NASA CR- 159, 149

NASA Contractor Report No. 159149

NASA-CR-159149

Study of the Feasibility Aspects of Flight Testing an Aerolastically Tailored Forward Swept Research Wing on a BQM-34F Drone Vehicle

D. J. Mourey

TELEDYNE RYAN AERONAUTICAL San Diego, California 92138

Contract NAS1 - 15624 3 September 1979

LIBRARY COPY

LANGLEY RESEARCH DENTER LIGRARY, NASA HAMTON, TRANS

National Aeronautics and Space Administration

Langley Research Center Harnpton. Virginia 23665 AC 804 827-3966

PREFACE

This study of THE FEASIBILITY ASPECTS OF FLIGHT TESTING AN AEROELASTICALLY TAILORED FORWARD SWEPT RESEARCH WING ON A BQM-34F DRONE VEHICLE, was conducted by Teledyne Ryan Aeronautical at San Diego, California during the period November 1978 through June 1979. This study was conducted under Contract NAS1-15624 for the NASA Langley Research Center, Hampton, Virginia. The NASA Technical Manager was H.N. Murrow.

()

 0°

 $\frac{1}{2}$

Acknowledgement is made to the following TRA Engineers for their contributions to this study.

N.M.	Bowers	Structural Analysis
R.W.	Bowman	Structural Mechanics
G.C.	Childers	Structural Dynamics
W.H.	Ноу	Mechanical Design
H.A.	James	Advanced Design
D.J.	Mourey	Vehicle Analysis
D.O.	Nevinger	Mass Properties
T.C.	Nietz	Flight Performance
G.H.	Painter	Flutter Analysis
w.c.	Parks	Stability and Control
м.м.	Rodriguez	Aeroelasticity
H.L.	Rozelle	Structural Analysis
L.M.	Shaffer	External Loads
R.E.	Shankle	Structural Design

N80-10195#

SUMMARY

A study has been completed which investigated the feasibility aspects of flight testing an aeroelastically tailored forward swept research wing on a BQM-34F drone vehicle. The study encompassed two broad tasks;

- Define the geometry of a forward swept wing which can be incorporated into the BQM-34F maintaining satisfactory flight performance, stability and control.
- 2. Perform a preliminary design of an aeroelastically tailored forward swept wing.

The BQM-34F is a jet powered conventionally configured aircraft. The basic aft swept wing is mounted shoulder high to the circular fuselage at about the mid point of its length. This study shows that a wing designed with leading edge forward sweep of 20-degrees can be mounted using existing wing mounting points. Satisfactory flight stability and control are predicted with the addition of about 300 pounds of ballast external to the forward fuselage. Research mission endurance exceeding 30 minutes is available at the NASA specified design point of Mach number 0.90 at 30,000 feet.

Only minor modifications are required to the basic target to accommodate the forward swept research wing. Forward fuselage ballast must be installed to maintain the proper a.c./c.g. relationship. The ballast must be installed external because of the lack of internal volume. Because of the additional ballast weight, forward fuselage structural reinforcement is required. Four external 1/8-inch stainless steel straps running fore and aft will provide the increased bending modulus required. A preliminary study, assuming rigid fuselage mounting, shows forward-swept wing mounting loads exceeding allowables at one fuselage frame. It is expected that a more detailed analysis which includes fuselage flexibility will show loads do not exceed allowable levels, however, if frame beef-up is required this can be accomplished by adding an inner and outer angle flange extending about 150 degrees around the lower portion of the frame.

v

SUMMARY (continued)

Installation of the forward ballast produces a center of gravity which would cause the vehicle to hang nose-down while descending beneath the recovery parachutes. A modification is recommended which will allow the large parachute deployment loads to still be taken by the existing structure but then shift the forward parachute attachment point more forward so that the vehicle attitude is level.

The forward swept wing preliminary aeroelastic design was completed making extensive use of the FASTOP structural optimization program. The program can be used to optimize metallic or fiberous composite structure for strength; deflection and flutter. The wing construction consists of graphite/ epoxy skins and full depth HFT glass reinforced phenolic honeycomb core. The graphite thickness distributions and ply fiber orientation were chosen to meet strength, deflection and flutter constraints. Skin thickness varied from approximately 0.445 inches (89 plies) at the wing leading edge root to .015 inches. (3 plies) near the trailing edge. A weight savings for an outer wing panel on the order of 65 percent is predicted through the use of advanced composite graphite material over conventional aluminum to meet deflection constraints.

The preliminary design effort of this study has shown that a forward swept wing of advanced composite material can be designed to overcome the inherent static divergence tendencies without undo weight penalties. A detail design of this forward swept research wing should encompass studies to insure that deformations normal to the chord are properly controlled, and that ply orientations and layers are chosen, as much as possible, to ease the fabrication process.

vi

CONTENTS

SECTION

PAGE

	SUMMARY	
1.0	INTRODUCTION	1-1
2.0	STUDY PROCESS	2-1
3.0	PRELIMINARY DESIGN FEASIBILITY	3-1
4.0 4.1 4.2	PERFORMANCE BASIS Performance Basis Performance	4-1 4-1 4-6
5.0 5.1 5.1.1 5.1.2 5.2 5.2.1 5.2.2	STABILITY AND CONTROL Longitudinal Stability And Control Parametric Studies Estimated Longitudinal Characteristics Lateral - Directional Stability And Control Dihedral Effect Estimated Lateral-Directional Characteristics	5-1 5-1 5-3 5-3 5-3 5-3 5-8
6.0	STRUCTURAL DESIGN CRITERIA	6-1
7.0 7.1 7.2 7.3	STRUCTURAL LOADS Fuselage Loads Wing Loads Empennage Loads	7-1 7-1 7-1 7-13
8.0 8.1 8.2 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.2.6 8.2.7 8.2.8 8.3 8.3.1 8.3.2	LOAD INDUCED ELASTIC DEFORMATIONS Method Of Approach Aeroelastic Design/Material Analysis Wing Finite Element Structural Analysis Geometry Wing Surface Membranes Honeycomb Core Shear Panels Root Rib Reactions Material Properties External Loads Results Discussion Conclusions From Wing Preliminary Design Effort	8-1 8-5 8-6 8-6 8-7 8-7 8-7 8-7 8-22 8-22 8-22 8-22 8-2
9.0	FLUTTER ANALYSIS	9-1
10.0 10.2	STRESS ANALYSIS Fuselage Analysis	10-1 10-4
11.0 11.1 11.1.1 11.1.2	DESIGN Fuselage Structural Modifications Ballast Installations	11-1 11-1 11-1 11-1

vii

CONTENTS (continued)

.

SECTION		PAGE
11.1.3 11.2	Recovery System Modifications Wing	11-1 11-3
12.0	WEIGHT & BALANCE	12-1
13.0	REFERENCES .	13-1
APPENDIX A	NASA STATEMENT OF WORK	A-1
APPENDIX B	MONTHLY PROGRESS REPORTS	B -1
APPENDIX C	FINAL FASTOP-3 STRUCTURAL ANALYSIS	C-1
APPENDIX D	FASTOP-3 FLUTTER ANALYSIS	D-1
APPENDIX E	STRESS ANALYSIS, FUSELAGE EQUIPMENT COMPARTMENT AREA	E-1

.

1

•

viii

LIST OF FIGURES

FIGURE		PAGE
1-1	General Arrangement BQM-34F Drone with	1-3
	Forward Swept Wing	
1-2	Conversion Factors	1-4
2-1	Calendar of Major Events	2-2
2-2	NASA Forward Swept Wing Geometric	2-4
	Characteristics	
2-3	Wing Weight Matrix	2-5
2-4	NASA Forward Swept Wing - Ballast Weight	2-6
	Requirements	
2-5	Wing/Fuselage Mounting Study	2-7
2-6	NASA Forward Swept Wing - Recovery CG we	2-7
	Wing Location	2-9
2-7	NASA Forward Swept Wing	210
2-8	Effect of Canard on Acrodynamic Conton	2-10
29	Supercritical Airfoil Coordinates	2 ** 1 4
4-1	Zero Lift Drog Buildun	∠‴⊥4 / 0
4-2	Zero Life Drag Coofficient _ ROM 2/F	4Z
	Zero Life Diag Goefficient - Dyn-34r	4-3
4-3	Drag Duo to Lift BOM 2/F Formeral Count	, ,
4-J	Diag Due to Lift bon-34F Forward Swept	4-4
h	Lift Curre Class DOM 2/11 Demonstration	,
4-4	LITE Curve Stope BQM-34F Forward Swept	4-5
<u>л с </u>	Research wing	•
4	Flight Envelope Forward Swept Research Wing	4-7
4***0	Flight Envelope Forward Swept Research Wing	4-8
4/	Mission Endurance BQM-34F Forward Swept	4-9
F 3	Research Wing	
J-∞T	Forward Swept Wing Estimated CG Location	5-2
F 0	Required for Various Wing Positions	
5-2	Effect of Wing Location on Static Stability	5-4
<u>)</u> ⊸j	Estimated Longitudinal Stability Derivatives	5-5
5-4	Estimated Longitudinal Control Effectiveness	5-6
	and Static Stability Margin	
55	Longitudinal Trim Requirements	5-7
5-6	Comparison of Wing Contribution to $C_{\ell_{\mathcal{B}}}$	5-9
5-1	Effect of $C_{\ell_{\beta}}$ on Dynamic Stability in	5-10
	Turns (Sheet 1 of 3)	
58	Estimated Static Lateral-Directional	5-13
	Stability Derivatives	
6-1	BQM-34F/Forward Swept Wing Structural	6-1
	Design Speeds	
7-1	Wing Limit Loads	7-2
7-2	Forward Fuselage Loading Comparison	7-3
7-3	Fuselage Shear & Moment Diagrams Forward Swept	7-4
	Wing Proposal Added Ballast Effects	
74	Aerodynamic Loads, NZ = 6	7-6
7-5	Aerodynamic Loads to Structural Nodes, $NZ = 2$	7-7
7-6	Aerodynamic Loads to Structural Nodes, $NZ = -3$	7-8
77	Aerodynamic Loads to Structural Nodes, $NZ = 6$.	7-9
	Distribution to Nodes	

(j

Ð

LIST OF FIGURES (continued

149

FIGURE		PAGE
7-8	Aerodynamic Loads to Structural Nodes, NZ = 2. Distribution to Nodes	7-10
7-9	Aerodynamic Loads to Structural Nodes, NZ = -3. Distribution of Nodes	7-11
7-10	Aerodynamic Loads Distributed Loading $N7 = 6$	7-12
7-11	Aerodynamic Loads Distributed Loading $N7 = 2$	7-12
7-12	Aerodynamic Loads Distributed Loading, $NZ = -3$	7-12
7-13	Horizontal Tail Load Survey 426 KEAS	7-14
7-14	Horizontal Tail Loads Survey	7 1 5
8-1	Detail Items in the Basic Structural Analysis	/10 0 1
8-2	FASTOR-3 Modular Flow Chart	0-1
8-3	Wing Construction and Materials Selection	0-2
8-4	Wing Geometry	0-4
8-5	Wing Upper Skin Grid Pointe	0-0
8-6	Wing Lover Skin Grid Points	0-10
87	Root Rib Geometry and Grid Points	0-11 0 11
8-8	Unper Surface-Membrane Flements	0 1 5
8-9	Lower Surface-Membrane Elements	0-15
8-10	Snanwise Shear Panels	0-17
8_11	Chordwise Shear Webs	0-1/
8-12	Shear Web Vertical Pseudo Rode	0-10
8-13	Root Rib Structural Model	0-19
8-14	Reactions at Root Rib	0-21
8-15	External Loads $NZ = 6$	0-25
8-16	External Loads, $NZ = 9$ 69 Loads v 1.5	0-24 8-25
8-17	External Loads, NZ = 2	8-26
8-18	External Loads. $NZ = -3$	8-27
8-19	All Graphite/Epoxy Wing $(0^{\circ}, 90^{\circ}, 45^{\circ}, -45^{\circ})$	8-29
8-20	All Graphite/Epoxy Wing $(0^\circ, 90^\circ, 45^\circ, -45^\circ)$	8-30
8-21	All Graphite/Epoxy Wing $(45^{\circ}, 0^{\circ}, -45^{\circ})$	0
8-22	All Graphite/Epoxy Wing $(45^\circ, 0^\circ, -45^\circ)$	8-33 0-21
8-23	All Graphite/Epoxy Wing $(45^{\circ}, 0^{\circ}, -45^{\circ})$	8-33
8-24	All Graphite/Epoxy Wing $(45^{\circ}, 0^{\circ}, -45^{\circ})$	8-35
8-25	All Graphite/Epoxy Wing $(45^{\circ}, 0^{\circ}, -45^{\circ})$	8-36
8-26	All Graphite/Epoxy $(0^{\circ}, 90^{\circ}, 45^{\circ}, -45^{\circ})$	8-38
8-27	All Graphite/Epoxy Wing $(0^{\circ}, 90^{\circ}, 45^{\circ}, -45^{\circ})$	8-39
8-28	All Graphite/Epoxy Wing $(0^{\circ}, 90^{\circ}, 45^{\circ}, -45^{\circ})$	8-40
8 - 29	All Graphite/Epoxy Wing $(0^{\circ}, 90^{\circ}, 45^{\circ}, -45^{\circ})$	8-41
8 –30	All Graphite/Epoxy Wing $(0^{\circ}, 90^{\circ}, 45^{\circ}, -45^{\circ})$	8-42
8-31	All Graphite/Epoxy Wing $(0^{\circ}, 90^{\circ}, 45^{\circ}, -45^{\circ})$	8-43
8-32	Aluminum Wing	8-45
8-33	Graphite/Epoxy Wing	8-46
8-34	Graphite - Kevlar Wing	8-47
8-35	Spanwise Twist Deflections	8-48
8-36	All Graphite Wing (45°, 0, 45°)	8-49
8 - 37	All Graphite/Epoxy Wing (45 ⁰ , 0, -45 ⁰)	8-50
8-38	All Graphite/Epoxy Wing $(45^{\circ}, 0^{\circ}, -45^{\circ})$	8-52
8-39	All Graphite/Epoxy Wing $(45^{\circ}, 0^{\circ}, -45^{\circ})$	8-53
8~40	All Graphite/Epoxy Wing $(45^{\circ}, 0^{\circ}, -45^{\circ})$	8-54

X

LIST OF FIGURES (continued)

()

ŀ

5

TABLE

FIGURE		PAGE
8-41	All Graphite/Epoxy Wing $(45^{\circ}, 0^{\circ}, -45^{\circ})$	8-55
8.42	All Graphite/Epoxy Wing $(45^{\circ}, 0^{\circ}, -45^{\circ})$	8-56
8-43	Spanwise Twist Distributions, All Graphite Wing	8–57
9-1	NASA Forward Swept Wing, Dynamic Model	9-2
9-2	Grid Arrangement	_9-3
10-1	Fuselage Shell Structure	10-5
10-2	Beef-Up Straps Equipment Compartment	10-6
10-3	Fuselage Wing Attach Frames, 6-g Loads x 1.5	10-7
11-1	Forward Fuselage External Strap Beef-Up and Ballast Installation	11-2
11-2	Riser Configuration	11-4
11-3	Wing Upper Surface Ply Thickness	11-5
11-4	Wing Lower Surface Ply Thickness	11-6
11-5	Wing Upper Skin Ply Contours	11-8
11-6	Wing Lower Sking Ply Contours	11-9
11-7	Preliminary Design of Forward Swept Research Wing for BQM-34F	11-10

PAGE

LIST OF TABLES

6-1	BQM-34F/Forward Swept Research Wing Structural Design Criteria Summary	6-3
8-1	Wing/Root Rib Coordinates	8-11
12-1	Weight Breakdown	12-2
12-2	NASA Swept Forward Wing - Summary Weight	
	Statement (1)	12-3

SYMBOLS

A - Aspect ratio AR - Aspect ratio A_{WET}-Wetted Area b - Wing span BL - Butt line C - Chord C - Wing MAC $\overline{C}/2$ - Mid-chord location of MAC $\overline{C}/4$ - Quarter-chord location of MAC C_{D_L} - Drag due to lift C_{D_O} - Drag coefficient at zero lift C_f - Skin friction coefficient $C_{R_{\beta}}$ - Slope of rolling moment coefficient vs. angle of sideslip C_L - Lift coefficient C_LMAX - Maximum lift coefficient CLT - Trim lift coefficient C_L TRIMMED - Trimmed lift coefficient с_г - Lift coefficient of wing $C_{L_{\alpha}}$ - Slope of lift coefficient vs. angle of attack C_L - Slope of lift coefficient vs. elevator deflection C_M - Moment coefficient CMCL - Static margin c_{Mα} - Slope of pitching moment coefficient vs. angle of attack ^СМбе</mark>С/4 - Slope of pitching moment coefficient about $\overline{C}/4$ vs. elevator deflection

C_p - Wing root chord C_{T} - Wing tip chord C.G. - Center of Gravity DGW - Design gross weight DIA - Diameter D.O.F. - Degrees of freedom e1 - Strain in primary material direction $e_2 = 2$ Strain in secondary material direction E_{y} - Youngs Modulus of Elasticity in principal material direction E_v - Youngs Modulus of Elasticity in secondary material direction E1 - Youngs Modulus of Elasticity in primary material direction E_2 - Youngs Modulus of Elasticity in secondary material direction f - Drag area fps(EAS) - Feet per second in equivalent airspeed f - Stress in core F_{cyd} - Facing stress at which intracellular buckling occurs F - Allowable shear force F_{xc} - Allowable compressive force in the X-direction F_{xt} - Allowable tensile force in the X-direction $g - 32.2 \text{ ft/sec}^2$ G - Shear modulus of elasticity G.W. - Gross weight H - Pertaining to horizontal tail K_{f} - Form factor KEAS - Knot equivalent air speed $\ell_{\rm REF}$ - Characteristic length L_H - Horizontal tail arm L.E. - Wing leading edge L.E.MAC - Leading edge station of mean aerodynamic chord M - Mach number M_{C/2} - Root bending M_{SL} - Equivalent design Mach no. at sea level ${\rm M}_{\rm v}$ - Moment about x or longitudinal axis

M_y - Moment about y or lateral axis

MAC - Mean aerodynamic chord

MAR - Mid-air retrieval

M.S. - Margin of safety

n_{ULT} - Ultimate load factor

 n_{X} - Load factor, X

n_y - Load factor, Y

()

j)

5

 n_{Z} - Load Factor, Z

n_yW - Product of normal load factor and weight

P_{SHEAR} - Bolt allowable shear load

PTENSION - Bolt allowable tension load

PSI - Pounds per square inch

 R_{N} - Reynolds number

s - Core cell size

S - Planform area

 $S_W - Wing planform area$

 S_{τ} - Shear in Z or vertical direction

SEC $\Lambda_{L_{C}}$ - Secant of quarter chord sweep angle

S.L. - Sea level

S.M. - Static margin

t - Thickness, inches

 $T_{C/2}$ - Root torsion

t_f - Laminate thickness

t/c - Thickness ratio

T.E. - Wing trailing edge

TR - Thickness of theoretical root chord

V_L - Free flight limit speed

WL - Water line

X - Pertains to longitudinal direction

 X_{ac} - Fuselage station location at aerodynamic center X_{cg} - Fuselage station location of center of gravity X_{F} - X coordinate in fuselage coordinate system XF - Fuselage longitudinal location

 \oint - Pertains to lateral direction

Y_F - Y coordinate in fuselage coordinate system $Y_{tr} - Y$ coordinate in wing coordinate system YEA - Lateral dimension along elastic axis Y(LWR) - Y coordinate of airfoil lower surface Y(UPR) - Y coordinate of airfoil upper surface Z - Pertains to vertical direction Z_{r} - Z coordinate in fuselage coordinate system Z.F.W. - Zero fuel weight α - Angle of attack $\boldsymbol{\alpha}_i$ - Thermal expansion coefficient in primary material direction α_2 - Thermal expansion coefficient in secondary material direction γ_{12} - Shearing strain $\boldsymbol{\delta}_{p}$ - Elevator deflection, deg. δ_{r} - Rudder deflection ΔX - Distance aft from wing apex at (BL=0) e_{α} - Downwash derivative θ - Pitch angle θ_{x} - Rotation about X axis θ_v - Rotation about Y axis λ - Taper ratio Λ - Wing sweep angle ΛC_{IA} - Wing sweep angle of quarter cord $\Lambda C_{/2}$ - Wing sweep angle of half cord $\Lambda_{\rm LE}$ - Wing leading edge sweep μ - Poisson's ratio μX - Poisson's ratio in principle laminate direction μY - Poisson's ratio in secondary laminate direction ρ - Density ϕ - Bank angle ' - Feet # - Lb

1.0 INTRODUCTION

A number of years ago the National Aeronautics and Space Administration (NASA) established a program utilizing modified BQM-34F FIREBEE II targets as test vehicles for flight research. The program is known by the acronym DAST for Drones for Aerodynamic and Structural Testing.

Ö

p

The feasibility of using the FIREBEE II target for flight investigation of research wings was substantiated as a result of a TRA study conducted under NASA contract (NASI-11758; Reference 1.1). The study provided aerodynamic performance information for several research wing planforms as well as wing design and integration aspects. Under separate NASA contract (NASI-11758; Reference 1.2), TRA designed an aspect ratio 6.8 supercritical research wing. This wing has been fabricated by NASA and outfitted with active controls for flutter suppression. First flight of the BQM-34F with this wing is scheduled about the time of publication of this report. A second research wing for the BQM-34F is presently being designed by Boeing under NASA contract. This wing, of aspect ratio 10.3, will be equipped with multiple active controls for flight research of gust and maneuver load alleviation, flutter suppression and reduced static stability. Further details of the DAST program are presented in Reference 1.3.

The advent of structures fabricated with isotropic laminates of advanced composite materials provides a means of efficiently tailoring the aeroelastic characteristics of lifting surfaces. The NASA HIMAT vehicle is a significant example of this emerging technology. The flutter characteristics of the aspect ratio 6.8 wing mentioned previously were tailored by means of composite materials. This aeroelastic tailoring capability of composite materials has sparked a renewed interest in forward swept wings which have generally not been used because of inherent static divergent tendencies. Reference 1.4 investigates divergence elimination through use of advanced composites.

This report documents the results of a study conducted by TRA to investigate the feasibility aspects of flight testing an aeroelastically tailored forward swept research wing on a BQM-34F drone vehicle. The study was conducted under NASA contract NASI-15624 during the period November 1978

through June 1979. The program was initated by NASA RFP 1-12-2720-0142 dated 15 August 1978. TRA's response to the RFP was the proposal document of Reference 1.5. The NASA statement of work is included as Appendix A in Volume II of this report.

The study effort addressed the following major tasks:

()

ίĐ

<u>۱</u>

- Determine the range of wing geometry which can be adopted to the BQM-34F and meet the specified requirements.
- 2. Identify any modifications required of the basic airframe.
- 3. Perform a preliminary structural design of an aeroelastically tailored swept forward wing.
- 4. Document the study results and present an oral report at Langley.

A three-view of the BQM-34F equipped with the forward swept research wing is shown in Figure 1-1.

Measurement values employed in this technical report are expressed in customary units. As stipulated by the contract a table has been provided for converting the customary units used in this document to the International System of Units (SI). The conversion units are provided in Figure 1-2.

: تريد ÷.....

 \sim

Figure 1-1. General Arrangement BQM-34F Drone with Forward Swept Wing

1-3

a∳a gi e

PHYSICAL QUANTITY	TO CONVERT FROM	ТО	MULTIPLY BY
Acceleration	Foot/Second ²	Meter/Second ²	*3.048.10 ⁻¹
Area	Foot ²	Meter ²	*9.290304.10 ⁻²
Density	ℓbm/Inch ³	Kilogram/Meter ³	2.767990.10 ⁴
Density	<code>&bm/Foot³</code>	Kilogram/Meter ³	1.601846.10 ¹
Force	٤bf	Newton	4.448221.10 ⁰
Length	Inch	Meter	*2.54.10 ⁻²
Length	Foot	Meter	*3.048.10 ⁻¹
Mass	۶bm	Kilogram	4.535924.10 ⁻¹
Moment	In-lbf	Meter-Newton	1.129848.10 ⁻¹
Pressure	lbf/Inch ²	Newton/Meter ²	6.894757.10 ³
Speed	Foot/Second	Meter/Second	*3.048.10 ⁻¹
Speed	Knot	Meter/Second	5.144444.10 ⁻¹
Volume	Hogshead	Meter ³	2.384809.10 ⁻¹

NOTE: An asterisk precedes each number which expresses an exact definition.

Figure 1-2. Conversion Factors

T541

2.0 STUDY PROCESS

Subsequent sections of this document report on the details and results of the study effort. This section presents a concise description of the study process and chronology. Figure 2-1 provides a calendar of major study events.

A chronology of the events during the study has been captured in the progress reports which were prepared and submitted to NASA on a monthly basis. Copies of these six program reports are presented as Appendix B in Volume II of this report.

()

ŀ

This study effort was comprised of two major elements. During the first element the range of wing planform variables provided by the NASA statement of work were evaluated in terms of their impact upon meeting the specified flight research objectives and in terms of their integration with the BQM-34F target. Following selection of a wing planform the second major study element commenced and consisted of a more detailed investigation of integrating the wing with the vehicle and a preliminary design of the wing.

The NASA statement of work asked for consideration of wing planforms with the following geometries:

Reference Wing Area, Sq. Ft.	25 to 36
Airfoil	Supercritical
Root Airfoil Thickness Ratio	Approx05
Tip Airfoil Thickness Ratio	Approx05
Wing Aspect Ratio	4 to 7
Span, Ft.	11 to 17
Leading Edge Sweep Angle, Deg.	-20 to -35
Twist, Deg.	TBD
Taper Ratio	0.40

In addition, an optional close coupled canard with approximately the following characteristics was to be considered during the study:

Referenc	e Expos	sed Can	ard Area	ı, Sq.	Ft.	ł	8
Exposed	Canard	Aspect	Ratio				4

EVENT	CALENDAR YEAR			
CAENI	1978	1979		
NASA RFP 1-12-2720.0142 ISSUED	↓			
TRA PROPOSAL				
STUDY CONTRACT AWARD				
STUDY PHASE				
NASA/TRA STUDY REVIEW				
DFRC COORDINATION MEETING				
MONTHLY PROGRESS REPORTS	\mathbf{V}	· • • • • • •		
ORAL REVIEW AT LANGLEY		\mathbf{V}		
FINAL TECHNICAL REPORT		▼		
CONTRACT END				
		L		

Figure 2-1. Calendar of Major Events

Canard Thickness Ratio	TBD
Leading Edge Sweep Angle, Deg.	-30
faper Ratio	0.2
Twist, Deg.	0

The matrix of wing geometric characteristics considered in this study is shown in Figure 2-2. Estimates of wing weights for parametric evaluation have been made from the following empirically based formula:

Wing Weight =
$$F[.1604(DGW - n_{ULT})^{.297} (S_W)^{.48}(b)^{.7} (SEC \Lambda_{\frac{1}{4}C})^{.37}(1 + \lambda)^{.4}(M_{SL})^{.25}]/(TR)^{.3}$$

F = Factor = 1.0 for Aluminum = 0.8 for Composites
DGW = Design Gross Weight = 2500 lbs.
n_{ULT} = Ultimate Load Factor = 9

 S_{M} = Gross Wing Area = variable

b = Wing Span = variable

()

SEC A $_{kC}$ = Secant of Quarter Chord Sweep Angle = variable

 λ = Taper Ratio = 0.4

 M_{SL} = Equivalent Design Mach No. at Sea Level = 0.65

TR = Thickness of Theoretical Root Chord = variable

Wing weights based upon this formula are presented in Figure 2-3.

Placing a forward swept wing on the BQM-34F at the same wing mounting location as the basic target moves the aerodynamic center of the vehicle forward. This requires forward ballast to maintain a constant level of lon-gitudinal static stability. This is illustrated by the curves of Figure 2-4. These curves show the amount of ballast required at the X_F 118.6 bulkhead to maintain a static margin of 10%. Ballast requirements of at least 150 pounds are indicated. The largest influence on quantity of ballast required is the forward sweep angle and fore-aft position of the wing.

The conventional target wing is mounted to the fuselage by means of five bolts per side. For mounting the forward swept research wing a minimum of three mounting bolts is considered required with four desirable. This is illustrated by the sketch of Figure 2-5. The most aft position for the various

	NO.	ASPECT RATIO (A)	L.E. SWEEP (A _{LE}) DEG.	PLANF. AREA (S) FT2	ROOT CHORD CR IN.	TIP CHORD CT IN.	TAPER RATIO	WING SPAN b IN.	WING MAC Ē IN.	WING SWEEP A _{c/4} DEG.	G ANGLE Ac/2 DEG.	WING WETTED AREA SQ. FT.
	1 2 3	4	-20 -28 -36	25	42.857	17.142	0.4	120.000	31.837	-25.226 -32.573 -39.817	-30.039 -36.723 -43.254	36.15
	4 5 6	4	-20 -28 -36	30	46.948	18.779	0.4	131.453	34,876	-25.226 -32.573 -39.817	-30.039 -36.723 -43.254	44,83
	7 8 9	4	-20 -28 -36	36	51.429	20.571	0.4	144,000	38,204	-25.226 -32.573 -39.817	-30,039 -36,723 -43,254	55.20
	10 11 12	5	-20 -28 -36	25	38.333	15.333	0.4	134,164	28.476	-24.213 -31.692 -39.085	-28.165 -35.113 -41.923	37.62
	13 14 15	5	-20 -28 -36	30	41.991	16.797	0.4	146.969	31.198	-24.213 -31.692 -39.085	-28.165 -35.113 -41.923	46.31
	16 17 18	5	-20 -28 -36	36	45.999	18.400	0.4	160.997	34.171	-24.213 -31.692 -39.085	-28.165 -35.113 -41.923	56.98
in the second	19 20 21	6	-20 -28 -36	25	34.993	13.997	0.4	146.969	25.995	-23.528 -31.096 -36.589	-26.877 -34.002 -41.004	39.39
	22 23 24	6	-20 -28 -36	30	38.333	15.333	0.4	160.997	28.476	-23.528 -31.096 -38.589	-26.877 -34.002 -41.004	48.31
	25 26 27	6	-20 -28 -36	36	41.991	16.797	0.4	176.363	31.194	-23.528 -31.096 -38.589	-26.877 -34.002 -41.004	59.23

Figure 2-2. NASA Forward Swept Wing Geometric Characteristics

 WING		SWEEP DEGI	ANGLE, REE	WING	WING WEIGHT (COMPOSITES) LB.	
 SQ. FT.	ASPECT RATIO	L.É	1/4 CHORD	(ALUM.) LB.		
 25	4	20 28 36	25.23 32.57 39.82	132.27 135.79 140.53	105.82 108.63 112.42	
	5	20 28 36	24.21 31.69 39.09	147.22 150.05 156.27	117.78 120.04 125.02	
	6	20 28 36	23.53 31.10 38.58	161.00 165.13 170.79	128.80 132.10 136.63	
30	4	20 28 36	25.23 32.57 39.82	149.46 153.43 158.79	119.57 122.74 127.03	
	5	20 28 36	24.21 31.69 3 9 .09	166.75 171.09 177.01	133.40 136.87 141.61	
	6	20 28 36	23.53 31.10 38.58	182.34 186.91 193.31	145.79 149.53 154.65	
36	4	20 28 36	25.23 32.57 39.82	169.40 173.90 179.98	135.52 139.12 143.98	
	5	20 28 36	24.21 31.69 39.09	188.68 193.59 200.29	150.98 154.87 160.23	
	6	20 28 36	23.53 31.10 38.58	206.38 211.67 218.92	165.10 169.34 175.14	

(). .

Į)

Figure 2-3. Wing Weight Matrix

Figure 2-4. NASA Forward Swept Wing - Ballast Weight Requirements

wing geometries to maintain three-bolt per side mounting is shown on Figure 2-4. The most aft positioning for the wing of Figure 2-5 which permits use of four mounting bolts per side is an intersection of the leading edge and the fuselage centerline at station 252.4. This requires about 257 pounds of ballast as shown by the indicated point on Figure 2-4.

(۱

þ

It was recognized that large amounts of forward ballast may require fuselage structural modifications to sustain the greater loads. Another problem with forward ballast is its effect upon the vehicle center of gravity when suspended beneath the recovery parachute. Deployment of the recovery parachutes, which are stowed in the aft end of the vehicle, moves the vehicle c.g. forward. For most of the wings, wing mounting locations, and forward ballast requirements, the recovery c.g. falls forward of the forward parachute mounting point. For the wing of Figure 2-5 this would mean a nose-down attitude of about 50 degrees at mid-air helicopter pickup and during towing and docking which is considered unsatisfactory. This problem is illustrated by Figure 2-6. The figure shows that only the 20-degree swept forward wing at the most rearward mounting location would result in a recovery c.g. within the parachute mounting points. This would result in a wing which picks up only three of the existing mounts and a recovery c.g. almost coincident with the forward parachute mount, both undesirable.

Two other alternatives were investigated, dropping ballast at recovery and repositioning the forward parachute attach point. The wing of Figure 2-5 requires more than 90 pounds of droppable ballast as illustrated by the preliminary weight/ c.g. curves of Figure 2-7. Although dropping ballast is feasible and has been discussed with safety people at DFRC, repositioning the forward parachute attachment appears more desirable.

During the recovery process, large main parachute loads are transmitted to the fuselage through the forward attachment fitting. Imposing these loads upon a more forward fuselage frame would probably require significant structural modifications to the new frame. A scheme has thus been developed wherein the peak forces of parachute deployment would be taken through the existing fittings and then, once the vehicle is in stabilized descent, a bridle restraint is released allowing the vehicle to swing level prior to Mid Air

(),

Retrieval (MAR). This concept is presented in more detail in Section 11.1.3.

Adding a canard surface to the BQM-34F will result in a further shift forward of the aerodynamic center of the vehicle. Data from Reference 2.1 have been reviewed in order to estimate this effect. The wing of Reference 2.1 has an aspect ratio of 1.25, taper ratio of 0.25 and leading edge sweep of 32.13 degrees. The close-coupled canard has about the same sweep angle and the exposed canard area is 15.9 percent of the wing reference area. The effect of the canard on aerodynamic center location is shown on Figure 2.8. A forward shift of 24 percent MAC is indicated. For the BQM-34F a canard area of 8.0 square feet is specified which produces an area ratio 0.32 for a 25 square foot wing. A forward shift of the aerodynamic center of considerably more than 24 percent MAC would be expected. A ballast weight increase of about 100 pounds would be needed for a 24 percent forward shift and considerably more than that for the canard/wing area ratios specified for the BQM-34F application. Because of this large increase in required ballast and because of the obvious problems associated with mounting a canard no further consideration was given to the canard configuration.

(),

 0

The choice of wing planform was not influenced by flight performance limits. Preliminary estimates shown in Reference 1.5 and past experience with the BQM-34E/F assure that the required speed and altitude regime can be attained. Flight performance aspects of the BQM-34F with the swept forward wing are presented in Section 4.0.

The choice of a wing planform for further study was influenced primarily by two factors:

- 1) Wing planform must be consistant with NASA research objectives.
- 2) Minimize ballast requirements and modifications to basic target airframe.

A 25.0 square foot aspect ratio 4 wing with -20.0 degree forward sweep was chosen. This wing minimizes ballast requirements and airframe structural modifications. NASA concurrence with this choice was obtained by telephone in late January 1979 with Jim Campbell and Hal Murrow of NASA and at a subsequent study review at TRA with Mr. Murrow on 5 March 1979.

The NASA SOW stipulates an unspecified supercritical airfoil for the wing. The airfoil which was chosen was the airfoil of Table II of Reference 2.2. The coordinates for the referenced airfoil are for a thickness ratio of 13 percent. These coordinates have been modified to produce the 5 percent thick supercritical airfoil used in this study. The coordinates are shown on Figure 2-9.

Selection of the wing permitted this study to progress into the more detailed stability and control, flight performance, structural, weight and balance and design efforts reported in subsequent sections of this report.

5

	· · · · · · · · · · · · · · · · · · ·			للمراجع المتستجير
	X	Y(UPR.)	Y(LWR.)	MEAN
			and the second second	LINE
1	0.000000	0.000000	0.000000	0.000000
2	0.002500	0.004439	-0.002607	0.000276
3	0.005000	0.006115	-0.003615	0.000544
Å	0.007500	0.007385	-0.004369	0.000806
Ē	0.010000	0.009442	-0.004970	0 001061
	0.012500	0 000370	-0.005400	0.001001
	0.012000	0.009370	-0.0000490	0.001540
(0.015000	0.010224	-0.005962	0.001549
8	0.01/500	0.011019	-0.006380	0.001182
. 9.	0.020000	0.011766	-0.006758	0.002009
10	0.025000	0.013154	+0.007427	0.002441
11	0.030000	0.014418	-0.009012	0.002845
12	0.035000	0.015551	-0.008530	0.003221
13	0.040000	0.016573	-0.008996	0.003569
14	0.045000	0.017474	-0.009420	0.003889
15	0.050000	0.018308	-0.009808	0.004179
16	0.075000	0.021692	-0.011500	0.005094
17	0.100000	0.024192	-0.012808	0.005674
18	0.125000	0.026154	-0.013846	0.006149
10	0.150000	0.027769	-0.014692	0.006525
2n	0.175000	0.029077	-0.015385	0.006830
21	0.200000	0.030115	+0.015962	0 007077
22	0.225000	0.030962	-0.016423	0.007268
22	0.250000	0.031615		0.007421
20	0.275000	0.0301015	-0.017039	0.007627
24	0.20000	0.032115	-0.017038	0.00751
23	0.300000	0.032402	-0.017231	0.007014
20	0.325000	0.032054		0.007051
21	0.350000	0.032092	-0.017385	0.007558
28	0+375000	0.032577	-0.01/308	0.007634
29	0.400000	0.032346	-0.017192	0.00/580
30	0.425000	0.032000	-0.017000	0.007499
31	0.450000	0.031538	-0.016731	0.007401
32	0.475000	0.030962	-0.016385	0.007286
33	0.500000	0.030269	-0.015962	0.007157
34	0.525000	0.029462	-0.015423	0.007015
35	0.550000	0.028538	-0.014808	0.006862
36	0.575000	0.027500	-0.014077	0.006708
37	0.600000	0:026346	-0.013231	0.006560
38	0.625000	0.025115	-0.012269	0.000417
39	0.650000	0.023769	-0.011192	0.006281
40	0.675000	0.022346	-0.010077	0.006128
41	0.700000	0.020846	-0.008923	0.005954
42	0.725000	0.019269	-0.007769	0.005744
43	0.750000	0.017615	-0.006615	0.005497
44	0.775000	0.015923	-0.005462	0.005222
45	0.800000	0.014154	-0.004308	0.004918
46	0.825000	0.012346	-0.003231	0_004551
47	0.850000	0.010500	-0.002269	0.004112
40	0.875000	0.000615	-0.001500	0.003540
40	0.90000	0.004603	- mo. 001000	0.0000444
ፕን ፍለ	0.900000	0.004731		A AA10E3
50	0.050000	0.0034031		0 000200
51	0 07=000	0.000072	-0.0010//	
22	1 000000		-0.003615	
23	T • 0 0 0 0 0 0	•v•vv1034	-0.003012	-0.002035

LS(1)-4050 MOD DATE----4/18/79

() . :

 \mathbf{p}_{i}

Ϋ́́jı

Figure 2-9. Supercritical Airfoil Coordinates

3.0 PRELIMINARY DESIGN FEASIBILITY

The stated objective of this study was to evaluate the feasibility of incorporating an aeroelastically tailored forward swept wing on to a BQM-34F for flight research testing and to perform a preliminary design of the wing. This section evaluates the feasibility of accomplishing those objectives based upon the details of the study presented in other sections of this report.

The evaluation can be treated in two parts:

- (1) The feasibility of designing an aeroelastically tailored forward swept wing and
- (2) The feasibility of incorporating such a wing onto the BQM-34F.

The feasibility of number (1) will not be further addressed in this section since it has been shown by others that a swept forward wing can be designed and flown.

A number of issues were uncovered and addressed during the course of the study. The issues and their resolutions are listed below.

ISSUE

RESOLUTION

Wing is positioned at the existing wing mounting location. Wing is located as far aft as possible to reduce ballast requirements.

The selected wing (see Figure 1-1) was chosen to simultaneously meet NASA planform configuration requirements and to minimize ballast requirements. Extensive structural modifications would be required to mount a canard and an increase in forward ballast of more than 100 pounds. Canard configuration was discarded.

Wing geometry

Wing Position

Canard surface

<u>ISSUE</u> Ballast

Ċ)

æ

i sig

RESOLUTION

Forward ballast is required to maintain proper aircraft balance. The lack of internal volume requires mounting the ballast externally. A recovery cg problem is solved by a redesign of the main parachute attachment system rather that having to jettison ballast.

Modifications will be required to mount the forward fuselage external ballast, provide forward fuselage external structural beef-up, provide a minor beef-up of wing mount frame at station 250.06, provide a more-forward parachute fitting and alter the main parachute attaching hardware.

Vehicle flight envelopes and mission durations are adequate for the research application.

Ballast provisions insure adequate static longitudinal and directional stability. Preliminary analysis indicates satisfactory dynamic lateral/directional stability and control. More than adequate longitudinal control is available to achieve 3.0 g's and C_L of 0.7 at the design condition.

The conclusion is that it is entirely feasible to accomplish the stated objectives and that this can be accomplished without extensive modification (other than the wing) to the basic airframe of the BQM-34F.

Flight Performance

Airframe Modifications

Stability and Control
4.1 PERFORMANCE BASIS

Performance capabilities for the BQM-34F configured with an aeroelastically tailored forward swept research wing are based on the Reference 4.1 installed characteristics of the CAE J69-T-406 turbojet engine and estimated vehicle aerodynamics data. The physical description of the wing is as follows:

Exposed Area18.9 FtM.A.C.2.66 FtSpan10.0 FtAspect RAtio4.0Taper Ratio0.4Sweep, L.E20 Deg.Sweep, Max. t/c-27 Deg.Sweep, T.E38 Deg.Airfoil, t/c5 %	Gross Area		25 Ft^2	۰.
M.A.C. 2.66 Ft Span 10.0 Ft Aspect RAtio 4.0 Taper Ratio 0.4 Sweep, L.E. -20 Deg. Sweep, Max. t/c -27 Deg. Sweep, T.E. -38 Deg. Airfoil, t/c 5 %	Exposed Area		18.9 Ft^2	
Span10.0 FtAspect RAtio4.0Taper Ratio0.4Sweep, L.E20 Deg.Sweep, Max. t/c-27 Deg.Sweep, T.E38 Deg.Airfoil, t/c5 %	M.A.C.		2.66 Ft	
Aspect RAtio4.0Taper Ratio0.4Sweep, L.E20 Deg.Sweep, Max. t/c-27 Deg.Sweep, T.E38 Deg.Airfoil, t/c5 %Airfoil TypeSupercritical	Span		10.0 Ft	
Taper Ratio0.4Sweep, L.E20 Deg.Sweep, Max. t/c-27 Deg.Sweep, T.E38 Deg.Airfoil, t/c5 %Airfoil TypeSupercritical	Aspect RAtio		4.0	
Sweep, L.E20 Deg.Sweep, Max. t/c-27 Deg.Sweep, T.E38 Deg.Airfoil, t/c5 %Airfoil TypeSupercritical	Taper Ratio	de la construcción de la	0.4	
Sweep, Max. t/c-27 Deg.Sweep, T.E38 Deg.Airfoil, t/c5 %Airfoil TypeSupercritical	Sweep, L.E.		-20 Deg.	
Sweep, T.E38 Deg.Airfoil, t/c5 %Airfoil TypeSupercritical	Sweep, Max. t/c		-27 Deg.	
Airfoil, t/c 5 %	Sweep, T.E.		-38 Deg.	
Airfoil Type	Airfoil, t/c		5 %	
Supercritical	Airfoil Type		Supercritica	11

The vehicle lift and drag bases were derived using computerized estimation methods described in Reference 4.2. For comparison, cross checks were made of the computerized methodology against existing wind tunnel derived BQM-34F characteristics. The estimating procedures were developed for conventional aft-swept wing configurations but it was assumed, for the purpose of this feasibility study that the aerodynamics would be representative of a forward swept wing.

Figure 4-1 presents an example of the basic zero lift drag buildup at 0.9 Mach number, 30,000 feet, obtained from the above referenced method. Figure 4-2 presents zero lift drag throughout the Mach-altitude range of interest.

Drag due to lift and lift curve slope data are shown in Figures 4-3 and 4-4 respectively. These data were also developed from the Reference 4.2 method assuming a fixed elevator and by the method described in Section

ALTITUDE - 30,000 FT MACH NO. - 0.9 REF. AREA - 25 FT²

COMPONENTS	A _{WET} FT ²	^{&} REF FT	RN 10 ⁶	C _f	К _f	f FT ²	с _{ро}
Fuselage	148.5	29.0	74.3	.00208	1.057	. 3268	.01307
Wing	37.8	2.66	6.8	.00299	1.179	.1333	.00533
Horizontal Tail	11.0	1.45	3.7	.00332	1,062	.0388	.00155
Vertical Tail	13.6	2.70	6.9	.00298	1.043	.0423	.00169
Interference						.0783	.00313
Base						.0105	.00042
Camber						.0110	.00044
Surface Roughness						.0370	.00148
Drag Rise						.0580	.00232
TOTAL						.7358	.02943

T550

2

Figure 4-1. Zero Lift Drag Buildup

Figure 4-3. Drag Due to Lift BQM-34F Forward Swept Research Wing

Swept Research Wing

5.1.2 This is an acceptable approximation in as much as vehicle stability levels are low and elevator control power is high.

4.2 PERFORMANCE

Theoretical speed altitude envelopes at constant load factors and variable load factors are illustrated in Figures 4-5 and 4-6 respectively. It is recognized that these envelopes, in some instances, exceed chosen wing structural design limits. However, they do serve to point up the performance capabilities available.

Typical mission endurance capabilities for the research vehicle are summarized in Figure 4+7. The missions assume airlaunch from 30,000 feet at 0.7 Mach number. A launch weight of 2071 lbs. and total mission fuel weight of 333 lbs. is assumed. At 30,000 feet, 40 minutes of flight research time is available at 0.9 Mach number. Flight at higher altitude, increases the on+station time.

Figure 4-5. Flight Envelope Forward Swept Research Wing

f

Figure 4-6. Flight Envelope Forward Swept Research Wing

()

Figure 4-7. Mission Endurance BQM-34F Forward Swept Research Wing

The principal objectives of the stability and control analyses conducted for this study were to determine wing placement and center of gravity location requirements for a positive longitudinal static stability margin, to develop preliminary estimates of stability and control characteristics for the BQM-34F/swept forward wing, and to point out potential problem areas which might be unique to this configuration.

5.1 LONGITUDINAL STABILITY AND CONTROL

5.1.1 Parametric Studies

The initial stability analyses were concerned with locating the wing and center of gravity to obtain a desired level of static stability. The specified range of wing planform geometric parameters were utilized in a parametric analyses combining the wing, body, and horizontal tail stability contributions for a range of wing locations. The center of gravity location was then determined for each wing location which resulted in a constant value of static longitudinal stability $C_{\rm mC.}$.

The initial calculations assumed the wing aerodynamic center acted at the wing quarter-chord. The downwash derivative at the horizontal tail was calculated by an emperical method from Reference 5.1 as a function of the wing planform variables. The selected minimum stability margin was 15%.

A second iteration was performed wherein the wing aerodynamic center location, based on a lifting line theory, was approximately 5% chord farther aft. The estimated downwash derivative ϵ_{α} was reduced by 0.10 based on comparison of downwash characteristics calculated by the empirical method with trends indicated by test data for a forward swept wing wind tunnel model (Reference 5.2). In addition, in order to provide further relief on ballast requirements, the minimum stability margin was reduced from 15% to 10%. Typical results are shown in Figure 5-1 for a wing area of 25 ft². The center of gravity location required for a given wing location is fairly insensitive to both wing area and aspect ratio. The predominant factor is sweep angle, requiring increasingly more aft wing locations as the leading edge sweep is increased.

The effect of wing location on static stability is shown in Figure 5-2 for the selected wing. The plot of $C_{m_{CL}}$ versus center of gravity location in percent chord can be used in conjunction with the curves of wing and center of gravity location to determine the required combination for any level of static stability.

5.1.2 Estimated Longitudinal Characteristics

The estimated lift and pitching moment curve slopes are shown in Figure 5-3 for the BQM-34F with the forward swept wing. The wing lift curve slope was estimated by methods from Reference 5.1 and the corresponding pitching moment contribution calculated for two values of wing aerodynamic center location, since the exact location is not known.

The effect of elasticizing the horizontal tail contribution is shown by the difference in the pitching moment curve slopes for a rigid airframe and for an altitude of sea level where the elastic losses are greatest. The variation of the expected static stability margin with Mach number is shown in Figure 5-4 along with the longitudinal control effectiveness derivatives.

Longitudinal trim requirements are presented in Figure 5-5 in terms of the elevator deflection required as functions of trimmed lift coefficient and center of gravity location. Two flight conditions are shown, one representative of air launch and the other for the design condition of Mach 0.9 at 30,000 feet. For the air launch condition small positive load factors in excess of one require an angle of attack of approximately 10 degrees. For the design flight condition, a normal load factor of 3 should be attainable with an angle of attack of about 8 degrees, corresponding to a lift coefficient of 0.70.

5.2 LATERAL - DIRECTIONAL STABILITY AND CONTROL

5.2.1 Dihedral Effect

One of the characteristics of swept forward wings is a positive variation of rolling moment with sideslip angle in the linear angle of attack range. This parameter was calculated for the selected wing by the method of Reference 5.1 which in turn is based partly on the methods of Reference 5.3. As

0

J)

Figure 5-2. Effect of Wing Location on Static Stability

Figure 5-3. Estimated Longitudinal Stability Derivatives

applied to negative sweep the method is restricted to -20° sweep of the halfchord line, requiring extrapolation for higher sweep angles. The results are shown in Figure 5-6 in comparison with the wing contribution to C_{l} for a swept forward wing wind tunnel model and for the basic BQM-34F. The^Bsmallscale model data were developed by subtracting the fuselage increment from the wing-body combination of References 5.2 and 2.1.

The model data are seen to be reasonably linear up to 12° angle of attack and in general agreement with the calculated value of C_{l} , although there are significant differences in the planforms of the two wings. The effect of wing sweep orientation on C_{l} is also discussed in Reference 5.4 which shows large reductions in the rolling moment due to roll displacement parameter for forward sweep compared to a normally aft-swept wing.

The effect of reduced dihedral effect was preliminarily evaluated on the BQM-34F 6 DOF flight simulation program by adding a constant increment in C_{l} of +.004 to the basic BQM-34F level. Comparison was made between the basic^BBQM-34F and the simulated forward swept wing configuration during turn maneuvers at several flight conditions.

The transient dynamics are shown in Figures 5-7(a) through 5-7(c) for the two configurations arranged in tandem along the time scale. At all flight conditions evaluated, the differential aileron excursion required to execute turns and turn reversals is less for the forward swept wing configuration than for the basic BQM-34F. As a result of this study it was concluded that the positive increment in C_{l} will not have an adverse effect on vehicle flight control in the research configuration.

5.2.2 Estimated Lateral-Directional Characteristics

The BQM-34F with the swept forward wing is estimated to have a satisfactory level of static directional stability since the wing contribution is small. The increment for the swept forward wing of the wind tunnel model of Reference 5.2 actually indicates a small stabilizing effect. The vertical tail increment for the same model decreased with increasing angle of attack in the presence of the swept forward wing and remained essentially constant in the presence of the swept back wing. This effect may not occur with the

lù

Figure 5-7. Effect of $C_{\ell\beta}$ on Dynamic Stability in Turns (Sheet 3 of 3)

BQM-34F configuration however, since the research wing has a higher aspect ratio and lower sweep angle.

The estimated static stability derivatives are shown in Figure 5-8 for the BQM-34F/forward swept wing configuration. The effect of elasticizing the vertical tail contribution is indicated for the directional stability derivative, but was determined to have a negligible effect on C_{l} . It is noted that C_{l} is negative at low angles of attack due to the vertical tail contribution and becomes positive at an angle of attack of about 8 degrees.

Igure 5-8. Estimated Static Lateral-Directio Stability Derivatives

6.0 STRUCTURAL DESIGN CRITERIA

The structural design criteria for the BQM-34F/Forward Swept Wing consists of a merger of the criteria for the basic BQM-34F with the design requirements of a research oriented forward swept wing. For wing design only, a 1.5 ultimate factor of safety shall apply. Ultimate factors of safety for the existing target shall be retained from the basic BQM-34F criteria.

<u>Free Flight Criteria</u> - Free flight limit speeds are shown on Figure 6-1. These were selected to be consistant with the design cruise point requirement, allow a suitable tolerance for maneuvering and minimize flutter impact on wing design. Basic design symmetrical load factors of -3.0 to +6.0 are applicable. For purposes of wing design, these factors will be conservatively applied to a design free flight gross weight of 2500 pounds. Unsymmetrical maneuvering factors of 1.0 to 4.0 shall be retained from the basic BQM-34F criteria.

nre 6-1. BUM-34F/Forward Swept wing Struc Design Speeds

<u>Captive Flight Criteria</u> - Captive flight limit speeds are also shown on Figure 6-1. These encompass the air launch speeds of the basic BQM-34E/F target from the DP-2E and the DC-130 aircraft. Launch of the BQM-34F/Forward Swept Wing from the B-52 must be verified by launch simulation. Captive flight maneuver limits shall be 0.0 to 2.5g. Design captive flight gust velocity shall be \pm 50 fps (EAS) for all flight speeds up to the maximum shown on Figure 6-1.

<u>Recovery Criteria</u> - Recovery conditions for small winged drones such as the basic BQM-34E/F have generally not been critical for wing design. However, for larger winged drones. the rapid pitch-up and associated high angles of attack at main parachute deployment have tended to be critical for wing design. Although this feasibility study will not encompass recovery envelopes studies, should critical design wing loads be encountered later, limitations upon normal recovery procedures can be identified such that critical loads are eliminated.

Additional Criteria - Additional criteria to be retained from the basic target design criteria are summarized along with design gross weights and factors of safety in Table 6-1.

TABLE 6-1. BQM-34F/FORWARD SWEPT RESEARCH WING STRUCTURAL DESIGN CRITERIA SUMMARY

		ULT IMATE FACTOR	MA L	XIMUM LIM OAD FACTO	IT R	
CONDITION	(pounds)	SAFETY	n _x	ny	nz	COMMENTS
FREE FLIGHT Complete Target Symmetrical Maneuvers Asymmetrical Maneuvers Gust	2500 2037	1.25			- 3.0 to 6.0 1.0 to 4.0	Subsonic (with fuel pod) Subsonic (without fuel pod) $\omega_{max} = 1.5 \text{ rad./sec.}^2$, basic 27 fps (EAS) at V.
CAPTIVE FLIGHT Taxi, Takeoff, Landing Gust	2544	1.50	* 2.50	±1.50	-3.0 to 6.0	For design of attachments and sway braces. Loads act simul- taneously. 50 fps (EAS) at VL of DC-130
PARACHUTE RECOVERY Drag Parachute Deploy- ment Main/Engagement Para- chute Deployment	1250 to 2028 1922	1.25	±12.0*	±3.0*	6.0*	Based upon 15,000-1b. para- chute load. Based on test or analysis (Minimum load of 12,000 lb. per BOM-34F criteria)
HELICOPTER RETRIEVAL	1571 to 1720	1.50				
Pickup and Towing Stabilization Parachute						Maximum load factor of 2.0 acting within 45° of positive Z axis of target. Limit load of 1139 lb. acting aft anywhere within 45° of longitudinal axis.
Docking			0 0 ±1.0	0 *1.0 0	2.0 1.0 1.0	
GROUND LOADS Ground Handling Loads Shipping Hoisting Jacking Carting	1900 2944 2544 2544	1.50	±4.0 ±0.4 ±0,5 ±2.0	±1.33 ±0.4 ±0.5 ±1.33	±2.0 2.67 2.0 2.0	n _z acts alone and in combina- tion with horizontal load factors.

*Used for equipment installations.

7.1 FUSELAGE LOADS

Fuselage loads analyses were primarily devoted to two areas:

- Evaluation of 27 candidate wing configurations in relation to strength requirements of the wing/fuselage juncture(Figure 2-2.)
- 2. Evaluation of the effects of installing additional ballast in the forward fuselage compartment.

A 6g (limit) pullup maneuver was the design condition for critical wing/ fuselage interface loads. Applicable design gross weight and maximum flight Mach number were 2500 lbs. and 0.90, respectively. To simplify analysis the entire aerodynamic maneuvering load (N_ZW = 15,000 lbs) was applied to the two exposed wing panels. Resultant root shear, per panel, is thus 7500 lbs., while bending/torsional moments vary with the respective centers of pressure associated with planform geometry. The net component loads, summarized in Figure 7-1, were derived from theoretical wing loading distributions. Computational methods employed a modified version of the lifting line theory concept.

Additional ballast in the forward fuselage compartment increases the inertia effects that contribute to forebody shear and bending. Previous loads/structural analyses, Reference 7.1, of the basic airframe show that critical loads are developed during the induced pitch-up dynamics subsequent to deployment of the main parachute.

Wing planform #1 of Figure 2-2, selected for detailed study, requires a total of about 300 pounds of ballast. A comparison of the effects of this revised ballast configuration with the basic BQM-34F is shown in Figures 7-2 and 7-3.

7.2 WING LOADS

Wing airloads for wing strength design and stiffness optimization were generated for a 2500 lb. airplane at 30,000 feet at load factors of 6.0, 2.0 and -3.0. Since the wing twist and camber distributions have not yet

WING	(LEF	Т	PANEL) SHE (LII	ION	*ORIGIN		
	e esta		ROOT	ROOT	*BODY AXIS MOMENTS		OF BODY
CONF. NO.	ROOT SHEA (LBS	R)	M _{C/2} (IN-LBS)	T _{C/2} (IN-LBS)	M _X (IN-LBS)	M _Y (IN-LBS)	AXES X (IN)
1 2 3	750	0	193,374 210,221 232,685	34,008 36,052 36,774	149,509 146,942 144,272	125,740 154,599 186,228	15.452 13.718 11.704
4 5 6		· .	214,285 234,061 258,949	37,624 39,895 40,706	166,669 163.749 160,706	139,839 171.933 207,087	17.497 15.763 13.750
7 8 9			238,319 260,228 287,767	41,578 44,100 45,000	183,495 182,213 178,754	155,294 190,950 229,962	19.738 18.004 15.990
10 11 12			208,951 226,818 250,290	31,116 33,415 34,358	169,522 166,321 163,252	126,059 157, 79 8 192,791	13.633 11.899 9.885
13 14 15			232,294 252,045 278,006	34,376 36,925 37,980	188,562 184,942 181,475	139,951 175,179 214,004	15.462 13.728 11.714
16 17 18			257,920 279,751 308,404	37,952 40,772 41,943	209,467 205,387 201,440	155,200 194,262 237,262	17.466 15.732 13.718
19 20 21			224,835 242,793 267,330	28,768 31,162 32,182	187,547 183,854 180,624	127,303 161,609 199,685	12.258 10.524 8.510
22 23 24			249,599 269,414 296,466	31,754 34,405 35,542	208,280 204,107 200,413	141,162 179,185 221,337	13.928 12.194 10,180
35 26 27	¥.		276,786 298,648 328,505	35,018 37,948 39,213	231,054 226,361 222,181	156;364 198,470 245,128	15.757 14.023 12.010

NOTE: 1. $M_{C/2}$ (+ = WING TIP UP); $T_{C/2}$ (+ = L.E. UP); ULT. FACTOR OF SAFETY = 1.5 2. M_{χ} (LEFT HAND RULE, + = AFT) ORIGIN AT ROOT (BL 10.33582) 3. M_{γ} (LEFT HAND RULE, + = LEFT) MID CHORD

4. X = DISTANCE AFT FROM WING APEX (AT BL = 0)

T566

Figure 7-1. Wing Limit Loads

	LONGITUDINAL SHEAR POUNDS		GITUDINAL SHEAR VERTICAL SHEAR POUNDS POUNDS		VERTICAL BENDING MOMENT INCH-POUNDS	
STATION	BASIC	RESEARCH	BASIC	RESEARCH	BASIC	RESEARCH
INCHES	TARGET	CONFIG.	TARGET	CONFIG.	TARGET	CONFIG.
80.00	0	$\begin{array}{c} 0\\ - & 5\\ - & 558\\ - & 650\\ - & 781\\ - & 943\\ -1037\\ -1115\\ -1191\\ -1313\\ -1446\\ -1636\\ -1680\\ -1680\\ -1781\\ -1812\\ +1117\end{array}$	0	0	0	0
105.00	- 5		- 25	- 25	- 253	- 253
118.50	- 73		- 354	-2706	- 1694	- 1694
135.00	- 165		- 795	-3147	- 12499	- 53496
150.00	- 296		-1413	-3765	- 29659	-105937
167.00	- 458		-2161	-4513	- 61147	-177409
180.00	- 552		-2575	-4927	- 92805	-239643
189.95	- 630		-2916	-5268	-120467	-290707
200.00	- 706		-3240	-5592	-151785	-345663
209.75	- 828		-3760	-6112	-186624	-403434
220.00	- 961		-4321	-6673	-228193	-469111
233.50	-1151		-5117	-7469	-292937	-565607
242.28	-1195		-5301	-7653	-338864	-632184
242.28	-1297		-5185	-7537	-339574	-632894
245.20	-1327		-5309	-7661	-354792	-654980
245.20	1602		6328	-3976	-318179	-618367

NOTES: 1. PARACHUTE RECOVERY CONDITION AT INSTANT BEFORE AFT LINE IS EFFECTIVE (CONDITION 4PX02 OF REFERENCE 7-1)

> 2. RESEARCH CONFIGURATION BALLAST AT STATION 118.6 GROSS WEIGHT = 1572 POUNDS, $n\chi = 1.863$, nZ = 7.403, q = 5.061 RAD./SEC.², $\chi_{CG} = 250.79$

> > T567

Figure 7-2. Forward Fuselage Loading Comparison

Figure 7-3. Fuselage Shear & Moment Diagrams Forward Swept Wing Proposal Added Ballast Effects

been identified it was necessary to make several assumptions regarding the wing lift distributions:

- 1) The exposed wing lift is assumed to be 95% of the airplane total lift.
- 2) Spanwise distributions for all conditions will be elliptical.
- 3) Chordwise distributions for the 6g case at M=0.90 were obtained from a combination of theory and experiment for a similar supercritical airfoil. The chordwise center-of-pressure is approximately 40-percent chord along the entire span.
- 4) The chordwise distribution at approximately $C_{L_W} = .2$ is rectangular for the 2g condition.
- 5) Airloads for the -3g condition were extrapolated linearly utilizing the 6g and 2g conditions.

TRA computer program No. 1584, which transforms pressure loading into an equivalent set of point loads at structural grids was used to distribute wing airloads to the structural grids for ASOP-3 strength and aeroelastic studies. These data are contained in Figures 7-4 thru 7-12. Figures 7-4 thru 7-9 contain pressure loading in the form of loads at the centroids of the aerodynamic panels and at the structural nodes. Figures 7-10 thru 7-12 contain an integration of the aerodynamic loads into shear, moment, and torsion along a load axis.

The wing loads thus determined were used for the wing structural optimization and deflection studies of Section 8.0. These loads were not altered during the course of the wing preliminary design to account for redistribution of airloads due to wing flexibility. Instead, for aeroelastic tailoring and divergence studies, a wing deformation criteria was established for the worst case condition (6.0 g loads). It was assumed that the wing could be tailored to meet this deflection constraint and thus the wing loads provided would be approximately correct. The deflection constraint was established as 0.2 degrees streamwise twist along the length of the span. An exact aerodynamic shape at any particular flight condition could be obtained by

AERODYNAMIC LOADS:

 $\langle \rangle$

19

Ч.

PANEL	LOAD	BQDY X	BODY Y	WING X	WING Y
1	77.44	248.713	12.700	248.713	12.700
2	225.19	252.454	12.700	252.454	12,700
3	274.14	259.000	12.700	259.000	12.700
▲	107.28	266.482	12.700	266.482	12,700
5	107.28	273.963	12.700	273.963	12.700
6	47.71	281,445	12.700	281.445	12,700
	70.95	240.914	17.500	240 .914	17,500
	240 30	256 430	17 500	2500450	17 500
10	153.88	263.706	17.500	263.706	17,500
11	130.16	270.777	17.500	270.777	17.500
12	75.61	277.847	17.500	277.847	17.500
13	71.96	245.041	22.500	245.041	22.500
-14	193.87	248.362	22.500	248.362	22,500
15	232.45	254.174	22.500	254.174	22.500
10	166.01	260.815	22.500	200.815	22.500
10	136.09	201.401	62.500	2010431	22.500
10	76.59	243.169	27.500	243.168	27,500
20	209-13	246.274	27.500	246.274	27.500
21	221.74	251.711	27.500	251.711	27.500
22	147.89	257,924	27.500	257.924	27,500
23	110.87	264.137	27.500	264.137	27.500
24	89.83	270.351	27.500	270.351	27.500
25	76.96	241.294	32.500	241.294	32,500
26	210.76	244.187	32.500	244.187	32,500
21	230.76	249.248	32.500	247+240	32,500
20	97.42	260.818	32,500	260-818	32,500
30	76.92	266.603	32,500	266.603	32.500
31	59.34	.239.421	37.500	239.421	37,500
32	173.60	.242.099	37.500	242.099	37.500
33	199.22	246,786	37.500	246.786	37.500
34	127.16	252.142	37.500	252.142	37.500
35	12/•16	25/.498	37.500	251+498	37,500
30	10.20	237 547	42 500	237,547	42,500
38	153.80	240.011	42.500	240.011	42.500
39	178.96	244.323	42.500	244.323	42.500
40	128.73	249,251	42.500	249.251	42.500
41	107.40	254.179	42.500	254.179	42.500
42	71.55	259.106	42.500	259.106	42.500
43	49.21	235.674	47.500	235+674	47.500
49	135.67	231.924	4/.500	241.860	47,500
47	113.97	246.360	47.500	246.360	47.500
47	89.17	250.859	47.500	250.859	47.500
48	61.52	255.358	47.500	255.358	47.500
49	36.73	233,801	52.500	233.801	52,500
50	105.23	235.836	52.500	235.836	52.500
51	127.28	239,398	52.500	239.398	52,500
52	90.51	243,469	52,500	243+469	52,500
53	7Ue98	241.539	52 500	251.410	52,500
54	10.70	231,027	57.500	231.927	57.500
56	60-83	233.748	57.500	233.748	57.500
57	73.11	236,935	57.500	236.935	57.500
58	57.80	240.578	57.500	240.578	57.500
59	42.61	244.220	57.500	244.220	57.500
60	30.50	247.862	57.500	247.862	57.500
and a second	and the second sec	and a second	and the second	the second second second second second second	country of the second second second second

Figure 7-4. Aerodynamic Loads, NZ = 6

AERODYNAMIC LOADS:

1

þ

P	ANEL	LOAD	BODY X	BODY Y	WING X	WING Y
	1	13.00	248.713	12.700	248.713	12,700
•	2	39.00	252,454	12.700	252.454	12.700
	3	52.00	259.000	12.700	259.000	12,700
	4	52.00	200,402	12.700	200+482	12.700
	20 ·	54+00	213.903	120700	2130903	12 700
	7	36.02	201.443	17 500	2010445	17 500
	Å	42.07	250.450	17.500	250.450	17,500
	9	56.10	256.636	17.500	256.636	17,500
· .	10	56.10	263,706	17.500	263.706	17.500
•	. 11	56.10	270.777	17.500	270.777	17.500
$(1,1) \in \mathbb{R}^{n}$	12	56.10	277.847	17.500	277.847	17.500
$(1,1) \in \mathbb{R}^{n}$	13	13.71	245.041	22.500	245.041	22.500
	14	41-12	248.362	22.500	248.362	22,500
	15	54.83	254.174	22.500	254.174	22.500
	16	54.83	260.815	22.500	260.815	22,500
· · ·	17	54.83	267,457	22.500	26/045/	22.500
	18	54.83	2/4.099	22.500	2/40099	22.500
• • •	20	13.620	246 274	27.500	245.274	27.500
· · · ·	21	57.00	251.711	27.500	251.711	27.500
· • .	22	53.10	257.924	27,500	257.924	27.500
	23	53.11	264.137	27.500	264.137	27.500
	24	53.11	270.351	27.500	270.351	27.500
	25	12.66	241.294	32.500	241.294	32,500
	26	37.97	244.187	32.500	244.187	32.500
	27	50.62	249.248	32.500	249.248	32,500
	28	50.62	255.033	32.500	255.033	32,500
	29	50.62	260,818	32.500	260.818	32.500
1	30	50.63	266.603	32.500	260+603	32.500
	31 ·	11.64	247.421	37 500	2370421	37,500
	36	37 51	246 786	37.500	246.786	37,500
	33	47.34	252,142	37,500	252,142	37,500
	35	47.34	257,498	37.500	257.498	37,500
	36	47.34	262.854	37.500	262+854	37.500
	37	10.75	237.547	42.500	237.547	42,500
	38	32.24	240.011	42.500	240.011	42.500
	39	42.98	244.323	42.500	244.323	42.500
	40	42.98	249.251	42.500	249.251	42.500
	41	42.98	254.179	42,500	254+179	42.500
	. 42	42.98	239.100	42.500	237+100	42,500
	43° 44	28-05	233.074	47,500	237.924	47.500
	45	37.41	241,860	47.500	241.860	47.500
	46	37.41	246.360	47.500	246.360	47.500
	47	37.41	250.859	47.500	250.859	47,500
	48	37.40	255.358	47.500	255.358	47.500
	49	7.45	233.801	52.500	233.801	52,500
	50	22.35	235.836	52,500	235-836	52.500
	51	29.81	239.398	52.500	239.398	52.500
	52	29.81	243.469	52.500	243,469	52,500
	53	29.81	247.539	52.500	2410337	52.5VV
	59	29.81	531 034	96 + 9UV	221.027	57,600
	55 55	9001 12.33	233 740	57.500	233.748	57,500
	. 57	17.64	236,935	57,500	236.935	57,500
	58	17.64	240.578	57.500	240.578	57,500
	59	17.64	244.220	57.500	244.220	57,500
	60	17.64	247.862	57.500	247.862	57.500
		-				

Figure 7-5. Aerodynamic Loads to Structural Nodes, NZ = 2

ેસ્

AERODYNAMIC LOADS:

PANEL	LOAD	80DY X	BODY Y	WING X	WING Y
1	-61.14	248.713	12.700	248.713	12.700
2	-175.35	252.454	12.700	252.454	12,700
3	-204.25	259.000	12.700	259.000	12.700
4	-15.47	200.482	12.700	200+482	12.700
э 6	-13+4/ 51,03	281.445	12.700	281.445	12 700
7	-51.71	246.914	17.500	246.914	17.500
8	-155.14	250 450	17.500	250.450	17,500
9	-180.26	256.636	17.500	256.636	17.500
10	-59.85	263.706	17,500	263.706	17.500
11	-33.01	270.777	17.500	270.777	17.500
12	28.70	277.847	17.500	277 . 847	17.500
13	-53.50	245.041	22.500	245.041	22,500
14	~135.59	248.362	22.500	240.302	22,500
15	-151/032	254.114	22.500	254+114	22,500
17	-38.60	267.457	22.500	267.457	22,500
18	11.51	274.099	22,500	274.099	22,500
19	-59.60	243,168	27.500	243.168	27,500
20	-155.49	246.274	27.500	246.274	27,500
21	-142.72	251.711	27.500	251.711	27.500
22	-59.17	257.924	27.500	257.924	27,500
23	-17.29	264.137	27.500	264.137	27,500
24	6.52	2/0.351	27.500	270.351	27.500
25	-161-12	244 187	32.500	241+274	32.500
27	-157.98	249.248	32,500	249.248	32,500
28	-36.27	255.033	32,500	255.033	32,500
29	-7.12	260.818	32.500	260.818	32,500
30	16.07	266.603	32.500	266.603	32,500
31	-43.03	239.421	37.500	239.421	37,500
32	-124+10	242.099	37.500	2460099	37.500
33	-120.70	240,100	37.500	2400/00	37,500
35	-41+45	257.498	37,500	257.498	37.500
36	10.13	262.854	37.500	262.854	37,500
37	-38.83	237,547	42.500	237.547	42,500
38	-108.36	240.011	42.500	240.011	42.500
39	-114.94	244.323	42.500	244.323	42,500
40	-58.11	249.251	42.500	249.251	42,500
41	-33.98	254.179	42.500	254+179	42.500
42	-76.63	235 674	47.500	235.674	47.500
44	-96.36	237.924	47.500	237.924	47.500
45	-97.83	241.860	47.500	241.860	47.500
46	-52.65	246.360	47.500	246.360	47.500
47.	-24.71	250.859	47.500	250.859	47.500
48	6.57	255.358	47.500	255.358	47.500
49	-26.39	233,801	52.500	233.801	52.500
50	-/3+53	232.030	52.500	232.308	52,500
51	-43.30	243.469	52.500	243.469	52,500
53	-19-61	247.539	52.500	247.539	52,500
54	5.24	251.610	52.500	251.610	52,500
55	-13.41	231,927	57.500	231.927	57.500
56	-41.88	233.748	57.500	233.748	57,500
57	-46.79	236,935	57.500	236.935	57.500
58	-29.47	240.578	57.500	240.578	57.500
59	-12+29	244.220	57,500	247.962	57.500
ou	1+41	641.006	⇒ 7+ ⊃VV	241 006	914300

Figure 7-6. Aerodynamic Loads to Structural Nodes, NZ = -3
NODE	LOAD	800Y X	BODY Y	WING X	WING Y	
1 / 1	3 0.0	230.562	60.000	230.562	60.000	
2/2	7 9.35	232,382	55.000	232.382	55,000	
3/4	1 17.44	234.201	50.000	234.201	50.000	
	23.48	237.841	45.000	230.021	40.000	
6/8	3 28.52	239,561	35.000	239.661	35,000	<u>`</u>
7/9	7 37.08	241.481	30.000	241.481	30,000	
8 / 11	1 36.99	243.301	25.000	243.301	25.000	
9 / 12	5 34.82	245.121	20.000	245.121	20,000	
	29,69	249,124	9.000	2400940	12.000	
12 / 1	9.89	231,419	60.000	231.419	60,000	. ·
13 / 25	5 47.64	233,346	55.000	233.346	55.000	
	75.51	235,273	50.000	235.273	50,000	
16 / 6	7 104.47	239.127	40,000	239.127	40,000	
17 / 8	123.06	241.053	35.000	241.053	35,000	
18 / 9	5 141.27	242.980	30.000	242.980	30.000	· · · · · · · · · · · · · · · · · · ·
19 / 109	138,31	244.907	25.000	244.907	25,000	
20 / 12	J 127088 J 147.05	240,000	20.000	2400000	15 000	
22 / 15	7 86.32	251.074	9.000	251.074	9,000	
23 /	30.41	233,990	60.000	233.990	60,000	
24 / 23	3 88+82	236,238	55.000	236.238	55.000	· .
25 / 37	7 130.90	238,486	50.000	238.486	50,000	•
20 / 5	L 133637 5 175.74	242.983	40,000	242.983	40.000	
28 / 79	204.48	245,231	35.000	245.231	35,000	
29 / 9	3 219.56	247,479	30.000	247.479	30,000	
30 / 10	207.57	249.727	25.000	249.727	25.000	
	222.03	251,915	20.000	251.97/5	15,000	
33 / 15	5 105.09	256.921	9.000	256.921	9,000	
34 /	7 36.55	237,418	60.000	237.418	60.000	
35 / 2	92.53	240.094	55.000	240.094	55,000	•
36 / 3		242.771	50.000	2460711	50,000	
38 / 6	3 164.29	248.124	40.000	248.124	40,000	
39 / 7	180.74	250.800	35.000	250.800	35,000	
40 / 9	174.71	253.477	30.000	253.477	30,000	
41 / 105	5 191.72	256.153	25.000	256.153	25,000	
A2 / 11	2 233.21	254,830	20.000	250,030	15,000	
44 / 15	41.12	264.718	9.000	264.718	9,000	
45 / 5	5 28.90	240.800	60.000	240.800	60.000	
46 / 19	66.65	243.800	55.000	243.800	55.000	
4// J.	7 109.02	241,000	50.000	24/0000	45.000	
49 / 6	118.80	253.300	40.000	253.300	40.000	
50 / 7	5 125.08	256.400	35.000	256.400	35.000	•
51 / 89	123.00	259.500	30.000	259.500	30,000	b .
52 / 10	147.52	262.100	20.000	265+800	20.000	
54 / 13	1 131.44	269,000	15.000	269.000	15,000	
55 / 14	7 41.12	272.600	9.000	272.600	9.000	
56 /	3 21.30	244.274	60.000	244.274	60.000	
5/ / 1	/ 51+83 1 49.45	241,847	50.000	24/+80/	50 000	
59 / 49	5 85.63	254.873	45.000	254.873	45,000	
60 / 59	99.76	258,407	40.000	258.407	40,000	
61 / 7	3 87.51	261.940	35.000	261.940	35,000	
62 / 8	7 94.06	265.473	30.000	265+473	30.000	
64 / 11	5 108.94	272.539	20.000	272.539	20,000	· .
65 / 12	93.37	276.072	15.000	276.072	15.000	
66 / 14:	3 20.90	279,782	9.750	279.782	9.750	
67 /	1 15.25	247.702	60.000	247.702	60,000 55 000	
49 / 13	D 200J0 D 32.00	255.625	50.000	255.625	50,000	
70 / 4	3 37.20	259.586	45.000	259.586	45.000	
71 / 5	7 39.66	263.548	40.000	263.548	40,000	
72 / 7	1 39.97	267.509	35.000	267+509	35,000	
74 2 9	D 40+35 G ⊻5,83	275-432	25-000	275.432	25,000	
75. / 11:	3 39.27	279.394	20.000	279.394	20.000	
76 / 12	7 25.73	283.355	15.000	283.355	15.000	
77 / 14	1 0+0	286,921	10.500	286.921	10,500	
EGI	JILIBRIUM CHE	CK (WING C	OORDINATE	SYSTEM)		7126 100
LOAD INF	UIILUADE	7125. LBS	NOUE	AT214120110	N: LVAU= Mie 91	4767 IN-1
	MY=179	6050. IN-LE	3		MY=179	6045. IN-L
e a lease cara com		· · · · · · · · · · · · · · · · · · ·	and the second second second			

Figure 7-7. Aerodynamic Loads to Structural Nodes, NZ = 6, Distribution to Nodes

NODE	LOAD	BODY X	BODY Y	WING X	WING Y	
1 / 13	0.0	230,562	60.000	230.562	60.000	
2 / 27	2.08	232.382	55.000	232.382	55.000	
3/41	3.54	234.201	50.000	234.201	50.000	. X
5 / 69	4+40	230.021	45.000	230.021	45.000	
6 / 83	5.69	239.661	35.000	239.661	35,000	
7 / 97	6.10	241.481	30.000	241.481	30.000	
8 / 111	6.41	243.301	25.000	243.301	25.000	
9 / 125	6.63	245.121	20.000	245.121	20.000	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
10 / 139	8.00	246.940	15.000	246.940	15,000	
12 / 11	2.20	297.129	9.000	231.419	60.000	
13 / 25	10.09	233.346	55.000	233.346	55.000	
14 / 39	15.48	235.273	50.000	235.273	50.000	
15 / 53	18.97	237.200	45.000	237.200	45.000	
16 / 6/	21.59	239.127	40.000	239.127	40,000	
18 / 95	25.17	242.980	30.000	242.980	30.000	
19 / 109	26.32	244.907	25.000	244.907	25.000	
20 / 123	27.01	246.800	20.000	246.800	20.000	
21 / 137	31.45	248.761	15.000	248.761	15.000	
22 / 157	14.95	251.074	9.000	251.074	9.000	×
23 / 9	0.01	233.990	60.00V	233.990	55 000	
25 / 37	28.74	238.486	50.000	238.486	50.000	
26 / 51	34.60	240.734	45.000	240.734	45.000	
27 / 65	39.02	242.983	40.000	242.983	40.000	1. A. C. A.
28 / 79	42.42	245.231	35.000	245.231	35.000	
29 / 93	44.99	247,479	30.000	247.479	30.000	
30 2 107	40.89	249.727	25.000	247.727	25.000	
32 / 135	53.21	254.223	15,000	254.223	15,000	
33 / 155	19.94	256,921	9.000	256.921	9.000	
34 / 7	8.82	237.418	60.000	237.418	60.000	
35 / 21	23.59	240.094	55.000	240.094	55.000	
36 / 35	33.08	242.111	50.000	2420111	50.000	
38 / 63	40.10	248.124	40.000	248.124	40.000	
39 / 77	49.13	250.800	35.000	250.800	35.000	
40 / 91	51.99	253.477	30.000	253.477	30.000	
41 / 105	54.08	256.153	25.000	256.153	25.000	
42 / 119	55.95	258.830	20.000	258.830	20.000	
43 / 133	19,93	264.718	0.000 12.000	264.718	9,000	
45 / 5	8.82	240.800	60.000	240.800	60.000	
46 / 19	23.54	243.800	55.000	243.800	55.000	
47 / 33	34.13	247.055	50.000	247.055	50.000	
48 / 47	39.98	250.100	45.000	250+100	45.000	
50 / 75	48.95	256.400	35,000	256.400	35,000	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
51 / 89	51.83	259,500	30.000	259.500	30.000	
. 52 / 103	54.33	262,700	25.000	262.700	25.000	
53 / 117	55.42	265.800	20.000	265+800	20.000	
55 / 147	19.07	272 600	12:000	272.600	120000	
56 / 3	8.82	244.274	60.000	244.274	60.000	
57 / 17	24.03	247.807	55.000	247.807	55.000	
58 / 31	33.60	251.340	50.000	251.340	50,000	
59 / 45	40.41	254.873	45.000	254.873	45.000	
60 / 59	45.02	255.407	40.000	250.407	40.000 35 000	
62 / 87	51.75	265.473	30,000	265.473	30,000	
63 / 101	53.47	269.006	25.000	269.006	25.000	
64 / 115	55.00	272.539	20.000	272.539	20.000	
65 / 129	56.04	276.072	15.000	276.072	15.000	
66 / 143	22.78	279.782	9.750	279.782	9,750	
68 / 15	15.39	251.663	55.000	251.663	55.000	
69 / 29	19.46	255.625	50.000	255.625	50.000	
70 / 43	22.36	259.586	45.000	259.586	45.000	
71 / 57	24.59	263.548	40.000	263+548	40.000	
72 / 71	26.25	267,509	35.000	267.509	35.000	
73 / 85	27.50	275 472	20.000	275.432	25 000	
75 / 113	28.96	279.394	20.000	279.394	20.000	
76 / 127	27.64	283,355	15.000	283.355	15,000	
77 / 141	0.0	286,921	10.500	286.921	10.500	
EQUIL	IBRIUM CHE	GK (WING C	OORDINATE	SYSTEM)		
LOAD INPUT	LOAD= 2	209. LBS	NODE	DISTRIBUTIO	NILOAD= 2	209. LBS
	MX= 69	697. IN-L	B		MX= 69	697 IN-L8
	MY= 564	031. IN-L	8	······		OST IN-FR
Figure 7-	8. Aeroc	iynamic	Loads to	Structu	cal Nodes,	

()

() i

÷...;;

NZ = 2, Distribution to Nodes

NODE	LOAD	BODY X	BODY Y	WING X	WING Y	
1 / 13	0.0	230.562	60.000	230.562	60.000	
2 / 27	-6.33	535.385	55.000	232.382	55,000	
3 / 41	-12.53	234,201	50.000	234.201	50.000	
4 / 55 5 / 69	-17.47	237,841	40,000	237.841	40.000	
6 / 83	-20.68	239.661	35.000	239.661	35,000	
7 / 97	-29.53	241,481	30.000	241.481	30.000	
8 / 111	-28.79	243.301	25.000	243.301	25.000	
9 / 125	-25.89	245.121	20.000	245.121	20.000	
	-30.87	246.940	15.000	246.940	15.000	
11 / 159	-23.44	231 410	9.000 60 000	2490124	9.000	
13 / 25	-33.34	233,346	55.000	233.346	55,000	
14 / 39	~53.90	235.273	50.000	235.273	50,000	
15 / 53	-66.24	237.200	45.000	237.200	45.000	
16 / 67	-74.24	239.127	40.000	239.127	40.000	
17 / 81	-91.13	241.053	35.000	241.053	35.000	
	-102.88	244.907	25,000	244.907	25.000	
20 / 123	-91.93	246.800	20.000	245.800	20.000	
21 / 137	-125.98	248,761	15.000	248.761	15.000	
22 / 157	-67.22	251.074	9.000	251.074	9.000	
23 / 9	-20.94	233.990	60.000	233.990	60.000	
24 / 23	∞60 02	236,238	55.000	235 • 238	55.000	
25 / 51	-103 05	240 734	50.000 45 000	240.734	45.000	
27 / 65	-119.37	242,983	40.000	242.983	40.000	
28 / 79	-144.95	245.231	35.000	245.231	35.000	
29 / 93	-156.77	247.479	30.000	247.479	30.000	
30 / 107	-139.36	249.727	25.000	249.727	25.000	
31 / 121	-153.39	251,975	20.000	251.975	20.000	
32 / 135	-200.81	256.921	12.000	256.921	3,000	
36 / 7	-23.39	237.418	60.000	237.418	60,000	
35 / 21	-56.65	240.094	55.000	240.094	55.000	
36 / 35	-70.08	242.771	50.000	242.771	50.000	
37 / 49	-84.80	245.447	45.000	245.447	45,000	
38 / 63	÷94°40	248,124	40.000	2400124	40.000 35 000	
40 / 91	-91,79	253.477	30.000	251.477	30,000	
41 / 105	-106.79	256,153	25.000	256.153	25.000	
42 / 119	-130.08	258,830	20.000	258.830	20.000	
43 / 133	-139.00	261.506	15.000	261.500	15.000	
44 / 151	-5.93	264.718	9.000	264.718	9.000	
45 / 5	-14.74	240.800	60.000 55 000	240.800	55 AAA	
47 / 13	+37.41	247.055	50-000	247.055	50,000	
48 / 47	-41.92	250,100	45.000	250.100	45.000	
49 / 61	-41.66	253.300	40.000	253+300	40.000	
50 / 75	-41.83	256,400	35.000	256.400	35.000	
51 / 89	-33.60	259.500	30.000	259.500	30.000	
52 / 103	-4/.46	262.700	25.000	2620100	20.000	
54 / 131	-26.33	269.000	15.000	269.000	15,000	
55 / 147	-5.93	272.600	9.000	272.600	9.000	
56 / 3	-6.14	244.274	60.000	244.274	60.000	
57 / 17	-9.70	247.807	55.000	247.807	55.000	
58 / 31	-10.37	251.340	50.000	251.340	50,000	
59 / 45	-14.58	254.873	45.000	254+673	45.000	
61 / 73	-21017	261.940	35.000	261.940	35.000	
62 / 87	-1.02	265.473	30.000	265+473	30.000	
63 / 101	-16.34	269.006	25.000	269.006	25.000	
64 / 115	-11.25	272.539	20.000	272.539	20.000	
65 / 129	8.49	276,072	15.000	210+012	15.000	
60 / 143	22.15	219.102	90/50	247.702	50.000	
68 / 15	2.66	251.663	55.000	251+663	55,000	
69 / 29	3.42	255.625	50.000	255.625	50.000	
70 / 43	3.44	259.586	45.000	259.586	45.000	
71 / 57	5.21	263.548	40.000	263.548	40.000	
72 / 71	8.24	267.509	35.000	201+509	30.000	
73 / 85	5.07	275.432	25,000	275.432	25,000	
75 / 113	14.54	279.394	20.000	279.394	20.000	
76 / 127	27.17	283.355	15.000	283.355	15.000	
77 / 141	0.0	286,921	10.500	286.921	10,500	
EQUIL	IBRIUM CHE	CK (WING CO	ORDINATE	SYSTEM)		
LOAD INPUT	LOAD= -3	562. L85	NODE	UISTRIBUTION	4:LOAD= -39	162. LBS
	MAT-863 MAT-863	301. IN⇒LB 162. în=1ª			MY==112: MY==112:	1000 IN-68
Tel marco - "	0 4			Change and the second	1 17-1-	
rigure /-	y. Aero	uynamic .	LOADS TO) STRUCTUR	at Nodes.	

NZ = -3, Distribution to Nodes

YEA	SHEAR	MOMENT	TORQUE
47.100	30.	0.	23.
42.100	334.	1423.	2616
37.100	826.	5245.	5806
32.100	1439.	12083.	8238
27.100	2138.	22392.	9158.
22.100	2901.	36514.	8237
17.100	3730.	54716.	5656.
12.100	4585.	77198.	522.
7.100	5458.	104109.	-7203.
2.300	6354.	134281.	-16334
2.300	7125.	134281.	-24689.

Figure 7-10. Aerodynamic Loads Distributed Loading, NZ = 6

()[`]

þ í

۰ÿ۲.

YEA	SHEAR	MOMENT	TORQUE
47.100	18.	0.	13.
42.100	118.	441.	620.
37.100	275.	1627.	1224.
32.100	467.	3748.	1447.
27.100	686.	6944.	1087.
22.100	926.	11323.	15.
17.100	1182.	16968.	-1853.
12.100	1449.	23941.	-4568,
7.100	1725.	32284.	-8155.
2.300	2001.	41640.	-12456.
2.300	2209.	41640.	-15394.

Figure 7-11. Aerodynamic Loads Distributed Loading, NZ = 2

	YE	A	SHEAR	MOMENT	TORQUE	
	47.	100	-142.	-0.	-1683.	
	42.	100	-382.	-712.	-4032.	
	37.	100	~683.	-2621.	-6305.	
	32.	100	-1031.	-6037.	-8003.	
	27.	100	-1412.	-11192.	-8999	
	22.	100	-1820.	-18251.	-10030	
	17.	100	-2247.	-27349.	-9600	
	12.	100	-2691.	-38585.	-7619.	. *
	7.	100	-3142.	-52040.	-5181	
	2.	300	-3562.	-67123.	-3417.	
Figure	7-12.	Aero	odynamic	Loads Dist	ributed Lo	ading.
		N7. =	= -3			

designing in a proper jig shape.

7.3 EMPENNAGE LOADS

A preliminary analysis of horizontal tail loads has been conducted in support of this feasibility study. Only symmetrical balanced maneuvers were examined at this time. Fuselage and horizontal tail aerodynamic data for this study were obtained from wind tunnel test data of the BQM-34E/F target. Wing data were based on the wing airload distributions described in Section 7.2 for 0.90 Mach number and adjusted by Glauert compressibility factors for other Mach numbers.

The results of the study are shown in Figure 7-13 and 7-14. A potential strength problem is indicated which must be addressed in more detail during a detail design effort. Several observations can be made, however, at this time. The horizontal tail loads were determined on the basis of a rather crude estimation of wing aerodynamics. A follow-on analysis, made with the knowledge of such wing parameters as required twist and camber distributions may substantially alter the level of the calculated loads. If, at that time, horizontal tail loads are still a potential problem, it may be possible to alter or restrict the flight envelope such that tail loads are reduced but flight research objectives are still obtained.

Figure 7-13. Horizontal Tail Load Survey, 426 KEAS

8.0 LOAD INDUCED ELASTIC DEFORMATIONS

8.1 METHOD OF APPROACH

General

An automated strength/displacement/flutter redesign process was used to aeroelastically tailor the forward swept research wing. The approach consists of the following elements:

- a. Design criteria
- b. Materials and structural configuration
- c. Analysis techniques

Detail items in the approach are shown in Figure 8-1.

The approach is embodied in two large scale computer program systems named ASOP-3 and FASTOP-3 (Flutter and Strength Optimization Program) used to implement the preliminary design study. The programs perform interactive strength/flutter redesign for minimum weight.

The FASTOP system is divided into two major programs, the first which addresses static analysis and redesign functions, and the second which addresses the dynamic analysis and redesign. Each of these two programs, Strength Optimization Program (SOP) and the Flutter Optimization Program (FOP), consist of a number of special purpose modules. Figure 8-2 is a FASTOP-3 modular flow chart. For complete details on these two program systems see Reference 8.1.

ASOP-3 was employed primarily to perform trade-off studies for selecting materials and a structural configuration. The FASTOP-3 system used the CDC version with computing time on the CYBERNET NOS/BATCH System made available by AFFDL. The ASOP-3 program, obtained from AFFDL, was an IBM version run on TRA's IBM computing system.

Design Criteria

A detail description of the structural design criteria and structural loads is given in Sections 6.0 and 7.0 respectively. The following items, summarized from these sections, have a significant driving influence on the aeroelastic tailoring design of the forward swept research wing:

1. Flight load conditions:

- a. 6 g limit
- b. 1.5 x 6 g limit loads
- c. 2 g cruise
- d. -3 g limit

2. The wing is aeroelastically tailored for torsional twist = $0^{\circ} \pm .2^{\circ}$ when subjected to the 6 g limit loads.

3. Must be strength adequate for all the load cases.

4. Ultimate factor of safety shall be 1.50.

5. The wing will be designed to provide satisfactory static aeroelastic and flutter characteristics throughout the flight envelope with a margin of 15 percent on speed.

Materials and Structural Configuration

Primary wing construction consists of graphite/epoxy skin bonded to full depth HFT glass reinforced phenolic honeycomb core. A machined aluminum fuel tank cover and graphite/epoxy root ribs and fore/aft closures complete the wing center section. Further discussion of the wing preliminary design is provided in Section 11.2.

The basic layup of the advanced composite skins is balanced and consists of plies oriented at 0° and $\pm 45^{\circ}$. Materials used for the different parts are shown in Figure 8-3.

A weight comparison study was performed by substituting aluminum skins for the graphite epoxy skins. Another candidate used low modulus KEVLAR/epoxy skins aft of the 40 percent chord and graphite/epoxy skins forward.

The mechanical properties of the different materials used in the study are presented in Section 8.2.7.

Figure 8-3. Wing Construction and Materials Selection

Analysis Techniques

The use of swept forward wings in the past has not been feasible due to the structural weight penalty associated with divergence prevention. This weight penalty is known to be very severe for conventional metal wings. By the judicious use of advanced composite materials now commercially available the weight penalty can be alleviated. With advanced composites the basic material properties can be tailored to suit a load condition and control the wing displacement behavior.

Full realization of the potential of advanced composite materials requires the availability of powerful and convenient automated analysis tools. The Air Force Flight Dynamics Laboratory has sponsored the development of a series of computer programs directed toward this end. ASOP-3 and FASTOP-3 represent the latest developments in this series of programs.

The ASOP-3 program, which operates on a finite element model of the structure, uses the fully stressed design approach for the satisfaction of strength requirements. Up to 20 load cases can be applied in stress-constraint resizing. Deflection constraint resizing is limited to only one load case. The forward swept research wing was designed with constraints on angleof-twist at several spanwise stations. This was done by means of successive submissions of the program. In the first submission, only the innermost constraint near the root was applied. A second submission was made, in which only the next outboard constraint was applied, with the sizes of the members inboard of the first constraint submission being fixed at the values yielded by the first submission. This procedure is repeated, moving outboard to the tip. ASOP-3 can accommodate composite laminates with up to six ply directions and the directions can be arbitrary.

FASTOP-3 incorporates all the features of ASOP-3 and in addition can analyze designs with respect to vibration and flutter. The program is capable of obtaining near optimum designs subjected to strength, displacement, and flutter-speed requirements.

ASOP-3 was used extensively to perform configuration trade studies and integrate the composite materials into the design. FASTOP-3 was employed to optimize the wing for strength and twist constraints in addition to performing a vibration and flutter-spread check.

8.2 AEROELASTIC DESIGN/MATERIAL ANALYSIS

The following automated integrated analyses were used in the design process of the swept forward research wing:

- Finite element fully stressed design to satisfy strength requirements and twist displacement requirements.
- Vibration analysis
- Flutter analysis

Each analysis requires a model as shown below:

- Structures model
- Dynamics model
- Flutter model

Ű)

γĐ

٥ŋ

Transformations between the structures model and the dynamics and flutter models are performed by the automated transformation analysis module (ATAM) in FASTOP-3

8.2.1 Wing Finite Element Structural Analysis

The structure is idealized into an analysis model which describes the wing geometry, support reactions, materials of construction, and the structural elements. The finite elements include rods, shear panels, and membranes. The advanced composite skins are represented as orthotropic membrane elements. These elements and the computer program formulations are described in Reference 8.1.

