem a solution can 
easily be obtained. 

The solution for the load coefficient for a wing starting from 
rest and continuing at supersonic speeds - that is, the indicial load 
coefficient for a - is al~own in figure 2(a) . At t = 0 the wing 
suddenly attains an angle of attack (without rotation). Immediately 
the load coefficient jumps to & constant value of magnitude &/Mo 
over the entire chord. At a subsequent time this value moves off the 
chord with the trailing characteristic trace, the apex of which is at 
the origin. Between the traces of the characteristic cone a transition 
occurs, the load falling below the value &/M, and then rising to the 

higher value - 1. This latter value is the familiar steady- 

state two-dimensional value for load commonly called the Ackeret 
loading. As the leading characteristic trace leaves the wing, the 
Ackeret loading covers the chord and the wing has reached its steady- 
state value. 

Compare this loading with the indicial load coefficient due to 
angle of attack for a wing flying at subsonic speeds (fig. 2(b)). Again 
at t = 0, the incremental load jumps immediately to the constant 
value 4a/Mo over the entire chord. Ho-*ever, in this subsonic case, ' 

the load near the trailing edge immediately falls so that for all 
values of time greater than zero the loading at the trailing edge is 
continuous and zero. That is to say, the Kutta-Jo~ikovskl condition is 



satisfied except at the instant t = 0 .  Subsequently, the load distri- 
bution approaches asymptotically the normal additional load distribution 
associated with steady two-dimensional subsonic theory'- that is, very 
high values near the leading edge fall to zero at the trailing edge. 

Figure 3 shows the indicia1 load coefficient due to angle of attack 
for a restrained wing flying at supersonic speeds and entering a sharp 
edge gust. The gust is located in the region from X = - w  to X = 0. 
Initially the loading over the chord is zero. As the leading edge 
begins to penetrate the gust, however, in the region between the 
characteristic traces the load begins to rise from zero to the Ackeret 
loading, and again as the loading characteristic trace crosses the 
trailing edge the wing has reached its final steady-state Ackeret value, 

Further discussion of these phenomena can best be completed by 
considering the integrated values of these loadings plotted against a 
variable representing time. Thus figure 4 shows a plot of lift-curve 
slopes against s, the number of half--chords traveled by the wing, 
for a wide range of %ch number. The curve for M = 0 - that is, the 
curve for the two4imensional wing with incompressible flov - was first 
studied by Wagner. Since the starting value is always 4/M, this 
incompressible flow value of ch must initially jump to infinity, 
The infinite value, which results from the infinite acceleration imposed 
in the boundary condition6 by the step function, lasts only for an 
infinitesimal time; however, C b  then falls to n and rises 

gradually to the asymptotic value 2n. The calculations for the curves 
in the region 0 < Mo < 1 were completed only to the time necessary 
for a pressure signal to travel from the trailing to the leading edge. 
k t h e r  csmpurtations are possible but would have been more complex. 
On the other band, the qualitative nature of the curves for larger 
values of time is fairly obvious. Thus at a hch number of 0.8 the 
starting value is 5. The lift-curve slope falls linearly for the 
time required to travel about a half-chord length and then rises to 

approach asymptotically the value 2 The curve for a Mach 
number of 0.4 is similar. Such a behavior obviously invalidates the 
use of the Prandtl-Glauert Mach number correction to unsteady lift 
analysis. Between t = 0 and t = m the correction factor must lle 

between 1 / ~  and 1 1\11 - M2, but the exact value is quite complex. 
The variation of this transient- C with Mach number is accentuated Itz 
most sharply by considering the value at M = 1. 

The curve in figure 4 for M = 1 presents the build-up of lift- 
curve slope for a wing starting *om rest and traveling at the speed 
of sound. Since the Mach number is unity, the starting valxe of 

' La  
is 4. The magnitude of C k  increases with time and is infinity 

at s = m. Hmever, since the whole theory is based on the assumption 



that the induced velocities are small compared with the free-stream 
velocity, the number of half-chords'traveled before the theory breaks 
down is severely limited. Just how m c h  so ?epends, of course, on f2.e 
agle-of-attack change chosen. Nevertheless, some insight into the 
nature of sonic flow has been gained. 

Curves for supersonic Mach numbers of' 1.2 and 1 .k are also plot t ed 
in figure 4. At a h c h  number of 1.2 the variation of Ch "it" time 

approximates rather closely Wagner's curve for M = 0.  In the super- 
sonic case, hovever , C h  is initially constant at 4/M for about 

one-half chord length traveled and then rises and reaches its steady- - 
state Ackeret value of 4 /{I@ - 1 after a few chord lengths; 
whereas, in the subsonic case, the value is nowhere constant and 
approaches its steady-state value asymptotically. For higher super- 
sonic lvdach numbers, the magnitudes of the curves decrease and the 
difference between the starting and final values becomes less. 

So far, the discussion has been limited to the indicial lift for a 
sudden angle-of-attack change. A comparison between this lift and that 
developed by a supersonic wing entering a sharp-edge @st is gi- en in 
figure 5. The curves shown are both for a h c h  number of 1.2, the 
dash curve representing the change in lift coefficient for the wing 
entering the @st. The principal difference between the curves is in 
the initial value, the gust curve starting at zero and the anp5le-of'- 
attack curve starting at 4/M. After about 12 chord lengths, h~-~,ever, 
the curJes are identical, since both have assumed the Ackeret value. 

A simple but important dynamic maneuver can be studied by means 
of the two indicial lift functions, the one for a and the other for 
a @st. This maneuver 1.s the response of an unrestrained airfoil to 
a gust when the effects of pitching are neglected. Such a maneuver 
for sharpedge gusts has been studied in reference 4. 

The study ot' the unsteady lift problem is far from being complete. 
It is believed that the effect of the indicial lift on the downwash at 
the vertical tail plane at supersonic speeds has not been touched, nor 
has the effect of gusts on wings traveling at high subsonic speeds. 
Furthermore, the methods described in this paper might be used as 
another approach to the study of compressible flutter problems for Mach 
nmbera less than 1 - especially the problem of aileron flutter. 
Another type of research, the study of which has just been started at 
the Ames Aeronautical Iaboratory, is that of the two-dimensional wing 
accelerating through the speed of soLcnd. The results already presented 
for the indicial lift around a !.lack! number of 1 indicate that further 
research along these lines niight produce worthwhile results. 
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X - C o = - M o t  
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(a ) Subsonic and supersonic wing receiving sudden angle-of-attack 

change at t = 0. 

Figure 1. - Sketches showing different types of boundary conditions for 
two -dimensional unsteady lift problems. 
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(23 )  ~upersonic wing entering sharp-edge gust at X = 0. 

Figure 1.- Concluded. 
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Tj$jg7' 
Figure 2. - Pressure distributions on wing receiving sudden angle-of-attack 

change at  t ' =  0. . *  

Figure 3'- Pressure distribution on supersonic wing entering sharp-edge 
gust at X = 0. 
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Figure 4, - Indicial iift -curve slope for Mach numbers between 0 and 1;4 

shown to time required to travel 12 half-chords. 

-ANGLE OF ATTACK 

S, DISTANCE TRAVELED IN HALF CHORDS 

Figure 5. - Indicial lift-curve slopes for restrained wing. 




