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1.0	 INTRODUCTION/BACKGROUND

Axiomatix has been tasked by NASA JSC to evaluate the design of

the ShuttlE Ku-band high gain antenna and widebeam horn antenna. This

is Task, #1 of contract. NAS 9-15795. The high gaY;n antenna is used both

for rendezvous radar and communications. In the radar mode, the antenna

is linearly polarized, and in the communication mode it is circularly polarized.

The widebeam horn antenna is to be used for sidelobe discrimination in the

radar mode and as a TDRS acquisition aid in the communications mode.

In this report we describe the antenna suit, with emphasis on

the design aspects which produce performance degradation. Design changes

are suggested to improve the antenna system performance. In addition to

the electrical (RF) problems being encountered, mechanical resonances in

the antenna structure as well as excessive drifts, possibly due to servo

components and gyros, have ser4busly impaired the scan performance of the

antenna, particularly in the radar mode. The resonance and drift problems

are currently under active investigation by Rockwell, HAC and Axiomatix.

Results and recommendations in this area will be covered in a subsequent

report; however, in anticipation of continued scan difficulties, the radar

detection performance as a function of scan overlap has been analyzed and

is included in Appendix A.

A primary area of concern in the performance of the high gain antenna

is the higher than expected sidelobe levels. In the communications mode (circu-

lar polarization) a sidelobe level of -20.6 dB has been measured in the azi-

muth plane. This is close to the expected variation of the received TDRS

forward link signal, and acquisition with a sidelobe cannot be precluded.

If the sidelobes cannot be reduced to acceptable levels, an alternate tech-

nique must be used to reduce the possibility of sidelobe acquisitions. Candidate

schemes include tighter power control of TDRS, reduced receiver sensitivity,

or multiple detection thresholds.

In the radar mode (linear polarization) a sidelobe level of -16.8 dB

in the azimuth plane has been measured. The radar sidelobe avoidance technique

uses the widebeam horn to discriminate a sidelobe from the peak of the high

gain antenna. It is anticipated that the horn will be circularly polarized

to optimize communication performance, and hence a 3 dB degradation will be

experienced in the radar mode. However, if the proper technique is used for
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radar sidelobe avoidance, e.g., relative comparison of the received power

in the high gain antenna and the horn, there appears to be adequate margin.

In order to improve the sidelobe levels of the hi gh gain antenna,

Hughes has experimented with several types of feeds. Axiomatix, in this

report, suggests other passive changes to improve the sidelobe levels.

The impact of maintaining linear polarization with the widebeam

horn on TDRS acquisition is examined, as is the impact of circular polari-

zation on radar sidelobe avoidance. With linear polarization, the Shuttle

cannot meet EIRP specification in the communication mode, which means that

TDRS must open loop point the KSA antenna accurately enough to ensure that

adequate power is received at the Shuttle for a successful scan.

1
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2.0	 SUMMARY

In section 3.0 we describe the physical characteristics of the

high gain antenna reflector and feed elements, Deficiencies in the sum

feed are discussed, and lack of atmospheric venting is posed as a potential

problem area. In section 4.0, we discuss the measured RF performance of

the high gain antenna and re")te the high sidelobe levels weasured to the

physical characteristics of the an.ter„'.a.

Concern has been expressed as to temperature effects on the perform-

anve of the high gain antenna. In section 5.0, we discuss attributes of the

feed which might be influenced by temperature extremes, and conclude that

the antenna should be insensitive to temperature variations.

In section 6.0, we give detailed suggestions for improvements to

the high gain antenna system. In particular, the feed support bipod structure

is considered a significant contributor to the high sidelobe levels measured

in the azimuth plane. pod relocation, material changes, and shaping are

suggested as improvements. Alternate feed designs are presented to further

improve system performance. The exact degree of improvement will be difficult

to estimate analytically; it is suggested that these changes be implemented

experimentally and the effects measured.

Section 7.0 , contains a description of the widebeam horn,'with a

discussion of potential temperature effects due to the polarizer. In

Section 8.0, we discuss the effects of linear polarization on TDRS acquisition,

and the effects of circular polarization on radar sidelobe avoidance.

Appendix A presents an analysis of the radar detection probability

as a function of scan overlap and target range.
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3.0	 GENERAL DESCRIPTION, HIGH GAIN ANTENNA

The Ku-band high gain antenna system is a prime focus paraboloid

with linear polarization for the rendezvous radar function and right-hand

circular polarization for the communications mode. A monopulse com-

parator subsystem is included to maintain tracking capabilities during

operational use. The antenna system is stowed in the Orbiter payload

bal e, during launch and reentry and is only deployed on orbit for

rendezvous and communications in space.