The idealized structural model consists of the complete outer wing panel, including a root rib. All honeycomb core is idealized into discrete spar and rib shear panels. These panels are bounded by pseudo vertical rods with compressive stiffness equivalent to the core. Five spanwise shear webs are placed at 0.05, 20.0, 40.0, 60.0, and 80.0 percent chord. The core is idealized as streamwise ribs at 5 inch intervals starting at Y_F 15.0. These elements were made non-candidate members for redesign. A spanwise spar web, fabricated from composite materials, was placed at the 40 percent chord as a candidate member for redesign. This member proved to be ineffective and not really required. The laminated skins are represented as orthotropic membrane elements. Basic layup is 0, ±45 degree balanced laminates oriented along the 40.0 percent chord. The rib is represented by rods and shear panels. Re-actions are provided at the bolt attachment locations on the root rib.

The structural model consists of 347 elements interconnected at 166 grid points and has 406 degrees of freedom.

8.2.2 Geometry

The structures model is defined with 166 grid points whose coordinates were generated by the loft department. The grids are defined by the intersection of spanwise percent chord lines and Y_F stations at 5.0 inch intervals.

This geometry is shown in Figure 8-4. Upper and lower surface grid numbers are shown in Figures 8-5 and 8-6. Upper surface grids are defined with odd numbers and are incremented by +1 to obtain the lower surface grid number directly below. Root rib geometry and grids are presented in Figure 8-7. Grid coordinate geometry is given in Table 8-1.

8.2.3 Wing Surface Membranes

The laminated wing skins are represented with 120 quadrilateral membrane elements. Basic layup is 0, \pm 45 degree balanced laminates oriented along the 40.0 percent chord. Figures 8-8 and 8-9 identify the membrane elements and the grid numbers which describe them. (See also Section 8.3.1).

8.2.4 Honeycomb Core Shear Panels

The honeycomb core is "egg-crated" into spanwise and streamwise shear webs representing spars and ribs. Five spanwise shear webs are placed at 0.05, 20.0, 40.0, 60.0, and 80.0 percent chord. The rib webs are spaced at 5 inch intervals starting at $Y_F = 15.0$. Each element is assigned an identification number and defined with grid numbers.

The core ribbon direction is oriented parallel with the 40.0 percent chord line. The "L" direction properties apply to the spanwise elements representing spar webs. The transverse or "W" direction properties are used for the rib webs.

The panels are bounded at each end by pseudo vertical rods with stiffness equivalent to the core.

Figure 8-10 identifies the spanwise shear webs and the grid numbers associated with each element. Figure 8-11 identifies the streamwise rib webs.

Figure 8-12 identifies the pseudo rods which bound the webs at each end. Their location is defined by the intersection of the spanwise and streamwise webs.

8.2.5 Root Rib

The root rib is represented with quadrilateral shear panels, triangular membranes, and bar elements. Five places are provided for a bolt attachment to the fuselage.

Figure 8-13 identifies the finite elements and their grid numbers.

0

Į)

. G

Figure 8-4. Wing Geometry

T575

Figure 8-5. Wing Upper Skin Grid Points

()

'');

Figure 8-6. Wing Lower Skin Grid Points

T577

Figure 8-7. Root Rib Geometry and Grid Points

TABLE 8-1

	WING/ROOT RI	LB COORDINATES	3
	(Sheet	1 of 3)	
NODE	X	Y	Z
1	247.701786.	60.000000	56.721653
2			
3	244.273785	60.00000	5ć.992597
4	244.273786	60.00000	56.676166
5	240.843786	60.00000	57.201573
6	240.845786	60.000000	56.523225
· 7	237.417786	60.000000	57.304413
8	237.417786	60.CO0000	56.455324
9	233.989786	60.000000	57.260178
10	233,989786	60.000000	56.476419
11	231.418786	60.00000	57.063794
12	231.419786	60.000000	56.581896
13	233.561786	60.000000	56.750000
15	251.663304	55.000000	55.718111
16			
17	247.306970	55.000000	57.022910
18	247.806970	55.000000	56. 556940
19	243.950637	- 55.000000	57.257998
20	243.950637	55.000000	56,494889
21	240.094304	55.000000	57.373588
2.2	240.094304	55.00000	55.41 85 04
23	236.237970	55.000000	57.330675
24	236.237970,	55.000000	56.442235
25	233.345720	55.00000	57.103003
26	233.345720	55.000000	56.560891
27	232.381637	55.000000	56.750000
28	n standar etter i standar och som en som etter som		
29:	255.624822	50.000000	56.714569
31	251.340165	50.00000	57 052222
32	251.340155	50,000000	56.657716
33	247.055488	50.00000	57.314422
34	247.055438	50.0000CC	56. 466553
3 5	242.770822	50.000000	57.442962
36	242.770822	50.000000	56.381684
37	238.486155	50.000000	57.395172
38	238.486155	59.000000	56.408050
39	235.272655	50.000000	57.142212
40	235.272655	50.000000	56. 53 5886
41	234.201488	50.000000	56.750000
42	350 50 1330	15 000000	
44	239.586339	45.00000	56.711027
45	254.873339	45.000000	57.083535
46	254.873339	45.000000	56.548489
47	250.160339	45.000000	57.370847
48	250.160339	45.000000	56.438217
49	245.447339	45.000000	57.512237
50	245.447339	45.000000	56.344863
51	240.734339	45.000000	57.455669
52	240.734339	45.00000	56.373866
53	237.195589	45.00.0000	57.181421
54	237.195589	45.000000	56.518881
- 55	236.021339	45.000000	56. 75 0000

TABLE 8-1

WING/ROOT RIB COORDINATES (Sheet 2 of 3)

,

i

÷

`;

	、		
NODE	x	· Y	Z
56		•	
57	263.547857	40.000000	55.707485
58	•		
59	258.406524	40.00000	57.113848
60	258.406524	40.000000	56. 53 52 63
61	253.265191	40.000000	57.427272
62	253.265191	40.000000	56.409881
63	243.123957	40.000000	57.581512
64	248.123857	40.000000	56.308043
65	242.982524	40.000000	57 524166
66	242.982524	40.000000	56 33 66 97
67	230 124524	40.000000	57 33 0(30
68	237 124524	40.000000	51.220030
49	237 0/1101	40.000000	20. +9/8//
70	231.0411.91	40.000000	20.12,0000
70.	1/7 505375	25 600000	
7.1	201.509315	32.000000	56.703943
(2	2/1 020703		
13	261.535708	35.000000	57.144161
74	261.535708	35.00000	56.63 0038
15	256.370042	35.00000	57.483696
16	255.373042	35.000000	56.381545
17	250.800375	35.000000	57.65G786
78	250.800375	35.000000	56.271223
79	245+23C708	35.000000	57.588663
80	245.230708	35.000000	56.305498
81	241.053458	35.000000	57,259839
82	241.)53458	35.000000	56.476872
83	239.661042	35.000000	56.750000
84		•	
85	271.470893	30.000000	56.700401
86			
87	265.472893	30.000000	57.174474
88	265.472893	30.00000	56.620812
89	259.474893	30.00000	57.540121
90	259.474893	30.000000	56.353209
91	253.476893	30.000000	57.720061
92	253.476853	30.00000	56 234403
93	247.478893	30,000000	57.653160
94	247.478393	30,00000	56.271312
95	242.980393	30.000000	57 299048
96	242.980393	30.000000	56 455867
97	241.480893	30.000000	56 75 0000
98		201 000000	204 72 0000
99	275 622411	25 000000	54 606050
100	6124722766	22.000000	20.070039
101	269.006077	25 000000	57 234707
102	269 00 60 77	25.000000	51.259101
103	267.000011		57 50/5/
104	6960217199 969 576741	25.000000	21.290240 S4 12/07/
105	2621212177		20+224874
106	256.152411	25.000000	54 107500
107	22001223711	25.000000	20.19/203
118	6770161011 740 77777		51.111558
100	237+121311 944.003337	252000000	50.23 /129
110	2443707327	25.000000	51.338257
111	294.907327	25.000000	50.434862
	とうこ・コビリノウキ	- 22. JUUUUUU	55.750000

TABLE 8-1

	WING/ROOT RIE (Sheet	· · · · · · · ·	
NUDE	X	Y	Z
112	279 203020	20 00000	54 401217
114		20.00000	20.033311
115	272.539262	20.000000	57.235100
116	272.539262	20.000000	50.502361
117	265.684595	20.00000	57.652970
118	265.684595	20.000000	55.296538
119	258.825929	20.000000	57.858610
121	251 675262	20.000000	56.160763
122	251 975262	20.000000	5. 2020/5
123	246.834262	20.000000	57.377446
124	246.834262	20.00000	56.413857
125	245.120595	20.000000	56.750000
126			
127	283.355446	15.000000	56.689775
128			
129	276.072445	15.00000	57.265412
121	210.012440	15.000000	55, 593135
132	268-785666	15.000000	57.709395
133	261.507446	15,000000	57 027896
134	261.50 6446	15.000000	50.123942
135	254.223446	15.000000	57.846652
1.36	254.223446	15.000000	56.158761
137	248.761196	15.000000	57.416675
138	248.761196	15.000000	56.392852
139	246.940446	15.000000	56.750000
140	00/ 000000		·
147.	286.9208L3	10.500000	56.686587
143	279.782290	9.750000	67 207241
144	279.782290	9.750000	56. 583448
145	274.074668	9.000000	57.598091
146	274.074668	9.00000	56.296533
147	272.515268	9.00000	57.777105
148	272.515268	9.000000	56.234199
150	267.180000	9.000000	57.968294
151	267+180000	9.000000	56.104451
152	264.719268	9.000000	58.011015
153	253,900000	9.000000	57. 423204
154	258.900000	9.000000	56,095390
155	256.921268	9.000000	57.924048
155	256.921268	9.000000	55.127740
157	251.073518	9.000000	57.463726
158	251.073518	9.000000	55.367647
129	249.124268	9.000000	56.750000
161	949 NS	0 0	P 1 A 1
162	262 20	3 • 0 • • • •	23.U
163	249,124288	7.0	58.0
154	249.12.200	9.0	56.0
16 5	251.073518	9.0	53.0
166	251.073518	9.0	56. C

()

0.5

Figure 8-8. Upper Surface-Membrane Elements

Figure 8-9. Lower Surface-Membrane Elements

T580

T582

Figure 8-12. Shear Web Vertical Pseudo Rods (Sheet 1 of 2)

Figure 8-13. Root Rib Structural Model

8.2.6 Reactions

The wing is reacted along the root rib at Y_F 9.0. Vertical reactions are specified at grids corresponding to the five bolts provided for attaching to the fuselage frames. Wing bending is coupled out at 10 upper and lower grids each, representing points where the bending loads are introduced into the center box.

Grid points and reaction directions are shown in Figure 8-14. Rigid reactions are used in this study. However, a detail design analysis should use flexible supports to reflect the fuselage elasticity.

8.2.7 Material Properties

Properties published in standard References 8.2, 8.3 and 8.4 were used in the analysis study. Three principal materials are used.

8.2.8 External Loads

The load conditions are defined as panel point loads and applied to the upper surface grids. Loads for $N_z = 6$, 9, 2, and -3 are presented in Figures 8-15 thru 8-18, respectively.

The wing is designed to be strength adequate for all the conditions and is aeroelastically tailored to meet specified twist constraints when subjected to $N_z = 6$ loads.

The loads are based on a gross weight of 2500 pounds and it was conservatively assumed the exposed wing carried 95 percent of the total lift of the aircraft.

8.3 RESULTS

8.3.1 Discussion

The study was performed in four phases which culminated in a preliminary wing design tailored to meet specific strength and displacement requirements. By using advanced composite materials effectively, the severe weight penalty associated with divergence prevention of swept forward wings was alleviated.

The study phases consisted of certain tasks which directed the design process in an orderly and logical fashion.

5

	D	DIRECTION					
GRID POINT	X	Y	Z				
141							
143							
144	1						
145		X					
146	X	X	X				
147		· X					
148		X					
149		X					
150	Į.	X	X				
151		X	•				
152		X					
123		X	· v				
104		↓ Å	X				
156		- \$	• 1				
157		Ŷ					
158		ÎŶ					
159							
161		X I					
162		X	X				
163		X					
• 164		X	•				
165		X					
166		X .	. X				

Figure 8-14. Reactions at Root Rib

NODE NO.	TOTAL LOAD	NODE NO.	TOTAL LOAD
$ \begin{array}{r} 1 \\ 3 \\ 5 \\ 7 \\ 9 \\ 11 \\ 15 \\ 17 \\ 19 \\ 21 \\ 23 \\ 25 \\ 27 \\ 29 \\ 31 \\ 33 \\ 35 \\ 37 \\ 39 \\ 41 \\ 43 \\ 45 \\ 47 \\ 49 \\ 51 \\ 53 \\ 55 \\ 57 \\ 59 \\ 61 \\ 63 \\ 65 \\ 67 \\ 69 \\ 71 \\ 73 \\ 75 \\ 77 \\ \end{array} $	15.25 21.30 28.90 36.55 30.41 9.89 25.36 51.83 66.65 92.53 88.82 47.64 9.35 32.00 69.65 94.50 121.49 130.90 75.51 17.44 37.20 85.63 109.02 147.27 153.37 92.70 23.48 39.66 99.76 118.80 164.29 175.74 104.47 25.71 39.97 87.51 125.08 180.74	79 81 83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 129 131 133 135 137 139 143 147 151 155 157 159	$\begin{array}{c} 204.48\\ 123.06\\ 28.52\\ 46.35\\ 94.06\\ 123.00\\ 174.71\\ 219.56\\ 141.27\\ 37.08\\ 45.83\\ 110.68\\ 139.75\\ 191.72\\ 207.57\\ 138.31\\ 36.99\\ 39.27\\ 108.94\\ 143.52\\ 215.68\\ 222.63\\ 129.88\\ 34.82\\ 25.73\\ 93.37\\ 131.44\\ 233.21\\ 273.28\\ 167.95\\ 41.70\\ 20.90\\ 41.12\\ 41.12\\ 105.09\\ 86.32\\ 29.69\\ \end{array}$

()

Ð

ij

0

Figure 8-15. External Loads, NZ = 6

NODE NO.	TOTAL LOAD	NODE NO.	TOTAL LOAD
$ \begin{array}{c} 1\\ 3\\ 5\\ 7\\ 9\\ 11\\ 15\\ 17\\ 19\\ 21\\ 23\\ 25\\ 27\\ 29\\ 31\\ 33\\ 5\\ 37\\ 39\\ 41\\ 43\\ 45\\ 47\\ 49\\ 51\\ 53\\ 55\\ 59\\ 61\\ 63\\ 67\\ 9\\ 71\\ 73\\ 75\\ 77\\ \end{array} $	$\begin{array}{c} 22.875\\ 31.95\\ 43.35\\ 54.825\\ 45.615\\ 14.835\\ 38.04\\ 77.745\\ 99.975\\ 138.795\\ 133.23\\ 71.46\\ 14.025\\ 48.00\\ 104.475\\ 141.75\\ 182.235\\ 196.35\\ 113.265\\ 26.16\\ 55.80\\ 128.445\\ 163.53\\ 220.905\\ 230.055\\ 139.05\\ 35.22\\ 59.49\\ 149.64\\ 178.2\\ 246.436\\ 263.61\\ 156,705\\ 38.565\\ 59.955\\ 131.265\\ 187.62\\ 271.11\end{array}$	$\begin{array}{c} 79 \\ 81 \\ 83 \\ 85 \\ 87 \\ 89 \\ 91 \\ 93 \\ 95 \\ 97 \\ 99 \\ 101 \\ 103 \\ 105 \\ 107 \\ 109 \\ 111 \\ 113 \\ 115 \\ 117 \\ 119 \\ 121 \\ 123 \\ 125 \\ 127 \\ 129 \\ 131 \\ 133 \\ 135 \\ 137 \\ 139 \\ 143 \\ 147 \\ 151 \\ 155 \\ 157 \\ 159 \end{array}$	306.72 184.58 42.78 69.525 141.09 184.5 262.065 329.34 211.905 55.62 68.745 166.02 209.625 287.58 311.355 207.465 55.485 58.905 163.41 215.28 323.52 333.945 194.82 52.23 38.595 140.055 197.16 349.815 409.92 251.925 62.55 31.35 61.68 61.68 157.635 129.48 44.535

Figure 8-16. External Loads, NZ = 9, 69 Loads x 1,5

NODE NO.	TOTAL LOAD (LB.)	NODE NO.	TOTAL LOAD (LB.)
$ \begin{array}{c} 1\\ 3\\ 5\\ 7\\ 9\\ 11\\ 15\\ 17\\ 19\\ 21\\ 25\\ 27\\ 9\\ 31\\ 35\\ 37\\ 9\\ 41\\ 43\\ 45\\ 47\\ 49\\ 51\\ 55\\ 57\\ 9\\ 61\\ 63\\ 65\\ 67\\ 69\\ 71\\ 73\\ 75\\ 77\\ \end{array} $		79 41 83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 143 147 159 157 159	$\begin{array}{r} 42.42\\ 23.62\\ 5.69\\ 27.50\\ 51.75\\ 51.83\\ 51.99\\ 44.99\\ 25.17\\ 6.10\\ 28.34\\ 53.47\\ 54.33\\ 54.08\\ 46.89\\ 26.32\\ 6.41\\ 28.96\\ 55.00\\ 55.42\\ 55.95\\ 48.36\\ 27.01\\ 6.63\\ 27.64\\ 55.95\\ 48.36\\ 27.01\\ 6.63\\ 27.64\\ 56.04\\ 60.09\\ 61.31\\ 53.21\\ 31.45\\ 8.0\\ 22.78\\ 19.93\\ 19.93\\ 19.93\\ 19.94\\ 14.95\\ 4.98\end{array}$

Figure 8-17. External Loads, NZ = 2

NODE NO.	TOTAL LOAD	NODE NO.	TOTAL LOAD (LB.)
$ \begin{array}{c} 1 \\ 3 \\ 5 \\ 7 \\ 9 \\ 11 \\ 15 \\ 17 \\ 19 \\ 21 \\ 23 \\ 25 \\ 27 \\ 29 \\ 31 \\ 35 \\ 37 \\ 39 \\ 41 \\ 43 \\ 45 \\ 47 \\ 9 \\ 51 \\ 55 \\ 57 \\ 59 \\ 61 \\ 65 \\ 67 \\ 69 \\ 71 \\ 73 \\ 75 \\ 77 \\ \end{array} $	$\begin{array}{c} 0.71 \\ -6.14 \\ -14.74 \\ -23.39 \\ -20.94 \\ -6.70 \\ 2.66 \\ -9.70 \\ -27.47 \\ -56.65 \\ -60.02 \\ -33.34 \\ -6.33 \\ 3.42 \\ -10.37 \\ -37.41 \\ -70.08 \\ -89.57 \\ -53.90 \\ -12.53 \\ 3.44 \\ -14.58 \\ -41.92 \\ -84.80 \\ -103.05 \\ -66.24 \\ -17.47 \\ 5.21 \\ -21.19 \\ -41.66 \\ -94.40 \\ -119.37 \\ -74.24 \\ -18.60 \\ 8.24 \\ .49 \\ -41.83 \\ -104.44 \end{array}$	$\begin{array}{c} 79\\ 81\\ 83\\ 85\\ 87\\ 89\\ 91\\ 93\\ 95\\ 97\\ 99\\ 101\\ 103\\ 105\\ 107\\ 109\\ 111\\ 113\\ 105\\ 107\\ 109\\ 111\\ 123\\ 125\\ 127\\ 129\\ 131\\ 123\\ 125\\ 127\\ 129\\ 131\\ 133\\ 135\\ 137\\ 139\\ 143\\ 147\\ 151\\ 157\\ 159\\ 159\\ 157\\ 159\\ 150\\ 157\\ 159\\ 150\\ 150\\ 150\\ 150\\ 150\\ 150\\ 150\\ 150$	-144.95 -91.13 -20.68 3.56 -1.02 -33.60 -91.79 -156.77 -108.57 -29.53 5.87 -16.34 -47.46 -106.79 -139.36 -102.83 -28.79 14.54 -11.25 -49.51 -130.08 -153.39 -91.93 -25.89 27.17 8.49 -26.33 -139.00 -200.81 -125.98 -30.87 -22.75 -5.93 -5.93 -5.93 -5.93 -5.93 -5.93 -78.30 -67.22 -23.44

()

₽÷.

Figure 8-18. External Loads, NZ = -3

The phases and tasks performed are shown as follows:

- 1. Design Sensitivity Considerations
 - a. Laminate layup and displacement constraint influence.
 - b. Rigid versus flexible supports.
 - c. Graphite/epoxy shear web at 40 percent chord.
 - d. Leading edge non-participating in twist control.
 - e. Camber constraint.
- 2. Configuration/Material Trade Studies
 - a. Aluminum wing.
 - b. Graphite/epoxy wing.
 - c. Graphite-KEVLAR wing.
- 3. Computer Optimized Wing
- 4. Smoothed Wing Design
 - a. Strength and displacement analysis.
 - b. Vibration/flutter check.

Laminate Layup and Constraint Influence

The laminate is sensitive to the ply orientations and the severity of constraint. A 0° , $\pm 45^{\circ}$ basic layup appears to have a weight advantage over a 0° , 90° , $\pm 45^{\circ}$ laminate. The optimization procedure doesn't utilize the 90° ply effectively in either the strength or deflection constraint modes.

Figure 8-19 is a 0° , 90° , $\pm 45^{\circ}$ laminate optimized for strength only. Figure 8-20 is the twist displacement the laminate experiences when subjected to 6 g loads. All wing twist distributions shown in this report have been determined by the differential deflections of the most forward and most rearward set of grid points. The 90° basic one ply does not increase in number when subjected to deflection constraints indicating the layup is not sensitive to its presence.

Figure 8-21 is a $0^{\circ} \pm 45^{\circ}$ laminate optimized for strength only. Figure 8-22 is optimized for strength plus a tip twist constraint at $Y_{W} = 60.0$ of 0° . Figure 8-23 shows the twist behavior under 6 g loads.

T585

Figure 8-19. All Graphite/Epoxy Wing $(0^{\circ}, 90^{\circ}, 45^{\circ}, -45^{\circ})$ ASOP 3 Load = 6 g, 9 g, 2 g Strength Optimization Only, Wgt. = 16.74 lb.

0

Figure 8-20. All Graphite/Epoxy Wing $(0^{\circ}, 90^{\circ}, 45^{\circ}, -45^{\circ})$ ASOP 3 Load = 6 g Strength Optimization Only

0

17 1

5

T588

Figure 8-22. All Graphite/Epoxy Wing
$$(45^{\circ}, 0^{\circ}, -45^{\circ})$$

ASOP 3 Load = 6 g, 9 g, 2 g
Tip Twist Constrant,
Wgt. = 17.59, Δ Wgt. = 7.46%

Figure 8-24 is a laminate design with the wing constrained to 0° twist at $Y_W = 25.0$, 40.0, and 60.0. As the constraint severity increases the laminate layers change more abruptly. Figure 8-25 shows the spanwise twist behavior.

The twist angles at the constraint locations of Y = 25, 40, and 60 inches are not precisely zero degrees for several reasons. First of all a tolerance of about .05 degrees (or a maximum number of iterations) was allowed in the solution. In addition the structure outboard of each constraint station (except the tip) effects the deformation at the constraint station by the manner in which the internal loads and stresses are distributed inboard. This structure obviously changes as the constraint station moves outboard thus affecting the deformation. This was observed during the study. A second series of optimization runs starting with the laminate layers of Figure 8-24 would probably show near zero rotation at the constraint stations.

The deflection curve of Figure 8-25 shows a reversal of curvature at station 55. It is believed that this may be due to reaching the minimum number of plies at the outer row or two of panels.

Rigid Versus Flexible Supports

The distribution of wing loads into the supports is sensitive to the fuselage flexibility which also influences the laminate layup. Flexible supports as opposed to rigid support causes an increase in numbers of plies in local areas near the support. The wing twist displacement is also influenced by the support flexibility.

Graphite/Epoxy Shear Web

A graphite shear web was placed along the 40 percent chord in conjunction with the core. This member was permitted to participate in the optimization. This member's effectiveness was similar to the 90° ply in the skin laminate. The thickness never changed from its manufacturing minimum of .01, indicating the design is not sensitive to its presence.

Leading Edge Effectiveness

Analyses were performed with the leading edge participating and nonparticipating in the optimization process. These results indicate the laminate is greatly influenced by the leading edge structure. The optimization

T590

Figure 8-24. All Graphite/Epoxy Wing $(45^{\circ}, 0^{\circ}, -45^{\circ})$ ASOP 3, Load = 6 g, 9 g, 2 g, 3 Cut Wing Displacement Constraint @ Y = 25, Y = 40, Y = 60 Wgt. = 19.74 1b., △ Wgt. = 20.57%

Figure 8-25. All Graphite/Epoxy Wing $(45^{\circ}, 0^{\circ}, -45^{\circ})$ ASOP 3 Load 6 g, 3 Cut Wing, Displacement Constraint @ |Y| = 25, Y = 40, Y = 60 program tends to concentrate layers forward of the 40 percent chord and making the leading edge non-effective has a very disturbing effect on the remaining skin laminate.

.......Deformations.Normal.To Chordline

Analyses were performed to optimize the wing for twist and simultaneously restrict deflections normal to the chordline in order to retain the built-in camber. All attempts were fruitless since a suitable single constraint equation could not be found. Figure 8+26 shows the layup resulting from a typical attempt at a combined twist/camber constraint at Y = 20. Figure 8+27 shows the displacements along the chord at span station 20.0 for the 6.0 g load case. Neither the twist nor the deflections normal to the chordline were constrained to zero.

Further analyses were performed in an attempt to optimize for retention of the built-in camber and limit the twist by performing two separate optimizations. First, a constraint to retain the built-in camber was imposed at Y = 20. Figure 8-28 shows the resulting layup. Built-in camber was retained at Y = 20 and camber deformations outboard of Y = 20 were essentially eliminated. Figure 8-29 shows the displacements along the chord at Y = 20 and Y = 30 for the 6.0 g load. Further outboard the camber deformations were negligible. Second, the ply layup was initialized as in Figure 8-28 and a twist constraint was imposed at Y = 20. Figure 8-30 shows the layup after optimization and Figure 8-31 shows the deflections for the 6.0 g load. At Y = 20 the twist was held to zero, however, deformations normal to the chordline are evident and the built-in camber was lost.

Configuration/Material Trade Studies

Weight optimization analyses were performed for a graphite wing, a graphite-KEVLAR wing, and an aluminum structure. All three configurations used the same honeycomb core and root rib internal structure. Only the skins differed. The same load and displacement criteria applied to each version. Displacement constraints were placed progressively at span stations 20, 30, 40, 50, and 60.

().

Figure 8-26. All Graphite/Epoxy $(0^{\circ}, 90^{\circ}, 45^{\circ}, -45^{\circ})$ ASOP 3 Load = 6 g, 9 g, 2 g Combined Camber/Twist Constraint Wgt. = 16.77 lb., Δ Wgt. = .76%

Figure 8-27. All Graphite/Epoxy Wing $(0^{\circ}, 90^{\circ}, 45^{\circ}, -45^{\circ})$ ASOP 3 Load = 6 g Combined Camber/Twist Constraint

()

11 .

 γ_{p}

T594

Figure 8-28. All Graphite/Epoxy Wing $(0^{\circ}, 90^{\circ}, 45^{\circ}, -45^{\circ})$ ASOP 3 Load = 6 g, 9 g, 2 g Camber Restraint @ Y = 20 Wgt. = 17.07 lb., \triangle Wgt. = 2.67%

Figure 8-31. All Graphite/Epoxy Wing (0°, 90°, 45°, -45°) ASOP 3 Load = 6 g Minimum Layers for Camber, Run with Twist Constraint @ Y = 20

The weight comparisons are shown below for one wing panel.

Candidate	Weight-Strength Constraint (1b)	Weight-Deflection Constraint (1b)	∆ Weight Percent
Aluminum	23.09	59.07	155.83
Gr/Ep	17.25	20.27	17.51
Gr fwd 40% chord, KEV. aft 40% chord	18.97	23.82	25.57

The graphite/epoxy construction shows a slight weight advantage over the hybrid Gr-KEV construction. The aluminum wing design weight for divergence is 59.07 pounds compared to 20.27 pounds for graphite materials. Those results are in full agreement with past studies regarding the impracticality of using swept-forward metal wing designs.

The thickness of the aluminum wing is shown in Figure 8-32. The laminate plies of the composite wings are shown in Figures 8-33 and 8-34. Deflections for all three wings are shown in Figure 8-35. As mentioned previously, a second sequence of optimization runs starting with the structure of Figures 8-32 through 8-34 would be expected to produce a wing with better deflection characteristics. These analyses were performed with ASOP-3.

Computer Optimized Wing

The wing candidate using graphite/epoxy laminated skins was run on the FASTOP-3 system. Following the strength optimization the wing was designed for a twist displacement of 0° +.2°. Twist constraints were applied at stations 25.0, 40.0 and 60.0 with the leading and trailing edge grid numbers participating in the constraint.

Figure 8-36 is the ordering of plies over the upper and lower surfaces. The spanwise twist behavior is shown in Figure 8-37. Weight for this configuration is 24.44 pounds.

Note that Figure 8-3(shows two sets of fiber orientations. It was intended that all fiber orientation be parallel to and +45 degrees to the forty percent chord line. It was discovered late in the study that because of a change in data input format (field) between ASOP-3 and FASTOP-3, the

T598

Figure 8-32. Aluminum Wing ASOP 3 Load = 6 g, 9 g, 2 g All Aluminum Wgt. = 59.07 1b., Δ Wgt. = 155.83%

í١

T599

Figure 8-33. Graphite/Epoxy Wing ASOP 3 Load = 6 g, 9 g, 2 g All Graphite Epoxy (0, 90, 45, -45) Wgt. = 20.27 lb., \triangle Wgt. = 17.51%

T600

Figure 8-34. Graphite - Kevlar Wing ASOP 3 Load = 6 g, 9 g, 2 g Forward of 40% Chord Graphite $(0^{\circ}, 90^{\circ}, 45^{\circ}, -45^{\circ})$ Aft of 40% Chord Kevlar (45, 0, -45) Wgt. = 23.82 lb., \triangle Wgt. = 25.57%

T601

۲.

Figure 8-36. All Graphite Wing $(45^{\circ}, 0, -45^{\circ})$ FASTOP 3 Load 6 g, 9 g, 2 g, -3 g Computer Optimized Wing Wgt. = 24.44 lb., Δ Wgt. = 51.90%

Figure 8-37. All Graphite/Epoxy Wing (45°, 0, -45°) FASTOP 3 Load = 6 g Computer Optimized Wing FASTOP-3 program considered the two sets of orientations as shown on Figure 8-36. This is illustrated by the computer output of Appendix C. Line 380 of page 11 of the printout shows the input of the two-point coordinate system for fiber orientation. The single line on page 53 illustrates the manner in which the input data was interpreted by FASTOP-3. The data input format is correct for ASOP-3. A separate option of the program was used in defining the fiber orientation for the middle set of panels.

States Smoothed Wing Design

The computer optimized wing was used as the basis for achieving a design with smoother ply distributions. The procedure required the joint effort of stress; design, and manufacturing engineers revising the ordering of plies from FASTOP-3 into a smoother more continuous layup shown in Figure 8-38. This configuration was submitted to FASTOP-3 for deflection calculations and the resulting twist behavior is shown in Figure 8-39; By making changes with successive submissions to FASTOP-3 a smoother design evolved.

the This configurations was submitted to the FOP programmin the FASTOP-3 system for a vibration and flutter check. The analysis indicated the wing thas good flutter speed margins as discussed in Section 9.0.

tittThis:FASTOP+3 analysististshowntin Appendix Cointitstentirety.

The smooth wing of Figure 8+40 and 8+41 also consist of the two sets of ply orientations resulting from the program input problems discussed above. An alteration has been made to the ply laminates of Figure 8+40 and all fiber directions oriented as toriginally intended. The layup is shown in Figure 8+42 and the deflection characteristics are shown in Figure 8-43. Further efforts could probably improve the deflection characteristics however it is apparent that assuccessful wing design can be accomplished. The wing of Figure 8-42 was not subjected to a flutter check but it is believed from the previous studies that it will exhibit satisfactory flutter speeds.

١ĵ

Figure 8-38. All Graphite/Epoxy Wing $(45^{\circ}, 0^{\circ}, -45^{\circ})$ FASTOP 3 Load = 6 g, 9 g, 2 g, -3 g Intermediate Smoothed Wing Wgt. = 23.86 lb. \triangle Wgt. = 48.29%

Ĵ,

U

Figure 8-40. All Graphite/Epoxy Wing $(45^{\circ}, 0^{\circ}, -45^{\circ})$ FASTOP 3 Load = 6 g, 9 g, 2 g -3 g Final Smoothed Wing Wgt. = 24.13 lb., \triangle Wgt. = 49.97%

Figure 8-43. Spanwise Twist Distribution All Graphite/Epoxy Wing (45°, 0°, -45°) Corrected Fiber Orientation

:::8:3:2:: Conclusions From Wing Preliminary Design Efforts

.....A:number of conclusions can be reached as a result of the wing preliminary traeroelastic design effort.

The ASOP-3/FASTOP-3 computer programs are a valuable aid in optimizing the wing structure for strength and deflections. The addition of an aerodynamic module to provide a closed form static aeroelastic optimization would provide a major additional help.

By using advanced composite materials the weight penalty associated with divergence prevention of conventional metallic wings is alle-

- A preliminary evaluation of three candidate wing construction concontract cepts, aluminum, graphite epoxy, and graphite/kevlar.confirmed the construction evaluation of three candidate wing construction the
- 4. A $0^{\circ} \pm 45^{\circ}$ basic layup is more efficient than $a = 0^{\circ}, 90^{\circ} \pm 45^{\circ}$. A large portion of the wing surface requires only the minimum layers specified by the basic layup, making the 90° ply superfluous.
- The tailoring for twist constraints is sensitive to whether the wing support is rigid or flexible. A detail wing design analysis should reflect the fuse lage elasticity.

6. The tailoring is sensitive to the severity of twist constraint. As the wing approaches an over-constraint condition the number of plies in the skin layup vary widely from one element to an adjacent element. These abrupt changes are impractical from a manufacturing standpoint. Engineering judgement is required to smooth the layup into more gradual changes in number of plies acceptable for fabrication.

8. Attempts to constrain the chordwise camber displacement behavior in conjunction with twist constraint became unwieldly because when camber was maintained the twist behavior exceeded the tolerance and vice versa. 9. A wing fabricated from graphite/epoxy is attractive from a weight point of view. The weight optimum sizes specified by the optimization program require some hand tailoring to achieve a final practical design.

•

9.0 FLUTTER ANALYSIS

The FASTOP-3 program of reference 8.1 was utilized to conduct a flutter analysis of the forward swept wing. The flutter optimization option of the program was not exercised and the primary objective of this analysis was to determine if the forward swept wing, after strength and restraint optimizations, displayed an adequate flutter margin. The analysis shows the wing to be flutter free to greater than Mach = .90 at sea level. This is a substantial margin over the design V_T at sea level which is 426 knots, Mach = .65.

()

0

5

The vibration analysis was conducted via the AVAM module of FASTOP-3 utilizing the flexibility approach. For the flexibility approach, a separate dynamics model was created. This model, as shown in Figure 9-1, is a reduction of the structural finite element model shown in Figure 9-2. In the dynamics model the structure was assumed to be fixed just inboard of grids 1, 7, 13 and 19 thus providing the boundary conditions for a cantilevered structure. Only out of plane displacements at the grid points were considered yielding a total of 28 degrees of freedom, of which four have zero displacements. Eight modes were calculated and subsequently used in the flutter analysis. Natural frequencies range from 40.4 Hz to 427 Hz. Mode shapes are presented in Appendix D in both tabular and graphical form. Mode shapes in graphical form are shown on pages 38 thru 53 of Appendix D.

The mass matrix used in the vibration analysis was obtained by using the "fully automated" approach, that is, the mass matrix was automatically computed based on the computed weights of all the structural members. There were neither fixed-mass items nor mass-balance weights in the wing.

The flutter analysis was conducted utilizing the AFAM segment of FASTOP-3. The aerodynamics model is identical to the structural model as shown in Figure 9-2. The wing is modeled as one aerodynamic panel which is divided into 10 spanwise elements and six chordwise elements. The subsonic doublet-lattice procedure was used to arrive at oscillatory aerodynamics for a Mach number of 0.90, and nine reduced frequencies ranging from .2 to 2.6. The flutter solution was obtained by using the K-method, zero structural damping, and sea level air density. A printout of the flutter solution is presented in Appendix D along with the conventional velocity versus damping and velocity versus frequency plots. All other pertinent results from the AVAM and AFAM modules are also shown in Appendix D.

Q,

Figure 9-1. NASA Forward Swept Wing, Dynamics Model

()

Ų.

i'j

T609

Figure 9-2. Grid Arrangement

10.0 STRESS ANALYSIS

A stress analysis was performed to substantiate the preliminary wing design details. In addition, preliminary stress checks were made to ascertain modifications required for the BQM-34F fuselage/empennage structure.

10.1 WING ANALYSIS

The wing stress analysis involved the following components:

- a. Laminated skins
 - (1) Strength
 - (2) Intracell buckling

b. Honeycomb core

c. Wing to fuselage attachment bolts

Laminated Skin Analysis

The graphite/epoxy skins are analyzed for the following failure modes:

a. Laminate strength

b. Intracell buckling

Laminate strength is based on the allowable strength of each lamina and its orientation. Intracell buckling is a local stability failure mode which the laminate may experience and is an interaction between the laminate and the honeycomb core. One of the primary functions of the core is to stabilize the laminate until the full compressive strength allowable is developed.

The ASOP-3 and FASTOP-3 systems have the strength failure criterion built into the program and the resizing algorithm is formulated not to violate the strength requirements. Conservative assumptions are made so that interaction between layers may be properly taken into account.

The following material data at room temperature were used:

 $E_{1} = 20.1 \times 10^{6} \text{ psi}$ $E_{2} = 1.6 \times 10^{6} \text{ psi}$ $\mu = .294$ $G = .8 \times 10^{6} \text{ psi}$

 $\alpha_1 = .01 \times 10^{-6} \text{ in/in/f}^{\circ}$ $\alpha_2 = 11.5 \times 10^{-6} \text{ in/in/F}^{\circ}$

Allowable strain data at room temperature:

el compression	=0092 in/in
e2 compression	=015 in/in
$\gamma_{1,2}$ negative	=0106 in/in
e ₁ tension	= .0105 in/in
e ₂ tension	= .0045 in/in
$\gamma_{1,2}$ positive	= .0106 in/in

Intracellular Buckling

This is a localized mode of instability facing failure and occurs in regions directly above core cells. The facings buckle in plate-like fashion with the cell walls acting as edge supports. The progressive growth of these buckles can eventually precipitate a face-wrinkling failure mode.

The facing stress at which intracellular bucking will occur is given by the following equation:

$$F_{cyd} = \frac{2(E_x E_y)^{1/2}}{1 - \mu_x \mu_y} \left(\frac{t_f}{s}\right)^2$$

(Reference 10.1)

where

14

$$\begin{split} \mathbf{E}_{\mathbf{x}}, \mathbf{E}_{\mathbf{y}} &= \text{Laminate Young's moduli 6,800,000 + 3,900,000 psi} \\ \mathbf{t}_{\mathbf{f}} &= \text{Laminate thickness, .025 inches} \\ \boldsymbol{\mu}_{\mathbf{x}}, \boldsymbol{\mu}_{\mathbf{y}} &= \text{Poisson's ratios, .72,.43} \\ \mathbf{s} &= \text{Core cell size, 0.125 inches} \\ \mathbf{F}_{\mathrm{cvd}} &= 6,670 \text{ psi} \end{split}$$

An interaction formula is used for biaxial compressive stresses.

Honeycomb Core Stress Analysis

In addition to having the proper stiffness and geometry required to stabilize the laminated skins, the core must have adequate strength. The spanwise wing shear loads are transferred by the honeycomb core, during which time the core experiences shear stresses.

Core Shear

()

11

The HFT glass reinforced phenolic core experiences maximum shear stress in element 6185.

f = 142 psi (ult.) Appendix C

 $F_s = 225 \text{ psi}$ (L direction) Reference 8.4

$$MS = \frac{225}{142} - 1 = .58$$

NAS 625 - Fuselage Attachment Bolts

The wing is attached to the fuselage with five 5/16 NAS 625 H.T. 180 KSI bolts, left and right hand side.

Maximum bolt loads occur during the 9 g ultimate load case and are based on rigid support. Studies indicate reactions are sensitive to fuselage flexibility.

Wing/Fuselage Loads - 9 g ultimate

Bolt Allowable Loads

NAS 625, 5/16 dia. H.T. 180 KSI

```
P tension = 9660 lb
```

- P shear = 8280 1b.
- Margin of Safety, M.S.

M.S.
$$\frac{9660}{6815} - 1 = .416$$

10.2 FUSELAGE ANALYSIS

£È.

Q.

The fuselage analysis involves stress checks of the equipment compartment and centerbody sections. Figure 10-1 is an exploded view of the fuselage shell structure. The wing attaches to five frames in the centerbody section.

Equipment Compartment

The addition of about 300 pounds of ballast in the fuselage nose imposes bending loads on the equipment compartment section which exceeds its present structural capability. The added ballast effects on the loads are compared in Figure 7-3 with the original design loads for parachute recovery.

Figure 10-2 shows a structural beef-up which will satisfy the increased loads. It consists of the addition of four steel straps along the upper and lower, left and right hand fuselage sides as shown. The straps extend the full length of the equipment compartment and the forward end of the centerbody section. This ensures adequate strength at the joint where the two sections mate, station 233.50.

Appendix E shows the sizing of external straps at various stations to increase the structural capability of the equipment compartment sections. The sizing is based on determining the increase in structural properties required to meet the new loads. Advantage is taken to reduce high margins of safety where they exist and maintain the neutral axis location and original stress levels.

Centerbody Section

The swept forward wing study is based on rigid support and the reactions on the centerbody frames are shown in Figure 10-3. Analyses performed early in the study indicate the support reactions are sensitive to the fuselage/ frame flexibility, however, the centerbody was not in the finite element analysis model.

Based on the rigid support reactions the frame at X_F 250.06 is loaded by the ultimate loads from the 6.0 g condition in excess of its structural capability. The frame analysis shown in reference 10.2 is used to estimate the frame capability.

T611

Figure 10-2. Beef-Up Straps Equipment Compartment

WING REACTIONS, PZ 9g ULTIMATE

	NO.	• • •	PZ (PER SIDE) LB. ULTIMATE		
1.	1		-411		
	2		556		
	3	•	2646		
	4		6815	÷	
	5		1082		

3200 LB. (MAX.)

FRAME X_F 250.06

INCREASE IN LOAD REQUIRES ADDING INNER AND OUTER FLANGES EXTENDING 150° AROUND LOWER PORTION.

T612

Figure 10-3. Fuselage Wing Attach Frames, 6-g Loads x 1.5 Maximum allowable frame load is 3200 pounds/side. Critical failure mode is flange compression crippling.

()

For Pv = 6815 lb ultimate the frame at X_F 250.06 requires some beef-up. It is recommended an inner and outer angle flange be added to the channel frame extending approximately 150° around the lower portion.

SECTION A-A

It should be noted that a more detailed analysis with fuselage flexibility considered may show this modification not required.

11.1 FUSELAGE

Several modifications must be made to the basic fuselage to accommodate a forward swept wing. These modifications are discussed in the following sections.

11.1.1 Structural Modifications

Structural reinforcement of the fuselage as shown in Figure 11-1 is required forward of XF 233.50 in order to support the 300 pounds of ballast. The reinforcement consists of .125 inch thick stainless steel (18-8) straps of sufficient width to increase the forward fuselage bending modulus so that the available strength of the existing aluminum fuselage will not be exceeded (See Section 10.2). Stainless steel was chosen both for high corrosion resistance as well as high modulus thus presenting the least (compared to aluminum) increase to the vehicle cross sectional area. The strap will be installed by picking up existing rivets along with additional rivets where required. A sealant and wet dipped rivets will prevent galvanic coupling between the steel straps and aluminum fuselage.

11.1.2 Ballast Installations

The lead ballast will consist of commercial tin based lead (4% sb) that has a tensile allowable strength of 4000 psi which is twice that of common lead. "The lead density is 0.398 lb. per cu. in. The lead sheet will be fastened to the existing structure with flush machine screws installed through relatively large steel washers with countersunk holes. Back up countoured steel washers will be utilized where required to locally reinforce the existing aluminum structure.

11.1.3 Recovery System Modifications

It has been shown that incorporating a forward swept wing on the BQM-34F will require a large amount of forward fuselage ballast to maintain static aerodynamic stability. The resulting forward shift in vehicle center of gravity produces a problem with the recovery system geometry. With the ballast in place, the cg of the vehicle when suspended beneath the main and engagement parachutes is forward of the most forward parachute attachment point. To provide a level vehicle attitude two alternatives were considered

11-1

11-2

1

as discussed in Section 2.0. Of the two alternatives, dropping ballast or moving the forward fitting forward, the latter seems most attractive if it can be done without requiring major structural modification.

The approach which has been chosen is illustrated by Figure 11-2. The existing parachute fittings are at stations 245 and 273. The main parachute deployment forces for the target are taken primarily by the forward fitting. The concept proposed for the research configuration also uses the fitting at station 245 to take the large deployment loads. After the initial deployment shock, and after the vehicle attains stabilized descent, the explosive bolt is detonated shifting the forward attach point to station 233. This forms a parachute bridle which encompasses the cg producing a level vehicle attaitude for mid-air pickup.

Detailed development work will be required to insure the success of this concept however, based upon this initial evaluation, the concept appears to be feasible. There is adequate strength in the fitting and backup structure at station 245 since they are already designed for these conditions. At station 233 a new fitting must be incorporated however, since this is a major bulkhead and the loads will not be large, a major modification is not expected. The new bridle between stations 233 and 273 must be developed including the apex fitting and its explosive bolt attachment and electrical wiring.

11.2 <u>WING</u>

The outer wing panels are of full depth sandwich honeycomb construction. The skins or facings are fabricated from graphite/epoxy advanced composite material. The skins are adhesive bonded to an HFT glass reinforced phenolic honeycomb core with 1/8 inch cell size and four-pound density. At the more heavily loaded local area near the leading edge root a 5.5 pound density core is required. Upper and lower skin are fabricated in one piece from wing tip to wing tip. The upper and lower wing halves are joined at the wing reference plane (WRP) by bonding the two machined faces of the core with METLBOND 1113. Leading and trailing edges are closed with plies of fiberglass or graphite fabric tape.

- - - -

0

()

Figure 11-3. Wing Upper Surface Ply Thickness

()

þ

13

The skin layup is discussed in the analysis Section 8.3.2 and shown in Figure 8-40 of that section. During a detail wing design effort it may be to advantage to re-orient the plies slightly for ease of manufacture. Figures 11-3 and 11-4 show total ply thickness at the various locations. Ply thickness contour lines are shown in Figures 11-5 and 11-6. Wing preliminary design details are shown on Figure 11-7.

The wing center section consists of the graphite/epoxy center carrythrough structure and a machined aluminum fuel tank cover. The machined aluminum piece serves both as a fuel tank cover and as a contoured rest for the composite wing center section. Graphite root ribs and fore and aft closures complete the graphite center wing structure. Five bolts per side are used for attaching the wing to the fuselage. Four of the bolts join the wing and aluminum pieces to the fuselage, the fifth passes only through the aluminum piece.

()

Þ

÷.,

.

 \sim

.

12.0 WEIGHT & BALANCE

The total weight of the point design wing is 75.25 pounds. The distribution of the weight is 38.51 pounds for the outboard wing and 36.74 pounds for the center section. A weight breakdown for the wing is presented in Table 12.1 along with the unit weights of each component. These weights were calculated based on design layouts and stress data presented in section 10.2, not on the computer calculated weight.

The fuselage weight penalty of 22.49 pounds is attributed to steel staps on the outside forward fuselage for beef-up due to ballast weight of 297.60 pounds distributed forward and aft of body station 135.7.

The weight penalty assigned to the recovery system redesign of the forward recovery attach points is estimated to be 4.5 pounds.

. The summary weight statement for the NASA swept forward wing is presented in Table 12.2.

The center of gravity travel, based upon preliminary data is presented in Figure 2-7. The final data did not alter the curve significantly as to require a new analysis. The major change from the data presented alleviates the requirement for dropable ballast.

12 - 1

TABLE 12-1 WEIGHT BREAKDOWN

OUTBOARD WING

()

y)

⁸⁴3)

UPPER SKINS (.057 #(in ³)	12.87
LOWER SKINS (.057 #/in ³)	12.62
ADHESIVE (.07 #/ft ²)	4.31
CORE $(4.25 \#/ft^2)$	6.32
SPAR (.057 #/in ³)	0.09
LEADING & TRAILING EDGES (.065 #/in ³)	0.66
PAINT (.042 #/ft ²)	1.64
• ጥርጥልተ	38 51

CENTER SECTION	
UPPER SKIN (.057 #/in ³)	4.94
LOWER SKIN (.057 $\#/\text{in}^3$)	3.43
ADHESIVE (.07 $\#/ft^2$)	0.65
CORE $(4,5 \#/ft^2)$	1.73
SPAR (.057 $\#/in^3$)	 2.82
RIBS (.057 #/in ³)	7.79
PLATE (.101 #/in ³)	13.62
ATTACHMENT HARDWARE	1.50
PAINT (.042 #/ft ¹)	0.26
TOTAL	36.74

TOTAL WING

75.25 lbs.

12-2

	(POUND
AERO SURFACE GROUP	126.95
WING 75.25	
TAIL - VERTICAL 31.73	•
TAIL - HORIZONTAL 19.97	. ·
BODY GROUP (2)	260.10
TAKE-OFF & RECOVERY GROUP (3)	175.60
PROPULSION GROUP	479.30
POWER GENERATING GROUP	132.40
DRIENTATION CONTROL GROUP	35.90
JUIDANCE GROUP	43.50
ELECTRONICS GROUP (4)	122.90
ENVIRONMENTAL PROTECTION GROUP	35.90
nsc.	2.10
BALLAST @ F.S. = 135.7	297.60
WEIGHT EMPTY	1712.25
JNUSABLE FUEL (MAIN & AUX)	4.70
LUBRICANT - USABLE	9.30
- UNUSABLE	2.30
REFRIGERANT	8.30
AUX. FUEL TANK	16.10
ZERO FUEL WEIGHT	1752.95
FUEL	333.00
MAIN 263.00	

TABLE 12=2

(1)	BASELINE	REFERENCE	: TRA	REPORT	16644-3	3, "	ACTI	JAL	WEIGHT	REP	ORT	FOR
	BQM-34F	SUPERSONIC	AERIAL	. TARGET	SERIAL	NO.	AF	72-	-1566,	SLIP	99"	DATE
· • • •	16 APRIL	. 1974.				.:						

(2) INCLUDES EXTERNAL STRAPS OF 22.49 POUNDS.

. . .

- (3) INCLUDES WEICHT PENALTY OF 4.5 POUNDS FOR FORWARD RECOVERY SUSPENSION SYSTEM.
- (4) MAJOR PORTION OF THIS CROUP IS MISSION ORIENTATED AND MAY BE ALLOCATED FOR PAYLOAD WEICHT & VOLUME.

13.0 REFERENCES

- 1.1 James, H.A., Feasibility Study of Modifications to BQM-34E Drone For NASA Research Applications, Ryan ASTM 72-40, December 1972, NASA CR-112323, 1972.
- 1.2 Anon., Design Analysis of a Supercritical Wing For Test With a BQM-34F Drone Aircraft, TRA Report 16669-11, 10 April 1975 (Confidential).
- 1.3 Murrow, H.N. and C.V. Eckstrom, Drones for Aerodynamic and Structural <u>Testing (DAST) - A Status Report</u>, Presented at AIAA Aircraft Systems and Technology Conference, Los Angeles, CA, August 21-23, 1978.
- 1.4 Krone, Norris J., <u>Divergence Elimination With Advanced Composites</u>, AIAA Paper No. 75-1009, 1975.
- 1.5 Anon., <u>Technical Proposal for the Study of Feasibility Aspects of</u> <u>Flight Testing an Aeroelastically Tailored Forward Swept Research</u> <u>Wing On a BQM-34F Vehicle, TRA Report 16671-1, 25 September 1978.</u>
- 2.1 Huffman, J.K. and C.H. Fox Jr., <u>Subsonic Longitudinal and Lateral-Directional Static Aerodynamic Characteristics For a Close-Coupled Wing-Canard Model in Both Swept Back and Swept Forward Configurations</u>, NASA TM 74092, 1978.
- 2.2 McGhee, Robert J. and William D. Beasley, <u>Low-Speed Wind Tunnel Results</u> For A Modified 13-Percent Thick Airfoil, NASA TM X-74018, May 1977.
- 4.1 McCunney, S.J., <u>Propulsion System Report for BQM-34F Supersonic Aerial</u> Target, TRA Report 16603-10, 15 February 1974.
- 4.2 Schemershy, R.T., <u>Development of an Empirically Based Computer Program</u> to Predict The Aerodynamic Characteristics of Aircraft, AFFDL-TR-73-144, October 1973.
- 5.1 Douglas Aircraft Company, Inc. <u>USAF Stability and Control Handbook</u>, Contract AF33(616)-6480, October 1960.

13-1

- 5.2 Huffman, Jarrett K., and Fox, Charles H., Jr., <u>Subsonic Longitudinal</u> and Lateral-Directional Static Aerodynamic Characteristics for a Model With Swept Back and Swept Forward Wings. NASA TM-74093, 1978.
- 5.3 Polhamus, Edward C., and Sleeman, William C., Jr., <u>The Rolling Moment</u> <u>Due to Sideslip of Swept Wings at Subsonic and Transonic Speeds.</u> NASA TN D-209, 1960
- 5.4 Boyden, Richmond P, <u>Subsonic Roll Damping of a Model With Swept-Back</u> and Swept-Forward Wings, NASA TM 78677, 1978
- 7.1 "Structural Loads Report for BQM-34F Supersonic Aerial Target" TRA Report No. 16642-22, 28 August 73.
- 8.1 Markowitz, Joel and Gabriel Isakson, <u>FASTOP-3, A Strength, Deflection</u> and Flutter Optimization Program for Metallic and Composite Structures, AFFDL-TR-78-50, May 1978.
- 8.2 Advanced Composites Design Guide, Volume IV Materials, Third Edition, Los Angeles Division of North American Rockwell International Corp., 1977.
- 8.3 <u>Metallic Materials and Elements for Aerospace Vehicle Structures</u>, Volumes I and II, MIL-HDBK-5C, 15 September 1976.
- 8.4 <u>Mechanical Properties of Hexcel Honeycomb Material ISB120</u>, Hexcel 1978 Revision.
- 10.1 Structural Sandwich Composites, MIL-HD-BK-23A, December 1968.
- 10.2 TRA Report 16642-19 Fuselage Structural Analysis Report for BQM-34E Supersonic Aerial Target, Volume I, 21 February 1973.

APPENDIX A NASA STATEMENT OF WORK

STATEMENT OF WORK

STUDY OF THE FEASIBILITY ASPECTS OF

FLIGHT TESTING AN AEROELASTICALLY

TAILORED FORWARD SWEPT RESEARCH

WING ON A BQM-34F DRONE VEHICLE

1-12-2720.0142 EXHIBIT A JULY 27, 1978

NASA ---- LANGLEY RESEARCH CENTER -

HAMPTON, VA 23665

TECHNICAL STATEMENT OF WORK FOR

STUDY OF THE FEASIBILITY ASPECTS OF FLIGHT TESTING AN AEROELASTICALLY TAILORED FORWARD SWEPT RESEARCH WING ON A BQM-34F DRONE VEHICLE

1.0 PURPOSE AND SCOPE

1.1 <u>Purpose</u> - The purpose of this Statement of Work is to identify and define the engineering and technical support work required for study of the feasibility aspects and preliminary design of an Aeroelastically Tailored Research Wing for tests on a NASA Model BQM-34F RPRV.

- 1.2 <u>Scope</u> This program is limited to the effort required to accomplish analyses for the preliminary design of a wing suitable for flight testing on a NASA BQM-34F Drone Vehicle. Fabrication, testing, target modifications, flight control system, aerospace ground equipment (AGE) and launch interfaces are not included in this effort. Data on documentation submittals will be in contractor format similar to that submitted for the supercritical wing study accomplished for NASA under Contract No. NASI-13541.
- 1.3 Background - NASA has an established program utilizing modified BQM-34F vehicles as test beds for flight investigations on research wings. The program is called "DAST" for Drones for Aerodynamic and Structural Testing. An early feasibility study was conducted under Contract (NAS1-11758) which yielded aerodynamic performance information for several candidate wing planforms as well as wing construction and integration aspects. Later a research wing configuration was selected for detailed design which was accomplished under Contract NAS1-13541. This wing with aspect ratio 6.8 was subsequently fabricated in-house by NASA and will be used to study loads and an application of active controls for flutter suppression. A second research wing of aspect ratio 10.3 is presently being designed under Contract NAS1-14665 for flight test on a Firebee II vehicle. The design involves incorporation of multiple active controls for gust and maneuver load alleviation and flutter suppression. Of particular interest in this design effort is the development of an integrated design technique incorporating an iterative loop which allows the structural design to take full advantage of the benefits provided by the active controls. NASA is pursuing studies concerning potential applications of the use of anisotropic laminates of advanced composite materials for tailoring the aeroelastic characteristics of structures. This work includes analytical studies, wind tunnel tests and flight test validation experiments. More recently significant

renewed interest has been shown in the unconventional swept-forward wing. Significant performance benefits are indicated, especially if the major structural problem of aeroelastic divergence can be solved without addition of weight such that the potential performance benefit would be eliminated. Research investigations will include study of the use of advanced composites and/or active controls to avoid aeroelastic divergence. It is believed that DAST-type flight tests would provide early research data at relatively low cost and with no human risk involved.

1.4 <u>Objective</u> - The objective of the present work effort is to establish a feasible preliminary design of a swept forward wing of moderate aspect ratio with sufficient performance and stability and control analysis to assure compatibility with the existing NASA BQM-34E/F Drone system. The wing will be used to study aerodynamic and structural interactions (aeroelastic effects), and to measure flight loads, primarily in the transonic speed regime.

2.0 CONDITIONS

- 2.1 Design Guidelines
- 2.1.1 The wing shallbe designed for a cruise Mach number of 0.9 at 30,000 ft. altitude and will have approximately the following geometric characteristics.

Reference Wing Area, Sq. Ft.	25 to 36
Airfoil	Supercritical
Root Airfoil Thickness Ratio	Approx05
Tip Airfoil Thickness Ratio	Approx05
Wing Aspect Ratio	4 to 7
Span, Ft.	11 to 17
Leading Edge Sweep Angle, Deg	-20 to -35
Twist, Deg	TBD
Taper Ratio	0.40

An optional close coupled canard anving approximately the following characteristics shall be considered in this study:

A-6

Reference	Exposed	Canard Ar	ea,	
Sq. Ft.				8
Exposed Ca	nard Asi	nect Ratio)	4

2

Canard Thickness Ratio	TBD
Leading Edge Sweep Angle, Deg.	-30
Taper Ratio	0.20
Twist, Deg	0

3

- 2.1.2 The wing shall be designed to provide satisfactory static aeroelastic and flutter characteristics throughout the flight envelope with a margin of 15 percent on speed.
- 2.1.3 The wing shall be designed to be mounted on the BQM-34E/F aircraft using the same carry through area as the standard wing.
- 2.1.4 Load factors and safety factors shall be applied as follows: Symmetrical maneuver load factor limits shall be approximately +6 and -3 g's. The ultimate factor of safety shall be 1.50.
- 2.1.5 A vehicle weight of approximately 2200 lbs. (excluding wing) should be used for this study.
- 2.1.6 Work shall be performed under procedures appropriate for feasibility studies. Drawings shall be checked "in group" and released for record purposed only.
- 2.1.7 The wing size shall be as large as practical consistent with the constraints of vehicle weight, controllability and flight capabilities at Mach .90 at 30,000 feet.
- 2.2 Tasks

The Contractor shall:

- 2.2.1 Prepare preliminary design layouts to establish practical ranges of wing aspect ratio, <u>sweep</u>, thickness, and area that are compatible with the existing NASA BQM-34F vehicle modified for DAST.
- 2.2.2 Conduct detailed drag build-up and sufficient aerodynamic analysis appropriate for supercritical wing including operational envelopes to provide inputs for general performance and research capabilities.
- 2.2.3 Prepare structural layouts and conduct loads, weights stress static aeroelastic and flutter analyses in sufficient depth to establish approximate wing structure necessary to comply with Paragraph 2.1.
- 2.2.4 Provide dimensional drawings defining the structural concept including sizing of the primary structural members. Volumes avavlable for control surfaces, actuators, and research instrumentation, shall be identified.

A-7

- 2.2.5 Estimate stability characteristics including estimates for aeroelastic effects with the research wing in sufficient depth to assure compatibility with the NASA DAST vehicle control system.
- 2.2.6 Use existing BQM-34F data and data available from NASA to establish design criteria of the modified vehicle.
- 2.2.7 Establish wing placement and allowable C.G. travel based on existing or estimated data.
- 2.2.8 Estimate flight performance and maneuvering capabilities of the modified vehicle.
- 2.2.9 Establish preliminary wing stiffness requirements to provide satisfactory static aeroelastic characteristics.
- 2.2.10 Develop preliminary structural design loads.
- 2.2.11 Prepare preliminary layouts for wing and required BQM-34F structural modifications. Layouts shall identify structural concepts and include material type, thickness and ply orientation as applicable.
- 2.2.12 Conduct preliminary wing stress analysis.
- 2.2.13 Conduct preliminary wing flutter analysis.
- 2.2.14 Prepare dimensional layouts of wing, control surface and wing fuselage attachment.

APPENDIX B MONTHLY PROGRESS REPORTS

TITLE: Study of the Feasibility Aspects of Flight Testing an Aeroelastically Tailored Forward Swept Research Wing on a BQM-34F Drone Vehicle

SUBJECT:

Technical Progress Report for 13 November to 13 December 1978

Initial planning, study task assignments and work schedule were accomplished with the principle engineers assigned to this program.

A geometric and dimensional matrix with 27 wings and three forward sweep angles, three aspect ratios and three wing areas was developed. The locus of the 0.25 m.a.c. position for the subject wing matrix was also determined.

<u>Monthly Technical Letter Progress Report - Swept Forward Wing Feasibility Study</u> -NASA Contract NASI-15624

This report describes the progress of the program for December 1978 and is the second monthly report as required by the above contract. (Sales Order 15066, Part III, Item B).

The work in the technical areas described below was performed for the purpose of establishing feasible swept forward wing configurations and their locations on the BQM-34F drone.

AERODYNAMICS: A wing planform geometry parametric analysis was conducted to determine the locus of the quarter-point of the mean aerodynamic chord with wing position on th. BQM-34F. Planform parameters selected were aspect ratios 4, 5 and 6 with leading edge sweep angles from -20 to -36 degrees and wing areas from 25 to 36 square feet. The planform areas were then utilized in a longitudinal stability parametric study combining wing, body, and horizontal tail contributions. This study provides a preliminary indication of the required center of gravity location for various wing positions for a fixed minimum stability margin of 15%. The above center of gravity data was passed to the mass properties group in order to determine ballast requirements.

MASS PROPERTIES: The wing weights for 27 wings were estimated by imperical formula. These 27 wings represent the number of possible wing combinations based on the ranges of aspect ratio, sweep and wing area to be considered in this feasibility study. This wing weight matrix is presently being combined with the required C.G. data from aerodynamics (stability and control), for various wing positions, to determine the ballast required matrix. The ballast requirements will be then passed to the stress group and structural dynamics group for loads and structural evaluation as to the adequacy of the existing airframe to support the revised mass distribution.

STRESS ANALYSIS: The approach for stress analysis which will be followed is summarized as follows:

- Determine preliminary fuselage reactions for complete range of wing configurations under study.
- (2) Evaluate results of (1) for approximate allowable reactions.
- (3) Evaluate structural upper limit for ballast in forward fuselage and determine feasibility of fuselage beef-up if required.
- (4) Perform Asop-3 and Fastop computerized analysis of a selected wing configuration.

STRUCTURAL DYNAMICS: Initiated structural design criteria and loads evaluation for wing positions and configurations considered in this study. Established contact with AFFDL/FBRB (T. Harris, 53297) to request an allotment of AFFDL computer time (Cybernet Cyber-175) in the use of Fastop-3. This computer program will be utilized and evaluated in the design analysis (Stress, Flutter and Static Aeroelastic) of the swept forward wing program. This request has been granted up to a budget of \$2000. See attached TRA letter.

<u>DESIGN</u>: Preliminary structural layout has been prepared to access the feasibility of fuselage attachment of a -20° swept forward wing, 25 square feet, span 10 feet, aspect ratio 4.

Work to be performed in next reporting period (January 1979):

- (1) Continue ballast determination for wing configuration matrix.
- (2) Determine wing attachment loads. Determine fuselage loads due to ballast requirements.
- (3) Evaluate Fastop-3
- (4) Evaluate recently received report AFFDL-TR-78-116, "Aeroelastic Stability and Performance Characteristics of Aircraft with Advanced Composite Swept Forward Wing Structures".

B-6

- (5) Continue design layouts for wing attachment
- (6) Determine allowable structural ballast installation

POTENTIAL PROBLEMS: None during the second reporting period.

TELEDYNE RYAN AERONAUTICAL

2701 HARBOR DRIVE

SAN DIEGO, CALIFORNIA 92138

(714) 291-7311 TWX (910) 335-1180

13 December 1978

Air Force Flight Dynamics Labortory Wright Patterson Air Force Base Ohio 45433

Attention: AFFDL/FBRB (T. Harris, 53297)

Dear Terry,

Teledyne Ryan is currently under contract to NASA Langley, Contract No. NASI-15624, to study the feasibility of adopting a swept forward composite wing design to the BQM-34F target drone. The wing will be designed for a cruise Mach number of 0.9 at 30,000 feet and have approximately the following characteristics:

Reference Wing Area, Sq. Ft.	25 to 36
Airfoil	Supercritical
t/c	.05
Aspect Ratio	4 to 7
Span Ft.	11 to 17
Leading Edge Sweep, Deg.	-20 to -35
Taper Ratio	0.4

The requirements for aeroelastic tailoring to provide satisfactory static aeroelastic and flutter characteristics make FASTOP-3 an ideal tool for use in this study. The Teledyne Ryan Aeronautical Co., (TRA) is currently using an IBM version of both FASTOP-1 and ASOP-3, however, we have been unable to exercise the FOP portion of FASTOP-1 to a satisfactory conclusion.

From our telephone conversation, it is understood that a limited amount of computer time, if any, could be alloted to TRA for CYBERNET CYBER-175. To make effective use of alloted time we cold debug our model on our in-house ASOP-3 program. This would also be useful to help you evaluate FASTOP-3.

Request that TRA be allotted approximately 0.5 to 1.0 hours of CYBER-175 CPU time for our swept forward composite wing study program.

Very truly yours,

ner C

Grover C. Childers Group Engineer Structural Dynamics

Report No. TRA 16663-5B Dated 7 February 1979

MONTHLY TECHNICAL LETTER PROGRESS REPORT - SWEPT FORWARD WING FEASIBILITY STUDY NASA CONTRACT NASI-15624

This report describes the progress of the program for January 1979 and is the third monthly report as required by the above contract (Sales Order 15066, Part III, Item B).

<u>AERODYNAMICS</u>: A second iteration was performed in the longitudinal stability parametric study utilizing more refined wing aerodynamic center location data and reduced downwash at the horizontal tail. The wing a.c. location was based on lifting line theory and the downwash derivative ($\epsilon \alpha$) reduced by 0.10. This was based on comparison of downwash characteristics calculated by an emperical method with trends indicated by test data for a forward swept wing wind tunnel model. In addition, the longitudinal static stability margin was reduced from 0.15 to 0.10. The combined effect of these corrections resulted in an allowable aft shift in center of gravity location of approximately five (5) inches for all the wing planforms being considered.

MASS PROPERTIES: Revised ballast requirements for the ranges in wing sweep, aspect ratio and wing area were calculated versus wing positions on the fuselage. Ballast in amounts of 200 to 300 pounds, located at the nosecone bulkhead were required, with wing position being the most sensitive parameter. These large requirements for nose ballast raised concerns for the c.g. positions at air launch gross weight and at recovery weight. The requirement that the recovery c.g. fall between the existing parachute riser locations was the critical case and could not be met without jettisoning ballast at recovery. The amount of jettisonable ballast (up to 90 pounds) increases as the wing position moves forward and the forward sweep increases. The droppable ballast situation was coordinated with Don Gatlin at NASA DFRC (Edwards AFB, CA.) who in turn contacted LCOL. Kellock in the USAF Safety Office who saw no problem in dropping lead shot.

STRESS ANALYSIS: Fuselage reactions for -20° swept forward 25 sq. ft. wing are being evaluated. Fuselage structural reinforcement feasibility and requirements are being evaluated for up to 300 pounds of ballast.

STRUCTURAL DYNAMICS: Determined wing shear, moment and torque curves for the purpose of evaluating wing root reactions at the wing/fuselage interface. Performed further coordination with TRA computing facility and AFFDL concerning use of AFFDL computer time in performing FASTOP-3 analysis (see attached letter).

DESIGN: Proceeded with evaluation of design layout of -20° swept forward wing, 25 sq. ft., aspect ratio 4 in two positions on the fuselage. The most aft location with the leading edge intersecting the fuselage centerline at $X_F^{260.4}$ which requires 175 pounds total ballast (0 pounds jettisonable). The most forward wing location with a leading edge intersection with the fuselage centerline at $X_F^{252.0}$ which requires 280 pounds total ballast (90 pounds jettisonable). The most feasible location for the wing center box is its existing location, picking up the existing ten fuselage attachments (five per side). The wing semi-spans then will be located in relation to the center box considering ballast requirements (most aft is favorable) and structural requirements (most forward favorable).

The possible wing configurations within practical ballast requirements has been narrowed down to one, -20° sweep, 25 sq. ft. area, aspect ratio 4. Two wing positions on the fuselage are currently under consideration with the most forward one appearing to be the most favorable selection.

Work to be performed in the next reporting period (February 1979):

- 1) Select wing position on fuselage
- 2) Determine wing panel point loads
- 3) Start aeroelastic tailoring analysis
- 4) Continue fuselage beef-up requirements analysis
- 5) Detail design layout of wing on fuselage in the selected position

DEPARTMENT OF THE AIR FORCE AIR FORCE FLIGHT DYNAMICS LABORATORY WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

W or: FBRC (T. M. Harris, 53297)

9 January 1979

SUBJECT:

REPLY TO

CYBERNET NOS/BATCH Resources Available for FASTOP-3

Toledyne Ryan Aeronautical Attn: Mr. Jack C. Grams Engr. Dept 340-4A 2701 Harbor Drive San Diego, CA 92112

1. In response to your letter of 13 December 1978 requesting an allocation of CDC CYBERNET resources for the application of FASTOP-3 to a forward swept BQM-34F wing, Control Data Corporation is setting up an account for you. At this time, your account limit is \$2000 worth of CYBERNET computer time. In return, AFFDL/FBR would like a description of your results, computer run times and any problems encountered. In addition, we would be happy to inspect your input listings for errors. Please contact Mr. Jerry Wesbecher of Control Data Corporation (513-294-1751) for information on setting up your account and logging on the CYBERNET NOS/BATCH system.

2. The following information should be helpful in your effort to use FASTOP-3 on the CYBERNET system:

a. The SOP and FOP absolute binaries are now on magnetic tape. The last four pages of the attachment presents examples of using this tape.

b. FASTOP-3 requires intermediate data storage (SOP-to-FOP, SOP-to-SOP, etc.). Reservation of tapes at CDC for this storage can be arranged through Mr. Wesbecher.

c. You should use the NOS/BATCN priority P2 whenever possible. This priority gives overnight turnaround but is cheaper than other priorities. (9 cents per unit for P2 -vs- 15 cents per unit for P4).

d. The first run through SOP for the NOS/BATCH sample problem, the composite skin intermediate complexity wing, was accomplished while expending 443 units of CYBERNET resources. Under priority P2, this would cost 443 x \$.09 = \$40. With one hundred finite elements, this sample problem is relatively small. One may initially estimate that each pass of your models through SOP or FOP will cost \$200. Thus, your \$2000 allotment may give ten FASTOP-3 runs at priority P2. Of course, after the first few runs you will be better able to estimate the extent of the funding available.

e. We are sending you a set of CYBERNET manuals in a separate package. Together with information from your local CYBERNET installation, these manuals should enable you to use NOS/BATCH without major problems.

DALE E. COOLEY O Technical Manager Aeroelastic Group Analysis & Optimization Branch

Atch: Sample FASTOP-3 JCL

MONTHLY TECHNICAL LETTER PROGRESS REPORT - SWEPT FORWARD WING FEASIBILITY STUDY NASA CONTRACT NASI-15624

This report describes the progress of the program for February 1979 and is the fourth monthly report as required by the above contract (Sales Order 15066, Part III, Item B).

<u>AERODYNAMICS:</u> Longitudinal control effectiveness for the BQM-34F with the selected forward swept wing $(-20^{\circ} \text{ sweep}, 25 \text{ sq.ft.}, A.R. 4)$ was evaluated to insure that the control sensitivity (g's/ δ e does not exceed levels of approximately 8 to 10 for a reduced static stability margin of 10%. The resulting values were -2.2 and -7.5 g's/ δ e for altitudes of 30,000 feet and sea level, respectively. Estimated dihedral effect for the selected wing was compared with test results for a NASA wind tunnel model with forward sweep. This comparison confirms that the wing contribution to dihedral effect is negative, or in terms of rolling moment with sideslip c_{ℓ} is positive.

<u>MASS PROPERTIES</u>: Recalculated ballast required for selected wing and wing location (leading edge intersection with fuselage centerline at F.S. 252.4). The total ballast required is 257.40 pounds of which 94.4 pounds must be jettisonable to provide a proper recovery configuration if alternate means of solving the problem are not used. A preliminary group weight statement was made on the selected wing/34F configuration resulting in a vehicle gross weight of 2071.82 pounds. The subsequent horizontal center of gravity travel resulted in a stable flight vehicle through body attitudes of 0° to $+38^{\circ}$.

STRESS ANALYSIS: Performed fuselage stress analysis that determined that the existing fuselage wing support frames are structurally adequate to support the wing providing that a relatively stiff wing root rib is utilized to distribute wing loads to the five fuselage support frames. Performed analysis of forward fuselage to determine configuration of exterior beef-up required to support added nose ballast. Prepared finite element model of wing and performed ASOP-3 debugging runs. <u>STRUCTURAL DYNAMICS</u>: Performed fuselage loads analysis for the critical bending condition of main parachute deployment and added ballast of 257.4 pounds at F.S. 118. Performed box beam analysis of wing leading edge torque box to establish wing trial shear web location which is 40% wing chord to achieve a center of twist at the 31% chord. Established structural arrangement of wing for a first trial optimization process using ASOP-3 computer program. Determined wing loads for the high angle of attack condition at $N_z = 6.0$. Chordwise distribution was taken from theoretical supercritical wing data and spanwise distribution assumed elliptical. Also determined wing loads for the 2.0 g maneuver condition using a rectangular chordwise distribution.

DESIGN: Completed design layout of wing in selected fuselage location. Proposed ballast beef-up layout completed using four steel external straps. Design study underway to provide a parachute riser restraint during recovery to eliminate the need for jettisonable ballast.

Conducted program review with NASA representative Hal Murrow. Work to be performed in the next reporting period (March 1979):

- Continue structural arrangement of wing using ASOP-3 and FASTOP-3 computer programs.
- 2) Continue fuselage ballast beef-up stress analysis.
- Continue design study of riser restraint configuration to remove jettisonable ballast.
- Coordinate with NASA Edwards on configuration of DAST drone equipment for possible ballast installation.

B-14

Dated 9 April 1970

<u>Monthly Technical Letter Progress Report - Swept Forward Wing Feasibility</u> Study - NASA Contract NASI-15624

This report describes the progress of the program for March 1979 and is the fifth monthly report as required by the above contract (Sales Order 15066, Part III, Item B).

AERODYNAMICS:

Ú)

In the previous month's (February) progress report, it was reported that the forward swept wing's contribution to C_{l} is positive, or opposite to that of normally swept back wings. This effect^B was qualitatively evaluated utilizing the basic BQM-34F six degree of freedom simulation program. At all flight conditions evaluated, the differential elevon excursion required to execute turns and turn reversals was less for the forward swept wing than for the basic BQM-34F, indicating that the positive increment in C_{l} may not have an adverse effect on vehicle operation in the research configuration. Static elasticized stability derivatives were evaluated for BQM-34F empennage contributions for a range of altitudes and Mach number. These derivatives can be added to the wing elastic derivatives, if significant, to obtain estimates of the stability characteristics of the total configuration.

MASS PROPERTIES:

No further work was performed during this period pending selection of wing structural and material configuration.

STRESS ANALYSIS:

Established three candidate wing designs for evaluation using ASOP-3 computer program. These are an all aluminum (baseline), all graphite and graphite forward section/Kevlar trailing section. Material thickness, ply orientation and structural weight are being evaluated at this time. Submitted contractor prepared FASTOP-3 structural optimization input for review by AFFDL in preparation for utilization of AFFDL supplied computer time for performing FASTOP-3 optimization computations. AFFDL approved of this contractors plan with the comment that our plan was the most complete and best they have seen so far in their FASTOP evaluation program. Computer runs (ASOP-3) have been made for wing twist restraint at five wing stations. Separate computer runs have been started which will evaluate wing stiffness for camber.

STRUCTURAL DYNAMICS:

Generated load set for -3g load factor as called for in the statement of work. Evaluated camber change for the all graphite wing optimized for strength and deflection constraints on ASOP-3 computer program. Results were that chordwise deflection increased 100%. Wing studies will continue on the three different material designs. A forth evaluation of incremental weight required to hold camber (chordwise deflection) within \pm 10% on the all graphite wing will be conducted. For a specific design, camber changes can be handled by jig shape to obtain a specific camber at the design maneuver/cruise point.

DESIGN:

111 111 111

月弦

Visited NASA/Edwards Air Force Base 23 March 1979 to acertain volume available in DAST BQM-34F for ballast installation and also DAST/B-52 launch plane interface. Ballast will have to be installed externally since the internal nose area of the drone is not available for any additional installations. The purpose of viewing the B-52 pylon/drone interface was to ascertain whether the installation of a riser restraint would be possible in order to eliminate the need for jettisonable ballast. We will proceed with a proposed riser restraint design since there appears to be an adequate amount of room at the interface. Photographs along with weight and balance sheets were obtained which will be beneficial in proceeding with the swept forward wing/BQM-34F study.

Work to be performed in the Next Reporting Period (April 1979):

- Complete ASOP-3 Aeroelastic tailoring analysis for the three candidate wings.
- 2. Update flight and mission performance estimates.
- 3. Submit chosen wing/material configuration to AFFDL for FASTOP-3 evaluation.

- 4. Start preparation of final drawings.
- 5. Start summary of results for final technical report.

APPENDIX C FINAL FASTOP-3 STRUCTURAL ANALYSIS

APPENDIX D FASTOP-3 FLUTTER ANALYSIS

APPENDIX E FUSELAGE EQUIPMENT COMPARTMENT AREA

MORIC. = - 112 560 IN.LB. (ULT)
MNEW = -239643 × 1.25 = -299554 IN.LB. (ULT)
STRESS = -5017 PSI (ULT) ELEMENT 47
M.S. = .45 IORIC = 135.783 INY
FREQ =
$$\frac{135.783 \times 299554}{1.35 \times 112560}$$

FREQ = 267.7 INY
AI = 267.7 - 135.783
AI = 131.9 INY
AU = $\frac{6.108}{7.252}$
131.9 = $7.252^{2} \times 6.108$ AL + 6.108^{2} AL
AL = 1.616 IN AU = 1.36 IN²
AL = 1.616 IN AU = 1.36 IN²
AL PER SIDE = .60 IN² ALUMINUM
.269 IN² STEEL
AU PER SIDE = .68 IN² ALUMINUM
.269 IN² STEEL

D

E-4

MORIG = -185320 IN.LB. (ULT) IORIG =144.72 IN4 MNEW = -345663×1.25 = -432079 IN.LB (ULT)
CRITICAL STRESS = -4964 PSI (ULT) ELEM. 54 M.S. = .49
$I_{REQ} = \frac{144722 \times 432079}{1.4 \times 185320} = 241 \text{ in } 4$
AT = 241 - 144.72 = 96.3 144
$A_{U} = \frac{3,87}{7.11} A_{L}$
96.3= 7,112× 3.37 AL + 3,87 AL
AL = 2.26 N2 AU = 1.23 IN2
STRAPS PER SIDE!
LOWER: 1.16 IN ² ALUMINUM .386 IN ² STEEL
UPPER : .61 IN2 ALUMINUM .20 IN2 STEEL

E-5

MORIC = -308770 IN.LB. (UT)
MNEW = 504850x1.25 = 631063 IN.LB (UT)
STRESS = - |SII4 PSI (UT) ELEMENT 52
M.S. = .19 IORIG = 124.8 IN4
IREQ =
$$\frac{124.8 \times C31063}{1.1 \times 308770}$$
 = 231.8 IN4
AT = 231.8 - 124.8 = 107.07 IN4
AU = $\frac{7.99}{5.36}$ AL
 $AU = \frac{7.99}{5.36}$ AL
 $AU = \frac{7.99}{5.36}$ AL
 $AU = 1.99$ AL
 $AU = 1.37$
AL PER SIDE = .483 IN² ALUMINUM
 $- 16$ IN² STEEL
AU PER SIDE = .659 IN² ALUMINUM
 -219 IN² STEEL

()

þ

$$M_{ORIG} = -358 570 \text{ IN. LB. (ULT)}$$

$$M_{NEW} = -358570 \text{ IN. LB. (ULT)}$$

$$M_{NEW} = -565607 \times 1.25 \pm 707009 \text{ IN. LB. (ULT)}$$

$$STRESS = -16554 \text{ PSI (UT)} \text{ ELEMENT SI}$$

$$M.S. = 0.19 \text{ Iorig = 170.5 IN^4}$$

$$I_{REG} = \frac{170.5}{1.1} \times \frac{707009}{358970} = 305.2 \text{ IN^4}$$

$$AI = 305.2 - 170.5 = 134.7 \text{ IN^4}$$

$$AU = \frac{8.05}{6.19} \text{ AL}$$

$$AU = \frac{8.05}{6.19} \times 6.19^2 \text{ AL} + 8.05^2 \text{ AL}$$

$$AL = 1:175 \text{ IN^2} \text{ A}_{U} = 1.53$$

$$AL \text{ PER SIDE = .587 IN^2 \text{ ALUMINUM}}$$

$$.196 \text{ IN^2 STEEL}$$

$$AU \text{ PER SIDE = .76 \text{ IN^2 ALUMINUM}}$$

$$.25 \text{ IA^2 STEEL}$$

()

E-7

****					PAGE 1
****************	***************************************	**********	***************	******	******
FFFFFFFFFFFFF					
FFEEEEEFFEE				• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
			• .	• • • •	•
	· · · · · · · · · · · · · · · · · · ·			• **** FASTO	D #### •
			·	 FLUTTER AND ! 	STRENGTH .
FFF				• OPTIMIZATION	PROGRAM .
***				•	. •
FFF	A				
FFF	ΑΑΑ		-	•	•
FFF	ΑΑΑΑΑ		. · · ·	AIR FOR	CE .
FFFFFFFF	ΑΑΑΑΑ			FLIGHT DYNAMICS	LABORATORY .
FFFFFFFF	AAA AAA			•	
FFF	ΑΑΑ ΑΑΑ		-	MAY 19	78
FFF	ΑΑΑ ΑΑΑ	SSSSSS			· · · · ·
FFF	AAA AAA	SSSSSSSS			
FFF	ΑΑΑ ΑΑΑ	5555 555S			
FFF	ΑΑΑΑΑΑΑΑ	SSSS SSSS	1		
FFF	ΑΑΑΑΑΑΑΑ	555 555			
FFF		SSS SSS			
FFFF			*****		
FFFF		SSS 5	TTTTTTTTTTTT		
	ΑΑΑ ΔΔΔ	5555	TTT TTT TTT		
	ΑΑΑ ΔΔΔ	22222222222	TTT		•
		2222222222	TTT		
		500000000000000000000000000000000000000			
		3355			
		353		0000000	
	ала яда	5 555		000000000	1 1
		55 555	1.1.1	0000 0000	
		555 555	III	000 000	
		SSSS	TTT	000 000	
		SSSS 55SS	TTT	000 000	
		SSSSSSSS	TTT	000 000	PPPPPPPPP
		SSSSSS	TTT	000 000	PPPPPPPPPP
			TTT	000 000	P666 6666
			TTT	000 000	PPP PP
	-		TTT	000 000	PPP PDI
		•	TTT	000 000	
366666666666666666666666666666666666666	666666666666666666666666666666666666666	000000000000000000000000000000000000000	GGGG TTT	200 000	DPD PDI
666666666666666666666666666666666666666	000000000000000000000000000000000000000	000000000000000000000000000000000000000	TTT	000 000	DPD PPD
	9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	000000000000000000000000000000000000000		000 000	000 000
	0,000,000,000,000	888888888888888888888888888888888888888		000 000	
	0000000000	22222			
				000 000	
GRUMMAN		2000 20			200
	• 000000000000000000000000000000000000			000000000	999
				000000	PPP
• AERUSPALE	v. 666666666				PPP
• CORPORATIO					PPP
• CORPORATIO	• 66666666				
• CORPORATIO	• 66666666 • • • 6666666				PPP
. CORPORATIO	••• 66666666 ••• 6666666 6666			. а	PPP PPP
CORPORATIO	• 66666666 ••• 6666666 6666 66				ррр Ррр Рррр

ί,

PAGE

1

FROM FASTOP. INITIAL TIME ELAPSED TIME IS INCREMENTAL TIME IS 0 MINUTES, 0 MINUTES,

2.56 SECONDS 0.00 SECONDS

2

)

)

)

Ż

)

)

-)

