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A SURVEY OF METHODS FOR THE CALCULATION OF FLOW AROUND

BODIES OF REVOLUTION AT SUPERSONI&KSPEEDS
By Antonio Ferri

Langley Aeronautical Iaboratory

The theoretical determination of aerodynamic characteristics of
bodies traveling at supersonic speed has been considered only recently
in relation to flying problems but has been for a long time an
important problem in ballistics. For this reason and because, for
bodies of revolution, the problem 1s sensibly more simple, the bodies
congidered in the theoretical work are bodies having circular cross
gection, while small attention has been given heretofore to bodies
having a cross section different from the circular, although these
bodies are important for practical applications. A bibliography of
information on this subJect is presenteéd at the end of this paper.

For bodies of revolution of good aerodynamic shape, in general
the physical phenomena are well understood and the analysis of the
flow phenomena can be made with good approximation when the boundary
layer along the body does not separate. If the body analyzed is &
sharp, slender body of revolution axially alined with the direction
of the undisturbed stream, an axlal-symmetrical shock is produced at
the apex of the body (fig. 1). If the body is a come of revolution,
the generatrix of the shock is a straight line, while in the general
cage it is a curve that becomes more inclined with the direction of
the undisturbed stream, moving away from the body and tending to
become parallel to the Mach line.

Across the shock an increase of entropy occurs that corresponis
to a variation of momentum in the flow, and, therefore, the shock
produces a drag called shock drag. Because the varlatlon of entropy
changes with the inclination of the shock, the flow behind a curved
shock is not any longer an isentropic flow. The entropy is constant
along every streamline in the zone between two shocks, but a variation
of entropy exists in a direction normal to the streamllnss and,
therefore, the flow is rotational flow.

Along the surface of the body, when the generatrix of the body is
a curved line, the pressure decreases. If the radius of curvature of
the generatrix of the body is small, in the zone in which the
generatrix becomes parallel to the undisturbed stream the local
pressure is lower than the free—stream pressure. If a cylindrical
part of some extent follows the ogive, along the cylindrical part,
the pressure increases and tends to become equal to the gstatic pressure.
If the back part of the body finishes with a tail as shown in figure 1,
the pressure along the tail continues to decrease and at the end of the
body another shock wave is produced.
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At the surface of the body the boundary layer grows and a wake
exists at the tail of the body. The wake changes the actual shape
of the streamlines at the end of the body, and, therefore, in this
zone a theoretical analysis of the phenomenon made with perfect—flow
theory cannot reproduce correctly the physical phenomenon.

However, the phenomenon can be foreseen theoreticelly with good
accuracy in the zone of the flow in which the effect of the boundary
layer on the shape of the streamlines is negligible.

When the body has an angle of attack the phenomenon changes and
the axial symmetry disappears; the theoretical analysis then becomes
more difficult.

For smell (infinitesimal) angles of attack the shock that is
produced at the apex of the body remasins approximately a surface of
revolution, but ite axis is not coincident with the axis of the body
nor with the direction of the undisturbed stream, Because the
phenomenon is not the same in every meridian plane passing through
the axis of the body, a velocity component in a direction normal to
the meridian plane exists, and a force component normal to the
undisturbed stream can be found. This component produces a 1lift
end a moment on the body. At the tail of the body when the body has
an angle of attack, the wake produced by the boundary layer is not
symmetrical with respect to the axis of the body. The wake has an
effect on the value of the 1lift; therefore, because the lift is
related to the boundary—layer phenomena, the 1ift of a body of
revolution that ends with a point cannot be analyzed with good
approximation if only perfect—flow theory is used.

If an open-nose body of revolution is considered, the anslysis
of the flow phenomena does not change if the flow enters the body with
supersonic speed. In this case, at the lip of the body the phenomenon
is two dimensional., The shock moving far from the lip decreases in
intensity in a similar way to that of the pointed nose of revolution.