Because of the tight stowage requirement, the focal 14,gth

f(10 inch) of the paraboloid had to be substantially decreased to fit

within the volume allotted. The diameter of the dish itself (36 inches)

was maintained to be as large as deemed feasible to achieve the narrow

3 dB beamwidths (1.6 0 ) desired. Therefore, the subsequent f/D ratio, a

design parameter of reflector antenna systems, was extremely low (0.28),

and this greatly affected the overall antenna performance from that pre-

dicted by Hughes during the Conceptual Design Review.

In order to reduce the weight of the deployed antenna system,

a lightweight graphite epoxy paraboloid antenna was employed. This

reflector is composed of layers of woven carbon fiber cloth impregnated

with epoxy formed on a master mandrel to mold it to the appropriate con-

tours. Stiffening structures, also made of graphite epoxy, are then

bonded at the rear of the reflector to add strength and reduce inertial

flexing of the surface. The reflector surface itself is not metallized,

depending on both the anisotropic conductivity and the dielectric mismatch

of the epoxy/free space interface for high reflectivity.

The feed for the antenna system is composed of a sum horn and

monopulse tracking elements, the combination of which create a parasitic

mutual coupling effect which appears to degrade the system performance.

In order to describe the feed system, however, the two subsystems will

be described separately.

3.1	 Antenna Sum Feed

The sum feed is composed of a short section of square waveguide

that gradually tapers into the circular waveguide feed aperture which is

0.5 inch in diameter.	 Since the physical dimensions of the aperture
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were reduced to permit the placement of the surrounding monopulse

elements, the sum feed aperture is filled with a shaped teflon plug to

increase the effective circular waveguide diameter sufficient to sustain

the proper propagating modes.

The placement of the orthogonal coaxial probe feeds which create

the circular polarization capability was experimentally determined by

actual measurements. Theoretically, the optimum placement of the probes

is a quarter of the guide wavelength in front of the short, which is the

position of maximum electric field. Due to the tight space restrictions,

the orthogonal wire short of the probe closest to the aperture was placed

closer than desirable to the second probe, which can adversely affect the

cross polarization isolation. Earlier, coplanar orthogonal probes were

a`.tempted, but due to mutual coupling effects, this approach was discontinued.

The lengths of the center coaxial probes extending into the wave-

guide were also experimentally determined by adjusting the length of a

variable center conductor probe into a matched load terminated waveguide

and measuring the return loss. This design approach generally is valid,

except that for short waveguide sections with multiple discontinuities,

the final overall matching must be accomplished after the total feed,

including the monopulse elements, are assembled. Since the voltage stand-

ing wave ratio (VSWR), a measure of the impedance mismatch, was subsequently

reduced from 1.5 to 1.2 or less during the latter phases of testing, it is

assumed this latter procedure was performed.

The actual sum feed aperture extends 0.1 inch past the two inch

square ground plane. This circular "lip" provides some reduction in the

mutual coupling effects between sum feed and the adjacent monopulse elements.

The inserted teflon plug, which is physically captured within the circular

waveguide when the back half of the feed section is attached, completely

fills the waveguide. The tapered aperture end is about 0.3 inch long.

The opposite end is counterbored to facilitate the transition to the square wave-

guide. Various dielectric rod antenna shapes were extended out from the

radiating circular aperture, but because of the mutual coupling effects with

the monopulse elements and the related high sidelobe levels, a tapered teflon

plug that did not extend past the circular waveguide lip was finally chosen.

It appears that this lip aids in the launching of the radiated wave; however,

some diffraction effects are still obviously present. The height of this
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lip was experimentally determined to minimize the sidelobe level, which

increased substantially after incorporation of the monopulse elements

around the sum feed. It appears that little more could be done to increase

thiF isolation, such as corrugations or chokes, since the monopulse elements

are located immediately adjacent (in fact are bent around) the sum feed.

One possible modification to reduce this mutual coupling is included in

Section 6.0, which lists recommendation for improvement.