********		****				PAGE 3
				************	**********	*******************************
	SSSSSSS					
	22222222222				•	•••••••••••
	555555333	-			•	
	5555 555	5			•	**** FASTOP ****
	SSSS SS	SS		÷		FUTTER AND STRENGTH
	SSS 5	55			•	
	222	c .			٠	UPIIMIZATION PROGRAM
	333 3	3			•	
	555 5					**** 502 ****
	SSS SSS	-				STRENGTH OPTIMIZATION PROCRAM
	5555				•	STRENGTH OFFICIERATION PROGRAM
	6666666666				•	
	33333355333				•	
	555555555	5				
	SS	SS				ATO ENORE
	5	S S			•	MIR FURGE
`	5	55			•	FLIGHT DYNAMICS LABORATORY
	5 5	55			•	
	SS S	SS				MAY 1978
	SSS S	SS		000000	•	101 4210
	5555	55		0000000	•	
	0000 000		U	0000000	•	* * * * * * * * * * * * * * * * * * * *
	5555 555	5	00	00 0000		
1 · · ·	SSSSSSSSS		000	000		and the second
	SSSSSS		000	000		
			000	000		
			000	000		
			000	000		· · · · · · · · · · · · · · · · · · ·
			000	000		
			000	000		
			000	000		
			000	000		
			000	000		
			000	000		
			000	000		
			000	000		•
•			000	000		and the second secon
			000	000		
			000	000		000000000
	· · · ·		500	000	•	
			000	000		PPPPPPPPPPPP
			00	00 0000		PPP PPPP
			. O	0000000		PDP PPD
			Ū.	000000		
			· .	500000		444 444
~~~~~~~						PPP PPP
0000000000	6000006666666	666666666666666666666666666666666666666	0000000000000000	666666666		PPP PPP
GGGGGGGGGGG	666666666666666666666666666666666666666	666666666666666666666666666666666666666	<b>00000000000000000</b>	GGG	•	
		222222222222222222222222222222222222222	666666666666			000 000
		666666666666666666666666666666666666666				PPP PPP
		0000000000060606	6666666			pppppppp
		666666666666666666666666666666666666666	GGG	-		ρρρρορ
•	•	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	G			Pop
. GRIU	MMAN	000000000000000000000000000000000000000	-		· · · · ·	
4000	CDACE					PPP
	SFALE .	000600066666				PPP
ALCO.	RATION .	GGGGGGGGGG				Ppp
- CORPO		66666666				Pop
CORPOR					× .	
CORPO	•	222222				000
CORPOR	••••	666666				- PP-
CORPOR	• • • • • • •	666666 6666	•			PPP
CORPOR	•	666666 6666 66				
CORPOR	• • • • • • • • •	666666 6666 66 6	· · · · · ·			РРР РРР РРРР

PROGRAM LISTING OF CARD DATA

NO.	123456789012345		.3	56 34567890123456789012345678	.7
1	50P 6 94C46	FA I INFEL			
2	NASA FORWARD SW	FOT DESEADORH	WING ON A ROM-	34E VEHICLE. SODIEA. SOL	
3	FEROFI ASTICALLY	TATIADER WIT	HINO UN R DUM-	20017Ec= 540074 7	
4		INTERVED WIT	ADVANCED CON	, 0511L3- 3-001A /	
5	0 2 3	0 5 -6			· · · ·
6	0 0 0	0 0 0 0	0 0 0		
7	0 0 0	0 0 0 0	0 0 0		
8	SAGO AUTOMATE	D STRUCTURAL	ANALYSIS MODUL	E	
9	SO NASA RESEA	RCH WING. SOP	TO FOP PASS	-	
10	1 0 0	0 0 0 0	8 9 0	KLUES(I) • I=01•10	
11	0 0 0 1	4 15 -16			
12	SOPMEMAS			•	
13	1 0.0	0.0	4		
14	0 0 0	i i	•	ITENS, ICOMP, ISHFAR	· · · · · · · · · · · · · · · · · · ·
15	SA01 LABEL(1),G	EOMETRY, BOUNC	OND, GEOMETRY	COORD. AND BOUND. COND.	
16	1247.701786	60.000000	56.721653	111	0000010
17	2			•	00000020
18	3244.273786	60.000000	56.992597	111	0000030
19	4244.273786	60.000000	56.676166	111	00000040
20	5240.845786	60.000000	57.201573	111	0000050
21	6240.845786	60.000000	56.523225	111	00000050
22	7237.417786	60.000000	57.304413	111	00000070
23	8237.417786	60.000000	56.455324	111	0000080
24	9233.989786	60.000000	57.266178	111	0000090
25	10233.989786	60.000000	56.476419	111	00000100
26	11231-418786	60.000000	57.063794	.111	00000110
21	12231.418786	60.000000	56.581896	111	00000120
28	13230+561786	60.000000	56.750000	111	00000130
29					00000140
30	15251.063304	· 55.000000	56.718111	(111) $(111)$ $(111)$	00000150
32	10	-E	57.003010		00000150
32	17247.000970	55.000000	57.022910	111	00000170
33	10247+0000770	55+000000	57 257009		00000180
35	20243.950637	55.000000	56.404000		00000190
36	21240.004304	55.000000	57 273600		00000200
37	22240-004304	55.000000	56.418504	111	00000210
38	23236,237970	55.000000	57.220675	111	0000220
39	24236,237970	55.000000	56.442235	111	00000230
40	25233-345720	55.000000	57.103003	111	00000240
41	26233.345720	55.000000	56-560891	313	00000250
42	27232.381637	55.000000	56.750000	111	00000230
43	28			•••	00000290
44	29255.624822	50.000000	56.714569	111	00000290
45	30				00000300
46	31251.340155	50.000000	57.053223	111	00000310
				• • •	00000000

12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

PAGE

)

)

CARD NO.	1234567890123456	2	.34. 39012345678901	2345678901234567890123456789	78 01234567890
47	32251.340155	50.000000	56.657715	111	00000320
- 48	33247.055488	50.000000	57.314422	6 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00000330
49	34247.055488	50.000000	56.466553	111	00000340
50	35242.770822	50.000000	57.442962	111	00000350
-51	36242.770822	50.000000	56.381684	111	00000350
52	37239-486155	50.000000	57.395172	111	00000370
53	38238.486155	50.000000	56.408050	111	00000390
54	39235,272655	50.000000	57.142212	111	00000330
55	40235-272655	50.000000	56.539886	111	00000300
56	41234,201488	50.000000	56.750000	111	00000400
57	42		300130000		00000410
58	43259.586339	45.00000	56.711027	111	00000420
59	432378383337	428000000	504711027	***	00000430
60	45254 873339	45.00000	57 083535	333	00000440
61	46254 873339	45.000000	56 648489	111	00000450
62	47250 160339	45.000000	57 370947	111	00000450
62	47250-160339	45.000000	56 (38317	114	00000470
64	40200100339	45.000000	57.512237	111	00000490
65	50245,447339	45.000000	56.344863	111	00000420
66	51240.734339	45,000000	57.459669	111	00000510
67	52240.734339	45.000000	56.373866	111	00000520
. 68	53237,199589	45.000000	57,181421	111	00000520
69	54237,199589	45.000000	56.518881	111	00000540
70	55236-021339	45.000000	56.750000	111	00000550
71	56	430000000	501150000	111	00000550
72	57263-547857	40.00000	56.707485	7 7 7 7	00000500
73	58	40000000	500101405	***	00000580
74	59258-406524	40.000000	57-113848	113 · · · · · · · · · · · · · · · · · ·	00000590
75	60258-406524	40.000000	56.639263	111	00000500
76	61253,265191	40.000000	57.427272	111	00000610
77	62253,265191	40.0000000	56.409881	111	00000020
78	63248,123857	40.000000	57.581512	111	000000020
79	64248 123857	40.000000	56.308043	111	00000640
80	65242.982524	40.000000	57.524166	111	00000650
81	66242.982524	40.000000	56.339682	11.1	00000660
82	67239,126524	40.000000	57.220630	111	00000670
83	68239,126524	40.000000	56.497877	111	00000680
84	69237.841191	40.000000	56.750000	111	00000690
85	70	40000000		•••	00000700
86	71267.509375	35.000000	56.703943	111	00000710
87	72		300100713	***	00000720
88	73261.939708	35.000000	57,144161	111	00000730
89	74261.939708	35.000000	56.630038	111	00000740
90	75256.370042	35,000000	57.483696	111	00000750
91	76256.370042	35.000000	56.381545	111	00000750
92	77250 800375	35.000000	57.650786	111	00000770
93	78250-800375	35.000000	56,271223	111	00000780
94	79245.230708	35.000000	57.588663	111	00000790
				***	

NO.	1234567890123450	6789012345678	9012345678901	23456789012345678	9012345678901	234567890
95	80245-230708	35,000000	56-305498	111		0000800
96	81241.053458	35.000000	57,259839	111		00000810
97	82241.053458	35.000000	56.476872	111		00000820
98	83239.661042	35.000000	56.750000	111		00000830
99	84					00000840
100	85271.470893	30.000000	56.700401	111		00000850
101	86					00000850
102	87265.472893	30.000000	57.174474	111		00000870
103	88265.472893	30.000000	56.620812	111		00000890
104	89259.474893	30.000000	57.540121	111	,	00000890
105	90259.474893	30.000000	56.353209	111		00000900
106	91253.476893	30.000000	57.720061	111		00000910
107	92253.476893	30.000000	56.234403	111		00000920
108	93247.478893	30.000000	57.653160	. 111		00000930
109	94247.478893	30.000000	56.271313	111		00000940
110	95242+980393	30.000000	57.299048	111		00000950
111	96242.980393	30.000000	56.455867	111		00000950
112	97241.480893	30.000000	56.750000	111		00000970
113	98	_				00000950
114	99275+432411	22.000000	56.696859	111		00000990
115	100					00001000
110	101269.006077	25.000000	57,204787	111		00001010
117	102269.006077	25.000000	56.611586	111	1	02010000
110	103262.579744	25.000000	5/+590540	111		00001030
117	104202.077744	25.000000	50,3248/4	111	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	00001040
120	105250+153411	22.000000	5/ . /87335	111		00001050
121	100200+153411	25.000000	50+19/503		· · ·	00001000
122	101249+121011	25.000000	5/ 1/000	111		00001070
125	100249+121011	25.000000	57 328257			00001020
125	110264 907327	25.000000	56 434963	111		00001070
126	111243.300744	25.000000	56 750000	111		00001100
127	112	22.000000	30.130000			00001120
128	113279.393929	20.00000	56.693317	111		00001120
129	114	2.0.000000	50.070311	•••		00001100
130	115272.539262	20.000000	57.235100	111		00001150
131	116272.539262	20.000000	56.602361	111		00001150
132	117265+684595	20.000000	57.652970	111		00001170
133	118265-684595	20.000000	56.296538	111	•	00001190
134	119258-829929	20.000000	57.858610	111		00001190
135	120258-829929	20.000000	56.160763	111		00001200
136	121251.975262	20.000000	57.782155	111		00001210
137	122251.975262	20.000000	56.202945	111		00001220
138	123246.834262	20.000000	57.377466	111		00001230
139	124246+834262	20.000000	56.413857	. 111		00001240
140	125245 . 120595	20.000000	56.750000	111		00001250
141	126					00001250
142	127283,355446	15.000000	56.689775	111		00001270

PAGE

6

 $\bigcirc$ 

		2	2								-	0
MO.	1234567890123456	7090122456	78971	22/5/	•••• ⁴ ••• 678001332	[.]	112	••••	***0. 7000	*******	••/• Rool	B
	1234307070123430	1910153420	0 7 0 1	2345	21030152	-301030	12	3430	1070	1234301	3901	234307070
143	128											00001280
144	129276.072446	15.000000	5	7.26	5412			111				00001290
145	130276.072446	15.000000	5	6.59	3135		•					00001200
146	131268.789446	15.000000	5	7.70	9395			111				00001310
147	132268.789446	15.000000	5	6. 261	8202			111				0.0001310
148	133261-506446	15.000000	5	7 02	7005			111				00001320
149	134261-506446	15.000000	5	6 12	2043			111				00001330
150	135254 203446	15.000000		7 0/1	5776			111				00001340
151	136254-223440	15 000000	5	6 16	8761	•		111				00001350
152	137249.741196	15.000000	5	7 / 10	5/01			111				00001350
152	138248 741104	12+000000		6 303		· ·		111				00001370
155	130246 040444	15.000000	2	6 764				111				00001350
107	139240.940440	12.000000	2	0.150	0000			111				00001390
155	141284 000010		~									00001400
150	141200.920813	10.500000	5	0.080	558 <i>1</i>			111				00001410
157	142	0			• - · ·							00001420
150	143279.782290	9.750000	5	1.29	/241			111				00001430
159	144279.782290	9.750000	5	6.58	3448			111				00001440
160	145274.074668	9.000000	5	7.698	3091			1 1				00001450
161	146214.074668	9.000000	5	6.290	533			2 2				00001460
162	147272.515268	9.000000	5	7.77	/105			151				00001470
163	148272,515268	9.000000	5	6.234	4199			151				00001490
164	149267.180000	9.000000	5	7.968	8294			11				00001490
165	150267.180000	9.000000	5	6.104	4451			15				00001500
166	151264.718268	9.000000	5	8.01	1015			151				00001510
167	152264.718268	9.000000	5	6.079	9758			121				00001520
168	153258.900000	9.000000	5	7.98	3204			11				00001530
169	154258.900000	9.000000	5	6.09	5890			12				00001540
170	155256.921268	9.000000	5	7.924	4048			151				00001550
171	156256.921268	9.000000	5	6.12	7740			121				00001550
172	157251.073518	9.000000	5	7.46	3726	•		121				00001570
173	158251.073518	9.000000	5	6.36	7647			121				00001580
174	159249.124268	9.000000	5	6.75	0000			111				00001590
175	160		-									00001600
176	161 242.28	9.0		58.1	0			1 1				0,001000
177	162 242 28	9.0		56.1	0			1.2				
178	163 249 124268	9 0		58 0	n i			1 1				
179	164 249 124268	9 0		56.1	0			• •				
180	165 251 073518	9 9	•	50.	0			1 1				
191	166 251 073519	9 9 U		50.1				1 1				
192	100 501-010010	<b>7</b> 0		20.				1 2				
102	CADE LARELIEL CA	101-0143		<b></b>								
104	1 3 1 1E	2C	۰ ^۲	UAD 1		42		•	-	0.00		
104		<b>C</b> D	13	2	22.013		1	٦	3	8+85		
107	1 <u>2</u> <u>4</u> U•/1		• •	-	· · · ·		~	•	-			
107	33 1 21.	3n	3 3	2	J1+95		3	3	3	5+82		
101	3 2 4-0.14	0.		-			~		-	• • • •		
190	5 3 1 28.	30	53	5	43.35		5	3	3	8+85		
183	5 2 4-14.74	_	·				_					
190	73 1 36.	55	7 3	2	54.825		7	3	3	8+82		

PAGE

CARD	******			••••				6	.7	8
NO •	1234567	890123456789012	3456789017	2345	56789012345	6789012345	6789	012345678	90123456789	0
191	7 Z	4-23.39								
192	93	1 30.41	93	2	45.615	93	3	6.61		
193	9 Z	4-20.94								
194	11 3	1 9.89	11 3	2	14.835	11 3	3	2.20		
195	11 Z	4-6.70								
196	15 3	1 25.36	15 3	2	38.04	15 3	3	15.39		
197	15 Z	4 2.66		-			-			
198	17 3	1 51.83	17 3	2	77.745	17 3	3	24.03		
199	17 Z	4-9.70								
200	19 3	1 66.65	19 3	2	99.975	19 3	3	23.54		
201	19 Z	4-27.47					-			
202	21 3	1 92.53	51.3	2	138.795	21 3	3	23.59		
203	21 Z	4-56.65		_			-			
204	23 3	1 88.82	23 3	2	133.23	23 3	3	19.87		
205	23 Z	4-60.02		. –				•		
206	25 3	1 47.64	25 3	2	71.46	25 3	3	10.09		
207	25 Z	4-33-34								
208	27 3	1 9,35	27 3	2	14.025	27 3	3	2.08	•	
209	27 Z	4-6.33		.–				2000		
210	29 3	1 32.00	29 3	2	48.00	29 3	3	19.46		
211	29 Z	4 3.42					7			
212	31 3	1 69.65	31 3	2	104.475	31 3	3	33.60		
213	31 Z	4-10.37								
214	33 3	1 94.50	33 3	2	141.75	33 3	3	34.13	•	
215	33 Z	4-37.41					•			
216	35 3	1 121.49	35 3	2	182.235	35 3	3	33.08		
217	35 Z	4-70.08					•	00.00		
218	37 3	1 130.90	37 3	2	196.35	37 3	3	28.74		
<b>S</b> 18	37 Z	4-89.57					-			
220	39 3	1 75.51	39 3	2	113.265	39 3	3	15.48		
221	39 Z	4-53.90					•			
222	41 3	1 17.44	41 3	2	26.16	41 3	3	3.54		
223	41 Z	4-12.53	· · · ·	-						
224	43 3	1 37.20	43 3	2	55.80	43 3	3	22.36		
225	43 Z	4 3,44		. –			-	22030		
226	45 3	1 85,63	45 3	2	128.445	45.3	3	40-41		
227	45 Z	4-14.58		-						
228	47 3	1 109.02	47 3	2	163.53	47 3	٦	39.98		
229	47 Z	4-41.92		-	• • • • • • •					
230	49 3	1 147.27	49 3	2	220.905	49 3	3	40.18		
231	49 Z	4-84.80		-				10010		
232	51 3	1 153.37	51 3	2	230.055	51 3	3	34.50	•	
233	51 Z	4-103.05		_			-		e a	
234	53 3	1 92.70	53 3	2	139.05	53 3	3	18.97		
235	53 Z	4-66.24		-		•	-			
236	55 3	1 ,23.48	55 3	2	35.22	55 3	3	4.46		
237	55 Z	4-17.47		-			-			
238	57 3	1 39.66	57 3	5	59.49	57 3	3	24.59		

CARD NO+	1234567	.1	345678901	2345	67890123456	57890123456	5789	6 012345678	.7
239	57 Z	4 5.21							
240	59 3	1 99.76	59 3	2	149.64	59 3	3	45.02	
241	59 Z	4-21.19		-	•		Ĩ.		
242	61 3	1 118,80	61 3	2	178.2	61 3	3	45.54	*
243	61 Z	4-41.66	-	_	- · · • - ·				
244	63 3	1 164.29	63 3	2	246.436	63 3	3.	44.91	
245	63 Z	4-94.40	_				-		
246	65 3	1 175.74	65 3	2	263.61	65 3	3	39.02	
247	65 Z	4-119.37		-			-		e de la composition d
248	67 3	1 104.47	673	2	156.705	67 3	.3	21.57	
249	67 Z	4-74.24							1
250	69 3	1 25.71	69 3	2	38,565	69 3	3	5.15	1
251	69 Z	4-18.60						• •	
252	71 3	1 39.97	71 3	2	59.955	71 3	3	26.25	
253	71 Z	4 8.24		-			-		
254	73 3	1 87.51	73 3	2	131.265	73 3	3	48.86	•
255	73 Z	4 .49		. –			Ē		
256	75 3	1 125.08	.75 3	2	187.62	75 3	3	48.95	
257	75 Z	4-41.83							
258	77 3	1 180.74	77 3	2	271.11	77 3	3	49.13	
259	77 Z	4-104.44							
260	79 3	1 204.48	79 3	2	306+72	79 3	3	42.42	
261	79 Z	4-144.95							
262	81 3	1 123.06	81 3	5	184.58	81 3	3	23.62	
263	81 Z	4-91.13							
264	83 3	1 28.52	83 3	2	42.78	83 3	3	5+69	
265	83 Z	4-20.68		1				1	
266	85 3	1 46.35	85 3	`2	69.525	85 3	- 3	27.50	
267	85 Z	4 3.56							
268	87 3	1 94.06	87 3	2	141.09	87 3	3	51+75	
269	87 Z	4-1.02						· ·	
270	89 3	1 123.00	89 3	2	184.5	89 3	3	51+83	
271	89 Z	4-33.60							
272	91 3	1 174.71	91 3	.2	262.065	91 3	3	51+99	
273	91 Z	4-91.79							
274	93 3	1 219.56	93 3	2	329.34	93 3	3	4499	
275	93 Z	4-156.77							
276	95 3	1 141.27	95 3	2	211.905	95 3	3	25.17	
277	95 Z	4-108.57							
278	97 3	1 37.08	973	2	55.62	97 3	3	6+10	
279	97 Z	4-29.53							
280	99 <b>3</b>	1 45.83	99 3	5	68.745	99 3	3	28+34	
281	99 Z	4 5.87	÷						
282	101 3	1 110.68 🖉 🖄	101 3	2	166.02	101 3	3	53+47	
283	101 Z	4-16.34							
284	103 3	1 139.75	103 3	5	209.625	103 3	3	54.33	
285	103 Z	4-47.46							
286	105 3	1 191.72	105 3	2	287.58	105 3	3	54+08	

••••••••1•••••6•••••2•••••3•••••4•••••5•••••6•••••6•••••7••••8 1234567890123456789012345678901234567890123456789012345678901234567890

CARD NO.	1234567	1		2345	6789012345	⁵ 67890123450	 5789	6 0123456789	7	8 57890
287	105 Z	4-106.79								
288	107 3	1 207.57	107 3	2	311+355	107 3	3	46+89		
289	107 Z	4-139.36								
290	109 3	1 138.31	109 3	2	207.465	109 3	З	26+32		
291	109 Z	4-102.88				,				
292	111 3	1 36.99	111 3	2	55.485	111 3	3	6+41		
293	111 Z	4-28.79						-		
294	113 3	1 39.27	113 3	2	58.905	113 3	3	28.96		
295	113 Z	4 14.54								•
296	115 3	1 108.94	115 3	2	163.41	115 3	3	55+00		
297	115 Z	4-11.25								
298	117 3	1 143.52	117 3	2	215.28	117 3	3	55.42		
299	117 Z	4-49.51								
300	119 3	1 215,68	119 3	2	323,52	119 3	3	55.95		
301	119 Z	4-130.08								
302	121 3	1 222,63	121 3	2	333,945	121 3	3	48.36		
303	121 Z	4-153.39								
304	123 3	1 129,88	123 3	2	194.82	123 3	3	27.01		
305	123 Z	4-91.93	•							
306	125 3	1 34,82	125 3	2	52.23	125 3	3	5.63		
307	125 Z	4-25.89								
308	127 3	1 25,73	127 3	2	38,595	127 3	3	27.64		
309	127 Z	4 27.17								
310	129 3	1 93,37	129 3	2	140,055	129 3	3	56.04		
311	129 Z	4 8,49								
312	131 3	1 131.44	131 3	2	197.16	131 3	3	60.09		
313	131 Z	4-26.33								
314	133 3	1 233.21	133 3	2	349.815	133 3	3	61.31		
315	133 Z	4-139.00								
310	135 3	1 273,28	135 3	2	409.92	135 3	3	53.21		
317	135 2	4-200.81								
318	137 3	1 167,95	137 3	2	251.925	137 3	3	31.45		
319	137 2	4-125,98								
320	139 3	1 41.70	139 3	2	62,55	139 3	3	8.0		
321	139 2	4-30,87		• .						
322	143 3	1 20,90	143 3	2	31.35	143 3	3	22.78		
323	143 2	4 22.15		_						
324	147 3	1 41.12	147 3	2	61,68	147 3	3	19.93		
325	147 2	4-5,93								
320	151 3	1 41,12	151 3	· 5	61,68	151 3	3	19.93		
321	151 2	4-5,93								
320	155 3	1 105,09	155 3	2	157.635	155 3	3	19.94		
327	100 2	4-18,30								
330	15/ 3	1 80,32	157 3	2	129.48	157 3	3	14+95		
331	157 2	4-01.22		_						
332	157 3	1 29.09	159 3	2	44.535	159 3	3	4.98		
333	124 2	4-63,44								
334										

.

12345678901234567890123456789012345678901234567890123456789012345678901234567890
CARD		1	,7
NU.	1234507890	012345678301234567830123456783012345678301234567830123456783012345678	101234567890
335	SA04 LABEL	L(4) MATERIAL	
336	4	11CORE-FWD SPANWIS.00116 2.5 8700036	
337	4	12 375• 375• 300•	1
338	5	11CORE-FWD STRMWIS .00116 5.0 5.0 3300036	
339	5	12 375• 375• 150•	
340	6	11CORE-AFT SPANWIS .00116 2.5 8700036	
341	6	12 375• 375• 300•	
342	7	11CORE-AFT STRMWIS .00116 5.0 5.0 3300036	
343	7	12 375• 375• 150•	
344	8	11SPAR WEB GR/EP .057 .01 2.85+06.778	
345	8	12 1.77+05 1.77+0550000.	
346	9	11PSEUDO RIB RODS 1.3 .1 .1 1.0+6 .360	) .
347	9	12 3000. 3000. 185.	
348	11	112024-T81 RIB .1 .08 1.05+07.33	
349	11	12 65000. 57000. 39000.	
350	12	115.5 CORE LE-SPAN .00159 2.5 11424.0 .36	
351	12	12 575.0 575.0 425.0	
352	13	115.5 CORE LE-STRM .00159 5.0 5.0 46.24+3 .36	
353	13	12 575.0 575.0 225.0	
354	17	61 THORNEL 300 1 1 45.0	1
355	17	62 0.005 0.057	
356	17	63 20,166 1,666 0,866 0,294	
357	17	64 212.0E3 185.0E3	
358	17	65 THORNEL 300 1 1 0.0	
359	17	66 0.005 0.057	
360	· 17	67 20,1E6 1,6E6 0,8E6 0,294	
361	17	68 212.0E3 185.0E3	
362	- 17	71 THORNEL 300 1 1 +45.0	1
363	17.	72 0.005 0.057	
364	17	73 20,1E6 1,6E6 0,8E6 0,294	
365	17	74 212.0E3 185.0E3	
366	18	61 GR/EP AFT SKIN 1 1 45.0	1
367	18 -	62 0.005 0.057	
368	18	63 20,1E6 1,6E6 0,8E6 0,294	
369	18	64 212.0E3 185.0E3	
370	18	65 GR/EP AFT SKIN 1 1 0.0	
371	18	66 0.005 0.057	
372	18	67 20,1E6 1,6E6 0,8E6 0,294	
373	18	68 212.0E3 185.0E3	_
374	18	71 GR/EP AFT SKIN 1 1 -45.0	1
375	18	72 0.005 0.057	
376	18	73 20.1E6 1.6E6 0.8E6 0.294	
377	18	74 212.0E3 185.0E3	
378	_		
379	SA05 LABEL	L (5) + MEMBPROP	
380	1 237.41	17786 60.0 57.304413 264.718268 9.0	58.011015
381			
382	4301 4 8	11 4 3 1 .01	RIB 1

. .....

.

CARD NO.	123456789012	23456	2 7890	1234	5678	.3 90123	45678901	2345678	56 90123456789012345	
383	6302 6 8	- 11	4	3	6	5	.01		•	. ,
384	6303 <b>6</b> 8	11	6	5	8	7	.01			
385	6304 6 8	11	. 8	7	10	9	.01			4
386	6305 6 8	11	10	9	12	11	.01			5
387	4306 4 8	11	12	11	13		.01			· · ·
388	4001 4 7	11	4	3	1		2,5			CRIB I
389	4001	52					2.5	2.5		CRTB 2
390	6002 6 7 ·	11	- 4	3	6	5	2.5			CRIB 3
391	6002	52					2.5	2.5		CRIB 4
392	6003 6 7	11	6	5	8	7	2.5			CRIB 5
393	6003	52					2.5	2.5		CRIB 5
394	6004 6 5	11	8	- 7	10	9	2.5			CRIB 7
395	6004	52					2.5	2.5		CRIB B
396	6005 6 5	11	10	9	12	11	2.5			CRIB 9
397	6005	52					2.5	2+5		CRIB 10
398	4006 4 5	11	12	11	13		2.5			CRIB 11
399	4006	52					2.5	2.5		CRIB 12
400	1001 1 9	11	3	-4			.1			ROD 7
401	1002 1 9	11	5	6			.1			8
402	1003 1 9	11	7	8			.1			9
403	1004 1 9	11	. 9	10			•1			10
404	1005 1 9	11	11	12			•1	•		11
403	0011 0 0	11	4	18	3	17	3.0			SP 12
400	6011	52			_		3+0	3.0	•	SP1012
407	6012 0 0	11	6	20	5	19	3.1			SP 13
400	6012 6 4	52			-	~ `	3.1	3,1		SP1013
410	6013 0 4	50	8	22	(	21	3,2			SP 14
411	6013	52		~ /	•		3.2	3.2		SP1014
412	6014 0 4	11	10	24	У.	23	3.3			SP 15
413	6015 6 4	52	15	26		25	3,3	3,3		SP1015
414	6015 0 4	11	12	20	11	25	1./			SP 16
415	9013 6 8	52	•	33	7	21	1./	1.7		SP1016
416	5001 518	11	2	22		21	.01	015		SP2016
417	5001 510	61	3	17	1	15	-012	•012		1UP 17
418	5001	71					2	2	45.0	1
419	5002 518	ii	5	10	3	17	015	د	-45.0	1
420	5002	61		1.2		1.	.013	,		1 18
421	5002	71		-			2		45.0	1
422	5003 518	ii	. 7	21	5	10	015		-45.0	1
423	5003	61		21	1	1 2	+012			19
424	5003	65					2		45.0	1
425	5003	71					2	• 5	U.U	
426	5004 517	ii	7	21	q	23	. 015	3	-43.0	1
427	5004	61	•	<b> .</b>	,		• • • • • •	2	1 E A	7 20
428	5004	71					2	2	43•V	i i
429	5005 517	11	9	23	11	25	.015		~+ <b>3</b> •V	1 1
430	5006 517	11	11	25	13	27	.015			1 22
		-								1 66

PAGE 12

)

)

Ż

)

431	5011 518	11	4	18	1	15	.015			1Low	23
432	5011	61		•	-	• •	2	ź	45.0	1	
433	5011	71					2	ž	-45.0	ī	
434	5012 518	11	6	20	4	18	.015	-		ī	24
435	5012	61				-	3	3	45.0	ī	-
436	5012	71					3	3	-45.0	ī	
437	5013 518	11	8	22	6	20	.015	-		-	25
438	5013	61			-		3	3	45.0	ĭ	•
439	5013	65					4	4	0.0	-	
440	5013	71					3	3	-45.0	1	
441	5014 517	11	8	22	10	24	.015				25
442	5014	61					2	2	45.0	1	
443	5014	71					2	2	-45.0	1	
444	5015 517	11	10	24	12	26	.015			1	27
445	5016 517	11	12	26	13	27	.015			1	23
446	4021 4 7	11	18	17	15		5.0			RIB	29
447	6022 6 7	11	18	17	20	19	5.0				30
448	6023 6 7	11	20	19	22	21	5.0				31
449	6024 6 5	11	22	21	24	23	5.0				32
450	6025 6 5	11	24	23	26	25	5.0				33
451	4026 4 5	11	26	25	27		5.0				34
452	1011 1 9	11	17	18			.1			ROD	35
453	1012 1 9	11	19	20			•1				35
454	1013 1 9	11	21	22			•1				37
455	1014 1 9	11	23	24			•1				38
450	1015 1 9	11	25	56	• -		•1			•	39
45/	6031 O D	11	18	32	17	31	3.3		•	SP	40
450	6031	52	30	~ /	10		3.3	3.3		SPIC	140
437	6032 0 0	11	20	34	19	33	3.4	~ /		SP	41
400	6032 6 4	22	22	36	21	25	3.4	3.4		SPIG	141
401	6033 0 4	11	<u>~</u>	50	21	32	3.5	2 5		50	42
402	6034 6 4	32	24	20	22	27	3.3	3.3		SPIU	146
463	6034 0 4	52	64	20	23	37	3.0	3 4		5010	43
465	6035 6 4	11	26	40	25	20	3.0	3.0		2010	43
465	6035 0 4	52	20	4V	23	37	1.0	3 9		57	**
467	8 3 5500	11	22	34	21	25	1.0.7	1 • 7		SPIC	144
469	5021 518	11	17	30	15	29	015			110	44
469	5021 510	61	••	31	*3			2	45 0	105	43
470	5021	71					2	2	=45.0	1	
471	5022 518	11	19	22	17	31	.015	6	-4300	1	45
472	5022	61	• -			31	3	3	45.0	i	
473	5022	71					3	3	-45.0	1	
474	5023 518	11	21	35	19	33	.015	3	7304	· <b>*</b>	47
475	5023	61		55	• *	2.5	3	3	45.0	1	
476	5023	65					4	4	0.0	•	
477	5023	71					3	3	-45.0	1	
							-	-			

CARD NO+	12345678901	23456	2 7890	1234	56789	3	45678901	2345678901	23456789012345678901	1234567890
479	5024	61					3	3	45 0	•
480	5024	65						2	43.0	•
481	5024	71					3	2	-45 0	<b>1</b>
482	5025 517	- 11	23	37	25	39	.015		-45.0	1 (3)
483	5026 517	ii	-25	20	27	4í	015			1 49
484	5031 518	ii	18	32	15	20	015	<i>.</i>		4 50
485	5031	61	-0	52	.,	2,	• • • • • • • • • • • • • • • • • • • •	2	45 0	ILOW 51
486	5031	71					2		45.0	1
487	5032 518	11	20	34	10	22	015	٤.	-45+0	1
488	5032	61	20	34	10	36	• 0 1 2	2	( = 0	1 52
489	5032	71					3	3	45.0	1
490	5033 518	11	22	76	20	34		3	-45.0	1
491	5033	- 61	<u> </u>	20	20	34	•012	•		.53
492	5033	65					· 3	3	45.0	1
493	5033	71					5	2	0.0	
494	5034 517	11	22	36	34		3	3	-45.0	1
405	5034 517	4.4		. 30	. 24	30	.012	_		54
495	5034	01					3	3	45.0	1
490	5034	20						3	0.0	
408	5034 6035 517	73	36		~		3	3	-45.0	1
490	5035 517	11	24	38	20	40	.015			1 55
500	5050 511 4041 4 7	11	20	. 40	21	41	.015			1 56
500	4041 4 7	11	32	31	29		5+0		<ul> <li>A second sec second second sec</li></ul>	RIB 57
201	0042 0 /	11	32	31	34	. 33	5.0			58
502	6043 6 7	11	- 34	33	36	35	5.0			59
503	0044 0 5	11	. 36	35	38	37	5.0			60
504	6043 0 5	. 11	38	37	40	. 39	5.0			61
505	4040 4 5	11	40	39	41		5.0			62
500	1021 1.9	- 11	32	31			.1			ROD 63
507	1022 1 9	11	34	33			•1			64
500	1023 1 9	11	36	35			.1			65
509	1024 1 9	11	38	37			•1			65
510	1025 1 9	11	40	39			+1			67
511	0051 0 0	11	35	46	31	45	3.7			SP 68
512	6051	52			· _		3.7	3.7		SP1068
213	6052 6 6	11	34	48	33	47	3+8			SP 69
514	6052	52			_		3.8	3.8	· · · · ·	SP1069
212	6053 6 4	11	36	50	35	49	3.95			SP 70
210	6053	52	-				3.95	3.95		SP1070
517	6054 6 4	11	38	52	37	51	4.1			SP 71
518	6054	52					4.1	4.1		SP1071
519	6055 6 4	11	40	54	39	53	5•1			SP 72
520	6055	52					2.1	2.1		SP1072
521	9053 6 8	11	36	50	35	49	.01			SP2072
522	5041 518	-11	31	45	29	43	.015			1UP 73
523	5041	61					2	2	45.0	1 · · · ·
524	5041	71					2	2	-45-0	ī
525	5042 518	11	33	47	31	45	.015			74
526	5042	61					3	3	45.0	1

.

12345678901234567890123456789012345678901234567890123456789012345678901234567890

PAGE 14

ು

PAGE 15

	1	-45.0	3	3					71	5042	27
75	-		-	.015	47	33	49	35	n	5043 518	28
• -	1	45.0	3	3			• -		61	5043	29
	-	.0	6	6					65	5043	30
	1	-45.0	3	. 3					71	5043	31
75				.015	51	37	49	35	ii	5044 517	32
	1	45.0	3	3					61	5044	33
		0.0	6	6					65	5044	34
	1	-45.0	3	3					71	5044	35
77	1			.015	53	39	51	37	11	5045 517	36
	1	45.0	3	3					61	5045	37
	1	-45.0	3	3					71	5045	38
79	1			.015	55	41	53	39	11	5046 517	39
79	110#			.015	43	29	46	32	11	5051 518	40
	1 .	45.0	2	2					61	5051	41
	1	-45.0	2	2					71	5051	42
80	1			.015	46	32	48	34	11	5052 518	43 .
	1	45+0	3	3					61	5052	44
	1	-45.0	3	3					71	5052	45
81				015	48	34	50	36	11	5053 518	46
	1	45.0	3	3					61	5053	47
		0.0	10	10					65	5053	48
	1	-45.0	3	· 3					71	5053	49
85				.015	52	38	50	36	11	5054 517	50
	1	45.0	3	3					61	5054	51
		0.0	6	6					65	5054	52
	1	-45.0	3	3					71	5054	53
83	1			.015	54	40	52	38	11	5055 517	54
	1	45.0	2	2					61	5055	55
	1	-45.0	2	2			-		71	5055	56
84	1.			.015	55	41	54	40	11	5056 517	57
85	KIR			5.0		43	45	46	11	4061 4 /	58
85				5.0	47	48	45	46	11	6062 6 /	59
87				5.0	49	50	47	48	· 11·	6063 6 7	60
85				5.0	51	52	49	50	11	6064 6 5	61
87				5.0	53	24	51	22	11	0005 0 5	62
90	0.00			5.0		22	53	54	11	4000 4 5	0.3
91	KUD			• •			45	40	11	1031 1 9	04 2 E
96				• !			41	48	11	1032 1 9	07 74
93				• 1			49	50	11	1033 1 9	47
94				• 1			51	26	11	1034 1 9	29
93	6				50	4 E	53	34	11	4071 6 6	60 4 0
70	5010		4.0	4.0	37	40	00	40	11	6071 0 0 4071	70
70	5710		7 a U	4.0	61	47	62	49	22	6071 6072 6 6	71
21	5010		4.15	4017	01	47	02	40	52	2072 0 0	72
30	0770			4 2	67	40	61	50	11	6072 6 4	73
20	57		4 3	40J	C D	77	04	JU	-11	4073	74

.

12345678901234567890123456789012345678901234567890123456789012345678901234567890

.

 $\cap$ 

	12345678901	2345678	.2	56789	3	3456789012	345678901234	56789012345678	.7
575	6074 6 4	11	52 66	51	65	4.45	010010201201	501070123+5010	50 00
576	6074	52	- 00	21	05	4.45	4 45		50 99
577	6075 6 4	11	54 49	53	67	2 2	4.43	· · ·	SP1099
578	6075 0 4	52	<b>J</b> 4 00	55	07	2.3	2 2	· · · ·	SP 100
579	9073 6 8	11	50 66	40	63	2.3	2.3		251100
580	5061 518	11	JU 04 45 50	47	53	.01			SPEIDO
500	2001 210	41	40 07	43	51	•012	2		10P 101
201	5001	71				2	2	45.0	1
502 .	5001	11	47 (1	45	50	~~ <u>~</u>	2	+45+U	1
594	5002 515	<u> </u>	41 01	40	37	+012	2		1 102
525	5002	71				2	3	45.0	1
505	5002	11					3	-45.0	1
500	5003 310	11	49 03	47	01	.012	-	. – .	103
201	5003	01				3	3	45.0	1
500	5003	71				8	8	•0	
507	5003 ·	/1		<i></i>	20		3	-45.0	1
590	5064 317	11 9	49 63	21	63	.015			104
241	5004	61				3	3	45.0	$\sim 1$ . The set
592	5064	05				9	9	0.0	_
593	5004 5065 517	/ 1		-	-	3	3	-45.0	1
505	2002 211		51 02	. 5.3	01	.015		· · · · · · · · · · · · · · · · · · ·	1 105
575	5005	01				6	5	45.0	1
590	5003 5066 513	11	-		~~	6.	. 6	-45.0	1
509	2000 211		53 67	55	69	.015	-		1 105
570	5000	01					2	45.0	1
277	5000	1					5	-45.0	1
600	5071 518	11 4	40 60	43	57	.015	_ + = ¹	_	1LOW 107
601	5071	01				- 2	*2	45.0	1
200	5071	11		·		2	2	-45.0	1
603	5072 515	11 4	48 62	46	60	•015			1 108
604 405	5012	01.				3	3 -	45.0	2 <b>1</b>
603	5072	1				3	3	-45.0	1
- 000.	5073 518	11 3	50 64	48	- 62	.015			109
607	5073	61				3	3	45.0	1
600	5073	65				15	- 15	0.0	
610	5073	n				3	3	-45.0	1. S. C. S.
610	5074 517	. 11. 3	50 64	52	66	.015	·		110
011	-5074	61				3	3	45.0	1
012	5074	65				- 10	10	0.0	
013	5074	1		_	· · ·	3	3	-45.0	1
014	5075 517	11 3	52 66	54	68	.015			1 111
010	5075	61				5	5	45.0	1
010	5075	n	<b>.</b> .			5	5 .	-45.0	1
011	5076 517	11 9	54 68	55	69	.015	•		1 112
010	5076	61				3	3	45.0	1
014	5076	71				· · 3	3	-45.0	-1
020	4081 4 7	11 (	50 59	57		5.0			RIB 113
150	6082 6 7	11 (	b0 59	62	61	5.0			114
022	6083 6 7	11 (	61 50	64	63	5.0			115

PAGE 16

 $\mathbf{i}$ 

)

623	6084 6 5	11 6	4 63	66	65 5.0			115
624	6085 6 5	11 6	6 65	68	67 5.0			117
625	4086 4 5	11 6	8 67	69	5.0			118
626	1041 1 9	11 6	0 59		1			ROD 119
627	1042 1 9	11 6	2 61		.1		1	120
628	1043 1 9	11 6	4 63		.1			121
629	1044 1 9	11 6	6 65		•1			122
630	1045 1 9	11 6	8 67		.1			123
631	6091 6 6	11 6	0 74	59	73 4.45			SP 124
632	6091	52			4.45	4.45		SP1124
633	6092 6 6	11 6	2 76	61	75 4,55			SP 125
634	6092	52			4,55	4,55		SP1125
635	6093 6 4	11 6	4 78	63	77 4,7			SP 126
636	6093	52			4.7	4.7		SP1126
637	6094 6 4	11 6	6 80	65	79 4.85			SP 127
638	6094	52			4.85	4.85		SP1127
639	6095 6 4	11 6	8 82	67	81 2,5			SP 128
640	6095	52			2.5	2,5		SP1128
641	9093 6 8	11 6	4 78	63	77 .01			SP2128
042	5081 518	11 5	9 73	57	71 .015			1UP 129
843	5081	61			2	2	45.0	1
044	5001			5.0	2	2	-45.0	1
647	5082 518	11 0	l 75	59	73 .015	-		1 130
640	5082	01			3	3	45.0	1
649	5002 5002 510	11	· • • •	4.1	75 015	3	-45.0	1 101
640	2003 210	11 O	3 //	01	12 .012	2	45 0	1.51
650	5083	01 45			3	10	4 <u>5.</u> 0	1
651	5083	71			10	10	-45 0	,
652	5084 517	11 6	3 77	65	79 n15	3	-45.0	1 122
653	5084	61	5 11	05	17 0010	3	45.0	1 1 1 2 1
654	5084	65			12	12	45.0	4
655	5084	71			3	3	-45-0	3
656	5085 517	11 6	5 79	67	81 .015		4300	1 133
657	5085	61			9	9	45.0	1 130
658	5085	71			9	9	-45.0	i
659	5086 517	11 6	7 81	69	83 .015			1 134
660	5086	61			10	10	45.0	1
661	5086	71	•		10	10	-45.0	ī
662	5091 518	11 6	0 74	57	71 .015			1LOW 135
663	5091	61			5	2	45.0	1
664	5091	71			2	2	-45.0	- <b>1</b>
665	5092 518	11 6	2 76	60	74 .015			1 135
666	5092	61			3	3	45.0	1
667	5092	71			3	3	-45.0	1
668	5093 518	11 6	4 78	62	76 .015			137
669	5093	61			3	3	45.0	1
670	5093	65			18	18	.0	

CARD NO+	12345678901	234567	2. 78901	234	56789	.3 9012	34567890	12345678	•5••• 90123	4567890123456789	7 012345	••••8 678 <del>9</del> 0
671	5093	71					3	3		-45.0	r	
672	5094 517	11	64	78	66	80	.015			· · · · ·		138
673	5094	61					3	3		45.0	1	
674	5094	65					14	14		0.0		
675	5094	71					3	3		-45.0	1	
676	5095 517	11	66	80	68	82	.015				1	139
677	5095	61					8	. 8		45.0	1	
678	5095	71					8	8		-45.0	1	
6/4	5096 517	11	68	82	69	83	.015				1	140
680	5096	61					. 8	- 8		45.0	1	
681	5096	71	_				8	8		-45.0	1	•
682	4101 4 7	11	74	73	71		5.0				RIB	141
683	6102 6 7	. 11	74	73	76	75	5.0					142
084	6103 6 7	. 11	76	75	78	77	5.0					143
080	6104 6 5	11	78	77	80	79	5.0					144
080	6105.6.5	11	80	79	82	. 81	5.0					145
687	4106 4 5	- 11	85	81	83		5.0					145
688	1051 1 9	11	74	73			• 1				ROD	147
689	1052 1 9	11	76	75			•1					148
601	1053 1 9	11 -	78	77			.1					149
0.41	1054 1 9	- 11	80	79			.1			and the second second second		150
692	1055 1 9	11	82	81			•1					151
693	6111 0 0	11	74	88	73	87	4.8				SP	152
205	(110 ( (	52	-	- •	_		4.8	4.8			SP1	152
693	0115 0 0	11	76	90	75	89	4.9				SP	153
607	0112	52	30		-		4.9	4.9		•	SP1	153
808	6113 0 4	11	18	92	11	91	5,05				SP	154
6090	6113	22	8.0		30	~ ~	5.05	5,05			SP1	154
700	6114 0 4	- 11	00	94	79	93	5.25				SP	155
701	6115 6 4	52	92		•••	05	5.25	5,25			SP1	155
702	6115 0 7	11 60	92	90	01	70	2.1			•	SP 1	156
703	0113 6 8	52	70	0.2	77	~	2.1	2.1			SP1	156
704	5101 518	11	70	92	71	71	+01				SP2	156
705	5101 510	61	13	87	11	02	•015	2			10P	157
706	5101	71					2	2		45.0	1	
707	5102 518	11	75	20	73	97	015	ε		-45.0	1	
708	5102	61		07	13	01	• • • • • •			15.0	1	155
709	5102	71						3		45.0	1	
710	5103 518	11	77	01	75	80	01=	. J		-43.0	1	
711	5103	61	. • •	- <b>*</b> -	• 5		• • • • • • • • • • • • • • • • • • • •	2	1.2			159
712	5103	65					12	12		45.0	1	
713	5103	71					2	12		U.U.U.	1	
714	5104 517	11	77	91	79	93	.015	<b>۲</b>		-43.V	1	1/0
715	5104	61	••		• •			2		45 0	<b>1</b>	100
716	5104	65					15	15		1 0 0	T	
717	5104	71	`				2			-45. A		
718	5105 517	11	79	93	81	95	.015	<b>.</b>			1 .	161
				. –	- •						1	101

PAGE 18

਼

CARD NO+	12345678901	23456	2 78901234	5678	•3•••• 901234	56789012	23456789012	23456789012345678	.7
719	5105	61							
720	5105	71				12	12	45.0	1
721	5105	11	81 05		0.7	12	15.	-45.0	1
722	5100 517	11	01 95	6.0	97.	015		_	1 162
727	5100	10				15	15	45.0	1
724	5100	11	7/ 00	71	05	15	15	-45.0	1
725	2111 210	11	74 88	11	85.	015			1LOW 163
726	5111	10				2	2	45.0	1
727	2112 218	/1	76 00	-	~~	~ 2	2	-45.0	1
728	5112 516	41	10 90	14	88 •	015	-		1 164
729	5112	27				2	3	45.0	1
720	5112 519	11	70 07	7/		3	3	-45.0	1
733	2112 210	41	10 92	10	90 .	015	_		165
732	5113	45				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	45.0	1
733	5113	20				51	21	0.0	
734	5114 517	11	70 00		<b>•</b> /	a) = 2	2	-45.0	1
735	5114 517	. 11	10 92	- 80	94 .	015	_	_	165
736	5114	65				.2	2	45.0	1
737	5114	71				10	10	0.0	•
738	5115 517	11	80 04	82	06	A) 5 2	E	-43+11	1
739	5115	61	.,,,	95	<i>70</i> •	11	11	45 0	1 101
740	5115	71				11	11	45.0	1
741	5116 517	11	82 96	83	97	015	11	-43.0	1
742	5116	61	- <u></u>	0.3	•	13	13	4E 0	1 165
743	5116	71				13	13	45.0	1
744	4121 4 7	11	88 87	85	5	.0	15	-43.0	1 DTP 1/2
745	6122 6 7	ii	88 87	90	89 5	.0			KID 104
746	6123 6 7	ii	90 89	92	91 5	.0			170
747	6124 6 5	11	92 91	94	93 5	.0	•		171
748	6125 6 5	11	94 93	96	95 5	.0			172
749	4126 4 5	ii	96 95	97	5	.0			173
750	1061 1 9	· 11	88 87			1			DoD 175
751	1062 1 9	11	90 89			i			176
752	1063 1 9	11	92 91			1			175
753	1064 1 9	11	94 93			i			179
754	1065 1 9	11	96 95			ĩ			173
755	6131 6 6	11	88 102	87	101	5.2			SP 180
756	6131	52				5.2	5.2		SP1180
757	6132 6 6	- 11	90 104	89	103	5.3			SP 181
758	6132	52				5.3	5.3		SP1181
759	6133 6 4	11	92 106	91	105	5.45			SP 182
760	6133	52				5.45	5.45		SP1182
761	6134 6 4	11	94 108	93	107	5,65			SP 183
762	6134	52				5.65	5,65		SP1183
763	6135 6 4	11	96 110	95	109	2.9	-		SP 184
764	6135	52				5.9	5.9		SP1184
765	9133 6 8	11	92 106	91	105	.01	-		SP2184
166	5121 518	11	87 101	85	99 .(	015			1UP 185

57890	9012345	456789012345678	4567890123	39012	34567	9012	5678	1234	7890	)123456	1234567890	NO.
185	1				.015	101	87	103	89	11	5122 518	767
100	-i	45.0	2	2	•					61	5122	768
1	ī	-45.0	2	2						71	5122	769
187	-				.015	103	89	105	91	11	5123 518	770
	1	45.0	2	2						61	5123	771
	-	0.0	12	12						65	5123	772
	3	-45.0	2	2						71	5123	773
189	•				.015	107	93	105	91	11	5124 517	774
• • • •	1	45.0	2,	2						61	5124	775
	• ·	0.0	18	18						65	5124	776
	1	-45.0	2	5						- 71	5124	777
189	- 1				.015	109	95	107	93	11	5125 517	778
* <b>4</b>	1	45.0	14	14						61	5125	779
	•	0.0	2	2						65	5125	780
	1	-45.0	14	14						71	5125	781
190	ĩ		· · · · ·		.015	111	97	109	95	11	5126 517	782
• • •	1.	45.0	20	20						61	5126	783
	1	-45.0	20	20					•	71	5126	784
191	ILOW.				.015	99	85	102	88	11	5131 518	785
192	1	• • • • • •			.015	102	-88	104	90	. 11	5132 518	786
•••	ĩ	45.0	2	2						61	5132	787
	ī	-45.0	2	2						71	5132	788
193					.015	104	90	106	92	11-	5133 518	789
	1	45.0	2	2						61	5133	790
		0.0	23	23						65	5133	791
	1 .	-45.0	2	2						71	5133	792
194					.015	108	94	106	92	11	5134 517	793
	1	45.0	2	2						61	5134	794
		0.0	23	23						65	5134	795
	1	-45.0	2	2					_	- 71	5134	796
195	1				.015	110	96	108	94	$\sim 11$	5135 517	797
		0.0	2	2						65	5135	798
	1	45.0	13	13						61	5135	799
	1	-45.0	13	13					_	71	5135	800
195	1		· · · · ·		.015	111	97	110	96	- 11	5136 517	801
	1	45.0	17	17						61	5136	802
	1	-45.0	17	17			-			71	5136	803
197	RIB				5.0 :		99	101	105	11	4141 4 7	804
198					5.0	103	104	101	102		6142 6 7	805
199			· · · · ·		5.0	105	106	103	104	.11	6143 6 7	800
200					5.0	107	108	105	106	11	6144 613	807
201					5.0	109	110	107	108	11	0145 013	000
202					5.0		111	109	110	11	4140 413	017
203		and the second			•1			101	102	11	1071 1 9	010
204		1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -			•1			103	104	11	1072 1 9	017
205					.1			105	106	11	1073 1 9	012
205					•1	· · ·		107	108	11	1074 1 9	01J 914
307	1. A 1.		4		•1			109	110	- 11	1012 1 3	014

.

NO.	12345678901		3456789012	234567890123	6 3456789012345678	.78 901234567890
815	6151 6 6	11 102 116 101 115	5.5			SP 208
816	6151	52	5.5	5.5		501208
817	6152 6 6	11 104 118 103 117	5.6	5.5		Sp 200
818	6152	52	5.6	5.6		Sp1209
819	6153 612	11 106 120 105 119	5.8	5.0		SP 210
820	6153	52	5.8	5.8		SP1210
821	6154 612	11 108 122 107 121	6.0	5.00		SP 211
822	6154	52	6.0	6.0		501211
823	6155 612	11 110 124 109 123	3.1	•••		SP 212
824	6155	52	3.1	3.1		501212
825	9153 6 8	11 106 120 105 119	.01			SP2212
826	5141 518	11 101 115 99 113	015			110 213
827	5142 518	11 103 117 101 115	015			1 214
828	5143 518	11 105 119 103 117	015			215
829	5143	61		2	45.0	
830	5143	65	12	12	0.0	•
831	5143	71	2	2	-45.0	1
832	5144 517	11 105 119 107 121	.015	-	4340	215
833	5144	61	2	2	45.0	1
834	5144	65	25	25	0.0	-
835	5144	71	2	2	-45.0	1
836	5145 517	11 107 121 109 123	.015			1 217
837	5145	61	15	15	45.0	1
838	5145	65	8	8	0.0	-
839	5145	71	15	15	-45.0	1
840	5146 517	11 109 123 111 125	.015			1 218
841	5146	61	30	30	45.0	1
842	5146	65	3	3	0.0	a de la composición d
843	5146	71	30	30	-45.0	1
844	5151 518	11 102 116 99 113	.015			1LOW 219
845	5152 518	11 104 118 102 116	.015			1 220
846	5153 518	11 106 120 104 118	.015			221
847	5153	61	2	2	45.0	1
848	5153	65	25	25	0.0	
849	5153	71	2	2	-45.0	1
850	5154 517	11 106 120 108 122	.015	•		222
851	5154	61	2	5	45.0	1
852	5154	65	27	27	0.0	
853	5154	71	2	2	-45.0	1
854	5155 517	11 108 122 110 124	.015			1 223
855	5155	61	14	14	45.0	1
856	5155	65	8	8	0.0	
857	5155	71	14	14	-45.0	1
858	5156 517	11 110 124 111 125	.015			1 224
859	5156	61	19	19	45.0	1
860	5156	65	2	2	0.0	
861	5156	71	19	19	-45.0	<b>1</b>
862	4161 4 7	11 116 115 113	5.0			R18 225

PAGE 21

 $\mathcal{A}$ 

CARD NO.	12345678901		34567890	12345678901234567890	78 )1234567890
863	6162 6 7	11 116 115 118 117 5.0			225
864	6163 6 7	11 118 117 120 119 5.0			227
865	6164 613	11 120 119 122 121 5.0		1	228
866	6165 613	11 122 121 124 123 5.0		•	229
867	4166 413	11 124 123 125 5.0			230
868	1081 1 9	11 116 115			ROD 231
869	1082 1 9	11 118 117 .1			232
870	1083 1 9	11 120 119 .1			233
871	1084 1 9	11 122 121			234
872	1085 1 9	11 124 123			235
873	6171 6 6	11 116 130 115 129 5.8			SP 236
874	6171	52 5.8	5.8		SP1236
875	6172 6 6	11 118 132 117 131 6.0	200		SP 237
876	6172	52 6.0	6.0		SP1237
877	6173 612	11 120 134 119 133 6.2	0.0	1	SP 238
878	6173	52 6.2	6.2		501238
879	6174 612	11 122 126 121 135 6 45	0.00		50 230
880	6174 012		6 45		501230
961	6175 612	31 124 129 123 127 2 3	0.45		50 240
882	6175	52	33		501240
803	0173 6 8	JL 120 124 110 123 01	5.5		502240
224	5161 518	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			110 241
007	E142 E18	11 117 127 113 127 .015			107 242
896	5102 510	11 110 122 117 121 AIE			243
007	2102 210		2	45 0	1
001	5103		<u> </u>	45.0	· •
000	5103	71 2	2		
007	5103		٤ د	-43.0	1
0.40	5104 517	11 119 133 121 135 015	3	(F 0	243
140	5104		3	45.0	
092	5104	20	20		
893	5104		3	-45.0	1
074	5105 511	11 121 135 123 137 +015	15	(E 0	1 244
893	5105		13	45+0	<b>1</b>
0.90	5105		15		
809	5105		12	-43.0	1 265
0.90	5100 517	11 123 137 125 139 .015	41		1 243
899	5100	01 41 17	41	45+0	1
900	5100		3	0.0	
901	5100		41	=45+0	1
902	5171 518	11 116 130 113 127 .015			1LOW 245
903	5172 518	11 118 132 116 130 .015			1 241
904	51/3 518	11 120 134 118 132 .015		• •	245
905	5173	65 5	· 5··	0 <b>↓</b> 0	
906	5174 517	11 120 134 122 136 .015	· _ · ·		249
907	5174	61 2	2	45.0	1
908	5174	65 28	28	0.0	
909	5174	/1 2	2	-45.0	1
910	5175 517	11 122 136 124 138 .015			1 250

*

PAGE 22

୍

CARD NO.	12345678901	••••••••••2••••••3••••••4 123456789012345678901234567890	123456789012	234567890123456789	.7
911	5175	61 14	14	45.0	1
912	5175	65 10	10	0.0	•
913	5175	71 14	14	-45.0	3
914	5176 517	11 124 138 125 139 .015	•		1 251
915	5176	61 20	20	45.0	1
916	5176	65 4	4	0.0	•
917	5176	71 20	20	-45.0	1
918	4181 4 7	11 130 129 127 5.0		1200	RTB 252
919	6182 6 7	11 130 129 132 131 5.0			253
920	6183 6 7	11 132 131 134 133 5.0			254
921	6184 613	11 134 133 136 135 5.0			255
922	6185 613	11 136 135 138 137 5.0			256
923	4186 413	11 138 137 139 5.0			257
924	1091 1 9	11 130 129 .1			ROD 258
925	1092 1 9	11 132 131 .1			259
926	1093 1 9	11 134 133 •1			260
927	1094 1 9	11 136 135 .1			261
928	1095 1 9	11 138 137 .1			262
929	6191 6 6	11 130 144 129 143 6.2			SP 263
930	6191	52 6.2	6.2		SP1263
931	6192 6 6	11 132 148 131 147 6.45			SP 254
932	6 <b>192</b>	52 6.45	6.45		SP1264
933	6193 612	11 134 152 133 151 6.6			SP 265
934	6193	52 6.6	6.6		SP1265
935	6194 612	11 136 156 135 155 6.9			SP 266
936	6194	52 6.9	6.9		SP1266
937	6195 612	11 138 158 137 157 3.5			SP 267
938	6195	52 3,5	3,5		SP1267
939	9193 6 8	11 134 152 133 151 .01			SP2257
940	5181 518	11 129 143 127 141 .015			1UP 268
941	5182 518	11 131 147 129 143 .015			1 269
942	5183 518	11 133 151 131 147 .015			270
943	5183	61 2	2	45.0	1
944	5183	71 2	2	-45.0	1
945	5184 517	11 133 151 135 155 .015			271
946	5184	61 3	3	45.0	1
947	5184	65 28	28	0.0	
948	5184	71 3	. 3	-45.0	1
949	5185 517	11 135 155 137 157 .015			1 272
950	5185	61 12	12	45.0	1
951	5185	65 21	21	0.0	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
756	5105	/1 12	12	-45.0	1
733	2100 211	11 137 157 139 159 .015			1 273
734	5100	01 43	43	45.0	1
755	5180	3	3	0.0	
730	5100		43	-45.0	1
731	2121 212	11 130 144 127 141 .015			1LOW 274
220	2125 210	11 132 148 130 144 .015			1 275

276				.015	148	132	152	134	11	5193 518	59
210	1	45-0	2	2	• • •	•	• • •	•	61	5193	0
	· 1	-45.0	2	2					71	5193	1
277	•	73.0-	-	.015	156	136	152	134	11	5194 517	2
	1	45.0	2	2					61	5194	3
	•	0.0	30	30					65	5194	4
	1	-45.0	2	2					71	5194	5
278	1			.015	158	138	156	136	11	5195 517	6
	ī	45.0	11	11					61	5195	7
	•	0.0	19	19					65	5195	8
	1	-45.0	- 11	11					71	5195	9
279	ĩ			.015	159	139	158	138	11	5196 517	0
	î	45.0	22	22					61	5196	1
		0.0	4	4					65	5196	2
	1	-45.0	22	55					71	5196	3
280	RR			.1		141	143	144	11	4201 411	4
281		No. 1997 - Anna Star		•1	145	146	143	144	11	6202 611	5
282				·•1 .	147	148	145	146	11	6203 611	6
283				•1 ••	149	150	147	148	11	6204 611	7
284				•1	151	152	149	150	11	6205 611	8
285				•1	153	154	151	152	- 11	6206 611	9
285				•1	155	156	153	154	11	6207 611	0
287				-1	157	158	155	156	11	6208 611	1
283				•1		159	157	158	11	4209 411	2
289	RR			•1		155	165	157	11	4211 411	٤
290				•1	163	159	165	157	11	6212 611	4 r
291				•1 *	161	165	163	164		6213 611	2
292				•1	164	159	166	158	11	6214 611	0 7
293				•1		156	166	158	- 11	4215 411	1: 
294	RR			+1			143	144	11	1101 1 9	0
295				•1			145	146	11	1102 111	<b>7</b>
295				•1			147	148	11	1103 1 9	9 1
297				•1			149	150	11	1104 111	
299				•1			151	152	11	1105 1 9	2
299				•1			153	154	11	1100 111	<b>.</b>
300				• !			155	120	11	1107 1 9	<b>T</b>
301				• 1		•	15/	120	11	1201 111	6
305	RR			• 1			102	121	11	1202 111	7
303				• 1			103	102	11.	1203 111	Å
304		and the second se		+1			101	150	11	1204 111	5
305				+ 1			104	158	11	1205 111	0
305				*1			100	141	11	1301 111	ī
307	RR			• 1			143	142	11	1302 111	2
305	KK			+1			147	145	11	1302 111	3
309				* 1			147	147	11	1304 111	4
710							147	140	11	1305 111	5
-211				•1			157	151	11	1306 111	6

.

12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

PAGE 24

-

 $\bigcirc$ 

 $\odot$ 

)

1007	1307 111 11 153 155	· . 1				313
1008		••				314
1000		•1				315
1010		•1			80	316
1011	1312 111 11 144 146					317
1012	1313 111 11 146 148					318
1013						319
1014	1315 111 11 150 152			•		320
1015	1316 111 11 152 154	.1				321
1016	1317 111 11 154 156	•1				322
1017	1318 111 11 156 158	•1				323
1018	1319 111 11 158 159	•1	2			324
1019	1401 111 11 155 165	.1			RR	325
1020	1402 111 11 165 163	- • 1				325
1021	1403 111 11 163 161	•1				327
1022	1404 111 11 164 162	.1				328
1023	1405 111 11 166 164	•1			,	329
1024	1406 111 11 156 166	•1				330
1025						
1026	DEND					
1027	TA00 AUTOMATED TRANSFORMAT	ION MODULE				
1028	TA - GENERATE DYNAMICS TRA	NSFORMATIONS				
1029	0 0 0 -4		KLUET(I) I=1.4			
1030	TA01 STRUCTURES GEOMETRY G	RID				
1031						
1032	1247.701786 60.000000	56,721653				
1033		EC 003507				
1034 .		50,996597				
1035	4244,273786 60,000000	20,0/0100				
1030		51,201573				
103/		50,523225	•			
1030		57,304413 56 (EE006				
1037		57 366170				
1040		56 476410				
1041		57 A63704				
1042		56 591996				
1045		56 750000				
1045	14	50.150000		• •		
1046	15251.663304 55.000000	56,718111				
1047	16					
1048	17247.806970 55.00000	57,022910				
1049	18247.806970 55.00000	56.666940				
1050	19243.950637 55.000000	57.257998				
1051	20243.950637 55.000000	56.494889				
1052	21240.094304 55.000000	57.373688				
10-2	22240.004304 55.000000	56.418504				
1022		JU99410374				

PAGE 25

.

CARD			.3	
NO •	1234567890123450	578901234567	39012345678901	1234567890123456789012345678901234567890
1055	24236.237970	55.000000	56.442235	
1056 .	25233.345720	55.000000	57.103003	
1057	26233.345720	55.000000	56.560891	
1058	27232.381637	55.000000	56.750000	
1059	28			
1060	29255.624822	50,000000	56.714569	
1061	30	5		
1062	31251, 340155	50.000000	57.053223	
1063	32251, 340155	50.000000	56 657715	
1064	33247.055488	50.000000	57.314422	
1065	34247 055488	50 000000	56 466553	
1066	35242 770822	50 000000	57 4/2042	
1067	36242 770822	50.000000	56 281484	
1068	37238 496155	50.000000	57 205172	
1069	39239 404155		56 409050	
1070	30235 272655	50,000000	57 1/2012	
1070	4033E 3736EE	50.000000	51,142212	
1071	41232+272033	50.000000	56 35000	
1072	41234+201488	20.000000	20.120000	
1075	42250 504220	15 00000	66 711077	
1075	+3237,380337 AA	42.000000	20.111051	
1075	44		E7 003535	
1070	45254,873339	45,000000	51.083535	
1077	40204.8/3339	45.000000	50.648489	
1070	47250,160339	45.000000	57,370847	
1079	48250,160339	45,000000	56,438217	
1080	49245,447339	45.000000	57,512237	
1081	50245.447339	45,000000	56,344863	
1082	51240.734339	45,000000	57,459669	
1083	52240,734339	45.000000	56,373866	
1084	53237,199589	45,000000	57,181421	
1085	54237 199589	45,000000	56,518881	
1086	55236,021339	45.000000	56,750000	
1087	56			
1088	5/263,54/857	40.000000	56,707485	
1089	58			
1090	59258.406524	40.000000	57,113848	
1091	60258.406524	40,000000	56,639263	
1092	61253,265191	40.000000	57,427272	
1093	62253.265191	40.000000	56,409881	
1094	63248,123857	40.000000	57,581512	
1095	64248,123857	40.000000	56.308043	
1096	65242.982524	40.000000	57,524166	
1097	66242.982524	40.000000	56,339682	
1098	67239.126524	40.000000	57.220630	
1099	68239.126524	40.000000	56,497877	
1100	69237.841191	40.000000	56.750000	
1101	70			
1102	71267.509375	35.000000	56.703943	

PAGE 26

.

PAGE 27

CARD NO.	1234567890123456	2	.3	
1103	72		· .	
1104	73261-939708	35,000000	57 144161	
1105	74261 939708	35 000000	56 630038	
1105	75256 370042	35 000000	57 /93404	
1100	76256 370042	35.000000	51.403070	
1109	77250 800375	35.000000	50.301343 57 450704	
1100	79250 800375	35.000000	56 371333	
11107	70245 200709	35.000000	50.211223	
1110	17243+230100 90245 230709	35.000000	57.500003 56 305400	
1112	91241 AE34E9	35.000000	50.305470	
1112	01241+053450	35.000000	21+227839	
1113	02241+053450	35.000000	56 750000	
1114	03239+001042	32.000000	20.120000	
1112	85371 67A863		E6 300(0)	•
1110	05211.470893	30.000000	20,100401	
1117	00		57 174171	
1110	81205.472893	30,000000	5/.1/44/4	
1119	88203.472873	30,000000	57 540121	
1120	07237 414873	30,0000000	56 253200	
1121	91253 476033 91253 476093		57 720061	
1123	91233.476803	30,000000	21.120001	
1123	72233.470073	30.000000	50,234403	
1127	73247 470073	30,000000	21.022100	•
1125	94247 470893	30.000000	50,271313	
1120	95242+980393	30.000000	51.299048	
1127	70242.780393	30,000000	50,453801	
1120	91241.480893	30.000000	20.120000	
1129	98 00075 650(1)	oF	54 404050	
1130	99215.432411	52.000000	20.020823	
1131	100	-5	57 00(707	· · · · · · · · · · · · · · · · · · ·
1132	101269.006077	25.000000	57,204787	
1133	102269.006077	52,000000	50,611586	
1134	103262.579744	25,000000	51,590540	
1135	104262,579744	52.000000	50,324874	
1130	105255,153411	25,000000	51,189330	· · · · · · · · · · · · · · · · · · ·
1137	100250,153411	25,000000	50,197583	
1130	10/249,727077	25.000000	5/,/1/658	
1139	108249,727077	25.000000	20.23/124	
1140	109244.907327	25.000000	51,330251	
1141	110244.90/32/	25,000900	50,434802	
1142	111243.300744	52.000000	20.120000	
1143	112		56 (030)3	
1144	113219.393929	50.000000	20*042371	
1143	114			
1140	1126/6+234565	20.000000	57.235100	
1147	110212-034202	20.000000	50.602301	
1148	11/205.084595	Sn°000000	51.652970	
1149	118205.584595	20.000000	56,296538	
1150	114528*854454	50°000000	57.858610	
			.3	••••••5•••••6•••••7••••8

12345678901234567890123456789012345678901234567890123456789012345678901234567890

CARD	123456789012345676	.2	79901224567990		
NU •	12343078701234307	570153450	18701234301890	15242010301534201	89012345670901234567890
1151	120258-829929	0.000000	56.160763		
1152	121251.975262 2	0.000000	57.782155		
1153	122251.975262	0.000000	56.202945	•	
1154	123246.834262	0.000000	57.377466		
1155	124246.834262	0.000000	56.413857		
1156	125245.120595	000000	56.750000		
1157	126		· _ · · · · · · · · · · · · · · · · · ·		
1158	127283,355446 1	5.000000	56,689775		
1159	128				
1160	129276.072446 1	5.000000	57,265412		
1161	130276.072446 1	5.000000	56,593135	*	
1162	131268,789446 1	5.000000	57,709395		
1163	132268.789446 1	5,000000	56,268202		
1164	133261,506446 1	5,000000	57,927885	· · · · · · · · · · · · · · · · · · ·	
1165	134261,506446 1	5,000000	56,123942		di kana
1166	135254.223446 1	5.000000	57.846652		
1167	136254.223446 1	5,000000	56,168761		
1168	137248.761196 1	5.000000	57.416675		
1169	138248.761196 1	5,000000	56,392852		
1170	139246.940446 1	5.000000	56,750000		
1171	140	2011 - 18 B			
1172	141286,920813 1	0.500000	56,686587		
1173	142	· · · · · · · · · · · · · · · · · · ·			
1174	143279.782290	9.750000	57,297241		
1175	144279.782290	9.750000	56,583448		
1176	145274.074668	9.000000	57.698091		
1177	146274.074668	9.000000	56.296533 /		
1178	147272-515268	9.000000	57.777105		
1179	148272-515268	9.000000	56.234199		
1180	149267.180000	9.000000	57.968294		
1181	150267-180000	9.000000	56.104451		
1182	151264.718268	9.000000	58.011015	a de la companya de l	
1183	152264.718268	9.000000	56.079758		
1184	153258+900000	9.000000	57.983204		
1185	154258.900000	9.000000	56.095890		
1186	155256.921268	9.000000	57.924048		
1187	156256.921268	9.000000	56.127740		
1188	157251+073518	9.000000	57.463726		
1189	158251.073518	9.000000	56.36/647		
1190	159249.124268	9.000000	56.750000		
1191	160		•		
1192	161 242,28	9.0	58.0	•	
1193	162 242.28	<b>A*</b> 0	56.0		
1194	163 249.124268	9.0	58.0	1 A	
1195	164 249,124268	9.0	56.0	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
1196	165 251.073518	9.0	58.0		
1197	166 251,073518	9.0	56.0		
1198	TAUG DYNAMICS	GRID FOR	VIBRATION ANA	LYSIS	

	24					
	246.9404	15 0	0.0		(1)	
	245,1206	20 0	0.0		(2)	
	241.4809	30.0	0.0		(2)	
	237.8412	40.0	0.0		(3)	
	234.2015	50.0	0.0		(4)	
	234 5410	50,0	0.0		(5)	
	254 2010	15 0	0.0		(8)	
	251 0757	15.0	0.0		(77	
	267.6780	20.0	0.0		(8)	
	247 4707	40.0	0.0		(9)	
	29207823	40.0	0.0		(10)	
	238+4802	50.0	0.0		(11)	
	233+7878	60.0	0.0		(12)	
	208 . 1894	15.0	0.0		(13)	
	203.0846	20.0	0.0		(14)	
	259.4749	30.0	0.0		(15)	
	253.2652	40.0	0.0		(16)	•
	247+0555	50.0	0.0		(17)	
	240+8458	60.0	0.0		(18)	
	283,3594	15,0	0.0		(19)	
	279.3939	20.0	0.0		(20)	
	211.4709	30.0	0.0		(21)	1. A
	263.5479	40.0	0.0		(22)	
	255+6248	50,0	0.0		(23)	
	247.7018	60.0	0.0		(24)	
1	AC3					
	24 24 12	0 0				
		0.	0.	56,75		
	139 125 97	69 41	13 127 113 85	57		
	29 1					
	1 139		001000			4 1
	2 125		001000			
	3 97		1001000			
	4 69		H C O 1 O O O			
	5 41		<b>HOOLOO</b>			
	6 13	· · · · ·	• 0 0 1 0 0 0			. · · ·
	7 157 137	155 135	R 0 0 1 0 0 0		3	
	8 121 107	119 105	8001000			
	9 1 0 9 9 5	105 91	B 0 0 1 0 0 0			
	10 81 67	77 63	8001000			
	11 53 39	49 35	B 0 0 1 0 0 0			
	12 25 11	21 7	8001000			
	13 151 133	147 131	B001000			
	14 131 117	129 115	8001000			
	15 103 89	101 87	8001000			
	16 75 61	73 59	B001000			
	17 47 33	45 31	8001000		· .	
	18 19 5	17 3	8 0 0 1 0 0 0			

NO.	12345678901234	2	56. 0123456789012345678901	
1247	19 127	001000		
1248	20 113	1001000		and the second
1249	21 85	1001000		
1250	22 57	001000		
1251	23 29	1001000		
1252	24 1	001000		

NASA FORWARD SWEPT RESEARCH WING ON A ROM-34F VEHICLE, SOP(SA, SO) EEROELASTICALLY TAILORED WITH ADVANCED COMPOSITES- SMOOTH 7

FROM SOP, AFTER LDB - LIST INPU	T D	ATA		
ELAPSED TIME IS	0	MINUTES.	10.58	SECONDS
INCREMENTAL TIME IS	0	MINUTES,	8.01	SECONDS

.

PAGE 32

A AAA **** FASTOP **** AAAAA FLUTTER AND STRENGTH AAAAA OPTIMIZATION PROGRAM AAA AAA AAA AAA 4444 SOP #### AAA AAA STRENGTH OPTIMIZATION PROGRAM AAA AAA AAA AAA ----AAAAAAAAA AUTOMATED TTTTTTTTTTTTTT AAAAAAAAA TRANSFORMATION ANALYSIS MODULE TTTTTTTTTTTTT AAAA AAAA TTT TTT TTT AAA AAA TTT AAA AAA TTT AAA AAA AIR FORCE TIT AAA AAA FLIGHT DYNAMICS LABORATORY TTT AAA AAA TTT AAA AAA MAY 1978 AAA TTT AAA TTT AAA AAA TTT A AAA TTT AAAAA TTT AAAAA TTT AAA AAA TTT AAA AAA TTT TTT AAA AAA AAA AAA TTT AAA AAA TTT AAAAAAAAA TTT MMM MMM AAAAAAAAA AAAA AAAA MMM MMM MMMM MMMM AAA AAA MMMM AAA AAA MMMM MMMMM MMMMM AAA AAA MMMMM мимим AAA AAA MMMMM ммммм AAA AAA MMMMMM MMMMM AAA AAA MMM MM MMM MMM AAA AAA MM MM MMM AAA AAA ммм MMMMM MMM MMM MMMMM MMM MMM MMM MMM. MMM GRUMMAN MMM MMM MMM AEROSPACE GGGGGGGGGGGGG MMM MMM MMM CORPORATION 6666666666 MMM MMM MMM 66666666 MNM MMM MMM 666666 MMM MMM MMM GGGG MMM MM4 MMM GG MMM 464 MMM G

NOTE - SUBSEQUENT LOAD ANALYSIS OUTPUT OF AERO., INERTIAL, AND COMBINED LOADS IN THE STRUCTURES GRID IS IDENTIFIED BY ROW NO. (SEQUENTIAL).

ROW	NODE	XSGEO(1)	YSGEO(1)	ZSGEO(T)
1	1	2.477018E+02	6.00000E+01	5+672165E+01
2	2	0.	0.	0.
3	3	2.442738E+02	6.00000E+01	5.699260E+01
4	4	2.442738E+02	6.00000E+01	5+667617E+01
5	5	2.408458E+02	6.000000E+01	5.720157E+01
6	6	2.408458E+02	6.000000E+01	5+652323E+01
7	7	2.374178E+02	6.000000E+01	5.730441E+01
8	8	2.374178E+02	6.000000F+01	5.645532F+01
9	9	2.339898E+02	6.00000E+01	5.726618E+01
10	10	2.339898E+02	6.000000E+01	5.647642E+01
11	11	2.314188E+02	6+000000E+01	5.706379E+01
12	12	2.314188E+02	6.00000E+01	5.658190E+01
13	13	2.305618E+02	6-000000E+01	5+675000E+01
14	14	0.	0.	0.
15	15	2.516633E+02	5.500000E+01	5.671811E+01
16	16	0.	0.	0.
17	17	2.478070E+02	5.500000E+01	5.702291E+01
18	18	2.478070E+02	5.500000E+01	5.666694E+01
19	19	2.439506E+02	5.500000E+01	5.725800E+01
20	20	2+439506E+02	5.500000E+01	5.649489E+01
21	21	2.400943E+02	5.500000E+01	5.737369E+01
22	22	2.400943E+02	5.500000E+01	5.641850E+01
<b>2</b> 3	23	2.362380E+02	5.500000E+01	5.733068E+01
24	24	2.362380E+02	5.500000E+01	5.644224E+01
25	25	2.333457E+02	5.500000E+01	5.710300E+01
26	26	2.333457E+02	5.500000E+01	5.656089E+01
27	27	2.323816E+02	5.500000E+01	5.675000E+01
28	28	0.	0.	0.
29	29	2.556248E+02	5+00000E+01	5.671457E+01
30	' 30	0.	0.	0.
31	31	2.513402E+02	5.000000E+01	5.705322E+01
32	32	2.513402E+02	5+000000E+01	5.665772E+01
33	33	2.470555E+02	5.000000E+01	5.731442E+01
34	34	2.4/0555E+02	5.000000E+01	5.646655E+01
35	35	2.427708E+02	5.000000E+01	5.744296E+01
36	30	2.4217082+02	5.00000E+01	5.638168E+01
37	37	2.384862E+02	5,000000E+01	5.739517E+01
38	38	2.3848622+02	5.000000E+01	5.640805E+01
39	39	2.352727E+02	5.00000E+01	5.714221E+01
40	40	2.3521212+02	5+000000E+01	5+653989E+01
41	41	2.3420152+02	5.000002+01	5+675000E+01
42	42	U	U	
43	43	2+373003E+U2	4.5000002+01	5+6/1103E+01
44	44	V. 2 5497225.42	U+ 6 5000005-03	U
45	45	2 5/97335+02	4+5000000E+01	3+/083542+01 E_{(/8/0E+**
40	- 47	2 501607552+02	4+5000002401	30040472401 5 7070055401
			**************************************	347 170838 901

NOTE - SUBSEQUENT LOAD ANALYSIS OUTPUT OF AERO., INERTIAL, AND COMBINED LOADS IN THE STRUCTURES GRID IS IDENTIFIED BY ROW NO. (SEQUENTIAL).

ROW	NODE	XSGEO(I)	YSGEO (T)	ZSGF0(I)
48	48	2.501603E+02	4.500000E+01	5.643822E+01
49	49	2.454473E+02	4.500000E+01	5.751224E+01
50	50	2.454473E+02	4+500000E+01	5.634486E+01
51	51	2.407343E+02	4.500000E+01	5.745967E+01
-52	52	2.407343E+02	4.500000E+01	5+637387E+01
53	53	2.371996E+02	4.500000E+01	5.718142E+01
54	54	2.371996E+02	4.500000E+01	5.651898E+01
55	55	2.360213E+02	4.500000E+01	5.675000E+01
56	56	6.	0.	0.
57	57	2.635479E+02	4.000000E+01	5.670749E+01
58	58	0.	0.	0.
59	59	2.584065E+02	4.000000E+01	5.711385E+01
60	60	2.584065E+02	4+000000E+01	5+663926E+01
61	61	2.532652E+02	4+000000E+01	5.742727E+01
62	62	2.532652E+02	4.000000E+01	5.640988E+01
63	63	2.481239E+02	4-000000E+01	5.758151E+01
64	64	2+481239E+02	4.000000E+01	5.630804E+01
65	65	2.429825E+02	4.000000E+01	5.752417E+01
66	66	2.429825E+02	4+000000E+01	5+633968E+01
67	67	2.391265E+02	4+000000E+01	5.722063E+01
68	68	2.391265E+02	4+000000E+01	5.649788E+01
69	69	2.378412E+02	4+000000E+01	5-675000F+01
70	70	0.	0.	0.
71	71	2.675094E+02	3-500000E+01	5.670394E+01
72	72	0.	0.	0.
73	73	2.619397E+02	3-500000E+01	5.714416E+01
74	74	2.619397E+02	3-500000E+01	5+663004E+01
75	75	2.563700E+02	3+500000E+01	5.748370E+01
76	76	2.563700E+02	3.500000E+01	5-638155E+01
77	77	2+508004E+02	3.500000E+01	5.765079E+01
78	78	2.508004E+02	3.500000E+01	5.627122E+01
79	79	2.452307E+02	3.500000E+01	5.758866E+01
80	80	2.452307E+02	3.500000E+01	5.630550E+01
81	<li>81</li>	2.410535E+02	3.500000E+01	5.725984E+01
82	82	2.410535E+02	3.500000E+01	5.647687E+01
83	83	2.396610E+02	3.500000E+01	5.675000E+01
84	84	0.	0.	0.
85	85	2.714709E+02	3.000000E+01	5.670040E+01
86	86	0.	0.	0.
87	87	2.654729E+02	3.000000E+01	5.717447E+01
88	88	2.654729E+02	3.000000E+01	5.662081E+01
89	89	2.594749E+02	3.000000E+01	5.754012E+01
90	90	2.5947492+02	3.000000E+01	5.635321F+01
<b>91</b> \	91	2.534769E+02	3.00.0000E+01	5.772006E+01
92	92	2.534769E+02	3.000000E+01	5.623440E+01
93	93	2.474789E+02	3.000000E+01	5.765316E+01
94	94	2.474789E+02	3.000000E+01	5.627131E+01

NOTE - SUBSEQUENT LOAD ANALYSIS OUTPUT OF AERO.. INERTIAL. AND COMBINED LOADS IN THE STRUCTURES GRID IS IDENTIFIED BY ROW NO. (SEQUENTIAL).

004	NODE	MCCE0(+)	WE AFO LAS	7000010
ROW	NOUL	XSGEU(I)	YSGEU(I)	ZSOED(I)
95	95	2.429804E+02	3+000000E+01	5.729905E+01
96	96	2.429804E+02	3.000000E+01	5.645587E+01
97	97	2•414809E+02	3+000000E+01	5.675000E+01
98	.98	0.	0.	0.
99	99	2.754324E+02	2.500000E+01	5+669686E+01
100	100	0	0.	0.
101	101	2.690061E+02	2-20000E+01	5•720479E+01
102	102	2.690061E+02	2+500000E+01	5+661159E+01
103	103	2.625797E+02	2+500000E+01	5.759655E+01
104	104	2.625797E+02	2.500000E+01	5.632487E+01
105	105	2.561534E+02	2.500000E+01	5.778934E+01
106	106	2.561534E+02	2.500000E+01	5.619758E+01
107	107	2.497271E+02	2.500000E+01	5.771766E+01
108	108	2.497271E+02	2.500000E+01	5.623713E+01
109	109	2.449073E+02	2.500000E+01	5+733826E+01
110	110	2.449073E+02	2+500000E+01	5.643486E+01
111	111	2.433007E+02	2.500000E+01	5.675000E+01
112	112	0.	0.	0.
113	113	2.793939E+02	2.090000E+01	5.669332E+01
114	114	0.	0.	0.
115	115	2.725393E+02	2+000000E+01	5.723510E+01
116	116	2.725393E+02	2.00000E+01	5.660236E+01
117	117	2.656846E+02	2.000000E+01	5.765297E+01
118	118	2.656846E+02	2.000000E+01	5.629654E+01
119	119	2.588299E+02	2.000000E+01	5.785861E+01
120	120	2.588299E+02	2+000000E+01	5.616076E+01
121	12'1	2.519753E+02	2.00000E+01	5.778216E+01
155	122	2.519753E+02	2.000000E+01	5.620295E+01
123	123	2.468343E+02	2.000000E+01	5.737747E+01
124	124	2.468343E+02	2.000000E+01	5.641386E+01
125	125	2.451206E+02	2.000000E+01	5.675000E+01
126	126	0.	0.	0.
127	127	2.833554E+02	1.500000E+01	5.668978E+01
128	128	0.	0.	0.
129	129	2.760724E+02	1.500000E+01	5.726541E+01
130	130	2.760724E+02	1.500000E+01	5.659314E+01
131	131	2.687894E+02	1.500000E+01	5.770940E+01
132	132	2.687894E+02	1.500000E+01	5.626820E+01
133	133	2.615064E+02	1.500000E+01	5.792789E+01
134	134	2.615064E+02	1.500000E+01	5.612394E+01
135	135	2.542234E+02	1.500000E+01	5.784665E+01
136	136	2.542234E+02	1.500000E+01	5.616876E+01
137	137	2.487612E+02	1.500000E+01	5.741668E+01
138	138	2.487612E+02	1.500000E+01	5+639285E+01
139	139	2.469404E+02	1.500000E+01	5.675000E+01
140	140	0.	0.	0.
141	141	2.869208E+02	1.050000E+01	5+668659E+01

1. 20%

NOTE - SUBSEQUENT LOAD ANALYSIS OUTPUT OF AERO., INERTIAL, AND COMBINED LOADS IN THE STRUCTURES GRID IS IDENTIFIED BY ROW NO. (SEQUENTIAL).

ROW	NODE	XSGEO(I)	YSGEO(T)	ZSGEO(T)
142	142	0.	0.	0.
143	143	2.797823E+02	9.750000E+00	5.729724E+01
144	144	2.797823E+02	9.750000E+00	5-658345E+01
145	145	2.740747E+02	9.000000E+00	5.769809E+01
146	146	2.740747E+02	9.00000E+00	5.629653E+01
147	147	2.725153E+02	9+000000E+00	5.777711E+01
148	148	2.725153E+02	9+000000E+00	5.623420F+01
149	149	2.671800E+02	9.000000E+00	5.796829E+01
150	150	2.671800E+02	9.000000E+00	5+610445E+01
151	151	2.647183E+02	9.000000E+00	5-801102E+01
152	152	2.647183E+02	9+000000E+00	5.607976E+01
153	153	2.589000E+02	9.000000E+00	5.798320E+01
154	154	2.589000E+02	9.000000E+00	5+609589E+01
155	155	2.569213E+02	9.000000E+00	5.792405E+01
156	156	2+569213E+02	9.000000E+00	5+612774E+01
157	157	2.510735E+02	9.000000E+00	5.746373E+01
158	158	2.510735E+02	9.000000E+00	5.636765E+01
159	159	2.491243E+02	9+000000E+00	5.675000E+01
160	160	0.	0.	0.
161	161	2.422800E+02	9+000000E+00	5-800000E+01
162	162	2.422800E+02	9+000000E+00	5+600000E+01
163	163	2.491243E+02	9.000000E+00	5.800000E+01
164	164	2.491243E+02	9.000000E+00	5+600000E+01
165	165	2.510735E+02	9.000000E+00	5-800000E+01
166	166	2+510735E+02	9+000000E+00	5+600000E+01

		• • •			<u>-</u>												
******INPUT *****OUTPUT****OUTPUT FOR ROW****NODE COL****NODE****UNIT INPUT		***4 C0L4	*****OUTPUT****OUTPUT FOR COL****NODE****UNIT INPUT			C0F1 4488	*****OUTPUT****OUTPUT FOR COL****NODE****UNIT INPUT				*****OUTPUT****OUTPUT FOR COL****NODE****UNIT INPUT						
1	FZ	1	450	FZ 139	-1.00000F+00												
2	F7	5	402	FZ 125	-1.00000 =+00												
3	FZ.	3	312	FZ 97	-1.00000F+00												
4	FZ	4	222	FZ 69	-1.00000F+00												· · · · ·
5	FZ	5	. 132	FZ 41	-1.00000F+00												
6	FZ	6	42	FZ 13	-1.00000F+00												
7	FΖ	7	438	FZ 135	-3.46408F-01	441	FZ 1	36	-6.53586E-01	444	F7	137	-1.997265-06	447	F 7	138	-3.728215-04
7	FZ	7	501	FZ 155	8.72344F-07	504	F7 1	56	1.64589F-06	507	F7	157	-8.784555-07	510	57	150	-1.629785-04
8	FZ	8	339	FZ 105	-9.86501F-07	342	FZI	06	-1.85604E-06	345	. E	107	9.846855-07	348	F7	108	1.857855-06
8	FZ	8	384	FZ 119	-9,99071E-07	387	FZI	20	-1.87968E-06	390	F7	121	-3.464105-01	393	F7	122	_6 53588E_01
9	FZ	9	294	FZ 91	-2.11527F-01	297	FZ	92	-3.97975E-01	306	F7	95	-1.362205-01	309	F7	96	+2.54278E+01
9	FZ	9	339	FZ 105	5.860645-02	342	FZ 1	06	1.10264E-01	351	F7	109	-5.89083F-02	354	F7	110	=1.09962E+01
10	FZ	10	204	FZ 63	-2.03156F-01	207	FZ	64	-3.82224E-01	215	FZ	67	-1.44635E-01	219	57	68	-2.69986E-01
10	FZ	10	249	FZ 77	5.02358F-02	252	FZ	78	9.45153E-02	261	F7	81	-5-049465-02	264	57	82	-9.42566E-02
11	FZ	11	114	FZ 35	-1.94788F-01	117	FZ	36	-3.66481E-01	125	F7	39	-1.53046F-01	129	F7	40	+2.856855+01
11	FZ	11.	159	FZ 49	4.18656F-02	162	FZ	50	7.87672E-02	171	FZ	53	-4.20813F-02	174	F7	54	-7.85515E+02
12	FΖ	12	24	FZ 7	-1.86417F-01	27	FZ	8	-3.50730E-01	36	FZ	11	-1.61460F-01	39	87	12	+3.01303E-01
12	FZ	12	69	FZ 21	3.34950r-02	72	FZ	22	6.30186F-02	81	FZ	25	-3.366755-02	84	57	26	-6.28460-02
13	F7	13	426	FZ 131	-3.34304F-01	429	FZ 1	32	-6.65693F-01	432	τŽ	133	-1.0476006	435	F7	134	-1.970985-06
13	FZ	13	477	FZ 147	1.02970F-06	480	FZ 1	48	2.05042F-06	489	FZ	151	-1.068955-06	492	57	152	-2.01116c-06
14	FZ	14	372	FZ 115	-2.81305F-07	375	FZ 1	16	-9.24288F-07	378	FZ	117	-3.343055-01	381	57	118	
14	FΖ	14	420	FZ 129	1.04570-07	423	FZ 1	30	3.43588F-07	425	FZ	131	-1.498225-07	429	F 2	132	-2 983375-07
15	FZ	15	282	FZ 87	-4.29167-07	285	FZ	88	-1.41012F-06	288	FZ	89	-3.343055-01	291	F C.	90	-6 656930-01
15	FΖ	15	327	FZ 101	1,46399F-07	330	FZ 1	02	4.81022F-07	333	FZ	103	-2.097505-07	336	57	104	-4.17671=-07
16	FZ	16	192	FZ 59	-6,12365F-07	195	FZ	60	-2.01204F-05	198	FΖ	61	-3.343045-01	201	57	62	-6.656935-01
16	FZ	16	237	FZ 73	1.88226-07	240	FZ	74	6.18458F-07	243	FΖ	75	-2.696795-07	246	57	76	-5.370056-07
17	FΖ	17	102	FZ 31	-9.29548 _E -07	105	FZ	32	-3.05424E-06	108	FΖ	33	-3.34304F-01	111	F7	34	-6.656925-01
17	FΖ	17	147	FZ 45	2.50969F-07	150	FZ	46	8.24609E-07	153	FZ	47	-3.59571-07	156	57	48	-7.16006 - 07
18	FΖ	18	12	FZ 3	-1.28232 _F -06	15	FZ	4	-4.21333E-06	19	FΖ	5	-3.343035-01	21	57	6	-6.656925-01
18	FΖ	18	57	FZ 17	2.92797r-07	60	FZ	18	9.62042E-07	63	FΖ	19	-4.19499F-07	66	£7	20	-8.353405-07
19	FΖ	19	411	FZ 127	-1.00000r+00				-		•	•					
20	FZ	20	363	FZ 113	-1.00000E+00												
21	FΖ	51	273	FZ 85	-1.00000E+00												
22	FZ	22	183	FZ 57	-1.00000F+00												
23	FΖ	23	93 -	FZ 29	-1.00000E+00												
24	FZ	24	3	FZ 1	-1.00000E+00												

TA - TRANSFORMATION MATRIX FROM THE DYNAMICS TO THE STRUCTURES GRID JDTRAN = 2, 79/05/31., SIZE= 24X 534

								<b>ب</b>	AGE 39
*****	******	*******	********	*********	******	******	*****	*****	****
	A								
Α.	AA						•		
AA.	AAA					•	• 444	* FASTOP ***	4
. AA.	AAA						FLUTT	ER AND STREN	IGTH
. A <b>AA</b>	AAA						OPTIM	IZATION PROG	RAM
AAA	AAA						•		
AAA	AAA							** SOP ****	
AAA	AAA			1 (C)			STRENGTH O	TTUTZATION	DRAGRAM
AAA	ΔΔΔ							T THE CHI SOM	FILDONIAM
AAAA	44444							56 4 MADA 66	
ΑΔΔΑ		222	5555				•	·- #3#4	
AAAA		2222	22222				• • • • • • • • • • • • • • • • • • • •	A ANALYETC N	
AAA	***	3333	33333				SIRENGI	T ANALTOIS M	ODOLE
	***	5555	3333				•		
		3333	3333				• • • • • • • • • • • • • •	**********	
<u>д</u> дд	AAA	555	555				•		
AAA	AAA	555	55				•	AIR FORCE	
AAA	AAA	SSS	S				. FLIGHT D	INAMICS LABO	RATORY
AAA	AAA	SSS					•		
AAA	AAA	SSSS					•	MAY 1978	
AAA	AAA	SSSSS	SSSSS				•	· · · ·	4
		5555	555555			A	• • • • • • • • • • • • • •		
			SSSS	·	<b>A</b>	AA			
			SSS		AA.	AAA			
		S	SSS		AA	AAA			
		55	SSS						
		555	555			888			
		555	2222			***			
		2333	2222						
•		3335	5555			***			
		3333 666	33333			AA4 			
		222	2222		AAAA	AAAAA			
					AAAA	AAAAA		1MM MM	M
					AAAA	AAAA	1	1MM MM	M
					-AAA	AAA	· · · · · · · · · · · · · · · · · · ·	амми мми	M
					AAA	AAA	· · · · · ·	Аммм ммм	M
					AAA	<b>AAA</b>	•	аммим мими	M
					AAA	444	1	аммим мими	M
666666666666666666666666666666666666666	666666666666666666666666666666666666666	00000000000000000000	566666666666666666666666666666666666666	3666666666	AAA	444	· · · · · · · · · · · · · · · · · · ·	аммим мими	M
66666666666666666666666666666666666666	366666666666666666666666666666666666666	000000000000000000000000000000000000000	566666666666666666666666666666666666666	j6G	AAA	<b>A</b> 4 A		имими чимими	M
	GGG	000000000000000000000000000000000000000	66666666		AAA	AAA	,	AMM MM MM MM	м
	GG	000000000000000000000000000000000000000	GGG		ΔΔΔ			AMM MM MM MM	M
	G	000000000000000000000000000000000000000				0.00		AMM MANAMA MM	1.1 1.1
•	66	222222222222222222222222222222222222222			-			AMA MANNA MA	M
GRUMMAN	666	2020202020202020		•				anang nangnyana papa Anana Manada nang	17 1.6
AFROSPACE	1000	202000000000000000000000000000000000000				-		1000 000 000 000 Alala lala	179 5.4
				•		÷ .			14
• CURPORATION			•					IMM MMM MM	M
	. 666	60066					1	1MM MM4 MM	M
•	. GGG(	666					)	имм ммм мм	M
•••••		_						ALALA LASASA SALA	
•••••	GGGG	6					,	गरपाण जालामा विकास	24
•••••	GGGG GG	6						1MM MMM MM	M

**

*** ALLOWABLE STRESS MODIFICATION FACTORS ***

LOAD	TENS.	COMP.	SHEAR
COND.	FACTOR	FACTOR	
1	1.0000	1+0000	1.0000
2	1.0000	1-0000	1.0000
3	1.0000	1-0000	1.0000
4	1.0000	1-0000	1.0000

INPUT STRUCTURES GEOMETRY. KARD = CARD NO., NODE = STRUCTURES NODE NO.

KAR	NODE X (KARD)	Y (KARD)	Z (KARD)	18C(KARD+K)+ K=1+6	
	1247.701786	60.000000	56,721653	111	00000010
:	2				00000020
-	3244.273786	60.000000	56,992597	111	00000030
,	4244.273786	60.000000	56.676166	- 111	00000040
	5 5240.845786	60.000000	57.201573	111	00000050
	6240.845786	60.000000	56.523225	111	00000060
	7237.417786	60.000000	57.304413	111	00000070
· · · · ·	8237.417786	60.000000	56.455324	111	00000080
- i	9233.989786	60.000000	57,266178	111	00000090
1/	10233.989786	60.000000	56.476419	111	00000100
- ī	11231-418786	60.000000	57.063794	111	00000110
1	12231.418786	60.000000	56.581896	111	00000120
1	13230.561786	60.000000	56.750000	111	00000130
1	14		201120000	***	00000140
1	15251.663304	55,000000	56.718111	111	00000150
3/	5 16				00000150
1	7 17247 806070	55 000000	57 022010	111	00000130
1	18247.806970	55.000000	56 666940	111	00000170
1	19243.950637	55.000000	57.257998	111	00000190
21	20243.950637	55.000000	56.494889	111	00000200
2	21240.094304	55.000000	57.373688	111	00000210
2	22240.094304	55.000000	56.418504	111	00000220
2	23236.237970	55.000000	57.330675	111	00000230
2	24236.237970	55.000000	56.442235	111	00000240
2	5 25233.345720	55.000000	57.103003	111	00000250
2	5 26233.345720	55.000000	56.560891	111	00000260
2	7 27232.381637	55.000000	56.750000	111	00000230
2	3 28	55000000	20.130000	***	00000210
2	29255.624822	50.000000	56.714569	111	00000290
3	30				00000200
3	31251,340155	50.000000	57.053223	111	00000310
3	2 32251.340155	50.000000	56.657715	<111	00000320
3	3 33247.055488	50.000000	57.314422	111	00000330
3	4 34247,055488	50.000000	56.466553	111	00000340
3	5 35242.770822	50.000000	57.442962	111	00000350
3	5 36242.770822	50.000000	56.381684	111	00000360
3	7 37238.486155	50.000000	57.395172	111	00000370
3	38238.486155	50.000000	56.408050	111	00000380
3	39235.272655	50.000000	57,142212	111	00000390
4	40235.272655	50.000000	56.539886	111	00000400
4	41234.201488	50.000000	56.750000	111	00000410
4	42			•	00000420
4	43259,586339	45.000000	56,711027	111	00000430
4	44				00000440
4	5 45254.873339	45.000000	57.083535	111	00000450
4	6 46254.873339	45.000000	56.648489	111	00000460
4	7 47250.160339	45.000000	57.370847	111	00000470
4	48250-160339	45.000000	56.438217	111	
4	49245.447339	45.000000	57,512237	111	00000490
5	50245.447339	45.000000	56.344863	111	00000500
5	51240.734339	45.000000	57.459669	111	00000510

INPUT STRUCTURES GEOMETRY, KARD = CARD NO., NODE = STRUCTURES NODE NO.

KARD	NODE X (KARD)	Y (KARD)	Z (KARD)	18C(KARD,K), K=1,6	
52	52240.734339	45.000000	56,373866	111	00000520
53	53237+199589	45.000000	57.181421	111	00000530
54	54237+199589	45.000000	56.518881	111	00000540
55	55236+021339	45.000000	56,750000	111	00000550
56	56				00000560
57	57263.547857	40.000000	56,707485	111	00000570
58	58				00000580
59	59258+406524	40.000000	57,113848	111	00000590
60	60258+406524	40.000000	56.639263	111	00000600
61	61253+265191	40.000000	57.427272	111	00000610
62	62253.265191	40.000000	56.409881	111	00000620
63	63248 • 123857	40.000000	57,581512	111	00000630
64	64248 • 123857	40.000000	56,308043	111	00000640
65	65242.982524	40.000000	57.524166	111	00000650
66	66242.982524	40.000000	56.339682	111	00000660
67	67239.126524	40.000000	57.220630	111	00000670
68	68239+126524	40.000000	56.497877	111	00000680
69	69237.841191	40.000000	56.750000	111 I.	00000690
70	70		an i fa sa sa sa		00000700
71	71267.509375	35.000000	56,703943	111	00000710
72	72				00000720
73	73261.939708	35.000000	57,144161	111	00000730
74	74261.939708	35.000000	56,630038	111	00000740
75	75256.370042	35.000000	57.483696	111	00000750
76	76256.370042	35.000000	56.381545	111	00000750
77	77250.800375	35.000000	57.650786	111	00000770
78	78250.800375	35.000000	56.271223	111	00000780
79	79245.230708	35.000000	57.588663	111	00000790
80	80245.230708	35.000000	56.305498	111	000000800
81	81241.053458	35.000000	57,259839	iii	00000810
82	82241.053458	35.000000	56.476872	111	00000820
83	83239.661042	35.000000	56.750000	111	00000830
84	84			•••	00000840
85	85271.470893	30.000000	56,700401	111	00000850
86	86			• • • • •	000000860
87	87265.472893	30.000000	57,174474	111	00000870
88	88265.472893	30.000000	56.620812	111	00000880