The theories used for the determination of pressure along & body
of revolution are of two types: +the small-disturbance theory and the
characteristics theory., Both systems deal with adiabatic perfect
flow, and the effect of viscosity and conductivity ‘are neglected.

The small-disturbance theory uses more simple hypotheses in the flow
determination and allows in some cases analytical expregsions for the
aerodynamic phenomena, whereas the characteristics theory takes into
account all the physical aspects of the phenomens for adiabatic

perfect flow but does not solve practical problems of axial symmetrical
flow in an analytical form and requires a numericel determination of
every particular case considered.
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Ths simplification accepted by the small-disturbance theory is
that the .variations of velocity components produced by the presence
of the body in the stream are so small that the square terms of the
disturbance velocities and of their derivatives can be neglected with
regpect to the first—order terms in the equation of motion., In thisg
approximation the entropy remains constant throughout the stream and
a velocity—potential function can be used. The equation of motion
for potential flow and cylindrical coordinates (fig. 2), is expressed
as:
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waerse ¢ is the total-velocity potential; u, v, and w are
velocity components; and a is the apeed of sound. Then, in the
small—disturbance approximation the expression becomes:
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where Mi is the Mach number of the undisturbed stream assumed

parallel to the x—direction, and @' is the potential function that
represents the variations of velocity components produced in the stream
by the movement of the body (disturbance velocities). The theory of
small disturbances can be used in every case in which the more simple
hypotheses are respected, and, therefore, for every free—stream Mach
number considered. However, from a practical point of view it is
necessary to remember that the theory cammot be used in the neighbor-—
hood of My = 1, while the precision of the results decreases at high

Mach numbers because for a given geometrical shape of the body the
disturbance velocities increase in 1ntenslty when the Mach number
increases.

Ths equation of motion in the simpiified form (equation (2)) i
a linear differential equation of second order with constant
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coefficients and therefore permits a superimposition of solutions that
simplifies notably the problem., The solution of any problem in the
approximation of equation (2) can be obtained by the superimposition

of gimple solutions, known from sound-wave theory, that in aerodynamics
represent sources, sinks, and doublets. The problem of determining

the flow properties of a given phenomenon is transformed in this way
to the problem of determining the correct distribution of sources or
doublets that respect the boundary conditlons considered in the
problem,

For bodies of revolution axially alinsd with the undisturbed
stream, the solution of the problem can be obtained by considering a
source—sink distribution along the axis of the body, the intensity
of which depends upon the free—stream Mach number and upon the shape
of the body. The intensity of the source—sink distribution can be
obtained generally by a step-by—step calculation of simple form or in
some cases in analytical form. The step-by—step calculation is
usually required when the boundary conditions are exactly fulfilled
by imposing the condition that the disturbance—velocity components at
the surface of the body must produce a stream that, when superimposed
on the undisturbed stream, must be exactly tangent to the body. For
very slender bodies of revolution with a generatrix having finite
~curvature the step—by—step calculation can be avoided. In the neighbor—

hood of the axis of the body the component of the disturbance velocity
normal to the axis can be determined directly from the intensity of
the source distribution along the axis, and vice-versa. Now, if the
body is a slender body of revolution, the component of the disturbance
velocity normal to the axis &t the surface of the body is essentially
equal to the same component in the neighborhood of the axis., But the
component of the disturbance velocity normal to the axis at the
surface of the body is given by the boundary conditions and depends
upon the stream velocity and upon geometrical parameters of the body
and, therefore, is known. In this case, the intemnsity of the source
digtribution can be obtained directly from the shape of the body
without a step—by—step calculation.

The intensity of the source distribution is given in this
approximation by

where s(x) is the cross—sectional area of the body at the
eabscigsa x. The value of the drag obtained by this approximation
ig independent of the Mach number,
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This result depends upon the simplifications assumed; however,
it gives an indication that the effect of variation of Mach number
in the aerodynamic phenomena of slender bodies of revolution is not
very large.