No impedance 'transition provisions (such as a tapered horn) into

free space were included in the design. In fact the best description

of the radiating aperture would be a rather abrupt dielectric/free space

interface at the end of a circular waveguide. Therefore, it is question-

able whether a spherical wavefront is radiated from this open-ended wave-

guide sum feed. The concept of generating a plane wavefront from a para-

boloid relies on a spherical wavefront emanating from the prime focus;

therefore, some of the inherent degradation in expected low sidelobe levels

can be attributed to the sum feed design. Another area of concern is the

illumination at the edges of the reflector dish is partially blocked by

the side support pods, which greatly distorts the illumination taper.

An earlier version of this antenna system used a four inch square

ground plane housing the monopulse phase comparator in conjunction with

the feed. Obviously this constituted too much blockage of the antenna

system and significant improvements in sidelobe levels were noted when the

ground plane cross-section was reduced to a two inch square feed and the

large comparator was relocated along the feed support.

3.2	 Antenna Monopulse Elements

The monopulse elements consists of four short waveguide sections

terminated into receiving slots which detect comparative phase differences

between opposite pairs of elements, thereby indicating the proper direction

the antenna must be pointed to perform the tracking function. Again coaxial

i~	
probes are used as transducers to transfer the signals in the waveguide

to the semirigid coaxial cables which go to the comparator circuit located

on the feed mount. The placement and lengths of the coaxial probes, as

well as the dimensions of the slots, were experimentally derived by radiating

into a matched load or free space and minimizing the VSWR. The length of

the short waveguide sections was determined by the allotted feed envelope,

and no resonance effects were utilized in the overall design. The basic

t
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feed performance was determined to be essentially frequency independent

within the frequency range of interest. Therefore, it -is also relatively

temperature independent. (A more detailed discusr-ion of the thermal

effects will be made in a later section which will delve into the large

temperature extremes to be encountered).

A number of different types of monopulse elements were tested.

A standard monopulse system successfully employed on other programs

consisted of printed circuit dipoles and, therefore, these elements

were initially used. Various geometric configurations such as "in-line"

and "star" lay outs were tried, but the final monopulse system utilizes

slots in a ground plane forming a small planar array surrounding the sum

feed. The reasons that this particular design was selected were that its

performance was comparable to the other configurations, fabrication was

simpler and dimensions-J reproducibility was better. The presence of the

dipoles protruding above the ground plane also increased the amount of

coupling of the sum feed to the monopulse elements.

The feed is machined out of a block of aluminum which is then gold-

plated to reduce resistive losses and minimize the effects of corrosion.

The feed consists of two halves which are bolted together. The front half

consists of the circular sum feed and the slotted waveguides of the mono-

pulse elements. The rear half contains the sum feed square waveguide and

the coaxial probe connections. Since intricate machining is required,

electron discharge machining (FDM) is extensively used to form precise

corners.

A front and cross-sectional views of the sum feed and monopulse

elements are sketched in Figure 1 to illustrate the design. Figure 2

shows the overall feed and support structure with the attached monopulse

comparator circuitry. It can be seen that the feed does cause significant

blockage in the crucial central portion of the dish, even after the

reduction of the feed cross-section by relocating the phase comparator

circuitry.

3.3	 Additional Feed Design Considerations

One aspect of the design that has not been discussed but must

not be overlooked is to incorporate adequate venting proviFions to pre-

vent damage to the protective 5 mil kapton windows over tho monopulse
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elements and the inserted teflon plug of the sum feed due to the abrupt

pressure change.^i arising from launch. The large pressure differentials

can cause separation of the windows or loss of the teflon plug, the

latter effect being critical since the sum feed cannot propagate Ku-band

microwave signals without the dielectric medium in the reduced diameter

circular waveguide. Even if only partial ejection of the teflon plug

occurred, the resultant protrusion would behave like a dielectric rod

antenna with the earlier observed effect of parasitic coupling to the

monopulse elements and therefore result in much higher sidelobe levels.

Vents can be introduced in a number of positions without greatly

affecting the RF performance. For example, since the feed is a two piece

flanged section, small holes can be machined at the flange face in the corners

of all five waveguides since the electric fields are negligible there.

Similarly, small holes can be drilled at the corners of the rear walls of

the waveguides at the plane of the short but this is more difficult to

align. Since the semirigid coaxial cable probe is usually filled with a

dielectric (teflon) and the signal strength is greatest there by design,

it is probably wise to avoid these areas for venting purposes.

Hughes has subjected a breadboard feed design to an abrupt vacuum

test, with no adverse effects. It was felt that adequate venting was

provided by the nonhermetic seal connector probes and loose fitting flanges.