89	89259.474893	30.000000	57,540121	111	00000890
90	90259.474893	30.000000	56,353209	111	00000000
91	91253.476893	30.000000	57,720061	111	00000910
92	92253.476893	30.000000	56.234403	111	00000920
93	93247.478893	30.000000	57.653160	111	00000930
94	94247.478893	30.000000	56.271313	111	00000940
95	95242.980393	30.000000	57.299048	111	00000950
96	96242.980393	30.000000	56.455867	111	00000960
97	97241.480893	30.000000	56.750000	111	00000970
98	98			••••	00000980
99	99275.432411	25,000000	56,696859	111	00000090
100	100				00001000
101	101269+006077	25.000000	57.204787	111	00001010
102	102269.006077	25.000000	56,611586	111	00001020

INPUT STRUCTURES GEOMETRY, KARD = CARD NO., NODE = STRUCTURES NODE NO.

KARD	NODE X (KARD)	Y (KARD)	Z (KARD)	18C(KARD+K)+ K=1+6	
103	103262.579744	25.000000	57.596546	111	00001030
104	104262.579744	25.000000	56. 324874	111	00001040
105	105256+153411	25.000000	57.789336	111	00001050
106	106256 . 153411	25.000000	56,197583	111	00001050
107	107249.727077	25.000000	57.717658	111	00001070
108	108249.727077	25.000000	56,237129	111	00001080
109	109244.907327	25.000000	57.338257	111	00001090
110	110244.907327	25.000000	56.434862	111	00001100
111	111243.300744	25.000000	56.750000	111	00001100
112	112	234000000	50.150000	1.1.4	00001120
113	113279.393929	20.00000	56.693317	111	00001120
114	114	200000000	30,173311	1	000011360
115	115272-539262	20.00000	57 225100	111	00001140
116	116272-539262	20.000000	56 602361	111	00001150
117	117265-684595	20.000000	57 452970	111	00001100
110	118265-684505	20.000000	. 54 204529	111	00001170
110	119259.829020	20.000000	57 059610		00001100
120	120258-829029	20.000000	56 160763	111	00001190
121	121251.975262	20.000000	57.782155	111	00001200
122	122251.975262	20.000000	56 202945	111	00001210
123	123246-834262	20.000000	57 377466	111	00001220
124	124246 834262	20.000000	56.413857	111	00001250
125	125245.120595	20.000000	56 750000	111	00001240
125	1252454120545	20.000000	30.130000	114	00001250
120	127283 355446	15 000000	56 600775		00001280
120	128	13.000000	50.009715	111	00001270
120	129276 . 072446	15.00000	57 265412	111	00001250
127	12/2/0-0/2440	12.000000	56 603125	114	00001290
120	131268-789446	15.000000	57 740205	117	00001300
135	132268.789446	15.000000	56 269202	111	00001310
132	133361 - 506446		57 007005	111	00001320
133	134261 506446	12.000000	56 10000	114	00001330
134	135254 223446	15.000000	57 0/4452	114	00001340
135	136254 223440	12.000000	54 140002	111	00001350
130	137249.761106	15.000000	57 414475	111	00001300
130	1372404701190	15.000000	56 202052	114	00001370
1.20	139346.940446	15.000000	56 350000	114	00001300
1.37	140	12+000000	20+120000	111	00001340
140	141286 020013	10 500000	56 404597	133	00001400
141	141200.020013	10.500000	10+000001	111	00001410
142	143270 782200	9 750000	57 207241	111	00001420
144	144279 782200	9 750000	56 592648	111	00001430
144	145274.074668	9.10000	57 409003		00001440
146	146274.074668	9.000000	56 204523	1 1	00001450
147	147272-515240	9.0000000 Q.000000	50+270333 57 7771AE	121	00001400
147	148070-515060	7+000000 0.00000	56 334100	101	00001470
140	149267 190000	7 • 0 0 0 0 0 0 0 · 0 0 0 0 0 0	57 049304	1 2 1	00001480
160	150267-190000	0,000000 0,00000	274900074 56 10//E1	1 1	00001490
121	161264.719249		50.104451	1 4	00001200
155	152264-719260	3+000000 G AAAAAA	56 070759	101	00001210
152	153258.00000	7.000000 0.000000	57 000004	161	00001520
100	T 2 2 C 2 C # 20 0 0 0 0	20000000	JI#703CU4	1 1	00001530

INPUT STRUCTURES GEOMETRY. KARD = CARD NO.. NODE = STRUCTURES NODE NO.

KARD N	ODE X (KARD)	Y (KARD)	Z (KARD)	IBC(KARD,K), K=1,6	
154	154258.900000	9.000000	56.095890	12	00001540
155	155256.921268	9.000000	57.924048	121	00001550
156	156256.921268	9.000000	56,127740	121	00001550
157	157251.073518	9.000000	57,463726	121	00001570
158	158251+073518	9.000000	56,367647	121	00001580
159	159249+124268	9.000000	56.750000	111	00001590
160	160			• • • •	00001600
161	161 242,28	9.0	58.0	11	00001000
162	162 242.28	9.0	56.0	12	
163	163 249.124268	9.0	58.0	1 1	
164	164 249.124268	9.0	56.0	1 1	
165	165 251.073518	9.0	58.0	1 1	
166	166 251.073518	9.0	56.0	12	

			AFFL	I C	U		LOA	0 3			
	D I R E	C O N D			D I R E	C O N D			DIRE	C D D	
N	С Т	1			C T	1 +		A	C T	1	
0	- <del> </del> 	I T	L	N			L	· N	) T		L
ň	1	1	A 1 1	0	1	1	0	0	1	1	• •
E	Ň	Ň	Ď	F	N	Ň	D	Ε	N.	v	D
1	2	1	15250005+02	,		2	22075005+02	•	2		-
1	7	4	-1525000E+02	1	3	2	+225/300E+02	1	5	د ٥	+9950000C+01
2	2	1	-2130000E+02	2	2	2	31050005+02		3	2	.09200005+01
3	7	4	6140000E+01	0	3	0	•3193000E+02	5		0	+6020000E+01
ŝ	7	. 1	-2890000E+02	Š	3	2	43350005+02	5		3	.99200005+01
ភ្	7	4	-1474000E+02	ō	. J	0	0.	0	<b>.</b>	ő	
7	วิ	i	-3655000E+02	7	3	2	5482500F+02	. 7	2.	3	-8820000E+0]
7	7	. <u>i</u>	2339000E+02	ò		ñ	0.	,		0	A.
ġ	3	i	.3041000E+02	, 9	3	ž	4561500F+02	, 9	3	š	+5610000E+01
9	Ž.	4	2094000E+02	Ó	u	ō	0.	Ó		ō	0.
11	3	1	.9890000E+01	11	3	2	.1483500E+02	11	3	3	•2200000E+01
11	Z	4	670000E+01	0		0	0.	0		0	0.
15	3	1	.2536000E+02	15	3	2	.3804000E+02	15	3	3	+1539000E+02
15	Z	4	•2660000E+01	0		, 0	0.	0		0	0.
17	3	1	•2183000E+02	17	3	2	.7774500E+02	17	3	3	-2403000E+02
17	Z	4	9700000E+01	0		0	0.	0	1	0.	0.
19	3	1	•6665000E+02	19	3	2	.9997500E+02	19	3	3	+2354000E+02
19	Z	4	2747000E+02	0		0	0.	0		0	0.
21 21	3	1	+9253000E+02	51	3	2	.1387950E+03	21	3	3	+2359000E+02
21	Z	4	-,5665000E+02	0		0	0.	0		0	0.
23	3	1	•8882000E+02	23	3	5	.1332300E+03	23	3	3	•1987000E+02
23	Z	4	6002000E+02	0		0	0.	· 0		0	0
25	.3	1	+4764000E+02	25	3	2	.7146000E+02	25	3	- 3	•1009000E+02
25	Z	4	3334000E+02	0		0	0.	0		0	0.
27	3	1	•9350000E+01	27	3	2	.1402500E+02	27	3	3	•2080000E+01
27	Z	4	6330000E+01	0		0	0.	0		0	0.
29	3	1	-3500000E+05	59	3	5	.4800000E+02	29	3	3	•1946000E+02
29	Z	4	-3420000E+01	0		0	0.	0		0	0.
31	3	1	•6965000E+02	31	3	S	.1044750E+03	31	3	3	•3360000E+02
31	Z	4	1037000E+02	0		0	0.	0		0	0.
33	3	1	.9450000E+02	33	3	S	.1417500E+03	33	3	3	•3413000E+02
33	Z	4	3741000E+02	0		0	0.	0		0	0
35	3	1	-1214900E+03	35	3	2	.1822350E+03	35	3	3	•3308000E+02
35	Z	4	7008000E+02	0	-	0	0.	0		0	0.
37	3	1	•1309000E+03	37	3	2	.1963500E+03	. 37	3	3	•2874000E+02
31	2	4	8957000E+02	0	_	0	0.	0	_	0	0.
39	3	1	•/551000E+02	39	. 3	2	.1132650E+03	39	3	3	+1548000E+02
39	2	. 4	5340000E+02	0	-	0	0.	0	-	0	0.
41 71	5	1	+1/44000E+02	41	3	2	*501000F+05	41	3	3	•3540000E+01
41 43	2	4	123300000+02	<b>د</b> ،	2	0	V	0	~	0	U+
43		1	-31CUUUUETUC	4.3 A	3	<i>C</i>	*2280000E+05	43	5.	5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
			· · · · · · · · · · · · · · · · · · ·					11			<b>**</b> .

				. 1 C	U		LOA	0 5								
N O D E	D I R E C T I O N	C O N D I T I O N	L O A D	N O Đ	Ð F C T I O N	C N D I T I O N	ե 0 Α D	N O D E	DIRECTION	C 0 N D I T I 0 N	L O A D					
45	3	1	.8563000E+02	45	3	2	-1284450F+03	45	3	3	+4041000F+02					
45	Z	4	1458000E+02	0		0	0.	0		ñ	0.					
47	3	1	.1090200E+03	47	3	2	.1635300E+03	47	3	3	-3998000F+02					
47	Z	. 4	4192000E+02	0		0	0	0	-	ō	0.					
49	3	1	+1472700E+03	49	3	2	.2209050E+03	49	3.	. 3	+4018000E+02					
49	Z	4	8480000E+02	0		0	0.	0		0	0.					
51	3	1	.1533700E+03	51	3	2	.2300550E+03	51	3	3	+3460000E+02					
51	Z	4	1030500E+03	0		0	0.	0		0	0.					
53	3	1	.9270000E+02	53	3	2	.1390500E+03	53	3	3	•1897000E+02					
33 	Z	4	6624000E+02	0		0	0.			0	0.					
55	3	1	-2348000E+02	55	3	2	.3255000E+05	55	3	3	•4460000E+01					
27	5	4	1747000E+02	0	·	0	0.	0		0	0.					
57	3	1	-3960000E+02	57	3	2	.5949000E+02	57	3	3	+2459000E+02					
50	- 2 -	- 4	•5210000E+01	U 		0	0.	_0		0.	0.					
50	נ. ד	1	- 3110000E+02	57	3	· 2	+1496400E+03	59	3	3	+4502000E+02					
61	2		11990005+02	0		0	0.	0	<u>.</u>	• 0	0•					
61	2	4	- 4166000E+03	61	3	2	•1/82000E+03	61	3	3 -	+4554000E+02					
63	· ~ ·	1	16429005+02	23	-	U 2	V	0	_	0	0.					
63	7	ż	- 9440000E+02	. 0.	3	2	+2464300E+03	63	3	3	+4491000E+02					
65	3	i	1757400F+03	<u> 45</u>	2	2	26261005+02	0	-	0	0.					
65	7	4	1193700E+03	.05		<u>ک</u>	0.000000000000000000000000000000000000	05	د	3	+3902000E+02					
67	3	i	-1044700E+03	67	้า	2	15670505+02	- U	- ·	0	U+ 01570005:00					
67	7	. 4	7424000E+02	0	4	ñ	A.			3	+212/000E+02					
69	3	1	.2571000E+02	-69	3	2	38565005+02	- 69	2	2						
69	Z	4	1860000E+02	0	4	õ	0.	0,	3	2	+21200005+01					
71	3	1	.3997000E+02	71	3	Ž	5995500E+02	71	3	3	+2625000E+02					
71	Z	4	.8240000E+01	0		0	0	0	-	õ	0.					
73	3	1	.8751000E+02	73	3	2	.1312650E+03	73	3	3	+4886000F+02					
73	Z	4	+4900000E+00	0		0	0.	0	-	0	0.					
75	3	1	+1250800E+03	75	3	2	.1876200E+03	75	3	3	+4895000E+02					
75	Z	4	4183000E+02	0 -		0	0.	0		0	0.					
77	.3 .	1	.1807400E+03	77	3	2	.2711100E+03	77	3	3	+4913000E+02					
17	Z	4	1044400E+03	0		0	0.	0		0,	0.					
79	3	1	-2044800E+03	79	3	2	.3067200E+03	. 79	3	3	+4242000E+02					
79	.2	4	1449500E+03	0		0	0.	0		0	0.					
01		I.	+1230600E+03	81	3	2	+1845800E+03	81	3	3	•2362000E+02					
87 01	2	4	9113000E+02	0	-	. 0	0.	0		0	0.					
6.0 8.0	3. 7	1	+2002000L+02	-83	3	S	.4278000E+02	83	3	· 3	+5690000E+01					
85	2	4	2000000000000	0	-	0	0.	0		.0	0.					
85	. 7	4	+40JJUUUE +UZ	85	3	2	+6952500E+02	85	3	3	+2750000E+02					
				· · · · · · · · · · · · · · · · · · ·		13	14.	<b>A</b>		~	<b>D</b>					
			A	Ρ	Ρ	L	I	ε	D		LOA	D	S			
------	----------	---------	-----------	--------------	--------	------------	---------	------------	--------	------------	--------------------	----------	----------	------------	----------	-----------------------------------------
	0	· .							~					•	~	
	5								0	C o				9	L A	
	-	N							1	() N				1	9	
	Е	אי ה							р Г	<u>- N</u>				2	N N	
	E C	T T							t.	0 T				Ĕ	9	
N	T	Ť		1					÷	1 T	· •			د ج	1	•
0	Ť	, i		<u> </u>			, r	N N	1	, r			N	1	· · ·	L ·
ñ	0							,	1	1	0		0	1	1	0
F	Ň	N		<u>п</u>			1. E	2	N	N	A		U F	- 5 - N	- U N	A
-							c c				U .		L.		•	U
87	3	1	•9	4060	00E+	02	E	37	3	2	.1410900E+0	)3	87	- 3	3	•5175000E+02
87	Z	4	1	0500	00E+	01		0		0	0.		0		0	0.
89	3	1	•1	2300	00E+	03	۴	39	3	2	.1845000E+0	)3	89	3	3	+5183000E+02
89	Z	4	3	3600	00E+	02		0		• 0	0.		0		0	0•
. 91	3	1	•1	7471	00E+	03	ç	<b>91</b>	3	2	.2620650E+0	3	91	3	3	•5199000E+02
91	2	4	9	1/90	00E+	02		0		0	0.		0		0	0.
93	3	1	•2	1956	00E+	03	Ċ	93	3	2	.3293400E+0	)3 .	93	3	3	+4499000E+02
93	Z	. 4	1	5677	00E+	03		0	· _	. 0	0.		0		0	0.
95	5	ł	• 1 *	4121	002+	0.3	Ċ	,5 ,	3	2	.2119050E+0	)3	95	3	3	+2517000E+02
73	2	4		7007	UUE TO	0.3	. ,	.7	2	0	U		0	_	U Q	U•
97	3	1		1000	000	012 0.2		41 0	3	2	*2205000F+0	12	97	5	3	+010000F+01
91	2	1	-•<	7330 6030	002+	20	·		-	2	V		0	~	. 0	0.
77	<u>ר</u>	4	• 43	0700	DOLT	0 C ·		47 0	. 5	2	.00/45UUE+U	12	99	3	3	•2834000E+02
39	2		• "	07UU 1060	DULT		•	0.	· _	U	U.		0		Ŭ	0.
101	- 5	1	• 1	1000	DOL +	0.3	10	)1	3	2	*1020500F+0	13	101	3	3	+53470002+02
101	2	4		0340	UUE +	20	•	0.		0	0.		0	<u>.</u>	. 0	0.
103	3	1	• 1	3915	002+	03	1(	13	3	2	.2096250E+0	)3	103	3	3	•5433000E+02
103	2	4	4	1460	00E+	20	•	0	-	. 0	0.			_	0	0.
105	3	1	•1	9172	00E+	0.3	10	35	3	2	2875800E+0	13	105	3	. 3	-5408000E+02
105		4	-•1	00/9	002+1	03			-	0	<b>U.</b>		0	-	0	0.
107	5	1	•2	0/5/	00E+	0.3	10	37	3	5	.3113550E+0	)3	107	3	. 3	+4689000E+02
107	2	4	<b>*•</b>	3730 1011	002+	03	•	0		0	0.		0	-	, 0	0.
109	5	1	• •	1011	002+0	03	1(	19	.3	2	.20/4650E+U	13	109	3	3	+2632000E+02
109	5	4		4000	005-	0-3 ~ 7		0	-	0	U. 	· -		~	U U	0.
111	3	1	- 3	0770	005-	20	1	11	3	2	• <u></u>	12	111	د	3	+5410000E+01
112	2	7	-• 24	0770	000	02 02		17	2	2		<b>.</b>	112	2		0.0000000000000000000000000000000000000
112	37	1	• 3	721U	DOL	42 42	4	0 1.3	3	<u>د</u>	.3090300E *0		113	3	3	•289000E+02
115	2		• 1	4940 A904	002+	02	1.	Š	-	2	16741005+0		115	<b>.</b>	2	0.
115	37	4	- 1	1250	000	03	1	12	3	2	.10341002+0		112		3	+5500000E+02
117	2	7	· - • 1	1230	OOL V	02	1 1	.7	2	2	21520045+0	10	ט דוו	· •	2	U
117	.) 7	4	- 4	4332	002+	0.3	. 1	۱ <u>٬</u>	3	2	•CIDCOULTV	13 .	117	3	2	+5542000E+02
110	2	- 1		1540	005-	02	1		-	2	222552005+0	1-	110	•	0	
110	3 7		- °C	2000	00E+	6.3	• .	۲ <u>۶</u>	3	2	• 32 352002 +0	/3	119	3	3	+55950002+02
121	â	1	- 1	2263	BAF+	- F 0	13		2	2	2329454546	12	121	2	2	0.0360005+03
121	7	4	-,1	5339	00F+	03	+ 4	Ō	J	Ő	+JJJJ7+JUE ▼U ∩		1 - 1	3	2	++030000E+UE
123	3	1	_ 1	2988	00F+	03	1	23	٦	2	19482005+0	13	122	2	2	27010005402
123	7	Â.	0	1930	00E+	02	• (	õ		2	A		1	сл.	0	+2101000C+0E
125	3	1		4820	00F+	02	1:	>Š	3	2	5223000F+0	12	125	з	2	-66300005+03
125	7	4	2	5890	00E+	02	• (	õ	-	ō	0.				0	+5050000L+01
127	3	i	.2	5730	00E+	02	1:	7	3	2	3859500F+0	12	127	3	2	- 2764000F+02
127	Ž	4	•2	7170	00E+	50	- (	0	-	Ō	0.	-		5	0	0.

			A P	Р	L.	I	E	D		LOA	DS			
	D	с						n	r			D	r	
	ř	ŏ						T	õ			1	ň	
	R	Ň						ь о	Ň			2	Ň	
	F	D						Ē	n.			F	'n	
	Ċ	ī						ř	ī			ř	ĩ	
N	Ť	Ť	L			N		Ť	Ť	1	N	Ť	ŕ	<b>1</b> ¹
0	Ť	Í	ō			0		i	İ	ñ	ö	Ť	Ť	õ
D	ò	ō	Ā	•		ň		<u>.</u>	ō	Ă	ñ	ò	ò	Ň
E	N	N	D			E		Ň	Ň	D	Ē	Ň	N.	â
129	3	1	.93370	00E+0	2	129	9	3	2	.1400550E+03	129	3	3	•5604000E+02
129	Z	4	.849000	00E+0	1		0	-	Ō	0.	0	-	ō	0.
131	3	1	.131440	00E+0	3	13	1	3	2	1971600F+03	131	3	3 Å	+6009000F+02
131	7	4	263300	00E+0	2		Ō	-	ō	0.		-	õ	0.
133	3	1	.233210	00E+0	3	13	3	3	2	-3498150E+03	133	3	š	•6131000E+02
133	7	4	139000	00E+0	3	(	0		õ	0.	0	-	ō	0.
135	3	1	.273280	00E+0	3	13	5	3	2	4099200F+03	135	3	3	-5321000F+02
135	Z	4	200810	00Ē+0	3		0		0	0	0		0	0.
137	3	1	.16795	00E+0	3	13	7	3	2	.2519250E+03	137	3	3	+3145000E+02
137	Z	4	125980	00E+0	3	· · · (	0		0	0.	0	-	0	0.
139	3	1	.417000	00E+0	2	139	9	3	2	.6255000E+02	139	3	3	•8000000E+01
139	7	4	308700	00E+0	2		0		0	0.	0		0	0.
143	3	1	•50600	00E+0	2	14	3	3	2	.3135000E+02	143_	3	3	•5548000E+05
143	Z	4	•22750	00E+0	2	(	0		0	0.	0		0	0.
147	3	1	.411200	00E+0	2	14	7	3	2	•0108000E+02	147	3	3	•1993000E+02
147	2	4	- • 593000	00E+0	1	(	0		0	0.	0		0	0.
151	3	1	.411200	00E+0	2	15	1	3	2	.6168000E+02	151	3	3	•1993000E+02
151	Z	4	-,593000	00E+0	1	(	0		0	0.	0		0	0.
155	3	1	.105090	00E+0	3	155	5	3	2	.1576350E+03	155	3	3	•1994000E+02
155	7	4	783000	00E+0	2	(	0		0	0.	0		0	0.
157	3	1	.863200	00E+0	2	15	7.	3	2	.1294800E+03	157	3	3	+1495000E+02
157	Z	4	672200	00E+0	2		0		0	0.	0		0	0.
159	3	1	.29690(	D0E+0	2	159	9	3	2	.4453500E+02	159	3	3	•4980000E+01
159	Z	4	234400	00E+0	2	(	0		0	0.	0		0	0.
0		0	0.				0		0	0.	0		0	0.

		RES	SULTANTS OF APPLIED LOA	DS		PAGE	49
LOAD CONDITION	FX	FY	FZ	мх	му н		MZ
1	0.	0.	7.124970E+03	2.247683E+05	-1.796011E+05	0.	
2	0.	0.	1.068745E+04	3.371522E+05	-2.694014E+05	0.	
3	0.	0.	2.209140E+03	6.969502E+04	-5,645956E+05	0.	
4	0.	0.	-3.562040E+03	-1.123602E+05	8.821496E+05	0.	

١

•

57 438 .

## MATERIAL PROPERTIES

## ISOTROPIC MATERIALS

MAT. NO.	DENSITY	MIN. GAGE	MAX. GAGE	ε	NU	FT	Fc	FS	MATERIAL
1	1.0000E-01	1.0000E-02	0.	1.0500E+07	•300	6.7000E+04	5.7000E+04	3,9000E+04	ALUMINUM
2	2.8500E-01	1.0000E-02	0.	2.9500E+07	•300	2.2000E+05	2.1300E+05	1.2900E+05	STEEL
3	1.6000E=01	1.0000E-02	0.	1+6000E+07	• 300	1.3000E+05	1.2600E+05	7-6000E+04	TITANIUM 6-4
4	1+1600E-03	2.5000E+00	0.	8.7000E+04	• 360	3.7500E+02	3.750nE+02	3.00002+02	CORE-FWD SPANWIS
5	1.1600E-03	5.0000E+00	5.0000E+00	3+3000E+04	• 360	3+7500E+02	3.7500E+02	1.5000E+02	CORE-FWD STRMWIS
6	1.1600F-03	2,5000E+00	0.	8,7000E+04	.360	3.7500F+02	3,7500F+02	3,0000E+02	CORF-AFT SPANWIS
7	1,1600F-03	5,0000E+00	5.0000E+00	3.3000E+04	.360	3.7500F+02	3,7500F+02	1,5000E+02	CORF-AFT STRMWIS
8	5.7000E-02	1.0000E-02	0.	2.8500E+06	.778	1.7700E+05	1.77002+05	5.0000E+04	SPAR WEB GR/EP
9	1.3000E+00	1.0000E-01	1.0000E-01	1.0000E+06	.360	3.0000E+03	3.0000E+03	1.8500E+02	PSEUDO RIB RODS
11	1.0000E-01	8.0000E-02	0.	1.0500E+07	.330	6.5000E+04	5.7000F+04	3.9000E+04	2024-T81 RIB
12	1.5900E-03	2.5000E+00	0.	1.1424E+04	• 360	5.7500E+02	5.7500E+02	4.2500E+02	5.5 CORE LE-SPAN
13	1.5900E-03	5.0000E+00	5.0000E+00	4.6240E+04	.360	5.7500E+02	5.7500E+02	2.2500E+02	5.5 CORE LE-STRM

 $\cap$ 

## MATERIAL PROPERTIES

# COMPOSTTE MATERIAL NO. 17 (ND. OF LAYERS = 3)

LAYER NUMBER	1	2	3	4	5	* 1919	6
MATERIAL	THORNEL 300	THORNEL 300	THORNEL 300				
FIBER ANGLE	45.000	0.000	-45.000	0.000	0.000		0.000
BAL. LAYER CLUE	1 .	0	1	0	0		
INI. NO. OF LAM.	1	1	1	0			U
MIN. NO. OF LAM.	1	1 · · · · · · · · · · · · · · · · · · ·	j	0			0
MAX. NO. OF LAM.	0	0	1 0	0	U		0
LAMINA THICKNESS	5.00000E-03	5-00000E-03	5 000005-03	0	U		0
DENSITY	5.70000F-02	5.70000E-02	5 700005-00	0.	0.	. 0,	• 1
E11 .	2.01000F+07	2.010005.07	3.0300002-02	U.	0.	0,	•
E22	1.60000E+06	1 600005.00		· · · · · · · · · · · · · · · · · · ·	0.	<b>O</b> (	•
G12	9 000005+05	1.0000000000	1.60000E+06	0.	0.	0,	•
NH12	204005-00	0.VUUUUE+05	8.00000E+05	0.	0.	0,	•
EXT	+294002+00	+29400E+00	•29400E+00	0.	0.	0	
	2.12000E+05	2+12000E+05	2.12000E+05	0.	0.	Ō	
FAL	1.85000E+05	1.85000E+05	1.85000E+05	0.	0.		•
62	1.00000E+19	1.00000E+19	1.00000E+19	0.	0.	0	
GZ	1.00000E+19	1.85000E+05 1.00000E+19	1.85000E+05 1.00000E+19	0. 0.	0 • 0 •	0.	

# COMPOSITE MATERIAL NO. 18 (NO. OF LAYERS = 3)

LAYER NUMBER	1	8	3		4			5		6
MATERIAL	GR/EP AFT SKIN	GR/FP AFT SKIN	GRIEP AFT SKIN			)				
FIBER ANGLE	45.000	0.000	-45 000		0 000					- <u>-</u>
BAL. LAYER CLUE	1	0			0.000		0	•000		0.000
INI. NO. OF LAM.	1 1	1	1		U			0		0
MIN. NO. OF LAM.	i -				0			0	•	0
MAX. NO. OF LAM.	ō	1	1		0			0		0
LAMINA THICKNESS	5-000005-03	5.00006-03	5 000005-00	•	0	• •		0		0
DENSITY	5.700005-02	5.7000000-03	5 3000000000	· · · ·			0.		0.	
E11	2.01000F+07	2 010005.07	3.0100002-02	<b>U</b> .			0.		0.	
E22	1.60000F+06	1 600005+04		· · · ·			0.		0.	
G12	8-000005+05	8.0000000000	1.0000000000	· • •			0.		0.	
NU12	29400E+00	294005+03	8.000002.05	0.			0.		0.	
FXT	2.120005+05	2 120005.05	•29400E+00	0.			0.		0.	
FXC	1-85000E+05	1 950005.05	2+12000E+05	0.			0.		0.	
67	1 000005+19	1.000002+05	1+85000E+05	0.			0.		0.	
~ •	1.000000000	1+000005+19	1.00000E+19	0.			0.		 <u>م</u> .	

		POINT A		POINT 3					
ZONE	×	Y	2	X	Y	Z			
1	237.418 86	00060.000	.001	.304	264.718	800009.00			

COORDINATES OF POINTS DEFINING REFERENCE DIRECTIONS FOR PROPERTY AXES

0

 $\sim$ 

4301	4 8	<b>k</b>	11	4	3	1		.01						
6302	6 8	5	11	4	3	6	5	-01						1
6303	68	1	11	-6	5	8	7	.01					÷.,	2
6304	6 8	L É	11	8	7	10	9	.01						3
6305	6 8	, i	11	10	ġ	12	11	.01						
4306	4 8	;	li	12	11	13	•••	.01						2
4001	4 7	,	- 1î	4	3	1		2.5					0010	
4001			52					2.5	2.5					
6002	67		11	4	3	6	5	2.5	2				Colo	
6005			52					2.5	2.5				- Colo	
6003	67		11	6	5	8	7	2.5	2				Cote	
6003			52					2.5	2.5				Colo	5 5
6004	65		11	8	7	10	. 9	2.5	2.00				CRIN	7
6004			52					2.5	2.5				CR10	i n
6005	65		11	10	9	12	11	2.5	2.00		•		Cola	α · ·
6005	:		52			1.1		2.5	2.5				COLO	
4006	45		11	12	11	13		2.5					CDID	11
.4006			52					2.5	2.5				0100	12
1001	19		11	3	4			.1	2				- BUD	12
1005	19		11	5	6			1					NUD	ρ Ω
1003	19		11	- 7	8			.1						0
1004	1.9		11	9	10			.1 -						10
1005	1 9		11	11	12			.1						10.
6011	6 6		11	4	18	3	17	3.0		•			S.D.	12
6011			52					3.0	3.0				5P 6P1A	12
6012	6 6		11	6	20	5	19	3.1					CD ·	12
6012			52					3.1	3.1				SPIA	12
6013	64		11	8	22	7	21	3.2					SP	14
6013			52					3.2	3.2	1. Star 1.		- e	SPIA	14
6014	6.4		11	10	24	9	23	3.3					SP	15
6014			52					3.3	3.3				SPIA	15
6015	64		11	12	26	11	25	1.7	•				SP	16
6015			52	÷ .				1.7	1.7				SP10	15
9013	68		11	8	22	7	21	.01	- · ·				SP20	16
5001	518		11	3	17	1	15	.015	.015				TUP.	17
5001			61					2	2		45.0		1	••
5001			71	_				2	2		-45.0		1	
5002	518		11	5	19	3	17	.015					i	18
5002			61					3	3		45.0		ì	• -
5002			71	_				. 3	3		-45.0		1	
5003	518		11	7	21	5	19	.015						19
5003			61					3	3		45.0		1	- ·
5003			65	•				2	2		0.0			
5003			71					3	3		-45.0		1	
5004	517	. Ť	11	7	21	9	23	.015					- · .	20
5004			61					. 2	2		45.0		1	
5004			$\mathcal{I}$	~				2	2		-45.0		1	
5005	517		11	.9	23	11	25	•015					1	21
5005	517		11	11	25	13	27	•015					1	22
5011	218		11	4	18	1	15	.015		· .			ILOW	23
2011			01					2	. 2		45.0		1	
2011			1					2	-2	1. A. S.	-45.0		1 .	

PAGE 54

5012	518	11	6	20	4	18	•015			1 24
5012		61					3	3	45.0	1
5012		71					3	3	-45.0	1
5013	518	11	8	22	6	20	.015			25
5013		61					3	3	45.0	1
5013		65					4 •	4	0.0	-
5013		71					3	3	-45.0	1
5014	517	11	8	22	10	24	.015	•		- 26
5014		61	_		•		2	2	45.0	1
5014		71					2	2	-45-0	1
5015	517	11	10	24	12	26	.015			1 27
5016	517	11	12	26	13	27	.015			1 28
4021	4 7	ii	18	17	15		5.0			
6022	67	11	18	17	20	19	5.0			30
6023	6 7	ii	20	iò	22	21	5.0			31
6024	6 5	11	22	21	24	23	5.0			32
6025	6 5	11	24	23	26	25	5.0			33
4026	45	11	26	25	27	<b>.</b>	5.0		. •	33
1011	1 9	ii	17	18				•		P00 35
1012	1 9	ii	19	20			ii			36
1013	1 9	11	21	22			11			37
1014	1 9	11	23	24						34
1015	1 6	11	25	26			•••	•** 		20
6031	6 6	11	1.8	20	17	21	3 3			50 40
6031	0.0	52	10	32	11	31	3.3	<b>,</b> ,,	,	5P 40
6031	6 6	11	20	34	10	33	3.4	3.3		SF1040
6032	00	- 1 5 -	20	34	17	33	3.4	2 4		57 41
6032	6.4	11	22	34	21	35	3+4	3+4	•	SP1041
4033	04	41 60	~~	30	¢ 1	35	3.5			5F 42
6033		32	34	20	~~	37	3.5	3.3		SP1042
60.34	04	50	24	38	23	31	3.0			SP 43
6034	<b>c</b> i	32	24		25	20	2.0	- 3 <b>,</b> 0		591043
6035	04	. 50	20	40	23	39	1.9			SP 44
0033	4 0	32	22	34	21	35	1.9	1.9		571044
90.33	6 8 510	11	17	30	21	35	.01			SP2044
5021	218	11	17	31	12	24	.012	2	(5.0	10P 45
5021		71					2	2	45.0	1
5021	510	(1	10			- 1	~ ~ ~	2	-45+0	1
5022	218	11	19	3.5	17	31	•015	-		1 46
5022		21					. 3	٤	45+0	1
5022	510	/1	~ `	-			3	٦	-45.0	1
5023	218	11	21	35	13	33	*012			47
5023		91					3	3	45.0	1
5023		25					4	4	0.0	
5023	<b>F</b> ) <b>7</b>	(1	21			~ 7	3	ل ا	-45.0	1
5024	517	11	21	35	23	31	.015			48
5024		61					3	3	45.0	1
5024		65					3	3	0.0	
5024	~	$\overline{\mathbf{n}}$	• •				3	3	-45.0	1
5025	517	11	23	37	25	39	.015			1 49
5026	517	11	25	39	27	41	.015			1 50
5031	518	11	18	32	15	29	.015			1LOW 51
5031		61					2	2	45.0	1

5031	- 71					2	2	-45-0	1	
5032 518	11	20	34	18	32	.015			* *	. 52
5032	61						. 3	45 0	1	36
5032	71					ี้ จั	2	-45:0	1 1	
5033 518	11	22	36	20	34	015		-+3.0	1	
5033	61		50	20	34	• • • • • •	2			23
5033	60							45.0	1	
5033	71					0	6	0.0		
5033 513		30	•	~		3	· 3	-45.0	1	
5034 517	41	22	.36	24	38	+015	-			54
5034	01					3	· 3 · ·	45.0	1	
5034	05					3	3	0.0		
5034	/1					3	3	-45.0	1	
5035 517	- 11	24	38	26	40	.015			1	55
5036 517	11	26	40	27	41	.015			i	56
4041 4 7	.11	32	31	29		5.0			RIB	57
6042 6 7	11	32	31	34	33	5.0				58
6043 6 7	11	34	33	36	35	5.0		•		20
6044 6 5	11	36	35	38	37	5.0			1	- 57
6045 6 5	11	38	37	40	39	5.0		•		5U 41
4046 4 5	11	40	39	41		5.0				21
1021 1 9	11	32	- 31	•					- 00	02
1022 1 9	11	34	33			• • •			ROD	53
1023 1 9	11	36	35			1.				64
1023 1 9	11	39	27			• 1	•			55
1024 1 9	11	20	37			• • 1			1.1.1	56
1023 1 9	11	- 40	39			•1				57
0021 0 0	11	32	. 46	31	45	3.7			SP	68
6051	52				_	3.7	3.7		SPIO	68
6052 6 6	- 11	34	48	33	47	3.8			SP	69
6052	52					3.8	3.8		SP10	69
6053 6 4	11	36	50	35	49	3.95			SP	70
6053	52					3,95	3,95		SPID	70
6054 6 4	11	38	52	37	51	4.1			SP	71
6054	52					4.1	4.1		5010	71
6055 6 4	11	40	54	39	53	2.1			SP 10	72
6055	52					2.1	21		CD1A	72
9053 6 8	11	36	50	35	49		c. • *		5030	72
5041 518	11	31	45	29	43	015			SPEU	72
5041	61							4 <b>F</b> 0	100	13
5041	71					2	<b>6</b>	42.0	1	
5042 518	. 11	.33	47	21	45	015	. 2	-43.0	1	
5042	- 61				45	•012		· · · · · · · · · · · · · · · · · · ·	1 .	74
5042	71					L L	5	45.0	1	
5042	11	25					. 3	-45+0	1	
5043 518	11	32	49	33	47	•015				75
5043	01					- 3	- s <b>3</b>	45.0	1	
5043	05					6	6	•0	• •	
5043	11					3	3	-45.0	1	
5044 517	11	35	49	37	51	.015		-		76
5044	61					3	3	45.0	1	
5044	65					6	6	0.0	-	
5044	71					3	3	-45.0	1	
5045 517	11	37	51	39	53	.015			i	77
5045	61					3	7	45.0	1	- <b>F</b> F
	<b>-</b>						· •		1	

PAGE 56

.

 $\sim$ 

١

5045		71					3	3	-45.0	1	
5046	517	11	39	53	41	55	.015	5		1	70
5051	518	11	32	46	29	43	.015			1.04	70
5051		61			_		2	2	45.0	1.00	19
5051		71					2	2	-45.0	1	
5052	518	11	34	48	32	46	.015	-	-43.0	1	80
5052		61		•••				7	45.0	1	50
5052		71					ĩ	3	-45-0	1	
5053	518	11	36	50	34	48	.015	5		1	01
5053		61			•		3	3	45.0	,	51
5053		65					10	10	43.0	1	
5053		71						• • •	-45.0	,	
5054	517	11	36	50	38	52	.015	5	-43+0	L	
5054		61		20		22		2	45 0	,	56
5054		65					6	6	43+0	1	
5054		71					้า	ĥ	-45 0	•	
5055	517	31	38	52	40	54	.015	5	-43+0	1	
5055		61		26	40	34	-013	2	45 0	1	53
5055		7i					2	2	-45.0	1	
5056	517	11	40	54	41	55	-015	-	-4510	1	84
4061	47	11	46	45	43		5.0			¹ 019	85
606S	67	11	46	45	48	47	5.0				86
6063	67	ii	48	47	50	49	5.0				50
6064	6 5	11	50	49	52	51	5.0				80
6065	6 5	li	52	51	54	53	5.0				20
4066	45	īī	54	53	55		5.0				37
1031	19	īi	46	45	•••		1			000	21
1032	19	11	48	47						ROD	22
1033	19	11	50	49							32
1034	19	11	52	51						•	94
1035	19	li	54	53			li				24
6071	66	11	46	60	45	59	4.0			50	96
6071		52					4.0	4.0		SPIA	96
6072	6 6	11	48	62	47	61	4.15			SP	97
6072		52					4.15	4.15		SPIN	97
6073	64	11	50	64	49	63	4.3			SP	99
6073		52					4.3	4.3		SPIN	<b>6</b> 8
6074	64	11	52	66	51	65	4.45	•		SP	áa
6074		52					4.45	4,45		SP10	<u>.</u>
6075	64	11	54	68	53	67	2.3	•••		SPI	00
6075		52					2.3	2.3		SPII	00
9073	68	11	50	64	49	63	.01			SP21	00
5061	518	11	45	59	43	57	.015			100	101
5061		61					2	2	45.0	1	
5061		71					2	ž	-45.0	i	
5062	518	11	47	61	45	59	.015			ī	102
5062		61					3	3	45.0	i	
5062		71					3	3	-45.0	ī	
5063	518	11	49	63	47	61	.015			•	103
5063		61					3	3 ·	45.0	1	
5063		65					8	8	• 0	-	
5063		71					3	3	-45.0	1	
										-	

PAGE 57

1

 $\frown$ 

ø

5064	517	11	49	63	51	65	•015			·	104
5064		61					3	3	45.0		
5064		65					. 9	9	0.0		
5064		71					3	. 3	-45.0	]	
5065	517	11	51	65	53	67	.015			1	105
5065		61					6	6	45.0	1	
5065		71					6	6	-45.0	<b></b>	ł
5066	517	11	53	67	55	69	.015			1	106
5066		61					5	5	45.0	1	L
5066		71					5	5	-45.0	· 1	
5071	518	- 11	46	60	43	57	.015			1	LOW 107
5071		61					2	2	45.0	. 1	
5071		71					2	- Z	-45.0	1	
5072	518	11	48	62	46	60	.015	-			108
5072	510	61		02			3	3	45.0		
5072		71					3	3	-45.0		
5072	510	11	50	64	48	62	-015	-			109
5073	210	61	50	04	40		-015 2	7	45-0		
5013		65					15	15	0.0	. · · •	
- 5073		71						13	-45.0	1	n de la companya de l El companya de la comp
5075	517	11	50	61.	52	66	. 015	1			110
5014	517	4 <u>1</u> 6 1	50	04	52	00	•012		45.0		110
2014		45	2 A 1	1.1				10	4.0		1. A.
5014		71					10	10	-45.0		
5074	517		53		E.A	40	015	<b>_</b>	-4340		
5015	211	41	52	00	2.4	00	+012	Ē	45 0		111
5015		21			·				43+0		
5015	<b>C1</b> -	11	E.		==	40	016		-43+0		112
5010	211	41	34	60	22	.07	+010		45 A		1 116
50/0		01					3		43+0		
5076			60	50	c7		5 0	. 3	#43+U		078 112
4081	4 [	11	00	59	51	~	5.0				RID 113
6082	0/	11	60	59	-02	10	5.0				114
6083	67	11	02	61	04	03	5.0				113
6084	0.5	11	-04	63	00	60	5.0		•		110
6085	65	11	00	65	68	01	5+0				. 117
4086	4 5	11	68	67	69		5.0				110
1041	1.9	11	60	59			•1		· · · · ·		KOD 119
1042	19	11	62	61			•1				150
1043	1 9	11	64	63			•1				121
1044	1.9	11	66	65			•1				155
1045	19	11	68	67		<u></u>	•1				123
6091	6 6	11	60	74	59	73	4.45		•		SP 124
6091		52					4.45	4.45			SP1124
6092	6 6	11	62	76	61	75	4.55		• *		SP 125
6092	2	52					4.55	4.55			SP1125
6093	64	11	64	78	63	- 77	4.7				SP 125
6093	<b>)</b>	52					4.7	4.7			SP1125
6094	64	11	66	80	65	79	4,85				SP 127
6094	÷.	52					4.85	4.85			SP1127
60.95	64	11	68	82	.67	81	2.5				SP 128
6095	<b>;</b> .	52					2.5	2.5			SP1128
9093	68	11	64	78	63	77	•01	•		•	SP2128

5081	518	11	59	73	57	71 .015		•		1UP	129
5081		61					2	2	45.0	1	
5081		71					2	2	-45.0	ĩ	
5082	518	11	61	75	59	73 .015		-		ī	130
5082		61					3	3	45.0	ī	•••
5082		71			•		3	3	-45.0	ī	
5083	518	11	63	77	61	75 .015		-		•	131
5083		61		• ·			3	3	45-0	1	•••
5083		65					10	10	0	•	
5083		71					3	3 .	-45.0	1	
5084	517	11	63	77	65	79 .015		-		•	132
5084		61		•••			3	3	45.0	1	
5084		65		1			12	12	0.0	•	
5084		71					-3	3	-45-0	1	
5085	517	11	65	79	67	81 .015	-	•		î	133
5085		61		• •			9	9	45.0	1	1.50
5085		71					á	ģ	=45.0	î	
5086	517	11	67	81	69	83 .015	-	,	-43.0	1	134
5086		61		01	0.	00 0010	10	10	45.0	i	134
5086		71					10	10	-45.0	ī	
5091	518	11	60	74	57	71 .015	• •	• •		11 OW	135
5091		61		••			2	2	45.0	1	••••
5091		71					2	2	-45-0	ī	
5092	518	11	62	76	60	74 .015	-	-	1300	1	136
5092	210	61	UL	.0		14 0015	3		45.0	i	130
5092		71					จั	3	-45.0	1	
5093	518	11	64	78	62	76 .015		5		•	137
5093	210	61	••	10	02	10 1013	з	3	45.0	,	13,
5093		65					18	18	-0.	•	
5003		71					14	10	-45.0	1	
5094	517	11	64	79	66	80 .015	. 4	5		•	138
5094		61	•••	10	00	0015	3	3	45.0	.1	100
5094		65					14	14		*	
5094		71					14	14	-45-0	3	
5095	517	1.1	66	80	68	82 .015	3	J		1	139
5095	511	61	00	00	00	0. 010		8	45.0	;	137
5095		71					Å	Å	-45.0	· •	
5096	517	11	68	82	69	83 .015	0	, U		1	140
5096	517	61	00	Ŭţ.	07	03 1013	8	. 8	45.0	1	140
5096		71					Ă	Å	-45.0	i	
4101	4 7	11	74	73	71	5.0	Ŭ	0	- +3 • •	DIR	141
6102	67	11	74	77	76	75 5.0				R 40	142
6103	67	11	76	75	78	77 5.0					143
6104	6 5	11	78	77	80	79 5 0					144
6105	65	11	80	70	82	81 5.0					145
4106	45	11	82	ด้า	62	5.0					146
1051	10	11	74	73	0.5	.1				000	147
1052	1 0	11	76	75		•1				ROD	149
1052	10	11	78	77		- 1		•			140
1054	1 0	11	80	70		• 1					1 = 0
1055	10	11	82	81		•1					150
6111	۰ <i>7</i> ۲	- 1	74	001	73	e7 /	۵			6-	121
0111	00	- <b> F</b>	14	00	15	or 4	•0			SP	176

-6111-		52					4.	8	4.8				SP1	152	
6115	66	11	76	90	75	89	4	9					SP	153	
6112		52					4	9	4.9		•		CD1	123	
6113	64	11	78	92	77	91	5	05	- • ·				co.	152	
6113	-	52			•••		5	05	Ë 05				- 3F - CD1	134	
6114	64	11	80	94	79	່ວາ		25	· • • • • • • •				581	154	
6114	• •	52		74	.,	73	· 5.	22					SP .	155	
6115	6 4	11	62	04	01	05		23	5.25				SPI	155	
6115		50	02	90	01	90	2	• <u>{</u>					SP	155	
0112	6 0	32	70	0.0		~ 1	2		2.1				SP1	156	
= 7113 = E101	510		70	92		- 91	· · · · ·	.01			1		SP2	155	
5101	219	11	13	87	11	85	•015						1UP	157	
2101		<u><u></u></u>						2	2		45+0		1		
2101		$\overline{\mathbf{n}}$	-	_				2	. 2		-45.0		1		
5102	518	11	75	89	73	87	.015						1	158	
-5102		61		1.5				3	3		45.0		1		
5102		71						3	3		-45.0		1		
5103	518	11	77	91	75	- 89	+015						-	159	
5103		61					1. A.	2	2		45+0		1		
5103		65						12	12		0.0		-		
5103		71						2	2		-45-0		1		
5104	517	11	77	91	79	93	.015	· · ·					•	160	5
5104		61						2	2	•	45.0		1	100	
5104		65						15	15		A 0		<b>1</b>		
5104		71						2	2		-45 0		•		
5105	517	11	79	03	81	95	.015	. •	· <b>Ľ</b>		-43.0		1		
5105		61	•••		••		+010	12	12				1	121	
5105		71						12	. 12		.45+0		1		
5104	517	11	01	05	03		A16	12	12		-45+0		I -		
5106	517	61	01	93	83	- 91	•015						1.	152	
E104		71						15	15		45.0		Ł. 🦾		
5100	510		7/	~ ~				15	15		-45.0		1		
2111	218	11	. 14	88	11	85	.015	_					ILOW	153	
5111		01						2	2		45.0		1		
5111	<b>C 1 c</b>	$\underline{A}$	-	·				2	2		-45.0		1		
5112	518	11	76	90	74	88	+015						1	154	
5112		61						3	3		45.0		1		
5112		71						3	3		-45.0		i		
5113	518	11 -	78	92	76	90	.015						-	165	
5113		61						2	2		45.0		€		
5113		65						21	21		0.0		•		
5113		71						2	2		-45-0				
5114	517	11	78	92	80	94	.015							166	
5114		61						2	2		45.0		i.	190	
5114		65						18	18		0.0		•		
5114		71						2	10		-45 0				
5115	517	11	80	94	82	96	-015	-	<b>-</b>				1 1	1/7	
5115		61						11	11				1	101	
5115		71						11	. 11	÷	40.0		1		
5116	517	11	82	96	83	97	.016	11 ·	11	•	-45+0	1	ł	• • •	
5116		61		20	0.0	71	+013	13					l	158	
5116		71						13	13		45.0		Ł		
4121	47	11	90	0.7	٥ċ		<b>_</b>	12	13		-45.0		۱. <u>۱</u> .		
4122		11	00	07	85		2.0						RIB	159	
0122	01	11	00	87	A0	89	5.0							170	

PAGE 60

7

MEMBER CARDS	TO GENERATE	MEMBER	PSEUDO MATE	RIX .		
6123 6 7	11 90 89	92 91	5.0			171
6124 6 5	11 92 91	94 93	5.0			172
6125 6 5	11 94 93	96 95	5.0			173
4126 4 5	11 96 95	97	5.0			174
1061 1 9	11 88 87	,	•1			ROD 175
1062 1 9	11 90 89	) .	•1			176
1063 1 9	11 92 91		•1			177
1064 1 9	11 94 93	l -	•1			178
1065 1 9	11 96 95		•1			179
6131 6 6	11 88 102	87 101	5.2			SP 180
6131	52		5.2	5.2		SP1180
6132 6 6	11 90 104	89 103	5.3			SP 181
6132	52		5+3	5.3		SP1181
6133 6 4	11 92 106	91 105	5.45		•	SP 182
6133	52		5.45	5.45		SP1182
6134 6 4	11 94 108	93 107	5.65			SP 183
6134	52		5.65	5,65		SP1183
6135 6 4	11 96 110	95 109	2.9			SP 184
6135	52		2.9	2.9		SP1184
9133 6 8	11 92 106	91 105	.01			SP2184
5121 518	11 87 101	85 99	.015			1UP 185
5122 518	11 89 103	87 101	.015	_		1 186
5122	61		2	2	45.0	1
5122	71		2	2	-45.0	1
5123 518	11 91 105	89 103	•015	_	. – .	187
5123	01		2	2	45.0	1.
5123	05		12	12	0.0	•
5123			~~~ ~	2	-45.0	1
5124 517	11 91 105	93 101	+015	2		188
5124	65		2	10	43.0	1
5124	71		10	10	0+0 45 0	•
5125 517	11 93 107	05 100	.015	2	-45.0	1 190
5125 517	6)	33 103	14	14	45 0	1 107
5125	65		2	14		1
5125	71		14	14	-45-0	3
5126 517	11 95 100	97 111	.015	14	-4310	1 120
5126	61		20	20	45.0	- 1
5126	71		20	20	-45.0	1
5131 518	11 88 102	85 99	.015	20		100131
5132 518	11 90 104	88 102	.015			1 192
5132	61		2	2	45.0	1
5132	71		2	2	-45.0	i
5133 518	11 92 106	90 104	.015	-		193
5133	61		2	2	45.0	1
5133	65		23	23	0.0	
5133	71		2	2	-45.0	1
5134 517	11 92 106	94 108	•015			194
5134	61		2	2	45.0	1
5134	65		23	23	0+0	•
5134	71		2	2	-45.0	1
5135 517	11 94 108	96 110	•015			1 195

12

5135	65	2	2	0.0	
5135	61	13	13	45.0	1
5135	71	13	13	-45.0	1
5136 517	11 96 110	97 111 .015	1.5		1 106
5136	61	17	17	45.0	1 170
5136	71	17	17	-45 0	1
4141 4 7	11 102 101	99 5.0	1,	-4340	1
6142 6 7	11 102 101 1	04 103 5.0		•	KID 197
6143 6 7	11 104 103 1	06 105 5.0			198
6144 613	11 106 105 1	08 107 5.0			199
6145 613	11 108 107 1	10 109 5 0			200
4146 413	11 110 100 1	1) 50			201
1071 1 9	11 102 101	-1			202
1072 1 9	11 104 103	• 1			203
1073 1 9	11 106 105	•1			204
1074 1 9	11 108 107	• 1			205
1075 1 0	11 110 107	•1			206
6151 6 6	11 102 114 1	+1 Al 115 E E	1		207
6151	52	AT 112 2*2			SP 205
6152 6 6			2.2		SP1208
6152	52	UJ 11/ J.O			SP 209
6153 612	11 106 120 1		0°C -		SP1209
6153	52	02 112 2.8	-		SP 210
6154 612		5.8	5.8		SP1210
6154 012	52	0, 121 0.0			SP 211
6155 612	$\frac{32}{11}$		6.0		SP1211
6155 012	52	09 163 3.1			SP 212
0153 6 9	11 106 100 10	J,1	3.1		SP1212
5141 510	11 100 120 1				SP2212
5142 510	11 103 113 14	97 113 .015			1UP 213
5143 519					1 214
5143	61	03 111 -012	•		215
5143	65	2	2	45+0	1
5143	71	12	12	0.0	
5144 517	11 105 110 14	2	2	-45.0	1 - 1
5144 517	11 105 119 10	0/ 121 -015		·	216
5144	65	2	2	45.0	1
5144	71	25	25	0.0	
5145 517		10 122 ALC	2	-45.0	$1_{1}$ , $1_{2}$ , $1_{2}$
5145	61	123 1013		· · · ·	1 217
5145	65	15	15	45.0	1
5145	71		8	0.0	
5146 517			15	-45.0	1
5146 517	41 107 123 11	11 152 +012	·		1 218
5146	65		30	45.0	1
5146	71	t .	3	0.0	
5151 510	11	30	30	-45.0	1
5152 510	11 106 116 2	77 113 •015			1LOW 219
5152 510	11 104 118 10	VC 110 +015			1 550
5153 518	11 100 120 10	14 118 +015	_		251
5153	01 . 45	. 2	2	45.0	1
5153	71	25		0.0	
ניגנ	1	2	2	-45.0	1

5154 517	11 106 120 108 12	2 .015			222
5154	61	. 2	2	45.0-	1
5154	65	27	27	0.0	•
5154	71	2	2	-45.0	1
5155 517	11 108 122 110 12	4 .015			1 223
5155	61	14	14	45.0	1
5155	65	• 8	8	9-0	•
5155	71	14	14	-45.0	1
5156 517	11 110 124 111 12	5 .015	14	-43+0	1 224
5156	61	10	10	45 0	1 224
5156	65	2	17	43+0	1
5156	71	10	10	-45 0	
4161 4 7	11 116 115 117	5 0	19	-43+0	1010 000
4162 6 7		7 5 0			KIB 225
6167 6 7	11 110 112 110 11				220
6165 617	11 110 117 120 11	9 3+0 1 E 0			221
0104 013	11 120 119 122 12	1 5.0			228
6105 013	11 122 121 124 12	3 5.0			229
4100 413	11 124 123 125	2.0			230
1001 1 9	AI 110 115	•1			ROD 231
1082 1 9		+ L · · ·			232
1003 1 9	11 120 119	•.1			233
1004 1 9	11 122 121	•1			234
1085 1 9	11 124 123	•1			235
6171 6 6	11 116 130 115 12	9 5.8			SP 235
6171	52	5.8	5,8		SP1236
6172 6 6	11 118 132 117 13	1 6.0			SP 237
6172	52	6.0	6.0		SP1237
6173. 612	11 120 134 119 13	3 6.2			SP 238
6173	52	6.2	6.2		SP1238
6174 612	11 122 136 121 13	5 6.45			SP 239
6174	52	6,45	6.45		SP1239
6175 612	11 124 138 123 13	7 3.3	•		SP 240
6175	52	3.3	3.3		SP1240
9173 6 8	11 120 134 119 13	3 .01	•		SP2240
5161 518	11 115 129 113 12	7 .015			1UP 241
5162 518	11 117 131 115 12	9 .015			1 242
5163 518	11 119 133 117 13	1 .015			243
5163	61	2	2	45.0	1
5163	65	6	6	0.0	•
5163	71	2	2	-45.0	<b>`</b> 1
5164 517	11 119 133 121 13	5 .015	-		- 243
5164	61	3		45.0	1
5164	65	26	26	-0-0	*
5164	71	23	20	-45 0	1
5165 517	11 121 135 123 13	7 .015	3	-43.0	1 244
5165	61	16	15	45 A	1 244
5165	65	13	15	45.0	1
5165	71	10	13	0.0	•
5166 517	11 122 127 125 12	0 0)E 13	12	-45.0	1
5100 517 ·	41 163 137 163 13	2 0013			1 245
5100	01 4r	41	41	45.0	1
5100	05 71	3	3	0.0	_
2100	1	41	41	-45.0	1

· · ·

5171	518	11	116	130	113	127	.015				,	104 346
5172	518	11	118	132	116	130	.015					240
5173	518	11	120	134	118	132	.015				1	. 247
5173		65		• • •	•••		.015	E	5		-	248
5174	517	11	120	124	122	1 74	015	5		0.	0	
5174	211	41	120	134	122	130	+012	_	_	_		249
2174		01						5	2	45.0	1	
51/4		05						28	28	0.0		
5174		$\alpha$						5	2	-45.0	1	
5175	517	11	122	136	124	138	•015				1	250
5175		61						14	14	45.0	) i	2.50
5175		65						10	10	0.0	· ·	
5175		71						14	14	-45 4	Ś,	
5176	517	11	124	138	125	139	-015	• •	A - Y	-+3+0	, 1 ,	
5176	- •	61		• • • •	•	1.37	*013	20	20	. –	. 1	251
5176		65						20	20	45+0	1	
5176		71							4	0.0	}	
/191	/. <b>7</b>			100				20	20	-45.0	) 1	
4101	4 1		130	129	121		5.0					RIB 252
4192	67		130	129	132	131	5.0					253
0103	612	11	132	131	134	133	5.0					254
0104	013	11	134	133	136	135	5.0					255
0105	013	11	136	135	138	137	5.0					256
4186	413	11	138	137	139		5.0					257
1091	19	11	130	129			•1					ROD 258
1092	19	11	132	131			•1					259
1093	19	11	134	133			•1	•				260
1094	19	11	136	135			• 1					261
1095	19	11	138	137								201
6191	66	11	130	144	129	143	· 6.	2				252
6191		52			••••	• • •	6.	2	4 3			5P 203
6192	6 6	11	132	149	131	147	4	۰ <u>د</u> ۸۵	0+2			571263
6192	- 0	53		140	1.71	141		45				SP 264
6193	612	11	134	150	122	161	<b>.</b>	45	6.45			SP1264
6193	012	53	134	192	122	151	<b>.</b>	0				SP 265
410/	612	52	1.24	100	125		0.	.6	6.6			SP1265
(10)	012	11	130	120	132	155	6.	,9				SP 265
(105	(12	52					6.	9	6.9			SP1265
0132	012	11	138	158	137	157	з.	.5				SP 267
0132		52					3.	.5	3,5			SP1267
9193	68	11	134	152	133	151	.0	1				SP2267
5181	518	11	129	143	127	141	.015				1	UP 258
5182	518	11	131	147	129	143	.015				i	240
5183	518	11	133	151	131	147	.015				•	270
5183		61						2	2	45.0	. ı	270
5183		71						2	2	-45 0		
5184	517	11	133	151	135	155	.015	-	<b>L</b>		. 1	
5184		61	•				••••	2	2			2/1
5184		65						29	ر مد	45.0	1	
5184		71						20	20	0.0		
5185	517	11	135	155	127	157		3	د	-45.0	1	
5185		41	100	132	121	121	•015				1	272
5185		0] 4 -						12	12	45.0	1	
5105		7-						21	21	. 0+0		
2102	E1-	$\Omega$						12	12	-45.0	1	
2100	211	11	131	157	139	159	•015				1	273

5186		61						43	43		45.0	1	1	
5186		65						3	3		0.0	·	•	
5186		71						43	43		-45.0	1	t	
5191	518	11	130	144	127	141	.015	5					LOW	274
5192	518	11	132	148	130	144	.015	5						275
5193	518	11	134	152	132	148	.015	5					•	276
5193		61					-	2	2		45.0		1	2.0
5193		71						2	2		-45.0	1	ī	
5194	517	11	134	152	136	156	.015	5					•	277
5194		61						2	2		45.0	1	1	
5194		65						30	30		0.0	-	-	
5194		71						2	2		-45.0	;	l I	
5195	517	11	136	156	138	158	.015	5				1	1	278
5195		61						11	11		45.0	1	ī	
5195		65						19	19		0.0	-	-	
5195		71						11	11	-	-45.0	,	•	
5196	517	11	138	158	139	159	.015	5	• •			1		279
5196		61						22	22		45.0	1	Ì	2.1.2
5196		65						-4	-4		0.0	•	•	
5196		71						22	22		-45.0	1	L	
4201	411	11	144	143	141			•1					RR	280
6202	611	11	144	143	146	145		•1						291
6203	611	11	146	145	148	147		•1						292
6204	611	11	148	147	150	149		•1						283
6205	611	11	150	149	152	151		•1						294
6206	611	11	152	151	154	153		•1						295
6207	611	11	154	153	156	155		•1						286
6208	611	11	156	155	158	157		•1						287
4209	411	11	158	157	159			•1						298
4211	411	11	157	165	155			•1					RR	299
6215	611	11	157	165	159	163		•1						290
6213	611	- 11	164	163	162	161		•1						291
6214	611	11	158	166	159	164		•1						292
4215	411	11	158	166	156			•1						293
1101	19	11	144	143				•1					RR	294
1102	111	11	146	145				•1						295
1103	19	11	148	147				•1						296
1104	111	- 11	150	149				•1						297
1105	19	11	152	151				.1						298
1106	111	11	154	153				.1						299
1107	19	11	156	155				•1						300
1108	111	11	158	157				•1						301
1201	111	11	157	165				.1					RR	302
1202	111	11	159	163				•1						303
1503	111	11	162	161				.1						304
1204	111	11	159	164				•1						305
1205	111	11	158	166				•1						306
1301	111	11	141	143				.1					RR	307
1305	111	11	143	145				•1					RR	308
1303	111	11	145	147				.1						309
1304	111	11	147	149				.1						310
1302	111	11	149	151				.1				•		311

•

## MEMBER CARDS TO GENERATE MEMBER PSEUDO MATRIX

1400	4 4 1	11 130 100	•1			330
1406	111	11 156 144	• 1		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	329
1405	111	11 166 164	· · · · · · · · · · · · · · · · · · ·			350
1404	111	11 164 162				330
1403	111 -	11 163 161	.1	e e		327
1402	111	11 165 163	•1	•		326
1401	111	11 105 165	• • 1		RR	325
1.601	441	11 120 129	•1			324
1319	111	11 159 150	•1			323
1318	111	11 156 158		·		322
1317	111	11 154 156				251
1316	111	11 152 154	-1			121
1315	111	11 150 152	•1			320
1314	111	11 148 150	•1			319
1213	111	11 146 148	.1			318
1312	111	11 144 146	•1			317
1212	111	11 171 144	•1		RR	316
1111	111		•1			315
1309	111	11 157 159	1			314
1308	111	11 155 157	• •			212
1307	111	11 153 155	-1	· . /		212
1306	111	11 151 153	•1			212

THE NUMBER OF CORNER FORCES IN THE TOTAL STRUCTURE = 5931 ALL INPUT IN SUBROUTINE CARDIN HAS BEEN COMPLETED

		G E	0 M E T	RY		8	OUN	0 A R	Y	
						СО	NDI	TIO	NS	
KARD	NODE	X	Υ ·	Z	X	Y	Z	MX	MY	MZ
1	1	2.477018E+02	6.00000E.01	5.672165E+01	1	2	3	. 0	0	0
2	2	0	0	0.	Õ	ō	ō	ő	0	Ň
3	3	2.442738F.02	6.0000005.01	5,6992605.01	4	ŝ	6	Ň	ŏ	ň
4	4	2.442738=+02	6.000000=+01	5 6676175+01	7	Å	ă	0	ň	ŏ
5	5	2.4084585+02	6.000000000000	5.7201575+01	10	11	12	0	0	0 0
6		2.4084585402	6 0000000000000	5 6502225+01	10	11	15	0		0
7	7	2 3741795+03	6.00000000000	5.0523232701	13	14	15	U	0	U
<b>`</b>	, ,	2 3741795+02	6 000000000000	5+/304412+01	10	11	15	0	0	U
0		2 2208085.02	6.000000000000	5.0455322+01	19	20	21	- 0	0	U
10		2+3390900+02	0.000000E+01	5./26018E+U1	22	23	24	0	0	0
10	10	2.339890E+U2	6.000000E+01	5.6476422+01	25	25	27	0	0	0
11	11	2+314188E+02	6.00000E+01	5.706379E+01	28	29	30	0	0	0
12	12	2.314188E+02	6.00000E+01	5.658190E+01	31	32	33	0	0	0
13	13	2.305618E+02	6.00n000E+01	-5.675000E+01	34	35	36	0	0	0
14	14	0.	0.	0.	0	0	0	0	0	0
15	15	2.516633E+02	5+200000E+01	5.671811E+01'	37	38	39	0	0	0
16	16	0.	0.	0.	0	0	0	0	0	0
17	17	2.478070E+02	5.500000E+01	5.702291E+01	40	41	42	0	0	0
18	18	2.478070E+02	5.500000E+01	5.666694E+01	43	44	45	Ō	0	Ó
19	19	2.439506E+02	5.500000E+01	5.725800E+01	46	47	48	0	0	0
20	20	2.439506E+02	5.500000E+01	5.649489E+01	49	50	51	Ö	0	0
21	21	2.400943E+02	5.500000E+01	5.737369E+01	52	53	54	0	0	0
22	22	2.400943E+02	5.500000F+01	5-641850F+01	55	56	57	Å	õ	0
23	23	2.362380E+02	5.500000F+01	5.733068E+01	58	59	60	ñ	ñ	õ
24	24	2.362380E+02	5-500000F+01	5-644224F+01	61	62	63	0	ň	ő
25	25	2.333457E+02	5-5000005+01	5.7103005+01	64	65	66	Å .	0	Ň
26	26	2.333457F+02	5-5000005-01	5.6540895401	67	60	60	0	Å	0
27	27	2. 3339165402	5.5000000000	5 67500095+01	70	20	70	U		
20	20	E SESSIOL VE	3.300000000000	2*012000E+01	70	11	12		U	0
20	20	V. 3 5543485.43			70	_0		0	0	0
27	27	2.5352482.402	2+000000E+01	5.0/145/2+01	/3	14	15	0	U	0
30	30				0	_0	0	0	0	0 .
- 31	31	2.5134025+02	5.00000E+01	5+705322E+01	76	11	78	0	0	0
. 32	32	2.5134022+02	5+000000E+01	5+665772E+01		80	81	0	0	0
- 33	33	2.470555E+02	5.000000E+01	5.731442E+01	82	83	84	0	0	0
34	34	2.470555E+02	5.000000E+01	5.646655E+01	85	86	87	O	0	0
35	35	2.427708E+02	5.000000E+01	5.744296E+01	88	89	90	0	0	0
36	36	2.427708E+02	5.000000E+01	5.638168E+01	91	95	93	0	0	0
37	37	2•384862E+02	5.00000E+01	5+739517E+01	94	95	96	0	0	0
- 38	38	2.384862E+02	5.00000E+01	5.640805E+01	97	98	99	0	0	0
39	39	2.352727E+02	5.00000F+01	5.714221E+01	100	101	102	0	0	0
40	40	2.352727E+02	5.00000E+01	5.653989E+01	103	104	105	0	0	0
41	41	2.342015E+02	5.000000E+01	5.675000E+01	106	107	108	0	0	0
42	42	0.	0.	0.	0	0	0	0	. 0	Ō
43	43	2.595863E+02	4.500000E+01	5.671103E+01	109	110	111	Ô	0	Ō
44	44	0.	0.	0.		ň		ŏ	ň	ŏ
45	45	2.548733E+02	4,500000F+01	5.708354F+01	112	113	114	Δ.·	ň	ň
46	46	2.5487336+02	4-5000000000	5-6648495+01	115	116	117	0	-0	0
47	47	2.501603F+02	4-5000000-001	5.7370855401	110	110	120	· U	. U .	U A
40	48	2.501603E+02	4-5000002+01	5.6438228+01	121	122	123	U	ÿ	U A
40	40	2.454473F+02	4.500000000000	5 7513245441	121	122	123	0	U	U
50	50	2.4544735.02	4.5000000000	5 636/945 01	124	123	120	U	U	, U
~ ~ 0	JV	ビルオンサイィンにイリビ	<b>Tajunugur +Ul</b>	J * J . J & H D D E V ()	1.01	1/5	1/7	· A		0

 $\sim$ 

~

										P	. 6
		GE	OMET	RY		6		DAR	Y	•	
KARD	NODE	X	Y	Z	X	Ϋ́	Z	Mx	MY	MZ	
51	51	2.407343E+02	4.500000E+01	5.745967E+01	130	131	132	Ó	0	0	
52	52	2.407343E+02	4.500000F+01	5.637387E+01	133	134	135	Ō	Ő	Õ	
53	53	2.371996E+02	4.500000E+01	5.718142E+01	136	137	138	0	0	0	
54	54	2.371996E+02	4.500000E+01	5.651888E+01	139	140	141	0	0	0	
55	55	2.360213E+02	4.500000E+01	5.675000E+01	142	143	144	0	0	0	
56	56	0.	0.	0.	0	0	0	0	0	Ō	
57	57	2.635479E+02	4.00000E+01	5.670749E+01	145	146	147	Ō	0	0	
58	58	0.	0.	0.	0	0	0	õ	Ō	- Õ	
- 59	59	2.584065E+02	4.000000E+01	5.711385E+01	148	149	150	õ	Ō	Ö	
60	60	2+584065E+02	4+000000E+01	5+663926E+01	151	152	153	0	ň 1	0	
61	61	2.532652E+02	4.000000E+01	5.742727E+01	154	155	156	ő	ŏ	õ	
62	62	2+532652E+02	4.00000F+01	5.640988E+01	157	158	159	ň	õ	ň	
63	63	2.481239E+02	4.000000F+01	5.758151E+01	160	161	162	ň	ŏ	ŏ	
64	64	2.481239E+02	4.000000E+01	5.630804E+01	163	164	165	ñ.	ō	. 0	
65	65	2.429825E+02	4.000000E+01	5.752417E+01	166	167	168	· 0	ō	Ö.	
66	66	2+429825E+02	4-000000F+01	5-633968F+01	169	170	171	Ā	ō	0	
.67	67	2.391265E+02	4-000000F+01	5.722063F+01	172	173	174	ň	ň	ň	
68	68	2.391265E+02	4.000000F+01	5.649788E+01	175	175	177	ň	ň	ň	
69	69	2.378412E+02	4.00000F+01	5-675000F+01	178	179	180	ň		ŏ	
70	70	0.	0.	0.	1.0	Ő	0	0	ŏ	ň	
71	71	2.675094E+02	3-500000F+01	5-670394E+01	181	182	183	0	ň	õ	
72	72	0.	0.	0.			0		ň	ŏ	
73	73	2.619397E+02	3-5000005+01	5.714416E+01	184	185	185	Δ.	ň	ŏ	
74	74	2.619397E+02	3-500000F+01	5.663004F+01	187	188	189	0	ň	ŏ	
75	75	2-563700E+02	3-5000005+01	5.748370E+01	190	101	192		Ň	ŏ	
76	76	2.563700E+02	3-500000000000	5.638155F+01	103	194	195	ő	Ň	ő	
77	77	2-508004F+02	3-500000000000	5.7650798.01	196	197	198		Ň	Ň	
78	78	2.508004E+02	3-500000000000	5-627122F+01	100	200	201	0 . A	<u> </u>	ň	
79	79	2-452307E+02	3-500000E+01	5.7588665 +01	202	203	201	0	Ň	0	
80	80	2-452307F+02	3-5000005+01	5.6305505+01	205	206	207	ŏ	. U.	Ň	
81	81	2.4105355+02	3.5000002+01	5.72508/F+01	203	200	201	0	Ň	0	
02	01	2.4105356.02	3.50000000000	5.6476075401	200	212	213	0			
83	83	2.3966105+02	3 500000000000	5 6750005+01	211	215	215	U A		0	
84	94	0.	0.	0	C14	515	510	0	0.		
85	85	2.7147095+02	3.0000005.01	5.6700405401	217	219	219	U A	0	0 ·	
86	86	0.	0-	0.	217	¢13	213	0	0	0	
87	97	2.4547295+02	3.000005.03	5 7174475401	220	221	333		Ű	0	
	99	2+0347272*02	3.00000000000	5 6630815+01	220	224	226	0	0	0	
80	80	2 5047495+02	3 000000000000	5.0020012.01	223	224	223	. U			
07	07	2.5047495+02	3 0000000000000	5 6252215.01	220	221	220	0		U .	
01	90	2+3741475402	3.00000000000	5.0353212.01	227	230	231	0	0		
01	71	2 5347072402	3.000000000000	5.6226625401	232	233	234		U .	U	
72	72 03	2+3341072+02	3+00000000+01	5+0234402+01	235	230	231	0	U O	ů,	
. 93	93	2 4747995+02	3.000000000000	5 4071215 41	230	239	240	. 0	U	0	
74	05	2.430904E+03	3 000000000000	5.02/131C+01	C41	242	243	U	v	U A	
70	95 06	2 44270046402	3+00000000+01	3+169903C+U1	244	243	240	U	U O	U	
70	07 07	2.4148095.02	3.00000000000	5.67E000E+03	241	240	247		U A	v	
00	00	C + + 1 + 0 V 7 C + V C	7+0000005+01	0-015000£+01	200	231	226	0	U A	U A	
20	50	2.7547245+43	2 500005.01		0	254	0	U	U	U A	
100	77	2 + 1 34 32 4C 4 VZ	2+3000000+01	3+009000C+UI	223	234	. 522	U	U	U O	
100	100	U e	U 🏚	U e	0	0	0	0	U U	υ	

.

		GE	OMFT	R Y		9			~	
						- 0 0	NOT	TIA	NC	
KARD	NODE	x	Y	Z	X	Ϋ́	Ϊ Ζ	MX	MY	MZ
101	101	2.690061E+02	2.500000F+01	5.720479F+01	256	257	258	0	0	٥
102	102	2.690061E+02	2.500000F+01	5-661159E+01	250	260	. 261	0	Š	0
103	103	2.625797E+02	2.50000000001	5.759655E+01	262	263	- 201	0	0	0
104	104	2.625797E+02	2.5000000001	5.6324876401	202	243	204	0	0	0
105	105	2.561534E+02	2+500000E+01	5.77893/5401	203	200	201	0	0	0
106	106	2.561534E+02	2-50000000-01	5.6107595401	200	207	270	0	0	0
107	107	2.497271E+02	2.500000E+01	5.7717665401	274	275	273	0	U	0
108	108	2.497271E+02	2-5000005+01	5.6227125401	214	213	270	0	U	0
109	109	2.449073E+02	2-5000000001	5.7328265401	211	2/5	219	0	0	0
110	110	2-449073E+02	2 5000000000	5 6434865401	200	201	202	0	U	0
111	111	2.433007F+02	2.5000005+01	5 6750005+01	203	204	285	0	U	0
112	112	0.	2.20000000000	3.0750002+01	280	287	288	0	0	0
113	113	2.7939395+02	2.0000005.01	5 6603335443	200	200	0	0	0	0
114	114	0.	0-	0. 0.	209	290	541	0	0	0
115	115	2.7253935+02	2.0000005.01	5 7005105.01	-02		0	0	0	0
116	116	2.7253935.02	2.0000000000000	5.1235IUE+UI	292	293	294	0	0	0
117	117	2.656846F+02	2+0000000+01	5.7652975.01	295	296	297	0	0	0
118	118	2.656846E+02	2.0000000000000	5.6206545401	201	202	300	0	0	0
119	119	2.588299E+02	2.000000E.01	5.7858616.01	301	305	303	0	U	0
120	120	2.588299E+02	2.000000E+01	5.616076E+01	307	303	300	0	0	0
121	121	2+519753E+02	2.000000E+01	5.7792165.01	307	205	309	0	U	0
122	122	2.5197536+02	2.00000000000	5 6202955+01	210	211	312	0	0	0
123	123	2.468343E+02	2.0000005.03	5 7377475+01	212	314	212	0	0	0
124	124	2-468343E+02	2.000000000000	5.6412865.01	310	317	310	0	U	U
125	125	2-451206F+02	2.0000000000000000000000000000000000000	5 6750005+01	222	320	321	0	0	0
126	126	0.	0-	0	322	323	324	0	0	0
127	127	2.833554F+02	1.5000005+01	5 6600705+01	225	226	0	0	0	0
128	128	0.	0.	0	323	320	321	0	0	0
129	129	2.760724F+02	1.5000005+01	5.7265415+01	220	220	220	0	0	0
130	130	2.760724F+02	1-500000000000	5 6503145+01	220	327	330	0	0	0
131	131	2.687894F+02	1.5000005+01	5.0393146.01	331	332	333	0	0	0
132	132	2+687894F+02	1.500000000000	5 6268205+01	334	332	335	0	0	0
133	133	2.615064E+02	1.5000005.01	5 3003805 01	337	335	339	0	0	0
134	134	2.6150645+02	1 50000000000	5 612284 - 01	340	341	342	0	0	0
135	135	2.542234E+02	1.5000005+01	5 7946655401	343	344	345	0	0	0
136	136	2.542234F+02	1.500000000000	5 6169765+01	340	347	348	0	U	0
137	137	2-487612F+02	1.5000005.01	5 7416695.01	347	350	321	0	0	0
138	138	2.487612E+02	1-50000000000	5 6202855+01	352	353	354	0	0	0
139	139	2.469404F+02	1.50000000000	5 6750005+01	333	320	357	0	0	0
140	140	0.	1.JUUUUE+UI	2*0120005+01	320	359	360	0	0	0
141	141	2.869208F+02	1.0500005.01	U. 5 6606505.03	2()	0	0	0	0	0
142	142	0.	1:0300002+01	2+0090235+01	105	302	363	0	0	0
143	143	2.7978235+02	9.7500005.00	U+ 5 7307345.01	0	0	0	0	0	0
144	144	2.797823F+02	9.7500005.00	5 6507655×01	304	305	366	0	0	0
145	145	2.740747F+02	9.00000000000	5 7609005.01	307	368	369	0	0	0
146	146	2.740747F+02	9.00.0005.00	5 4006E2E+01	370	0	3/1	0	0	0
147	147	2.725153F+02	2+00000C+00 9-00000C+00	5.029033C+01	-1	õ	-2	0	0	0
148	148	2.725153E+02	9.00000000000	5 6336305.03	312	<b>- 3</b>	3/3	0	0	0
149	149	2.671800E+02	9-00000000	5 7049205401	374	- 4.	3/5	0	0	0
150	150	2.671800F+02	9.000000000000	5 6106/55 01	3/0	0	377	0	0	0
•			2000000 <u>00</u> 0	3+0104426+01	318	0	-5	0	0	0

		GE	OMET	RY		8	OUN	DAR	Y	
						СO	NDI	TIO	NS	
NARD	NODE	. <b>X</b>	Y Y	Z	× X .	Y	Z	Mχ	MY	MZ
151	151	2+647183E+02	9+000000E+00	5-801102E+01	379	-6	380	0	٥	n
152	152	2.647183E+02	9.000000E+00	5.607976E+01	381	+7	382	Ň.	ň	ň
153	153	2.589000E+02	9+000000E+00	5.798320E+01	383	0	384	0	ň	Ň
154	154	2.589000E+02	9.000000000000	5.609589E+01	385	ŏ	-8	0	ă	ň
155	155	2.569213E+02	9.000000E+00	5.792405E+01	386	-9	387	Ň	ň	ŏ
156	156	2.569213E+02	9.00000E+00	5.612774E+01	388	-10	389	ň	ň	Ň
157	157	2.510735E+02	9.000000000000	5.746373E+01	390	+11	391	0	Ň	0
158	158	2.510735E+02	9.000000000000	5.636765F+01	392	-12	393	А.	Ň	0
159	159	2.491243E+02	9.000000000000	5.675000E+01	394	395	396	Ň	· .	0
160	160	0.	0.	0.	0	0	5,0	~	0	
161	. 161	2.422800E+02	9.0000005+00	5-800000F+01	397	٥ ٥	208	0	0 ·	
162	162	2.422800E+02	9.000000E+00	5.600000F+01	399	0	-13	0	0	U N
163	163	2.491243E+02	9.000000F+00	5-800000F+01	400	Ň.	401	0		0
164	164	2.491243E+02	9.000000 +00	5.600000F+01	400	Ň	403	0	0	U .
165	165	2.510735E+02	9.00000F+00	5-800000E+01	402	0	405	0	0	U A
166	166	2.510735E+02	9.000000E+00	5.600000E+01	404	0	-14	0	0	0

70

													PAGE
							GEOMETI	RIC PROP	PERTIES	EL	ASTIC	PROPERTI	ES
MEMBER/ TYPE	TYPE	NO •	NODE N	INDE	NODE	NODE	(26)	(27)	(28)	(36)	(37)	(38)	(39)
							(29)	(30)	*	(40)	(41)		
							•	ALLO.	ARIE STR	FEEFE		MINZMA	Y GAGEC
							FYT	EYC.	FVT	EVC	Fc	MTM	MAY
							(01)	(02)	(07)		15	MIN (OC)	MAX (at)
							(617	1961	(83)	(84)	1851	(85)	(87)
040			_ :										
BAK	1		I	J			AREA			E .			
BEAM	2		I	1	ĸ		AREA	BETA	I-YY	E			
							I-ZZ	J					
										A23	A13		
TRIANGLE (NODE FORCE)	4		I.	J	K		т		BETA	A11	A22	A33	A12
										A23	A13		
QUADRILATERAL	5		I	J	ĸ	· L	· <b>T</b>	BETA		A11	A22	A33	A12
										A23	A13		
SHEAR PANEL	6		I	J	ĸ	L ·	T			ε	G		
KINKED QUAD. (4 NODES)	8		I	J	ĸ	L	T	BETA		A11	A22	A33	A12
										A23	A] 3		
KINKED QUAD. (8 NODES)	8		I	J	ĸ	Ł	. <b>Т</b>	BETA		AII	A22	A33	A12
			M	Ň	0	· P			•	A23	A13		
HINGED BEAM	11		SAME	E AS	TYPE	2							
PLATE BENDING TRIANGLE	15		SAME	AS	TYPE	4							
PLATE BENDING QUAD	16		SAME	AS	TYPE	5							
PLATE-MEMBRANE TRIANGLE	17		SAME	AS	TYPE	15		٠	L				
PLATE-MEMBRANE QUAD	18		SAME	AS	TYPE	16							
						••							

 $\hat{}$ 

MEMB MEMB NODE NODE NODE NODE F С 0 R S ۵ Т TYPF NO (1) (3) (K) (L) (26)(27)(28) (36)(37) 6381 (39) (M) (N)(0) (P) (29)(30)(40) (41) (83) (87) (81)(82)(84)(85) (86) 4301 3 1.00000E-02 7.22038E+06 7.22038E+06 8.01462F+05 5.61746E+06 4 4 1 0. 1.77000E.05 1.77000F+05 1.77000F+05 1.77000E+05 5.00000F+04 1.00000E-02 0. 6302 6 4 3 6 5 1.00000E-02 2.85000E+06 8.01462E+05 1.77000E+05 1.77000E+05 1.77000E+05 1.77000E+05 5.00000E+04 1.00000E-02 0. ****MEMBER NUMBER 6302 HAS WARP 0. 6303 6 5 7 1.00000E-02 6 8 2.85000E+06 8+01462E+05 1.77000E+05 1.77000E+05 1.77000E+05 1.77000E+05 5.00000E+04 1.00000F-02 0. ****MEMBER NUMBER 6303 HAS 0. WARP 6304 6 8 7 10 9 1.00000E-02 2.85000E+06 8.01462E+05 1.77000E+05 1.77000E+05 1.77000E.05 1.77000E+05 5-00000F+04 1.00000F-02 0. ****MEMBER NUMBER 6304 HAS WARP 0. 6305 9 11 1.00000E-02 6 10 12 2.85000E+06 8.01462E+05 1.77000E+05 1.77000E+05 1.77000E+05 1.77000E+05 5.00000E+04 1.00000E-02 0. ####MEMBER NUMBER 6305 HAS 0. WARP 4306 12 11 1.00000E-02 13 0. 7.22038E+06 7.22038E+06 8.014625+05 5-61746E+06 1.77000£+05 1.77000E.05 1.77000F.05 1.77000E+05 5.00000E.04 1.00000F-02 0. 4001 3 1 2.50000E+00 3.79136E+04 3.79136E+04 1.21324E+04 1.36489E+04 4 3.75000E+02 3.75000E+02 3.75000E+02 3.75000E+02 1.50000E+02 2.500005+00 2-20000E+00 6002 3 5 2.50000E+00 6 3.30000E+04 1.21324E+04 6 4 3.75000E+02 3.75000E+02 3.75000E+02 3.75000E+02 1.50000E+02 2.50000E+00 2.50000E+00 ****MEMBER NUMBER 6002 HAS 0. WARP 6003 5 6 7 2.50000E+00 6 8 3.30000E+04 1.21324E+04 3.75000E+02 3.75000E+02 3.75000E+02 3.75000E+02 1.50000E+02 2.50000E+00 2.50000E+00 ****MEMBER NUMBER 6003 HAS 0. WARP 7 6004 6 8 10 9 2.50000E+00 3.30000E+04 1.21324E+04 3.75000E+02 3.75000E+02 3.75000E+02 3.75000E+02 1.50000E+02 2.50000E+00 2.50000E+00 ####MEMBER NUMBER 6004 HAS WARP 0. 6005 6 10 9 11 2.50000E+00 3-30000E+04 1.21324E+04 12 3.75000E+92 3.75000E+02 3.75000E+02 3.75000E+02 1.50000E+02 2.50000E+00 2.50000E+00 ****MEMBER NUMBER 6005 HAS 0. WARP 4006 12 11 2.50000E+00 3.79136E+04 3.79136E+04 13 1.21324E+04 1.36489E+04 0. 3.75000E+02 3.75000E+02 3.75000E+02 3.75000E+02 1.50000E+02 2.50000F+00 2.50000E+00 1001 1 3 4 1.00000E-01 1.00000E+06 3.00000E+03 3+00000E+03 3.00000E+03

72

PAGE

3.00000E+03

1.85000E+02

1.00000E-01

1.00000E-01

~											1
		÷.,								PAGE 73	
MEMB NO	MEMB TYPE	NODE (I)	NODE (J)	NODE NODE (K) (L)	F (26)	A (27)	C (28)	T (36)	0	R (38)	S (39)
		(M)	(N)	(0) (P)	(29) (81)	(30) (82)	(83)	(40) (84)	(41) (85)	(86)	(87)
1002	1	5	6		1+00000E-01 3+00000E+03	3+00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01
1003	1	7	. 8		1.00000E-01 3.00000E+03	3.00000E+03	3+00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.000005-01	1.00000E-01
1004	1	9	10		1.00000E-01 3.00000E+03	3.00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01
1005	1	11	12		1+00000E-01 3+00000E+03	3.00000E+03	3+00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01
6011	6	. 4	18	3 17	3.00000E.00 3.75000E.02	3.75000E+02	3.75000E+02	8.70000E+04 3.75000E+02	3+19853E+04 3+00000E+02	3.00000E+00	3+00000E+00
				****MENDER	NUMBER DOIT	HAS U.	WARP				
6012	6	6	20	5 19 ####MEMBER	3+10000E+00 3+75000E+02 NUMBER 6012	3.75000E+02 HAS 1.4210	3.75000E+02 85D-14 WARP	8.70000E+04 3.75000E+02	3.19853E+04 3.00000E+02	3.10000E+00	3.10000E+00
6013	6	8	22	7 21 ****MEMBER	3+20000E+00 3+75000E+02 NUMBER 6013	3.75000E+02 HAS 1.4210	3.75000E+02 850-14 WARP	8.70000E+04 3.75000E+02	3.19853E+04 3.00000E+02	3.20000E+00	3.20000E+00
6014	6	30	24	0 23	2-30005.00			9 70000F			
0014		10		****MEMBER	3.75000E+00 NUMBER 6014	3.75000E+02 HAS 1.4210	3.75000E+02 85D-14 WARP	8.70000E+04 3.75000E+02	3.19853E+04 3.00000E+02	3.30000E+00	3.30000E+00
6015	6	12	26	11 25	1+70000E+00 3+75000E+02	3.750002+02	3.75000E+02	8.70000E+04 3.75000E+02	3+19853E+04	1.700005+00	1-700005+00
				####MEMBER	NUMBER 6015	HAS 1.4210	850-14 WARP		0000000000	200000L 00	10.0000-00
9013	6	8	22	7 21 ****MEMBER	1+00000E-02 1+77000E+05 NUMBER 9013	1.77000E+05 HAS 1.4210	1.77000E+05 85D-14 WARP	2.85000E+06 1.77000E+05	8.01462E+05 5.00000E+04	1.00000E-02	0.
5001	5	3	17	1 15	COMP MAT 18	3-55128F+01					
5002	- -	Ē	10			0.005705-01	•				
5002	-	2	17	5 11	COMP MAI 10	3+202/02+01					
5003	5	7	21	5 19	COMP MAT 18	0.				·	
5004	5	7	21	9 23	COMP MAT 17	0.		1			
5005	5	9	23	11 25	COMP MAT 17	-2.37696E+01					
								· · · · · ·			
•											

•

											PAGE 74	• •
MEMB NO	MEMB TYPE	NODE (I) (M)	NODE (J) (N)	NODE (K) (O)	NODE (L) (P)	F (26) (29) (81)	A (27) (30) (82)	C (28) (83)	(36) (40) (84)	0 (37) (41) (85)	R (38) (86)	5 (39) (87)
5006	5	11	25	13	27	COMP MAT 17	-1+80232E+01		•			
5011	5	4	18	1	15	COMP MAT 18	3.51722E+01					
5012	5	6	20	4	18	COMP MAT 18	3.15520E+01				· · · ·	
5013	5	8	22	6	20	COMP MAT 18	0•				•	• • •
5014	5	8	22	10	24	COMP MAT 17	0.					
5015	5	10	24	12	26	COMP MAT 17	-2.44242E+01	•				
5016	5	12	26	13	27	COMP MAT 17	-2.17331E+01					
4021	4	18	17	15		5.00000E+00 3.75000E+02	3.75000E+02	0+ 3.75000E+02	3.79136E+04 3.75000E+02	3.79136E+04 1.50000E+02	1+21324E+04 5+00000E+00	1.36489E+04 5.00000E+00
6022	6	18	17	20 *****	19 HEMBER	5.00000E+00 3.75000E+02 NUMBER 6022	3.75000E+02 Has 0.	3.75000E+02 WARP	3.30000E+04 3.75000E+02	1.21324E+04 1.50000E+02	5.00000E+00	5.00000E+00
6023	6	20	19	****	21 HEMBER	5+00000E+00 3+75000E+02 NUMBER 6023	3.75000E+02 HAS 0.	3.75000E+02 WARP	3+30000E+04 3+75000E+02	1+21324E+04 1+50000E+02	5+00000E+00	5.00000E+00
6024	6	22	21	24 ****	23 IEMBER	5.00000E.00 3.75000E.02 NUMBER 6024	3.75000E+02 Has 0.	3.75000E+02 WARP	3.30000E+04 3.75000E+02	1.21324E+04 1.50000E+02	5.00000E+00	5+00000E+00
6025	6	24	23	26 *****	25 IEMBER	5+00000E+00 3+75000E+02 NUMBER 6025	3.75000E+02 Has 0.	3.75000E+02	3.30000E+04 3.75000E+02	1.21324E+04 1.50000E+02	5.00000E+00	5.00000E+00
4026	4	26	25	27		5.00000E.00 3.75000E.02	3.75000E+02	0. 3.75000E+02	3.79136E+04 3.75000E+02	3.79136E+04 1.50000E+02	1+21324E+04 5+00000E+00	1+36489E+04 5+00000E+00
1011	1	17	18			1.00000E_01 3.00000E+03	3+00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.000005-01	1.00000E-01
1012	1	19	20			1+00000E-01 3+00000E+03	3.00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01
1013	1	21	22			1.00000E-01 3.00000E+03	3+00000E+03	3.00000E+03	1+00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01
1014	1	23	24			1.00000E-01 3.00000E+03	3.00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01
				т.								

•

.



 $\odot$ 

 $\sim$ 

: .)

			. •							· .		
											· · · ·	
											PAGE 75	
MEMB NO	МЕМВ ТҮРЕ	NODE (I) (M)	NODE (J) (N)	NODE (K) (0)	NODE (L) (P)	F (26) (29)	A (27) (30)	2 (85)	T (36) (40)	0 (37) (41)	R (38)	S (39)
						(81)	(82)	(83)	(84)	(85)	(86)	(87)
1015	1	25	26			1.00000E-01 3.00000E+03	3+00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01
6031	. 6	18	32	17 ****	31 MEMBER	3+30000E+00 3+75000E+02 NUMBER 6031	3+75000E+02 HAS 1.42108	3.75000E+02 85D-14 WARP	8.70000E+04 3.75000E+02	3+19853E+04 3+00000E+02	3.30000E+00	3+30000E+00
6032	6	20	34	19 ****	33 MEMBER	3.40000E+00 3.75000E+02 NUMBER 6032	3.75000E+02 HAS 1.42108	3.75000E+02 35D-14 WARP	8.70000E+04 3.75000E+02	3.19853E+04 3.00000E+02	3.40000E+00	3.40000E+00
6033	6	22	36	21 ****	35 MEMBER	3.50000E+00 3.75000E+02 NUMBER 6033	3.75000E+02 HAS 0.	3.75000E+02 WARP	8.70000E+04 3.75000E+02	3.19853E+04 3.00000E+02	3.50000E+00	3.50000E+00
6034	6	24	38	23 ****	37 MEMBER	3+60000E+00 3+75000E+02 NUMBER 6034	3.75000E+02 Has 0.	3.75000E+02 WARP	8.70000E+04 3.75000E+02	3.19853E+04 3.00000E+02	3.60000E+00	3.60000E+00
6035	6	26	40	25 ****	39 MEMBER	1+90000E+00 3+75000E+02 NUMBER 6035	3.75000E+02 HAS 7.10542	3.75000E+02 270-15 WARP	8.70000E+04 3.75000E+02	3.19853E+04 3.00000E+02	1.90000E+00	1.90000E+00
9033	ð .	22	36	21 ****	35 MEMBER	1.00000E-02 1.77000E+05 NUMBER 9033	1.77000E+05 HAS 0.	1.77000E+05 WARP	2.85000E+06 1.77000E+05	8•01462E+05 5•00000E+04	1.00000E-02	0.
5021	5	17	31	15	29	COMP MAT 18	3+55128E+01					
5022	5	19	33	17	31	COMP MAT 18	3.20570E+01					
5023	5	21	35	19	33	COMP MAT 18	0.					
50,24	5	21	35	23	37	COMP MAT 17	0.	•			•	
5025	5	23	37	25	39	COMP MAT 17	-2+37696E+01			•	•	
5026	5	25	39	27	-41	COMP MAT 17	-1.80232E+01		· · · · · · · · · · · · · · · · · · ·			
5031	່ 5	18	32	15	29	COMP MAT 18	3.51722E+01		•			
5032	5	20	34	18	32	COMP MAT 18	3+15520E+01				•	
5033	5	55	36	20	34	COMP MAT 18	0•		· · · ·			
5034	5	22	36	24	38	COMP MAT 17	0.					

· · ·

1. vg 1. vg €. 1. e 🍋

											PAGE 10	
MEMB NO	МЕНВ Түре	NODE (1) (M)	NODE (J) (N)	NODE (K) (0)	NODE (L) (P)	F (26) (29) (81)	A (27) (30) (82)	C (28) (83)	T (36) . (40) (84)	0 (37) (41) (85)	R (38) (86)	S (39) (87)
5035	5	24	38	26	40	COMP HAT 17	-2.44242E+01					
5036	5	26	40	27	41	COMP MAT 17	-2+17331E+01					
4041	4	32	31	29		5+00000E+00 3+75000E+02	3+75000E+02	0. 3.75000E+02	3.79136E+04 3.75000E+02	3.79136E+04 1.50000E+02	1+21324E+04 5+00000E+00	1.36489E+04 5.00000E+00
6042	6	32	31	34 ****	33 MEMBER	5.00000E+00 3.75000E+02 NUMBER 6042	3.75000E+02 Has 0.	3.75000E+02 #ARP	3.30000E+04 3.75000E+02	1.21324E+04 1.50000E+02	5.00000E+00	5.00000E+00
6043	6	34	33	36 ****	35 MEMBER	5+00000E+00 3+75000E+02 NUMBER 6043	3.75000E+02 Has 0.	3.75000E+02	3.30000E+04 3.75000E+02	1•21324E+04 1•50000E+02	5.000005.00	5+00000E+00
6044	6	36	35	38 ****	37 MEMBER	5+00000E+00 3+75000E+02 NUMBER 6044	3.75000E+02 HAS 0.	3.75000E+02 WARP	3•30000E+04 3•75000E+02	1+21324E+04 1+50000E+02	5+00000E+00	5+00000E+00
6045	. 6	38	37	40 ****	39 MEMBER	5+00000E+00 3+75000E+02 NUMBER 6045	3.75000E+02 HAS 0.	3.75000E+02 WARP	3•30000E+04 3•75000E+02	1•21324E+04 1•50000E+02	5.00000E+00	5.000002+00
4046	4	40	39	41		5.00000E+00 3.75000E+02	3.75000E+02	0. 3.75000E+02	3.79136E+04 3.75000E+02	3,79136E+04 1.50000E+02	1,21324E+04 5.00000E+00	1.36489E+04 5.00000E+00
1021	1	32	31			1.00000E-01 3.00000E+03	3•00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01
1022	1	34	33			1.00000E-01 3.00000E+03	3.00000E+03	3+00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1-00000E-01
1023	1	36	35			1.00000E-01 3.00000E+03	3+00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01
1024	1	38	37			1.00000E-01 3.00000E+03	3.00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01
1025	1	40	39			1+00000E-01 3+00000E+03	3.00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01
6051	6	32	46	31 *****	45 MEMBER	3.70000E.00 3.75000E.02 NUMBER 6051	3.75000E+02 HAS 1.4210	3.75000E+02 85D-14 WARP	8.70000E+04 3.75000E+02	3.19853E.04 3.00000E.02	3.70000E+00	3.70000E+00

.

											PAGE 77	
NEMB NO	MEMB TYPE	NODE (I)	NODE (J)	NODE (K)	NODE (L)	F (26) (20)	A (27)	C (85)	T (36)	0 (37)	R (38)	\$ (39)
		(87	(147	(0)	(~)	(81)	(82)	(83)	(84)	(41) (85)	(86)	(87)
6052	6	34	48	33 ****	47 MEMBER	3+80000E+00 3+75000E+02 NUMBER 6052	3.75000E+02 HAS 0.	3.75000E+02 WARP	8.70000E+04 3.75000E+02	3+19853E+04 3+00000E+02	3+80000E+00	3.80000E+00
6053	6	36	50	35 ****	49 MEMBER	3.95000E.00 3.75000E.02 NUMBER 6053	3.75000E+02 HAS 0.	3.75000E+02 WARP	8.70000E+04 3.75000E+02	3+19853E+04 3+00000E+02	3+95000E+00	3.95000E+00
6054	6	38	52	37 ****	51 MEMBER	4•10000E+00 3•75000E+02 NUMBER 6054	3.75000E+02 HAS 1.4210	3.75000E+02 85D-14 WARP	8.70000E+04 3.75000E+02	3.19853E+04 3.00000E+02	4+10000E+00	4.10000E+00
6055	6	40	54	39 ****	53 MEMBER	2+10000E+00 3+75000E+02 NUMBER 6055	3.75000E+02 HAS 7.1054	3.75000E+02 27D-15 WARP	8.70000E+04 3.75000E+02	3+19853E+04 3+00000E+02	2.10000E+00	2.10000E+00
9053	6	36	50	35 ****	49 MEMBER	1.00000E-02 1.77000E+05 NUMBER 9053	1.77000E+05 HAS 0.	1.77000E+05 WARP	2.85000E+06 1.77000E+05	8.01462E+05 5.00000E+04	1.00000E-02	0.
5041	5	31	45	29	43	CONP MAT 18	3+55128E+01					
5042	5	33	47	31	45	CONP MAT 18	3+20570E+01	,				
5043	5	35	49	33	47	CONP MAT 18	0.					
5044	5	35	49	37	51	COMP MAT 17	0.				•	
5045	5	37	51	39	53	CONP MAT 17	-2.37696E+01					
5046	5	39	53	41	55	COMP MAT 17	-1.80232E+01					
5051	5	32	46	29	43	COMP MAT 18	3.51722E+01					
5052	· 5	34	48	35	46	COMP MAT 18	3.15520E+01	•				
5053	5	36	50	34	48	COMP MAT 18	0.					
5054	5	36	50	38	52	COMP MAT 17	0•					
5055	5	38	52	40	54	COMP MAT 17	-2.44242E+01	-				
5056	5	40	54	41	55	COMP MAT 17	-2.17331E+01			X		
4061	4	46	45	43		5.00000E.00 3.75000E.02	3•75000E+02	0. 3.75000E+02	3.79136E+04 3.75000E+02	3.79136E+04 1.50000E+02	1.21324F+04 5.00000E+00	1.36489E+04 5.00000E+00

•

.

,

											FAUL /D	
MEMB NO	МЕМВ Түре	NODE (1) (M)	NODE (J) (N)	NODE (K) (O)	NODE (L) (P)	F (26) (29) (81)	A (27) (30) (82)	C (28) · (83)	T (36) (40) (84)	0 (37) (41) (85)	R (38) (86)	S (39) (87)
6062	6	46	45	48 ****	47 MEMBER	5.00000E.00 3.75000E.02 NUMBER 6062	3.75000E+02 Has 0.	3.75000E+02 · WARP	3.30000E+04 3.75000E+02	1.21324E+04 1.50000E+02	5.00000E+00	5.00000E+00
6063	6	48	47	50 ****	49 MEMBER	5+00000E+00 3+75000E+02 NUMBER 6063	3.75000E+02 Has 0.	3.75000E+02 WARP	3+30000E+04 3+75000E+02	1•21324E•04 1•50000E+02	5+000005+00	5.00000E+00
6064	6	50	49	52 ****	51 MEMBE _R	5+00000E+00 3+75000E+02 NUMBER 6064	3.75000E+02 HAS 0.	3.75000E+02 WARp	3•30000E+04 3•75000E+02	1+21324E+04 1+50000E+02	5.00000E+00	5.00000E+00
6065	- 6	52	51	54 ****	53 MEMBER	5+00000E+00 3+75000E+02 NUMBER 6065	3.75000E+02 HAS 0.	3.75000E+02 WARP	3.30000E+04 3.75000E+02	1.21324E+04 1.50000E+02	5+00000E+00	5.00000E+00
4066	4	54	53	55		5+00000E+00 3+75000E+02	3•75000E+02	0. 3.75000E+02	3.79136E+04 3.75000E+02	3.79136E+04 1.50000E+02	1+21324E+04 5+00000E+00	1+36489E+04 5+00000E+00
1031	1	46	45			1.00000E-01 3.00000E+03	3.00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.850002+02	1+00000E-01	1.00000E-01
1032	<b>1</b> .	48	47			1.00000E-01 3.00000E+03	3.00000E.03	3.00000E+03	1.00000E.06 3.00000E.03	1.85000E+02	1.00000E-01	1.00000E-01
1033	1	50	49			1.00000E-01 3.00000E+03	3+00000E+03	3,00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01
1034	1	52	51			1+00000E-01 3+00000E+03	3+00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01
1035	I	54	53			1+00000E-01 3+00000E+03	3.00000E+03	3+00000E+03.	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01
6071	6	46	60	45 =====	59 MEMBER	4.00000E+00 3.75000E+02 NUMBER 6071	3.75000E+02 HAS 0.	3.75000E+02 ₩ARP	8.70000E+04 3.75000E+02	3.19853E+04 3.00000E+02	4.00000E+00	4.00000E+00
6072	6	48	62	47 ****	61 MEMBER	4.15000E+00 3.75000E+02 NUMBER 6072	3.75000E+02 HAS 1.42108	3.75000E+02 850-14 WARP	8.70000E+04 3.75000E+02	3+19853E+04 3+00000E+02	4•15000E+00	4•15000E+00
6073	6	. 50	64	49 ****)	63 MEMBER	4.30000E+00 3.75000E+02 NUMBER 6073	3.75000E+02 HAS 1.42108	3.75000E+02 350-14 WARP	8.70000E+04 3.75000E+02	3.19853E+04 3.00000E+02	4.30000E+00	4.30000E+00

1

,

DACC 79

4

•

. •

•

 $\frown$ 

•

										PAGE 79	
MEMB	MEMB	NODE	NODE	NODE NOD	F	A ( 27)	C	Ţ	0	R	S
		(M)	(N)	(0) (P	(29)	(30)	(28)	(36)	(37) (41)	(38)	(39)
					(81)	(82)	(83)	(84)	(85)	(86)	(87)
6074	6	52	66	51 6 ####MEMB	4.45000E+00 3.75000E+00 R NUMBER 6074	) 3.75000E+02 HAS 0.	3.75000E+02 .WARP	8.70000E+04 3.75000E+02	3.19853E+04 3.00000E+02	4.45000E+00	4.45000E+00
6075	6	54	68	53 6	2+30000E+00			8.70000E+04	3.19853E+04		
				####MENB	3+75000E+02 R NUMBER 6079	2 3.75000E+02 5 HAS 1.4210	3.75000E+02 85D-14 WARP	3.75000E+02	3.00000E+02	2.30000E+00	2.30000E+00
9073	6	50	64	49 6	1.00000E-02	2		2.85000E+06	8.01462E+05		
				+++#MEMB	1+77000E+09 R NUMBER 9073	5 1.77000E+05 5 HAS 1.4210	1.77000E+05 85D-14 WARP	1.77000E+05	5.00000E+04	1.00000E-02	0•
5061	5	45	59	43 5	COMP HAT 18	3•55128E+01					
5062	5	47	61	45 5	COMP MAT 18	3.20570E+01					
5063	5	49	63	47 6	COMP MAT 18	0.					
5064	5	49	63	51 6	COMP NAT 17	0•					
5065	5	51	65	53 6	COMP MAT 17	-2.37696E+01					
5066	5	53	67	55 6	COMP HAT 17	-1.80232E+01					
5071	5	46	60	43 5	COMP MAT 18	3.51722E+01					
5072	5	48	62	46 6	COMP HAT 18	3+15520E+01					
5073	5	50	64	48 6	COMP MAT 18	0.					
5074	5	50	64	52 6	COMP MAT 17	° 0.					
5075	5	52	66	54 6	COMP MAT 17						
5076	5	54	68	55 6	COMP MAT 17	-2.17331E+01					
4081	4	60	59	57	5.00000F.00		٥	3 791765+04	2 701265.06	1 212245.04	
				5.	3.75000E+02	3.75000E+02	3.75000E+02	3.75000E+02	1.50000E+02	1.21324E+04 5.00000g+00	1.35489E+04 5.00000E+00
6082	6	60	59	62 6	5.00000E+00	2.750005002	3-750005+03	3.30000E+04	1.21324E+04	E	
				####MEMBI	R NUMBER 6082	HAS 0.	WARP	J./JUUL+U2	1.00000002.02	⇒•00000E+00	5.00000E+00
6083	6	62	61	64 63	5+00000E+00	750000.00		3.30000E+04	1.21324E+04	-	_
				****MEMB	R NUMBER 6083	HAS 0.	3.75000E+02 WARP	J./>000E+02	1.50000E+02	5+00000E+00	5.00000E+00

 $\overline{}$ 

.

•

.

. .

.

											PAGE 80	
MEMB NO	MEMB TYPE	NODE	NODE	NODE	NODE	F (26)	A (27)	C (28)	Ţ	0	R	S
		(M)	(N)	(0)	(P)	(29)	(30)	(20)	(36)	(37)	(38)	(39)
				-	-	(81)	(82)	(83)	(84)	(85)	(86)	(87)
6084	6	64	63	66 ****	65 MEMBER	5+00000E+00 3+75000E+02 NUMBER 6084	3+75000E+02	3.75000E+02 WARP	3.30000E+04 3.75000E+02	1+21324E+04 1+50000E+02	5+00000E+00	5+00000E+00
	_					UL UL					(	
6085	6	66	65	68 ****	67 MEMBER	5+00000E+00 3+75000E+02 NUMBER 6085	3.75000E+02 HAS 0.	3.75000E+02 WARP	3.30000E+04 3.75000E+02	1+21324E+04 1+50000E+02	5.000002+00	5.000002.00
4086	4	68	67	69		5+00000E+00 3+75000E+02	3.75000E+02	0• 3•75000E+02	3•79136E+04 3•75000E+02	3•79136E+04 1•50000E+02	1+213245+04 5+000005+00	1•36489E+04 5•00000E+00
1041	1	60	59			1+00000E-01 3+00000E+03	3+00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01
1042	1	62	61			1.00000E-01 3.00000E+03	3+00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01
1043	1	64	63		,	1.00000E-01 3.00000E+03	3.00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01
1044	1	66	65			1.00000E-01 3.00000E+03	3.00000E+03	3.00000E+93	1.00000E+06 3.00000E+03	1.85000E+02	1.000005-01	1.00000E-01
1045	1`	68	67			1.00000E-01 3.00000E+03	3+00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01
6091	6	60	74	59 ****	73 MEMBER	4.45000E+00 3.75000E+02 NUMBER 6091	3.75000E+02 HAS 2.84217	3.75000E+02 710-14 WARP	8.70000E+04 3.75000E+02	3•19853E+04 3•00000E+02	4.450005+00	4.45000E+00
6092	6	62	76	61	75	4-55000F.00			0.70000			
	Ū	52		****	MEMBER	3.75000E+02 NUMBER 6092	3.75000E+02 HAS 2.84217	3.75000E+02 71D-14 WARP	8.70000E+04 3.75000E+02	3.19853E+04 3.00000E+02	4.55000E+00	4.55000E+00
6093	6	64	78	63	77	4.70000E+00			8.70000E+04	3.19853F+04		
				***	MEMBER	3.75000E+02 NUMBER 6093	3.75000E+02 HAS 0.	3.75000E+02 WARP	3.75000E+02	3.00000E+02	4.70000E+00	4.70000E+00
6094	6	66	80	65	79	4.85000E+00 3.75000E+02	3.75000E+02	3.750002+02	8.70000E+04 3.75000E+02	3.19853E+04 3.00000E+02	4.850005+00	4.85000E+00
				****	MEMBER	NUMBER 6094	HAS 0.	WARP				
6095	6	68	82	67 [°]	81 MEMBER	2+50000E+00 3+75000E+02 NUMBER 6095	3.75000E+02 HAS 0.	3.75000E+02 WARP	8.70000E+04 3.75000E+02	3.19853E+04 3.00000E+02	2.500005+00	2.50000E+00

**#** .

											PAGE 81	
MEMB NO	МЕМВ Түре	NODE (I) (M)	NODE (J) (N)	NODE (K) (O)	NODE (L) (P)	F (26) (29)	A (27) (30)	C (28)	T (36) (40)	0 (37) (41)	R (38)	S (39)
						(81)	(82)	(83)	(84)	(85)	(86)	(87)
9093	6	64	78	63 ****	77 MEMBER	1+00000E-02 1+77000E+05 NUMBER 9093	1.77000E+05 HAS 0.	1.77000E+05 WARP	2.85000E+06 1.77000E+05	8+01462E+05 5+00000E+04	1.00000F-02	0•
5081	5	59	73	57	71	COMP MAT 18	3•55128E+01					
5082	5	61	75	59	73	COMP MAT 18	3.20570E+01					
5083	5	63	77	61	75	COMP MAT 18	0.					
5084	5	63	77	65	79	COMP MAT 17	0•					
5085	5	65	79	67	81	COMP MAT 17	-2-37696E+0}					
5086	5	67	81	69	83	COMP MAT 17	-1.80232E+01					
5091	5	60	74	57	71	COMP MAT 18	3.51722E+01					
5092	5	62	76	60	74	COMP MAT 18	3.15520E+01		e - *			
5093	5	64	78	62	76	COMP MAT 18	0.					
5094	ູ5	64	78	66	80	COMP MAT 17	0.					
5095	5	66	80	68	82	COMP MAT 17	-2.44242E+01					
5096	5	68	82	69	83	COMP MAT 17	-2.17331E+01					