When the body of revolution has a small (infinitesimal) angle of
attack, the solution is obtained by considering two potential
functions, the potential function ¢l that represents the phenomenon

dependent on the component of the stream in line with the axis of the
body, and the potential function ¢2 that congiders the part of the

phenomenon dependent on the component normal to the axis., The first
potential function is identical in the approximation accepted to the
function used in the axial symmetrical phenomena, while the second
potential function corresponds to the potential of a doublet distri-
bution placed along the axis of the body. The intensity of the
doublet distribution must be determined as a function of the boundsry
conditions., Again, for very slender bodies of revolution having
generatrices with finite curvature, the doublet distribution depends
only on geometrical parameters of the body considered and can be
determined directly. In this case, the 1lift coefficient is dependent
only on the end section of the body and is independent of the Mach
number., The 1lift obtained with the amall-disturbance theory for
bodies pointed at both ends 1s zero but is different from zero if
the end section is different from zero. This result depends on the
agsumptions made; however, it shows that the 1ift is a function of
the dimension of the wake and, therefore, of the phenomena in the
boundary layer. Indeed, the cross section of the wake corresponds
physically for the flow outside of the boundary layer to an end
section of the body.

By use of the small—disturbance theory, it is possible to
determine some general properties of bodies of revolution and to
obtain some indications of the shapes of bodies having low shock drag.
For example, if the length and diameter of an ogive body are fixed,
the shape that corresponds to minimum drag has a blunt nose. The
radius of curvature of the meridian curve at the nose is very small,
and, therefore, the zone in which the nose is blunt is very smsall,
This result ig found also when more approximate treatment is used.

In order to give an idea of the approximation of the small-
digturbance theory, comparison between the pressure coefficients Ap/q
given by this theory for different stream Mach numbers and the results
obtained by exact—perfect—flow theory is shown in figure 3. The bodies
considered are cones of revolution with different apex angles.

In the small—disturbance theory iﬁ‘is assumed that all the
digturbances are transmitted along surfaces that have constant

[y
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inclination with respect to the axis of the body. The inclination
corresponds to the free—stream Mach angle. In this approximation
no shock waves can be found. ’

When phenomena of bodies at an angle of attack are considered,
the Mach cones move rigidly with the body or in some cases do not
move with respect to the direction of the -stream.

In order to obtain the effect of the presence of the shock and
in order to determine with greater precision the phenomens outside
of the boundary layer, the characteristics system must be used. The
principal idea of the characteristics method is based on the fact
that every small disturbance produced in a supersonic stream.is
transmitted only in the flow inside the Mach cone from the point in
which the disturbance is produced; therefore, the Mach cone from the
point in which the small (infinitesimal) disturbance is produced is a
surface across which the phenomsnon changes. In mathematical language
this surface is a characteristic surface, because as the disturbance
is small and the phenomenon continuous, the flow properties repre—
gented, for example, by the stream velocity components must be the
same at the inside and outside surface of the Mach cone; since the
analytical expression of the flow properties must change across the
surface, therefore, the partial derivative of the flow properties
(in our case the velocity components) must change in discontinuous
form. The characteristic surfaces exist only if the flow is anywhere
supersonic because only in this case the disturbances are transmitted
along the surface correspondent to the Mach cone.

The characteristic surfaces are constituted by the envelope of
8ll the Mach cones that have their vertices at the points in which a
disturbance is produced. They separate the zone of the flow in which
the perturbation is transmitted from the undisturbed zone., Because
the Mach angle is not constant in the flow, the characteristic surfaces
are curved and at the inclination any point is a function of the local
velocity. When the body considered is a body of revolution at zero
angle of attack, the phenomenon has axial symmetry and also the charac—
teristic surfaces are surfaces of revolution. The velocity at any
point is defined by two velocity components and the anslysis of the
phenomenon can be made by determining the motion in a meridian plane,
In place of the characteristic surfaces the characteristic lines are
considered. These lines are obtained by the intersection of the
characteristic surfaces with the meridian plane.