The test involved decreasing the pressure from atmospheric to 10 -3mm (Hg) of

vacuum in about 15 seconds. Although it appears adequate, more details

of the exact launch profile depressurization should be known. And prudent

design would incorporate venting provisions to accommodate multiple launches.

Another concern is the effect of ultraviolet light from the sun

affecting the material properties of the teflon plug in the sum feed

which is critical to the proper operation of the radar and communication

modes. Although in the low f/D ratio antenna system the feed is blocked

effectively from direct exposure to the sun, whatever energy that is reflected

from the reflector is highly concentrated since it is focussed at the feed.

A protective kapton window might also be considered to cover the sum feed

aperture, similar to the kapton windows used for the monopulse elements.

f

t
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4.0	 RF PERFORMANCE

The RF performance of the Ku-band antenna system reflects the

facia that a low f/D ratio prime focus system was selected over a larger

f/D ratio system such as a Cassegrain with a subreflector, The higher

than expected sidelobe levels, which may result in inadvertent sidelobe

acquisition, arises from two separate effects. First, the center-fed

parabola has a large amount of blockage from the feed, feed support, and

pods. Second, the sum feed system, composed of a dielectric loaded cir-

cular waveguide, is not noted for its illumination taper or its spherical

wavefronts, and parasitic mutual coupling to the monopulse elements is evident.

It is essential to characterize the apparent causes of these limitations so

that future modifications, if required, will be straightforward.

The measured principal plane antenna patterns are shown in Figure 3

and 4 for two typical modes: linear polarization and circular polarization

at 13.77 GHz. Examining these patterns reveals some basic characteristics

which will generally suffice: to describe the pattern at other frequencies,

since it was designed to be a wideband system. As depicted in the circular

polarization case pattern of Figure 3, the elevation plane (denoted by EL)

possibly shows the blockage effects of the feed support by the lower than

-30 dB sidelobe. Generally this obstructed energy is simply redistributed,

and it is not uncommon to find sidelobes in another region greater than

would be measured if the blockage ;_'id not exist,due to the disturbance in

the interference patterns. Although a raster scan was made of the immediate

vicinity of the main beam, a more thorough program of antenna pattern measure-

ments should be conducted for the final flight version to verify that no

extraneous sidelobes of substantial magnitude exist.

The measured 3 dB beamwidth is broader than originally specified

(1.5"-1.6°) but the increase does not appear to be significant. The

measurement techniques used the expanded scale (6x magnification) to

resolve the angular relationship to greater than tenths of a degree, and

calibration curves of the pattern measurement system were taken at a later

date to confirm that nonlinearities did not exist. In practice, especially

when the flight model antenna patterns are measured, calibration ► verifica-

tion curves using a series-connected precision attenuator might be recorded

both before and after a series of patterns to conclusively demonstrate the

validity of the beamwidth and sidelobe levels.
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The -16.8 dB sidelobes in the azimuth plane are unreasonable.

Although this behavior is attributed to a nonideal ADL paraboloid

reflector, there may be some other suitable explanations. One possi-

bility, which will be discussed further in the last section which

deals with recommended improvements, addresses the placement of the

graphite epoxy feed supporting pods which are in the azimuth plane

and block the illumination taper. Another is the existence of para-

sitic mutual coupling of the sum feed with the monopulse elements since

the primary sum feed radiation pattern is greatly distorted when the mono-

pulse elements are added.

t
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5.0	 THERMAL EFFECTS ON THE Ku-BAND FEED

The calculated temperature extreme that the Ku-band feed will

be subjected to is approximately -170°F (160 0 K). Therefore, some

concern has been expressed as to the temperature dependence, if any,

of the feed. Attempting to utilize the existing knowledge of the

present design, especially the measured wideband frequency performance,

it does not appear that there are any critical temperature-dependent

effects which might adversely affect the feed performance, excluding

possible mechanical stresses and material phase transitions. The

design parameters were ratifier loose; many aspects of the design were

experimentally determined arid, therefore, not subject to precise dimensions.

As a result, thermal expansion and contraction effects were, therefore,

minimized for this wideband system. No sensitive resonant cavities or

filters which might be detuned by thermal dimensional changes were incor-

porated into the design. The closest structures that resemble a resonant

cavity are the short waveguide sections of the monopulse elements with

the radiating slots. Experimentally, however, these elements have been

measured to operate over the range 13.75 to 15.15 OHz and therefore do

not seem 'temperature-sensitive since they are not frequency-sensitive.