4101	4	74	73	71		5.00000E.00 3.75000E.02	3.75000E+02	0. 3.75000E+02	3.79136E+04 3.75000E+02	3.79136E+04 1.50000E+02	1.21324E+04 5.00000E+00	1.36489E+04 5.00000E+00
6102	6	74	73	76 ****	75 MEMBER	5.00000E+00 3.75000E+02 NUMBER 6102	3.75000E+02 Has 0.	3.75000E+02	3.30000E+04 3.75000E+02	1.21324E+04 1.50000E+02	5+000005+00	5.00000E+00
6103	6	76	75	78	77	5.00000E.00 3.75000E.02	3.75000E+02	3.75000E+02	3.30000E+04 3.75000E+02	1 • 21 324E • 04 1 • 50000E • 02	5.000005.00	5.00000E+00
				****	MEMBER	NUMBER 6103	HAS 0.	WARP			•	
6104	6	78	77	80 ****	79 MEMBER	5+00000E+00 3+75000E+02 NUMBER 6104	3.75000E+02 Has 0.	3.75000E+02 WARP	3.30000E+04 3.75000E+02	1+21324E+04 1+50000E+02	5+000005+00	5.00000E+00
6105	6	80	79	82 88	81 MEMBEP	5+00000E+00 3+75000E+02	3+75000E+02	3.75000E+02	3.30000E+04 3.75000E+02	1.50000E+02	5.000005+00	5•00000E+00

•

•

.

MEMB MEMB NODE NODE NODE NODE F Α С T 0 R S NO TYPE (1)(J)(K) (L) (26) (27) (28) (36)(37) (38)(39) (M) (N) (0)(P) (29) (30) (40) (41)(81)(82) (83) (84) (85) (86) (87) 4106 4 82 81 83 5.00000E+00 3.79136E+04 0. 3.79136E+04 1.21324E+04 1.36489E+04 3.75000E+02 3.75000E+02 3.75000E+02 3.75000E+02 1.50000E+02 5.00000F+00 5.00000E+00 1051 1 74 73 1.00000E-01 1.00000E+06 3+00000E+03 3.00000E+03 3.00000E+03 3.00000E+03 1.85000E+02 1.000005-01 1.00000E-01 1052 ł 76 75 1.00000E-01 1.00000E+06 3+00000E+03 3+00000E+03 3.00000E+03 3.00000E+03 1.85000E+02 1.000005-01 1.00000E-01 1053 1 78 77 1.00000E-01 1.00000E+06 3.00000E+03 3.00000E+03 3.00000E+03 3.00000E+03 1.85000E+02 1.000005-01 1.00000E-01 1054 1 80 79 1.00000E-01 1.00000E+06 3.00000E+03 3.00000E+03 3.00000E+03 3.00000E+03 1.85000E+02 1.000005-01 1.00000E-01 1055 1 82 81 1.00000E-01 1.00000E+06 3.00000E+03 3.00000E+03 3.00000E+03 3.00000E+03 1.85000E+02 1.00000E=01 1.00000E-01 6111 6 74 88 73 87 4+80000E+00 8.70000E+04 3-19853E+04 3.75000E+02 3.75000E+02 3.75000E+02 3.75000E+02 3.00000E+02 4-80000E+00 4.80000E+00 ####MEMBER NUMBER 6111 HAS 1.421085D-14 dARP 6112 6 76 90 75 89 4.90000E+00 8.70000E+04 3-19853E+04 3.75000E+02 3.75000E+02 3.75000E+02 3.75000E+02 3.00000E+02 4-90000E+00 4.90000E+00 ****MEMBER NUMBER 6112 HAS 0. WARP 6113 6 78 92 77 91 5+05000E+00 8.70000E+04 3.19853E+04 3.75000E+02 3.75000E+02 3.75000E+02 3.75000E+02 3.00000E+02 5.05000E+00 5.05000E+00 ****MEMBER NUMBER 6113 HAS 1.421085D-14 WARP 6114 6 80 94 79 93 5+25000E+00 8.70000E+04 3+19853E+04 3.75000E+02 3.75000E+02 3.75000E+02 3.75000E+02 3.00000E+02 5.25000F+00 5.25000E+00 ****MEMBER NUMBER 6114 HAS 0. WARP 6115 6 82 96 81 95 2.70000E+00 8.70000E+04 3.19853E+04 3.75000E+02 3.75000E+02 3.75000E+02 3.75000E+02 3.00000E+02 2.70000 +00 2.70000E+00 ****MEMBER NUMBER 6115 HAS ٥. WARP 9113 6 78 92 77 91 1.00000E-02 2.85000E+06 8.01462E+05 1.77000E+05 1.77000E+05 1.77000E+05 1.77000E+05 5.00000E+04 1.00000E-05 0. ****MEMBER NUMBER 9113 HAS 1.421085D-14 WARP 5101 5 73 87 71 COMP MAT 18 85 3.55128E+01 5102

PAGE

82

5 75 89 73 87 COMP MAT 18 3.20570E+01
MEMB NO	MEMB TYPE	NODE (1) (M)	NODE (J) (N)	NODF (K) (O)	NODE (L) (P)	F (26) (29) (81)	A (27) (30) (82)	C (28) (83)	T (36) (40) (84)	0 (37) (41) (85)	PAGE 83 R (38) (86)	S (39) (87)
5103	5	77	91	75	89	COMP MAT 18	Ω.					
5104	5	77	91	79	93	COMP MAT 17	0.					
5105	5	79	93	81	95	COMP MAT 17	-2.37696E+01					
5106	5	81	95	8.3	97	COMP MAT 17	-1.80232E+01					
5111	5	74	88	71	85	COMP HAT 18	3+51722E+01					
5112	5	76	90	74	88	COMP MAT 18	3.15520E+01					
5113	5	78	92	76	90	COMP MAT 18	0.					
5114	5	78	92	80	94	COMP MAT 17	0.					
5115	5	80	94	85	96	COMP NAT 17	-2.44242E+01					
5116	5	82	96	83	97	COMP MAT 17	-2.17331E+01					
4121	4	88	87	85		5.00000E.00 3.75000E.02	3.75000E+02	0. 3.75000E+02	3.79136E+04 3.75000E+02	3.79136E+04 1.50000E+02	1.21324F+04 5.00000E+00	1.36489£+04 5.00000E+00
6122	<b>6</b> `	88	87	90 ****M	89 EMBER	5.00000E.00 3.75000E.02 NUMBER 6122	3.75000E+02 HAS 0.	3.75000E+02 WARP	3.30000E+04 3.75000E+02	1.21324E+04 1.50000E+02	5.000005+00	5.00000E+00
6123	6	90	89	92 ****M	91 Ember	5+00000E+00 3+75000E+02 NUMBER 6123	3.75000E+02 HAS 0.	3 <b>.7</b> 5000E+02 ₩ARP	3•30000E+04 3•75000E+02	1•21324E+04 1•50000E+02	5.00000F+00	5.00000E+00
6124	6	92	91	94 ****M	93 EMBE _R	5•00000E+00 3•75000E+02 NUMBER 6124	3•75000E+02 Has 0•	3.75000E+02 WARP	3•30000E+04 3•75000E+02	1+21324E+04 1+50000E+02	5.000008+00	5.00000E+00
6125	6	94	93	96 ****M	95 EMBER	5+00000E+00 3+75000E+02 NUMBER 6125	3.75000E+02 Has 0.	3.75000E+02 WARP	3.30000E+04 3.75000E+02	1+21324E+04 1+50000E+02	5+00000E+00	5.00000E+00
4126	4	96	95	97		5•00000E•00 3•75000E+02	3.75000E+02	0. 3.75000E+02	3.79136E+04 3.75000E+02	3.79136E+04 1.50000E+02	1+21324E+04 5+00000E+00	1.36489E+04 5.00000E+00
1061	1	88	87			1.00000E-01 3.00000E+03	3+00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000F-01	1.00000E-01
1062	1	90	89			1.00000E-01 3.00000E+03	3.00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01

.

{

÷

ſ

.

.

 $\widehat{}$ 

•

PAGE 84 С Α Т 0 R (27) (28) (36) (37) (38)(39)(30) (40) (41) (82) • (83) (84) (85) (86) (87) 1.00000E+06 3.00000E+03 3.00000E+03 3.00000E+03 1.85000E+02 1.00000F-01 1.00000E-01

S

1064 1 94 93 1.00000E-01 1.00000E+06 3+00000E+03 3.00000E+03 3.00000E+03 3.00000E+03 1.85000E+02 1.00000E-01 1.00000E-01 1065 1 96 95 1.00000E-01 1.00000E+06 3+00000E+03 3.00000E+03 3.00000E+03 3.00000E+03 1.85000E+02 - 1.00000E-01 1.00000E-01 6131 101 5.20000E+00 6 88 102 87 8.70000E+04 3.19853E+04 3.75000E+02 3.75000E+02 3.75000E+02 3.75000E+02 3.00000E+02 5.20000F+00 5.20000E+00 ####MEMBER NUMBER 6131 HAS 1.421085D-14 WARP 6132 90 6 104 89

103 5+30000E+00 8.70000E+04 3-19853E+04 3.75000E+02 3.75000E+02 3.75000E+02 3.75000E+02 3.00000E+02 5.30000F+00 5.30000E+00 ****MEMBER NUMBER 6132 HAS 1.421085D-14 WARP 6133 92 6 106 91 105 5+45000E+00 8.70000E+04 3-19853E+04

3.75000E+02 3.75000E+02 3.75000E+02 3.75000E+02 3.00000E+02 5.45000E+00 5.45000E+00 ****MEMBER NUMBER 6133 HAS 1.421085D-14 WARP 6134 6 94 108 93 107 5+65000E+00

8.70000E+04 3.19853E+04 3.75000E+02 3.75000E+02 3.75000E+02 3.75000E+02 3.00000E+02 5.65000E+00 5.65000E+00 • ****NEMBER NUMBER 6134 HAS 0. WARP

6135 6 96 110 95 109 2.90000E.00 8.70000E+04 3.19853E+04 3.75000E.02 3.75000E+02 3.75000E+02 3.75000E+02 3.00000E+02 2.90000E+00 2.90000E+00 ****MEMBER NUMBER 6135 HAS 1.421085D-14 WARP 9133 6 92 106 91 105 1.00000E-02 2.85000E+06 8.01462E+05

1.77000E+05 1.77000E+05 1.77000E+05 1.77000E+05 5.00000E+04 1.00000F-02 0. ****MEMBER NUMBER 9133 HAS 1.421085D-14 WARP

5121 5 87 101 85 99 COMP MAT 18 3+55128E+01

5122 5 89 103 87 101 COMP MAT 18 3.20570E+01

5123 5 91 105 89 103 COMP MAT 18 0. 5124 5 91 105 93 107 COMP MAT 17

MEMB

NO

1063

5131

MEMB

TYPE

1

NODE

(1)

(M)

92

NODE

(J)

(N)

91

NODF

(K)

(0)

NODE

(L)

(P)

F

(26)

(29)

(81)

1-00000E-01

3.00000E+03

0. 5125 5 93 107 95 109 COMP MAT 17 -2.37696E+01

5126 5 95 109 COMP MAT 17 -1.80232E+01 97 111

> 5 88 102 85 99 COMP MAT 18 3.51722E+01

											PAGE 85	
MEMB NO	MENB Type	NODE	NODE	NODE	NODE	F (26)	A (27)	C (28)	T (26)	0	R	S
		(M)	(N)	(0)	(P)	(29)	(30)	(20)	(40)	(41)	(38)	(39)
						(01)	(62)	(65)	(94)	(85)	(86)	(87)
5132	5	90	104	88	102	COMP MAT 18	3.15520E+01					
5133	5	92	106	90	104	COMP MAT 18	0•					
5134	5	92	106	94	108	COMP MAT 17	0.					
5135	5	94	108	96	110	COMP HAT 17	-2.44242E+01					
5136	5	96	110	97	111	COMP MAT 17	-2.17331E+01					
4141	4	105	101	99		5.00000E+00 3.75000E.02	3.75000E+02	0. 3.75000E+02	3.79136E+04 3.75000E+02	3.79136E+04 1.50000E+02	1+21324E+04 5+00000F+00	1.36489E+04 5.00000E.00
6142	6	102	101	104 ****M	103 IEMBER	5.00000E.00 3.75000E.02 NUMBER 6142	3.75000E+02 HAS 0.	3.75000E+02 WARP	3.30000E+04 3.75000E+02	1.21324E+04 1.50000E+02	5.00000 <u>F</u> +00	5.00000E+00
6143	6	104	103	106 ****M	105 IEMBER	5+00000E+00 3+75000E+02 NUMBER 6143	3.75000E+02 HAS 0.	3.75000E+02 WARP	3.30000E+04 3.75000E+02	1+21324E+04 1+50000E+02	5.00000E+00	5.00000E+00
6144	6	106	105	108 ****	107 IEMBER	5+00000E+00 5+75000E+02 NUMBER 6144	5.75000E+02 HAS 0.	5.75000E+02 WARp	4.62400E+04 5.75000E+02	1.70000E+04 2.25000E+02	5.00000 <u>F</u> +00	5.00000E+00
6145	6	108	107	110 ****	109 IEMBER	5.00000E.00 5.75000E.02 NUMBER 6145	5.75000E+02 HAS 0.	5.75000E+02 WARP	4.62400E+04 5.75000E+02	1+70000E+04 2+25000E+02	5.00000E+00	5.00000E+00
4146	4	110	109	111		5+00000E+00 5+75000E+02	5.75000E+02	0+ 5•75000E+02	5.31250E+04 5.75000E+02	5+31250E+04 2+25000E+02	1+70000E+04 5+00000E+00	1•91250E+04 5•00000E+00
1071	1	102	101			1.00000E-01 3.00000E.03	3.00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01
1072	1	104	103			1+00000E-01 3+00000E+03	3.00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000F-01	1.00000E-01
1073	1	106	105			1.00000E-01 3.00000E+03	3.00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01
1074	1	108	107			1.00000E-01 3.00000E+03	3•00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.000005-01	1.00000E-01
1075	1	110	109			1.00000E-01 3.00000E+03	3.00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.000008-01	1.00000E-01

•

.

.

٢

MEMB NO	MEMB TYPE	NODE (I) (M)	NODE (J) (N)	NODE (K) (O)	NODE (L) (P)	F (26) (29) (81)	A (27) (30) (82)	C (28) (83)	T (36) (40) (84)	0 (37) (41) (85)	R (38) (86)	S (39) (87)
6151	6	102	116	101 ****	115 MEMBER	5+50000E+00 3+75000E+02 NUMBER 6151	3.75000E+02 HAS 1.4210	3.75000E+02 85D-14 WARP	8.70000E+04 3.75000E+02	3+19853E+04 3+00000E+02	5.50000E+00	5.50000E+00
6152	6	104	118	103 ****	117 MEMBER	5.60000E.00 3.75000E.02 NUMBER 6152	3.75000E+02 Has 0.	3.75000E+02 #ARP	8.70000E+04 3.75000E+02	3•19853E+04 3•00000E+02	5.60000E+00	5.60000E+00
6153	6	106	120	105 ****	119 MEMBER	5+80000E+00 5+75000E+02 NUMBER 6153	5.75000E+02 Has 0.	5 <b>.7</b> 5000€+02 ∦ARP	1.14240E+04 5.75000E+02	4.20000E.03 4.25000E.02	5.80000E+00	5.80000E+00
6154	6	108	122	107 ****	121 MEMBER	6+00000E+00 5+75000E+02 NUMBER 6154	5.75000E+02 Has 0.	5.75000E+02 WARP	1.14240E+04 5.75000E+02	4.20000E+03 4.25000E+02	6+00000E+00	6.00000E+00
6155	6	110	124	109 ****	123 MEMBER	3+10000E+00 5+75000E+02 NUMBER 6155	5.75000E+02 Has 7.10542	5.75000E+02 27D-15 WARP	1.14240E+04 5.75000E+02	4.20000E+03 4.25000E+02	3.10000E+00	3.10000E+00
9153	6	106	120	105 ****	119 HEMBER	1.00000E-02 1.77000E.05 NUMBER 9153	1.77000F+05 Has 0.	1.77000E+05 ₩ARP	2+85000E+06 1+77000E+05	8.01462E+05 5.00000E+04	1.00000E-02	0•
5141	5	101	115	99	113	COMP MAT 18	3+55128E+01					
5142	5	103	117	101	115	COMP MAT 18	3.20570E+01					
5143	5	105	119	103	117	COMP MAT 18	0.					
5144	5	105	119	107	121	COMP MAT 17	0.					
5145	5	107	121	109	123	COMP MAT 17	-2.37696E+01					
5146	5	109	123	111	125	COMP MAT 17	-1.80232E+01			· .		
5151	5	102	116	99	113	COMP MAT 18	3+51722E+01					
5152	5	104	118	102	116	COMP MAT 18	3+15520E+01					
5153	5	106	120	104	118	COMP MAT 18	0.					
5154	5	106	120	108	122	COMP MAT 17	0•					
5155	5	108	122	110	124	COMP MAT 17	-2.44242E+01					

<b>₽</b> ,		. 🛡	,										
1												PAGE 87	
	MEMB NO	МЕМВ Түре	NODE (1) (M)	NODE (J) (N)	NODE (K) (0)	NODE (L) (P)	F (26) (29)	A (27) (30)	(28) C	T (36) (40)	0 (37) (41)	R (38)	S (39)
							(81)	(82)	(83)	(94)	(85)	(86)	(87)
	5156	5	110	124	111	125	COMP MAT 17	-2.17331E+01					
	4161	4	116	115	113		5.00000E.00 3.75000E.02	3.75000E+02	0. 3.75000E+02	3.79136E+04 3.75000E+02	3.79136E.04 1.50000E+02	1.21324£+04 5.00000F+00	1.36489E+04 5.00000E+00
	6162	6	116	115	118 ****	117 MEMBER	5.00000E.00 3.75000E.02 NUMBER 6162	3.75000E+02 Has 0.	3.75000E+02 WARP	3.30000E+04 3.75000E+02	1.21324E.04 1.50000E.02	5.00000E+00	5+00000E+00
• .	6163	6	118	117	120 ****	119 MEMBER	5.00000E.00 3.75000E.02 NUMBER 6163	3.75000E+02 Has 0.	3.75000E+02 WARP	3.30000E+04 3.75000E+02	1+21324E+04 1+50000E+02	5.00000E+00	5.00000E+00
	6164	6	120	119	****	121 MEMBER	5.00000E+00 5.75000E.02 NUMBER 6164	5.75000E+02 Has 0.	5,75000E+02 WARP	4.62400E+04 5.75000E+02	1+70000E+04 2.25000E+02	5.000005+00	5+00000E+00
	6165	6	155	151	124 ****	123 MEMBER	5+00000E+00 5+75000E+02 NUMBER 6165	5.75000E+02 Has 0.	5.75000E+02 WARP	4.62400E+04 5.75000E+02	1+70000E+04 2+25000E+02	5.00000E+00	5.00000E+00
	4166	4	124	153	125		5+00000E+00 5+75000E+02	5.75000E+02	0. 5.75000E+02	5.31250E+04 5.75000E+02	5.31250E+04 2.25000E+02	1.70000E+04 5.00000E+00	1.91250E+04 5.00000E+00
	1081	1	116	115		-	1.00000E_01 3.00000E+03	3+00000E+03	3,00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01
	1082	1	118	117			1+00000E-01 3+00000E+03	. 3•00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01
	1083	1	120	119			1+00000E-01 3+00000E+03	3.00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01
	1084	1	155	121			1+00000E-01 3+00000E+03	3+00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01
	1085	1	124	123			1.00000E-01 3.00000E+03	3+00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01
	6171	6	116	130	115 ****	129 MEMBER	5+80000E+00 3+75000E+02 NUMBER 6171	3.75000E+02 Has 0.	3.75000E+02 WARp	8.70000E+04 3.75000E+02	3•19853E+04 3•00000E+02	5.80000E+00	5.80000E+00
	6172	6	118	132	117 ****	131 MEMBER	6+00000E+00 3+75000E+02 NUMBER 6172	3.75000E+02 HAS 1.4210	3.75000E+02 85D-14 WARP	8.70000E+04 3.75000E+02	3+19853E+04 3+00000E+02	6.00000E+00	6.00000E+00

											PAGE 88	
NO NO	МЕМВ Түре	NODE (1) (M)	NODE (J) (N)	NODE (K) (O)	NODE (L) (P)	F (26) (29) (81)	A . (27) (30) (82)	(83) (83)	T (36) (40) - (84)	0 (37) (41) (85)	R (38) (86)	S (39) (87)
6173	6	120	134	119 ****	133 MEMBER	6+20000E+00 5+75000E+02 NUMBER 6173	5.75000E+02 Has 0.	5.75000E+02 WARP	1+14240E+04 5.75000E+02	4.20000E+03 4.25000E+02	6.20000E+00	6•20000E+00
6174	6	122	136	121 ****	135 MEMBER	6+45000E+00 5+75000E+02 NUMBER 6174	5.75000E+02 Has 1.4210	5.75000E+02 850-14 WARP	1•14240E+04 5•75000E+02	4•20000E+03 4•25000E+02	6.45000F+00	6.45000E+00
6175	6	124	138	123 ****	137 MEMBER	3+30000E+00 5+75000E+02 NUMBER 6175	5.75000E+02 HAS 0.	5.75000E+02 WARP	1•14240E+04 5•75000E+02	4+20000E+03 4+25000E+02	3.30000E+00	3.30000E+00
9173	6	120	134	119 ****	133 MEMBER	1.00000E-02 1.77000E+05 NUMBER 9173	1.77000E+05 HAS 0.	1.77000E+05 wARP	2•85000E+06 1•77000E+05	8+01462E+05 5+00000E+04	1.000005-02	0•
5161	5	115	129	113	127	COMP MAT 18	3+55128E+01					
5162	. 5	117	131	115	129	COMP MAT 18	3.20570E+01					
5163	5	119	133	117	131	COMP MAT 18	0.	•		•		
5164	5	119	133	121	135	COMP MAT 17	0•					
5165	5	121	135	123	137	CONP MAT 17	-2.37696E+01					
5166	5	123	137	125	139	COMP MAT 17	-1.80232E+01					
5171	5	116	130	113	127	COMP MAT 18	3.51722E+01					
5172	5	118	132	116	130	COMP MAT 18	3+15520E+01					
5173	5	120	134	118	132	COMP NAT 18	0.					
5174	5	120	134	122	136	COMP MAT 17	0.					
5175	5	122	136	124	138	COMP MAT 17	-2.44242E+01					
5176	5	124	138	125	139	COMP MAT 17	-2.17331E+01					
4181	4	130	129	127		5+00000E+00 3+75000E+02	3.75000E+02	0. 3.75000E+02	3.79136E+04 3.75000E+02	3.79136E.04 1.50000E+02	1.21324E+04 5.00000E+00	1.36489E.04 5.00000E+00
6182	6	130	129	132 ****	131 IEMBER	5.00000E.00 3.75000E.02 NUMBER 6182	3•75000E+02 HAS 0•	3.75000E+02 WARP	3.30000E+04 3.75000E+02	1.21324E+04 1.50000E+02	5+00000 <u>E</u> +00	5.00000E+00

.

 $\widehat{}$ 

----

•

۹,

 $\mathbf{\gamma}$ 

)

,

											PAGE 89	
MEMB NO	МЕМВ Түрг	NODE (1) (M)	NODE (J) (N)	NODE (K) (O)	NODE (L) (P)	F (26) (29) (81)	A (27) (30) (82)	C (28) (83)	T (36) (40) (84)	0 (37) (41) (85)	R (38) (86)	S (39) (87)
6183	6	132	131	134 ****	133 MEMBER	5+00000E+00 3+75000E+02 NUMBER 6183	3•75000E+02 Has 0•	3.75000E+02 WARP	3•30000E+04 3•75000E+02	1•21324E+04 1•50000E+02	5.00000 <u>E</u> .00	5.00000E+00
6184	6	134	133	136 ****	135 MEMBER	5+00000E+00 5+75000E+02 NUMBER 6184	5.75000E+02 Has 0.	5.75000F+02 WARP	4.62400E+04 5.75000E+02	1.70000E+04 2.25000E+02	5.00000F+00	5.00000E+00
6185	6	136	135	138 ****	137 MEMBER	5+00000E+00 5+75000E+02 NUMBER 6185	5.75000E+02 HAS 0.	5.75000E+02 WARP	4.62400E+04 5.75000E+02	1.70000E+04 2.25000E+02	5.00000£+00	5+00000E+00
4186	4	138	137	139		5.00000E.00 5.75000E+02	5.75000E+02	0. 5.75000E+02	5,31250E+04 5,75000E+02	5.31250E+04 2.25000E+02	1.70000E+04 5.00000E+00	1.91250E+04 5.00000E+00
1091	1	130	129			1.00000E-01 3.00000E.03	3.00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01
1092	1	132	131			1.00000E-01 3.00000E+03	3+00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01
1093	1	134	133			1.00000E-01 3.00000E+03	3.00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01
1094	1	136	135			1+00000E-01 3+00000E+03	3.00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01
1095	1	138	137			1.00000E-01 3.00000E+03	3+00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01
6191	6	130	144	129 ****	143 MEMBER	6+20000E+00 3+75000E+02 NUMBER 6191	3.75000E+02 HAS 0.	3.75000E+02 WARP	8.70000E+04 3.75000E+02	3+19853E+04 3+00000E+02	6.20000E+00	6.20000E+00
6192	6	132	148	131 ****	147 MEMBER	6•45000E+00 3•75000E+02 NUMBER 6192	3.75000E+02 HAS 2.84217	3.75000E+02 71D-14 WARP	8.70000E+04 3.75000E+02	3+19853E+04 3+00000E+02	6.450005+00	6.45000E+00
6193	6	134	152	133 ****	151 MEMBER	6+60000E+00 5+75000E+02 NUMBER 6193	5.75000E+02 HAS 1.42108	5.75000E+02 350-14 WARP	1•14240E+04 5•75000E+02	4.20000E+03 4.25000E+02	6.60000E+00	6.60000E+00
6194	6	136	156	135 ****	155 MEMBER	6+90000E+00 5+75000E+02 NUMBER 6194	5.75000E+02 HAS 0.	5.75000E+02 WARP	1.14240E+04 5.75000E+02	4.20000E.03 4.25000E.02	6.90000E+00	6.90000E+00
								ч				

.....

•

											· PAGE 90	
MEMB NO	МЕМВ Түре	NODE (I) (M)	NODE (J) (N)	NOD <u>F</u> (K) (O)	NODE (L) (P)	F (26) (29) (81)	A (27) (30) (82)	C (28) (83)	T (36) (40) (84)	0 (37) (41) (85)	R (38) (86)	S (39) (87)
6195	6	138	158	137 ****	157 MEMBER	3+50000E+00 5+75000E+02 NUMBER 6195	5.75000E+02 Has 0.	5.75000E+02 #ARP	1.14240E+04 5.75000E+02	4.20000E+03 4.25000E+02	3.50000E+00	3.50000E+00
9193	6	134	152	133 ****	151 MEMBER	1.00000E-02 1.77000E+05 NUMBER 9193	1.77000E+05 HAS 1.42108	1.77000E+05 35D-14 WARP	2.85000E+06 1.77000E+05	8.01462E.05 5.00000E.04	1.00000E-02	0•
5181	5	129	143	127	141	COMP MAT 18	3.55128E+01					
5182	5	131	147	129	143	COMP MAT 18	3+20570E+01					
5183	5	133	151	131	147	COMP MAT 18	0.					
5184	5	133	151	135	155	COMP MAT 17	0.					
5185	5	135	155	137	157	COMP MAT 17	-2.37696E+01					
5186	5	137	157	139	159	COMP MAT 17	-1.80232E+01					
5191	5	130	144	127	141	COMP MAT 18	3.51722E+01					
5192	5	132	148	130	144	COMP MAT 18	3+15520E+01					
5193	5	134	152	132	148	COMP MAT 18	0•					
5194	5	134	152	136	156	COMP MAT 17	0.					
5195	5	136	156	138	158	COMP MAT 17	-2.44242E+01					
5196	5	138	158	139	159	COMP MAT 17	-2.17331E+01					
4201	4	144	143	141		1.00000E-01 6.50000E.04	5.70000E+04	0. 6.50000E+04	1.17832E+07 5.70000E+04	1.17832E+07 3.90000E+04	3.947375+06 8.00000E-02	3.88845E+06 0.
6202	6	144	143	146 ****	145 MEMBER	1.00000E_01 6.50000E.04 NUMBER 6202	5.70000E+04 HAS 0.	6.50000E+04 WARP	1.05000E+07 5.70000E+04	3•94737E+06 3•90000E+04	8.00000E-02	0•
6203	6	146	145	148 ****)	147 MEMBER	1+00000E-01 6+50000E+04 NUMBER 6203	5.70000E+04 HAS 0.	6.50000E+04 WARP	1+05000E+07 5+70000E+04	3.94737E+06 3.90000E+04	8.00000E-02	0.
6204	6	148	147	150 ****	149 MEMBER	1.00000E-01 6.50000E.04 NUMBER 6204	5.70000E+04 HAS 0.	6.50000E+04 WARP	1.05000E+07 5.70000E+04	3•94737E+06 3•90000E+04	8.00000E-02	0.

.

÷

(

1

;

à.

.

.

•

.

I.

2

PAUL 91	PAGE	91
---------	------	----

.

MEMB NO	MEMB Type	NODE (1) (M)	NODE (J) (N)	NODE (K) (O)	NODE (L) (P)	F (26) (29)	A (27) (30)	2 (85)	T (36) (40)	0 (37) (41)	R (38)	S (39)
						(81)	(82)	(83)	(84)	(85)	(86)	(87)
6205	6	150	149	152 ****	151 MEMBER	1+00000E-01 6+50000E+04 NUMBER 6205	5.70000E+04 HAS 0.	6.50000E+04 WARP	1.05000E+07 5.70000E+04	3•94737E+06 3•90000E+04	8.00000E-02	0.
6206	6	152	151	154 ****	153 MEMBER	1.00000E-01 6.50000E+04 NUMBER 6206	5.70000E+04 HAS 0.	6.50000E+04 ₩ARP	1.05000E+07 5.70000E+04	3.94737E+06 3.90000E+04	8.00000E-02	0•
6207	6	154	153	156 ****	155 MEMBER	1.00000E-01 6.50000E+04 NUMBER 6207	5.70000E+04 Has 0.	6.50000E+04 WARP	1•05000E+07 5•70000E+04	3+94737E+06 3+90000E+04	B.00000E-02	0•
6208	6	156	155	158 ****	157 MEMBER	1.00000E-01 6.50000E+04 NUMBER 6208	5.70000E+04 HAS 0.	6.50000E+04 WARP	1+05000E+07 5+70000E+04	3•94737E+06 3•90100E+04	8.00000E-02	0•
4209	4	158	157	159		1.00000E-01 6.50000E+04	5.70000E+04	0. 6.50000E+04	1.17832E+07 5.70000E+04	1.17832E+07 3.90000E+04	3.94737E+06 8.00000E-02	3.88845E+06 0.
4211	4	157	165	155		1.00000E-01 6.50000E+04	5.70000E+04	0. 6.50000E+04	1.17832E+07 5.70000E+04	1.17832E+07 3.90000E+04	3.94737E+06 8.00000E-02	3.88845E+06 0.
6212	• 6	157	165	159 ****	163 MEMBER	1.00000E-01 6.50000E+04 NUMBER 6212	5.70000E+04 Has 0.	6.50000E+04 ₩ARP	1.05000E+07 5.70000E+04	3•94737E+06 3•90000E+04	8.000005-02	0.
6213	6	164	163	162 ****	161 MEMBER	1.00000E-01 6.50000E.04 NUMBER 6213	5.70000E+04 HAS 0.	6.50000E+04 ₩ARP	1.05000E+07 5.70000E+04	3+94737E+06 3+90000E+04	8,000005-02	0.
6214	6	158	166	159 ****	164 MEMBER	1.00000E-01 6.50000E+04 NUMBER 6214	5.70000E+04 HAS 0.	6.50000E+04 WARP	1.05000E+07 5.70000E+04	3+94737E+06 3+90000E+04	- 8.00000E-02	0•
4215	4	158	166	156		1•00000E-01 6•50000E+04	5.70000E+04	0• 6•50000E+04	1.17832E+07 5.70000E+04	1+17832E+07 3+90000E+04	3.947375+06 8.00000E-02	3.88845E+06 0.
1101	1	144	143			1+00000E-01 3+00000E+03	3+00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000F-01	1.00000E-01
1102	1	146	145			1.00000E-01 6.50000E+04	5•70000E+04	6.50000E+04	1.05000E+07 5.70000E+04	3.90000E+04	8.000005-02	0•
1103	1	148	147			1.00000E-01 3.00000E+03	3.00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01

. .

MEMB NO	MENB TYPE	NODE (I) (M)	NODE (J) (N)	NODF (K)	NODE (L) (P)	F (26) (29)	A (27) (30)	C (28)	T (36)	0 (37)	R (38)	S (39)
				(0)	,	(81)	(82)	(83)	(84)	(85)	(86)	(87)
1104	1	150	149			1+00000E-01 6+50000E+04	5.70000E+04	6.50000E+04	1.05000E+07 5.70000E+04	3.90000E+04	8.00000E-02	.0 •
1105	1	152	151			1.00000E-01 3.00000E+03	3+00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1-000005-01	1.00000E-01
1106	1	154	153			1•00000E-01 6•50000E+04	5.70000E+04	6.50000E+04	1.05000E+07 5.70000E+04	3.90000E+04	8.00000E-02	0•
1107	1	156	155			1+00000E-01 3+00000E+03	3.00000E+03	3.00000E+03	1.00000E+06 3.00000E+03	1.85000E+02	1.00000E-01	1.00000E-01
1108	1	158	157			1•00000E-01 6•50000E+04	5.70000E+04	6.50000E+04	1.05000E+07 5.70000E+04	3.90000E+04	8.00000E-02	0•
1501	1	157	165		۰	1•00000E-01 6•50000E+04	5.70000E+04	6.50000E+04	1.05000E+07 5.70000E+04	3+90000E+04	8.000005-02	0•
1202	1	159	163			1•00000E-01 6•50000E+04	5.70000E+04	6.50000E+04	1.05000E+07 5.70000E+04	3+90000E+04	8.00000E-02	0•
1503	1	162	161			1•00000E-01 6•50000E+04	5.70000E+04	6.50000E+04	1.05000E+07 5.70000E+04	3.90000F+04	8.00000E-02	0•
1204	1	159	164			1•00000E-01 6•50000E+04	5.70000E+04	6.50000E+04	1•05000E+07 5•70000E+04	3+90000E+04	8.00000E-02	0.
1205	1	158	166			1.00000E-01 6.50000E.04	5.70000E+04	6.50000E+04	1.05000E+07 5.70000E+04	3•90000E+04	8.00000 <u>F</u> -02	0•
1301	1	141	143			1+00000E-01 6+50000E+04	5.70000E+04	6.50000E+04	1.05000E+07 5.70000E+04	3+90000E+04	8.00000E-02	0•
1302	1	143	145			1+00000E-01 6+50000E+Q4	5.700002+04	6.50000E+04	1.05000E+07 5.70000E+04	3.90000E+04	8.000005-02	0.
1303	1	145	147			1+00000E-01 6+50000E+04	5.70000E+04	6.50000E+04	1.05000E+07 5.70000E+04	3.90000E+04	8.00000E-02	0•
1304	1	147	149			1.00000E-01 6.50000E+04	5.70000E+04	6.50000E+04	1.05000E+07 5.70000E+04	3+90000E+04	8.00000E-02	0•
1305	1	149	151			1.00000E-01 6.50000E+04	5.70000E+04	6.50000E+04	1.05000E+07 5.70000E+04	3+90000E+04	8.00000E-02	0•
1306	1	151	153			1.00000E-01 6.50000E+04	5+70000E+04	6.50000E+04	1.05000E+07 5.70000E+04	3•90000E+04	8.00000E-02	0 •

											PAGE 9	13	
MEMB NO	МЕМВ ТҮРЕ	NODE (1) (M)	NODE (J) (N)	NODF (K) (O)	NODE (L) (P)	F (26) (29) (81)	A (27) (30) (82)	C (28) (83)	T (36) (40) (84)	0 (37) (41) (85)	R (38)		S (39)
1207									,	(65)	(88)		(87)
1307	1	153	155			1+00000E-01 6+50000E+04	5.70000E+04	6.50000E+04	1.05000E+07 5.70000E+04	3.90000E+04	8.00000E-02	2 <b>0</b> •	
1308	1	155	157			1+00000E-01 6+50000E+04	5.70000E+04	6.50000E+04	1.05000E+07 5.70000E+04	3.90000E+04	8.000005-02	0.	
1309	1	157	159			1•00000E-01 6•50000E+04	5.70000E+04	6.500002+04	1.05000E+07 5.70000E+04	3.90000E+04	8.00000E-02	0.	
1311	1	141	144			1•00000E-01 6•50000E+04	5.70000E+04	6.50000E+04	1.05000E+07 5.70000E+04	3.90000E+04	8.00000F-02	0.	•
1312	1	144	146			1+00000E+01 6+50000E+04	5.70000E+04	6.50000E+04	1.05000E+07 5.70000E+04	3.90000E+04	8-000005-02	0.	
1313	1	146	148			1+00000E-01 6+50000E+04	5.70000E+04	6.50000E+04	1.05000E+07 5.70000E+04	3.90000F+04	8-000005-02	0	
1314	1	148	150			1.00000E-01 6.50000E+04	5.70000E+04	6.50000E+04	1.05000E+07 5.70000E+04	3-900005+04	8.000005-02	0.	
1315	1	150	152			1.00000E-01 6.50000E+04	5.70000E+04	6.50000E+04	1.05000E+07 5.70000F+04	3-900005+04	8 000005-02	0.	
1316	1	152	154			1.00000E-01 6.50000E+04	5.70000E+04	6.50000F+04	1.05000E+07	3 900005.04	8.000005-02	0.	
1317	1	154	156			1.00000E-01 6.50000E.04	5.70000F+04	6-500005+04	1.05000E+07		8.000005-02	0•	
1318	1	156	158			1+00000E-01	5.700005.00	6 500005.04	1.05000E+07	3.900002+04	8+000002-05	0.	
1319	1	158	159			1.00000E-01	5.100002.404	8.300002+04	5.70000E+04 1.05000E+07	3.90000E+04	8.00000E-02	0.	
1401	1	155	165			1.00000E-01	5•70000E+04	6.50000E+04	5.70000E+04	3.90000E+04	8.00000E-02	0.	
1402	,	145	142			6.50000E+04	5.70000E+04	6.50000E+04	5.70000E+04	3.90000E+04	8.000005-02	0.	
	•	103	103			6.50000E+04	5.70000E+04	6.50000E+04	1.05000E+07 5.70000E+04	3+90000E+04	8.00000E-02	0.	
1403	1	163	161			1.00000E-01 6.50000E+04	5•70000E+04	6.50000E+04	1.05000E+07 5.70000E+04	3.90000E+04	8.000005-02	0•	
1404	1	164	162			1.00000E-01 6.50000E+04	5.70000E+04	6.50000E+04	1.05000E+07 5.70000E+04	3+90000E+04	8.00000E-02	0•	

. .

ı.

í,

•

:

.

											PAGE 94	
MEMB NO	MEMB TYPE	NODE (I) (M)	NODE (J) (N)	NODE (K) (O)	NODE (L) (P)	F (26) (29)	A (27) (30)	C (28)	T (36) (40)	0 (37) (41)	R (39)	s (39)
						(81)	(82)	(83)	(84)	. (85)	(86)	(87)
1405	1	166	164			1+00000E-01 6+50000E+04	5•70000E+04	6,50000E+04	1.05000E+07 5.70000E+04	3.90000E+04	8.00000E-02	0•
1406	1	156	166			1.00000E-01 6.50000E+04	5.70000E+04	6.50000E+04	1.05000E+07 5.70000E+04	3.90000E+04	8.00000E-02	0•

TOTAL NUMBER OF MEMBERS = 347 NUMBER OF MEMBERS ADJACENT TO CONSTRAINED NODES = 57 BAND WIDTH OF STRUCTURE STIFFNESS MATRIX = 48

.

44	******	******	***************			***	
4							
							•
	A				•	* * * * * * * * * * * * * * * * * * * *	
9	AAA				•	•	
4	ΑΑΑΑΑ				-	ANAM EASTOP ANAM	
4	ΑΑΑΑ					FLUTTED AND STDENCTH	
4					•	ADDIVITER AND SIRENGIA .	
					•	OPTIMIZATION PROGRAM .	
	AAA AAA				•	•	,
4	ΑΑΑ ΑΑΑ					**** 507 ****	
44	ΑΑΑ ΑΑΑ					STRENGTH OPTIMIZATION PROCRAM	
4					•	Stoffert of Litteritor Problem.	
4					•		
					•	ARRA ASUM REAR	
¥	AAAAAAAAA	555	5555		•	AUTOMATED .	
*	AAAA AAAA	SSSS	SSSSS		•	STRENGTH OPTIMIZATION MODULE .	
#	ΑΑΑ ΑΑΑ	5555	SSSS				
4	AAA AAA	2222	2222		· · ·	•	
4		5555	2222		•	* * * * * * * * * * * * * * * * * * * *	
-	AAA AAA	333	333		•	•	
-	AAA . AAA	555	55		•	AIR FORCE .	
*	AAA AAA	55S	5		•	FLIGHT DYNAMICS LABORATORY .	
4	AAA AA.	A \$55			•		
4	AAA 4A.	A			•	MAY 1978	
44	AAA AA	A 55555	55555		•	*	
4		2222	22222	0000	) o o o o o o	•	
	•		55555	0000		********	
			2222	00000	0000		
v			555	0000	0000	,	
4		S	SSS	000	000	•	
4		22	555	000	000		
		500	666	000	000		
		333	333	000	000		
		5555	5555	000	000		
*		5555	5555	000	000		
4		5555	SSSSS	000	000		
#		SSS	SSSS	000	000		
				000	000		
4				000	000		
				000	000	ммм ммм	
		•		000	000	MMMM MMMM	
9				000	000	мммм мммм	
۰.				000	000	ммммм ммммм	
				000	000	Mini Mini Mini Mini Mini Mini Mini Mini	
4	000000000000000000000000000000000000000		000000000000000000000000000000000000000	000	000	na n	
4	000000000000000000000000000000000000000	20000000000000000000000000000000000000	6666666666666	000	0000		
	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000	0000	0000	мимами амимим	
		00000000000000000000	66666666	00000	00000	МММ ММ ЧМ МММ	
4		000000000000000000000	GGG	0000	0000	MMM MM MM MMM	
11		00000000000000000				MMM MMMMM MMM	
4		222222222222222222222222222222222222222				BANANA KANANA WANA KANANA	
4	GPHMMAN	000000000000000000000000000000000000000					
						MMM MMM MMM	
-	· ALKUSPALL ·	000600006666				ммм ммм ммм	
4	<ul> <li>CORPORATION .</li> </ul>	GGGGGGGGGG		,		MMM MMM MMM	
4	• •	66666666				MMM MMM MMM	
4		666666				Mining Winawi Antonia	
		0000	•			ואו דיויא איז איז איז איז איז איז איז איז איז א	
		6600					
-		00				ммм ммм ммм	
¥		G				MMM MMM MMM	
#							

#### 

STACK THE ELEMENT STIFFNESSES TO OBTAIN THE STIFFNESS MATRIX (KS)

THE TOTAL STIFFNESS MATRIX WAS STACKED IN 2 BLOCKS

SOLVE THE EQUATION KS = L * LT. SPLIT THE STIFFNESS MATRIX TO OBTAIN THE STIFFNESS MATRIX LOWER TRIANGLE (L) AND THE TRANSPOSE OF THE STIFFNESS MATRIX LOWER TRIANGLE (LT) BY THE CHOLESKY FACTORIZATION METHOD

LOWER TRIANGLE EXCEEDS STORAGE IN CORE

SOLVE THE EQUATION L * ZF = F. USING THE LOAD MATRIX INPUT (F) SOLVE FOR THE INTERMEDIATE SOLUTION (ZF) BY THE FORWARD SOLUTION METHOD

REVERSE THE ORDER OF THE STIFFNESS MATRIX LOWER TRIANGEL (LT) TO OBTAIN. THE REVERSE STIFFNESS MATRIX LOWER TRIANGLE (LTR) FOR USE IN THE SOLUTION OF LTR * XR = XFR FOR XR.

********************** STEP 5 FROM PROGRAM SBNAIN *****************

REVERSE THE ORDER OF THE INTERMEDIATE SOLUTION (ZF) TO OBTAIN THE REVERSE INTERMEDIATE SOLUTION (ZFR) FOR USE IN THE SOLUTION OF LTR  $\bullet$  xR = ZFR FOR XR.

**********************

SOLVE LTR * XR = ZFR. USING THE REVERSED SOLUTIONS LTR AND ZFR OBTAINED PREVIOUSLY SOLVE FOR THE REVERSED DEFLECTIONS (XR) DUE TO THE FORCE MATRIX INPUT. USE THE BACKWARD SOLUTION METHOD TOTAL MATRIX EXCEEDS STORAGE IN CORF

REVERSE THE ORDER OF THE REVERSE DEFLECTIONS (XR) TO OBTAIN THE DEFLECTIONS (X)

,

1



.

.

### ********************** STEP 8 FROM PROGRAM SBMAIN ******************

SOLVE C = U + X. USING THE STRESS PER UNIT DEFLECTION (U) AND THE DEFLECTIONS (X) SOLVE FOR THE CORNER FORCES (C)

.

.

· ·

.

.

,

### REDESIGN CYCLE NO. 0 IN STRESS CONSTRAINT MODE

MEMBER GAGES IN CURRENT CYCLE

.

 $\sim$ 

٠

.

MEMBER		GAGE		MEMREF	!	GAGE		MEMBER		GAGE	MEMBER		GAGE
4301		1.000000E-02		6302		1.00000E-02		6303		1.0000005-02	6306		1 0000005-02
6305		1.000000E-02	<u>!</u>	4306		1.000000E-02		4001		2,5000005+00	6002		2 5000006+00
6003		2.500000E+00	i -	6004		2.500000E+00	•	6005		2-500000F+00	4006		2 5000002+00
1001		1.000000E-01		1002		1.00000F-01		1003		1.00000000000	1006		
1005		1.000000E-01		6011		3.000000E+00		6012		3,100000F+00	4013		3 2000005+00
6014		3+300000E+00		6015		1.700000E+00		9013		1.00000000000	5013	2	
5002	3	1 3 0	0	0 5003	3	2 3 0 0	0	5004	2		0 5001	1	
5006	1	1 1 0	Ó	0 5011	2	1 2 0 0	ŏ	5012	้า	1 3 0 0			
5014	2	1 2 0	0	0 5015	1	1 1 0 0	Ō	5016	ĭ		0 4021	3	
6022		5.000000E+00		6023	-	5.00000F+00	-	6024	•	5.0000005+00	4025		5.0000002+00
4026		5.000000E+00		1011		1.00000E-01		1012		1.000000000000	1013		
1014		1.000000E-01		1015		1.000000F-01		6031		3.3000000000	4032		3 4000000 -01
6033		3.500000E+00		6034		3.60000000000		6035		1.9000005+00	0032		
5021	2	1 2 0	0	0 5022	3	1 3 0 0	0	5023	2	4 3 0 0	0 E030	Ъ	
5025	1	1 1 0	0	0 5026	ĩ	1 1 0 0	ŏ	5031	2		0 5024	2	3 3 0 0 0
5033	3	630	0	0 5034	3	3 3 0 0	ŏ	5035	ĩ	1 1 0 0	0 5036	· 1	
4041		5.000000E+00		6042		5.000000E+00	-	6043	-	5.0000005+00	6044	•	5 000005+00
6045		5.000000E+00		4046		5.000000E+00		1021		1.000000E-01	1022		1 0000005-01
1023		1.000000E-01		1024		1.000000E-01		1025		1.000000E=01	6051		3 7000005+00
6052		3.800000E+00		6053		3.950000F+00		6054		4.100000000000	6051		3 100000000000
9053		1.000000E-02		5041	2		0	5042	٦	3 3 0 0	0 6000	2	
5044	3	6 3 0	0	0 5045	3	1 3 0 0	ŏ	5046	้า	1 1 0 0	0 5043	2	
5052	3	1 3 0	0	0 5053	3	10 3 0 0	ŏ	5054		6 3 0 0	0 5051	2	
5056	1	1 1 0	0	0 4061	-	5.000000F+00	v	6062		5-0000005+00	6063	Ľ	
6064		5.000000E+00		6065		5.0000005+00		4066		5.00000000000	1031		
1032		1.000000E-01		1033		1-0000005-01		1034		1.0000005-0)	1031		
6071		4.000000E+00		6072		4-150000E+00		6073		4.3000005+00	1035		4 45000002-01
6075		2.300000E+00		9073		1.00000F-02		5061	2		0 5063	2	
5063	Э	8 3 0	0	0 5064	3	9 3 0 0	0	5065	6		0 5002	 	
5071	2	1 2 0	0	0 5072	3	1 3 0 0	ŏ	5073	จั	15 3 0 0	0 5000	2	
5075	5	1 5 0	0	0 5076	3	1 3 0 0	ŏ	4081		5.000005.00	V 5074 4095	3	
6083		5.000000E+00		6084	-	5.000000F+00	v	6085		5-000000000000	6002		
1041		1.000000E-01		1042		1.0000005-01		1043		1.000000000000	4000		
1045		1.000000E-01		6091		4-450000F+00		5002		4.350000F+00 \	6007		4 <b>3</b> 00000 <u>F</u> •01
6094		4+850000E+00		6095		2.500000E+00		9093		1.0000005-02	5075	2	
5082	3	1 3 0	0	0 5083	3	10 3 0 0	0	5084	3		0 5085	2	
5086	10	1 10 0	0	0 5091	2	1 2 0 0	ő	5092	จั		0 5003	2	
5094	3	14 3 0	0	0 5095	8	1 8 0 0	ň	5096	Â		0 4101	5	
6102		5.000000E+00		6103		5.00000F+00		6104	U	5.000006.00	4101		
4106		5.000000E+00		1051		1.000000F-01		1052		1.00000000000	1053		
1054		1.000000E-01		1055		1.00000000000		6111		4-8000000	1022		4 000000E-01
6113		5.050000E+00		6114		5.250000F+00		6115		2.7000005+00	0112		
5101	2	1 2 0	0	0 5102	3	1 3 0 0	n	5103	2		0 6107		
5105	12	1 12 0	Ō	0 5106	15	1 15 0 0	ň	5111	5		0 5104	5	
5113	2	21 2 0	Ō	0 5114	2	18 2 0 0	ň	5115	11			12	1 3 0 0 0
4121		5.000000F+00	-	6122	-	5.000000F+00	v	6123			U 5110	13	
6125		5.000000E+00		4126		5.000000000000		1061			6124		2.000000E+00
1063		1.000000E-01		1064		1.00000000000		1065		1.0000002-01	1062		1.000000E-01
-				•••••		**************************************		1002		1.000005-01	6131		5.200000E+00

PAGE 99

)

.

•

.

1.

)

 $\cdot$ 

· )

.1

### REDESIGN CYCLE NO. 0 IN STRESS CONSTRAINT MODE

MEMBER GAGES IN CURRENT CYCLE

MEMBER		GAGE	ME	MBER		GAGE				MEMBER			GAGE				MEMBER			GAGE		
6132		5.300000E+00	6	133	5.4	50000	)E+00	)		6134		5.6	500008	E+00			6135		2.90	0000E+	00	
9133		1.000000E-02	5	1 151	1	1	0	0	0	5122	2	1	2	0	0	0	5123	2	12	2 0	0	0
5124	2	18 2 0 0	0 5	125 14	2	14	0	0	0	5126	50	1	20	0	0	0	5131	1	1	1 0	0	0
5132	2	1200	05	ilga 2	23	2	0	0	0	5134	2	23	2	0	0	0	5135	13	ē	13 0	0	Ó
5136	17	1 17 0 0	0 4	141	5.0	00000	)E+00			6142		5.0	000008	E+00			6143	-	5.00	0000E+	)0	
6144		5.000000E+00	6	145	5.0	00000	)E+00			4146		5.0	00000E	E+00			1071		1.00	0000E-	)1	
1072		1.000000E-01	1	073	1.0	00000	E-01			1074		1.0	000006	-01			1075		1.00	0000E-	)]	
6151		5.500000E+00	6	152	5.6	00000	E+00			6153		5.8	00000E	+00			6154		6.00	0000E+	00	
6155		3.100000E+00	9	153	1.0	00000	E-02	•		5141	1	1	1	0	0	0	5142	1	1	1 0	0	0
5143	2	12 2 0 0	05	144 2	25	2	0	0	0	5145	15	8	15	0	0	0	5146	30	3	30 0	0	0
5151	1	1 1 0 0	05	152 1	1	1	0	0	0	5153	2	25	2	0	0	0	5154	2	27	2 0	0	0
5155	14	8 14 0 0	0 5	156 19	2	19	0	0	0	4161		5.0	000008	E+00			6162		5.00	0000E+	00	
6163		5.000000E+00	6	164	5.0	00000	E+00	1		6165		5.0	000006	+00			4166		5.00	+30000	)0	
1081		1.000000E-01	1	082	1.0	00000	)E-01			1083		1.0	000008	-01			1084		1.00	0000E-	)1	
1085		1.00000E-01	6	171	5.8	00000	)E+00	)		6172		6.0	00000E	E+00			6173		6.20	+30000	)0	
6174		6.450000E+00	6	175 -	3.3	00000	)E+00	)		9173		1.0	00000E	50-3			5161	1	1	1 0	0	0
5162	1	1 1 0 0	05	163 2	6	2	0	0	0	5164	3	26	3	0	0	0	5165	15	13	15 - 0	0	0
5166	41	34100	05	171 1	1	1	0	0	0	5172 .	1	1	1	0	0	0	5173	1	5	10	0	0
5174	2	28 2 0 0	05	175 14	10	14	0	0	0	5176	20	4	20	0	0	0	4181		5.00	0000E+	)0	
6185		5.000000E+00	6	183	5.0	00000	)E+00	ł.		6184		5.0	00000E	E+00			6185		5.00	+30000	)0	
4186		5.000000E+00	1	091	1.0	00000	)E-01			1092		1.0	00000E	E-01			1093		1.00	0000E-	)1	
1094		1.000000E-01	1	095	1.0	00000	)E-01			6191		6.2	000008	E+00			6192		6.45	0000E+	)0	
6193		6.60000E+00	6	194	6.9	00000	)E+00	)		6195		3.5	000008	E+00			9193		1.00	-30000	15	
5181	1	1 1 0 0	05	<b>ila</b> 2 1	1	1	0	0	0	5183	2	1	2	0.	0	0	5184	3	28	30	0	0
5185	15	21 12 0 0	05	186 43	3	43	0	0	0	5191	1	1	1	0	0	0	5192	1	1	1 0	0	0
5193	2	1 2 0 0	05	194 2	30	2	0	0	0	5195	11	19	11	0	0	0	5196	22	4	55 0	0	0
4201		1.000000E-01	6	202	1.0	00000	DE-01			6203		1.0	000006	E-01			6204		1,00	0000E-	)1	
6205		1.00000E-01	6	206	1.0	00000	)E-01			6207		1.0	000006	E-01			6208		1.00	- 30000	J1	
4209		1.00000E-01	4	211	1.0	00000	)E-01			6212		1.0	00000E	=-01			6213		1.00	- 30000	)1	
6214		1.00000E-01	4	215	1.0	00000	)E-01			1101-		1.0	000008	E-01			1105		1.00	-30000	)1	
1103		1.00000E-01	1	104	1.0	00000	)E-01			1105		1.0	000006	E-01			1106		1.00	-30000	)]	
1107		1.00000E-01	1	108	1.0	00000	)E-01			1201		1.0	000006	=-01			1505		1.00	0000E-	)]	
1203		1.00000E-01	1	204	1.0	00000	)E-01			1205		1.0	00000E	-01			1301	•	1.00	0000E-	)1	
1302		1.00000E-01	1	303	1.(	00000	)E-01			1304		1.0	00000F	-01			1305		1.00	0000E-	)1	
1306		1.00000E-01	1	307	1.0	00000	E-01			1308		1.0	00000E	= - 01			1309		1.00	-30000	)]	
1311		1.000000E-01	1	312	1.0	00000	)E-01			1313		1.0	000006	-01			1314		1.00	0000E-	)1	
1315		1.000000E-01	1	316	1.0	00000	)E-01			1317		1.0	000006	-01			1318		1.00	0000E-	11	
1319		1.000000E-01	1	401	1.0	00000	)E-01			1402		1.0	00000E	-01			1403		1.00	0000E-	)1	
1404		1.000000E-01	1	405	1.0	00000	)F-01			1406		1.0	000006	-01								

STRESS CONSTRAINT RATIO IN CURRENT CYCLE = .975518 OCCURRING IN MEMBER NUMBER 1307

TOTAL WEIGHT OF INITIAL DESIGN = 2.4494730E+01

THE ABOVE RESULTS ARE FOR THE INITIAL DESIGN

SOLVE THE EQUATION KS = L + LT. SPLIT THE STIFFNESS MATRIX TO OBTAIN THE STIFFNESS MATRIX LOWER TRIANGLE (L) AND THE TRANSPOSE OF THE STIFFNESS MATRIX LOWER TRIANGLE (LT) BY THE CHOLESKY FACTORIZATION METHOD

LOWER TRIANGLE EXCEEDS STORAGE IN CORE

SOLVE THE EQUATION L * ZF = F. USING THE LOAD MATRIX INPUT (F) SOLVE FOR THE INTERMEDIATE SOLUTION (ZF) BY THE FORWARD SOLUTION METHOD

REVERSE THE ORDER OF THE STIFFNESS MATRIX LOWER TRIANGEL (LT) TO OBTAIN THE REVERSE STIFFNESS MATRIX LOWER TRIANGLE (LTR) FOR USE IN THE SOLUTION OF LTR * XR = XFR FOR XR.

REVERSE THE ORDER OF THE INTERMEDIATE SOLUTION (ZF) TO OBTAIN THE REVERSE INTERMEDIATE SOLUTION (ZFR) FOR USE IN THE SOLUTION OF LTR * XR = ZFR FOR XR.

SOLVE LTR * XR = ZFR. USING THE REVERSED SOLUTIONS LTR AND ZFR OBTAINED PREVIOUSLY SOLVE FOR THE REVERSED DEFLECTIONS (XR) DUE TO THE FORCE MATRIX INPUT. USF THE BACKWARD SOLUTION METHOD TOTAL MATRIX EXCEEDS STORAGE IN CORF

REVERSE THE ORDER OF THE REVERSE DEFLECTIONS (XR) TO OBTAIN THE DEFLECTIONS (X)

### ************************** STEP 8 FROM PROGRAM SAMAIN ******************

SOLVE C = U + X. USING THE STRESS PER UNIT DEFLECTION (U) AND THE DEFLECTIONS (X) SOLVE FOR THE CORNER FORCES (C)

:

·

· · ·

### REDESIGN CYCLE NO. 1 IN STRESS CONSTRAINT MODE

.

. .

10 a 11

MEMBER GAGES IN CURRENT CYCLE

4301       1.000000E-02       6302       1.000000E-02       6303       1.000000E-02       6304         6305       1.000000E-02       4306       1.000000E-02       4001       2.500000E+00       6002         6003       2.500000E+00       6006       3.500000E+00       6002       6002	1.000000E-02 2.500000E+00 2.500000E+00 1.000000E+01
6305 1.000000E-02 4306 1.000000E-02 4001 2.500000E+00 6002 6003 2.500000E+00 6006 3.500000E+00 6005	2.500000E+00 2.500000E+00 1.000000E+00
	2.500000E+00 1.000000F+01
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.000000F-01
1001 1.000000E-01 1002 1.000000E-01 1003 1.000000E-01 1006	
1005 1.000000E-01 6011 3.000000E+00 6012 3.100000E+00 6013	3.200000E+00
6014 3,300000E+00 6015 1,700000F+00 9013 1,000000E=02 5001 2	
5002 3 1 3 0 0 0 5003 3 2 3 0 0 0 5004 2 1 2 0 0 0 5005 1	
5006 1 1 1 0 0 0 5011 2 1 2 0 0 0 5012 3 1 3 0 0 0 5013 3	
	5.0000000000
6022 5+000000E+00 6023 5+000000E+00 6024 5+000000E+00 6025	5.000000E+00
4026 5.000000E+00 1011 1.000000E-01 1012 1.000000E-01 1013	1.00000000000
1014 1.000000E-01 1015 1.00000E-01 6031 3.300000E+00 6032	3.40000000000
6033 3+500000E+00 6034 3+600000E+00 6035 1+900000E+00 9033	1 0000005+02
5021 2 1 2 0 0 0 5022 3 1 3 0 0 0 5023 3 4 3 0 0 0 5026 3	3 3 0 0 0
5025 1 1 1 0 0 0 5026 1 1 1 0 0 0 5031 2 1 2 0 0 0 5032 3	3 3 0 0 0
5033 3 6 3 0 0 0 5034 3 3 3 0 0 0 5035 1 1 1 0 0 0 5036 1	
4041 5.000000F+00 6042 5.000000F+00 6043 5.000000F+00 6044	5.00000000000
6045 5+000000E+00 4046 5+00000E+00 1021 1+000000E+01 1022	1.000000000000
1023 1.000000E-01 1024 1.000000E-01 1025 1.000000E-01 6051	3 7000005+00
6052 3+800000E+00 6053 3+950000E+00 6054 4+100000E+00 6055	2 100000000000
9053 1.000000E-02 5041 2 1 2 0 0 0 5042 3 1 3 0 0 0 5043 3	
5044 3 6 3 0 0 0 5045 3 1 3 0 0 0 5046 1 1 1 0 0 0 5051 2	
5052 3 1 3 0 0 0 5053 3 10 3 0 0 0 5054 3 6 3 0 0 0 5055 2	
5056 1 1 1 0 0 0 4061 5-0000005+00 6062 5-0000005+00 6063	5 0000000000000000000000000000000000000
6064 5+000000E+00 6065 5+00000E+00 4066 5+00000E+00 1031	1.00000000000
1032 1.00000000-01 1033 1.0000000-01 1034 1.0000000-01 1035	1,000000000000000000000000000000000000
6071 4+000000E+00 6072 4+150000E+00 6073 4+300000E+00 6074	4-45000000+00
6075 2+300000E+00 9073 1+000000E+02 5061 2 1 2 0 0 0 5062 3	
5063 3 8 3 0 0 0 5064 3 9 3 0 0 0 5065 6 1 6 0 0 0 5066 5	1 5 0 0 0
5071 2 1 2 0 0 0 5072 3 1 3 0 0 0 5073 3 15 3 0 0 0 5074 3	
5075 5 1 5 0 0 0 5076 3 1 3 0 0 0 4081 5-000000F+00 6082	5.0000005+00
6083 5+000000E+00 6084 5-00000E+00 6085 5-000000E+00 6086	5 000000000000
1041 1.000000E-01 1042 1.000000E-01 1043 1.000000E-01 1044	1 00000000000
1045 1.000000E-01 6091 4.450000E+00 6092 4.550000E+00 6093	4 70000000000
6094 4.850000E+00 6095 2.500000E+00 9093 1.000000E+02 5081 2	
5082 3 1 3 0 0 0 5083 3 10 3 0 0 0 5084 3 12 3 0 0 0 5085 9	
5086 10 1 10 0 0 5091 2 1 2 0 0 0 5092 3 1 3 0 0 0 5093 3	
5094 3 14 3 0 0 0 5095 8 1 8 0 0 0 5096 8 1 8 0 0 0 4101	5.000000000
6102 5.000000E+00 6103 5.000000E+00 6104 5.000000E+00 6105	5.0000000000
4106 5.000000E+00 1051 1.000000E+01 1052 1.000000E+01 1053	1 0000005-01
1054 1.000000E-01 1055 1.000000E-01 6111 4.000000E+00 6112	4 9000000 +00
6113 5+050000E+00 6114 5-250000E+00 6115 2-700000E+00 9113	1 000000000000
5101 2 1 2 0 0 0 5102 3 1 3 0 0 0 5103 2 12 2 0 0 0 5104 2	
5113 2 21 2 0 0 0 5114 2 18 2 0 0 0 5115 11 1 1 0 0 0 5116 13	1 13 0 0 0
4121 5,000000E+00 6122 5,000000E+00 6123 5,000000E+00 6124	5.000000000
6125 5.000000E+00 4126 5.000000E+00 1061 1.000000F-01 1062	1,000000F=01
1063 1.000000E-01 1064 1.000000E-01 1055 1.000000E-01 6131	5.200000E+00

REDESIGN CYCLE NO. 1 IN STRESS CONSTRAINT MODE

MEMBER GAGES IN CURRENT CYCLE

,

•

	MENBER		GA	GE			MEMBER			GAC	GE			MEMBER			GAGE	E			MEMBER			GAGE		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6132		5.3000	00E+0	0		6133		5.4	5000	00E+0	0		6134		5.6	50000)F+0()		6135		2 9	100005+0	^	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9133		1.0000	00E-0	2		5121	1	1	1	0	0	0	5122	2	1	2		0	0	5123	2	12	2 0	Ŭ ^	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5124	2	18 2	0	0	0	5125	14	S	14	0	0	Ô	5126	20	ī	20	õ	ň	ő	5131	ĩ	1	ĩõ	ň	- U
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5132	2	1 2	0	0	0	5133	2	23	2	0	0	0	5134	2	23	2	õ	ŏ	ň	5135	13	2	13 0	ň	0
	5136	17	1 17	0	0	0	4141		5.0	0000	00E+0	0		6142	-	5.0	00000	F+00) ँ	Ŭ	6143	13	້ຮົດ	100005+0	۸Ŭ	v
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6144		5.0000	00E+0	0		6145		5.0	0000	00E+0	0		4146		5.0	00000	F+00	,)		1071		1.00)0000 <u>[</u> •0	ĭ	
	1072		1.0000	00E-0	1		1073		1.0	0000	0-30C	1		1074		1.0	00000	F-01			1075		1.0	00006-0	î	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6151		5.5000	00E+0	0		6152		5.6	0000	00E+0	0		6153		5.9	00000	F+00)		6154		6.0	0000000000	ĥ	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6155		3.1000	00E+0	0		9153		1.0	0000	0€ - 0	2		5141	1	1	1	0	0	0	5142	1	1	1 0	٥.	n
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5143	2	12 2	0	0	0	5144	2	25	2	0	0	0	5145	15	8	15	õ	õ	ō	5146	30	i	30 0	ŏ	ň
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5151	1	1 1	0	0	0	5152	1	1	· 1	0	0	0	5153	2	25	2	Ō	Ō	Ö	5154	2	27	2 0	ŏ	ŏ
	5155	14	8 14	0	0	0	5156	19	S	19	0	0	0	4161		5.0	00000	E+00)		6162	_	5.00	00005+0	۰ آ	Ŭ
	6163		5.0000	00E+0	0		6164		5,0	0000	0+30C	0		6165		5.0	00000	E+00)		4166		5.00	00000F+0	õ	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1081		1.0000	00E-0	1		1082		1.0	0000)0E-0	1		1083		1.0	00000	E-01			1084		1.00	0000E-0	ĭ	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1085		1.0000	00E-0	1		6171		5.9	0000)0E+0	0		6172	•	6.0	00000	E+00)		6173		6.20	00000E+0	Ō	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6174	•	6.4500	00E+0	0	-	6175	_	3.3	10000	00E+0	0		9173		1.0	00000	E-02	2		5161	1	i	1 0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5162	1	1 1	0	0	0	5163	2	6	2	0	0	0	5164	3	26	3	0	0	0	5165	15	13	15 0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2100	41	3 41	0	0	0	5171	1	1	1	0	0	0	5172	1	1	1	0	0	0	5173	1	5	10	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5174	2	28 2	0	0	0	5175	14	10	14	0	0	0	5176	20	4	50	0	0	0	4181		5.00	0000E+0	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5182		5.0000	00E+0	0		6183		5.0	0000	00E+0	0		6184		5.0	00000	E+00)		6185		5,00	0000E+0	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4100		5.0000		0		1091		1.0	0000	00E-0	1		1092		1.0	00000	E-01			1093		1.00	0000E-0	1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4102		1.0000	002-0	1		1095		1.0	0000	0-30C	1		6191		6.2	00000	E+00)		6192		6.49	50000E+0	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5191	ĩ	0.000	002 40	U _	•	5103	,	6.9	0000	00E+0	0	•	6195	÷	3.5	00000	E+00	}		9193		1.00)0000E-0	2	
5193 1 1 2 0 0 5191 1 1 1 0 0 5192 1 1 1 0 0 0 0 0 0 5191 1 1 1 0 0 0 5193 1 1 1 1 0	5185	12	21 12	Ň	0	0	5186	1	1		0	0	0	5183	2	1	2	0	0	0	5184	Э	28	3 0	0	0
4201 8.000000E-02 6202 8.000000E-02 6203 8.000000E-02 6204 8.000000E-02 6205 8.000000E-02 6206 8.000000E-02 6207 8.000000E-02 6208 8.000000E-02 4209 8.000000E-02 4211 8.000000E-02 6212 8.000000E-02 6213 8.000000E-02 6214 9.655305E-02 4215 8.000000E-02 6212 8.000000E-01 1102 8.000000E-02 1103 1.000000E-01 1104 8.000000E-02 1105 1.000000E-01 1105 8.000000E-02 1107 1.000000E-01 1108 8.000000E-02 1201 8.000000E-02 1202 8.000000E-02 1203 8.000000E-02 1204 8.000000E-02 1205 8.000000E-02 1301 8.000000E-02 1307 8.000000E-02 1303 8.000000E-02 1305 8.000000E-02 1305 8.000000E-02 1306 8.000000E-02 1303 8.000000E-02 1313 8.000000E-02 1314 8.000000E-02 1311 8.000000E-02 1313 8.000000E-02 1318	5193	12	1 2	0	0	Ň	5180	43	3	43	0	0	0	5191	1	1	1	0	0	0	5192	1	1	1 0	0	0
6205 8.000000E-02 6206 8.000000E-02 6203 8.000000E-02 6204 8.000000E-02 6209 8.000000E-02 6211 8.000000E-02 6212 8.000000E-02 6213 8.000000E-02 6214 9.655305E-02 4215 8.000000E-02 1101 1.00000E-01 1102 8.000000E-02 1103 1.000000E-01 1104 8.000000E-02 1105 1.000000E-01 1105 8.000000E-02 1107 1.000000E-01 1108 8.000000E-02 1201 8.000000E-02 1202 8.000000E-02 1203 9.000000E-02 1204 8.000000E-02 1205 8.000000E-02 1301 8.000000E-02 1302 8.000000E-02 1303 8.000000E-02 1304 8.000000E-02 1305 8.000000E-02 1306 8.000000E-02 1308 8.000000E-02 1309 8.000000E-02 1311 8.000000E-02 1313 8.000000E-02 1314 8.000000E-02 1315 8.000000E-02 1316 8.000000E-02 1317 8.000000E-02 1318 8.000000E-02 13	4201		8 0000	000	້	U	5194	2	30	~~~~~	^U	2 U	0	5195	11	19	11	_0	0	0	5196	22	4	22 0	0	0
4209 8.000000E-02 4211 8.00000E-02 6212 8.000000E-02 6213 8.000000E-02 6214 9.655305E-02 4215 8.00000E-02 1101 1.00000E-01 1102 8.000000E-02 1103 1.000000E-01 1104 8.000000E-02 1105 1.000000E-01 1105 8.000000E-02 1107 1.000000E-01 1108 8.000000E-02 1201 8.000000E-02 1202 8.000000E-02 1203 9.000000E-02 1204 8.000000E-02 1205 8.000000E-02 1301 8.000000E-02 1302 8.000000E-02 1303 8.000000E-02 1304 8.000000E-02 1305 8.000000E-02 1306 8.000000E-02 1307 9.755183E-02 1308 8.000000E-02 1309 8.000000E-02 1311 8.000000E-02 1312 8.000000E-02 1313 8.000000E-02 1314 8.000000E-02 1315 8.000000E-02 1317 8.000000E-02 1318 8.000000E-02 1319 8.000000E-02 1402 8.000000E-02 1403 8.000000E-02	6205		8.0000	002-0	2		6206		0,0	0000	000-01	2		6203		8.0	00000	E-02			6204		8.00	00000E-0	2	
6214 9.655305E-02 4215 8.00000E-02 1101 1.00000E-01 1102 8.000000E-02 1103 1.00000E-01 1104 8.00000E-02 1105 1.00000E-01 1105 8.00000E-02 1107 1.00000E-01 1108 8.00000E-02 1201 8.00000E-02 1202 8.00000E-02 1203 8.00000E-02 1204 8.00000E-02 1205 8.00000E-02 1301 8.00000E-02 1203 8.00000E-02 1204 8.00000E-02 1205 8.00000E-02 1301 8.00000E-02 1302 8.00000E-02 1303 8.00000E-02 1304 8.00000E-02 1305 8.00000E-02 1306 8.00000E-02 1307 9.755183E-02 1308 8.00000E-02 1309 8.000000E-02 1311 8.00000E-02 1312 8.00000E-02 1313 8.000000E-02 1314 8.000000E-02 1315 8.000000E-02 1316 8.000000E-02 1317 8.000000E-02 1318 8.000000E-02 1319 8.000000E-02 1402 8.000000E-02 1403 8.000000E-02 <td>4209</td> <td></td> <td>8.0000</td> <td>002 0</td> <td>2</td> <td></td> <td>4211</td> <td></td> <td>0.0</td> <td>0000</td> <td></td> <td>2</td> <td></td> <td>6207</td> <td></td> <td>8.0</td> <td>00000</td> <td>t-02</td> <td></td> <td></td> <td>6208</td> <td></td> <td>8.00</td> <td>00000E-0</td> <td>5</td> <td></td>	4209		8.0000	002 0	2		4211		0.0	0000		2		6207		8.0	00000	t-02			6208		8.00	00000E-0	5	
1103 1.00000E-01 1104 8.00000E-02 1101 1.00000E-01 1102 8.00000E-02 1103 1.00000E-01 1104 8.00000E-02 1105 1.00000E-01 1105 8.00000E-02 1107 1.00000E-01 1108 8.00000E-02 1201 8.00000E-02 1202 8.00000E-02 1203 9.00000E-02 1204 8.00000E-02 1205 8.00000E-02 1301 8.00000E-02 1302 8.00000E-02 1303 8.00000E-02 1304 8.00000E-02 1305 8.00000E-02 1306 8.00000E-02 1307 9.755183E-02 1308 8.00000E-02 1309 8.00000E-02 1311 8.00000E-02 1312 8.00000E-02 1313 8.00000E-02 1314 8.00000E-02 1315 8.00000E-02 1316 8.00000E-02 1317 8.00000E-02 1318 8.00000E-02 1319 8.00000E-02 1402 8.00000E-02 1403 8.00000E-02	6214		9.6553	056-0	2		4215		0.0	0000	005-0	2		0212		8.0	00000	E-04			6213		8.00	00000E-0	2	
1107 1.00000E-01 1108 8.00000E-02 1201 8.00000E-02 1202 8.000000E-02 1203 9.00000E-02 1204 8.00000E-02 1205 8.000000E-02 1301 8.000000E-02 1302 8.000000E-02 1303 8.000000E-02 1304 8.000000E-02 1305 8.000000E-02 1306 8.000000E-02 1307 9.755183E-02 1308 8.000000E-02 1309 8.000000E-02 1311 8.000000E-02 1312 8.000000E-02 1313 8.000000E-02 1314 8.000000E-02 1315 8.000000E-02 1316 8.000000E-02 1317 8.000000E-02 1318 8.000000E-02 1319 8.000000E-02 1401 8.000000E-02 1402 8.000000E-02 1403 8.000000E-02	1103		1.0000	000000	1		1104		0.0	0000		ב כ		1101		1.0	00000	F-01			1102		8.00	0000E-0	2	
1203 9.000000E-02 1204 8.000000E-02 1205 8.000000E-02 1301 8.000000E-02 1302 8.000000E-02 1303 8.000000E-02 1205 8.000000E-02 1301 8.000000E-02 1306 8.000000E-02 1307 9.755183E-02 1308 8.000000E-02 1309 8.000000E-02 1311 8.000000E-02 1312 8.000000E-02 1313 8.000000E-02 1314 8.000000E-02 1315 8.000000E-02 1316 8.000000E-02 1317 8.000000E-02 1318 8.000000E-02 1319 8.000000E-02 1401 8.000000E-02 1402 8.000000E-02 1403 8.000000E-02	1107		1.0000	00E-0	1		1104		0.U	0000		2		1201		1.0	00000	E-01			1105		8,00	00000E-0	2	
1302 8.000000E-02 1303 8.00000E-02 1304 8.00000E-02 1305 8.00000E-02 1306 8.000000E-02 1307 9.755183E-02 1308 8.000000E-02 1309 8.000000E-02 1311 8.000000E-02 1312 8.000000E-02 1313 8.000000E-02 1314 8.000000E-02 1315 8.000000E-02 1316 8.000000E-02 1317 8.000000E-02 1318 8.000000E-02 1319 8.000000E-02 1401 8.000000E-02 1402 8.000000E-02 1403 8.000000E-02	1203		8.0000	00E-0	2		1204		8 0	0000	02-01 06-01	2		1201		0 0	00000	F-02			1202		8.00	100005-0	2	
1306 8.000000E-02 1307 9.755183E-02 1308 8.00000E-02 1309 8.00000E-02 1311 8.000000E-02 1312 8.000000E-02 1313 8.000000E-02 1314 8.000000E-02 1315 8.000000E-02 1316 8.000000E-02 1317 8.000000E-02 1318 8.000000E-02 1319 8.000000E-02 1401 8.000000E-02 1402 8.000000E-02 1403 8.000000E-02	1302		8.0000	00F-0	2		1303		8 0	0000	000-00	2		1205		0.0	00000	c-02			1301		8.00	000005-0	2	
1311 8.000000E=02 1312 8.000000E=02 1313 8.000000E=02 1314 8.000000E=02 1315 8.000000E=02 1316 8.000000E=02 1317 8.000000E=02 1318 8.000000E=02 1319 8.000000E=02 1401 8.000000E=02 1402 8.000000E=02 1403 8.000000E=02	1306		8.0000	00F-0	2		1307		9.7	5518	175-0	2		1304		0.0	00000	E-02			1302		8.00	10000E-0	2	
1315 8.000000E-02 1316 8.00000E-02 1317 8.000000E-02 1318 8.000000E-02 1319 8.000000E-02 1401 8.000000E-02 1402 8.000000E-02 1403 8.000000E-02	1311		8.0000	00E-0	2		1312		8.0	0000	0E=0	2		1300		0 A	00000	5-02			1309		8.00	0000E-0	2	
1319 8.000000E-02 1401 8.000000E-02 1402 8.000000E-02 1403 8.000000E-02	1315		8.0000	00E-0	2		1316		8.0	0000	05-01	2		1313		0.U	00000	r_02			1314		8.00	10000E-0	2	
	1319		8.0000	00E-0	2		1401		8.0	0000	0F-02	2		1402		8.0	00000	E-02	,		1718		5.00	000015-0	2	
1404 8+000000E=02 1405 8+00000E=02 1406 8,00000E=02	1404		8.0000	00E-0	2		1405		8.0	0000	0F-02	2		1406		- 0.U	00000	E=02			1403		0.00	0000E=0	2	

STRESS CONSTRAINT RATIO IN PRECEDING CYCLE = .975518 STRESS CONSTRAINT RATIO IN CURRENT CYCLE = 1.049690 OCCURRING IN MEMBER NUMBER 6214

TOTAL WEIGHT OF DESIGN ANALYZED IN PRECEDING CYCLE = 2.4494730E+01 TOTAL WEIGHT OF DESIGN ANALYZED IN CURRENT CYCLE = 2.4130814E+01

1

THE ABOVE RESULTS ARE FOR REDESIGN CYCLE NO. 1 IN THE STRESS CONSTRAINT MODE

ITERATIONS IN STRESS CONSTRAINT HODE NOW COMPLETE

**	******	*****	************		****	**************************************
4						
4	۵					•
8					•	
					•	• •
	AAAAA					AAAA FASTOP AAAA
8	AAAA					FLUTTER AND STRENGTH
4	ΑΑΑ ΑΑΑ					
4	AAA AAA					OF THIZATION PROGRAM
					•	•
8					•	
	AAA AAA				•	STRENGTH OPTIMIZATION PROGRAM
•	AAA AAA				-	
4	ΑΑΑΑΑΑΑ					
4	ΑΑΑΑΑΑΑΑ	5555	555		•	
•	ΔΔΔΔ ΔΔΔΔ	22222			•	AUTUMATEU .
*	AAA AAA		13333		•	STRENGTH ANALYSIS MODULE .
		2222	5555		•	•
	AAA AAA	5555	SSSS		•	
	AAA AAA	SSS	SSS			
¥.	AAA AAA	\$55	55			ATO FORCE
٠	ΔΑΔ ΔΔΔ	555	C .		•	
		555			•	FLIGHT DINAMICS LABORATORY .
ő		255			•	•
		5555				MAY 1978
*	АДА ДАД	\$\$\$\$\$\$	SSSS		•	
4		SSSSS	SSSSS	1	Α.	*****
\$			5555	A	Ă۸	
4			222			
		c .	555	~~~	***	
			222	AAJ	AAA	
		55	555	AAA	A A A	
		SSS	SS5	AAA	A A A	
4		SSSS	SSSS	444		
4		5222	2222			
4	·	22222	2000			
æ		22233		444	AAA	
		2222	222	AAAAA	AAAAA	
				AAAA	AAAAA	MMM MMM
*				4444	AAAA	МММ МММ
4				444		MMAAM MAMAA
4	•					ta t
					AAA	mmm mmmm
a				AAA	4 4 4	ммммм ммммм
-				AAA	A A A	мммчм ммммм
w	000000000000000000000000000000000000000	0000000000000	666666666666666666666666666666666666666	AAA	A A A	МММММ МММММ
4	666666666666666666666666666666666666666	666666666666666666666666666666666666666	000000000000000000000000000000000000000	AAA	444	МММЧММ ЧМММММ
4	GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	000000000000000000000000000000000000000	0000000	A A A		MARK MM MM MARK
4	00000000	000000000000000000000000000000000000000	66		222	enter en en enter en
			00	AAA	444	
8						ним мимим мим
		060066				ммм мммчм ммм
*	 GRUMMAN GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	66666	·			MMM MMM MMM
*	 AEROSPACE GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	iGG				MMM MMM MMM
ŧ.	 CORPORATION GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG					- Mildad Mind Mildad
4	2222222222	•				ראינים איניים איניי איני איניים אי
a						MMM MMM MMM
						ммм ммч ммм
*	GGGG					MMM MMM MMM
4	GG					MMM MNM MMM
4	G					Alberta Mitalah Ashava
						הורוביו הביוה ה מורים והיותיותיו
8.45	*****					

GAGES DETERMINED IN FINAL STRESS CONSTRAINT RESIZING

(NOTE THAT THIS REPRESENTS A DESIGN FOR WHICH AN ANALYSIS HAS NOT BEEN DONE. IT IS USEFUL PRIMARILY TO CHECK CONVERGENCE)

ar iyi

MEMBER		GAGE	MEMBER	GAGE	MEMBER	GAGE	MEMBER	GAGE
4301		1.000000E-02	6302	1.000000E-02	6303	1.000000E-02	6304	1.000000E-02
6305		1.00000E-02	4306	1.000000E-02	. 4001	2.500000E+00	6002	2.500000E+00
6003		2.500000E+00	6004	2.500000E+00	6005	2.50000000000	4005	2.50000E+00
1001		1.000000E-01	1005	`1.000000E-01	1003	1.000000E-01	1004	1.000000E-01
1005		1.000000E-01	6011	3,000000E+00	6012	3.100000E+00	6013	3.200000E+00
6014		3.300000E+00	6015	1.700000E+00	9013	1.000000E-02	5001 2	2 1 2 0 0 0
5002	3	1 3 0 0	0 5003	32300	0 5004	2 1 2 0 0	0 5005 1	
5006	1	1 1 0 0	0 5011	2 1 2 0 0	0 5012	3 1 3 0 0	0 5013 3	3 4 3 0 0 0
5014	2	1 2 0 0	0 5015	1 1 1 0 0	0 5016	1 1 1 0 0	0 4021	5.000000F+00
6022		5.000000E+00	6023	5.00000E+00	6024	5.000000E+00	6025	5,000000F+00
4026		5.000000E+00	1011	1.000000E-01	1012	1.000000E-01	1013	1.000000F-01
1014		1.000000E-01	1015	1.00000E-01	6031	3.300000E+00	6032	3.400000F+00
6033		3.500000E+00	6034	3.600000E+00	6035	1.900000F+00	9033	1.00000E=02
5021	2	1 2 0 0	0 5022	3 1 3 0 0	0 5023	3 4 3 0 0	0 5024 3	3 3 3 0 0 0
5025	1	1 1 0 0	0 5026	1 1 1 0 0	0 5031	2 1 2 0 0	0 5032 3	3 1 3 0 0 0
5033	3	6 3 0 0	0 5034	3 3 3 0 0	0 5035	1 1 1 0 0	0 5036 1	
4041		5.000000E+00	6042	5.00000E+00	6043	5.000000E+00	6044	5.000000F+00
6045		5.000000E+00	4046	5.00000E+00	1021	1.000000E-01	1022	1.000000F-01
1023		1.000000E-01	1024	1.000000E-01	1025	1.000000E-01	6051	3.700000 +00
6052		3.800000E+00	6053	3,950000E+00	6054	4.100000E+00	6055	2.100000F+00
9053		1.000000E-02	5041	2 1 2 0 0	0 5042	3 1 3 0 0	0 5043 3	3 6 3 0 0 0
5044	3	6 3 0 0	0 5045	3 1 3 0 0	0 5046	1 1 1 0 0	0 5051 2	
5052	3	1 3 0 0	0 5053	3 10 3 0 0	0 5054	3 6 3 0 0	0 5055 2	
5056	1	1 1 0 0	0 4061	5.00000E+00	6062	5.000000E+00	6063	5.00000F+00
6064		5.000000E+00	6065	5.000000E+00	4066	5.000000F+00	1031	1.0000005-01
1032		1.000000E-01	1033	1.000000E-01	1034	1.000000F-01	1035	1.000000F-01
6071		4.000000E+00	6072	4+150000E+00	6073	4.300000F+00	6074	4.4500000000
6075		2.300000E+00	9073	1.000000E-02	5061	2 1 2 0 0	0 5062 3	3 3 3 0 0 0
5063	3	8 3 0 0	0 5064	3 9 3 0 0	0 5065	6 1 6 0 0	0 5066 5	
5071	2	1 2 0 0	0 5072	3 1 3 0 0	0 5073	3 15 3 0 0	0 5074 3	
5075	5	1 5 0 0	0 5076	3 1 3 0 0	0 4081	5,0000005+00	6082	5 000005+00
6083		5.000000E+00	6084	5.000000F+00	6085	5.000000E+00	4086	5 0000000000000000000000000000000000000
1041		1.000000E-01	1042	1.000000F-01	1043	1-00000000-01	1044	1 0000005-01
1045		1.000000E-01	6091	4.450000E+00	6092	4.55000000000	6093	4 700000E+00
6094		4.850000E+00	6095	2,500000E+00	9093	1.0000005-02	5081 2	
5082	3	1 3 0 0	0 5083	3 10 3 0 0	0 5084	3 12 3 0 0	0 5085 0	
5086	10	1 10 0 0	0 5091	2 1 2 0 0	0 5092	3 1 3 0 0	0 5003 7	
5094	3	14 3 0 0	0 5095	8 1 8 0 0	0 5096		0 4101	
6102		5.000000E+00	6103	5.00000F+00	6104	5,0000005+00	6105	5 000000000000
4106		5.000000E+00	1051	1-0000005-01	1052	1.00000000000	1053	1 000000000000
1054		1.000000E-01	1055	1.000000F-01	6111	4-90000000000	6112	4 9000002-01
6113		5.050000E+00	6114	5-250000E+00	6115	2.70000000000	0113	1 0000005-00
5101	2	1 2 0 0	0 5102	3 1 3 0 0	0 5103		0 5106 2	
5105	12	1 12 0 0	0 5106	15 1 15 0 0	0 5111			
5113	2	21 2 0 0	0 5114	2 18 2 0 0	0 5115		0 5116 12	
4121		5.000000F+00	6122	5-0000000-00	6123	5.000006400	v 5140 13	
6125		5.000000F+00	4126	5.000000000000	1061	1 0000002+00	0144	
					1001	1.0000000-01	IVUE	1.00000000000

GAGES DETERMINED IN FINAL STRESS CONSTRAINT RESIZING

(NOTE THAT THIS REPRESENTS & DESIGN FOR WHICH AN ANALYSIS HAS NOT BEEN DONE. IT IS USEFUL PRIMARILY TO CHECK CONVERGENCE)

MEMBER	•			GAC	ЭE			MEMBER			G A	GE			MEMBER			GAGE			MEMBER			GAGE		
1063		1	•0	0000	0E-0	1		1064		1	.0000	00E-0)1		1065		1.00	000000-0	1		6131		5.2	00000E+00)	
6132		5	5.3	0000)0E+0()		6133		- 5	.4500	00E+0	0		6134		5.65	50000E+0	0		6135		2.9	00000F+00	Ś	
9133	-	1	0	0000	0E-02	2		5121	1		1 1	. 0	0	0	5122	2	1	2 0	0	0	5123	2	12	2 0	0	0
5124	5	1	18	2	0	0	0	5125	14		2 14	0	0	0	5126	20	1	50 0	0	0	5131	1	1	1 0	Ō	Ō
5132	2		1	2	0	0	0	5133	2	2	3 2	2 0	0	0	5134	2	23	20	Ó	0	5135	13	2	13 0	ŏ	ō
5136	17		1	17	0	0	0	4141		- 5	.0000	00E+0	0		6142		5.00	0000E+0	0		6143	-	5.0	00000E+00) -	-
6144		5	5.0	0000	0E+0)		6145	•	- 5	.0000	00E+0	0		4146		5.00	0000E+0	0		1071		1.0	00000E-01	Ĺ	
1072		1	• 0	0000	0E-01	l		1073		1	.0000	00E-0	1		. 1074		1.00	0000E-0	1		1075		1.0	00000E-01	L	
6151		5	5.5	0000	0E+00)		6152		- 5	+6000	00E+0	0		6153		5.90	0000E+0	0		6154		6.0	00000E+00	5	
6155	-	3	.1	0000	0E+00)		9153		1	.0000	006-0	2		5141	1	1	10	0	0	5142	1	1	1 0	0	0
5143	2	1	2	2	0	0	0	5144	2	- 29	52	0	0	0	5145	15	8	15 0	0	0	5146	30	3	30 0	Ō	õ
5151	1		1	1	0	0	0	5152	1		1 1	0	0	0	5153	2	25	20	0	0	5154	2	27	2 0	0	Ō
5155	14		8	14	0	0	0	5156	19	i	5 19	0	0	0	4161		5.00	0000E+0	0		6162		5.0	00000E+00) –	•
6163		5	• 0	0000	0E+00	2		6164		5	.0000	00E+0	0		6165		5.00	000000000000000000000000000000000000000	0		4166		5.0	00000E+00	j	
1081		ļ	•0	0000	0E-01			1082		1	.0000	00E-0	1.5		1083		1.00	000006-0	1		1084		1.0	00000E-01	1	
1005		ļ	•0	0000	01-01			6171		5	.8000	00E+0	0		6172		6.00	00000E+0	0		6173		6.2	00000E+0C)	
6174	,	C	• 4	5000	102+00	,	•	6175	_	3	• 3000	00E+0	0		9173		1.00	0000E-0	2		5161	1	1	10	0	0
5162			ī		0	0	0	5163	2		6 Z	0	0	0	5164	3	26	30	0	0	5165	15	13	15 0	Ο,	0
5100	41		3	41	0	0	0	5171	1		1 1	0	0	0	5172	1	1	10	0	0	5173	1	5	10	0	0
5174	2	ć	.8	~~~~	0	्०	0	5175	14	1	0 14	0	0	0	5176	50	4	50 O	0	0	4181		5.0	00000E+00)	
6162				0000		,		0183		5	.0000	00E+0	0		6184		5.00	0000E+0	0		6185		5.0	00000E+0C)	
4100			• U	0000				1091		1	.0000	00E-0	1		1092		1.00	0000E-0	1		1093		1.0	00000E-01	ı	
6107		1	•0	0000				1095		1.	.0000	00E-0	1		6191		6.20	0000E+0	0		6192		6.4	50000E+00)	
5191	1	C	1	0000	02+00	, ,	•	5194	,	0	.9000	005+0	0	_	6195	• _	3,50	0000E+0	0		9193		1.0	00000E-05	<u>:</u>	
5185	12	2		12	0	0	0	5182			1 1	0	0	0	5183	2	1	2 0	0	0	5184	3	28	30	0	0
5103	12	4		12	0	0		5180	43	-	3 43	0	U	0	5191	1	1	1 0	0	0	5192	1	1	1 0	0	0
4201	2	A	1.	ር በ በ በ በ	0=-02	, ,	U	5194	۲	31	0 2	~~~ ^U	ູ້	0	5195	11	19	11 0	_ 0	0	5196	22	4	22 0	0	0
6205		6		0000 0000	05-02			6206		0,	.0000	000-00	2		6203		8.00	0000E-0	2		6204		8.0	00000E-05	!	
4209		9		0000				4211		0.	.0000	005-0	2		6207		8.00	0000E-0	2		6208		8.0	0000E-02	:	
6214		1		1250	95-01			4215			.0000	002-0	2		6212		8.00	0000E-0	2		6213		8.0	00000E-02	:	
1103		1		0000	02 01	•		1104		0,	.0000	001-0	2		1101		1.00	0000E-0	1		1102		8.0	0000E-02	!	
1107		i		0000	02 01			1104		0.	.0000	002-0	2		1105		1.00	0000E-0	1		1106		8.00	0000E-05	:	
1203				0000	05-02			1204		0	.0000	006-0	2		1201		8.00	000000-0	2		1505		8.0	00000E-02	!	
1302		3		6000	00 02			1204		0,	.0000	002-0	2		1205		8.00	0000E-0	2		1301		8.0	0000E-05	:	
1306		9	. 0	0000	00 02	;		1303		0	.0000	435-0	2		1304		8.00	0000E-0	2		1305		8.0	00000E-05	:	
1311		9		0000	00-02			1312		- 7, 0	. 7024	425-0	2		1309		8.00	0000E-0	2		1309		8.00	0000E-02	:	
1315		0 0	. 0	0000	00-02			1316		0,	.0000	000-00	2		1313		8.00	0000E-0	2		1314		8.00	0000E-05		
1319		 		0000	05-02			13[0		0,	.0000	002-0	2		1317		8.00	0000E-0	2		1318	•	8.00	0000E-05		
1404		 		0000	05-02			1405			.0000	005-0	2		1402		8.00	0000E-0	2		1403		8.00	000005-05		
		0			- VZ	•		1403		0.	•0000	005-0	۲		1400		- H . U O	0000E-0	۲							

REACTIONS AT RIGIO	SI	s u	JP	þ	0	R	T	S
--------------------	----	-----	----	---	---	---	---	---

NODE	COMPONEI	NT 1 9 17	2 10 18	3 11 19	4 12 20
146	FX	-3.750638E-07	-5,640422E-07	-1.015687E-07	2.182420E-07
146	FZ	2.742692E+02	4+114023E+02	-9.760123E+01	-5.090289E+02
147	FY	5.560676E+03	8+341014E+03	2.402802E+03	-1.397998E+03
148	FY ·	-6.134948E+03	-9.2024225+03	-2,588252E+03	1.670038E+03
150	FZ	-3.705673E+02	-5.558535E+02	-2.491262E+02	-8.805860E+01
151	FY	2.779700E+04	4 .169546E+04	9.024253E+03	-1.307056E+04
152	FY ·	-2.855759E+04	-4.283635E+04	-9,246816E+03	1.347781E+04
154	FZ	-1.763686E+03	-2.645529E+03	-6.526122E+02	6.663564E+02
155	FY	3-5656212+04	5.348426E+04	1.061073E+04	-1.873108E+04
156	FY ·	-3.175474E+04	-4.763206E+04	-9.406065E+03	1.677042E+04
157	FY	3.197322E+04	4.795977E+04	8.957010E+03	-1.793206E+04
158	FY	-3.453446E+04	-5.180163E+04	-9,752295E+03	1.921015E+04
162	FZ	-7.214425E+02	-1+082162E+03	-1.621782E+02	4+859235E+02
166	FZ	-4.543544E+03	-6.815304E+03	-1.047622E+03	3.006848E+03

•

.

.

RESULTANTS OF REACTIONS

~

LOAD CONDITION	FX	FY	FZ	MX	MY	мZ
1	-3.750638E-07	5.361286E+00	-7.124970E+03	-2.251440E+05	1.796011E+06	1.469389E+03
2	-5.640422E-07	8.041922E+00	-1.068745E+04	-3.377157E+05	2.694014E+06	2.204082E+03
3	-1.015687E-07	1.363727E+00	-2.209140E+03	-6.977212E+04	5.645956E+05	3.737620E+02
4	2.182420E-07	-3.288172E+00	3.562040E+03	1.126282E+05	-8.821496E+05	-9.012026E+02

· ·

•

•

(BC=1) (JSING	DEFL.	MATE	X I S	DEFLEC	т	AND	B.C.	MATR	IX 801	INCO	ND
DEF	LECTIC	ONS	FOR	NODF	1	(r	FGREES	0F	FREE	ъОм	- 3)			
• -		7	1		•	2		•,		3			4	
DX	(-3,	,709	5088E	-03	-5.55	5760	8E-03	-6	.846	694E	-04	2.79	737	0E-03
Dì	(2)	102	2409E	-02	3.15	5361	3E-02	7	.006	035F	-03	-9,51	797	603
DZ	2 3.	954	+382E	+00	5.93	1157	0E+00	1	•256	444E	+00	-1.91	506	4F+00
DEF	LECTIO	ONS	FOR I	NODE	3	(D	EGREES	0F	FREE	n0M	= 3)			
			1	• 7	- • •	2		_		3			4	
07	(-J.	443	1036E.	-03	-5,16	456	016-03	-2	.743	521E	-03	-1,69	136	45-03
01		954	0076	-03	-1.47 5 07	1890 1670	125-02	ر - .	.147	601E	-03	4.85	1505	/E-03
02				*0*	3673	1247	22400	1	• 2 2 7	347E	+00	-1+9/		56+00
DEE	FCTT	NS		005		40	FORFER	05	-	-04				
011		/14.5	1	1002	4	2	COREES	Ur	TREE	.)UM : 	= ,,		,	
DX	-3.	830	020F-	-03	-5.74	500	2F-03	-3	.750	い 1356-	-04	3.56	a 1 a	703
DY	2.	594	892F	-02	3.89	233	7F+02	8	.360	507c	-03	-1.23	312	9=-02
DZ	3.	956	991E	+00	5.93	548	3E+00	ĩ	229	543E	+00	-1.97	279	2E+00
DEF	LECTIC)NS	FOR N	ODE	5	(0	EGREES	OF (FRFF	n0M	= 7)			
			1		-	2				3	- ,,		4	
DX	-2.	972	755E-	-03	-4.45	916	2E-03	-4	.198	668E	-03	-5.18	603	F-03
DY	-3.	454	763 _E -	-02	-5.18	214	3E-05	-1	.111	927E	-02	1.64	412	2E-02
DZ	3.	960	678E	+00	5.94	101	3E+00	1	•503	ASSE	+00	-5.05	926	5Ë+00
DEF	LECTIC	NS	FOR N	IODE	6	(D	EGREES	OF I	FREE	DOM :	= 3)			
			1	_		2				3			4	
DX	-3.	933	289E-	-03	-5.89	988	7E-03	7	.349	616E	-04	5,94	588	75-03
07	4.	334	050E-	-02	6,50	107	2E-02	1	.374	193E	-02	-2,10	479	7E-02
02		900	57864	00	5.94	080	2E+00	1	•203	824E	+00	-2.02	9210	5E+00
					_									
UEF	LECIIO	NS	FOR N	IONE	7	2	EGREES	OF I	FREE	00M :	= 3)			
DX	-2.	813	252F-	-03	-4.21	992	0F-03	-4	.920	962E	-03	-6.83	4 6983	15-03
DΥ	-4.	724	472F-	-02	-7.08	670	7F-02	-1	525	538	-02	2.23	8280	5=-02
OZ	3.	966	657Ē	00	5.94	998	1E+00	i	.179	046E	+00	-2.08	6542	2Ē+00
DEF	LECTIO	INS	FOR N	300	8	(D	EGREES	OF I	FREE	n0M :	= 3)			
			1			2				3			4	
DX	-3.	954	731E-	-03	-5.93	204	2E-03	1.	.226	771E-	-03	6.97	1388	3E-03
01	5.	161	901E-	-02	7.74	284	9E-05	1	.613	852F	-02	-2,55	3305	56-05
02	3.	706	499E	00	5.94	974	4E+00	1	.179	008E	+00	-2.08	6442	2E+00

 \cdot

1

(BC=1) U	SING	5 DEFL	MATRI	X	DEFLECT	Г	AND	B.C.	MATRI	X 80	UNC	OND
DEF	LECTIO	NS	FOR	NODE	9	(0	EGREES	0F	FREE	EnOM	= 3)			
			1		•	2				3			4	
D)	(-2,	793	325E	-03	-4.190	02	26E-03	-4	.618	8814E	-03	-6.2	440	618-03
D١	1 -4.	315	449 _E	-02	-6.473	17	13E-02	- 1	1,408	3692E	-02	2.0	134	96F-02
ĐZ	2 3.	973	1358	+00	5.959	69	98E+00	1	•154	4655E	+00	-5.1	435	30F+00
DEE	FLECTIO	NS	FOR	NODE	10	11	FGREES	05	FDFF	ED OM	- 21			
			1	NOUL	1.0	2		01	TALL	3	- 37		4	
D)	(-4.	018	135F	-03	-6.027	19	51F-03	1	.044	4133F	-03	6.6	709	50c-03
Dì	(4.	957	735r	-02	7.436	60	0F-02	1	.524	4160	+02	-2.5	045	5802
DZ	3.	973	0148	+00	5.959	51	7E+00	j	•154	4629E	+00	-2.1	434	47E+00
DEF	LECTIO	NS	FOR	NODE	11	(EGREES	0F	FRFF	- NOM	= 3)			•
			1			2				3			4	
DX	(-3.	169	716E	-03	-4.754	58	89E-03	-3	3.188	3660F	-03	-2.9	064	41F-03
Dì	-1.	934	882F	-02	-2,902	32	2E-02	-6	.701	1423F	-03	8.2	430	61F-03
DZ	2 3.	977	607Ë	+00	5.966	40	6E+00	1	136	5292Ë	+00	-2.1	859	75E+00
DEF	LECTIO	NS	FOR	NODE	12	(0	EGREES	0F	FREE	EnOH	= 3)			
			1			2				3			- 4	
0)	(-3.	822	418E	-03	-5.733	58	8E-03	2	.995	5101E	-04	4.9	333	63E-03
D	r 3.	703	808E	-02	5.555	71	0E-02	1	•119	5400E	-02	-1.9	187	725-02
DZ	3.	977	596E	+00	5.966	38	38E+00	1	+136	5289E	+00	-2.1	859	68E+00
DEF	LECTIO	ŇS	FOR	NODE	13	(0	EGREES	0F	FREE	EnOM	= 3)			
			1			2				3			4	
ÐX	(-3,	600	609E	-03	-5.400	89	93E-03	-9	9.179	9919E	-04	2.2	037	71E-03
Ð١	r 1.	736	774E	-02	2.605	16	90E-05	4	.878	3222E	-03	-9.7	142	61E-03
DZ	3.	978	918E	+00	5.968	37	2E+00	1	•130	0115E	+00	-2.2	000	39E+00
DEF	LECTIO	NS	FOR	NODE	15	(0	EGREES	0F	FREE	EnOM	= 3)			
			1			2				3	-		4	
DX	-3.	557	891e	-03	-5.336	81	1E-03	-4	.094	4589E	-04	3.1	913	55r-03
DY	2.	141	767E	-02	3.212	64	9E-02	7	.334	4884E	-03	-9.2	935	055-03
DZ	2 3.	380	676E	+00	5.071	01	2E+00	1	.100)480F	+00	-1.5	836	25E+00
DEF	LECTIO	NS	FOR	NODE	17	(0	EGREES	0F	FREE	NON	= 3)			
			1			2				3	-		4	
DX	(* -2.	896	508E	-03	-4.344	77	0E-03	-2	2.502	2273F	-03	-1.8	184	925-03
Ð	(-1.	252	638F	-02	-1.878	95	6E-02	-3	.903	3045E	-03	6.2	231	41 -03
DZ	23.	389	013E	+00	5.083	51	6E+00	3	.073	3444Ë	+00	-1.6	481	09Ē+00

1

(BC=1) USING DEFL. MATRIX DEFLECT AND B.C. MATRIX BOUNCOND DEFLECTIONS FOR NUDE 18 (DEGREES OF FREEDOM = 3) 1 2 3 4 DX. -3,706517E-03 -5.559743E-03 -8,813579E-05 4.013751E-03 DY 2.678632F-02 4.017946E-02 8.868684F-03 -1.2243795-02 DZ 3.388991E+00 5.083483E+00 1.073435E+00 -1.648104E+00 DEFLECTIONS FOR NODE 19 (DEGREES OF FREEDOM = 3) 1 2 3 -3.069496E-03 DX -4.604280E-03 -4.325076E-03 -5.334187F-03 DY -3.943297F-02 -5.914944E-02 -1,269180F-02 1.876575F-02 DZ 3.389230F+00 5.083841E+00 1.044242E+00 -1.707816F+00 DEFLECTIONS FOR NODE 20 (DEGREES OF FREEDON = 3) 2 1 3 DX -3.336721F-03 -5.005030F-03 1.3053098-03 6.432530F-03 DY 4.570574E-02 6.855858E-02 1.475830F-02 -2.1654095-02 DZ 3.388970E+00 5.083452E+00 1.044149E+00 -1.707712E+00 DEFLECTIONS FOR NODE (DEGREES OF FREEDOM = 3) 21 2 1 3 ÐX -3.462697E-03 -5.194093E-03 -5.244887F-03 -6,762059F-03 -5.374337E-02 DY -8,061503E-02 -1.728722F-02 2.559730-02 DZ 3.388399F+00 5+082595E+00 1.015087E+00 -1.766242E+00 DEFLECTIONS FOR NODE 22 (DEGREES OF FREEDOM = 3) 1 2 3 -3.075662F-03 DX -4.613433E-03 1.902618F-03 7.353233F-03 DY 5.487647F-02 8.231467E-02 1.737910F-02 -2.669204F-02 DZ 3.387959E+00 5.081935E+00 1.014972E+00 - -1.765977E+00 DEFLECTIONS FOR NODE 23 (DEGREES OF FREEDON = 3) 1 2 3 4 -3.679958E-03 DX -5.519981E-03 -4.994835E-03 -6.007007--03 -5,018680F-02 DY -7.528018E-02 -1.620773E-02 2.377185F-02 DZ 3.387062E+00 5.080588E+00 9.861613E-01 -1.8236235+00 DEFLECTIONS FOR NODE (DEGREES OF FREEDOM = 3) 24 1 2 З 4 DX -2.985359E-03 1.757595E-03 -4.477980E-03 6.955642E-03 5.319784F-02 DY 1.651878E-02 7.979674E-02 -2.654471-02 DZ 3.386670E+00 5.080001E+00 9.860743F-01 -1.823357E+00

(BC=1) USING DEFL	- MATRIX DEFLEC	T AND R.C. MATE	RIX BOUNCOND
DEF	LECTIONS FOR NODE	25 (DEGREES	OF FREEDOM = 3)	
	1	2	3	4
0)	-3.110665E-03	-4.666015E-03	-3.201A39F-03	-3.000099F-03
D١	-2.413001E-02	-3.619501E-02	-8.071763F-03	1.086136-02
DZ	3.388064E+00	5+082091E+00	9.647451E-01	-1.868360F+00
DEF	LECTIONS FOR NODE	26 (DEGREES	0F FREEDOM - 21	
	1	2	3	4
D)	-3.614070E-03	-5.421060F-03	7-6861915-04	5.652925=+03
DY	3.975514F-02	5.963269F-02	1-2072465-02	-2.0391105-02
DZ	3.388001E+00	5.081997E+00	9.647316F-01	-1.868316E+00
DEF	LECTIONS FOR NODE	27 (DEGREES	OF FREEDON = 31	
	1	2	3	4
DX	-3.448822E-03	-5.173211E-03	-6.165628F-04	2.645858F-03
DY	1.743152E-02	2.614726E-02	4.985498F-03	-9.567970F-03
DZ	3,389010E+00	5.083510E+00	9.576789E-01	-1.883816=+00
				-
DEE	LECTIONS FOR MODE			
UC!	1	27 (DEOREES	OF FREEDOM = 31	,
DX	-3.378085F-03	-5.067100F-03	-2.4615505-04	4 3 3303525-03
DΥ	2.1601225-02	3.2401826-02	7 5404120-03	-0 08202925-03
DZ	2.825233F+00	4.237848F+00	9.4294845-01	-1 276048=+00
			194514046-01	-1.5100405+00
DEE	FUTTON'S FOR NODE			
021	1	JI (UEUKEES	OF FREEDOM = 3)	
οX	-2.0768245-03	-3.1152436-03	-2 107282-02	4
DY	-1.3725995-02	-2.0588986-02	-2.10/3028-03	-1.941510E-03
DZ	2.8427255+00	4.264085E+00	9,1900575 01	1 344435-03
			201200376.m01	=1.3444232+00
NEE	LECTIONS FOR MODE		05 5055- 0H	
561	LEGITORS FOR NUDE	JE ULUKELS	UP PRELIUM = 3)	
οx	-3.6397726-03	-5.4596256+03	53.0787475-05	4 4 1903)1m. 43
DY	2.7030985-02	4.0546466-02	9.1507546-02	-1 10/420c-02
DZ	2.8426935+00	4.264038E+00	9,1907135-03	-1.3444365+00
			********UL#UI	-103444105400
DEE	FOTIONS FOR MODE			
ULI	LOTIONS FUR NUDE	JJ IDEUKEES	OF FREEDUM = 3)	
ĐX	-2.9758006-03	-4.4637375-03	+4.2514925-02	4
DY	-4.2324545-02	-6.3486795-02	-1.371450-03	-J+C70/405+03 1 005//307
DZ	2.841724E+00	4.262584E+00	8.8881715_01	1.4040248+00

.

(8	C=1) USING DEFL	MATRIX DEFLECT AND	R.C. MATRIX BOUNCOND
DEFL	ECTIONS FOR NODE	34 (DEGREES OF FREE	EDOM = 3)
DY.	-2 50/0305-03	-3 7571905-03 1.75	3 20755-03 6.4030765-03
	4 652899c=02	6.9793475-02 1.53	-2.147841r-02
07	2.841313F+00	4.261967E+00 8.88	5669E-01 -1.404765E+00
DEFL	ECTIONS FOR NODE	35 (DEGREES OF FRE	ENOM = 3)
	1	2	3 4
DX	-4.579425E-03	-6.869192E-03 -5.564	+549E-03 -6.149836E-03
DY	-5.809640E-02	-8.714458E-02 -1.86	9646E-02 2.765221E-02
DZ	2.832945E+00	4.249414E+00 8.56	2345E-01 -1.461336E+00
			• • • •
DEFL	ECTIONS FOR NODE	36 (DEGREES OF FREI	ENOM = 3)
٥X	-1.4211655-03	-2.1316825-03 2.62	4858F-03 6-952354F-03
DY	5-6473456-02	8.4710156-02 1.81	1295F-02 -2.700440F-02
DZ	2.832308E+00	4.248459E+00 8.56	0559E-01 -1.460979E+00
DEFL	ECTIONS FOR NODE	37 (DEGREES OF FRE	ENON = 3)
	1	2	3 4
DX	-5.855632E-03	-8.783498E+03 -5.61	2836E-03 -4.804382E-03
DY	-5,548419 _E -02	-8.322627E-02 -1.77	9509E-02 2.653245E-02
DZ	2.817538E+00	4.226303E+00 8.22	0544E-01 -1.513503E+00
_			- 04
DEFL	ECTIONS FOR NODE	38 (DEGREES OF FRE	2 3 4
οX	-6.780186F-04	-1.016964E-03 2.67	9505F-03 6.222864E-03