At every point of the meridian plane the characteristic lines
sre inclined at the local Mach angle with the local direction of the
velocity, and at every point two characteristic lines pass corre—
spondent to the two directions in which a Mach line can be drawn with
respect to the direction of the velocity. If u 1is the local Mach
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angle and 6 the local inclination of the velocity with respect to
the axis of the body, a characteristic line is inclined at p + 9
and the other at 6 — pu. The value of u and 6 is different at
different points of the flow; therefore, the characteristic lines
are curved.

The characteristics theory consists in the analysis of the
changes of flow properties along characteristic surfaces or, for
bodies of revolution, along characteristic lines.

By use of the law of continuilty, the law of conservation of
energy, or the law of variation of momentum, a partial differential
equation for the law of motion can be obtained. Because of the
presence of curved shocks in the flow, the flow analyzed is
rotational and, therefore, in general in the analysis the use of a
potential function is not possible. TFor two—dimensional or axial
symmetrical phenomena a special stream function can be used which
permits the obtaining of a partial differential equation corre—
gspondent to the equation of motion for potential flow. This stream
function for rotational flow, or differential expressions for the
velocity components, the pressure, and the density can be used to
obtain the equations of motion in differential form. The equation
which defines the motion becomes much simpler if the variation of the
flow properties is analyzed along the characteristic surfaces,
because some terms of the differential equation disappear.

If a body of revolution axially alined with the free stream is
analyzed, the variation of flow properties must be analyzed along the
characteristic lines. Because acrogs every point of the flow two
characterigtic lines pass, two equations are obtained which give in
differential form the variation of the flow properties along the
lines. " Because the flow properties at any point are defined if two
quantities (for example, the two velocity components) are known, the
two equations permit the problem to be defined.

The equations that give the law of motion along the characteristic
lines still are differential equations with variable coefficients but
permit the numerical determination of the problems -if a method of
finite differences is used in place of the differential equation in
order to determine the variation of flow properties along the
characterigtic line. -

The equation of motion along the characteristic line can be
given in the following form (see fig. 4):.
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where V 1is the intensity of velocity, & the inclination of velocity

with respect to the axis, %g the gradient of entropy in normal

direction to the streamlines, and 7 and R are constants.

From the equations (3), the flow property at a given point can
be determined, when the flow properties at two points near to the point
considered and along the characteristic lines are known (fig. 4).

If the flow properties in P; and Py mnear each other are known,
the values of 6 and M are also known; therefore, from Py the
tangent to the characteristic line given by equation (3a) and from Po,
the tangent to the characteristic line given by (3c) can be drewn, and
a point P3 can be determined. On the assumption that in the first
approximation the coefficients in equations (3d) and (3b) are constants
between Pp and Pp and Pp and Pz, and applying equation (3b)
between P; and P3 and equation (3d) between P, and Py &allows
two equations to be obtained that permit determination of the
variation 46 and dV between P3 and Py (equation (3b)) and the
veriation dV and 46 between P3; and Py (equation (3d)). TIndeed,
the variation dx is known, and all the coefficients are constants and
known. When the values of V and 6 at P3 in the first approximation

are determined, a second approximation can be obtained by assuming for
the coefficients in equations (3b) and (3d), and for the direction of
the characteristic in equations (3a) and (3b) the average values between
the values at the points P; and Pp and the values obtained in the

first approximation for the point P3. In equations (3b) and (34),
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the term ‘—}1-2 appears only if the flow is rotational flow. This term

can be determined at every point because the entropy is constant
along every streamline between shock waves, and the equation of the
shock gives the variation of entropy that occurs when a streamline
crosses & shock wave.

The system permits the determination of the phenomenon when
shock exists and allows any required precision to be obtained, because
the precision depends on the distance between the points P3 and Po

or P3 and Py, a distance that can be reduced to any value.