Under standard laboratory conditions, it is very difficult and

expensive to measure the performance of an antenna system over the antici-

pated operating temperatures of space since the feed would have to be

cryogenically cooled below the dew point of the surroundings, necessitating

enclosure within a vacuum chamber. Further, the essential antenna parameters,

beamwidth and sidelobe level measurements require far field pattern measure-

ments, so that a large transparent vacuum chamber window would be required.

Thus, the temperature dependence measurements of an antenna system would

have to be considered impractical on the ground. The best one could

realistically achieve is, possibly, to measure the return loss of a cooled

and heated feed assembly in a vacuum chamber with the feed pointed at a

matched lead. Swept frequency measurement could then establish whether

temperature-dependent effects exist.

In response to the concern shown over the temperature dependence,

a simple heating test of the feed was made using a heat gun during antenna

pattern measurements. As would be expected, no effects were noted. It

is felt that such tests are not truly rcpresentative since the feed will
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assume a very low temperature, and the temperature differential calculated

will be much larger than can be achieved under the,,e conditions.

Rather than speculate on the effects of the calculated cold

temperatures, it might be more productive to examine potential solutions

to the problem. The present thoughts involve adding a strip heater to

the feed assembly, similar to that used to warm the monopulse comparator

circuitry. Rather than using active heating, however, if passive means

are available for thermal control, then these methods should be looked

at instead of wasting valuable electrical power. A thermal enclosure

about the feed and feed support would greatly reduce the temperature

extremes presently expected. This enclosure could be in the wedge shape

described later to minimize RF blockage effects. It would also serve

to protect the feed, comparator, and connecting cables from physical

damage due to deployment and stowage.

t
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6.0
	

RECOMMENDATIONS FOR IMPROVEMENT

One of the goals of the Ku--band antenna study is to make recom-

mendations, if possible, to improve the performance of the system. After

describing the antenna in some detail, some areas of improvement became

apparent, especially in regards to the higher than expected sidelobe levels.

This section outlines some modifications which seem reasonable to investigate

further.

One of the explanations for the poor sidelobe performance of the

Ku-band antenna is the mutual coupling effects between the sum feed and the

monopulse elements. The primary sum feed antenna pattern is disturbed signifi-

cantly when the monopulse elements are added. The original 20 dB taper on the

reflector is reduced to a 10 dB taper. In order to reduce this mutual coupling,

the addition of shorting elements on the ground plane to place the null from

the VSWR on the monopulse slots is proposed. Earlier Hughes tests of a similar

technique indicated substantial perturbations in pattern measurements by the

placement of obstacles on the ground plane, but efforts were discontinued due

to the poor results. In the next section we describe a more systematic tech-

nique for the placement of shorting elements.

The other major contributor to high sidelobe levels appears to arise

from the blockage of the primary sum feed illumination pattern by the adjacent

feed support pods in the azimuth plane. Three modifications are suggested. The

first is to relocate the pods out of the azimuth plane preferably into posi-

tions 120 0 from the feed support to disrupt the cumulative blockage of both

pods in one plane. If it is determined that actually little mechanical sup-

port of the feed is required, then possibly only one support pod parallel to

the boresight of the sum feed might be studied. A better solution is to

attach the pods at 120° angles to the edge of the reflector such that the

pods only block the secondary pattern from the illuminated reflector. The

amount of effective blockage for this configuration is much less, even though

the pods are longer. And finally, a nonconductive material can be used to

t

	 fabricate the pods instead of conductive graphite epoxy.

A more subtle design method might also be used to decrease the

effective blockage cross-section. Shaping the pods and feed support into

diamond and hexagonal wedges can greatly reduce the deleterious effects of

the obstacles.

And finally, in order to control the launching of spherical wave

fronts by using a dielectric lens concept, some possible design shapes for

the dielectric plug are developed.
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6.1	 Reduction of Mutual Coupling Effects

There was a noticeable degradation in the illumination taper of

the primary pattern of the sum feed when the monopulse elements were in-

corporated. In order to attempt to alter this deleterious interaction,

a slight modification of the ground plane is proposed to create an effective

short for the leakage radiation diffracted around the lip of the sum feed.

This short is positioned to take advantage of the directionality of the

leakage radiation compared to the incident radiation from the reflector.

Basically the idea is to position a null from the resultant stand-

ing wave from the short at the slot center. As Figure 5 indicates, the

location of this annular ring sector is 3/4a from the sum feed. The height

of the short should be approximately that of the extension of the lip of

the sum feed, but the exact dimension would probably be experimentally

determined.