DY	5.5464556-02	8.319680E-02 1.73	6385F-02 -2.738830E-02
DZ	2.816953E+00	4+225426E+00 8+21	9268E-01 -1.513101E+00
DEFL	ECTIONS FOR NODE	39 (DEGREES OF FRE	EnOM = 3)
	1	2	3 4
DX	-4.498216E-03	-6.747345E-03 -3.56	1982E-032.164114E-03
DY	-2,826457 _E -02	-4,239685E-02 -9,24	4041E-03 1.315168E-02
DZ	2.802709E+00	4.204059E+00 7.95	0533E-01 +1.551705E+00
DEFL	LUTIONS FOR NODE	40 (DECKEES OF FRE 2	210M = 31 3 4
DX	-2.106469F-03	-3.159655E-03 1.50	9744E-03 5.456949E-03
DY	4,199650F-02	6.299473E-02 1.28	0058E-02 -2.144408E-02
ĐZ	2.802607E+00	4.203907E+00 7.95	0326E-01 -1.551633E+00

-1

(BC=1)	USING	DEFL.	MATRI	X C	DEFLE	T	AND	R.C	. M	ATRI	X 80U	NCON	D
DEF	LECTIONS	FOR	NODE	41	(DE	GREES	5 OF	FREE	EDOM	=	3)			
		1			2				้า				4	
DX	-2.88	6495F	-03	-4.329	718	3F-03	· •;	2.410	5718	E - 0	4	2.77	3236	F-03
DY	1.74	03455	-02	2.610	516	5F-02	, i	5.049	5702	د - ۱	3	-9.41	3611	-03
DZ	2.79	8921E	+00	4.198	378	3Ē+00		7.86	0916	E - 0	i i	-1.56	5668	F+00
											•			
DEF	LECTIONS	FOR	NODE	43	OF	GREES	5 OF	FRE	- DM	-	2)			
		1			2				า	-			4	
DX	-3.17	4250F	-03	-4.761	349	9E-03	- 1	1.56	3168	F-0	4	3.27	2550	F=03
Đγ	2.16	0657F.	-02	3.240	985	5F-02		7.64	1418	F - 0	3	-8.88	2460	-03
DZ	2.29	9521È	+00	3.449	280	E+00	-	7.881	1480	F-0	i i	-9.96	5380	F_01
			-		-					0	•	-/ • / •	5500	
DEF	LECTIONS	FOR N	NODE	45	(DE	GREES	OF	FREE	- n0M	-	3)			
		1			2				3	-			4	
DX	-8.33	6488F-	-04	-1.250	480	F-03	-1	1.566	5163	F-0	3	-2.24	5821	-03
DΥ	-1.38	4058F-	-02	-2.076	086	SE-02	_	4.444	4662	5-0	3	6.60	7068	- 03
DZ	2.33	1360F	• õõ	3.497	038	3F+00		7.702	2099	F-0	ĩ	-1.06	9079	+00
	•			• • •	•				-0		-			
DEF	LECTIONS	FOR 1	10DE	46	(DE	GREE	OF	FRFE	EnOM	=	3)			
		1	_		2				1				4	
ĐX	-3.56	4051E-	-03	-5.346	045	5E-03	Ģ	5.94	7934	F-0	5	4.15	2908	-03
DY	2.68	8885F ·	-02	4.033	327	E-02	Ċ	9.252	2737	F-0	3	-1.15	7788	5-02
DZ	2.33	1317E	+00	3.496	973	E+00	-	7.70	911	F_0	ĩ	-1.06	9068	F+00
								•		2-0	•			
DEF	LECTIONS	FOR N	10DE	47	(DE	GREES	OF	FREE	EnOM	=	3)			
		1			2				7				4	
DX	-2.48	6665E-	-03	-3.730	036	E-03	-:	3.936	5341	F-0	3	-5.20	2059	03
DY	-4.29	5047E-	-02	-6.442	568	8E-05	- 1	1.404	4802	F-0	2	1.99	8350	-+02
DZ	2.33	1739Ē4	00	3.497	606	E+00	7	7.412	2207	E-0	1	-1.12	8535	+00
														-
DEF	LECTIONS	FOR N	10DE	48	(DE	GREES	OF	FREE	EnOM	=	3)			
		1			2				3				4	
DX	-1.71	1678E-	-03	-2.567	461	E-03	ž	2.016	5636	F - 0	3	6.04	2638	-03
DY	4.61	5754F.	-02	6.923	629	E-02	j	1.539	9576	F-0	2	-2.08	6728	-02
DZ	2.33	1216F4	+00	3.496	822	2E+00		7.410)262	F - 0	1	-1.12	8339	+00
		-									-		(
DEF	LECTIONS	FOR N	NODE	49	(DE	GREES	OF	FREE	En OM	=	3)			
		1			2				`				4	
DX	-5.54	1987E-	-03	-8.313	038	E-03	-9	5.696	5659	F-0	3	-5.33	0043	03
DY	-5,97	2887F-	-02	-8,959	328	SE-02	- 1	1.927	7193	F-0	2	2.83	2723	02
DZ	2.31	5629Ë4	•00	3.473	441	E+00	1	7.066	5827	Ē-0	1	-1.18	0637	+00

(BC=1)	USING	DEFL.	MATRI	EX	DEFLE	T	AND	B+C	. MA	TRI	x 8001	ICOND													
056			NODE	50	10	COPE	: 0r	CDer	04																	
011	LECTION		NUDE	50	2	EUREE	o ur	I KE	2008	= 3			4													
D)	(3.4	18652E	-04	5.128	367	4E-04		3.20	, 9766	F-03		6.148	977F·	-03												
D	r 5,6	530390F	-02	8.445	558	2E-02		1.82	5694	F-02		-2.651	945F-	-02												
Dž	2.3	314775E	+00	3.472	215	9E+00		7.06	4405	Ē-01	•	-1.180	163Ē	00												
											•															
DEF	FLECTION	IS FOD	NODE	51	in	FGDEEG	: 05	FOF	5-04	- 7																
0.21			NUUL	21	2		, 0,	T NEI	3	-= 3	,		4													
D)	(-7.9	991296E	-03	-1.198	370	0E-02	-	6.09	7699	F-03		-3.375		-03												
D١	r - 5,8	34154 <u>e</u>	-02	-8,751	22	9E-02	-	1.86	0594	- E-02		2.811	386E-	-02												
DZ	2.2	284235E	+00	3.426	535	0E+00		6.67	8974	F-01	•	-1.224	096E	00												
DEF	LECTION	IS FOR	NODE	52	(D)	FGREES	0F	FDC		- 3	•															
		1			2		, 0,		3	-)	,		4													
D)	(2.2	274107E	-03	3.411	23	2E-03		3,610	0190	E-03		4.778	388E-	•03												
Dì	(5,5	i88936E	-02	8.383	40	2E-05		1.75	7850	E-02	•	-2.743	1885-	-02												
DZ	2.2	83495E	+00	3.425	23	9E+00		6.67	7 <u>2</u> 75	E-01	•	-1 - 223	604E4	00												
DEF	LECTION	IS FOR	NODE	53	(0)	FGREES	: 0F	FREE		- 2	,															
		1		3,	2				3	- 3	,		4													
D)	-6.1	59159E	-03	-9.238	76	3E-03	-	3.950	6516	F-03	-	-1.088		•03												
Dì	(-3.0	10803E	-02	-4.516	20	3E-02	-	9.74	1398	E-03		1.422	4515-	-02												
D2	2.2	47841E	+00	3.371	75	7E+00		6.34	7122	E-01	-	-1.250	495Ē4	00												
DEE	FLECTION	S FOR	NODE	54	10	FGREES	. OF	FDF	5 n n M		•															
		1		24	2			1021	2	- J	,		4													
DX	(1.3	36251E	-03	2.004	43	1E-03		2.620	0 356	F-03		3.823		•03												
٥Y	4.1	62237E	-02	6.243	35	4E-02		1.27	7310	E-02		2.107	702F-	-02												
DZ	2.2	47757E	+00	3.371	63	2E+00		6.346	5939	E-01	-	1.250	438Ē•	00												
DEE	FCTION	S FOR	NODE	55	(D)	FGREFS	05	FDFG	-	- 2	•															
021	2201100	1		55	2		Vr	r KE	3	= 3	,		4													
DX	-1.2	61638E	-03	-1.892	43	06-03		3.557	7882	F-04		2.151		•03												
DY	1.6	42884E	-02	2.464	32	46-02		4.802	2339	F-03	-	8.806	689F-	•03												
0Z	2.2	34257E	+00	3.351	38	2E+00		6.227	7640	Ë-01		.1.259	457Ē+	00												
DEF	LECTION	S EOP	NODE	57	(D)	FGREES	0F	FDF	- -		•															
		1			2		J.	1 1 1 1	2001	~	•		4													
DX	-3.1	01638F	-03 -	-4.652	43	4E-03	-	1.533	3932	F-04		3.196	- 541F-	03												
DY	2.1	34666F	-02	3.201	99	8E-02		7.642	2065	F-03	-	8.587	827	03												
D7	/ }.7	98439F	+00	2.697	65	78+00		6.356	3764	E01		7 200	1200	A1												
(8C=1	l	}	US	INC	G (DEFL	•	MAT	RI	X	DEF	LEC	T	AN	D	R.	с.	N	1475	RIX	B	00	NCC	ND	
-----	------	----------	------	------	-----	--------	------------------	---	---------------------	------------	------------	--------------	-----	-----	-------	----------	-----	-----	------------	------	--------------	--------------	-----	-----	-------------------	-----
DEF	LECI	11)NS	F	OR	N	ODE		59		(DE	EGR	EES	0F	FR	EE	:n0)м	=	3)						
				1							2					_	٦							4		
ÐX		1.	.08	70	906	-	03		1.6	30	629	9E-	03	-	8.1	50	115	98F	- 0)4	-	2.	88	940	9=	-03
DY	•	•1.	, 32	:34	46	-	02	-	1.9	85	168	BE-	50	-	4.3	46	51	86	· 0	53		6.	12	125	52F	-03
DZ		1.	85	574	18	- +	00		2.7	86	125	5Ē+	00		6.2	83	148	38E	-0	1	-	8.	21	784	4E	-01
DEF	LECI	110)NS	F	OR	N	DE		60		(DE	EGR	EES	0F	FR	FF	'nC	м	=	3)						
				1			-				2			•••			3							4		
DX	•	•3,	82	42	158	E (03	-	5.7	36	294	+E-	03	-	6.7	77	'né	9F	-0)5		4.	18	329)5 _F -	-03
DY		2,	64	46	17		50		3.9	66	924	₩E-	50		9.2	19	36	2F	-0	3	-	1.	11	450)6F-	+02
DZ		1.	85	73	636	=+(00		2.7	86	044	+E+	00		6.2	83	26	3E	-0)1	-	8.	51.	768	17Ē	-01
DEF	LECI	10)NS	F	OR	N	ODE		61		(DE	GR	EES	0F	FR	EE	'nØ	M	=	3)						
				1							2						3							4		
DX	. •	•1.	51	29	36E	(03 -	-	2.2	69	441	IE-	03	-	3.3	75	A6	3E	-0	3	· 🕳	5.	16	237	'3E'	-03
DY	•	•4.	15	71	01E	- 1	50	-	6.2	35	649	•Ē-	02	-	1.3	76	64	0E	-0	2		1.0	899	964	85	-02
DZ		1.	.86	68	886	=+(00		2.8	00	331	IE+	00		6.0	40	49	OE	-0	1	-	8.	81	777	6E	-01
														•												
DEF	LECI	IC	NS	F	OR	N	DDF		62		(DE	EGR	FES	0F	FR	FF	'nC	M	-	3)						
	-	-		1			_				2	· ·			• • •		3		-	5.				4		
DX	-	1.	40	44	876	(03	-	2•1	06	- 678	9E -	03	;	2.0	19	40	1F	-0	3		5.	70	74	55	-03
DY		4.	49	45	19F		02		6.7	41	776	5E-	02		1.5	17	53	16F	-0	2	_	1.	99	446	35	-02
DZ		1.	86	62	736		0	i	2.7	99	408	₿Ē+	00		6.0	38	08	96	-ŏ	ñ	-	8.1	91	770	6E.	-01
																				-					-	_
DEF	LECI	IC	NS	F	OR	N	DDE		63		(DE	GR	EES	0F	FR	FF	'nÛ	M	-	2)						
				1			_			:	2				• • •		3	••	-					4		
DX	-	6.	02	06	00F		03	-	9.0	30	- 95€	5E-	03	-9	5.5	43	87	8F	-0	3	-	4.4	47	757	36.	-03
DY	•	5.	86	45	29F	- 	02	-	8.7	96	789)E -	02	-	1.8	98	76	95	-0	2		2.	761	302	7.	-02
DZ		1.	84	61	15	+(00	i	2.7	69	171	۱Ē+	00	9	5.6	94	58	8E	-0	1	` - '	9 . 7	289	910	8E-	-01
DEF	LECT	10	INS	F	OR	N	DDE	(54		(DE	GR	EES	OF	FR	ΕĒ	n0	н	z	۲)						
				1						i	2						٦.							4		
DX		1.	66	96	49E	(03	i	2.5	04	541	E-	03	:	3.5	24	38	3E	-0	3		5.2	287	156	15-	-03
DY		5.	47	33	03E	- (20		8.2	09	952	?E -	02		1.7	89	38	8F	-0	2	-	2.9	548	317	0	-02
DZ		1.	84	50	74Ē	:+(00	i	2.7	67	609	PE+	00	į	5.6	91	59	4E	→ 0	1	-	9.2	283	342	67	-01
				_													-									
UEF	LFCI	10	IN S	F	UR	N	INE	(55		OE	GR	EES	OF	FR	EE	nÖ	M	=	3)						
n۲	_	0	61	1 70	22-	/		_		1	2 2 2 0		~ 2			• •	3	7-	~	~				4	-	
	_	5	84	70	22L		, J 2		1 4 4 1 7	42:	צככ מסר		02		1.	17	?'	JE.	-0	3	-	1.5	50	92	35-	-03
07	-	.	80	75	100		5 <u>6</u> 50		2.7	04' 01'	763	7£.■ 1F.▲	00		. 0	33 77	41	4E	-0	2		۲.t	530	22	45-	-02

(9C=1)	USING	DEFL.	MATRI	X	DEFLEC	T AI	ND	₽•C.	MATR	IX BOUN	COND
'DEF	LECTION	IS FOR	NODE	66	(EGREES	OF FI	REE	n0M	= 3)		
		1			2				3 .			4
DX	(4.6	646938E	-03	6.970	148	32E-03	4.	271	455F	-03	3.440	631E-03
DY	′ 5.4	46712F	-02	8,170	06	54E-02	1.	716	584F	-02	-2.666	32602
DZ	! 1.7	'99892E	+00	2.699	83	35E+00	5.2	275	233E	-01	-9.620	089E-01
DEF	LECTION	IS FOR	NODE	67	(0	EGREES	OF FF	RFE	n0M	= 3)		
		1			2				3	J.		4
DX	-7.1	57607E	-03	-1.073	164	4E-02	-4.	129	291 F	-03	-3,109	- 5825-04
DY	′ - 3.0	77773F	-02	-4.616	65	59F-02	-9.8	850	4346	-03	1.476	00502
DZ	1.7	49080E	+00	2.623	61	7E+00	4.9	908	482F	-01	-9.792	0495-01
			-						40 E I.	-01	-/•//2	0420-01
DEF	LECTION	S FOR	NODE	68	(0	FGREES	OF FF	REF	nûm			
		1		•••	2		•••••		3	- 17		
DX	3.9	82469F	-03	5.973	76	35-03	3.4	452	, 743c	-03	2 525	* 255cm/3
DY	4.0	089625	-02	6.013	44	15-02	1 2	274	1955 1826	-03	-2 021	E12-03
DZ	1.7	48928F	+00	2.623	3.8	8F+00	4.0	204	402E	-02	-0.701	1145-01
				20023					0/40	-01	-74171	1142401
DEF	LECTION	S FOR	NODE	69	6	FGREES	05 56	PEE	<u>о О м</u>	- 21		
		1			2				-, ว	- 57		
οX	2.4	553956	-04	3.683	29	95-04	8.5	214	.) 014 <i>m</i>	-04	1 517	+ ^~~~~~~
ĎY	1.5	431305	-02	2.314	69		4 5	563	7210	-07	-9 194	190 <u>0</u> -03
D7	1.7	29054F	+00	2.507	57	76+00	4.7	770.	100C	-03	-0.044	4005-03
		270342		20373		12.00		,,,,	0/70	-01	-7.040	0225+01
DEF	LECTION	S FOR	NODE	71	0	FGREES	0F F6) F F	n O M	- 21		
		1		••	2		•••••		2	- 57		
ъx	-2.9	076615	-03	-4. 361	47	35-03	-1.0	160	، ۵465	-04	2 071	+ 017c-03
DY	2.0	78087	-02	3,117	12	95-02	7 6	565	586-	-07	-9 107	VE303
DZ	1.3	203915	+00	1.980	5A	76+00	4.6	362	2695	-01	-2 032	4332-03
							4.0	502	,00 <u>c</u>	-01	-1+035	0702-01
DEF	LECTION	S FOR	NODE	73	<i>(</i>)	FGREES	OF FR			- 21		
		1		• •	ຂັ				3	- 37		e.
ъх	3.9	337245	-03	5.900	57	95-03	24	544	, 108r	-04	-3.011	+ 965c-03
DY	-1.1	72924=	-02 -	-1.750	28	56-02	_ 7 0	362	1995 238-	-03	-J.711	70303
07	1.4	17814F	+00	2.126	72		~J.,	יורב ורב	1305	-03	5.200	101E-03
	•••	• r • 1 7 6			12		- -	- 31	1405	-01	-3,77(5135-U1
DEF	LECTION	S FOR	NODF	74	(n	EGREES	0F F4		n0M	= 31		
		1			2			· • • • •	2	,		6
0X	-4-5	380335	-03 -	-6.807	02	55-03	-3-6	ana	, ,065	-04	4.760	- -
DY	2.5	59432c	-02	3.819	14	7=-02	Q.1	122	400£ 042r	-03	-) 05E	
DZ	1.4	177735	+00	2.126	65	8E+00	4.9	221	5265	-0.1	_5,007	565_01
			J -							-01	-34221	1995-01

•

(BC=	1)	US	ING	DEFI	•	MAT	RD)	(D	EFLE	CT		AND	B,	ъС.	H.	ATRI	X	80U	INC	OND	
DEF	LEC	T 1 0	NS	F	OR	NODE		75			GREES	5 0)F	FRFI	Fn(Эм		3 }					
		-		1					2	5					- 1						4		
D)	(6.	23	88	20F	-04		9.3	578	1911	E-04		-2	- 403	396)2F	-03	1	-5	- 60	0.00	02F-	-03
Dì	, .	-3.	85	80	60F	-02		5.7	370	87	F-02		-1	- 30/	074	45	-02	, ,	ĩ	. 71	50	946.	-02
DZ	7	ī.	45	00	19F	+00		2.1	750	27	E+00		4	78	386	54F	-01	i	-6	.66	26	355.	-01
	-		-			-							•		.,.	• •1.	.,,		Ŭ				•
DEF	I E C	r ro	NS	F	ΛR	NODE		76		nF.	GREE	5 0)E	FDCI	F.n(ы							
		•••		1	on	1000			z						ີ່າ	/17		· ·			4		
D)	(•	-1.	87	58	04E	-03	-	2.8	136	60	E-03		1	.684	471	72F	-03	3	5	.55	26	68F.	-03
D١	1	4.	28	44	92F	-02		6.42	267	135	E-02		1	46	65()7F	-02	2	-1	.86	07	72=	-02
DZ	<u>!</u>	1.	44	93	31Ē	+00		2.1	739	95	E+00		- 4	.78	1 1 1	9F	-01	l	-6	. 66	04	45.	-01
															-	•••				•	- •		
DEF	LEC	r 1 0	NS	F	OR	NODE		77	(DE	GREES	5 0)F	FRE	En	Эм	= 3	4)					
		•		1					Z						3						4		
Ð	(•	-6.	05	20	78E	-03	-	9.0	781	68	E-03		-5	.194	460	56F	-03	3	-3	. 73	10.9	46F.	-03
DY		-5.	50	93	49E	-02	-	8.20	540	19	E-02		-1	.79	512	25F	-02	2	2	.57	72	725.	-02
DZ	<u>'</u>	1.	43	12	21E	+00		2.14	+68	129	E+00		- 4	-46	812	25Ē	-01	l	-7	.09	28	98Ė-	-01
DEF	LEC	T 1 0	NS	F	0R	NODE		78			GREE	5 0)F	FRFF	Fní)м	- 1						
				1	-			••	z						3			,,			4		
DX	(2.	81	0Ž	78E	-03		4.2	154	79	E-03		3	. 68	817	70F	-03	3	4	.33	074	42F ·	-03
DY	1	5.	16	24	08F	-02		7.74	+36	08	E-02		1	.70	174	IF	-02	>	-2	.37	494	40F.	-02
DZ	!	1.	42	99	88E	+00		2.14	449	080	E+00		- 4	.464	457	16E	-01	l	-7	.08	61	76E-	-01
																					_		
DEF	LECI	1 10	NS	F	OR	NODE		79	(DE	GREES	5 0	F	FREE	EnC	м	= 3	• •					
				1		_			2	2					3						4		
DX	ι.	-1,	07	35	45F	-02	-	1.6	103	22	E-02		-6	.292	211	8E	-03	3	-6	.67	420	615.	-04
DY		-5.	57	90	23E	-02	-	8.36	585	529	E-02		-1	.75	63()1Ë	-02	2	2	.73	514	44F.	-02
DZ	?	1.	37	53	66E	+00		2.06	530	47	E+00		-4	.042	243	32Ë	-01		-7	. 32	78	35Ë-	-01
DEF	LEC	110	NS	F	OR	NODE		80	(DE	GREES	5 0	F	FREE	EnC	M	= 3	3)					
				1		•			2	2					7		-				4		
DX	(6.	85	62	23E	+03		1.02	284	40	50-3		4	.779	983	4F	-03)	1	.97	654	40=-	-03
Ð١	1	5.	15	17	75E	-02		7,68	326	58	E-02		1	.61	144	OF.	-02	2	-2	51	284	415.	-02
DZ	?	1.	37	41	24E	+00		2.06	511	841	E+00		4	.039	956	BE	-01		-7	.31	95	79 <u>F</u> .	-01
DEF	LECI	110	NS	F	OR I	NODE		81	(DE	GREES	5 0	F	FRFF	FnO	м	= 7	0		•			
				1					2				• •		 						4		
ъ×		-8.	21	0Ē	245	-03	-	1.27	315	95	-02		-4	. 267	, 754	7c	-03		5	. 98	779	94r-	.04
DY		-2.	99	96	85F	-02	-	4.40	995	25	-02		-9	480	029)3r	-03	í.	้า	46	304	445.	-02
DZ	!	1.	31	23	03Ē	+00		1.96	584	52	Ē+00		3	.659	539	99E	-01	-	-7	.40	250	08F.	-01

(6	BC=1 J USING DEFT	L. MATRIX DEFLEC	T AND R.C. MAT	RIX BOUNCOND
DEEL	ECTIONS FOR NODE	82 INEGREE		
0212		2	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	
DX	6.299056F-03	9.448640F-03	3 4,124588F+03	1.2726285-03
DY	3.761900F-02	5.642846F-02	1.1563185-02	+1.901185=02
DZ	1.312106E+00	1.968156E+00	3.654885F-01	-7.401328F-01
DEFL	ECTIONS FOR NODE	83 (DEGREES	OF FREEDOM = 3	
	1	2	3	4 ,
	1.399904E-03	2.099887E-03	1.277567E-03	1.01774003
07	1.401280E-02	2.101918E-02	4.159113E-03	-7.383299E-03
02	1+580301F+00	1+9294486+00	3.502779E-01	-7.4191215-01
DEFL	ECTIONS FOR NODE	85 (DEGREES	OF FREEDOM - 3)	
	1	2	3	4
DX	-1.814401E-03	-2.721585E-03	3.544958F-04	2.774480F-03
DY	2.000792E-02	3.001187E-02	7,494586F-03	-7.373675F-03
DZ	8.853664E-01	1-328049E+00	3.476974E-01	-2.935969E-01
DEEL	COTTONS FOR NORS			
DEFL	ECTIONS FOR NUDE	87 (DEGREES	OF FREEDOM = 3)	
0.4	1	1 0419165-03	3	4
DY DY	-9.803796=-03	=1 470560c=02	1.300271E-03	-5.071122E-03
DZ	1+010818E+00	1.516227E+00	3.6410335 01	4.0093598-03
		110105516.00	210414225=01	+++0192932=01
DEFL	ECTIONS FOR NODE	88 (DEGREES	OF FREEDOM = 3)	
	.1	2	3	4
DX	-4.918099E-03	-7.377127E-03	-5.097797E-04	4.5257765-03
UY OZ	2.486563E-02	3.729843E-02	8.956001F-03	-9,893253E-03
UZ	1.010811E+00	1+516216E+00	3.641874F-01	-4.019329E-01
DEFL	ECTIONS FOR NODE	A9 (DEGREES	OF FREEDON - 2)	
	1	2	3	6
DX	5.111359E-03	7.667007E-03	-5.782029F-04	-6.9598705-03
DY	-3.413522F-02	-5,120280E-02	-1.174437E-02	1.470191=+02
DZ	1.077218E+00	1.615827Ē+00	3.630408E-01	-4.793950E-01
			-	
	COTTONS FOR HORE	0.0	00.00-0.0	
UCTL	CUTIONS FOR NODE	YU (DEGREES	UF FREEDOM = 3)	
ъ¥	-4 02310003	-6 02/2505 02	3	4
DY		-0.034/34L+03	1.008722E+04	5.978613E-03
DZ	1.076483F+00	1.614724F+00	1.390137E=02	-1./0073/E-02
			ショレム イクシャに ーしょ	

(BC=1]) (US	ING	DEFL	, MAT	RIX	DEF	LEC	r	AND	B•(с.	MATR	IX B	IOUNC	OND	
DEF	FLECT	101	15	F)R	NODE	91	(DEGR	REES	0F	FRE	EnOM	4 =	: 3)				
				1				2	·				3				4		
0)	< -	3.7	757	sie	59E	-03	-5.6	282	96E-	.03	-	3.90	1823	36-	03	-3.	7003	14E-	03
D١	r -	4.7	79(604	44E	-02	-7.1	940	61E-	-02	-	1.56	8019	ĐE-	02	2.	2327	75E-	02
DZ	2	1.0	070	614	+5E	+00	1.6	142	17E•	00		3.40	6412	2E -	01	-5.	2379	295-	01
		• • •		_															
UEP	LECI	10	45	- F ()K	NODE	92	2	DEGR	RES	OF	FRE	ENOM R	4 =	: 3)		4		
D	(2.4	+19	942	22E	-03	3.6	291	83E-	•03		3.16	1239	5E-	03	з.	6999	96F-	03
D	1	4.(52	179	98E	-02	6,9	326	94E-	-02		1.52	944(0Ē-	02	-2.	1142	11	02
DZ	Z	1.0	574	487	72E	+00	1.6	123	08E+	00		3.40	2411	LE-	.01	-5.	2316	77E-	01
DEF	LECT	101	١S	FC)R	NODF	93	(DEGR	FES	0F	FRE	FnOk	4 =	- 73				•
		•••		1				2					3	• -			4		
0)	< -	1.1	8	122	27E	-02	-1.7	718	44E-	02	-	6.130	6065	δE-	03	8.	6851	72F-	04
01	(-	5.(00:	346	58E	-02	-7.5	051	96E-	-02	-	1.55	7100) <u> </u>	02	2.	4896	64E-	-02
DZ	-	1.0	19	551	12E	+00	1,5	232	67E+	00		3,001	1909	9E-	01	-5.	3756	68 <u>-</u> -	01
DEF	LECT	101	٩S	FC)R	NODE	94	(DEGR	EES	0F	FREI	EnON	4 =	: 3)				
				1				2					3				4		
D)	K i	9.1	15	981	12E	-03	1.3	739	77E-	-02		5.18	0124	4E -	•03	1.	8561	70E-	04
Ð١	ŕ	4.5	574	478	31E	-02	6.8	621	67E-	·02		1.42	8978	BF-	-02	-2.	2655	88E-	·02
DZ	2	1.(014	41	76E	+00	1.5	212	63E+	00		2.99	8969	9E-	01	-5.	3665	38 <u>E</u> -	01
DEF	LECT	101	1S	F)R	NODF	95	e	DEGR	FES	0F	FRE	FnOk	4 =	- 33				
				1				2			•••		3	• -			4		
0)	(-	8.8	316	695	59E	-03	-1.3	225	46E-	·02	-	4.23	1101	IF-	03	1.	3588	83F-	03
D	1 -	2 . 7	77	28:	39E	-02	-4.1	592	55E-	-02	-	8.61	8570)F-	03	1.	3818	95F-	02
07	2	9.4	+2:	317	74E	-01	1.4	134	74E+	00		2.600	6503	3E-	01	-5.	3527	70Ē-	01
DEF	FLECT	101	15	F)R	NODE	96	ı	DEGR	FFS	0F	FRF	FnØk		- 21				
	20.01			ì		NOUL		Ż	0200		0.		3				4		
0)	(8.4	-59	572	21E	-03	1.2	683	64E-	·02		4.64	9412	2E -	03	-9.	7647	86E-	05
D١	1	3,4	+16	617	78E	-02	5.1	242	62E-	-02		1.042	2882	2Ë -	02	-1.	7410	72F-	02
DŽ	2	9.4	+2(010)5E	-01	1.4	130	14E+	00		2.60	5689	9E-	01	-5.	3509	55E-	01
DEF	LECT	101	15	FC	DR I	NODE	97	(DEGR	EES	OF	FREE	ENON	1 =	3)				
				1				2	-				3		- •		4		
D)	¢	2.0	57	135	52E	-03	4.0	070	56E-	03		1.659	5569	e-	03	3.	4909	035-	04
0)	<u>(</u>	1.4	249	98()S ^E	-02	1.8	747	01E-	02		3.71	7221	E-	03	-6.	5695	05	03
DZ	2	9.1	11:	308	33E	-01	1.3	669	60E+	00		2.444	4449	9F	01	-5.	3319	51E-	01

(BC=1) USING DEFL. MATRIX DEFLECT AND R.C. MATRIX BOUNCOND DEFLECTIONS FOR NODE 99 (DEGREES OF FREEDOM = 3) 1 2 3 4 -3.974963F-03 -5.962431E-03 -3.470920E-04 3.790207E-03 DX DY 1.467341F-02 2.201011E-02 5.824602E-03 -4.739256F-03 DZ 4.607727E-01 6.911591E-01 2.071984E-01 -9.934936F-02 DEFLECTIONS FOR NODE 101 (DEGREES OF FREEDOM = 3) 1 2 3 4 9.577104E-03 DX 1.436565E-02 2.367799F-03 -6.013143F-03 DY -9.260540F-03 -1.389081E-02 -3.545592F-03 3.256469F-03 DZ 6.242379E-01 9.363566E-01 2.371795E-01 -2.232307E-01 DEFLECTIONS FOR NODE 102 (DEGREES OF FREEDOM = 3) 1 2 3 4 -5.700769E-03 DX -8.551136E-03 -6.999330F-04 5.024105E-03 DY 2.497131E-02 3.745695E-02 9.294883F-03 -9.322740=-03 DZ 6.241754E-01 9.362629E-01 2.371557E-01 -2.232085E-01 DEFLECTIONS FOR NODE 103 (DEGREES OF FREEDOM = 3) 1 2 3 DX 1.144163E-02 1.716242E-02 2.005971E-03 -8.859172F-03 DY -2.894896E-02 -4.342343E-02 -1.021994E-02 1.193895E-02 D7 7.396893E-01 1.109533E+00 2.552376E-01 -3.170695E-01 DEFLECTIONS FOR NODE 104 (DEGREES OF FREEDOM = 3) 2 1 3 -7.947489E-03 DX -1.192120E-02 -9.410758E-04 7.074660E-03 DY 3.739471F-02 5.609204E-02 1.3170396-02 -1.548561F-02 DZ 7.387685E-01 1.108152E+00 2.548747E-01 -3.1676695-01 DEFLECTIONS FOR NODE (DEGREES OF FREEDOM = 3)105 2 1 ٦ 4 3.432663E-04 -1.954879E-03 DX 5.148663E-04 -4.369004--03 DY -3.769109F-02 -5.653660E-02 -1.237025E-02 1.745013F-02 DZ 7.854011E-01 1.178101E+00 2.525868E-01 -3.741815E-01 DEFLECTIONS FOR NODE 106 (DEGREES OF FREEDOM = 3)2 1 3 4 ĐХ 4.748315E-04 7.122869E-04 2.109945E-03 3.759226E-03 DY 3,900653F-02 5.850976E-02 1.295715F-02 -1.774320--02 DZ 7.839093E-01 1.175863E+00 2.521468F-01 -3.733898F-01

(BC=1) (JS	ING	3	DEFL.	Μ	ATR	IX	DE	FL	ECT		A٢	٩D	B •	с.	M	ATRI	хE	00	IC0	ND	
DEF	LECT	IO	٩S	F	OR	N	ODE	10	7	((DEG	RE	ES	0F	FF	8EE	:n0	М	=	3)					
D Y		•	22.	1	1.20		^ 2	_ 1	٥,	<u>ک</u>	<u>، د</u>		2			• • •	3	~-		-	~		4	F	• 7
DY	· _	4 1	יצו	14 66	140		02 02	-1	•04 \\\C	114	51C 660		с Э	_	D • (1 5	/40 27.1	007		- 1	ງ ວ	2.	103	183 167	2 -	0.3
07	,	7.	310	50	0.8F	-	01	-0	.09	729	50E	+0	0	-	2.1	24 I 1 A 7	197	115		۲ ۱		820	120	35-	.02
	•	••					01	-					•					J.	,	•		020		u () -	
DEF	LECT	10	ýs	F	OR	N	ODE	10	8	(DEG	RE	es '	OF	FF	RE	no	M	=	3)					
				1						2		-			•		3			•			4		
DX	ι.	1.	14!	55	12E	-	02	1	.71	82	71e	-0	2	!	5.4	84	74	0E	-0	3	-1.	790	75	45-	03
DY	1	3.	79	06	39E	-	02	5	.68	59	53E	- 0	2		1.1	172	:69	3E	-0	2	-1.	900	37	2F-	02
DZ		7.	30:	35	88E	-	01	1	•09	55:	37E	:+0	0		5•1	85	529	0E	-0	1	-3.	812	263	2E-	01
DEF	LECT	10	٩S	F	OR	N	0D£	10	9	(DEG	RE	ES	0F	FF	SE E	:n0	M	=	3)					
				1						2							3						4		
ÐX	(-	8.	73)	4	84E	-	03	-1	.30	972	24E	-0	2	-	3.9	926	79	4E	-0	3	1.	881	83	6 <u>F</u> -	03
DY		2.	+6:	37	09E	-	02	-3	.69	555	59E	-07	2	-	7.4	94	19	4E	-0	3	1.	261	14	0E-	20
DZ		6.	376	55	47E	-	01	9	•56	48()7E	-0	1		1.7	/56	02	6E	-0	1	-3.	637	'97	1E-	01
DEF	LECT	10	١S	F	OR	N	00E	11	0	(DEG	RE	ES	0F	FF	?EE	D0	н	3	3)					
				1						2							3						4		
DX	t i	1.()4!	56	04E	-	02	1	•56	84() 9E	-0	2		4.9	993	172	7E	-0	3	-1.	660	28	3E-	03
DY		3.0	00	98	83E	-	02	4	.51	481	19E	-0	2		9.0)99	60	1E	-0	3	-1.	552	211	1E-	02
DZ		6.	371	91	05E	-	01	9	•56	714	+3E	- 0	1		1.7	756	51	2E	-0	1	-3.	63 6	174	4E-	01
DEF	LECT	10	١S	F	OR	N	ODE	11	1	(DEG	RE	ES	0F	FF	RE E	n0	м	=	3)					
				1						2						_	3			-			4		
DX	L.	3.(51	73	70E	-	03	5	.42	60	75E	-0	3		1.8	379	38	1E	-0	3	-2.	653	90	7E-	04
DY	r	1.	12	16	37 _E	-	02	1	.68	245	54E	-0	2		3.3	333	130	6E	-0	3	-5.	901	39	3E-	03
υz		6.	J4]	4	38E	-	01	9	•06	214	+3E	-0	1		1.5	595	95	5E	-0	1	-3.	584	81	2E-	01
DEF	LECT	10	٩S	F	OR	N	0DE	11	3	(DEG	RE	ES	0F	FF	RE	'n0	M	=	٦)					
				1					-	z					•••		3		-				4		
DX		7.(306	51	73 <u>E</u>	-	03	-1	.17	092	25E	- 02	2	-	1.8	309	36	4E	-0	3	5.	146	57	7e-	03
Đ۲	,	1.()19	9 8	13E	-	02	1	.52	971	19E	-07	2		4.2	270	49	2E	-0	3	-2.	841	20	9Ē-	03
DZ		1.	132	26	95E	-	01	1	•69	904	+3E	-0	1	ł	8.2	281	72	3F	-0	2	4.	049	954	0E-	02
DEF	LECT	101	4 5	F	OR	N	ODE	11	5	([DEG	RE	ES	0F	FF	?EE	:n0	м	=	3)					
				1			-			2							7						4		
DX	1	7.	13:	32	33E	-	03	1	.06	998	35E	-07	2		1.7	130	96	7F	-0	3	-4.	545	00	6F-	03
DY	′ -	9.(00	15	68E	-	03	-1	.35	019	90E	-0	2	-	3,8	320	91	8E	-0	3	5.	402	:55	4F-	03
DZ	<u> </u>	5 •.	/6	55	92E	-	01	-4	•14	838	38E	-0	1		1.1	172	40	5E	-0	1	-7.	413	48	1E-	02

(BC=1) USING DEFL. MATRIX DEFLECT AND B.C. MATRIX BOUNCOND DEFLECTIONS FOR NODE 116 (DEGREES OF FREEDOM = 3) 2 ł 3 4 -9.447757E-03 DX -1.417162E-02 -2.242109F-03 6.122531F-03 ĐY 1.819197F-02 2.728794E-02 7.199153E-03 -5,920880F-03 ĐZ 2.765022E-01 4.147532E-01 1.172189F-01 -7.411413E-02 ¥. DEFLECTIONS FOR NODE 117 (DEGREES OF FREEDOM = 3) 1 2 3 4 DX 1.560312E-02 2.340466E-02 3.955965E-03 -9.596358g-03 DY -2.554435E-02 -9.291658F-03 -3.831652F-02 9.977631F-03 DZ 4.216734E-01 6.325098E-01 1.500583E-01 -1.7147545-01 DEFLECTIONS FOR NODE 118 (DEGREES OF FREEDOM = 3) 1 2 3 4 DX -9.526540E-03 -1.428978E-02 -1.621728E-03 7.475072F-03 DY 3.766609F-02 5.649912E-02 1.350386F-02 -1.511360F-02 DZ 4.205626E_01 6.308437E-01 1.496264E_01 -1.710985E-01 DEFLECTIONS FOR NODE 119 (DEGREES OF FREEDOM = 3)1 2 3 DХ 5.189192E-03 7.783763E-03 1.926307E-04 -5.478239E-03 DY -2.792110F-02 -4.188163E-02 -9.174487F-03 1.290497-02 DZ 4.769812E-01 7.154714E-01 1.553087E_01 -2.233543E-01 DEFLECTIONS FOR NODE 120 (DEGREES OF FREEDOM = 3)1 2 3 4 DX -7.323377E-04 -1.098475E-03 1.341722E-03 3.560560E-03 DY 3.179055F-02 4.768580E-02 1.060759F-02 -1.436424F-02 DZ 4.751844E-01 7.127762E-01 1.548368E-01 -2.222825E-01 DEFLECTIONS FOR NODE 121 (DEGREES OF FREEDOM = 3) 1 2 ٦ 4 DX -3.339136E-03 -6.500473E-03 -9.750730E-03 5.545914E-04 DY -2.868493F-02 -4.302735F-02 -8.712992F-03 1.470887=-02 DZ 4.428177E_01 6.642259E-01 1.3317926-01 -2.297666E-01 DEFLECTIONS FOR NODE (DEGREES OF FREEDOM = 3) 122 2 1 3 4 DX 1.088543E-02 1.632817E-02 4.704480E-03 -2.735084E-03 DY 2.768638F-02 4.152953E-02 8.459081F-03 -1.409624F-02 DZ 4.413187F-01 6.619774E-01 1,328539F-01 -2.287332E-01

(В	C=1) USING DEFL	. MATRIX DEFLEC	T AND R.C. MATE	IX BOUNCOND
DEFL	ECTIONS FOR NODE	123 (DEGREES	OF FREEDOM = 3)	
~ *		2	3	4
DA	~3.513448E-03	-5.27018/E-03	-2.023041E-03	-1.447655F-04
D7	-1.9/3069E-02	-2.959600E-02	-5.872505E-03	1.036307F-02
υz	3*162011E-01	2*28/218E-01	1.019588E=01	-2,1379165-01
DEFL	ECTIONS FOR NODE	124 (DEGREES	OF FREEDON = 3)	
	1	2	3	4
DX	9.396798E-03	1,409522E-02	4.278274E-03	-1.918814g-03
DY	2,571234E-02	3,856848E-02	7,688775 _E -03	-1,343161-02
DZ	3.725457E-01	5.588178E-01	1.019609E-01	-2.138371E-01
DEFL	ECTIONS FOR NODE	125 (DEGREES	OF FREEDOM = 3)	
	1	2	3	4
ÐX	4.729454F-03	7.094194E-03	2.0934745-03	-1.0875285-03
DY	1.014401F-02	1.521599E-02	3.0004315-03	-5.36609303
DZ	3.504641E-01	5.256953E-01	9.066474E-02	-2.118585F-01
DEFL	ECTIONS FOR NODE	127 (DEGREES	0F = FREEDOM = 3	
	1	2	3	4
ÐX	-3.798020F-03	-5.697023E-03	-4,922291F-04	3.2941985-03
DY	1.296119F-02	1.944178E-02	5.2263105-03	-4.0207676-03
DZ	3.599777E-02	5.399670E-02	5.007273E-02	6.123432E-02
DEEL	ECTIONS FOR NODE	129 (DEGREES	OF FREEDOM - 2)	
	1	2	3	4
ъX	-2,098127F-04	-3.147129F-04	-6-7207665-04	-1.1311145-03
ĎΥ	-1,051410F-03	-1.577120F-03	-1-1192125-03	-1.089520-03
DZ	6.989161E-02	1.048375E-01	4.149531E-02	5.427635E-03
DEFL	ECTIONS FOR NODE	130 (DEGREES	OF FREEDON = 3)	
	1	2	3	4 ·
DХ	-3,791550F-03	-5.687318E-03	-4.636873F-04	3.3450026-03
ĎΥ	8,926029F-03	1.338904F-02	3.8880715-03	-2.180811E+03
DZ	6.984057E-02	1.047609E-01	4.147596E-02	5.445976E-03
DEFL	ECTIONS FOR NODE	131 (DEGREES	OF FREEDOM = 3)	
. –	1	2	3	4
DX	1.477321E-02	2.215980E-02	4.074229F-03	-8.416639F-03
ĐY	-2.067267F-02	-3.100901E-02	-8,052181F-03	6,990338F-03
07	1.5237628-01	2.285643E-01	5.6552056 02	-5.722453F-02

(BC=1) USING DEFL	. MATRIX	DEFLEC	r and	B.C. MATR	IX BOUNCOND
DEF	LECTIONS FOR NODE	132 (0	EGREES	OF FREE	EnOM = 3)	
0.1		-2 33016	45-03		3	4
01		3.64441	75-02	9 30	U342E-03	-9 546121c-03
02	1.513608F_01	2.27041	2E-01	5.60	9046F-02	-5.7017825-02
					10.00-01	-341011020-02
DEF	LECTIONS FOR NODE	133 (0	EGREES	OF FREE	EnOM = 3)	
	1	2			3	4
DX	7.649921E-03	1.14748	6E-02	1.489	9696E-03	-5.620881E-03
1)1	-1.670683F-02	-2,50602	3E-02	-5,530	03655-03	7.638864E-03
02	2.2303002-01	3+354/4	96-01	7.37	0824E-02	-1.028222E+01
DEF	LECTIONS FOR NODE	134 (0	EGREES	OF FREE	(F = MON	
	1	2			3	4
DX	-2.950403E-03	-4.42558	4E-03	-1.883	3795E-04	2.954125E-03
DY	1.868689E-02	2,80303	16-05	6,163	3185E-03	-8,590288g-03
02	2.209664E_01	3.31449	4E-01	7.298	3918E_02	-1.013521E-01
DEE	LECTIONS FOR NODE	135 (0	FGREES		- 21	•
	1	2			3	4
ĐX	3.557207E-04	5,33565	4E-04	-7.090	0730F-04	-1.846280F-03
DY	-1.504318E-02	-2,25647	4E-02	-4,550	0600F-03	7,751901F-03
DZ	2.215066E_01	3,32259	6E-01	6.707	7308F-02	-1.140097È-01
DEE	LECTIONS FOR NODE	136 (0	FGDEFS			
22.	1	2	LONELJ		-1)0H = 31	4
ĐX	3.741322E-03	5.61200	2E-03	1.989	, 9503F-03	-1.8143405-04
DY	1.288154E-02	1.93222	9E-02	3,936	5388F-03	-6.557159r-03
DZ	2.187828E-01	3.28174	0E-01	6.645	5457E-02	-1.121878E-01
055	LECTIONS FOR NORT			0 5 5055	- 04	
ULI	I I	137 10	LOKEES	OF FREE	100M = 3) 3	4
DX	1.084178E-03	1.62625	2E-03	-3.720)446F-04	-1.984119E-03
DY	-1.328490E-02	-1.99273	4E-02	-3.861	473E-03	7.166076-03
DZ	1.693500E-01	2.54024	7E-01	4.627	7818E-02	-9.734935E-02
DEF	LECTIONS FOR NODE	138 (D	EGREES	OF FRFF	(F = MON	
	1	2			3	4
DX	8.006631E-03	1.20099	6E-02	3,369	578E-03	-2.196500F-03
DY	1.881019E-02	2.82152	5E-02	5.485	5010E-03	-1.011078E-02
DZ	1.687147E_01	2.53071	7E-01	4.609	9714E-02	-9.6999216-02

(BC=1) (JSIN	G DE	FL.	MATRI	I X I	DEFLE	Ст	AND	R.C.	MATR	Ιχ ΒΟι	UNCOND	
DEF	LECT	10	NS	FOR	NOD	Ε	139	(0)	EGREE	s o	F FREE	EnOM	= 3)			
				1				2				3			4	
D)	(5.	70	3180e	E-03		8.562	27	7E-03		2.16	3937F	-03	-2.05	51281E	-03
D١	ſ	8.	69	9131	03		1.304	86	8E-02		2,53	7447F	-03	-4.6	74301=	-03
ĐZ	!	1.	54(8631Ë	Ė-01		2.322	94	3Ē-01		3.86	5858F	-02	-9.64	45558F	-02
DEF	LECT	10	NS	FOR	NOD	F	141	(D)	FGREE	s o	F FREI	FDOM	- 3)			
		•••		1	11120	•	• • •	5				3	- 57		4	
DX	(1.	15	3509F	=-03		-1.737	76	2E-03		-2.34	8536E	-04	8.32	23615E	-04
DY	1	۱.	494	4651	E-02		2.241	97	6E-02		5,41	3595r	-03	-5,80	85281F	-03
DZ	- 2	6.	02(B109E	E-02	•	-9.042	216	3E-02		-7.504	4698E	-03	5.29	91448E	÷02
DEF	LECT	10	NS	FOR	NOD	E	143	(DI	EGREE	S 0	F FREE	EnOM	= 3)			
				1				2				з			4	
DX	L .	3.	474	+0006	E-03		5.211	00	1E-03		7.92	9417 _E	-04	-2.3	15517 _E -	-03
D١	1	1.	75	8170e	E-03		2.637	24	3E-03		-1.220	0699E	-03	-4.4	74550E	-03
NZ		2.	19.	78216	E-02	•	-3.281	73	1E-02		-3.534	4686E	-03	1.79	55341Ë	-02
DEF	LECT	IO	NS	FOR	NOD	ε	144	(DI	EGREE	S O	F FREE	EDON	= 3)			
				1				2				3			4	
DX	(-	1.	40)	17076	E-03		-2.102	255	8E-03		-3.07	7633E	-04	9.5	904105	-04
DY	1	1.	15	84528	E-02		1.737	167	8E-02		5.43	4A12F	-03	-2.03	38801E	-03
DZ	- 2	2.	18:	79488	E-02		-3.281	92	1E-02		-3-53	5913E	-03	1.75	55031Ē	-02
DEF	LECT	10	NŠ	FOR	NOD	E	145	(DI	EGREE	5 0	E FREE	EnOM	= 2)			
				1		-		2				3			4	
DX	ί.	3.	959	5942F	-03		5.933	1914	4E-03		1.043	3016F	-03	-2.35	51530F	-03
DZ	<u> </u>	2.	322	2637	-04	•	-3,483	944	4E-04		8,13	2171E	-05	4,28	33578E	-04
															-	
DEE		tn	NS	FOR	NOD	F .	147	101	FGREE	s n	F FDF	ED OM	- 2)			•
	2201	•••		1	1100	. .	•••	2				3	- 21		4	
ъ×	(з.	581	7980;	03		5.381	97	16-03		1.020		-03	-1.98	105116	-03
ĎZ	!	з.	40:	3953	-03		5.105	93	5E-03		1.634	4246F	+03	-5.2	31036	-04
									-		•			• • •		
DEE	I FOT	ĩ٨	NS	FOR	NOD	F	148	10	FGDEE	5 0	F FDF		- 21			
0		10		1	100		• +0	2		5 0	1 F N E. L	2001	- 21		4	
ъX		з.	70:	3975	-04		5.559	96	5E-04		3.104	+523F	-05	-3-55	583896.	-04
ÖZ	2	2.	621	3876	-03		3,947	132	0F-03		1.26	1318=	-03	-4.05	56924	-04
		- •	- •	_ , .,								~C				•••
NEE	I FOT	10	NS	FOP	NOD	F	149	104	FGDEE	5 0	F FDF	500H	- 21			
		• • •		1	100	.	• • /	2		5 0		-00m 3	- 21		4	
DX	(з.	41	, 377	03		5.126	062	2F-03		9.269	, 5679⊏	-04	-1.97		-03
DZ	!	4.	200	5024	-04		6.309	06	5F-04		2.79	54965	-04	9.34	0340-	-05

-

. ``

(BC=1) USING DEFL. MATRIX DEFLECT AND B.C. MATRIX BOUNCOND DEFLECTIONS FOR NODE 150 (DEGREES OF FREEDOM = 1) 1 2 3 8.127847E-04 DX 1.219181E-03 2.258668F-04 -4.596208F-04 DEFLECTIONS FOR NODE 151 (DEGREES OF FREEDOM = 2)1 2 3 4 1.053309E-02 ОX 3.036834E-03 1.579962E-02 -5.732175E-03 DZ 1.078764-02 1.618145E-02 3.6504876-03 -4.770536F-03 DEFLECTIONS FOR NODE 152 (DEGREES OF FREEDOM = 2)1 2 3 -6.058482E-03 DX -9.087709E-03 -1.798167E-03 3.192279F-03 D7. 8,245627F-03 1.236843E-02 2.744952F-03 -3.738756F-03 DEFLECTIONS FOR NODE (DEGREES OF FREEDOM = 2)153 1 2 3 1.534245E-03 DX 2.301369E-03 4.047257E-04 -9.116023E-04 DZ 2.028955E-03 3.043433E-03 7.4758145-04 -7.730714-04 DEFLECTIONS FOR NODE 154 (DEGREES OF FREEDOM = 1) 1 2 3 4 6.073078E-03 DX 9.109614E-03 1.840717F-03 -3.122247E-03 DEFLECTIONS FOR NODE (DEGREES OF FREEDOM = 2) 155 2 1 3 8.908622E-03 DX 1.336292E-02 2.476798E-03 -5.034836E-03 2.039254E-04 DZ 3.058960E-04 2.860917F-04 3.517255F-04 DEFLECTIONS FOR NODE 156 (DEGREES OF FREEDOM = 2) 1 2 ٦ 4 -1.790674E-03 -2.685999E-03 DX -3.232765E-04 1.367432E-03 DZ -3.655412F-04 -5.483051E-04 1.903839E-04 8.012145-04 DEFLECTIONS FOR NODE 157 (DEGREES OF FREEDOM = 2)1 2 3 4 7.0534528-03 DX 1.058017E-02 -4.190425E-03 1.860823E-03 DZ 1.373222E-03 2.059829E-03 2.995176E-04 -9.436267E-04 DEFLECTIONS FOR NODE (DEGREES OF FREEDOM = 2) 158 2 1 3 4 DХ 5.528379E-04 8.292684E-04 5.078087E-04 4.085681E-04 DZ 3,781960F-04 5.672931E-04 9.129742F-05 -2.4194505-04

(BC=1) USING DEFL. MATRIX DEFLECT AND R.C. MATRIX BOUNCOND DEFLECTIONS FOR NODE 159 (DEGREES OF FREEDOM = 3) 1 2 3 4 DX. 1.381799E-03 2.072706E-03 5.903374F-04 -3.611824F-04 DY 7.0304685-03 1.0545696-02 1.945042F-03 -3,9928695-03 DZ 1.9786368-02 2.967949E-02 4.5194855-03 -1.3181285-02 DEFLECTIONS FOR NODE 161 (DEGREES OF FREEDOM = 2) 1 2 3 . 4 -3.861720E-03 DX -5.792557E-03 -5.684935E-04 3.211083E-03 DZ 8.588601E-04 1.288288E-03 1.930693F-04 -5.784804F-04 DEFLECTIONS FOR NODE 162 (DEGREES OF FREEDOM = 1)1 2 3 DX 9.275817E-03 1.391371E-02 2.404727E-03 -5.597031E-03 DEFLECTIONS FOR NODE 163 (DEGREES OF FREEDOM = 2) 1 2 3 DX 6.196392E-03 9.294582E-03 1.692542F-03 -3.563501--03 DZ 1.853671E-02 2.780501E-02 4.235303E-03 -1.234622E-02 DEFLECTIONS FOR NODE 164 (DEGREES OF FREEDOM = 2) 2 3 DX -7.822945E-04 1.436919E-04 -1.173428E-03 1.177553E-03 DZ 1.903476F-02 2.855208E-02 4.347127F-03 -1.2681965-02 DEFLECTIONS FOR NODE (DEGREES OF FREEDON = 2) 165 1 2 ٦ 7.884894F-03 2.053619E-03 ŊХ 1.182733E-02 -4.738434F-03 DZ 1.527359-03 2.291035E-03 3,309661F-04 -1.053964--03 DEFLECTIONS FOR NODE 166 (DEGREES OF FREEDOM = 1)1 2 3 -5.925183E-04 DX -8.887628E-04 2.3319856-04 1.1450998-03

, .

.

CONDENSED TABLE OF MEMBER OJTPUT DATA

• ,

.

 \sim

MICROBUCKLING

 \sim

.)

1

MEN. NO.	TYPE	MATSL		NODE	5		AREA OR LENGTH	GAGE	CRIT. LOAD COND.	MAX. STRESS	MAX. Stress Ratio	DES. CONST.	CRIT. MAX. Load Stress Cond. Ratio
4301	4	, 8	4	3	1	0	•5424	•0100	Ş	3.7302+02 3.7665+02 5.5505+0	2 .011	MZM	
6302	6	8	4	3	6	5	1.7051	•0100	5	-5.766E+00 -2.541E-08 -3.527E+0	2 .007	H7H	
6303	6	8	6	5	8	7	2.6180	.0100	5	4.416E+00 -6.668E-09 4.333E+0	2 .009	H/M	
6304	6	8	8	7	10	9	2+8090	•0100	2	-3.024E+00 2.579E-08 6.047E+0	2 .012	MZM	
6305	6	8	10	9	12	11	1.6347	•0100	2	-1.277E+01 3.261E-08 3.388E+0	2 .007	MZM	
4306	4	8	12	11	13	0	•2065	•0100	5	3+214E+02 2+794E+02 2+211E+0	2 .005	H/H	
4001	4	7	4	3	1	0	•5424	2.5000	2	1.478E+00 1.533E+00 8.402E+0	0.056	MZM	
6005	6	7	4	3	6	5	1.7051	2.5000	2	-8.725E-02 9.550E-12 -5.337E+0	.036	MZM	
6003	6	7	6	5	8	7	2.6180	2.5000	5	6.684E-02 2.337F-10 6.558E+0	0.044	H/M	
6004	6	5	8	7	10	9	2.8090	2.5000	2	-4.577E-02 4.187E-10 9.154E+0	0.061	H/M	
6005	6	5	10	9	15	11	1.6347	2.5000	5	-1.932E-01 -2.967E-10 5.125E+0	.034	MŻM	
4006	4	5	12	11	13	0	.2065	2.5000	5	1.525E+00 8.884E-01 3.347E+0	0.023	MZH	
1001	1	9	3	4	0	0	•3164	.1000	2	2.807E+01 0. 0.	.009	MZM	
1002	1	9	5	6	0	0	•67A3	•1000	5	2•519E+05 0• 0°	.074	H/M	
1003	1	9	7	8	0	0	•8491	.1000	2	2.789E.02 0. 0.	.093	M/M	
1004	1	9	9	10	0	0	•7898	.1000	2	5•539E+05 0• 0°	.077	MZM	
1005	1	9	11	12	0	0	.4819	.1000	2	3.651E+01 0. 0.	.012	MŹM	
6011	6	6	4	18	3	17	2.0583	3.0000	2	5.290E-02 -1.134E-01 -1.755E+0	.059	H/M	
6012	6	6	6	20	5	19	4.2419	3.1000	2	2.8246-01 -4.2236-01 -2.9325+0	1.098	NZM	
6013	6	4	8	22	7	21	5.1163	3.2000	5	2.5228-01 -3.6338-01 -1.9425+0	.065	HZM	
6014	6	4	10	24	9	23	4.6001	3.3000	5	1.296E-01 -1.871E-01 -1.039E+0	.035	MZM	
6015	6	4	12	26	11	25	2.7436	1.7000	5	9.9095-03 -1.4205-02 -1.2645+0	.004	MZM	
9013	6	8	8	22	7	21	5.1163	•0100	2	6.318E+00 -9.103E+00 -4.866E+0	.010	HZH	

.

CONDENSED TABLE OF MEMBER OJTPUT DATA

•

														HICR0B	UCKLING
MEM. NO.	ΤΥΡΕ	MATL.		NODE	s		AREA OR LENGTH	GAG	E	CRIT. LOAD COND.	MAX. STRESS	MAX. Stress Ratio	DES. CONST.	CRIT. Load Cond.	MAX. STRESS Ratio
5001	5	18	З	17	1	15	18.3024	1	2	2	- 3,035F+03	016		2	000
							···	Ż	ī	2	-3-9155+03	021		ς.	.000
								3	ż	2	-2.757E+02	.001	MZM		
5002	5	18	5	19	3	17	18.2666	1	3	5	-8.571E+02	.005	MZM	2	. 000
								2	1	2	-6.420E+03	.035	MZM	-	
								3	3	5	-3.988E+03	.022	MZM		
5003	5	18	7	21	5	19	18.2272	1	3	4	-1.187E+03	.006	MZM	2	-000
								2	5	5	-1.112E+04	.060	MZM	-	
								3	3	5	-1.236E+03	.007	M/H		
5004	5	17	7	21	9	23	18.2125	1	2	2	-2.383E+03	.013	MZM	2	.000
								2	1	2	-1+093E+04	.059	MZM	-	
								3	5	2	2.475E+03	.012	MZM		
5005	5	17	9	23	11	25	13.7038	1	1	2	-4.731E+03		MZH	2	.000
								2	1	5	8.526E+02	.004	MZM	-	
								3	1	4	1.414E+02	.001	MZH		
5006	5	17	11	25	13	27	4.8861	1	1	5	-4.263E+02	.002	M/M	4	.000
								2	1	2	9.276E+02	.004	NZM		
								3	1	4	1+932E+02	.001	H/H		
5011	5	18	4	18	1	15	18.2136	1	2	5	2.926E+03	.013	MZM	4	.000
								2	1	5	3.183E+03	.015	H/H		
								3	2	4	-5.966E+02	.003	H/H		
5012	5	18	6	Ź0	4	18	18.2391	1	3	5	8+163E+02	.004	MZH	4	.000
								2	1	2	8+120E+03	.038	MZM		
								3	3	5	1.682E+03	.008	MZM		
5013	5	18	8	22	6	20	18.2173	1	3	4	1.505E+03	.006	M/H	4	.000
								2	4	_ 2	7+496E+03	.035	MZM		
								3	3	' 2	7.203F+02	.003	MZH		
5014	5	17	8	22	10	24	18.2113	1	2	5	2.902 <u>F</u> +03	.013	MZM	4	.000
								2	1	5	9+389E+03	.044	MZN	-	
								3	2	5	-3.444E+03	.019	MZM		
5015	5	17	10	24	12	26	13.6705	1	1	5	4•684E+03	.022	M/M	4	.000
								2	1	2	-1.066E+03	.006	MZM	•	
								3	1	2	4.113E+02	.002	M/M		

.

.

CONDENSED TABLE OF MEMBER OJTPUT DATA

.

MICROBUCKLING

ħ

. .

N

MEM. NO.	TYPE	MATL.		NODE	۰ <u>۶</u>		AREA OR LENGTH	GAC	3F	CRIT. LOAD COND.	MAX. STRESS	MAX. STRESS PATIO		CRIT. LOAD	MAX. STRESS
5016	5	17	12	26	13	27	4.6508	1	1	2	5.277E+02	.002	MZM	2	•000
								2 3	1	4	-1.069E+03 -2.510E+02	.006	M/M M/M		
4021	4	7	18	17	15	0	•6854	5.	0000	4	-5.264E-01 -5.265E-02 4.080E+00	.027	M/M		
6022	6	7	18	17	20	19	2.1578	5	0000	2	-2.778E-01 -2.153E-10 -1.699E+01	.113	MZH		
6023	6	7	20	19	22	21	3.3132	5.	0000	S	-3.095E-02 -9.896F-11 -3.037E.00	• 020	M/H		
6024	6	5	22	21	24	23	3.5548	5	0000	2	-2.486E-02 -8.509F-11 4.972E+00	.033	MZM		
6025	6	5	24	23	26	25	2.0698	5.	0000	5	-3.634E-01 1.523E-11 9.642E+00	• 064	MZM		
4026	4	5	26	25	27	0	.2613	5.	0000	5	6+798E+00 2+979E+00 1+726E+00	.019	MŽM		
1011	1	9	17	18	0	0	•3560		1000	S	9.204E+01 0. 0.	.031	HZM		
1012	1	9	19	20	0	0	•7631		1000	2	5.108E+02 0. 0.	.170	MZM		
1013	1	9	21	22	0	0	•9552		1000	2	6.913E+02 0. 0.	.230	M/M		
1014	1	9	23	24	0	0	•8884		1000	S .	6.611E+02 0. 0.	•550	HZH		
1015	1	9	25	26	0	0	•5421	•	1000	5	1.735E+02 0. 0.	.058	H/M		
6031	6	6	18	32	17	31	2.3004	3,	3000	S	5.950E-02 -1.275E-01 -1.974F+01	.066	MZM		
6032	6	6	20	34	19	33	4.7408	3.	4000	5	6.583E-01 -9.847E-01 -6.837E+01	•558	МУМ		
6033	6	4	22	36	21	35	5.7180	3.	5000	5	7.503E-01 -1.081E+00 -5.778E+01	.193	MZM		
6034	6	4	24	38	23	37	5.1411	3.	6000	5	5.748E-01 -8.296F-01 -4.608E+01	.154	MZM		
6035	6	4	26	40	25	39	3.0662	1.	9000	5	1.833E-01 -2.627E-01 -2.337E+01	.078	MZM		
9033	6	8	22	36	21	35	5.7180	•	0100	2	1.880E+01 -2.709E+01 -1.448E+03	.029	MZM		
5021	5	18	17	31	15	29	20.4548	1	2	2	-4.124F+03 -7.918F+03	.022	H/H	2	.000
								3	2	S	-1.252E+03	.007	MZM		
5022	5	18	19	33	17	31	20.4148	1	3	5	-1.758E+03	•010	M/M	2	•000
								3	ŝ	2	-6.415E+03	.035	M/M		

CONDENSED TABLE OF MEMBER OJTPUT DATA

•

I														MICROB	UCKLING
MEM. NO.	TYPE	MATL.		NODE	ES		AREA OR LENGTH	GAG	E	CRIT. LOAD COND.	MAX. STRESS	4AX. Stress Ratio	DES. CONST.	CRIT. Load Cond.	MAX. STRESS PATIO
5023	5	18	21	35	19	33	20.3708	1	3	5	-5.875E+03	.032	MZM	2	- 000
								2	4	2	-1.984F+04	107	M ZM	-	
								3	3	ş	2.2125+03	.010	MZM		
5024	5	17	21	35	23	37	20.3544	1	3	4	7. 306E+02	.003	MZM	2	.000
								2	3	5	-2.261E+04	.122	MZM	-	
								3	3	4	-3,128E+03	.017	MZH		
5025	5	17	23	37	25	39	15.3154	1	1	5	-1.629E+04	.088	M/M	2	.000
								2	1	2	-2.052E+03	.011	M/M		
								3	1	2	7.662E+03	•036	MZH		
5026	5	17	25	39	27	41	5.4607	1	1	2	-7.673E+03	.041	MZH	2	.000
								2	1	5	2.766E+03	.013	MZM		
								3	1	5	5.514E+03	.026	M/M		
5031	5	18	18	32	15	29	20.3556	1	2	5	4.087E+03	.019	H/M	4	.000
								2	1	S	6+596E+03	.032	MZM		
								3	. 2	S	1.446E+03	.007	M/M		
5032	5	18	20	34	18	32	20.3841	1	3	5	2.027E+03	.010	MZM	4	.000
								2	1	5	2.108E+04	.099	M/H		
								3	3	5	3+216E+03	.015	M/M		
5033	5	18	22	36	20	34	20.3598	1	3	5	5+657E+03	.027	MZM	4	.000
								2	6	2.	1.602E+04	.076	M/M		
								3	3	5	-9.337E+02	.005	M/M		
5034	5	17	22	36	24	38	20.3531	1	3	5	2.114E+03	.010	MZM	4	.000
								5	3	2	1.944E+04	.092	MZM		
								3	3	5	-3.080E+03	.017	MZM		
5035	5	17	24	38	26	40	15.2782	1	1	5	1,671E+04	.079	MZM	4	.000
								2	1	4	1.561E+03	.007	M/M		-
								3	1	2	-4.500E+03	.024	M/M		
5036	5	17	26	40	27	41	5.1978	1	1	2	5.621F+03	.027	MZM	2	.000
								2	1	. S	-8+166E+02	.004	MZM		
								3	1	5	-3+797E+03	.021	MZM		
4041	4	7	32	31	29	0	•8473	5.	0000	4	-5.927E-01 -5.905E-02 5.806E+00	.039	H/H		
6042	6	7	32	31	34	33	2.6637	5.	0000	5	-3.425E-01 4.256E-10 -2.096E+01	.140	M/M		
6043	6	7	34	33	36	35	4.0900	5.(0000	5	-3.183E-02 6.494E-11 -3.123E+00	.021	MZM		

CONDENSED TABLE OF MEMBER OJTPUT DATA

.

1

.,

MICROBUCKLING

1

MEM. NO.	ΤΥΡΕ	MATL.		NODE	S		AREA OR LENGTH	GAG	ēΕ	CRIT. LOAD COND.		MAX. STRESS	5	MAX. STRESS RATIO	DES. CONST.	CRIT. Load Cond.	MAX. Stress Ratio
6044	6	5	36	35	38	37	4.3884	5.	0000	5	-4.854E-02	9.572E-11	9.708E+00	.065	M Z M		
6045	6	5	38	37	40	39	2.5538	5.	0000	2	-1.469E-01	-2,303E-10	3.898 <u>E+00</u>	.026	MZM		
4046	4	5	40	39	41	0	.3226	5.	0000	5	8.536E+00	5,535E-01	9.040E+00	.064	MZH		
1021	1	9	32	31	0	0	.3955	•	1000	2	1.213E+02	0.	0.	.040	MŽM		
1022	1	9	34	33	0	0	•8479	•	1000	2	7.270E+02	0.	0.	.242	H ZH		
1023	1	9	36	35	0	0	1.0613	•	1000	2	8•998E+02	0.	0.	• 300	M/M		
1024	1	9	38	37	0	0	.9871	•	1000	5	8.880E+02	0.	0.	.296	HZH		
1025	1	9	40	39	0	0	.6023		1000	5	2•225E+02	0.	0.	.084	MZH		
6051	6	6	32	46	31	45	2.5425	3.	7000	2	6.327E-02	-1.356E-01	-2.099E+01	.070	MZM		
6052	6	6	34	48	33	47	5.2396	3.	8000	5	1.026E+00	-1.535E+00	-1.066E+02	.355	MZH		
6053	6	4	36	50	35	49	6.3197	3.	9500	2	1.199E+00	-1.727E+00	-9+531E+01	.308	H /H		
6054	6	4	38	52	37	51	5.6821	4.	1000	2	7.612E-01	-1.099E+00	-6.103E+01	.203	MZH		
6055	6	4	40	54	39	53	3.3899	2.	1000	5	6•360E-01	-9.116E-01	-8.112E+01	• 270	MZM		
9053	6	8	36	50	35	49	6.3197	•	0100	5	3+004F+01	-4+329E+01	-2.313E+03	•046	HZH		
5041	5	18	31	45	29	43	22.6073	1 2 3	2 1 2	2 2 2		-5.015E+03 -1.055E+04 -1.559E+03		.027 .057 .008	M / M M / M M / M	2	.000
5042	5	18	33	47	31	45	22.5630	1 2 3	3 1 3	4 2 2		-1.529E+03 -3.467E+04 -8.011E+03		.009 .187 .043	M / M M / M M / M	2	•000
5043	5	18	35	49	33	47	22.5143	1 2 3	3 6 3	5 5 5		-1.311E+04 -2.988E+04 8.852E+03		.071 .156 .042	MZM MZM MZM	2	.000
5044	5	17	35	49	37	51	22,4963	1 2 3	3 6 3	2 2 4		7.755E+03 -3.141E+04 -3.814F+03		.037 .170 .021	M / M M / M M / M	2	.000

.

CONDENSED TABLE OF MEMBER OJTPUT DATA

.

MICROBUCKLI	NG
-------------	----

MEM. NO.	TYPE	MATL.		NODE	ES		AREA OR LENGTH	GA	GE	CRIT. LOAD COND.	MAX. STRESS	MAX. STRESS Ratio	DES.	CRIT. LOAD COND.	MAX. STRESS
5045	E				-	5 2	16 - 2-1		-						
2045	2	17	37	51	39	53	16.9271	1	3	5	-1+920E+04	.104	М/М	2	.000
								2	1	5	-2.163E+04	.117	MZH		
								3	3	5	1.087E+04	.051	M/M		
5046	5	17	39	53	41	55	6.0354	1	· 1	5	-1.454E+04	.079	MZM	2	.000
								2	1	5	5.960E+03	.028	MZM	-	
								3	1	5	1.595 <u>F</u> +04	.080	MZM		
5051	5	18	32	46	29	43	22.4976	1	2	2	5.153F+03	. 024	MZM	· 4	000
								2	1	Ž	9.3845+03	044	M 2M	•	
								3	ż	Š	2.036E+03	.010	M/M		
5052	5	18	34	48		4.6	22 5201		-						
3032	5	10	34	40	36	40	22+3241	1	2	2	1 • 769E + 03	.008	MZM	4	•000
								2	1	· 2	3.174E+04	.150	MZH		
								3	3	4	-2.5662+03	.015	M/M		
5053	5	18	36	50	34	48	22.5022	1	3	5	1.146E+04	.054	H/H	4	.000
								2	10	5	2+184E+04	.103	M/M		
								3	3	S	=6+338E+03	.034	M/H		
5054	ຸ5	17	36	50	38	52	22.4948	1	з	5	-3.573F+03	.019	MZH	4	.000
								2	6	5	2.701E+04	.127	MZM		
	·							З	3	4	4 • 353E + 03	.021	MZH		
5055	5	17	38	52	40	54	16.8860	1	· 2	2	2.454F+04	.116	M z M		000
								ž	ĩ		1.526F+04	.072	MZM	-	.000
								3	2	5	-1.000E+04	.054	MZH		
5056	5	17	40	54	41		5 7448	•	,	2	N 05(m.0)				
	2	1 '	-70	34	-1		54140	2	1	2	1+550 <u>F</u> +04	.088	MZM	4	.000
								2		2	7.3075.403	.035	MZN		
								2	1	C	-1.019E+04	• 055	MZN		
4061	4	7	46	45	43	0	1.0252	5	• 0 0 0 0	5	5.639E+00 2.002E+00 -8.582E+00	• 059	MZH		
6062	6	7	46	45	48	47	3.2229	5	• 0 0 0 0	2	-4.149E-01 3.829E-10 -2.538E+01	.169	MZM		
6063	6	7	48	47	50	49	4.9487	5.	.0000	2	-5-1765-02 7-6515-11 -5 0785-00	034	NI / NI		
6064	4	-	5.0	4.0	F 3	c \	F O O - (_		-		.034	~/~		
0004	0	5	50	49	52	21	5+3096	5.	.0000	5	-5.243E-02 -4.457E-11 1.049E+01	.070	M/M		
6065	6	5	52	51	54	53	3.0900	5.	.0000	S	3.663E-02 -5.265E-12 -9.7185-01	.006	MZM		
4066	4	5	54	53	55	0	.3903	5.	.0000	5	6.881E+00 1.772E+00 -3.079E+00	.026	M/M		
1031	1	9	46	45	0	0	•4350		1000	2	1.491E+02 0. 0.	.050	MZH		

CONDENSED TABLE OF MEMBER OJTPUT DATA

.

.

.

.

. .

NEM. NO.	TYPE	NATL.		NODE	5		AREA OR LENGTH	GA	GE	CRIT. LOAD COND.		MAX. STRES	S	MAX. STRESS RATIO	DES. CONST.	CRIT. Load Cond.	MAX. Stress Ratio
1032	1	9	48	47	0	0	.9326		•1000	5	8+410E+02	0.	0.	•280	MZM		
1033	1	9	50	49	0	0	1.1674		•1000	5	1.098E+03	0.	0.	.366	MZM		
1034	1	9	52	51	0	0	1.0858		.1000	5.	1.023E+03	0.	0.	.341	M/M		
1035	1	9	54	53	0	0	•6625		•1000	5	1.892E+02	0.	0.	.063	MVM		
6071	6	6	46	60	45	59	2.7845	4	•0000	5	5.609E-02	-1.202E-01	-1.861E+01	.062	M/H		
6072	6	6	48	62	47	61	5.7385	4	•1500	2	1.311E+00	-1.961E+00	-1.362E+02	•454	HZM		
6073	6	4	50	64	49	63	6.9214	4	• 3000	2	1.597E+00	-2.300E+00	-1.230E+02	.410	, HZM		
6074	6	4	52	66	51	65	6.2231	4	•4500	2	8+246E-01	-1+190E+00	-6.612E+01	.220	H/H		
6075	6	4	54	68	53	67	3.7115	2	2.3000	2	7.360E-01	-1.055E+00	-9.388E+01	.313	H/M		
9073	6	8	50	64	49	63	6.9214		.0100	5 ·	4.001E+01	-5.764E+01	-3.081E+03	.062	MZM		
5061	5	18	45	59	43	57	24.7597	1 2 3	2 1 2	2 2 2		-6.170E+03 -1.317E+04 -6.347E+02		.033 .071 .003	M / M M / M M / M	2	.000
5062	5	18	47	61	45	59	24.7112	1 2 3	3 1 3	4 2 2		-2.321E+03 -4.764E+04 -7.029E+03		.013 .258 .038	M/M M/M M/M	2	•000
5063	5	18	49	63	47	61	24.6579	1 2 3	3 8 3	5 5 5		-2.085E+04 -3.509E+04 1.580E+04		•113 •195 •079	M/M M/M M/M	5	.000
5064	5	17	49	63	51	65	24.6381	1 2 3	3 9 3	2		1.635E+04 -3.956E+04 -7.167E+03		.077 .214 .039	H/M H/N H/M	2	.000
5065	5	17	51	65	53	67	18.5397	1 2 3	6 1 6	5 5 5		-1.732E+04 -5.552E+04 8.987E+03		.094 .300 .042	M/M M/M M/M	· 2	.000
5066	5	17	53	67	55	69	6.6100	1 2 3	5 1 5	2 4 2		-1.175E+04 -4.040E+03 1.383E+04		.064 .022 .065	M/M H/M M/M	2	.000

MICROBUCKLING

۹,

 $\overline{}$

. .

.

CONDENSED TABLE OF MEMBER OJTPUT DATA

MICROBUCKL	ING
------------	-----

MEM. NO.	TYPE	MATL.		NODE	S		AREA OR LENGTH	GAG	ēΕ	CRIT. LOAD COND.	MAX. STRESS	MAX. Stress Ratio	DES. CONST.	CRIT. Load Cond.	MAX. STRESS RATIO
5071	5	18	46	60	43	57	24.6396	1 2 3	2 1 2	5 5 5	6.710F+03 1.176E+04 1.861F+03	.032	474 474	4	.000
5072	5	18	48	62	46	60	24.6740	1 2 2	3	4	1.735E+03 3.984E+04	.008	MZM MZM MZM	4	•000
5073	5	18	50	64	48	62	24.6446	1 2	3	2	1.842E+04 2.437E+04	.087 .115	M/M M/M M/M	4	.000
5074	5	17	50	64	52	66	24.6365	3 1 2	3 3 10	5	-1.448E+04 -1.302E+04 3.086E+04	•078 •070 •146	H/N H/M H/M	4	.000
5075	5	17	52	66	54	68	18+4937	1 2	5	2	4.557E+03 1.988E+04 4.471E+04	.021 .094 .211	M/M M/M M/M	4	.000
5076	5	17	54	68	55	69	6.2917	1	5 3 1	2	-9.025E+03 1.710E+04 1.338E+04	.049 .081 .063	H/H H/H H/H	4	•000
4081	4	7	60	59	57	0	1.2200	з 5.	0000	5	-1.030E+04 6.575E+00 2.527E+00 -2.02	.056 ?7E+01 .136	M/M M/M		
6082	. 6	7	60	59	62	61	3.8354	5.	0000	5	-4.242E-01 1.537E-11 -2.59	•5E+01 •173	M/M		
6083	6	7	62	61	64	63	5.8890	5.	0000	S	-1.249E-01 4.943E-11 -1.22	6E+01 .082	MýM		
6084	6	5	. 64	63	66	65	6.3186	5.	0000	4	2.507E-02 -2.503E-11 -5.01	4E+00 .033	HZM		
6085	6	5	66	65	68	67	3.6772	5.	0000	4	1.218E-02 1.516E-11 -3.23	-002 . 002	MZM		
4086	4	5	68	67	69	0	•4645	5.	0000	2	9.618E+00 -2.281E+00 -1.63	6E+00 +031	MZH		
1041	1	9	60	59	0	0	•4746	•	1000	5	1.717E+02 0. 0.	.057	M/H		
1042	1	9	62	61	- 0	0	1.0174	•	1000	2	9.069E+02 0. 0.	.302	MZM		
1043	1	9	64	63	0	0	1.2735	•	1000	· 5	1.226E+03 0. 0.	.409	MZM		
1044	1	9	66	65	0	0	1.1845	•	1000	5	1.195E+03 0. 0.	.398	M/M		
1045	1	9	68	67	0	0	•7228	•	1000	2	3.163E+02 0. 0.	.105	HZM		

CONDENSED TABLE OF MEMBER OJTPUT DATA

.

 \sim

MICROBUCKLING

8

MEM. NO.	TYPE	MATL.		NODE	s		AREA OR LENGTH	G	AGE	CRIT. LOAD COND.	MAX. STRESS	MAX. Stress Ratio	DES. CONST.	CRIT. Load Cond.	MAX. STRESS RATIO
6091	6	6	60	74	59	73	3.0266	4	4.4500	2	5.788E-02 -1.240E-01 -1.921E+0	.064	H/M		
6092	6	6	62	76	61	75	6.2374	4	••5500	S	1.408E+00 -2.105E+00 -1.462E+0	2 .487	HZM		
6093	6	4	64	78	63	77	7.5231	4	.7000	2	1.853E+00 -2.570E+00 -1.427E+0	.476	M/M		
6094	6	4	66	80	65	79	6.7641	4	4 •8500	5	9.871E-01 -1.425E+00 -7.915E+0	.264	MZM		
6095	6	4	68	82	67	81	4.0342	ž	2.5000	2	7.140E-01 -1.023E+00 -9.106E+0	1.304	MZM		
9093	6	8	64	78	63	77	7.5231		•0100	5	4.644E+01 -6.591E+01 -3.577E+0	3 .072	HZM		
5081	5	18	59	73	57	71	26.9121	1	2	5	-8.115E+03	.044	M/M	2	.000
								2	1	2	-1.715E+04	.093	MZM		
								3	2	S	1.142E+03	.005	MZM		
5082	5	18	61	75	59	73	26.8595	1	3	4	-3.216E+03	.017	M/M	2	.000
								2	1	5	-6.120E+04	.331	N/M		
							•	3	3	S	-3,386E+03	.018	H/M		
5083	5	18	63	77	61	75	26.8015	1	3	5	-2.926E+04	.153	M/M	2	.000
								2	10	5	-4.079E+04	.221	NZM		
								3	3	5	2.861E+04	.135	HZM		
5084	5	17	63	77	65	79	26.7800	1	3	5	2.479E+04	.117	M/M	2	.000
								2	12	2	-4.661E+04	.252	M/M		
								3	3	5	-1.531E+04	.088	MZM		
5085	5	17	65	79	67	81	20.1503	í	9	2	-1.905E+04	.103	M/M	2	.000
								2	1	5	-9.911E+04	.536	MZM		
								3	· 9	2	7.587E+03	.037	MZM		
5086	5	17	67	81	69	83	7.1846	1	10	2	-1.262E+04	.068	MZM	2	.000
								2	1	4	-6.049E+03	.033	M/M		
								3	10	S	9.548E+03	.045	M/H		
5091	5	18	60	74	57	71	26.7815	1	2	S	9 .131E+03	.043	MZN	4	.000
								2	1	2	1.365E+04	.064	MZM		
								3	2	2	2.510E+03	.012	M/M		
5092	5	18	62	76	60	74	26.8190	1	3	4	2.236E+03	.011	MZH	4	.000
								2	1	2	4.777E+04	,225	MZM		-
								3	3	4	-1.900E+03	.010	MZM		

CONDENSED TABLE OF MEMBER OJTPUT DATA

												•		MICROS	UCKLING
MEH. NO.	TYPE	MATL.		NODE	5		AREA OR LENGTH	GA	GE	CRIT. LOAD COND.	MAX. STRESS	MAX. STRESS RATIO	DES. CONST.	CRIT. Load Cond.	MAX. STRESS RATIO
5093	5	18	64	78	62	76	26.7871	1 2 3	3 18 3	5 5 5	2.599E+04 2.755E+04 -2.546E+04	.127 .130 .138	M/M M/M M/M	4	.000
5094	5	17	64	78	66	80	26.77A2	1 2 3	3 14 3	2 2 2	-2.207E+04 3.586E+04 1.343E+04	.119 .169 .063	M/N M/N M/M	4	•000
5095	5	17	66	80	68	82	20.1014	1 2 3	8 1 8	5	1.935E+04 8.154E+04 -7.771E+03	.091 .385 .042	M/M M/M M/M	4	.000
5096	5	17	68	82	69	83	6.8387	1 2 3	8 1 8	5 5 5	1.721E+04 2.941E+04 #8.883E+03	.081 .139 .048	M/M M/M M/M	4	.000
4101	4	7	74	73	71	0	1.4317	5	.0000	2	6.093E+00 5.860E+00 -1.833E+01	.123	· M/M		
6102	6	7	74	73	76	75	4.5011	5	0000	2	-3.149E-01 -1.583E-11 -1.927E+01	•128	M./M		
6103	6	7	76	75	78	77	6.9112	5	0000	2	-1.588E-01 -4.161E-11 -1.558E+01	•104	M/M		
6104	6	5	78	77	80	79	7.4153	5.	0000	4	1.234E-02 -3.268E-11 -2.469E+00	•016	MZM		
6105	6	5	80	79	82	81	4.3154	5.	0000	S	-3.779E-01 8.185E-12 1.003E+01	.067	MZM		
4106	4	5	82	81	83	0	•5451	5.	0000	2	1.191E+01 -1.483E+00 -9.173E-01	•034	MZM		
1051	1	9	74	73	0	0	•5141	•	1000	2	1.207E+02 0. 0.	.040	MZM		
1052	1	9	76	75	0	0	1.1025		1000	5	9.357E+02 0. 0.	.312	HZM		
1053	1	9	78	77	0	0	1.3796		1000	2	1.341E+03 0. 0.	. 447	HZM		
1054	1	9	80	79	0	0	1.2832		1000	5.	1.452E+03 0. 0.	484	мим		
1055	1	9	82	81	0	0	•7830		1000	2	3•772E+02 0. 0.	126	4 / H =		
6111	6	6	74	88	73	87	3.2687	4.	8000	2	6-321F-02 -1-354F+01 -2 0975+01	070	ылы		
6112	6	6	76,	90	75	89	6.7362	4 -	9000			.070			
6113	6	4	78	92	77	Q 1	8 12/8			2		.403	M/M		
6114	6	4	80	۰ <i>۲</i>	70	21 02	3 2050		0500	2	2+03/L+00 =2+935t+00 =1+569E+02	•523	M/M		
0117	v	4	00	74	19	23	1.3050	5.	2500 .	S	1+304E+00 -1+882E+00 -1+046E+02	• 349	M/M		

CONDENSED TABLE OF HE4BER OJTPUT DATA

• :: •

MICROBUCKLING

MEM. NO.	ТҮРЕ	MATL.		NODE	S		AREA OR LENGTH	GA	GE	CRIT. LOAD COND.	MAX. STRESS	MAX. STRESS RATIO	DES. CONST.	CRIT. LOAD COND.	MAX. STRESS RATIO
6115	6	4	82	96	81	95	4.3568	2		2	6.924E-01 -9.925E-01 -8.832E+0	.294	MZH		
9113	6	8	78	92	77	91	8.1248		•0100	s	5.105E+01 -7.355E+01 -3.931E+0	3.079	MZM		
5101	5	18	73	87	71	85	29.0646	1	2	2	-7,9275+03	.043	M Z M	2	. 000
								2	1	2	-1.744F+04	.094	MZH	-	
								3	2	S	3+192E+03	.015	M/H		
5102	5	18	75	89	73	87	29.0077	1	3	4	-3.594E+03	.019	MZM	2	.000
								2	1	S	-7.047E+04	.381	MZM		
								3	3	4	2.440E+03	.012	MZH		
5103	5	18	77	91	75	89	28.9451	1	2	S	-5.219E+04	•585	MZM	2	.000
								2	12	5	-4.281E+04	.231	MZM		
								3	2	5	5.447E+04	.257	MZM		
5104	5	17	77	91	79	93	28.9219	1	2	5	5.038E+04	•538	M / N	2	.000
								5	15	5	-5.429E+04	.293	M/M		
								3	2	Ş	-3+589E+04	.178	M/M		
5105	5	17	79	93	81	95	21.7619	1	12	5	-2*50E+04	.122	M/H	2	.000
								2	1	5	-1+521E+05	.922	M/M		
								3	12	S	6+907E+03	.033	H/N		
5106	5	17	81	95	83	97	7.7593	1	15	5	-1•28BE+04	.070	MZM	2	.000
								2	1	4	-7.445E+03	.040	MZM		
								3	15	5	6+532E+03	.031	M/M		
5111	5	18	74	88	71	85	28.9235	1	2	S	9.536E+03	.045	H/H	4	.000
								5	1	Ś	1.036E+04	.049	M/H		
								3	2	5	5•976E+03	.028	M/H		
5112	5	18	76	90	74	88	28.9640	1	3	2	3.014E+03	.014	MZM	4	.000
								2	1	5	5.078E+04	• 240	MZH		
								3	3	5	-3.622E+03	•020	HZM		
5113	5	18	78	92	76	90	28.9295	1	2	5	5.264E+04	.248	MZM	4	.000
								2	51	2	2.883E+04	.136	M/M		
								3	2	5	- 5 • 197 <u>E</u> * 04	• 281	M/H		
5114	5	17	78	92	80	94	28.92n0	1	2	5	-4+662E+04	.252	MZM	4	.000
								2	18	5	4+158E+04	.196	M/M		
								3	5	5	3.042F+04	.143	M/M		

.

CONDENSED TABLE OF MEMBER OJTPUT DATA

MICROBUCKLING

HEM. NO.	TYPE	MATL.		NOD	ES		AREA OR LENGTH	G	AGE	CRIT. LOAD COND.	MAX. SI	TRESS	MAX. Stress Ratio	DES. CONST.	CRIT. Load Cond.	MAX. STRESS RATIO
5115	5	17	80	94	82	96	21.7091	1	11	2	2•2556	E+04	.106	47H	4	•000
								2	1	2	1.2356	E+05	•583	MZN		
								3	11	2	-6.938	5+03	.037	MZM		
5116	5	17	82	96	83	97	7.3856	1	13	5	1.7188	E+04	.081	MZM	4	.000
								5	1	5	5.1848	+04	245	MZM		
								3	13	5	-6+5536	E+03	.034	MZM		
4121	4	7	88	87	85	0	1.6604	9	5.0000	5	5.563E+00 1.354E	E+01 9.333E+00	.070	H/M		
6122	6	7	88	87	90	89 '	5.2200	ļ	5.0000	5	-3.121E-01 -6.366E	E-12 -1+909E+01	•127	MZM		
6123	6	7	90	89	92	91	8+0150	9	5.0000	5	-2-464E-01 4-184E	-11 -2.417E+01	•161	MZM		
6124	6	5	92	91	94	93	8.5996	ć	5.0000	5	6.602E-02 -1.592F	-11 -1,320E+01	.088	MZH		
6125	6	5	94	93	96	95	5.0046	Ę	5.0000	5	-6.967E-01 -5.048E	E-11 1.848E+01	•123	MZM		
4126	4	5	96	95	97	0	•6322	5	5.0000	5	1.741E+01 -1.588E	E+00 -1.114E+00	• 049	MZM		
1061	ĺ	9	88	87	0	0	+5537		•1000	2	2.083E+01 0.	0.	.007	M/H		
1062	1	9	90	89	0	0	1.1869		.1000	5	9.2906+02 0.	0.	.310	MZM		
1063	1	9	92	91	0	0	1.4857		•1000	S	1.285E+03 0.	0.	.428	MZM		
1064	1	9	94	93	0	0	1.3818		•1000	5	1.451E+03 0.	0.	.484	MZH		
1065	1	9	96	95	0	0	•8432		•1000	5	5.460E+02 0.	0.	.182	M/M		
6131	6	6	88	102	87	101	· 3•5108	5	5•2000	2	6.364E-02 -1.364F	-01 -2.111E+01	•070	H/H		
6132	6	6	90	104	89	103	7.2351	5	5•3000	?	1.283E+00 -1.919E	+00 -1.333E+02	.444	M/M		
6133	6	4	92	106	91	105	8.7265	5	5.4500	S	2+053E+00 -2+958E	+00 -1.581E+02	.527	MZM		
6134	6	4	94	108	93	107	7.8460	Ģ	5.6500	5	1.634E+00 -2.358E	+00 -1,310E+02	.437	MZM		
6135	6	4	96	110	95	109	4.6795	2	9000	5	7.840E-01 -1.124E	+00 -1.000E+02	• 333	M/M		
9133	6	8	92	106	91	105	8.7265		•0100	2	5.144E+01 -7.412E	+01 -3.962E+03	.079	MZM		
5121	5	18	87	101	85	99	31.2170	1	1	5	-1.333E	+04	.072	M/M	2	.000
								2	1	5	-7.964E	+03	.043	MZH		
								3	1	2	8•486E	+03	.040	M/M		

CONDENSED TABLE OF MEMBER OJTPUT DATA

MICROBUCKLING

MEM. NO.	TYPE	MATL.		NODE	S		AREA OR LENGTH	G۵	GE	CRIT. LOAD COND.	MAX. STRESS	MAX STRE RAT	SS DES. IO CONST.	CRIT. Load Cond.	MAX. STRESS RATIO
5122	5	18	89	103	87	101	31.1559	1	2	2	-8.209F+03	.0	44 M/M	2	.000
						-		ž	ĩ	2	-6.104F+04	1	30 MZM	-	
								3	ż	Š	5+855E+03	.0	28 M/M		
5123	5	18	91	105	89	103	31.0887	1	2	2	-7.509E+04	.4	06 MŻM	2	.000
								2	12	2	-4+511E+04	.2	44 M/M	-	
								3	2	5	7.675E+04	• 3	62 M/M		
5124	5	17	91	105	93	107	31.0637	1	2	S	8.500E+04	•4	06 M/M	2	.000
								2	18	5	-6.354E+04	_3	43 M/M		
								3	2	5	-4.948E+04	.2	67 H/H		
5125	5	17	93	107	95	109	23.3736	1	14	5	-2.773E+04	.1	50 M/M	2	.000
								2	2	5	-1.199E+05	• 5	48 M/M		
								3	14	5	1.170E+04	•0	55 M/M		
5126	5	17	95	109	97	111	8.3339	1	20	5	-1.191E+04	•0	64 N/M	2	.000
							•	2	1	5	-1.439E+04	· • 0	78 M/H		
								3	20	5	3.488E+03	· • 0	16 M/N		
5131	5	18	88	102	85	99	. 31.0655	1	1	S	6.030E+03	•0	28 M/M	4	.000
								2	1	5	1.062E+04	•0	50 M/M		
•								3	1	5	7.458E+03	•0	35 M/M		
5132	5	18	90	104	88	102	31.1090	1	2	S	1.259E+04	•0	59 M/M	4	.000
								2	1	5	4.027E+04	•1	90 M/M		
								3	2	5	-8.512E+03	•0	46 M/H		
5133	5	18	92	106	90	104	31.0719	1	2	S	7+953E+04	.3	70 M/M	4	.000
								2	23	5	2.756E+04	•1	30 M/M		
								3	2	S	-7+572E+04	• 4	25 M/M		
5134	5	17	92	106	94	108	31.0617	1	2	5	-8+478E+04	•4	58 M/M	4	.000
								2	53	5	4•701E+04	•2	22 . M/M		
							-	3	2	5	4.472E+04	•5	11 M/M		
5135	5	17	94	108	96	110	23.3168	1	13	5.	2.744E+04	.1	29 M/M	4	.000
								2	2	S	9+593E+04	• 4	52 M/M		
								3	13	5	-1.066E+04	•0	58 M/M		
5136	5	17	96	110	97	111	7.9326	1	17	2	1.890E+04	• 0	89 M/M	4	.000
								2	, 1	٢.	5.10/2+04	• 2	44 M/M		
								د	17	2	-3,306E+03	• 0	18 M/M		
4141	4	7	102	101	99	0	1.9061	5	.0000	4	-6.675E-01 1.571E+00	8.104E+00 .0	54 M/M		

CONDENSED TABLE OF MEMBER OUTPUT DATA

MICROBUCKLING

ħ

MEM. NO.	ΤΥΡΕ	MATL.		NOD	ES		AREA OR LENGTH	GA	GE	CRIT. LOAD COND.		MAX. STRES	5	MAX. Stress Ratio	DES. CONST.	CRIT. LOAD COND.	MAX. Stress Ratio
6142	6	7	102	101	104	103	5.9921	5	•0000	5	-2.039E-01	-1.364E-12	-1.248E+01	.083	HZM		
6143	6	7	104	103	106	105	9.2007	5	.0000	5	6.447E-02	5.286E-12	6.326E+00	.042	MZM	•	
6144	6	13	106	105	108	107	9+8718	5	•0000	5	8.474E-02	-5.116E-11	-1,695 <u>F</u> +01	.075	HZH		
6145	6	13	108	107	110	109	5.7450	5	.0000	5	1.287E+00	-6.048E-11	-3.414E+01.	.152	M / M		
4146	4	13	110	109	111	0	•7257	5	.0000	4	2+652E+00	-3+529E+00	-9.873E+00	.045	MZM		
1071	1	9	102	101	0	0	•5932		.1000	2	1+580E+02	0.	0.	.053	H/H		
1072	1	9	104	103	0	0	1.2717		.1000	5	1+086E+03	0.	0.	• 362	M/M		
1073	1	9	106	105	0	0	1+5918		1000	5	1+406E+03	0•	0.	•469	MZM		
1074	1	9	108	107	0	0	1.4805		1000	S	1.157E+03	0.	0.	.386	MZM		
1075	1	9	110	109	0	0	•9034		1000	S	-2.586E+02	0.	0.	.086	MZM		
6151	6	6	102	116	101	115	3.7528	5.	5000	5	1.302E-01	-2.790E-01	-4.320E+01	.144	MZM		
6152	6	6	104	118	103	117	7.7340	5.	6000	2	1.543E+00	-2.309E+00	-1.602E+02	• 534	MZH		
6153	6	12	106	120	105	119	9.3282	5.	8000	S	1.392E+00	-2.005E+00	-1.072E+02	•252	MZM		
6154	6	15	108	155	107	151	8.3870	6.	0000	2	1•419E+00	-2.048E+00	-1+138E+02	•268	MZN		
6155	6	12	110	124	109	123	5.0021	3.	1000	S	2.862E-01	-4+102E-01	-3+650E+01	• 086	MZM		
9153	6	8	106	120	105	119	9.3282	•	0100	2	2.656E+02	-3.8276+02	-2.0455+04	.409	MZM		
5141	5	18	101.	115	99	113	33.3694	1 2 3	1 1 1	, 5 5 5		-1.303E+04 -9.202E+03 -5.192E+03		.070 .050 .028	M/M M/M M/M	2	.000
5142	5	18	103	117	101	115	33.3041	1 2 3	1 1 1	2 2 2		-1.305E+04 -4.363E+04 -4.932E+03		.071 .236 .027	MZM MZM MZM	2	•000
5143	5	18	105	119	103	117	33•5353	1 2 3	2 12 2	5 5 5		-9.528E+04 -4.188E+04 8.692F+04		•520 •226	H/H H/M H/M	2	.000

CONDENSED TABLE OF MEMBER OJTPUT DATA

١

· 4

· . (

(

1

(

Ç

MICROBUCKLING

MEM. NO.	ΤΥΡΕ	MATL.	NODES	AREA OR LENGTH	C	GAGE	CRIT. LOAD COND.	MAX. STRESS	MAX. STRESS Ratio	DES. CONST.	CRIT. Load Cond.	MAX. STRESS RATIO
5144	5	17	105 119 107 121	33.2056	1	2	2	1.179E+05	.556	HŻH	2	.000
					2	25	5	-5,790E+04	.313	MZM		
					3	2	S	-8+193E+04	.443	H/M		
5145	5	17	107 121 109 123	24.9852	1	15	2	-2.963E+04	.155	MZM	2	.000
					2	8	2	-5.747E+04	.311	M/M		
					3	15	5	1.534E+04	.077	M/M		
5146	5	17	109 123 111 125	8.9085	1	30	5	-1.384E+04	.075	M/M	2	.000
					2	3	4	-3.589E+03	.020	MZM		-
					3	30	5	8+493E+03	.040	MZM		
5151	5	18	102 116 99 113	33.2075	1	1	5	8+207E+03	.039	MZM	4	.000
					2	1	5	2.339E+04	.110	MZM		
					3	1	5	9+530E+03	.044	MŽM		
5152	5	18	104 118 102 116	33.2540	1	1	4	7.435E+03	.035	N/M	4	.000
					2	1	5	3.366E+04	159	MZM		
					3	1	5	-2.400E+03	.013	M/M		
5153	5	18	106 120 104 118	33.2144	1	2	S	1.0165+05	.479	47M	4	.000
	-				2	25	5	2+533E+04	.119	MZM		
					3	2	· 5	-9.656E+04	.522	MZM		
5154	5	17	106 120 108 122	33.2034	1	2	2	-1.131E+05	.611	M/M	4	-000
					2	27	5	4.975E+04	.235	HZH		
					3	2	5	7.202E+04	.340	H/H		
5155	5	17	108 122 110 124	24.9245	1	14	2	3+313E+04	.156	MŻM	4	.000
					2	8	5	4.773E+04	.225	MZM		
					3	14	5	→1 •576E+04	•085	H/M		
5156	5	17	110 124 111 125	8.4795	1	19	S	2.240E+04	.106	H/M	4	.000
					2	2	S	1.056E+04	.050	MZM		-
					3	19	5	-6.788E+03	.037	M/M		
4161	4	7	116 115 113 0	2.1686		5.0000	2	2.910E+00 -4.310E+00 4.350E+01	.291	MZM	,	
6162	[•] 6	7	116 115 118 117	6.8176		5.0000	4	-4.580E-02 2.558E-12 -2.802E+00	.019	M/M		
6163	6	7	118 117 120 119	10.4680		5.0000	2	-3.974E-01 9.550E-12 -3.899E+01	•260	MZM		
6164	6	13	120 119 122 121	11.2316		5.0000	5	2.085E-01 -5.912E-12 -4.171E+01	.185	МИМ		
6165	6	13	122 121 124 123	6.5363		5.0000	2	1.557E+00 1.182E-11 -4.131E+01	•184	47M		

.`)

'n

Ξì

CONDENSED TABLE OF MEMBER OUTPUT DATA

.

																MICROB	JCKLING
MEM. NO.	TYPE	MATL.		NODI	ES		AREA OR LENGTH	(GAGE	CRIT. LOAD COND.		MAX. STRES	s ·	MAX. STRESS RATIO	DES. CONST.	CRIT. Load Cond.	MAX. STRESS RATIO
4166	4	13	124	123	125	0	.8257		5.0000	2	-8+981E-01	6.305E+00	1,329E+01	.060	MZM		
1081	1	9	116	115	0	0	.6327		.1000	2	1,352E+02	0.	0.	.045	M/M		
1082	1	9	118	117	0	0	1+3564		•1000	S	1.228E+03	0.	0.	.409	- M/N		
1083-	1	9	120	119	0	0	1.6978		•1000	5	1.587E+03	0.	0.	.529	MZM		دن
1084	1	9	155	121	0	0	1.5792		•1000	5	1.424E+03	0.	0.	.475	MZM		
1085	1	9	124	123	0	0	• 96 36		•1000	5	-6.851E+01	0.	0.	.023	M/M		
6171	6	6	116	130	115	129	3.9949		5.8000	2	2.353E-01	-5.042E-01	-7.807E+01	•260	MZM		
6172	6	6	118	135	117	131	8.2328		6.0000	S	1+169E+00	-1.749E+00	-1.214E+02	.405	MZM		
6173	6	12	120	134	119	133	9.9299		6.2000	2	1•519E+00	-2+189E+00	-1+170E+02	.275	M/M		
6174	6	12	122	136	121	135	8.9280		6.4500	2	1.531E+00	-2.210E+00	-1.228E+02	• 289	M/M		
6175	6	15	124	138	153	137	5+3248		3+3000	5	2.628E-01	-3.766E-01	-3.352E+01	• 079	M/M		
9173	6	8	120	134	119	133	9.9299		• 01 0 0	5	2.899E+02	-4+177E+02	-2.232E+04	• 446	M/M		
5161	5	18	115	129	113	127	35.5219	1 2 3	1 1 1	5 5 5		8.306F+03 -1.269E+04 -3.114E+04		.039 .069 .168	M/M M/M M/M	2	.000
5162	5	18	117	131	115	129	35.4524	1 2 3	1 1 1	2		-2.220E+04 -4.381E+04 -4.997E+04		.120 .237 .270	M/M M/M M/M	2	•000
5163	5	18	119	133	117	131	35.3759	1 2 3	2 6 2	5 5 5		-1.052E+05 -5.601E+04 5.650E+04		• 568 • 303 • 266	M/M M/M M/M	5	•000
5164	5	17	119	133	121	135	35.3475	1 2 3	3 26 3	5 5 5		6.834E+04 -6.239E+04 -1.120E+05		• 322 • 337 • 506	M / M M / M M / M	2	•000
5165	5	17	121	135	123	137	26.5968	1 2 3	15 13 15	5 5 5		-3.619E+04 -5.275E+04 1.942E+04		.196 .285 .087	M / M M / M M / M	2	•000

CONDENSED TABLE OF MEMBER OJTPUT DATA

•

C

(

(

MI	CRO	BUCKL	ING
----	-----	-------	-----

MEM. NO.	TYPE	MATL.		NOD	ES		AREA OR LENGTH	C	GAGE	CRIT. LOAD COND.	MAX. STRESS	MAX. STRESS RATIO	DES. CONST.	CRIT. Load Cond.	MAX. STRESS RATIO
5166	5	17	123	137	125	139	9.4831	1	41	2	-1-1645+04	063	M 2 M	2	000
							-	2	3	Ž	-2-5418+04	.143		۲.	.000
								3	41	S	1.032E+04	.049	MZM		
5171	F	10	114	1-0		127			_	_					
5171	5	18	110	130	113	127	35.3495	1	1	S	-9.943F+03	.054	M/M	4	.000
								2	1	2	2.240E+04	.106	MZM		
								3	1	2	2•710E+04	,128	M/H		
5172	5	18	118	132	116	130	35.3990	1	1	2	1.921F+04	. 086	MŻM	4	000
								5	1	5	6.376F+04	.301	MZM	-	.000
								3	1	2	4.3765+04	.206	MZM		
C 1 7 3	F														
5173	5	18	120	134	118	132	35.3568	1	1	5	1.548F+05	.777	MZM	4	.000
								2	5	2	6.277E+04	•596	MZM		
								3	1	2	-7.548E+04	.408	M/M		
5174	5	17	120	134	122	136	35.3451	1	2	2	-8.8905+04	481	M ZH		000
								2	28	2	6-0105+04	283	M /M	4	•000
								3	2	2	1-9906+05	.891	M ZM		
	-								-	-		1371			
5175	୍ର	17	122	136	124	138	26.5322	1	14	5	3.532E+04	.167	M/M	4	.000
								2	10	2	5.901E+04	.278	MZM		• • • •
								3	14	5	+2,110E+04	.114	M/M		
5176	5	17	124	138	125	139	9-0265	,	20		2 6325+04	124	NA		
		•				/	/***2()5	2	20	2	2 1475+04	.124	M /M	4	•000
								2	20	2	2017/CTU4 =1.3136404	• 1 0 1			
										E.	1+3131+04		M 2 M		
4181	4	7	130	129	127	0	2.4491		5.0000	5	2.852E+00 -2.517E+00 1.237E+01	.083	HZH		
6182	6	7	130	129	132	131	7.6962		5.0000	5	-1.408E+00 -3.538E-12 -8.613E+01	.574	MZM		
6183	6	7	132	131	134	133	11,8172		5.0000	2	-5.3925-01 0.0055-12 -5.2005-01	252			
		-	• · -						3.0000	۲.	-J•J•Z=01 9•093E=13 -J•290E+01	• • • • • • •	M/M		
6184	6	13	134	133	136	135	12.6791		5.0000	5	3.3758-01 -4.5478-12 -6.7508+01	.300	M/M		
6185	6	13	136	135	138	137	7.3787		5.0000	2	5.337E+00 1.919E-12 -1.416E+02	.629	MZN		
4196	4	12	120	127	1 20	•	• 7 - 1			_	· · · · · · · · · · · · · · · · · · ·	• = ·			
4100	4	13	128	137	138	U	•9321		5.0000	S	4.762E+01 1.271E+01 -2.468E+01	•135	MZM		
1091	1	9	130	129	0	0	•6723		•1000	S	1•139E+02 0• 0•	.038	MZM		
1092	1	9	132	131	0	0	1.4412		.1000	Ş	1.057E+03 0. 0.	.352	MZM		
1093	1	9	134	133	0	0	1.8039		.1000	S	2.2316+03 0. 0.	.744	MZM		

CONDENSED TABLE OF MÉMBER OJTPUT DATA

MICROBUCKLING

٩,

 $\overline{}$

)

.)

)

')

÷.

ME.M. NO.	TYPE	MATL.		NODE	ES		AREA OR LENGTH	GA	AGE	CRIT. LOAD COND.		MAX. STRESS	5	MAX. STRESS RATIO	DES. CONST.	CRIT. Load Cond.	MAX. Stress Ratio
1094	1	9	136	135	0	0	1.6779		•1000	5	2+435E+03	0•	0.	•915	HZH -		
1095	1	9	138	137	0	0	1.0238		•1000	5	9+309E+02	0.	0.	.310	H/H		
6191	6	6	130	144	129	143	4.4552	e	5.2000	2	-1.369E-01	2.933E+01	4.541E+01	.151	мин		
6192	6	6	132	148	131	147	10.5379	e	5.4500	5	1+127E+00	-1+585E+00	-1.171E+02	.390	нин		
6193	6	12	134	152	133	151	12.7101	e	5.6000	2	1.593E+00	-2.295E+00	-1.227E+02	.289	M.Z.H		
6194	6	12	136	156	135	155	11.4277	e	5.9000	5	1+986E+00	~ 2•966E+00	-1,592E+02	.375	M.Z.M		
6195	6	12	138	158	137	157	6.8156		3•5000	2	6•184E-01	-8+863E-01	-7.887E+01	.186	HZH		
9193	6	8	134	152	133	151	12.7101		•0100	5	3•040E+02	-4+379E+02	-2.341E+04	.468	H.ZM		
5181	5	18	129	143	127	141	36.7002	1 2 3	1 1 1	4 2 4		-2.647E.03 -1.138E.03 3.701E.03		.014 .006 .017	M/H M/M M/M	2	.000
5182	. 5	18	131	147	129	143	42.4456	1 2 3	1 1 1	5 5 5		-2.477E+04 -5.879E+04 -5.500E+04		134 318 303	M/M M/M M/M	2	.000
5183	5	18	133	151	131	147	45.2806	1 2 3	1 2 2	5 5 5		-1.231E+05 -1.096E+05 -3.740E+03		•566 •593 •020	M/M M/M M/M	2	•000
5184	5	17	133	151	135	155	45.2442	1 2 3	3 28 3	5 5 5		2.865E+04 -6.052E+04 -1.447E+05		.135 .327 .782	N/M N/M N/M	2	•000
5185	5	17	135	155	137	157	34.0435	1 2 3	12 21 12	5 5 5		-4.115E+04 -5.505E+04 1.007E+04		.222 .303 .048	M/M M/M M/M	2	•000
5186	5	17	137	157	139	159	12.1383	1 2 3	43 3 43	5 5 5		-2.792E+04 -5.227E+04 6.985E+03		•151 •283 •032	M/M M/M M/M	2	•000
5191	5	18	130	144	127	141	36+5271	1 2 3	1	5		3.222E+03 2.975E+03 -2.346E+03		.015 .014	M/M M/M M/H	4	.000

3

, ·

.

MICROBUCKLING

CONDENSED TABLE OF MEMBER OJTPUT DATA

MEM. NO.	TYPE	MATL.		NOD	ES		AREA OR . LENGTH	G	AGE	CRIT. LOAD COND.	MAX. STRESS	MAX. STRESS RATIO	DES. CONST.	CRIT. LOAD COND.	MAX. STRESS RATIO
5192	5	18	132	148	130	144	42.3818	1 2	1	5	2.582E+04 7.220E+04	.122	M/M M/M	4	.000
								3	1	5	5.923E+04	279	M/M		
5193	5	18	134	152	132	148	45.2562	1	S	5	1+196E+05	.564	MZM	4	.000
								3	2	2	1+300E+05 +2-249E+03	.613	MZM		
c10/	E	1-	17/	150	1.74	164		_	_	••		••••	- 1		
5174	5	17	134	152	170	120	45.2412	1	2	2	-4.924E+04	•266	M/M	4	.000
								3	20	2	5+042F+04 1-816F+05	-269 857	MZM		
5105	-							•	~	-	10310[+05	• 55 F	M / M	,	
2142	5	17	136	120	138	158	33.9608	1	11	S	3.487E+04	.164	MZM	4	.000
								2	11	2	6+902E+04	.326	MZM		
	_							5		E.	-0.3422+03	•035	MZM		
5196	5	17	138	158	139	159	11.5538	1	55	S	6.106E+04	.288	MZM	2	.000
								2	4	S .	-8.713E+03	.047	MZM		• • • •
								3	55	5	-2.529E+04	.137	M/M		
4201	4	11	144	143	141	0	2.5617		•0800	?	6.455E+01 1.110E+02 2.848E+0	1 .002	MZM		
6505	6	11	144	143	146	145	6.0887		•0800	S	2.867E+01 -2.619E-10 1.448E+0	3 .037	MŽM		
6203	6	11	146	145	148	147	2.2958		•0800	4	3.863E+01 1.455E-11 3.611E+0	3 .093	MZM		
6204	6	11	148	147	150	149	9+0880		•0800	S	-1.522E+02 -2.328E-10 -1.321E+0	4 .339	MZM		
6205	6	11	150	149	152	151	4.6713		•0800	5	-5.527E+01 5.921E-11 -7.548E+0	3 .194	MZM		
6206	6	11	152	151	154	153	11.1087		•0800	5	5.683E+01 4.657E-10 -2.831E+0	.726	MZM		
6207	6	11	154	153	156	155	3.6445		•0800	5	1.822E+02 -2.910E-11 -1.320E+0	4 .339	MZM		
6208	6	11	156	155	158	157	8.4570		•0800	S	1.290E+03 03.422E+0	4 .978	H/M		
4209	4	11	158	157	159	0	1.0683	·	•0800	5	2.035E+04 1.934E+04 2.278E+0	4 .656	MZM	ı	
4211	4	11	157	165	155	0	1.5680		•0800	5	6.219E+03 5.127E+03 7.862E+0	.220	MZM		
6212	6	11	157	165	159	163	1.7409		.0900	5	-1.227E+04 9.313E-10 3.350E+0	4 .985	Чим		
6213	6	11	164	163	162	161	13.6885		.0800	5	0• 0• - 6•764E+0	.173	MZH		
6214	6	· 11	158	166	159	164	1.0893		•0966	5	7.975E+03 -9.313E-10 -4.066E+0	+ 1.050	STR		

CONDENSED TABLE OF MEMBER OJTPUT DATA

.

MICROBUCKLING

2

MEM. NO.	TYPE	MATL.		NODE	S		AREA OR LENGTH	GAGE	CRIT. LOAD COND.		MAX. STR	ESS	MAX. STRESS RATIO	DES. CONST.	CRIT. MAX. Load Stress Cond. Ratio
4215	4	11	158	166	156	0	1.0750	.0800	S	1.659E+04	1.176E+	03 -1.794E+04	.522	MZM	
1101	1	9	144	143	0	0	.7138	.1000	4	4.347E+00	0.	0.	.001	MZM	
1102	1	11	146	145	0	0	1.4016	•0800	4	3+209E+03	0.	0.	.049	M/M	
1103	1	9	148	147	0	0	1.5429	•1000	2	7.535E+02	0.	0.	.251	MŻM	
1104	1	11	150	149	0	0	1.8638	•0800	2	3•554E+03	0.	0.	.055	MZM	
1105	1	9	152	151	0	0	1.9313	.1000	2	1.974E+03	0.	0.	.658	MZM	
1106	1	11	154	153	0	0	1.8873	.0800	2	1.693E+04	0.	٥.	. 560	HZH	
1107	1	9	156	155	0	0	1.7963	•1000	5	4.755E+02	0.	0.	,159	MZM	
1108	1	11	158	157	0	0	1.0961	•0800	2	1.430E+04	0.	0.	•550	MZM	
1201	1	11	157	165	0	0	•5363	•0800	5	4.527E+03	0.	0.	.070	MZM	
1202	1	11	159	163	0	0	1.2500	•0800	2	-1.575E+04	0.	٥.	• 276	M/M	
1203	1	11	162	161	0	0	2.0000	•0800	2	6.764E+03	0.	٥.	.104	MZM	
1204	1	11	159	164	0	0	.75n0	.0800	2	1.578E+04	0.	0.	.243	M/H	
1205	1	11	158	166	Q	0	•3676	•0800	5	1.620E+04	0.	0.	.249	MZH	
1301	1	11	141	143	0	0	7.2037	.0800	2	8.281E+01	0.	0.	.001	M/M	
1302	1	11	143	145	0	0	5.7706	•0800	4	-3+158E+03	0•	0.	.055	M/M	
1303	1	11	145	147	0	0	1.5614	.0800	2	5•563E+03	0.	0.	.086	MZH	
1304	1	11	147	149	0	0	5.3387	.0800	5	1.878E+02	0.	0.	.003	MZM	
1305	1	11	149	151	0	0	2.4621	.0800	2	-4.436E+04	0.	0.	.778	MZM	
1306	1	11	151	153	0	0	5.8183	.0800	5	2•447E+04	0.	0.	.377	MZM	
1307	1	11	153	155	0	0	1.9796	.0976	2	-5.821E+04	0.	0.	1.021	STR	
1308	1	11	155	5 157	0	0	5.8658	•0800	5	4.719E+03	0.	0.	.073	МУМ	
1309	1	11	157	159	0	0	2.0758	•0800	S	-7.626E+03	0.	0.	.134	M/M	

CONDENSED TABLE OF MEMBER OUTPUT DATA

.

MICROBUCKLING

۰.

.

 $\overline{}$

- ?

)

;

MEM. NO.	TYPE	MATL.		NODES	5		AREA OR LENGTH	GAGE	CRIT. LOAD COND.		Max.	STRESS		MAX. STRESS RATIO	DES. CONST.	CRIT. Load Cond.	MAX. STRESS RATIO
1311	1	11	141	144	0	0	7.1786	•0800	S	9+073E+01	0.	0.	٠	.001	M/M		
1312	1	11	144	146	0	0	5.7638	.0800	2	-2.650F+03	0.	0.		.046	H/M		
1313	1	11	146	148	0	0	1.5606	•0800	S	-4.795E+03	0.	0.		.084	M/H		
1314	1	11	148	150	0	0	5,3368	.0800	2	-1.117E+03	0.	0.		.020	M / M		
1315	1	11	150	152	0	0	2.4619	.0800	2	4.343E+04	0.	0.		.568	MZM		
1316	1	Ц	152	154	0	0	5.8183	•0800	5	~3•290E+04	0.	0.		.577	MŹM		
1317	1	11	154	156	0	0	1.9790	•0800	5	6.253E+04	0.	0.		•962	MZM		
1318	1	11	156	158	0	0	5.8527	•0800	5	-6.219E+03	0.	· 0.		.109	HZM		
1319,	1	11	158	159	0	0	1.9864	•0800	2	2.317E+04	0.	0.		. 356	MZM		
1401	1	11	155	165	0	0	5.8482	•0800	2	2+803E+03	0.	0.		.043	MZM		
1402	1	11	165	163	0	0	1.9493	•0800	2	1.364E+04	0.	0.		.210	ним		
1403	1	11	163	161	0	0	6.8443	.0800	2	2.315E+04	0.	0.		. 356	M.2M		
1404	1	11	164	162	0	0	6.8443	.0800	5	-2.315E+04	0.	0.		.406	HZM		
1405	1	11	166	164	0	0	1.9493	•0800	2	1•533E+03	0.	0.		.024	M/M		
1406	1 NO	11 RMAL ENG	156 D 0F	166 PROBL	0 .EM	0	5.8491	•0800	5	-3.247E+03	0.	0.		.057	M / M		

.;

LIST OF OVERSTRESSED MEMBERS

6214 1307

.

•
• •

١.

 $\overline{}$

)

SUMMARY OF FINAL MEMBER GAGES AND WEIGHTS

MEMBER	GAGE		WEIGHT	MEMBER			GAG	E			WEIGHT				
4301		1.0	0000	0E-0	2		3.091468E-04	6302		1.0	0000	0E-07	2		9.718792E-04
6303		1.0	0000	0E-0	2		1.492275E-03	6304		1.0	0000	0E-0	2		1.601122E-03
6305		1.0	0000	0E-0	2		9.317876E-04	4306		1.0	0000	0E-0	2		1.177012E-04
4001		2.5	0000	0E+0	0		1.572852E-03	6002 ·		2.5	0000	0E+0	0		4.944648E-03
6003		2.5	0000	0E+0	0		7.592278E-03	6004		2.5	0000	02+0	0		8.146058E-03
6005		2.5	0000	0E+0	0 .		4.740674E-03	4006		2.5	0000	0E+0	0		5.988305E-04
1001		1.0	0000	0E-0	1		4.113603E-02	1002		1.0	0000	0E-0	1		8.818524E-02
1003		1.0	0000	0E-0	1		1.103816E-01	1004		1.0	0000	0E-0	ı [.]		1.026687E-01
1005	1.00000E-01						6.264674E-02	6011		3.0	0000	0E+0	D		7.163034E-03
6012	3.100000E+00						1.525390E-02	6013		3.2	0000	05+0	0		1.899169E-02
6014	3.300000E+00						1.760917E-02	6015		1.7	0000	0E+0	D		5.410295E-03
9013		1.0	0000	0E-0	2		2.916288E-03	5001	2	· 1	2	0	0	0	2.608091E-02
5002	3	1	3	0	0	0	3.644181E-02	5003	З	2	3	0	0	0	4.155794E-02
5004	2	1	2	0	0	0	2.595286E-02	5005	1	1	1	0	0	0	1.171677E-02
5006	1	1	1	0	0	0	4.177630E-03	5011	2	1	2	0	0	0	2.595436E-02
5012	3	1	3	0	0	0	3.638696E-02	5013	3	4	3	0	0	0	5.191943E-02
5014	2	1	2	0	0	0	2.5951158-02	5015	1	1	1	0	0	0	1.168831E-02
5016	1	1	1	0	0	0	3.976467E-03	4021		5.0	0000	0E+0()		3.980944E-03
6022	5.000000E+00						1.251507E-02	6023		5.0	0000	0E+0()		1.921630E-02
6024	5.000000E+00						2.061793E-02	6025		5.0	0000	0E+0)		1.199879E-02
4026		5.0	0000	0E+0	D		1.515659E-03	1011		1.0	0000	0E-0)	L		4.627610E-02
1012	1.000000E-01				1		9.920417E-02	1013		1.0	0000	0E-01	I		1.241739E-01
1014	1.00000E-01						1.154972E-01	1015		1.0	0000	05-0)	l		7.047455E-02

4

 \sim

SUMMARY OF FINAL MEMBER GAGES AND WEIGHTS

MEMBER	GAGE				WEIGHT	MEMBER			GAG	E			WEIGHT		
6031		3.3	0000	0E+0	0		8.805980E-03	6032		3.4	0000	0E+0	0		1.869761E-02
6033		3.5	0000	0E+0	0		2.321504E-02	6034		3.6	0000	0E+0	0		2.146918E-02
6035		1.9	0000	0E+0(0		6.757931E-03	9033		1.0	0000	05-07	2		3.259254E-03
5021	2	1	5	0	0	0	2.914813E-02	5022	3	1	3	0	0	0	4.072752E-02