The system is numerical but the solution can be obtained in
computing machines of large size that can give numerical results in a
very short time., The only approximations introduced are that viscosgity
and conductivity can be neglected.

In order to apply the characteristic system to any body of
revolution the flow must be determined initially along a characterigtic
line. If the body is a sharp-nosed body of revolution the calculation
gtarts with the determination of the flow at the apex, flow that is
conical flow; while if the body is an open—nosed body of revolution
the calculations start by determining the shock at the 1lip of the nose
with the two-dimensional theory. Figure 5 shows a comparison between
experimental results and values determined with the characteristic
system for a body of revolution of simple shape. Figure 6 shows a
practical determination of the supersonic part of the flow inside a
conical diffuser. The shock produced at the lip of the body increases
in intensity and becomes normal at the axis. Ths increase in intensity
of disturbances produced at the wall of circular tubes is a general
phencmenon and is important for supersonic circular tummels.

When the body is not a body of revolution or has an angle of
attack, the characteristic system can still be applied but becomes
much more involved, because it is necessary to determine the flow
variations not along two characteristic lines, but along two charac-—
teristic surfaces. Practically, the determination.of the flow
properties at any point can be obtained by the analysis of the
variations along the intersections with a meridian plane of two
characteristic surfaces that pass at the point considered and along
the intersection of one of two characteristic surfaces with a plane
perpendicular to the axis. In this way & system of three linear
equations is obtained, when the method of finite differences is used,
that permits the determinatlon of one of the flow properties, for
example, of the velocity at the point considered

The numerical solution becomes very involved, especially if the
flow with shock is analyzed, and requires that the initial conditions
can be determined at the front part of the body.
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When a body of revolution with small angle of attack is analyzed,
the hypothesis can be accepted that the effect of cross flow is very
small and in this case a cross flow can be superimposed to the axial
flow, the characteristic lines of the two flows are coincident, and
the calculations can be simplified. For example, this system can be
ugsed easily in order to determine the flow around a cone of revolution
in yaw.

In this approximation the velocity component in normal direction
to every meridian plane of the body changes with the sine of the angle
that defines the position of the meridian plane as in the small-
disturbance theory.

This is the status of the analysis along bodies of revolution.
Both theories can probably be extended to similar problems. The
extension of the small-disturbance theory to bodies of cross section
different from the circular but having constant shape must not be too
difficult.

The use of the small-disturbance theory for interference problems
geems also possible, and some results of this application are yet to
be obtained.

For the small-disturbance theory a complete analysis of the
approximations that can be obtained would be very useful. Discrepancy
of opinions exists especially on the possibility for this theory of
evaluating the Mach number effect on phenomena for bodies unclined
at an angle of attack.

In order to give an idea of the precision that can be obtained
from the theory of small disturbances, a comparison of the 1lift—
coefficient—curve slope dCL/da given with the assumption of small

disturbances and without this assumption is presented in figure 7
for different Mach numbers. The bodies are cones of revolution of
different apex angles 1nq.

The development of an analytical theory having higher approxi-
mation than the small-disturbance theory for bodies of revolution
would be very useful but seems at present very difficult. The charac-—
teristics theory can be extended to the analysis of any shape of body
having anywhere supersonic flow, if the initial conditions can be
determined; therefore, the determination of general conical flow in
more exact form is essential for the extension of the field of
application of this theory.
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Interference problems can be analyzed with the characteristics
theory. This analysis, however, requires a large amount of numerical
work in every application. This obstacle, which exists at the
present time, can perhaps be eliminated by using for the numerical
calculations large size computing machines. The characteristics
system can probably be extended to viscous—flow phenomena or to
phenomena with variable total energy.
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Figure 1.- Axial-symmetrical shock at apex of slender body of revolution.
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Figure 2.~ Coordinate system,
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Figure 3.- Variation of Ap/q with M1 for various cone angles.