5023	3	4	3	0	0	0	5.805665E-02	5024	3	3	3	0	0	0	5.220904E-02
5025	1	1	1	0	0	0	1.309471E-02	5026	1	1	1	0	0	0	4.668937E-03
5031	2	1	2	Ű	0	0	2.900670E-02	5032	З	1	3	0	0	0	4.056521E-02
5033	3	6	3	0	0	0	6.963043E-02	5034	3	3	3	0	0	0	5.220559E-02
5035	1	1	1	0	0	0	1.306290E-02	5036	1	1	1	0	0	0	4.444117E-03
4041		5.000000E+00					4.914398E-03	6042		5.0	0000	0E+00)		1.544962E-02
6043		5.000000E+00 5.000000E+00					2.372217E-02	6044		5.0	0000	0E+00)		2.545246E-02
6045	•	5.0	0000)E+0()		1.481230E-02	4046		5.0	0000	0E+0()		1.871055E-03
1021		1.00	0000)E-01	l		5.141604E-02	1022		1.0	0000	05-01	l		1.102230E-01
1023		1.00	0000)E-01	l		1.379661E-01	1024		1.0	0000	DE-01	L		1.2832596-01
1025		1.00	0000)E-01	l		7.830238E-02	6051		3.7	0000	DE+00)		1.091232E-02
6052		3.80	0000)E+00)		2.309633E-02	6053		3.99	50000	DE+00)		2.895681E-02
6054		4.10	0000)E+00)	1	2.702396E-02	6055		2•10	00000	DE+00)		8.255277E-03
9053		1.00	0000)E-02	2		3.602221E-03	5041	2	1	2	0	0	0	3.221534E-02
5042	3	1	3	0	0	0	4.501322E-02	5043	3	6	3	0	0	0	7.699905E-02
5044	3	6	3	0	0	0	7.693723E-02	5045	3	1	3	0	0	0	3.376950E-02
5046	1	1	1	0	0	0	5.160243E-03	5051	2	1	2	0	0	0	3.205903E-02
5052	3	1	3	0	0	0	4.494546E-02	5053	3	10	3	0	0	0	1.026101E-01
5054	3	6	3	0	0	0	7.693215E-02	5055	2	1	2	0	0	0	2.406248E-02

#

1

SUMMARY OF FINAL MEMBER GAGES AND WEIGHTS

MEMBER			GAG	ε			WEIGHT	MEMBER			GAG	Ε			WEIGHT
5056	ì	1	1	0	0	0	4.911766E-03	4061		5.0	0000	0E+0	0		5.946078E-03
6062		5.0	0000	0E+0	0		1.869299E=02	6063		5.0	0000	0E+0	0		2.870222E-02
6064		5.0	0000	0E+0	0		3.079575E-02	6065		5.0	0000	0E+0	0		1.792187E-02
4066		5.0	0000	0E+0	0		2.263849E-03	1031		1.0	0000	0E-0	1		5.655598E-02
1032		1.0	0000	0E-0	1		1.212419E-01	1033		1.0	0000	0E-0	1		1.517585E-01
1034		1.0	0000	0E-0	1		1.411544E-01	1035		1.0	0000	0E-0	1		8.613020E-02
6071		4.0	0000	0E+0	0		1.292030E-02	6072		4.1	5000	0E+0	0		2.762517E-02
6073		4.3	0000	0E+0	0		3.452388E-02	6074		4.4	5000	0E+0	0		3.212345E-02
6075		2.3	0000	0E+0	0		9.902329E-03	9073		1.0	0000	0E-02	2		3.945191E-03
5061	2	1	2	0	0	0	3.528256E-02	5062	3	1	3	0	0	0	4.929892E-02
5063	3	8	3	0	0	0	9.838516E-02	5064	3	9	3	0	0	0	1.053280E-01
5065	` 6	1	6	0	0	0	6.868586E-02	5066	5	1	5	0	0	0	2.072234E-02
5071	2	1	2	0	0	0	3.511136E-02	5072	3	1	3	0	0	0	4.922471E-02
5073	3	15	3	0	0	0	1.474982E-01	5074	3	10	3	0	0	0	1.123425E-01
5075	5	1	5	0	0	0	5.797763E-02	5076	3	1	3	0	0	0	1.255196E-02
4081		5.0	0000	0E+01	0		7.075999E-03	6082		5.0	0000)E+0(D		2.224515E-02
6083		5.0	0000	0E+0	0		3.415642E-02	6094		5.0	0000	DE+00	0		3.664775E-02
6085		5.0	0000	0E+00	D		2.132749E-02	4086		5.0	0000)E+0(0		2.694037E-03
1041	1.00000E-01				1		6.169605E-02	1042		1.0	00000)E-01	L		1.322608E-01
1043	1.000000E-01						1.655510E-01	1044		1.0	0000)E-01	L		1.539829E-01
1045	1.000000E-01						9.395789E-02	6091		4.4	50000)E+0()		1.562340E-02
6092	4.550000E+00						3.292085E-02	6093		4.7	00000)E+0()		4.101585E-02
6094	4.850000E+00						3.805456E-02	6095		2.5	00000)E+0()		1.169909E-02

PAGE 157

.

)

)

)

SUMMARY OF FINAL MEMBER GAGES AND WEIGHTS

MENBER	GAGE						WEIGHT	MEMBER			GAG	Ξ.			WEIGHT	
9093		1.0	0000	0E-02	2			4.288157E-03	5081	2	1	s	0	0	0	3.834978E-02
5082	3	1	3	0	0	0		5.358462E-02	5093	3	10	3	0	0	0	1.222149E-01
5084	3	12	3	0	0	0		1.373814E-01	5085	9	1	9	0	0	0	1.091140E-01
5086	10	1	10	0	0	0		4.299997E-02	5091	2	1	2	0	0	0	3.816370E-02
5092	3	1	3	0	0	0		5.350396E-02	5093	Э	18	3	0	0	0	1.832236E-01
5094	3	14	3	0	0	0		1.526359E-01	5095	8	1	8	0	0	0	9.739114E-02
5096	8	1	8	0	0	0		3.313334E-02	4101		5.0	0000	DE+0()		8.304132E-03
6102		5.0	0000	0E+0()			2.610611E-02	6103		5.0	0000	0E+00)		4.008473E-02
6104		5.0	0000	0E+00)	•		4.300847E-02	6105		5.0	0000	DE+00)		2.502917E-02
4106		5.0	0000	0E+0()			3.161626E-03	1051		1.0	0000	0E+01	l		6.683599E-02
1052		1.0	0000	0E-01	l			1.432796E-01	1053		1.0	0000	DE-01	l		1.793432E-01
1054	•	1.0	0000	0E-01	l			1.668115E-01	1055		1.0	0000	0E-01	l		1.017857E-01
6111		4.8	0000	0E+0()			1-820005E-02	6112		4.9	0000	DE+00)		3.828877E-02
6113		5.0	5000	0E+00)			4.759494E-02	6114		5.2	50000	DE+00)		4.448771E-02
6115		2.7	0000	0E+00)			1.364557E-02	9113		1.0	00000	DE-02	2		4.631123E-03
5101	2	1	2	0	0	0		4.141700E-02	5102	3	1	3	0	0	0	5.787033E-02
5103	2	12	2	0	0	0		1.319897E-01	5104	5	15	2	0	0	0	1.566119E-01
5105	12	1	12	0	0	0		1.550538E-01	5106	15	1	15	0	0	0	6.855298E-02
5111	2	1	2	0	0	0		4.121604E-02	5112	3	1	3	0	0	0	5.778321E-02
5113	2	21	2	0	0	0	v	2.061227E-01	5114	2	18	2	0	0	0	1.813281E-01
5115	11	1	11	0	0	0		1.423030E-01	5116	13	1	13	0	0	0	5.683239E-02
4121		11 1 11 0 0 0 5.000000E+00				9.630508E-03	6122		5.0	00000)E+00)		3.0275896-02		
6123		11 1 11 0 0 0 5.000000E+00 5.000000E+00						4+648722E=02	6124		5.0	00000)E+00)		4.987796E-02

 \sim

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

SUMMARY OF FINAL MFMBER GAGES AND WEIGHTS

.

ſ.

(

ζ.

MEMBER	GAGE				WEIGHT	MEMBER			GAG	E			WEIGHT		
6125		5.0	0000	0E+0	0		2.902694E-02	- 4126		5.0	0000	0E+00)		3.666615E-03
1061		1.0	0000	0E-0	1		7.197606E-02	1062		1.0	0000	0E-01	ł		1.542986E-01
1063		1.0	0000	0E-0	1		1+931355E-01	1064		1.0	0000	0E-01	1		1.796401E-01
1065		1.0	0000	0E-0	1		1.096135E-01	6131		5.2	0000	0E+0()		2.117690E-02
6132		5.3	0000	0E+0	0		4.448140E-02	6133		5.4	5000	DE+0()		5.516877E-02
6134		5.6	5000	0E+0	D		5.142291E-02	6135		2.9	0000	DE+00)		1.574176E-02
9133		1.0	0000	0E-0;	2		4.974091E-03	5121	1	1	1	0	0	0	2.669053E-02
5122	2	1	2	0	0	0	4.439716E-02	5123	2	12	2	0	0	0	1.417644E-01
5124	2	18	2	0	0	0	1.947696E-01	5125	14	2	14	0	0	0	1.998440E-01
5126	20	1	20	0	0	0	9.738137E-02	5131	1	1	1	0	0	0	2.656102E-02
5132	2	1	2	0	0	0	4.433033E-02	5133	2	53	2	0	0	0	2.390985E-01
5134	` 2	23	2	0	0	0	2.390196E-01	5135	13	2	13	0	0	0	1.860680E-01
5136	17	1	17	0	0	0	7.912751E-02	4141		5.0	0000	DE+00)		1.105511E-02
6142		5.0	0000	0E+0	0		3.475446E-02	6143		5.0	00000	DE+00)		5.336384E-02
6144		5.0	0000	0E+0	0		7.848045E-02	6145		5.0	00000	DE+00)		4.567242E-02
4146		5.0	0000	0E+0(D		5.769232E-03	1071		1.0	00000	05-01	L		7.711613E-02
1072		1.0	0000	0E-0]	l		1.653174E-01	1073		1.0	00000	05-01	L		2.069279E-01
1074		1.0	0000	0E-01	l		1.924648E-01	1075		1.0	0000	DE-01			1.174414E-01
6151		5.5	0000	0E+0()		2.394304E-02	6152		5.6	00000)E+00)		5.023983E-02
6153		5.8	0000	DE+0()		8.602438E-02	6154		6.0	00000)E+00)		8.001222E-02
6155		3.1	00000	DE+0()		2.465551E-02	9153		1.0	00000)E-02	2		5.317057E-03
5141	1	1	1	0	0	0	2.853086E-02	5142	1	1	1	0	0	0	2.847503E-02
5143	2	12	2	0	0	0	1.515392E-01	5144	2	25	2	0	0	0	2.744443E-01

j,

)

)

 $\mathbf{)}$

)

)

)

)

)

)

)

)

)

)

j.

SUMMARY OF FINAL MEMBER GAGES AND WEIGHTS

MEMBER			GAG	E			WEIGHT	MEMBER			GAG	E			WEIGHT
5145	15	8	15	0	0	0	2.705896E-01	5146	30	3	30	0	0	0	1.5995228-01
5151	1	1	1	0	0	0	2.839243E-02	5152	1	1	1	0	0	0	2.843216E-02
5153	2	25	2	Ŏ	0	0	2.745168E-01	5154	2	27	S	0	0	0	2.933521E-01
5155	14	8	14	0	0	0	2.557254E-01	5156	19	2	19	0	0	0	9.666677E-02
4161		5.0	0000	0E+0)		1.257792E-02	6162		5.0	0000	0E+00)		3.954180E-02
6163		5.0	0000	0E+0)		6.071458E-02	6164		5.0	0000	0E+00)		8.929096E-02
6165		5.0	0000	0E+0()		5.196371E-02	4166		5.0	0000	0E+00	•		6.563937E-03
1081		1.0	0000	0E-0:	1		8.225607E-02	1082		1.0	0000	0E-01	l		1.763362E-01
1083		1.0	0000	0E-0	1		2.207201E-01	1084		1.0	0000	0E-01	l		2.052973E-01
1085		1.0	0000	0E-01	l		1.252692E-01	6171		5.8	0000	0E+00)		2.687765E-02
6172		6.0	0000	0E+0)		5.730049E-02	6173		6.2	0000	0E+00)		9.788862E-02
6174		6.4	5000	0E+0	0		9.156123E-02	6175		3.3	0000	0E+00)		2.793915E-02
9173		1.0	0000	0E-0;	2		5.660024E-03	5161	1	1	1	0	0	0	3.037119E-02
5162	1	1	1	0	0	0	3.031176E-02	5163	2	6	2	0	0	0	1.008212E-01
5164	3	26	3	0	0	0	3.223689E-01	5165	15	13	15	0	0	0	3.259439E-01
5166	41	3	41	0	0	0	2.297289E-01	5171	1	1	1	0	0	0	3.022383E-02
5172	1	1	1	0	0	0	3.026613E-02	5173	1	5	1	0	0	0	7.0536828-02
5174	2	28	2	0	0	0	3.223476E-01	5175	14	10	14	0	0	0	2.873439E-01
5176	20	4	20	0	0	0	1.131923E-01	4181		5.0	0000	0E+00)	•	1.419895E-02
6182		5.0	0000	0E+00)		4.463797E-02	6183		5.0	0000	05+00			6.853954E+02
6184		5.0	0000	0E+0()		1.007998E-01	6185		5.0	0000	0E+00)		5.866081E-02
4186		5.0	0000	0E+0()		7.409900E-03	1091		1.0	0000	05-01			8.739601E-02
1092		1.0	0000	0E-0]	1		1.873551E-01	1093		1.0	0000	0E-01			2.345126E-01

SUMMARY OF FINAL MEMBER GAGES AND WEIGHTS

MEMBER			GAG	Ε			WEIGHT	MEMBER			GAG	E			WEIGHT
1094		1.	00000	0E-0	1		2.1812586-01	1095		1.0	0000	05-01	l		1.330970E-01
6191		6.	20000	0E+0	0		3.204156E-02	6192		5.4	5000	0E+0()		7.884457E-02
6193		6.0	50000	0E+0()		1.333796E-01	6194		6.9	0000	0E+00)		1.253735E-01
6195		3.5	50000	0E+0()		3.792906E-02	9193		1.0	0000	0E-02	?		7.244748E-03
5181	1	1	1	0	0	0	3.137863E-02	5182	ì	1	1	0	0	0	3.629103E-02
5183	2	1	2	0	0	0	6.452483E-02	5184	3	28	3	0	0	0	4.384165E-01
5185	12	21	12	0	0	0	4.366081E-01	5186	43	3	43	0	0	0	3.078872E-01
5191	1	1	1	0	0	0	3-122638E-02	5192	1	1	1	0	0	0	3.623640E-02
5193	2	1	2	0	0	0	6.449005E-02	5194	2	30	2	0	0	0	4.383875E-01
5195	11	19	11	0	0	0	3.968323E-01	5196	55	4	22	0	0	0	1.580557E-01
4201		8.0	00000	0E-02	2		2.0493898-02	6202		8.0	0000	0E-02	2		4.870965E-02
6203		8.0	0000	0E-02	2		1.836639E-02	6204		8.0	0000	0E-02	2		7.270368E-02
6205		8.0	00000	0E-02	2		3.737008E-02	6206		8.0	0000	DE-02	2		8.886988E-02
6207		8.0	0000	0E-02	2		2.915560E-02	6208		8.0	0000	0E-02	?		6.765582E-02
4209		8.0	0000	0E-02	2		8.546128E-03	4211		9.0	0000	0E-02	2		1.254399E-02
6212		8.0	00000	0E-02	2		1.392758E-02	6213		9.0	0000	0E-02	2		1.095083E-01
6214		9.0	55530	5E-02	2		1.051740E-02	4215		9.0	0000	0E-02	!		8.599631E-03
1101		1.0	00000	0E-01	l		9.279309E-02	1102		8.0	0000	05-02	2		1.121245E-02
1103		1.0	00000	0E-01	l		2.005778E-01	1104		B.O	0000	0E-02	2		1.491074E-02
1105		1.0	00000	0E-01	l		2.510634E-01	1106		8.0	0000	0E-02	?		1.509851E-02
1107		1.0	00000	0E-01	l		2.335200E-01	1108		8.0	0000	DE-02	2		8.768632E-03
1201		8.0	0000	0E-02	2		4.290192E+03	1202		9.0	00000	DE-02	?		1.000000E-02
1203	8.000000E-02						1.600000E-02	1204		8.0	0000	DE-02	2		6.00000E-03

.

C

÷.

(

C

(

(

PAGE 161

•

)

MEMBER GAGE WEIGHT MEMBER GAGE WEIGHT 1205 8.000000E-02 2.941176E-03 1301 8.0000005-02 5.762994E-02 1302 8.000000E-02 4.616501E-02 1303 8.000000E-02 1.249120E-02 1304 8.000000E-02 4.270954E-02 1305 9.0000005-02 1.969682E-02 1306 8.000000E-02 4.654668E-02 1307 9.7551835-02 1.931152E-02 1308 8.000000E-02 4.692672E-02 1309 8.0000005-02 1.660547E-02 1311 8.000000E-02 5.742844E-02 1312 8.000000E-02 4.611065E-02 1313 8.000000E-02 1.248516E-02 1314 8.000000E-02 4.259476E-02 1315 8.000000E-02 1.969485E-02 1316 8.000000E-02 4.654632E-02 1317 8.000000E-02 1.583191E-02 1318 8.000000E-02 4.682135E-02 1319 8.00000CE-02 1.589117E-02 1401 8.000000E-02 4.678595E-02 1402 8.00000E-02 1.559400E-02 1403 8.000000E-02 5.475414E-02 1404 8.000000E-02 5.475414E-02 1405 8.000000E+02 1.559400E-02 1406 8.000000E-05 4.679316E-02

SUMMARY OF FINAL MEMBER GAGES AND WEIGHTS

TOTAL WEIGHT OF STRUCTURE AT END OF STRESS CONSTRAINT MODE (AFTER 1 CYCLES) = .241308E+02

SOLVE THE EQUATION KS = L * LT. SPLIT THE STIFFNESS MATRIX TO OBTAIN THE STIFFNESS MATRIX LOWER TRIANGLE (L) AND THE TRANSPOSE OF THE STIFFNESS MATRIX LOWER TRIANGLE (LT) BY THE CHOLESKY FACTORIZATION METHOD

LOWER TRIANGLE EXCEEDS STORAGE IN CORE

(

7

)

)

)

)

)

*********************** STEP 3 FROM PROGRAM SBMAIN *********************

SOLVE THE FQUATION L * ZT = T. USING THE DYNAMIC TRANSFORMATION MATRIX INPUT (T) SOLVE FOR THE INTERMEDIATE SOLUTION (ZT) BY THE FORWARD SOLUTION METHOD

REVERSE THE ORDER OF THE STIFFNESS MATRIX LOWER TRIANGLE (LT) TO OBTAIN THE REVERSE STIFFNESS MATRIX LOWER TRIANGLE (LTR) FOR USE IN THE SOLUTION OF LTR * YR = ZTR FOR YR.

REVERSE THE ORDER OF THE INTERMEDIATE SOLUTION (ZT) TO OBTAIN THE REVERSE INTERMEDIATE SOLUTION (ZTR) FOR USE IN THE SOLUTION OF LTR + yr = ZTR FOR yr.

SOLVE LTR * YR = ZTR. USING THE REVERSED SOLUTIONS LTR AND ZTR OBTAINED PREVIOUSLY SOLVE FOR THE REVERSED DEFLECTIONS (YR) DUE TO THE TRANSFORMATION MATRIX INPUT. USE THE BACKWARD SOLUTION METHOD TOTAL MATRIX EXCEEDS STORAGE IN CORF TOTAL MATRIX EXCEEDS STORAGE IN CORF

REVERSE THE ORDER OF THE REVERSE DEFLECTIONS (YR) TO OBTAIN THE DEFLECTIONS (Y)

SOLVE KF = TT + Y. USING THE TRANSPOSE OF THE DYNAMIC TRANSFORMATION MATRIX (TT) AND THE DEFLECTIONS (Y) SOLVE FOR THE FLEXIBILITY MATRIX (KF)

.

******	*****	*********	****	*****	****	*****		PAGE	1
FFFFFFFFFFFFFF									
						•••••			
*********						•		-	
FFF FFF						• *	++++ FASTO	2 4444	
FFF FFF						• FLI	ITTER AND	STRENGTH	
FFF						0P1	THIZATION	PPOGDAN	
FFF						• • • •	1 11241100	TRUUKAA	
FFF	1	4				•			
FFF	A	۸۸			1	•••••		•••••	••••
FFF						•			
FFFFFFFF						• 51 • 614	AIR FUR	LE	
FFFFFFFF		A & A				• rL1001	UTNAMICS	LABURATOR	Y
FFF		A A A				•			
FFF	A44					• .	MAY 1	978	
FFF		A # A	5553	5555		•			
4 F F	AAA	AAA	55553	5555		*********			
FFF FFF	AAA	AAA	5555	SSSS					
r r r 6 c c	AAAAA	AAAA	5555	SSSS	1				
r F F	AAAAA	AAAA	555	SSS	4				
		ΔΑΑΑ	SSS	55					
FFF	AAA	AAA	SSS	S	11111111111				
FFF	AAA	AAA	SSS		TTTTTTTTTTTT				
	AAA	AAA	SSSS		τττ τττ τττ		•		
	AAA	AAA	SSSSSS	SSSSS	TTT				
	AAA	AAA	SSSSS	555555	TTT				
	AAA	AAA		SSSS	TTT				
				555	TTT	0000	000		
	AAA	444	S	555	 TTT	0000			
		000	sš	555		0000	0000		
			222	223		0000	0000		
			222	355		000	000		
			5555	2222		200	000		
			5555	5555	TTT	000	000		
			55555	5555	, III	000	000	<u> </u>	PPPP
			5555	5SSS -	TTT	000	000	ΡΡΡΡ Ρ	PPPPP
					ттт	000	000	PPP	PPP
					ттт	000	000	PPP	P
	•				TTT	0 00	000	PPP	P
					TTT	000	000	PPP	P
000000000000000000000000000000000000000	666666666666666666666666666666666666666	000000000000	0000000000000	666666666666666666666666666666666666666	GGGGG TTT	000	000	PPP	P
000000000000000000000000000000000000000	000000000000	00000000000	36666666666666	66666666666	TTT	000	000	PPP	PP
	GGG	666666666666666666666666666666666666666	000000000000	66666		000	000	DDD	ppp.
	GG	66666666666	000000000000			000	000	00000	qqqq
	• G	0000000000000	00000			000	000	DDDDD	
•	• GG	000000000000000000000000000000000000000	3666			0000	0000	000	
 GRUMMAN 	. 666	000000000000000000000000000000000000000	36			0000	0000	000	
. AEROSPACE	aaa	2020202000				00000	0000		
. CORPORATION	aaa	200000000				0000	000	222	
		22222						PPP	
•		00000						PPP	
		600						PPP	
	000	0						PPP	
	66							PPPP	
	6							PPPP	

•

•

44	*************			*********		3	
4				**********	***********************************	******	44
	CEFFFECCEFFF						*
8				•	• • • • • • • • • • • • • • • • • • • •		4
				٠		•	•
Ť	FFF FFF			•	**** FASTOP ****	•	#
P	FFF FFF			•	FLUTTER AND STRENGTH	•	#
8	FFF			•	OPTIMIZATION PROGRAM	•	4
#	FFF						4
ø	FFF				8888 FOP 8888	•	4
4	FFF				FUTTED OPTIMIZATION DECCA	• M	
#	FFF			•	COTTES OF LATENTION PROBA	• •	
4	FFFFFFFF			•		•	-
*	FFFFFFF			•	• • • • • • • • • • • • • • • • • • • •	• • • • •	
4	FFF			•		•	
4				•	AIR FORCE	•	4
	FF F			•	FLIGHT DYNAMICS LABORATORY	•	4
¥				•		•	*
м л				•	MAY 1978	•	4
¥		000	0000	•		•	*
w	FFF	0000	00000	• •			4
4	FFF	0000	0000		-		4
4	FFFF	000	000				
4	FFFF	000	000				4
4		000	000				4
#		000	000				4
4		000	000				
4		000	000				
4		000	000				
4		000	000				
8		000 .	000		·		
		000	000				•
	•	000	000				4
		000	000				4
		000	000				44
8		000	000		66666666666666666666666666666666666666		*
4		000	000		<u> Реререререр</u>		
4		0000	0000		PPP PPPP		
ø		0000	00000	•	PPP PPP		4
4		000	0000				
4		- 0 -					
\$	000000000000000000000000000000000000000	مممممممم	000000				4
4	000000000000000000000000000000000000000	00000000000					
ø	000000000000000000000000000000000000000	20000000000					
4	000000000000000000000000000000000000000	0000					
4							99
					heddddd	•	0
-	• • • • • • • • • • • • • • • • • • •		•		PPP		4
×					Pop		
¥	• ALRUSPALE • GGGGGGGGGGGGG				PPP		*
8	• CORPURATION • GGGGGGGGGG				PPP		#
4	• • • • • • • • • • • • • • • • • • •				PPP		4
#	•••••••••••••• GGGGGG				PPP		4
4	GGGG				PPP		
4	GG				PPPP		
4	G				PPDP .		
	*****	****	***	*****	******	***	
							W W

074

.

.

;

PROGRAM LISTING OF CARD DATA

CARD NO.		
1		
2	FUITTED ANALYSTS, NASA FADWARD SWEDT DESEARCH WING AN A RAM-34E(VA-FA)	
3	FIRST PASS. FIFTIALITY APPROACH. PLATS. PODDEN. K METHOD. SMOOTHED	
4		
5		
6		
7	0 0 -33	
8	VA00 AUTOMATED VIBRATION ANALYSTS MODULE	
9	VA REDUCED GRID (FLFXIBILITY APPROACH)	
10	0 0 0 4 -5 KLUEV(I).I= 1.6	
11	8 24 4 ROOTS, NDOFF, NZERO	
12	1 2 2 3 3 4 4 5 5 6 IDFV(I)	
13	6 7 7 9 8 10 9 11 10 12 IDFV(I)	
14	11 13 12 14 13 16 14 17 15 18 IDFV(I)	
15	16 19 17 20 18 21 19 23 20 24 IDFV(I)	
16	21 25 22 26 23 27 24 28 IDFV(I)	
17 -	FA00 AUTOMATED FLUTTER ANALYSIS MONULE	
18	FA RODDEN AERODYNAMIC THEORY, K FLUTTER METHOD WITH PLOTS	
19		
20		
21	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
22	1 0 1 1 0 0 0 0 0 0	
23	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
24	3 IN	
25		
20	19-50 0.90 BR+FMACH	
21		
20		
27		
30		
32		
33		
34	249.12427 288.1093 230.5617 247.7017 9.00 60.00 x1.x2.x3.x4.y1.y2	
35		
36		
37		
38	0.15 0.25 0.3333 0.4166 0.500 0.5933 TAU(I),I=1.6	
39	0.6666 0.75 0.83333 0.9166 1.0 TAU(I)+I=7.11	
40	10 0 0 0 0	
41	1 6 0 7 12 0 13 18 0 19 24 0 25 30 0 31 36 0	
42	37 42 0 43 48 0 49 54 0 55 60 0	
43	F 60 0 KSURF+NBOXS+NCS	
44	4 0 0 0 NLINES+NELAXS+NIC++NISP	
45	7 249.12427 9.0 230.56178 60.0 NGP.XTERM1,XTERM1,XTERM2,YTER2	
46	9.0 15.0 20.0 30.0 40.0 50.0 60.0	

÷

PAGE

4

١

CARD		2.			4.				8
N O .	1234567890123456	78901	234567890	123456	78901	23456	78901234567	89012345678901234567	890
47	7 256,92	9.0	233.	99	60.0		NGP+XTER1	+YTER1+XTER2+YTER2	
48	9.0 15.0		20.0	30.0		40.0	50.0	60.0	
49	7 272,52	9.0	240.	85	60.0		NGP(3)	0	
50	9.0 15.0		20.0	30.0		40.0	50.0	60-0	
51	7 288,109	9.0	247.	7	60.0	-	NGP (4)		
52	9.0 15.0		20.0	30.0		40.0	50.0	60.0	
53	1 KLUGLB							00.0	

12345678901234567890123456789012345678901234567890123456789012345678901234567890

PAGE 5

 $\overline{}$

•

**	****		PAGE 7

	۸		
#	AAA	•	
4	AAAAA ````	•	
	AAAAA	•	
4	ΑΛΑ ΑΑΑ	•	
		•	OF TEMIZATION PROOPAM •
4	AAA AAA	•	8888 FOP 8888
•	AAA AAA	•	FUTTER OPTIMIZATION PROCRAM
4		•	· COTTER OF ITTI ZATION PROGRAM .
4	ΑΑΑΑΑΑΑΑΑ	•	
4			AUTOMATED
4			VIBRATION ANALYSIS MODULE
4			IDUNITOR MARTINES HODOLE .
4	AAA AAA VVV VVV		•
4			
4	ΑΑΑ ΑΑΑ ΫΫΫ ΫΫΫ		AIR FORCE
4			FLIGHT DYNAMICS LABORATORY
4			
4	ΑΑΑ ΑΑΑ ΫΫΫ ΫΫΫ		MAY 1978
4		•	
4		Α.	* * * * * * * * * * * * * * * * * * * *
*		AAA	•
4		AAAAA	•
•		AAAAA	4
*		AAA AAA	•
*		AAA AAA	•
4		AAA AAA	· · · ·
19 		AAA AAA	4
9	vvv	AAA AAA	4
е -		ΑΑΑΑΑΑΑΑ	•
12		ΑΑΑΑΑΑΑΑ	ммм ммм *
я н		AAAA AAAA	MMM MMM *
ж н		ΑΑΑ ΑΑΑ	MMMM MMMM 4
3		AAA AAA	мммм мммм
		AAA 4AA	мммми мммми и
4	666666666666666666666666666666666666666		MMMMM MMMMM *
4	000000000000000000000000000000000000000		
4	0,0000000000000000000000000000000000000		
#	222222222222222222222222222222222222222		MMM MM MMMM M
4		ала аад	ունենին հայտությունը հայտությունը։ Հայությունը հայտությունը հայտությունը հայտությունը հայտությունը հայտությունը
4	000000000000000000000000000000000000000		יידע איז
4	GRUMMAN GGGGGGGGGGGGGGG		אין איז
4	• AEROSPACE • GGGGGGGGGGG		יישר איז
44	CORPORATION . GGGGGGGGGG		אין איז
4	• • • • • • • • • • • • • • • • • • • •		
Ð	•••••••••••		א ויינדי ויינדי ויינדי אאנע אוע אוע אוע אוע אוע
4	GGGG		יישראים דרומיים אאנע אלא אינט אינט אינט אינט אינט אינט אינט אינ
	66		ייים איניים איניים אינייי אאא אינע אואא אואא אואא אואא אואא אינייי
4	G		MMM MMM MMM 4
4			
44	************************	****	

21 #

- į

PAGES 9 THROUGH 12 MISSING FROM ORIGINAL DOCUMENT.

MATRIX (MASS	NAME	= MD (IX TO BE USED	24 X 24) PP IN VIBRATION AND	INT LOWER TRIANG ALYSIS)	BLE			
ROW	COL	VALUE	VALUE	VALUF	VALUE	VALUE	VALUF	VALUE
1	1	7.097075E-01						
5	1	-5.117239E-03	7.305376E-01					
3	1	-2.691503E-02	1.418397E-01	6.453762E-01				
4	1	9•168717E-04	-5.007828E-03	1.029798E-01	2.8778765-01			
5	1	1.310402E-04	-3.234059E-04	7.132978E-03	2.198108E-02	9.814944E-02		
6	1	-5.934884E-05	4.029981E-05	-5•692986E-04	1.806230E-03	8.717788E-03	4.853547E-02	
7	1	5.497758E-02	-2.583274E-02	-2.119514E-02	-8,793840E-04	2.044096E-04	8.3459825-08	1,383799E+00
8 8	1 8	-3.578576E-02 1.248141E+00	5.298062E-02	-8.866029E-02	-1.041485E-02	7.491613E-04	-2.029650E-05	1.260039E-01
9 9	1 8	3.887654E-03 3.351385E-01	9.858083E-03 3.064693E+00	-5.739099E-01	-1.461274E-01	-4.249395E-03	2.8873135-04	4.805721E-02
$\begin{array}{c} 1 \\ 1 \\ 0 \end{array}$	1 8	1.360160E-02 2.634243E-02	-6.377665E-02 6.140720E-01	-1.544733E-01 1.776457E+00	-2.706331E-01	-6.916699E-02	1.559476E-03	-3.089994E-04
11 11	1 8	-1.663763E-03 -6.995464E-03	3.198906E-03 -1.497826E-03	-4.119486E-02 3.290094E-01	-4.419338E-02 1.214228E+00	-1.365789E-01	-2.2008225-02	-1.394560E-03
12 12	1 8	1.298499E-04 1.429232E-04	-1.612036E-04 -2.052415E-03	3•981186E-03 -9•706860E-03	-1.538303E-02 1.344597E-01	-4.789916E-03 6.073635E-01	-1.0004795-01	3.9473228-05
13 13	1 8	-3.822057E-03 -2.192224E-03	-7.057242E-03 -3.414137E-02	5.061197E-03 -3.807713E-03	-1.878545E-04 9.710287E-04	-6.053578E-04 1.178514E-04	-1.378924E-04 7.361516E-01	9.360817E-02
14 14	1 8	-3.014923E-02 1.683465E-01	-1.906774E-02 1.619056E-01	-4.704764E-02 -1.373805F-02	1.423716E-04 -6.281875E-03	1.131821E-03 1.861576E-04	9.257126E-06 2.817313E-02	8.429095E-02 9.486461E-01

MATRIX (MASS	NAMF MATR	= MD (IX TO BE USED)	24 X 24) PRI IN VIBRATION AND	NT LOWER TRIANG	3LE			
ROW	COL	VALUE	VALUF	, VALUF	VALUE	VALUE	VALUE	VALUE
15	1	-1.012738E-02	-5.488598E-02	-1-318932E-01	-3.997841E-03	3.597816E-03	-1.034246F-04	3 0000695-02
15	8	9•181264E-02	3.202699E-01	-3.942937E-03	-1.923800E-02	7.113369E-04	-4-2609512-02	3.030149E=01
15	15	1+092556E+00				, 		
16	1	2.875630E-03	-3.356109E-02	-1.085177E-01	-7.445568E-02	2.140170E-03	6.319151E-04	1.786513E-03
16 16	8 15	3.477210E+03 1.796364E-01	1.411357E-01 8.723521E-01	1.350264E-01	-2.678324E-02	-4.541804E-03	-2.9539895-04	-3,328209E-02
17	1	-4.782280E-05	1.443688E-03	-2+373793F-02	-8.803305E-02	-5.953837E-02	5.8232348-03	-1.2771755-03
17	8	-4.324104E-03	-7.831219E-03	1.271940E-0Ï	1,001007E-01	-2.819438E-02	2.363083E-03	-4.886216F-03
17	15	-5*833001E-05	1,288380E-01	7.001912E-01				
18	1	2+627340E-04	4.419790E-04	3-8410916-03	-1.333418E-02	-3.433891E-02	-1.368359F-02	-6.3980676-05
18	8	-3.072109E-04	-6.463231E-03	-1.539372E-02	8.666203E-02	-8.906652E-03	7.879616E-04	-7.399038F-05
18	15	9.511629E-04	-1,868733E-02	8.832566E-02	2.745846E-01			
19	1	-5.643278E-04	6.117739E-04	1.5978525-04	1,231105F-04	5-8675615-05	1-1-244395-05	-7 2069055-04
19	8	-1.629069E-04	4.045192E-04	-1+349595E-04	-8.049922E-05	-9.346517E-06	-3.6944115-02	A 459563E=04
19	15	-2.128153E-05	-1.411739E-04	-1.826808E-04	-5,965889E-05	6.039393E-02		
20	1	3.441111E-03	1.438638E-03	2.5290925-03	8.336508F+05	-4.072898F-05	-2 0-92-75-04	
20	8	-1.289707E-02	-6.904491E-03	1.217257F-04	1.813651F-04	-1.422889F-06	3.468559F-02	2 9492785-02
20	12	8.802576E-04	-8.796656E-04	2.148252E-04	1,960955E-05	1.232328E-03	4.835377E-02	
21	1	-1.295927E-03	9.558363E-04	9.501759F-03	1.2976745-03	-1,301162E+05	3,3526045-06	-4 9689945-03
21	8	-1.365458E-02	-3.483508E-02	-4.253342E-03	3.348274E-04	5-872524E-06	3.7880605-03	4,971819E=02
21	15	5.324234E-02	8.278772E-04	-5.362135E-04	5.779110E-05	-1.143061E-04	5.962900E-03	5.625303E-02
22	1	-1.334097E-03	-2.578828E-03	4.500392E-03	3.676718E-03	7.962147E-04	+2.908558F+05	3 3153355-04
55	8	-4.865972E-03	-2.920615E-02	-1.758832F-02	-4.088823F-03	1.053350F-04	-1.6986056-03	6 307559=04
22	15	5.417257E-02	5.634372E-02	6.018006E-04	-3.438373E-04	-2,300622E-05	-6.087422E-05	5.5897146-03
22	22	5,737263E-02						•
23	1	-7.308902E-05	-5,36938AE-04	-1.140184E-03	-2,722053E-03	1.866503E-03	5.724114E-04	-3.047597F-04
23	8	-1.629300E-03	-9.664377E-03	-4.827303E-03	-1.351662E-02	-2.927056E-03	3.5521235-04	-1.870608E-03
23	15	-2.249350E-03	4.525950E-02	4.789194E-02	-3.721166E-04	-2.089779E-05	3.8018525-05	-2.894136E-05
23	<i>د</i> د	3*490180E=03	4*04A531E-05					
24	1	2.347236E-05	2.831757E-04	7.505314E-04	-2,285356E-03	-3.884552E-03	2.8601115-03	-3.181965E-05

MATRIX NAMF= MD (24 x 24) PRINT LOWER TRIANGLE (MASS MATRIX TO BE USED IN VIBRATION ANALYSIS)

١

ROW	COL	VALUE	VALUE	VALUF	VALUE	VALUE	VALUE	VALUE
24 24 24	8 15 22	-1.992366E-04 -2.702510E-05 -1.075331E-04	-3.056139E-03 -4.404120E-03 1.939552E-03	-6.209417E-03 3.915634E-02 2.364737E-02	2.851016E-03 2.522883E-02	-1.081020E-02 -1.365436E-05	1.907996E-04 5.672249E-06	-3.777065E-05 2.644008E-05

.

M FREQUENCIES, CPS

1 40.4275

2 105.3595

3 144.3544

4 213.1469

5 294.0645

6 337.0482

7 363.3346

8 426.6627

NORMALIZED EIGEN VECTORS FOR ALL REQUESTED DEGREES OF FREEDOM (ABSOLUTE NOTION)

TOLD	M =	2	7	4	E	4	-	0
1	2.712177E-02	-7.549283F-03	-1.300646F-01	-2.274855E-03	2.0468795-01	-3.371469F-03	2.3551456=02	-8 429530F-02
Ś	6.427574E-02	-1.522877E-02	-2.582002E-01	-1.348464E-02	3.206127E-01	-1 036013E-03	4 695725F=02	-1 7026115-04
3	1.805161E-01	-9.272162E-04	-5+228213E-01	-7.362341E-02	2.426666F=01	2.773503E-02	4.5457295=02	3.3811515-01
4	3.698704E-01	1.052380E-01	-6.633175E-01	-1.375901E-01	-2.659212F-01	8-159306E-02	-8.257065E-02	1.6338005-01
5	6.486854E-01	4.174887E-01	-5+269089E-01	8.010193E-02	-7.160659E-01	4.669618E-02	-1.680900E-01	-5.518826E-01
6	1.000000E+00	1.000000E+00	-6.022672E-02	1.000n00E+00	-3.694496E-01	-4.323481E-01	3.786862E-01	-4.154219E-01
7	3.648139E-02	-5.799126F-02	-6.139452E-02	6.382236E-02	1.918112E-01	-1.428603E-03	-3.853037E-02	-4-242016E-01
8	7.806202E-02	-9.954115E-02	-1.407583E-01	7.850961E-02	2.962487E-01	-8.156083E-03	-5.515728E-03	-3.359171E-01
9	1.937587E-01	-1.311553E-01	-2.966107E-01	3.174624E-03	1.741568E-01	-1.450962E-02	5.226235E-02	1.980854E-01
10	3.780507E-01	-5.0659648-02	-3.706833E-01	-1.347529E-01	-1.474805E-01	2.225071E-02	-1.585735E-02	1.067831E-01
11	6.441561E-01	2.271735E-01	-2.346060E-01	-6.859068E-02	-3.613903E-01	6.889061E-02	-1.276248E-01	-2.898020E-01
12	9.844647E-01	7.806281E-01	1.723988E-01	6.473307E-01	3.826144E-02	-2.068738E-01	2+044391E-01	3.177534E-02
13	2.015409E-02	-8.032710E-02	1.053976E-02	1.229751E-01	3.498350E-02	6.430229E-02	-8.026405E-02	-9.537429E-02
14	6.456550E-02	-1.889976E-01	1.543173E-02	2.386230E-01	4.218642E-02	1.004535E-01	-1.094996E-01	-9.235208E-02
15	1.950365E-01	-3.473575E-01	2+408959E-02	2.305884E-01	-7.054913E-02	-1.647893E-02	-7.729185E-03	1.417774E-01
16	3.781681E-01	-3.584240F-01	9.042432F-05	-5.489599E-02	-1.830934E-01	-1.151406E-01	9.473145E-02	-4.708042E-02
17	6.J21018E-01	-1.436021E-01	2.785707E-01	-3.006493E-01	3.323739E-02	4.045010E-02	-3.053060E-05	-1,928737E-01
18	9,356120E-01	3*030102E+01	6,155767E-01	4.229093E-05	6.831954E-01	1,197116E+01	-3.607177E-02	5,747300E-01
19	-0.784017E-03	0+23/227E-03	1./04490E-02	2.745906E-02	-3.168291E-01	1.000000E+00	1.000000E+00	-8,991270E-01
20	-2.021209E+03	-3+1810491-02	5+8595226-02	1.901830E=01	-3.628725E-01	9.530627E-01	4.252942E-01	-6.154173E-02
22	3 3359215-01	-4+2722441-01	2+0106281-01	0.249316E-01	-4.943/24E-01	4.832764E-01	-3.282517E-01	1.000000E+00
22	5.565621C-01 5.963667e-01	-0.2103[9[=0]	3+5056286.*01	2.810718L-01	*5.853454E*01	-2.291875E-01	1.370792E-01	3.104887E-01
24	0 2/0033E=01	-3.303240E=01	D+C11110E=01	-4.122552E-01	-1.034//4E-01	-1,765669E-01	1.757570E-01	-6,953387E-01
24	201-01-01	-40362076-02	r*nnnnnE+00	-4.5C200/E-01	1*000000E+00	2.153719E-01	-1.438645F-01	5,159794r-01

.1

GENERALIZED MASS, LUS (NORMALIZATION/LARGEST VALUE IN EACH MODE IS UNITY)

.

MN :	= 1	5	3	4	5	6	7	8
1 2 -9 3 -9 4 -9 5 -7 6 -9 7 -9 8 -9	2.592592E+00 5.273559E-16 6.328271E-14 1.565414E-14 2.420286E-14 5.217249E-15 5.551115E-15 2.042810E-14	-5.273559E-16 1.096850E+00 1.930400F-14 -1.239980E-14 3.157197E-14 2.844947E-15 5.013351E-16 5.884182E-15	6.328271E-14 1.930400E-14 1.229013E+00 -2.220446E-14 3.752554E-14 1.071365E-14 -3.330669F-16 3.308465E-14	-1.5654)4E-14 -1.239980E-14 -2.220446E-14 6.016879E-01 -3.885781E-15 6.133982E-15 1.984524E-15 4.363176E-14	-2.420286E-14 3.157197E-14 3.752554E-14 -3.885781E-15 9.458282E-01 3.885781E-15 -1.210143E-14 7.327472E-15	6.217249E-15 2.844947E-15 1.071365E-14 6.133982E-15 3.885781E-15 2.100029E-01 8.132384E-15 7.410739E-15	-5.551115E-15 5.013351E-16 -3.330569E-16 1.984524E-15 -1.210143E-14 8.132384E-15 1.558602E-01 -1.097733E-14	2.042810E-14 5.884182E-15 3.308465E-14 4.363176E-14 7.327472E-15 7.410739E-15 -1.097733E-14 9.615235E-01

NORMALIZED EIGEN VECTORS FOR REDUCED DEGREES OF FREEDOW (ABSOLUTE MOTION)

INEW JOLD) M = 1	2	3	4	5	. 6	7	P
INONE	0.	0.	0.	0.	0.	0	° ,	0
5 1	2.712177E-02	-7.549283E-03	-1.300646E-01	-2.274855E-03	2.045879E-01	-3.371469F-03	2.3551455+02	-8 429530E-02
3 8	2 6.427574E-02	-1.522877E-02	-2.582002E-01	-1.348464E-02	3.2051275-01	-1.036013E-03	4.6957255-02	-1 702611E-06
4	3 1.805161E-01	-9.272162E-04	-5.228213E-01	-7.362341E-02	2.426666F=01	2.773503E-02	4.5457295-02	3 3811515-01
5 4	3.698704E-01	1.052380E-01	-6.633175E-01	-1.375901E-01	-2.659212E-01	8.159306E=02	-8.2570655-02	1.6338005-01
6 5	5 6.486854E-01	4.174887E-01	-5.269089E-01	8-010193E-02	-7.160659E-01	4.669618F-02	-1.6809005-01	-5.518826E-01
76	5 1.000000E+00	1.000000E+00	-6.022672E-02	1.000000E+00	-3.694496E-01	-4.323481F-01	3.7868625-01	-4.154219F+01
8NONE	0.	0.	0.	0.	0.	0.	0.	0
9 7	3.648139E-02	-5.799126E-02	-6.139452E-02	5.382236E-02	1.918112F-01	-1.428603F-03	-3.8530375-02	-4,2420165-01
10 8	7.806202E-02	-9,954115E-02	-1.407583F-01	7.850961F-02	2.9624875-01	-8.156083E-03	-5.51572803	-3 359171 -01
11 9	1.937587E-01	-1,311553E-01	-2.966107E-01	3.174624F-03	1.741568F-01	-1.45096202	5.226235=-02	1 9808545-01
12 10	3.780507E-01	-5.065964E-02	-3.706833F-01	-1.347529F-01	-1.474805F-01	2.22507102	-1.58573502	1 0678315-01
13 11	6.441561E-01	2.271735E-01	-2.346060E-01	-6.859068E-02	-3+613903E-01	6.889061F-02	-1.276248F-01	-2.898020E-01
14 12	9.844647E-01	7.806281E-01	1.723988E-01	6.473307E-01	3.826144E-02	-2.068738F-01	2.0443915-01	3.177534E-02
15N0NE	0.	0.	0.	0.	0.	0.	0.	0.
16 13	2.015409E-02	-8.032710E-02	1.053976E-02	1.229751E-01	3.498350F-02	6.430229F-02	-8.026405F-02	-9.5374296-02
17 14	6.456550E-02	-1.889976E-01	1.543173E-02	2.386230F-01	4-2196425-02	1.0045355-01	-1.094996 = 01	-9 235208E-02
18 19	i 1.950365E-01	-3 473575E-01	2.408959F-02	2.305A84F-01	-7.0549135-02	-1.647893F-02	-7.72918503	1.417774=-01
19 16	3.781681E-01	-3.584240E-01	9,042432E-02	-5,489599E-02	-1.830934F-01	-1.151406F-01	9.4731455-02	-4.7080425-02
20 17	6.321018E-01	-1.436021F-01	2.785707E-01	-3.006493E-01	3.323739F-02	4.045010F-02	-3.0230605-02	-1.9287376-01
51 18	9.556126E-01	3.636105E-01	6.155767E-01	4.229993E-02	6.831954E-01	1.197116E-01	-3.607177F-02	5.7473005-01
SSNONE	0.	0.	0.	0.	0.	0.	0.	0.
23 19	-6.984619E-03	8,537559E-03	1.704490E-02	2.745906E-02	-3.168291E-01	1,000000F+00	1.000000 =+00	-8,991270F-01
24 20	-2+821269E-03	-5.181049E_02	5.8595228-02	1.901830E-01	-3+628725E-01	9.530627E-01	4.252942F-01	-6.154173F-02
25 21	1.299271E-01	-4.272244E-01	2.016628E-01	6.249316E-01	-4.943724E-01	4.832764E-01	-3.282517F-01	1.000000E+00
26 22	3+325821E=01	-6.276519E-01	3.508628E-01	2.816718E-01	-5-853454E-01	-2.291875E-01	1.3707925-01	3-1048875-01
27 23	5.943547E-01	-5.363246E-01	6.211110E-01	-4.122552E-01	-1.634774E-01	-1.765669E-01	1.767570F-01	-6.953387E-01
28 24	9.240933E-01	-4.052969E-02	1+000000E+00	-4.525607E-01	1.000000E+00	2.753719E-01	-1.438645F-01	5.159794E-01

- 1

***	***************************************	***********	*******
4			
4	A		
4	- AAA		
4	ΑΔΔΑ		AAAA EVEL AAAAA
4	ΑΑΑΑΑ		FLUTTER AND STRENGTH
4			
ø			OFILMIZATION PROGRAM •
#			
4			• • • • • • • • • • • • • • • • • • •
4			• FLUTTER OPTIMIZATION PROGRAM •
4			•
4			• • • • • • • • • • • • • •
			• AUTOMATED •
	AAAA AAAA FFFFFFFFF		 FLUTTER ANALYSIS MODULE
ž	AAA AAA FFF FFF		•
*	AAA AAA FFF FFF		
9 	AAA AAA FFF		•
9	AAA AAA FFF	<i>,</i>	. AIR FORCE .
4	AAA AAA FFF		 FLIGHT DYNAMICS LABORATORY
¢۶			•
4	AAA AAA FFF		MAY 1978
4	AAA AAA FFFFFFFF		•
4	FFFFFFFF	Α	•
4	FFF	AAA	
4	FFF	AAAAA	
4	FFF		
	FFF	AAA AAA	
ø	FFF		<i>r</i>
4		444 444 444 444	
4		444 444	
4	Err	AAA AAA	
		AAA AAA	
	FFFF	ΑΑΑΑΑΑΑΑ	
*		ΑΑΑΑΑΑΑΑ	MMM MMM
		AAAA AAAA	MMM MMM
8		ΑΑΑ ΑΑΑ	мммм мммм
8		ΑΑΑ ΑΑΑ	мммм мммм
4		AAA AAA	МММММ МММММ
ų.		AAA _ AAA	МММММ МММММ
4	000000000000000000000000000000000000000	ΑΑΑ ΑΑΑ	МММММ МММММ
4	000000000000000000000000000000000000000	Δ Δ Δ ΔΔΔ	ММИМММ ММММММ
4	000000000000000000000000000000000000000		
4	000000000000000000000000000000000000000		MAN MM MM MMM
*	000000000000000000000000000000000000000		A PERCEPTION AND ADDRESS AND ADDRESS ADDRE
4	0.0000000000000000000000000000000000000		ana ang sang sang sang sang sang sang sa
#	GRUMMAN GGGGGGGGGGGGGGGG		Manager Manager Manager
4			
4			
			ммм ммм ммм
	• • • • • • • • • • • • • • • • • • • •		ммм ммм ммм
-			ммм ммм ммм
w	GGGG		MMM MMM MMM
19 	66		МММ МММ МММ
4	G		ммм ммч ммм -
#			
***	***************************************	*********	*****

ENTER VIBRATION DATA FOR FLUTTER ANALYSIS

VIBRATION DATA HAS BEEN ENTERED FROM ONE FILE ON TAPE

GENERALIZED MASS, FREQUENCY, AND GENERALIZED MODAL STIFFNESS

GENERALIZED MASS, LB

MODE	MODE= 1	2	3	4	5	6	7	8
1	2.592592E+00	-5.273559E-16	6,328271E-14	-1.565414E-14	-2.420286E-14	6.217249E-15	-5.551115E-15	2 042810F-14
2	-5.273559E-16	1.096850E+00	1+930400E-14	-1.239980E-14	3-157197E-14	2.844947E-15	5.0133518-16	5.884182E-15
3	6.328271E-14	1.930400E-14	1+229013E+00	-2.220446E-14	3.752554E-14	1.071365E-14	-3-330569F-16	3.308465E-14
4	-1.565414E-14	-1.239980E-14	-2+220446E-14	6.016879E-01	-3.885781E-15	6.133982E-15	1.984524E-15	4.363176E-14
5	-2.420286E-14	3.157197E-14	3•752554E-14	-3.885781E-15	9.458282E-01	3.885781E-15	-1.210143E-14	7.3274728-15
6	6.217249E-15	2.844947E-15	1+071365E-14	6.133982E-15	3.8857818-15	2.100029E-01	8.132384E-15	7.410739E-15
7	-5.5511158-15	5+013351E-16	-3+330669E-16	1.984524E-15	-1.210143E-14	8.132384E-15	1.558602E-01	-1.097733E-14
8	2.042810E-14	5.884182E-15	3•308465E-14	4.363176E-14	7.327472E-15	7.410739E-15	-1.097733E-14	9.615235E-01
MODE	FREQUENCY CYC/SEC	FREQUENCY RAD/SEC	DAMPING NO UNITS					
1	4.042748E+01	2.540133E+02	0.					
2	1.053595E+02	6.619930F+02	0.				•	
3	1.443544E+02	9.070051E+02	0.				,	
4	2.131469E+02	1+339241E+03	0•					
· 5	2.940645E+02	1.847661E+03	0.					
6	3.370482E+02	2.117736E+03	0.					
7	3.633346E+02	2.282898E+03	0•					

1

COMPLEX GENERALIZED MODAL STIFFNESS. (REAL. IMAG). LB/IN

8 4.266627E+02 2.680800E+03 0.

MODE	MODE =	1			S				-	3			****		6				
1	(2,592	26E+00+	0.	•	(0		0	•)	ĩ	0.		0.	,	1	ò.		0	
2	(0.	•	0.)	17	.4497E+00,	Ō	•	, ,	ì	0.		0.	i.	ì	0.		0	
3	(0.	•	0.)	(0	• •	0)	i	1.5670E+01		0.	j.	ì	0.		0.	
4	(0.	•	0.)	()	• •	0	•)	i	0.		0.	5	ì	1.6725E+01		0.	í
5	(0.	•	0.)	()		0	• •)	(0.	•	0.)	i	0.		0.	í
6	(0.	•	0.	3	(0	. ,	0	•)	(0.	•	0.)	ì	0.		0.	· •
7	(0.	•	0.)	(0	. ,	0	• 1)	(0.	•	0.)	i	0.	•	0	Ś
8	(0.	•	0.)	(0	• •	0	•)	(0.	•	0.)	Ċ	0.	•	0.	Ĵ
MODE	MODE =	5			6				_	7	·								
1	(0.	- •	0.)	<i>.</i> 0		0	-	-	,'	0		^	. -	. 5	·			
Ž	(O.	•	0.	, j	iõ		ŏ	•		ì	0	•	0	ί.	;	0	•	0.	
3	(0	•	0.	j	i		ŏ	•		ì	0.	•	0.	ί.		0.		0)
4	(0.	•	0.)	(0	• •	ō	•)	ì	0.	•	0.	5	i	0.		0.	1

COMPLEX GENERALIZED MODAL STIFFNESS, (REAL, IMAG), LB/IN

£

1

(

K

MODE 5 COMPLE	MODF= (5.00 X GENER	5 43E+01, ALIZED M	0. ODAL) (STIFFNESS,	6 0. (PEAL:	 IMAG)•	0. LB/I) N	,7 (0.	• • •	0.)	(3 0.		0.)
MODE	MODE =	5			6				7					,				
6	(0.	•	0.) (1.4597	E+01.	0.)	Ċ	0.	•	0.)	Ċ	0.	•	0.)
7	(0.	•	0.) (0.	•	0.)	(1.2589E+01	•	0.)	i	0.	,	0.	j
8	(0.	•	0.) (0.	•	0.)	(0.	,	0.)	Ċ	1.0710	E+02+	0.)

SUBSONIC UNSTEADY AERODYNAMICS USING DOUBLET LATTICE PROCEDURE

SURFACE AND BODY GEOMETRY AND ASSOCIATED PARAMETERS REFERENCE CHORD = 30.60000 IN REFERENCE SEMI-SPAN = 12.00000 IN REFERENCE AREA =1800.00000 IN+*2 MACH NUMBER 3 •90000 BETA = .43589 INPUT VALUES FOR PANEL 1 XCAP(1) = 249.12427, YCAP(1) =9.00000 NC = 7 $XCAP(2) = 288 \cdot 10930 \cdot YCAP(2) =$ 60.00000 NS = 11 xCAP(3) = 230.56170, ZCAP(1) =0.00000. NDELT = 1 xCAP(4) = 247.70170. ZCAP(2) =0.00000, NOPAN = 1 PANEL 1 HAS 7 CHORDWISE DIVISIONS - TH(I) 1 0. 5+000000E-02 2+000000E-01 4+000000E-01 6+000000E-01 8+000000E-01 1+000000E+00 PANEL 1 HAS 11 SPANWISE DIVISIONS - TAU(I) 1 1.500000E-01 2.500000E-01 3.333000E-01 4.166000E-01 5.000000E-01 5.833000E-01 6.666000E-01 7.500000E-01 9 8-333300E-01 9-166000E-01 1-000000E+00 PANEL 1 HAS 60 ELEMENTS WITH 77 VERTICES. THE X COORDINATES OF THESE VERTICES ARE 1 2.463399E+02 2.481253E+02 2.534815E+02 2.606232E+02 2.677648E+02 2.749065E+02 2.820482E+02 2.444836E+02 2.461598E+02 2.511884E+02 2.578931E+02 2.645979E+02 2.713026E+02 2.780074E+02 2.429374E+02 2.445226E+02 17 2.492782E+02 2.556190E+02 2.619598E+02 2.683006E+02 2.746414E+02 2.413911E+02 2.428953E+02 2.473680E+02 25 2.533449E+02 2.593217E+02 2.652986E+02 2.712755E+02 2.398430E+02 2.412461E+02 2.454555F+02 2.510680F+02 33 2.566805E+02 2.622930E+02 2.679055E+02 2.382967E+02 2.396089E+02 2.435453E+02 2.487939E+02 2.540424E+02 41 2.592910E+02 2.645395E+02 2.367505E+02 2.379716E+02 2.416351E+02 2.465197E+02 2.514043E+02 2.562890E+02 2.611736E+02 2.352023E+02 2.363324E+02 2.397226E+02 2.442428E+02 2.487631E+02 2.532833E+02 2.578036E+02 49 2.336555E+02 2.346946E+02 2.37A117E+02 2.419679E+02 2.461241E+02 2.502803E+02 2.544364E+02 2.321098E+02 57 2.330579E+02 2.359022E+02 2.396946E+02 2.434869E+02 2.472793E+02 2.510717E+02 2.305617E+02 2.314187E+02 65 73 2.339897E+02 2.374177E+02 2.408457E+02 2.442737E+02 2.477017E+02 PANEL 1 HAS 60 ELEMENTS WITH 77 VERTICES. THE Y COORDINATES OF THESE VERTICES ARE 1 1.665000E+01 1.665000E+01 1.665000E+01 1.665000E+01 1.665000E+01 1.665000E+01 1.665000E+01 2.175000E+01 9 2.175000E+01 2.175000E+01 2.175000E+01 2.175000E+01 2.175000E+01 2.175000E+01 2.599830E+01 2.599830E+01 17 2.599830E+01 2.599830E+01 2.599830E+01 2.599830E+01 2.599830E+01 3.024660E+01 3.024660E+01 3.024660E+01 25 3+024660E+01 3+024660E+01 3+024660E+01 3+024660E+01 3+450000E+01 3+450000E+01 3+450000E+01 3.450000E+01 3.450000E+01 3.450000E+01 3.450000E+01 3.874830E+01 3.874830E+01 3.874830E+01 3.874830E+01 3.874830E+01 33 3.874830E+01 41 3+874830E+01 3+874830E+01 4+299660E+01 4+299660E+01 4+299660E+01 4+299660E+01 4+299660E+01 4.299660E+01

49 4.299660E+01 4.725000E+01 4.725000E+01 4.725000E+01 4.725000E+01 4.725000E+01 4.725000E+01 4.725000E+01 57 5.149983E+01 5.149983E+01 5.149983E+01 5.149983E+01 5.149983E+01 5.149983E+01 5.149983E+01 5.574660E<u>+0</u>1

PANEL 1 HAS 60 ELEMENTS WITH 77 VERTICES. THE Y COORDINATES OF THESE VERTICES ARE 65 5.574660E+01 5.574660E+01 5.574660E+01 5.574660E+01 5.574660E+01 5.574660E+01 6.000000E+01 6.000000E+01 73 6.000000E+01 6.000000E+01 6.000000E+01 6.000000E+01 6.000000F+01 PANEL 1 HAS 60 ELEMENTS WITH 77 VERTICES. THE 7 COORDINATES OF THESE VERTICES ARE 1 0. 0. 0. Ο. 0. 0. 0. 0. 9 0. 0. 0• 0. 0. 0. ۰0 0. 17 0. 0. 0. 0. 0. Ο. 0. 0. 25 0. 0. 0• 0. 0. 0. 0• 0. 33 0. 0. 0. ٥. 0. 0. 0. 0. 41 0. 0. 0. 0. 0. 0. 0. 0. 49 0. 0. 0• 0. 0. 0. 0. 0. 57 0. 0. 0. 0. 0. 0. 0. 0. 65 0. 0. 0. 0. 0. 0. 0. 0. 73 0. 0. 0. 0. 0.

PANEL 1 HAS 10 XI-J ELEMENTS - XIJ(I)

1 2.454118E+02 2.437105E+02 2.421642E+02 2.406170E+02 2.390699E+02 2.375236E+02 2.359764E+02 2.344289E+02 9 2.328827E+02 2.313358E+02

PANEL 1 HAS 10 C.WIGGLES - CWIG(I)

1 3.461602E+01 3.261393E+01 3.079424E+01 2.897345E+01 2.715267E+01 2.533298E+01 2.351220E+01 2.169108E+01 9 1.987139E+01 1.805094E+01

INTERPOLATED MODES FOR PRIMARY AND CONTPOL SURFACES

• :

INTERPO	LATED MODES.	PRIMARY SURFA	CES+ SURF =	1. MODE = 1
POINT	INCHES	INCHES		
1 OTIAL	THORES	10(053	NO DUTTO	RAUTEI
1	2+4671E+02	1.9200F+01	6.1121F-02	3.0933E-02
2	2.5104E+02	1.9200F+01	6.9450F-02	1.5359F-02
3	2+5753E+02	1.9200E+01	7.1669F-02	-6.9417E-03
4	2•6445E+02	1+3500£+01	6,1137E+02	-2.9326E-02
5	2+7137E+02	1.9200E+01	3.8110F-02	-5.0261E-02
6	2+7830E+02	1+9200E+01	3,4214F-03	-6.9748E-02
7	2+4493E+02	2.3874E+01	1.0547E-01	3.2965E-02
8	2+49016+02	2+38/48+01	1.1472E-01	2.1149E-02
10	2+33134+02	2.38745+01	1.20255-01	-1.J489E-04
11	2+6817E+02	2.3874F+01	8.93435-02	-2.7015L-02
12	2.7469E+02	2.3874F+01	4.6849F-02	-9.7204E-02
13	2+4332E+02	2.8122F+01	1.5678E-01	3-0834E-02
14	2•4717E+02	2.8122E+01	1.6559E-01	2.3521E-02
15	2•5294E+02	2+8122E+01	1.7304E-01	6.1385E-03
16	2+5910E+02	2.8122E+01	1.6963E-01	-2.0884E-02
17	2+6526E+02	2+8122E+01	1.5010E-01	-5.6661E-02
18	2+7142E+02	2+8122E+01	1.0997E-01	-1.0119E-01
19	2+4170E+02	3+2373E+01	2.2081E-01	2.8237E-02
20	2+45336+02	3+23/3E+01	2,2875E-01	2.3670E-02
22	2-56555402	3+23735+01	2.30565-01	9+J08/L+03
23	2+6235E+02	3.23736+01	2 19725-01	-1.0743C-02
24	2+6814E+02	3+2373E+01	1.84516=01	-9-6487E-02
25	2.4009E+02	3.6624F+01	2.9892F-01	2.5266E-02
26	2+4348E+02	3.6624F+01	3.0561E-01	2.1396E-02
27	2•4857E+02	3.6624E+01	3.1227E-01	8.6129E-03
28	2+5400E+02	3.6624E+01	3.1136E-01	-1.4251E-02
29	2•5943E+02	3.6624E+01	2.9794E-01	-4.6643E-02
30	2+6486E+02	3.6624E+01	2.6770E-01	-8.8561E-02
31	2+3847E+02	4.0872E+01	3.9236E-01	1.8597E-02
32	2+4104E+02	4+08725+01	J.9695E-01	1.55832-02
3.3	2+40376+02	4+08/21+01	4.0123E-01	4.8416E-03
34	2+51402+02	4+00725+01	3.994/1-01	-1+4845E+02
36	2+5052C+02	4.08725+01	3 41005-01	-4.JU2/E-02
37	2+3686F+02	4.51236+01	5.02975-01	5.2497E-03
38	2+3980E+02	4.5123E+01	5.0430E-01	5.0100E-03
39	2.4421E+02	4.5123E+01	5.0511E-01	-1.8960E-03
40	2+4891E+02	4.5123F+01	5.01526-01	-1.7921E-02
41	2•5361E+02	4.5123E+01	4.8990E-01	-4.2883E-02
42	2+5831E+02	4+5123F+01	4,66758-01	-7.6784E-02

PAGE 26

1

POINT	X INCHES	Y INCHES	H NO UNITS	ALPHA RAD/FT
43	2+3524E+02	4.9375E+01	6,2812E-01	-1.1585E-02
44	2+3795E+02	4.9375F+01	6.2587F-01	-8.9482F-03
45	2+4202E+02	4.9375F+01	6.2260E-01	-1.1704E-02
46	2.4636E+02	4.9375E+01	6.1651F-01	-2.3520E-02
47	2.5070E+02	4.9375E+01	6.0449F-01	-4.4498E-02
48	2+5504E+02	4.9375E+01	5.8323E-01	-7.4639E-02
49	2+3363E+02	5.3623F+01	7.6655E-01	-3.0193E-02
50	2+3611E+02	5.3623E+01	7,6084F-01	-2.5511E-02
51	2+3984E+02	5.3623E+01	7.5325F-01	-2.4647E-02
52	2+4381E+02	5+3623F+01	7.4412E-01	-3.1873E-02
53	2+4779E+02	5.3623E+01	7.3121F-01	-4.7507E-02
54	2+5176E+02	5+3623E+01	7.1172E-01	-7.1551E-02
55	2+3201E+02	5.7873E+01	9.1729F-01	-4-8217E-02
56	2+3427E+02	5.7873E+01	9.0869F-01	-4-3625E-02
57	2+3765E+02	5.7873E+01	8,9690E-01	-4.0847E-02
58	2+4126E+02	5.7873E+01	8.8438E-01	-4-3320E-02
59	2+4487E+02	5.7873E+01	8.7027F-01	-5.14058-02
60	2+4848E+02	5.7873E+01	8,5288E-01	-6.5102E-02

INTERPOLATED MODES, PRIMARY SURFACES, SURF = 1, MODE = 2

	x	Y	н	ALPHA
POINT	INCHES	INCHES	NO UNITS	RAD/FT
1	2+4671E+02	1.9200E+01	-3.0025E-02	-1.4445E-01
2	2.5104E+02	1.9200F+01	-7,9951F-02	-1.3058E-01
3	2+5753E+02	1.9200F+01	-1.4036E-01	-8.8543E-02
4	2+6445E+02	1.9200E+01	-1.7180E-01	-1.5629E-02
5	2.7137E+02	1.9200E+01	-1.5282E-01	8.6268E-02
6	2•7830E+02	1+9200E+01	-6.6686E-02	2.1715E-01
7	2•4493E+02	2.3874F+01	-3,6663E-02	-1.9713E-01
8	2+4901E+02	2.3874E+01	-1.0272E-01	-1.8940E-01
9	2•5513E+02	2+3874E+01	-1.9086E-01	-1.5116E-01
10	2+6165E+02	2.3874E+01	-2,5400E-01	-7.5106E-02
11	2+6817E+02	2.3874F+01	-2,6591E-01	3.7346E-02
12	2+7469E+02	2+3874E+01	-2,0680E-01	1.8619E-01
13	2+4332E+02	2+8122E+01	-3.2162E-02	-2.4362E-01
14	2•4717E+02	2•8122E+01	-1.0957E-01	-2.3717E-01
15	2+5294E+02	2+8122E+01	-2.1730E-01	-2.0639E-01
16	2•5910E+02	2+8155E+01	-3.0887E-01	-1.4566E-01
17	2+6526E+02	2+8122E+01	-3.6189E-01	-5.6142E-02
18	2+7142E+02	2.8122E+01	-3.6158E-01	6.2175E-02
19	2+4170E+02	3+2373E+01	-1.4136E-02	-2.8548E-01
20	2+4533E+02	3.2373E+01	-9.9974E-02	-2.8198E-01
21	2.5076E+02	3.2373E+01	-2,2367E-01	-2.6140E-01
55	2+5655E+02	3.2373F+01	-3.4054E-01	-2.1915E_01
23	2+6235E+02	3.2373E+01	-4.3195E-01	-1.5595E-01
24	2+6814E+02	3.2373E+01	-4.8778E-01	-7.1800E-02
25	2+4009E+02	3.6624E+01	2.4497E-02	-3.2553E-01
26	2+4348E+02	3.6624F+01	-6,7940E-02	-3.2704E-01

	x	Y	н	ALPHA
POINT	INCHES	INCHES	NO UNITS	RAD/FT
27	2+4857E+02	3.6624E+01	-2.0514E-01	-3.1736E-01
28	2.5400E+02	3.6624F.+01	-3,4347E-01	-2.9126E-01
29	2+5943E+02	3.6624F+01	-4.6630E-01	-2.4886E-01
30	2•6486E+02	3.6624E+01	-5.6676F-01	-1.9017E-01
31	2+3847E+02	4.0872E+01	9.37736-02	-3.7441E-01
32	2•4164E+02	4.0872F+01	-5.51A1E-03	-3.7752E-01
33	2+4639E+02	4.0872E+01	-1.5480E-01	-3.7542E-01
34	2•5146E+02	4.0872E+01	-3.1128E-01	-3.6422E-01
35	2+5652E+02	4.0872E+01	-4.6107E-01	-3.4377E-01
36	2+6159E+02	4+0872E+01	-6.0027E-01	-3.1408E-01
37	2+3686E+02	4.5123E+01	2,0276E-01	-4.4404E-01
38	2+3980E+02	4+5123E+01	9.4441E-02	-4.4065E-01
39	2+4421E+02	4+5123E+01	-6.6776E-02	-4.3737E-01
40	2•4891E+02	4.5123E+01	-2.3787E-01	-4.3625E-01
41	2+5361E+02	4•5123E+01	-4.0900E-01	-4.3759E-01
42	2+5831E+02	4+5123E+01	-5.81158-01	-4.4139E-01
43	2+3524E+02	4+9375E+01	3.54856-01	-5.2680E-01
44	2+3795E+02	4•9375E+01	2.3732E-01	-5.1444E-01
45	2+4202E+02	4.9375F+01	6.4748E-02	-5.0591E-01
46	2+4636E+02	4+9375E+01	-1.1848E-01	-5.1005E-01
47	2+5070E+02	4+9375E+01	-3.0568E-01	-5.2785E-01
48	2+5504E+02	4.9375E+01	-5.0179E-01	-5.5931E-01
49	2+3363E+02	5.3623E+01	5,5517E-01	-6.2093E-01
50	2+3611E+02	5.3623E+01	4.2890E-01	-6.0042E-01
51	2+3984E+02	5.3623F+01	2.4540E-01	-5.8455E-01
52	2+4381E+02	5+3623E+01	5.1901E-02	-5.8733E-01
53	2+4779E+02	5.3623E+01	-1.4588E-01	-6.1045E-01
54	2+5176E+02	5+3623F+01	-3.5470E-01	-6.5391E-01
55	2+3201E+02	5.7873E+01	8.0921E-01	-7.2419E-01
56	2+3427E+02	5.7873F+01	6.7533E-01	-7.0093E-01
57	2+3765E+02	5+7873E+01	4.8117E-01	-6.7839E-01
58	2+41261+02	5+7873E+01	2.7865E-01	-6.7070E-01
59	2.448/1:+02	5+7873E+01	7.5915E-02	-6.7988E-01
60	2+48486+02	5.7873F+01	-1.3212E-01	-7.0592E-01
INTEDO		DOTNADY SUDE	ACEC. CUDE -	1. MODE -
INTERP	ILATED HUDES	PRIMART SURF	AUES+ SURF =	I = MUDE = 3

	X	Y	н	ALPHA.
POINT	INCHES	INCHES	NO UNITS	RAD/FT
1	2+4671E+02	1.9200E+01	-2.1426E-01	2.0201E-01
2	2.51046+05	1.9200F+01	-1,4613F-01	1.7577F-01
3	2+5753E+02	1.9200E+01	-6.1996E-02	1.3505E-01
4	2.6445E+02	1.9200E+01	2.9558F-03	8.9806E-02
5	2.7137E+02	1.9200E+01	4.1270F-02	4-2704E-02
6	2+7830E+02	1.9200E+01	5.1872E-02	-6.2593E-03
7	2+4493E+02	2.3874E+01	-3.3251E-01	3-1396E-01
8	2.4901E+02	2+3874F+01	-2.3237E-01	2.7562E-01
9	2+5513E+02	2.3874E+01	-1.0647E-01	2.1856E-01
10	2+6165E+02	2.3874E+01	-4.0762E-03	1.5829E-01

	X	Y	н	ALPHA
POINT	INCHES	INCHES	NO UNITS	RAD/FT
11	2+6817E+02	2+3874E+01	6.5724E-02	9.8633E-02
12	2•7469 <u>t</u> +02	2.3874F+01	1.0326E-01	3.9588E-02
13	2•4332E+02	2+8122E+01	-4.35516-01	4.3016E-01
14	2.4717E+02	2+8122E+01	-3,0622E-01	3.7644E-01
15	2+5294E+02	2.8122E+01	-1.4345E-01	3.0116E-01
16	2•5910E+02	2.8122E+01	-8.0001E-03	2.2787E-01
17	2+6526E+02	2+8122E+01	9.1689E-02	1.6181E-01
18	2+7142E+02	2+8122F+01	1.5933F-01	1.0298E+01
19	2+4170E+02	3+2373F+01	-5.2318F-01	5.4189E-01
20	2+4533E+02	3+2373F+01	-3.6902F-01	4-8014E-01
21	2+5076E+02	3.2373F+01	-1.71738-01	3.9244E-01
22	2+5655E+02	3.2373E+01	-3.5048F-03	3.05418-01
23	2+6235E+02	3.2373E+01	1.24326=01	2.25128-01
24	2+6814E+02	3.2373E+01	2 14005+01	1.51555-01
25	2.4009E+02	3.6624F+01	-5.84116-01	6.4079E-01
26	2+4348E+02	3-66245+01	-4 11205-01	E 91075 01
27	2.4857F.02	3.66345.01		2.010/E-01
28	2.5400E+02	3.66245.401	1 494105-01	4+09546-01
29	2+5943E+02	3.6624F+01	1.40035-02	2.8647E-01
30	2+6486E+02	3.6624F+01	2 73756-01	1.80055-01
31	2.38475+02	4.08725+01	=6 0523E=01	7 25145-01
32	2-4164E+02	4.08725+01	-6 20455-01	6 7200E A1
37	2.4639E+02	4.08725+01		D + / COOL = VI
34	2-5146F+02	4.09725+01	-1./140C-V1	2+04IUE=UI
35	2.54525+02	4.09726.01	3 39335-02	4.100/E-01
36	2.6159E.02	4.09725.01	2.20222-01	3+33002-01
30	2.36865+02	4.51230+01	-5 73300-01	7 84445 01
38	2.3980E+02	4.51235+01	-3.95226-01	7,000000-01
30	2+4421E+02	4.51235+01	-1 25005-01	/ + 40916 = 01 4 47565 A)
40	2.48916.02	4.51236+01	1 16075-01	0.0/JSC=01
40	2.53615402	4 51235 401	1.10276-01	5+0052E=01
42	2+53010+02	4.51236+01	3.1110ETU1	4.29896-01
	2.35245.403	4.02755401	-4 9900E-01	2+/5405-01
44	2.37956.02	4 93755401	-4.00/92-01	8.2/142-01
44	2.437336.402	4 00755+01	-3.0427E-01	7.99708-01
45	2+42022+02	4.73756+01	-4.J260E-02	7.3605E-01
40	2.50705.02	4+73/36701	2.0011E-01	6.3841E-01
41	2+50700+02	4+93/36.401	4.1464E=01	5.1008E-01
40	2+33046.402	4+93/32+01	2.1155F-01	3.5103E-01
49	2+33030+02	5+30231+01	-3,462HE-01	8.4421E-01
50	2+30112+02	5+30231+01	-1.7290E-01	8.2896E-01
21	2+39046+02	5+36231+01	7.8013E-02	7.8256E-01
52	2+43016+02	5+36231+01	3.2472E-01	7.0194E-01
	2+41176+02	3+30231+01	5,3942E-01	5-8919E-01
54 EE	2+51/02+02	5+J623++01	7.1145E-01	4.4432L-01
55	2+32012+02	5+18131+01	-1.4269E-01	8.J462E-01
20	2+.14212+02	5+1813F+01	1.3615E-02	8.2636E-01
57	2 . 1265+02	5+1813F+01	2.4294E-01	7.9629E-01
20	2+41205+02	5+1813E+01	4.7477E=01	7.4082E-01
27	2+448/5+02	5+1813E+01	0.8627E-01	6.6121E-01
60	2+48482+02	5+7873E+01	8.7020E-01	5.5746E-01

-------	-----------------	-------------	--------------	-------------
	X	Ŷ	н	ALPHA
POINT	INCHES	INCHES	NO UNITS	PAD/FT
1	2•4671E+02	1.9200E+01	5.24ANE-03	1.4903E-01
2	2.5104£+02	1.9200F+01	6.1654F-02	1.6088F-01
3	2+5753E+02	1.9200F+01	1.4630F-01	1.4549E-01
4	2+6445E+02	1.9200F+01	2.1503E-01	8-5218E-02
5	2.7137E+02	1.92005+01	2.35925-01	-2.0330E-02
6	2.7830E+02	1.9200F+01	1.8287E-01	-1.7115E-01
7	2.4493E+02	2.38745+01	=1 66685=02	1.6204E-01
	2.49016.02	2.39746+01	4 3373E=02	1.02740-01
6	2 4 7 0 1 - 102	2+30746+01	4.32738-02	1.0//10-01
	2+55136+02	2+38745+01	1.43286-01	1+99750-01
10	2+61050+02	2+38741+01	2.4/8/E-01	1.79376-01
11	2+6817E+02	2.3874E+01	3.3206E-01	1.2470E-01
12	2+7469E+02	2.3874F+01	3.77228-01	3.5739E-02
13	2+4332E+02	2+8122E+01	-4.5816E-02	1.5452E-01
14	2+4717E+02	2+8122F+01	7.4512E-03	1.7771E-01
15	2•5294E+02	2+8122F+01	1.0156E-01	2.1371E-01
16	2+5910E+02	2+8122E+01	2.2145E-01	2.5374E-01
17	2+6526E+02	2+8122E+01	3,6231E-01	2.9545E-01
18	2+7142E+02	2.8122E+01	5.2500F-01	3.3883E-01
19	2+4170E+02	3.2373E+01	-8.7749E-02	1.2691E-01
20	2+4533E+02	3.2373F+01	-4.7207E-02	1.4390E-01
21	2+50768+02	3.2373E+01	2.80915-02	1.9360E=01
22	2+5655E+02	3.2373E+01	1 40785-01	2.78635-01
23	2+6235E+02	3.23736+01	3 02515-01	3.96735-01
24	2.68145+02	3.23730+01	5 20345-01	5 47005-01
25	2.40095.02	3 66365401	-1 27015-01	3 34075 43
2.5	2 40070402	3 66365401		7.J497E=02
20	2+43405+02	3.66246.401	-1.0015E-01	8.42985-02
21	2+40316+02	3+00246+01	-5.98078-02	1.30692-01
20	2+54000+02	3+00241.*01	2.306/1-02	2.40455-01
29	2+59436+02	3+6624E+01	1.6528E-01	3.9363E-01
30	2.64861+02	3+6624E+01	3,8739E-01	5.9623E-01
31	2+3847E+02	4+0872E+01	-1.3754E-01	-2.1714E-02
32	2+4164E+02	4+0872E+01	-1.4269E-01	-1.3786E-02
33	2+4639E+02	4.0872F+01	-1.3955F-01	3.7573E-02
34	2•5146E+02	4+0872E+01	-1.0299E-01	1.4456E-01
35	2+5652E+02	4.0872E+01	-9.8932E-03	3.0542E-01
36	2+6159E+02	4+0872E+01	1.6250E-01	5.2018E-01
37	2.3686E+02	4.5123F+01	-1.0084E-01	-1.7756E-01
38	2.3980E+02	4.5123F+01	-1.4277E-01	-1.6225E-01
39	2.4421E+02	4.5123F+01	-1.9391F-01	-1.1038E-01
40	2+4891E+02	4.5123E+01	-2.2012E-01	-1.6829E-02
41	2+5361E+02	4-51235+01	-2.0195F-01	1.1617E=01
42	2+5831E+02	4.51236+01		2.8862F_01
43	2.3524F+02	4.93755+01	2 33205-03	-3.96305-01
44	2.2795F+02	4.93755401	-4 34015-02	-3 65735 01
44	2.42025402	4 93756401	-0,20016-02	-3.05/JC-01
-45	2-44265+02		-1.7(0000001	-2*IN1AE+01
40	2 50205-02	++73/3t *01	-2,105/E-01	-2.3415L-01
47	2+50706+02	4+73758+01	-J.4486E+01	-1.4076E-01

INTERPOLATED MODES, PRIMARY SURFACES, SURF = 1, MODE = 4

1

`

1

POINT	X INCHES	Y INCHES	H NO UNITS	ALPHA PADZFT
48 49 50	2+5504E+02 2+3363E+02 2+3611E+02	4+9375E+01 5+3623E+01 5-3623E+01	-3.7626F-01 2.6748E-01	-3.0030E-02 -6.8118E-01
51 52	2+3984E+02 2+4381E+02	5+3623E+01 5+3623E+01 5+3623E+01	-5.5213E-02 -2.3216E-01	-5.0146E-01
53 54 55	2+4779E+02 2+5176E+02 2+3201E+02	5+3623E+01 5+3623E+01 5+7873E+01	-3.8789E-01 -5.2397E-01 6.6466E-01	-4.3975E-01 -3.8278E-01 -1.0519E+00
56 57 58	2+3427E+02 2+3765E+02 2+4126E+02	5.7873E+01 5.7873E+01 5.7873E+01	4.7340E-01 2.0917E-01 -4.6695E-02	-9.8348E-01 -8.9254E-01 -8.1105E-01
59 60	2•4487E+02 2•4848E+02	5.7873F+01 5.7873F+01	-2.8045E-01 -4.9692E-01	-7.4558E-01 -6.9613E-01
INTERP	OLATED MODES.	PRIMARY SURF	ACES SURF =	1. MODE = 5
POINT	X	Y INCHES	H No UNITS	ALPHA RAD/FT
1	2.4671E+02	1•9200E+01	3.1148E-01	9.7053E-03
2	2.51048+02	1.9200E+01	2.9860E-01	-7.9225E-02
3	2+5/536+42	1.92005.01	2.2441E-01	-1.9070E-01
5	2.7137F+02	1.92006.01	-9 36385-02	-2.0003E-01
6	2+7830E+02	1.92005+01	-3.0027F=01	-3.7070E=01
` 7	2+4493E+02	2.3874F+01	3.3663E=01	-4.8219E-02
8	2+4901E+02	2.3874E+01	3.0574F-01	-1.3187E-01
9	2+5513E+02	2.3874E+01	2.1062E-01	-2.3749E-01
10	2+6165E+02	2.3874E+01	5.6820E-02	-3.2388E-01
11	2+6817E+02	2+3874E+01	-1.3657E-01	-3.8316E-01
12	2.7469E+02	2.3874F+01	-3.5481E-01	-4.1532E-01
13	2+4332E+02	2.8122F+01	2.7998E-01	-1.0697E-01
14	2+4/1/5+02	2+81221+01	2.3/1/E-01	-1.5977E-01
15	2+52742+02	2.81225+01	1.4156ETU1	-2.J7095.01
17	2+6526E+02	2.81225+01	-1.04/7E-03	-3.1790E-01
18	2.7142E+02	2+8122F+01	-4.07596-01	-4-7266E-01
19	2+4170E+02	3.2373E+01	1.3866E-01	-5.2227E-02
20	2.4533E+02	3.2373E+01	1,1481E-01	-1.0644E-01
51	2+5076E+02	3.2373E+01	4.6943E-02	-1.9480E-01
22	2+5655E+02	3.2373E+01	-7.1751E-02	-2.9840E-01
23	2+6235E+02	3.2373E+01	-2.4280E-01	-4.1163E-01
24	2+6814E+02	3.2373F+01	-4.7084E-01	-5.3449E-01
25	2+4009E+02	3.6624E+01	-6.3502F-02	1.3765E-01
26	2+43482+02	J+6624F+01	-3.8002E-02	4.2413E-02
21	2+40315+02	3+00248+01	-5.0793E-02	-1.0328E-01
20	2.59635+02	3.66245+01	-1.JJ40E-01	-2.0244L-01
30	2.64865+02	3.66245+01	-C.00410-01	-4+204/E-01
31	2+3847E+02	4+0872F+01	-2.8486E+01	4.0062E-01

.

 \sim

ſ

í

(

X	Y	H	ALPHA
INCHES	INCHES	NO UNITS	PAD/FT
2.41645.02	4 0872E+01	-1 970/5-01	2 64405 01
2.46396+02	4.0872=+01		E 6222E 02
2.5146F+02	4.08725+01	-1.5376-01	3.02325-02
2.54525.02	4.00725.01	-1.07000-01	-/ 05705 01
2.41595402	4.00720+01	-6,17200-01	-4.0570L=01
2.36865+02	4 51335+01	-2.00945-01	-0.4000C-01
2.30905.02	4.51236.01	-3 41405-01	7.0004C-01
2.44215.02	4+51236+01	-3.4108E-01	5+5540E-01
2+44210+02	4+51232+01	-1.01196-01	3.1015E-01
2+48910+02	4+51230+01	-1.17096-01	1.1101E-02
2+53010+02	4+51238+01	-1.//116-01	-3.23302-01
2+58310+02	4+5123E+01	-3.7509E-01	-6.9305E-01
2+3524E+02	4+9375E+01	-6,3303E-01	1.0216E+00
2+3795E+02	4+9375E+01	-4.1835E-01	8.7428E-01
2.4202E+02	4+9375E+01	-1.6622E-01	6.0361E-01
2+4636E+02	4+9375E+01	-1.0027E-02	2.4917E-01
2+5070E+02	4•9375E+01	5.7656E-03	-1.7311E-01
2+5504E+02	4+9375E+01	-1.4337E-01	-6.6324E-01
2+3363E+02	5+3623E+01	-6.3971E-01	1.2963E+00
2+3611E+02	5+3623E+01	-3.8471E-01	1.1618E+00
2+3984E+02	5.3623E+01	-6.3412E-02	8.9483E-01
2+4381E+02	5.3623E+01	1.7398E-01	5.23958-01
2+4779E+02	5+3623E+01	2.7383E-01	6.4151E-02
2+5176E+02	5+3623E+01	2.0666E-01	-4.8458E-01
2+3201E+02	5.7873E+01	-4.6342E-01	1.4624E+00
2+3427E+02	5.7873E+01	-1.9845E-01	1.3508E+00
2+3765E+02	5.7873E+01	1.5244E-01	1.1259E+00
2.4126E+02	5.7973E+01	4.4564E-01	8.1018E-01
2+4487E+02	5+7873E+01	6.3207E-01	4.1609E-01
2+4848E+02	5.7873E+01	6.8815E-01	-5.6348E-02
	x INCHES 2.4164E+02 2.4639E+02 2.5146E+02 2.5652E+02 2.5652E+02 2.3686E+02 2.3980E+02 2.3980E+02 2.4421E+02 2.4491E+02 2.4491E+02 2.5361E+02 2.5561E+02 2.3524E+02 2.4636E+02 2.4636E+02 2.5504E+02 2.5504E+02 2.3984E+02 2.3984E+02 2.3984E+02 2.3201E+02 2.3427E+02 2.3427E+02 2.3427E+02 2.4487E+02 2.4487E+02 2.4487E+02 2.4487E+02 2.4487E+02 2.4487E+02	XYINCHESINCHES2.4164E+024.0872F+012.4639E+024.0872F+012.5146E+024.0872F+012.5652E+024.0872F+012.5652E+024.0872F+012.6159E+024.0872F+012.3686E+024.5123F+012.3686E+024.5123F+012.3980E+024.5123F+012.4421E+024.5123F+012.5361E+024.5123F+012.554E+024.9375E+012.3795E+024.9375E+012.4636E+024.9375E+012.5504E+024.9375E+012.3363E+025.3623F+012.3984E+025.3623F+012.3984E+025.3623E+012.5176E+025.3623E+012.3201E+025.7873E+012.3427E+025.7873E+012.3765E+025.7873E+012.3427E+025.7873E+012.44847E+025.7873E+012.44847E+025.7873E+012.44847E+025.7873E+01	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

INTERPOLATED MODES, PRIMARY SURFACES, SURF = 1, MODE = 6

	x	Y	н	
POINT	INCHES	INCHES	NO UNITS	RADIFT
1.	2+4671E+02	1.9200F+01	5,58516-04	1.2203E-02
2	2.5104E+02	1.9200F+01	-4,0052F-03	-2.7268F-02
3	2+5753E+02	1.9200F+01	-9.8217E-03	2.8819E-02
4	2+6445E+02	1.9200F+01	6.0485E-02	2.4114E-01
5	2.7137E+02	1.9200F+01	2.9870F-01	6.1088E-01
6	2+7830E+02	1.9200F+01	7.9563F-01	1.1390E+00
7	2+4493E+02	2.3874E+01	4.9443E-03	-2.4280E-02
8	2.4901E+02	2.3874F+01	-8.5717F-03	-4.6467E-02
9	2+5513E+02	2+3874E+01	-2.0500F-02	1.9501E-02
10	2+6165E+02	2.3874F+01	3.8764E-02	2.2114F=01
11	2+6817E+02	2.3874F+01	2.4446F-01	5.5829E-01
12	2.7469E+02	2.3874F+01	6.7025E-01	1.0309E+00
13	2+4332E+02	2+8122E+01	1.54795-02	-5.6577E-02
14	2+4717E+02	2+8122E+01	-7.7484F-03	-8.0205F-02
15	2+5294E+02	2+8122E+01	-3.7452E-02	-2.5165E-02

	X	Y	н	ALPHA
POINT	INCHES	INCHES	NO UNITS	RADZET
16	2.5910E+02	2.81225+01	-9 87395-03	1.53226-01
17	2.65265+02	2.8122=+01	1 4006	4 5514c-01
19	2.7142E+02	2.91225+01	4 70/55 01	0 00(0E 0) 4+33145-01
10	2 1 1 705.02	2 01225 101	4.10435-01	8.0060E-01
19	2+41/02+02	3+23/31+01	3.4/528-02	-9.2593L-02
20	2+4533E+02	3+2373E+01	2.1693E-03	-1.1704E-01
21	2+5076E+02	3+2373E+01	-4.6303E-02	-8.2954E-02
22	2+5655E+02	3+2373E+01	-5,8875E-02	4.6983E-02
23	2+6235E+02	3+2373F+01	1.4621E-02	2.7352E-01
24	2•6814E+02	3.2373E+01	2.2083E-01	5.9665E-01
25	2+4009E+02	3.6624F+01	5.7610E-02	-1.2335E-01
26	2+4348E+02	3+6624E+01	1.9364E=02	+1.4365E-01
27	2.4857E+02	3.66245+01	-4 14005-02	-1 35/45-01
29	2.54005+02	3 66365401	-4.14402-02	-1.3544E=01
20	2 54005 02	3 6(3/5+01	-9.1213E-02	-/.55526-02
27	2+39432+02	3+00246+01	-1.01905-01	3+7125E-02
30	2+6480E+02	3+05242+01	-4.9649E-02	2.0259E-01
31	2.3847E+02	4+0872E+01	7.7537E-02	-1.2513E-01
32	2+4164E+02	4.0872E+01	4.2163E-02	-1.4233E-01
33	2•4639E+02	4+0872E+01	-1.8155F-02	-1.6101E-01
34	2.5146E+02	4.0872E+01	-8,8690E-02	-1.7149E-01
35	2+5652E+02	4+0872E+01	-1.6160E-01	-1.7223E-01
36	2+6159E+02	4.0872E+01	-2.3276E-01	-1.6324E-01
37	2+3686E+02	4.5123E+01	9.2020E-02	-7.2022E-02
38	2+3980E+02	4+5123E+01	7.2548E-02	-8.8243E-02
39	2.4421E+02	4.5123E+01	3.35815-02	=1.2672E=01
40	2.4891F+02	4.51235+01	+2 71565+02	=1.8648E=01
41	2.5361E+02	4.51236+01		-3 45575 01
42	2.59315+02	4 51235-01	-2 27015-01	-2.63075-01
. 42	2 36316402	4+51252+01	-2.3/812-01	-3-03976-01
43	2+35246702	4+93/35.401	6.1603E=02	4.8317E-02
44	2.37930+02	4+93755+01	7.04236-02	2.1335E-02
45	2+4202E+02	4+9375E+01	7.0671E-02	-3-12998-02
46	2+4636E+02	4•9375E+01	4.2674E-02	-1.2977E-01
47	2+2070E+02	4•9375E+01	-2.7625E-02	-2.6532E-01
48	2•5504E+02	4.9375E+01	-1.5363E-01	-4.3796E-01
49	2+3363E+02	5.3623E+01	-4.0480E-02	2.6080E-01
50	2+3611E+02	5.3623E+01	1.0085E-02	2.2518E-01
51	2.3984E+02	5.3623F+01	6.8101F-02	1.4271E-01
52	2+4381E+02	5.3623E+01	9.5532E-02	1.6326E-02
53	2.4779E+02	5.3623F+01	7.4537F-02	-1-4972E-01
54	2.5176E+02	5+3623E+01	-8.0179F-03	-3-55/2F-01
55	2.3201F+02	5.78735+01	-2.41155-01	6.0085F-01
56	2.3427E+02	5.78736+01	-1 34345-01	5 34015 A1
5.7	2.37655.02	5.79735+01	0 0000C=0/	0.3010E 01
21	2.41245+02	5 70735 101	0.7092E=04	4.20182-01
20		5+10130 +01	1.00296-01	2.10896-01
59	2+4481E+02	5+7873E+01	1.0533E-01	1.1202E-01
60	2.4848F+05	5•1813E+01	1.7152E-01	-7.4445E-02

INTERPOLATED MODES, PRIMARY SURFACES, SURF = 1, MODE = 7

PAGE 33

• .)

POINT	X INCHES	Y		
	THOULD	100,000	00 00115	RADIFI
1	2.4671E+02	1.9200E+01	4,0729E-02	-4.8928E-02
2	2.5104E+02	1.9200E+01	4.4845E-03	-1.4016E-01
3	2+5753E+02	1.9200E+01	-7,9249E-02	-1.4258E-01
4	2+6445E+02	1.9200 <u>F</u> +01	-1.1979E-01	3.2625E-02
5	2+7137E+02	1.9200E+01	-6.3099 <u>F</u> -03	3.9136E-01
6	2+7830E+02	1.9200F+01	3,6708E-01	9.3363E-01
7	2+4493E+02	2.3874E+01	5.4548E-02	-3.2093E-02
8	2+4901E+02	2.3874E+01	3.2831E-02	-9.0483E-02
10	2+55136+02	2+38/42+01	-2.3493E-02	-1.1869E+01
10	2+01032+02	2 30745 +01	-7.031/2-02	-7.0252E-02
12	2+0017L+02	2.30745+01	-0.3177E-02	5.9250C-U2
17	2.43325+02	2.81225+01	5 32025-02	C+0983C+01
14	2.4717F+02	2-81225+01	4 9395E+02	-1.7525E-03
15	2+5294E+02	2.8122F+01	2.9005E-02	-6.3981E-02
16	2+5910E+02	2.8122F+01	-1.7946E-02	-1.2127E-01
17	2+6526E+02	2.8122F+01	-9.7820E-02	-1.9228E-01
18	2+7142E+02	2+8122E+01	-2.1766E-01	-2.7702E-01
19	2+4170E+02	3.2373E+01	2.4521E-02	4.9602E-02
20	2+4533E+02	3+2373E+01	4.0095E-02	4.9850E-02
21	2+5076E+02	3+2373E+01	5,5230E-02	8.7687E-03
22	2+5655E+02	3+2373E+01	3,7924E-02	-8.9878E-02
23	2+6235E+02	3.2373E+01	-4.0683E-02	-2.4512E-01
24	2+6814E+02	3+2373E+01	-2.0792E-01	-4.5696E-01
25	2-4009E+02	3.6624E+01	-2.6158E-02	1.1377E-01
26	2.4348E+02	3.6624E+01	6.5168E-03	1.1456E-01
21	2+48576+02	3.6624E+01	5.0184E-02	8.5170E-02
28	2+54000+02	3+6624E+01	7.4052E-02	1.3352E-02
29	2.64965+02	3+00241+01	-3 30405-02	-1.00232-01
30	2.3847F+02	4-08725+01	-2.27675-02	1 66008-01
32	2+4164E+02	4.08725+01	-6.3501E-02	1.61415-01
33	2+4639E+02	4.08725+01	1.77036-02	1.4707E=01
34	2.5146E+02	4.0872F.01	7.51566-02	1.2369F-01
35	2.5652E+02	4.0872F+01	1,2098F-01	9.1986F-02
36	2+6159E+02	4+0872E+01	1.5166E-01	5.1943E-02
37	2•3686E+02	4+5123E+01	-1.5505E-01	1.8545E-01
38	2+3980E+02	4•5123F+01	-1,1110E-01	1.7446E-01
39	2•4421E+U2	4+5123E+01	-4.8353E-02	1.6943E-01
40	2+4891E+02	4.5123E+01	1.9443E-02	1.7919E-01
41	2+5361E+02	4.5123E+01	9.4126E-02	2.0458E-01
42	2+5831E+02	4.5123E+01	1.8182E-01	2.4559E-01
43	2+35241+02	4.9375F+01	-1.6585E-01	1.3441E-01
44	2+37956+02	4+9375E+01	-1.3694E-01	1.2371E-01
40	2+42022+02	4.93755.401	-9.4259E-02	1.3330E-01
40	2.50705+02	4.93755+01	-3,7148E-02	1.1/422-01
48	2+5504F+02	4.93755+01	1 505/55-02	2+30322-UI 3.70635-01
49	2+3363E+02	5+3623E+01	-7.5934E-01	-3.2544F-AD
50	2+3611E+02	5+3623E+01	-8.2519E-02	-2.84155-02
51	2+3984E+02	5+3623E+01	-8.6683E-02	7.5418E-03

-

.

 \cdot

	X	Y	ч	
POINT	INCHES	INCHES	NO UNITE	
		10000	10 0M112	RADIFI
52	2.43815.02	5.36235.01	-7 24375-03	0 53/35 03
52		5-3633-401	7.5702-02	N.J2026-02
2.2	2+4//25102	5.30236+01	-2.3/22E-02	2.0362E-01
24	2+51/02+02	2+30236+01	0.0921E-02	3.6261E=01
<u>לכ</u>	2+3201E+02	5.7873F+01	1,5823E+01	-3.8073E-01
56	2+3427E+02	5+7873E+01	9.0820E-02	-3.3495E-01
57	2+3765E+02	5.7873E+01	7,6685E-03	-2.5178E-01
58	2•4126E+02	5.7873E+01	-5.2347E-02	-1.4389E-01
59	2•4487E+02	5.7873E+01	-7.6927E-02	-1.6213E-02
60	2•4848E+02	5.7873E+01	-6.0117E-02	1.3126E-01
.	-			
INTERPO	LATED MODES.	PRIMARY SURF	ACES+ SURF =	$1 \cdot MODE = 8$
	X	Y	н	ALPHA
POINT	INCHES	INCHES	NO UNITS	RAD/FT
1	2.4671E+02	1.9200E+01	-1,2855E-01	-8.7860E-01
2	2.5104L+02	1.9200F+01	-3,3924E-01	-3.1734E-01
3	2•5753E+02	1.9200E+01	-3.4968E-01	2.1730E-01
4	2+6445E+02	1.9200E+01	-1.5688E-01	3.8116E-01
5	2•7137E+02	1.9200E+01	9.4450E-03	1.2550E-01
6	2+7830E+02	1.9200E+01	-9.2750E-02	-5.4969E-01
7	2+4493E+02	2.3874E+01	6.0576F-02	-6.7545E-01
8	2+4901E+02	2.3874F+01	-1.0958E-01	-3.3611E-01
9	2+5513E+02	2.3874F+01	-1.7367E-01	6.2538E-02
10	2+6165E+02	2+3874E+01	-5.6952E-02	3.4179F-01
` i i	2+6817E+02	2.3874F+01	1 7060E=01	4.7075E-01
12	2.7469E+02	2.38745+01	4 27085-01	4 4833E-01
13	2+4332E+02	2.81225+01	2 47145-01	-4 0170E-01
14	2.4717E+02	2.81225+01	1 33045-01	-7.0266E-01
15	2.5294E+02	2.81225+01	3 54316-03	-3.0366C-01
16	2.59105+02	2.81225+01	6 7000E=02	-0.000UE-UZ
17	2.6526E+02	2.81225+01	2 997/5-02	2.03090L=01
18	2.71428+02	2.81225+01	2.00346-01	0.4325C-UI
19	2.4170E+02	3.23736+01	2 25205-01	1+14835+00
20	2.45336.02	3.23736+01	3 46435-01	-2 01045 01
21	2.50766102	3-23738-01	2.90032-01	-5.01402-01
22	2.56555.02	3 23735+01	0.01000-00	-2.00/10-01
22	2.43355402	3+23/35+01	9.0102E-02	1.07596+01
2.1	2+02332+02	3 2 2 2 7 2 5 4 0 1	2.7053E=01	0.4468E-01
24	2+00172+02	3+23/32+01	7.37556-01	1.4106E+00
27	2+40072+02	3+00241+01	2.70706-01	-1.5121E-01
20	2+43486+02	3+66246+01	2.1039E-01	-2.5969E-01
21	2+4857E+02	3+6624E+01	9,5413E-02	-2.4728E-01
25	2+5400E+02	3+66241.+01	5.9896E-05	-2.4203E-03
29	2+5943E+02	3+6624E+01	1.2929E-01	4.8153E-01
30	2+6486E+02	3+6624E+01	5.0180E-01	1.2046E+00
31	2+3847E+02	4.0872F+01	1.03R0E-01	-9.0830E-03
32	2+4164E+02	4+0872E+01	8.2039E-02	-1.4384E-01
33	2+4639E+02	4+0872E+01	6.5386E-03	-2.1055E-01
34	2+5146L+02	4+0872E+01	-6.6075E-02	-1.0259E-01
35	2+5652E+02	4+0872E+01	-5,40738-02	1.9026E-01

.

 \sim

	X	Y	н	ALPHA
POINT	INCHES	INCHES	NO UNITS	RAD/FT
36	2+6159E+02	4.0872F+01	1,2061E-01	6.6802E-01
37	5+3686E+05	4.5123E+01	-1,9495F-01	3.5261E-01
38	2.3980E+02	4+5123E+01	-1.3276E-01	1.6182E-01
39	2+4421E+02	4.5123F+01	-1.1504F-01	-5.0602E-02
40	S+4891E+05	4.5123E+01	-1.6344E-01	-1.7961E-01
41	2+5361E+02	4•5123E+01	-2.4265E-01	-2.0788E-01
42	2•5831E+02	4.5123F+01	-3.1321E-01	-1.3544E-01
43	2+3524E+02	4+9375E+01	-4.6180E-01	7.8874E-01
44	2+3795E+02	4.9375E+01	-3.1041E-01	5.5147E-01
45	2•4202E+02	4.9375E+01	-1.8367E-01	1.9660E-01
46	2+4636E+02	4.9375E+01	-1.8082E-01	-1.8058E-01
47	2+5070E+02	4.9375E+01	-3.1407E-01	-5.5636E-01
48	2+5504E+02	4+9375E+01	-5.8292E-01	-9.3074E-01
49	2+3363E+02	5+3623E+01	-5.9527E-01	1.2293E+00
50	2+3611E+02	5.3623E+01	-3,6739E-01	9.6722E-01
51	2+3984E+02	5+3623E+01	-1.3549E-01	5.1471E-01
52	2+4381E+02	5.36238+01	-5.5713E-02	-4.6464E-02
53	2+4779E+02	5+3623E+01	-1.7521E-01	-6.8866E-01
54	2+5176E+02	5+3623E+01	-5,2081E-01	-1.4119E+00
55	2+3201E+02	5.7873E+01	-4.9432E-01	1.5774E+00
56	2.3427E+02	5.7873E+01	-2.2047E-01	1.3289E+00
57	2+3765E+02	5.7873E+01	9.3357E-02	8.8156E-01
58	2+4126E+02	5.78732+01	2.7452E-01	3.0582E-01
59	2•4487E+02	5.7873E+01	2.6716E-01	-3.7171E-01
60	2+4848E+02	5.7873E+01	4.0652E-02	-1.1510E+00

.

PAGE 37

GRAPHICAL REPRESENTATION OF INTERPOLATED MODES

.,

	MODAL DEFLECT	TIONS	TIMES 1.	0E 2, SUF	FACE = 1+	MODE = 1			
19.20				6	6	7	6	3	0
23.87				10	11	12	11	ß	4
28.12			1	5 16	17	16	15	10	
32,37			22	22	23	23	21	18	
36.62			29 3	0 31	:	31 29	26		FREQUENCY = 40.4 HZ
40.87		39	39	40	39	38	36		IST BENDING
45.12		50	50	50	50 48	46			
49.37		62 62	62	⁺ 61	60 9	58			
53.62	76	76	75	74 73	71-				
57.87	91	90 89	88	8 7 85					

	MODAL SLOP	PES (RAD/F)	r) TIMES	1.0E	2, 9	SURFACE	= 1, MODE	= 1				
19.20					3		1	0	' - 2		-5	-6
23,87					3	2	0	·	-2	-5	-9	
28.12				3		2	0	-2	-5		-10	
32.37			i	2	2		0 -	1	-5	-9		
36.62			2	2		ŋ	-1	-4				
40.87			1	L	0		-1 -	4 -	- 7			·
45.12		0	0		0	-1	-4	7				-
49.37		-1	0 -	l	-2		-4 -7					
53,62		-3 -2	-2		-3	-4 -	-7				·	
57,87		-4 -4	-4 -2	•	-5	-6 •						

	MODAL DEFLECTIONS TIMES 1.0E 2. SURFACE = 1. MODE = 2
19.20	-3 -7 -14 -17 -15 -6
23.87	-3 -10 -19 -25 -26 -20
28.12	-3 -10 -21 -30 -36 -36
32.37	NODE LINE -1 -9 -22 -34 -43 -48
36,62	2 -6 -20 -34 -46 -56
40.87	9 -15 -31 -46 -60 FREQUENCY = 105.4 HZ 2 ND BENDING
45.12	20 9 -6 -23 -40 -58
49.37	35 23 6 -11 -30 -50
53,62	55 42 24 5 -14 -35
57.87	80 67 48 27 7 -13

	MODAL SLOPFS (RAD/FT) TIMES 1.0E 2. SURFACE = 1. MODE = 2	
19.20	-14 -13 -8 -1 8	51
23.87	-19 -18 -15 -7 3 18	
28.12	-24 -23 -20 -14 -5 6	
32.37	-28 -28 -26 -21 -15 -7	
36.62	-32 -32 -31 -29 , -24 -19	
40.87	-37 -37 -36 -34 -31	
45.12	-44 -44 -43 -43 -44	
49.37	-52 -51 -50 -51 -52 -55	ı
53.62	-62 -60 -58 -58 -61 -65	
57.87	-72-70 -67 -67 -70	

MODAL DEFLECTIONS TIMES 1.0E 2, SURFACE = 1, MODE = 3 19.20 -21 -14 -6 5 4 23.87 -33 -23 -10 6 10 28.12 -43 -14 15 -30 9 32.37 -36 -17 -52 12 21 36,62 -58 -41 16 27 -18 40.87 -17 -60 -42 22 34 5 · FREQUENCY = 144.4 HZ 45.12 -57 -38 -12 11 31 45 TORSION 49.37 20 -48 -30 41 57 53.62 -34 32 71 -17 53 57.87 24 68 -14 47 87 NODE LINE -

MODAL SLOPFS (RAD/FT) TIMES 1.0E 2. SURFACE = 1. MODE = 3 ---------19.20 23.87 28.12 43 -32.37 36.62 40.87 45.12 78 74 49.37 53.62 . 84 57.87 83 82

HODAL DEFLECTIONS TIMES 1.0E 2. SURFACE = 1. MODE = 4 19.20 51 23 14 18 6 23.87 -1 14 24 4 33 37 28.12 10 -4 <u>22</u> 36 52 32.37 14 З -8 -4 30 52 36.62 -12 -10 -5 16 38 S FREQUENCY = 213.1 HZ 40.87 -13 -14 -13 -10 16 3 PD BENDING 45.12 -10 -14 -19 -22 -20 -12 NODE LINE 49.37 2 -17 -6 -27 -37 -34 53.62 26 13 -5 -52 -23 -38 57.87 66 47 20 -28 54 -49 NODE LINE

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	MODAL SLO	PES (RAD/FT)	TIMES 1.00	E 1. SURF	FACE = 1,	MODE = 4				•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19.20				1	1	1		0	0	-1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23.87				1	1	1	1	1	n	
32.37 1 1 2 3 5 36.62 0 0 1 2 3 5 40.87 0 0 0 1 3 5 45.12 -1 -1 0 1 2 3 49.37 -3 -3 -2 -1 0 1 2 53.62 -6 -5 -5 -4 -3 -3 -3 57.87 -10 -9 -8 -8 -7 -6 -6	28,12			1	1	2		2	2	3	
36.62 0 0 1 2 3 5 40.87 0 0 0 1 3 5 45.12 -1 -1 0 1 2 49.37 -3 -3 -2 -1 0 53.62 -6 -5 -5 -4 -3 57.87 -10 -9 -8 -7 -6	32.37			1	1	1	2	3	5		
40.87 0 0 1 3 5 45.12 -1 -1 -1 0 1 2 49.37 -3 -3 -2 -1 0 53.62 -6 -5 -5 -4 -3 57.87 -109 -8 -7 -6	36.62		·	00	1		5	3	5		· · · ·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40.87			0 0	0	1	3	5			
49.37 -3 -3 -2 -1 0 53.62 -6 -6 -5 -5 -4 -3 57.87 -10 -9 -8 -7 -6	45.12		-1	-1	-1	0 1	2				
53.62 -6 -5 -5 -4 -3 57.87 -10 -9 -8 -7 -6	49.37		-3 -	3 -3	-2	-1	n				
57.87 -10 -9 -8 -8 -7 -6	53.62		-6 -6	-5	-5 -4	-3					
	57.87		-10 -9 -	8 - A	-7 -6						

.

:

,

1

	MODAL SLOPES (RA	D/FT) TIMES 1.0E	1. SURFACE = 1. MODE	= 5		
19,20			0 0	-1 -2	-3 -3	,
23.87			0 -1 -2	-3 -3	-4	
28,12		-1	-1 -2	-3 -3	-4	
32,37		0 -	-1 -1 -1	2 -4 -5		
36.62		1 0	- 1 -2	-4 -5		۱.,
40.87		4 2	0 -1 -,	↓ - 6		
45.12		75	3 0 -3	-6		
49.37	10	86	2 -1 -6			
53.62	12	11 8	5 0 -4			
57.87	14 13	11 A	4 0			

.

MODAL SLOPFS (RAD/FT) TIMES 1.0E 1. SURFACE = 1, MODE = 6

.

 \sim

(

÷.

i.

à.

19.20		0	0 0	2	6	11
23.87		0 0	0	2 5	10	
28.12	1	0 0	0 1	4	8	
32.37		0 -1	0 n	2 5		
36,62		-1 -1 -1	0 0	2		,
40.87	- 1	-1 -1 -	1 -1 -	•1		•
45.12	0	0 -1 -1	-2 -3			
49.37	0 0	0 -1 -;	2 -4		•	
53.62	2 2	1 0 -1 -:	3	•		
57.87	654	2 1 0				

MODAL SLOPES (RAD/FT) TIMES 1.0E 2. SURFACE = 1. MODE = 7 -----19.20 39 93 -4 -14 -14 3 . 23.87 -3 -11 -9 -7 5 26 28.12 -12 -27 Ο. -2 +6 -19 32.37 4 4 0 -8 -24 -45 11 36.62 11 8 1 -10 -25 1 40.87 16 16 14 12 , 9 5 45.12 18 17 16 17 20 24 12 13 17 25 49.37 13 37 • 53,62 -3 50 -2 8 0 36 57.87 -38-33 13 -25 -14 -1 t

;

FREQUENCY = 426.7 HZ

)

2

5

3

5

)

)

)

)

)

)

-5

MODAL SLOPES (RAD/FT) TIMES 1.0E 1. SURFACE = 1. MODE = 8 19.20 -8 -3 2 3 1 23.87 -6 -3 0 3 4 4 28.12 2 6 11 0 .-4 -3 32.37 -2 -2 -2 14 5 1 36.62 12 -1 -2 -2 0 . 4 40.87 0 -2 -1 -1 1 6 45.12 3 1 -2 0 -1 -1 49.37 7 5 1 -1 -5 -9 53.62 12 9 5 0 -14 -6 57.87 15 13 8 3 -3 -11

.

i

2

2

3

Υ.

)

PASS= 1. MACH = .90. DEN RATIO = 1.00. FREQ RATIO = 1.00

FLUTTER ANALYSIS USING THE K METHOD

DENSITY VARIATIONS

•

DENSITY = 7.647400E-02, LR/FT**3

FREQUENCY VARIATIONS

**======

VARIATION IN FREQUENCY FOR MODE NO. 0

GENERALIZED MASS, FREQUENCY, AND MODAL STIFFNESS

GENERALIZED MASS, LB

MODE	MODE = 1	2	3	4	5	6	7	8
1	2.592592E+00	-5.273559E-16	6.328271E-14	-1.565414E-14	-2.420286E-14	6.217249E-15	-5,5511158-15	2.042810E-14
5	-5.273559E-16	1.096850E+00	1.930400E-14	-1.239980E-14	3.1571978-14	2.844947E-15	5.013351E-16	5.884182E-15
3	6.328271E-14	1.930400E-14	1+229013E+00	-2.220446E-14	3.752554E-14	1.071365E-14	-3.330569E-16	3.308465E-14
. 4	-1.565414E-14	-1.239980E-14	-2.220446E-14	6.016879E-01	-3.885781E-15	6,133982E-15	1.984524E-15	4.363176E-14
5	-2.420286E-14	3.157197E-14	3.7525548-14	-3.885781E-15	9.458282E-01	3.885781E-15	-1.210143E-14	7.327472E-15
6	6.217249E-15	2.844947E-15	1.071365E-14	6.133982E-15	3.885781E+15	2.100029E-01	8.132384E-15	7.410739E-15
7	-5.551115E-15	5.013351E-16	-3-330669E-16	1.984524E-15	-1.210143E-14	8.132384E-15	1.5586028-01	-1.097733E-14
8	2.042810E-14	5.884182E-15	3.308465E-14	4.363176E-14	7.327472E-15	7.410739E-15	-1.097733E-14	9.615235E-01
MODE	FREQUENCY	FREQUENCY						
	CYC/SEC	RAD/SEC						
				:				
1	4.042748E+01	2.540133E+02						
2	1.053595E+02	6.619930E+02						
3	1.443544E+02	9.070051E+02						
4	2.131469E+02	1.339241E+03						
5	2.940645E+02	1.847661E+03						
6	3.370482E+02	2.117736E+03						
7	3.633346E+02	2.282898E+03		•				
8	4.266627E+02	2.680800E+03						
	_							
COMPLE	X GENERALIZED	MODAL STIFFNE	55, (REAL, IMA	G) + LB/JN				

MODE	MODE= 1			2					3					4			
1	(2.5926E+00,	0.)	0.	•	0.)	(0.	•	0.)	(0.	•	0.)
2	(0, ,	0.) (7.4	4497E+00,	0.)	(0.	,	0.)	(0.	•	0.)
3	(0. 1	, 0.)	0.	•	0.)	(1.5670E+01	•	0.)	(0• .	,	0.)

PASS= 1. MACH = .90. DEN RATIO = 1.00. FREQ RATIO = 1.00

COMPLEX GENERALIZED MODAL STIFFNESS, (RFAL, IMAG), LB/IN

MODE	MODE=	1			2.					3				1	+			
4	(0.	•	0.)	(0.	•	0.)	(0.	•	0.)	(1.6725E+01.		0.)
5	(0.	•	0.)	(0.		0.)	(0.	,	0.)	i	0		0.	j
6	(0.	,	0.)	(0.	• •	0.)	(0.	,	0.)	Ċ	0		0.	j,
7	(0	•	0.)	(0,	•	0.	}	(0.	•	0.)	Ċ	0. ,		0.)
8	(0.	•	0.)	(0,	• • •	0.)	(0.	, ·	0.)	(0. ,		0.)
MODE	HODE =	5			6 -					7				1				
1	(0.	,	0.)	(0.		Ο.)	(0.	•	0.)	Ċ	0		0.	
2	(0.	,	0.)	(0.	•	0.)	(0.	•	0.)	i	0.		0.	j
3	(0.	,	0.)	(0.	•	0.)	(0.	•	0.)	i	0		0.	j
4	(0.	•	0.)	(0,	• •	Ο.	.)	(0.	•	0.)	i	0	·	0)
5	(5.00	43E+01,	0.)	(0.	• •	0.)	(0.	•	0.)	C	0		0.)
6	(0.	•	0.)	(1.	4597E+01+	0.)	(0.	•	0.)	Ċ	0. ,		0.)
7	(0.	,	0.)	(0.	, ,	Ο.)	(1.2589E+01	1.	0.)	C	0		0.)
R	(0.	•	0.)	(0.	• •	0.	.)	(0.	٠	0.)	Ċ	1.0710E+02,		0.	Ĵ

1

MODAL ELIMINATION VARIATIONS

NUMBER OF MODES ELIMINATED ARE 7ERO

PAGE 55

```

÷.

)

)

2

}

E

| масн No  | = ,900   | RHO/RHO(SL) | = 1,      | 0000  | V80 = |  |
|----------|----------|-------------|-----------|-------|-------|--|
| C.P.S.   | V.EQUIV. | DAMPING     | RADISEC   | VTRUE |       |  |
| 40.1918  | 48.6274  | 023510      | 252,5333  | 48.   | 6274  |  |
| 104.7879 | 126.7811 | 023280      | 658.4036  | 126.  | 7811  |  |
| 143.6824 | 173.0388 | 021514      | 902.7852  | .173. | 8388  |  |
| 211.9943 | 256.4882 | 027854      | 1332.0023 | 256.  | 4882  |  |
| 292.0356 | 353.3289 | 023049      | 1834.9184 | 353.  | 3289  |  |
| 335.3584 | 405.7443 | 041768      | 2107.1237 | 405.  | 7443  |  |
| 362.1656 | 438.1779 | 012655      | 2275.5589 | 438.  | 1779  |  |
| 424.1347 | 513.1533 | 018530      | 2664.9233 | 513.  | 1533  |  |

ALL ROOTS CHECK AND ARE UNIQUE

•

~

.2000

ن ت ق

| MACH NO  | = .900    | RHOZRHO(SL) | = 1.0     | 000     | <b>V</b> 80 | = | .5000 |
|----------|-----------|-------------|-----------|---------|-------------|---|-------|
| C.P.S.   | V.EQUIV.  | DAMPING     | RADISEC   | VTPUE   |             |   |       |
| 39.9501  | 120.8373  | 051432      | 251.0144  | 150.83  | 73          |   |       |
| 104.9348 | 317.3968  | 080176      | 659.3260  | 317.39  | 68          |   |       |
| 140.6090 | 425.3011  | 087307      | 883.4747  | 425.30  | 11          |   |       |
| 210.5656 | 636.8991  | 098917      | 1323.0256 | 636.89  | 91          |   |       |
| 285.7277 | 864.2424  | 948577      | 1795.2840 | 864.24  | 24          |   |       |
| 342.9578 | 1037.3466 | 180691      | 2154.8722 | 1037.34 | 66          |   | ·     |
| 361.0312 | 1092.0135 | 034542      | 2268.4313 | 1092.01 | 35          |   |       |
| 422.2831 | 1277.2825 | 053438      | 2653.2892 | 1277.28 | 825         |   |       |

55.L

# ALL ROOTS CHECK AND ARE UNIQUE

| MACH NO  | = .900    | RHOZRHO(SL) | = 1.0     | 000     | VBO | =   | .8000 |
|----------|-----------|-------------|-----------|---------|-----|-----|-------|
| C.P.S.   | V.EQUIV.  | DAMPING     | RAD/SEC   | VTRUE   |     |     |       |
| 39.7956  | 192.5921  | 076496      | 250.0438  | 192.59  | 21  |     |       |
| 104+1556 | 504.0640  | 180614      | 654.4302  | 504.06  | 40  |     |       |
| 132.4189 | 640.8451  | 104512      | A32.0142  | 640.84  | 51  |     |       |
| 207.4787 | 1004.0995 | 165462      | 1303.6301 | 1004.09 | 95  |     |       |
| 279.6749 | 1353.4954 | 071592      | 1757.2535 | 1353.49 | 54  | ,   |       |
| 350.8003 | 1697.7090 | 345529      | 2204.1486 | 1697.70 | 90  |     |       |
| 360.3843 | 1744.0910 | 048291      | 2264.3667 | 1744.09 | 10  | · . |       |
| 418.7761 | 2026.6800 | 077837      | 2631.2542 | 2026.68 | 00  |     |       |

55°

ALL ROOTS CHECK AND ARE UNIQUE

₽.

 $(\cdot)$ 

554

| MACH NO  | = .900    | RHO/RHO(SL) | ) = 1.0   | 00n VRO   | = 1.1000 |
|----------|-----------|-------------|-----------|-----------|----------|
| C.P.S.   | V.EQUIV.  | DAMPING     | RAD/SEC   | VTRUE     |          |
| 39.6588  | 263.9037  | 103685      | 249.1841  | 263.9037  |          |
| 99•3546  | 661.1405  | 288851      | 624.2646  | 661.1405  |          |
| 126.7533 | 843.4616  | 064304      | 796.4165  | 843.4616  |          |
| 200.4199 | 1333.6651 | 243993      | 1259.2783 | 1333.6651 |          |
| 272.9724 | 1816.4551 | 089792      | 1715.1401 | 1816.4551 |          |
| 352.6491 | 2346.6524 | 493225      | 2215.7650 | 2346.6524 |          |
| 357.8453 | 2381.2294 | 077972      | 2248.4134 | 2381+2294 |          |
| 421.4684 | 2804.6001 | 051721      | 2648.1701 | 2804.6001 |          |

ALL ROOTS CHECK AND ARE UNIQUE

i

.

|          | = .900    | RHO/RHO(SL) | = 1.00    | 000    | V80  | = | 1.4000 |
|----------|-----------|-------------|-----------|--------|------|---|--------|
| C.P.S.   | V.EUUIV.  | DAMPING     | RAD/SEC   | VTRUE  |      |   |        |
| 39.4549  | 334.1505  | 134115      | 247.9029  | 334.1  | 505  |   |        |
| 91.1730  | 772.1606  | 324328      | 572.8583  | 772.1  | 606  |   |        |
| 123.9800 | 1050.0085 | 047515      | 778.9909  | 1050.0 | 085  |   | -      |
| 187.5292 | 1588.2186 | -,280186    | 1178.2837 | 1588.  | 2186 |   |        |
| 268.6925 | 2275.6044 | 102330      | 1688.2484 | 2275.0 | 6044 |   |        |
| 350.3179 | 2966.9048 | 108211      | 2201.1173 | 2966.  | 9048 |   |        |
| 357.4566 | 3027.3636 | 590724      | 2245.9711 | 3027.  | 3636 |   |        |
| 437.0562 | 3701.5068 | .014842     | 2746.1113 | 3701.  | 5068 |   |        |
|          |           |             |           |        |      |   |        |

ALL ROOTS CHECK AND ARE UNIQUE

٦

· )

)

)

)

)

)

)

)

)

)

)

È

)

)

| MACH NO  | = .900    | RHO/RHO(SL) | = 1.0     | 000 V80   | = 1.7000 |
|----------|-----------|-------------|-----------|-----------|----------|
| C.P.S.   | V.FQUIV.  | DAMPING     | RADISEC   | VTRUE     |          |
| 39.2178  | 403.3158  | 164912      | 246.4132  | 403.3158  |          |
| 83.1518  | 855.1330  | 296800      | 522.4591  | 855+1330  |          |
| 122+4380 | 1259+1528 | 057478      | 769.3025  | 1259+1528 |          |
| 174.2641 | 1792-1326 | 278490      | 1094.9362 | 1792.1326 |          |
| 268.1023 | 2757.1649 | -,125877    | 1684.5404 | 2757.1649 |          |
| 342.0552 | 3517.6971 | 124745      | 2149.2015 | 3517+6971 |          |
| 364.8664 | 3752.2874 | 703563      | 2292.5287 | 3752.2874 |          |
| 461.9182 | 4750.3682 | .133021     | 2902.3245 | 4750.3682 |          |

ALL ROOTS CHECK AND ARE UNIQUE

١

| MACH NO  | = .900    | RHO/RHO(SL) | = 1.0     | 001     | <b>V80</b> | = | 2.0000 |
|----------|-----------|-------------|-----------|---------|------------|---|--------|
| C.P.S.   | V+EQUIV.  | DAMPING     | PAD/SEC   | VTRUE   |            |   |        |
| 38.9809  | 471.6231  | 199082      | 244.9248  | 471.6   | 231        |   |        |
| 76.0027  | 919,5433  | 250426      | 477.5401  | 919.5   | 433        |   |        |
| 122.0592 | 1476.7726 | 090107      | 766.9221  | 1476.7  | 726        |   |        |
| 160.8541 | 1946.1459 | 260587      | 1010.6785 | 1946.14 | 459        |   |        |
| 269.6496 | 3262.4432 | 167056      | 1694.2621 | 3262+44 | 432        |   |        |
| 335.4713 | 4058.8091 | 138617      | 2107.8332 | 4058.8  | 091        |   |        |
| 368,3399 | 4456.4812 | 777523      | 2314.3535 | 4456.48 | 812        |   |        |
| 488.0889 | 5905.3030 | • 336371    | 3066.7601 | 5905.30 | 030        |   |        |

ALL ROOTS CHECK AND ARE UNIQUE

ί.

| MACH NO  | = .900    | RHO/RHO(SL) | = 1.0     | 000     | VHO = | 2.3000 |
|----------|-----------|-------------|-----------|---------|-------|--------|
| C.P.S.   | V.EQUIV.  | DAMPING     | RAD/SEC   | VTRUE   |       |        |
| 38.7234  | 538.7840  | 238648      | 243.3069  | 538.78  | 40    |        |
| 69.5732  | 968.0168  | 195027      | 437.1421  | 968.01  | 68    |        |
| 123.3120 | 1715.7196 | 156962      | 774.7937  | 1715.71 | 96    |        |
| 147.1428 | 2047.2940 | 211940      | 924.5279  | 2047.29 | 40    |        |
| 271.8798 | 3782.8413 | 229614      | 1708.2754 | 3782.84 | 13    |        |
| 332.7838 | 4630.2370 | 173443      | 2090.9469 | 4630.23 | 70    |        |
| 368.1707 | 5122.5988 | 760997      | 2313.2902 | 5122.59 | 88    |        |
| 497.3416 | 6919.8374 | .631294     | 3124.8967 | 6919.83 | 74    |        |

55 R

ALL ROOTS CHECK AND ARE UNIQUE

| MACH NO  | = .900    | RHO/RHO(SL) | = 1.0     | 00n Vi    | 90 = 5°6000 |
|----------|-----------|-------------|-----------|-----------|-------------|
| C.P.S.   | V+EQUIV.  | DAMPING     | RAD/SEC   | VTRUE     |             |
| 38.4135  | 604.1851  | 284429      | 241.3594  | 604.185   | L           |
| 63.9421  | 1005.7118 | 132992      | 401.7610  | 1005.711  | 8           |
| 123.6967 | 1945.5597 | 302730      | 777.2108  | 1945.559  | 7           |
| 137.7285 | 2166.2597 | 095951      | 865.3759  | 2166.259  | 1           |
| 272.7935 | 4290.6261 | 314928      | 1714.0163 | 4290.626  | i           |
| 321.4146 | 5055.3611 | 317802      | 2019.5121 | 5055.361  | i           |
| 388.3264 | 6107.7820 | 601567      | 2439.9324 | 6107.7820 | )           |
| 470.2277 | 7395.9648 | •960563     | 2954,5348 | 7395.9648 | 3           |

#### ALL ROOTS CHECK AND ARE UNIQUE

.

551

)

)

)

)

)

)
. **~** •









PAGE 57

1 1

| **** |   | **  | *  |   | **** |   | **** |   |   | 4 4 | <b>4</b> 4 4 | # | FLUTTER      |
|------|---|-----|----|---|------|---|------|---|---|-----|--------------|---|--------------|
| *    |   | 4   | 4  |   | 4    |   | 4    |   | 4 | 4   |              |   | AND          |
| ***  | - | *** | ** | - | ***  | - | 4    | - | 4 | 4   | <br>         | # | STRENGTH     |
| 4    |   | •   | 4  |   | 4    |   | 4    |   | • | 4   |              |   | OPTIMIZATION |
| 4    |   | #   | #  |   | ***  |   | 4    |   | 4 | # # | *            |   | PROGRAM      |

1

| ****    | ***    | ***          |              |   |   |
|---------|--------|--------------|--------------|---|---|
| 4       | * *    | * *          |              |   |   |
| **** -  | * * *  | - ****       | FLUTTER      |   |   |
| 4       | * *    | *            | OPTIMIZATION |   |   |
| 4       | ***    | 4            | PROGRAM      | 1 | 3 |
| PROGRAM | LISTIN | OF CARD DATA |              | 1 | 4 |

|                                     | •• • | • |
|-------------------------------------|------|---|
| FLUTTER OPTIMIZATION PACKAGE        | •• 1 | 4 |
| AUTOMATED VIBRATION ANALYSIS MODULE | •• 1 | 4 |
| AUTOMATED FLUTTER ANALYSIS MODULE   | 1    | 4 |

|           | 4 # | #    |     |     | ***  | \$           |      |     | 4          |              |       |     |    |
|-----------|-----|------|-----|-----|------|--------------|------|-----|------------|--------------|-------|-----|----|
| 4         | 4   | 4    | 4   |     | #    | #            | # 5  | • • | 4          | AUTOMATED    |       |     |    |
| ##        | *** | - *  | *   | -   | ***  | 2 <b>4</b> 2 | - #  | 4   | *          | VIBRATION    |       |     |    |
| ₽.        | *   | 4    | 4   |     | #    | <b>#</b>     | *    | #   | *          | ANALYSIS     |       |     |    |
| <b>#`</b> | 4   |      | #   |     | 4    | #            | #    | #   | •          | MODULE       |       | . 1 | 7  |
|           | MAS | S MA | TRI | хт  | 0 BE | εt           | ISED | IN  | VIBRATION  | ANALYSIS     | ••••• | 1   | 13 |
|           | VIB | RATI | ON  | RES | ULTS | 5 (          | FREG | υE  | NCIES+MODE | SHAPES, GEN. | HASS) | 1   | 17 |
|           | MOD | E SH | ٩PE | S F | OR F | LL           | TTER | λ 1 | NALYSIS /  |              |       | 1   | 20 |

|     |      |                   |               |           | •                                      |   |    |
|-----|------|-------------------|---------------|-----------|----------------------------------------|---|----|
| **  | 8    | 8 W 8 9 9 9       | ***           | * *       |                                        |   |    |
| 4   | 4    | 4                 | * *           | ** **     | AUTOMATED                              |   |    |
| *** | ** - | 8*8* <del>-</del> | 4444 <b>-</b> | * * *     | FLUTTER                                |   |    |
| 4   | 4    | 4                 | * *           | * * *     | ANALYSIS                               |   |    |
| 4   | 4    | \$                | * *           | * * *     | MODULE                                 | 1 | 51 |
| ENT | ER V | IBRATION          | DATA FO       | R FLUTTER | ANALYSIS                               | 1 | 22 |
| GEN | ERAL | IZEN MASS         | S. FREQUE     | ENCY. AND | GENERALIZED MODAL STIFFNESS            | 1 | 22 |
| SUB | SONT |                   |               | NAMICS U  | SINC DOUDLET LATTICE                   |   |    |
| PRO | CEDU | RE (RODDE         | EN) ••••      | ••••••••• | •••••••••••••••••••••••••••••••••••••• | l | 24 |
| SUR | FACE | AND BODY          | GEOMETR       | RY AND AS | SOCTATED PARAMETERS                    | 1 | 24 |

| **************************************                                        | PAGE 59<br>PASS PAGE |   |
|-------------------------------------------------------------------------------|----------------------|---|
| INTERPOLATED MODES FOR PITMARY AND CONTROL SUPEACES                           | 1 74                 |   |
| INTERONIATED HODES, DOWARY SUBFACES, SUBFACES                                 |                      |   |
| INTERPOLATED MODES, PRIMARY SURFACES, SURF = 1, MODE = 1                      |                      |   |
| INTERPOLATED MODEST FRIMARI SURFACES, SURF - 1, MODE - 2                      | 1 21                 |   |
| INTERPOLATED NODES, PRIMARY SUPERCES, SURF - 1, MODE - 3                      | 1 28                 |   |
| INTERPOLATED MODES PRIMARI SURFALES SURF = 1 MODE = 4                         | 1 30                 | • |
| INTERPOLATED MODEST PRIMARI SURFACES SURF = 1, $MODE = 3$                     | 1 31                 |   |
| INTERPOLATED MODES, FRIMARI SURFACES SURF - 1, MODE - 5                       | 1 32                 |   |
| INTERPOLATED HODES, PRIMARY SUBFACES, SURF - 1, MODE - /                      | 1 33                 |   |
| INIERPOLATED MODES + PRIMARI SURFALES + SURF = I + MODE = 8                   | 1 35                 |   |
| GRAPHICAL REPRESENTATION OF INTERPOLATED MODES                                | 1 37                 |   |
| MODAL DEFLECTIONS TIMES 1.0E 2. SHPEACE 3. MODE = 1                           | 1 30                 |   |
| MODAL SLOPES (ADVET) TIMES 1.0E 2. SUDEACE 1. MODE - 1                        | 1 30                 |   |
| MODAL DEFICITIONS TIMES 1.0F 2. SURFACE 1, MODE - 2                           | 1 40                 |   |
| MODAL SLOPES (RADZET) TIMES 1.0F 2. SURFACE = 1. MODE = 2                     | 1 40                 |   |
| MODAL DEFLECTIONS TIMES I DE 2, SUPERCE 1, MODE - 2                           | 1 41                 |   |
| MODAL SLOPES (PAD /FT) THES I AE 2, SUBSACE 1, MODE - 3                       | 1 42                 |   |
| MODAL DEFIECTIONS TIMES LOF 2, SUPFACE 1, MODE = 6                            | 1 43                 |   |
| MODAL SLOPES (RAD/FT) TIMES 1.0F 1. SUPFACE= 1. MODE = 4                      | 1 44                 |   |
| MODAL DEFLECTIONS TIMES 1.0E 2. SURFACE= 1. MODE = 5                          | 1 46                 |   |
| MODAL SLOPES (RAD/FT) TIMES 1.0E 1, SURFACE= 1, MODE = 5                      | 1 47                 |   |
| MODAL DEFLECTIONS TIMES 1.0E 2. SURFACE= 1. MODE = 6                          | 1 48                 |   |
| MODAL SLOPES (RAD/FT) TIMES 1.0F 1. SURFACE= 1. MODE = 6                      | 1 49                 |   |
| MODAL DEFLECTIONS TIMES 1.0F 2. SUBFACE 1. MODE = 7                           | 1 50                 |   |
| MODAL SLOPES (RAD/FI) TIMES 1.0F 2. SUBFACE 1. MODE = 7                       | 1 51                 |   |
| MODAL DEFLECTIONS TIMES 1.0F 2. SUBFACE 1. MODE = 8                           | 1 52                 |   |
| MODAL SLOPES (BAD/F) TIMES 1.0F 1. SUPFACE 1. MODE = 8                        | 1 53                 |   |
| THE FULL IN THE THE IN SUCHED IN MOLE IN                                      | 1 23                 |   |
| FLUTTER ANALYSIS USING THE K METHOD                                           | 1 54                 |   |
| PASS= $1 \cdot MACH = .90$ DEN RATIO = $1 \cdot 00$ FREQ RATIO = $1 \cdot 00$ | 1 54                 |   |
| DENSITY VARIATIONS                                                            | 1 54                 |   |
| FREQUENCY VARIATIONS                                                          | 1 54                 |   |
| GENERALIZED MASS, FREQUENCY, AND MODAL STIFFNESS                              | 1 54 /               |   |
|                                                                               | • •                  |   |
| MODAL ELIMINATION VARIATIONS                                                  | 1 55                 |   |
| PRINT-PLOT OF DAMPING VS VELOCITY (TRUE )                                     | 1 56                 |   |
| PRINT-PLOT OF FREQUENCY VS VELOCITY (TRUE )                                   | 1 57                 |   |
|                                                                               |                      |   |

•

•

C

• (

C

(

(

(

(

(

(

(

i,

i i

•

 $\cdot$ 

)

)

)

)

)

)

)

)

)

)

)

}

)

N,

•

· · · ·

.

| LIBRARY MATERIAL SLIP<br>DO NOT REMOVE SLIP FROM MATERIAL<br>Delete your name from this slip when returning material<br>to the library. |       |     |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------|-----|--|--|--|--|--|--|--|
| NAME                                                                                                                                    | DATE  | MS  |  |  |  |  |  |  |  |
| Barthetency-                                                                                                                            | 10/31 | 155 |  |  |  |  |  |  |  |
|                                                                                                                                         |       |     |  |  |  |  |  |  |  |
|                                                                                                                                         |       |     |  |  |  |  |  |  |  |
|                                                                                                                                         |       |     |  |  |  |  |  |  |  |
|                                                                                                                                         |       |     |  |  |  |  |  |  |  |
|                                                                                                                                         |       |     |  |  |  |  |  |  |  |
|                                                                                                                                         |       |     |  |  |  |  |  |  |  |
|                                                                                                                                         |       |     |  |  |  |  |  |  |  |
|                                                                                                                                         |       |     |  |  |  |  |  |  |  |
|                                                                                                                                         |       |     |  |  |  |  |  |  |  |

NASA Langley Form 474 (Rev. Oct. 1999)