The incident radiation from the reflector should not be adversely

affected by this annular ring sector short by geometrical considerations

since the height is small compared to a wavelength and the separation

between the annular rings is greater than X/2, which avoids reactive

termination conditions as i, corrugations.

If improvement is noted, then it would be logical to add other

annular ring sectors a12 beyond the first one to improve the effectiveness

of the short.

6.2	 Pod Relocation

The blockage effect of a center fed paraboloid is especially

i

	

	 critical since the majority of the illumination taper of the feed is

in the central area of the dish, and therefore any obstruction greatly

alters the antenna pattern, usually by broadening the beamwidth and

increasing the sidelobe levels.

The most logical explanation for the degraded sidelobe behavior

for the linear polarization case (and therefore the circular polarization

case is the use of horizontal graphite-epoxy support pods for mechanical

rigidity of the main feed support. Since graphite epoxy is considered

conductive, these pods have a large effect blockage cross-section, simi-

lar to the reason for changing the orientation of linear polarization with

respect to the feed support.
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A sketch of the physical relationship betwer, o the sum feed pods

and reflector is shown in Figure 6a. Although the pods are relatively

Z.. short, they would exert substantial influence on the patterns since they

are positioned so that all radiation in that plane is blocked. Since the

f/D ratio of the antenna is so low, the effective blockage cross-section

is large because the angles subtended by the pods increase when the mods

are located closer to the focus. In this particular case, the pods are

so close to the center of the paraboloidal reflector that they intrinsically

will obstruct the primary pattern of the sum feed even before illuminating

the reflector, as depicted in Figure 6b. If the edge of the reflector is

roughly ±70 0 from the sum feed, the pods are approximately ±300 from the

center (more exact angular relationships should be obtained if further

analysis is desired). Thus the primary pattern of the sum feed is completely

blocked in the azimuth plane beyond the 30° from boresight. Further, the

central portion of the primary pattern after reflection is blocked by the

feed, but this blockage cross-section has been greatly reduced by the

relocation of the phase comparator and the reduction of the ground plane

area to 4 square inches. Thus the presence of the support pods, being

conductive, completely disrupts the primary and secondary patterns, resulting

in poor sidelobe levels.

If the support pods were attached to the edge of the reflector

instead of the central area, the effective blockage cross-section, would be

reduced and the sidelobes correspondingly reduced in magnitude, as sketched in

Figure 6c.

6.3	 Pod Orientation

{

	

	 Conductive support structures are known to affect patterns for

the case when the electric field is parallel to the conductive member.

The explanation, it appeared, was that the conductive member acted in a

manner to electrically short the incident electric fields, creating a stand-

ing wave in the vicinity of the parallel member. Electric field vectors

orthogonal to the conductive member, however, can propagate around the

obstacle since electric fields can exist normal to a conductive surface.

For the case of circular polarization, since the electric field vector

rotates, the standing wave phenomenon is similarly applicable for the parallel
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component of electric field but not for the orthogonal component. There-

fore, a polarizing mechanism exists, similar to the wire grid structures used

to filter out the orientation of linear polarization parallel to the wires.

This effect was noted early in the development of this Ku-band

antenna. The sidelobe levels decreased when the orientation of linear

polarization was rotated to the azimuth plane, which is perpendicular to

the feed support. However, now the support pods became aligned parallel to

the electric field and became predominant blocking mechanism, although to

a lesser extent.

If the support pods were located 129 0 from the feed support, the

sidelobes would be further reduced since the blocked areas are not in the

same plane. Therefore the magnitude of the perturbation is caused by only

one pod, which is not the present situation where there are two pods in the

azimuth plane, the plane which has the high sidelobe problem. By distributing

the disturbances due to the pod placement about the antenna pattern, it is

possible to reduce the sidelobe contributions in any single plane, thereby

decreasing the sidelobe level.

6.4	 Pod Material

The reason why the side support pods result in such large blockage

is the fact that graphite-epoxy is quite conductive and, therefore, creates

standing waves patterns in the region of the pods.

One solution is to fabricate the pods from less conductive material

such as fiberglass or kevlar. These materials, being dielectrics, would

cause some phase shift problems for the rays incident upon the pods, but

actual blockage would be minimized.

One potential problem area if material substitution is used

is thermal expansion differentials since graphite epoxy is noted for

its low coefficient of thermal expansion. For the relatively short

pod lengths considered here, however, this should not deter the serious

consideration of this approach.
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6.5	 Pod Shaping

Another approach might be considered to further improve the

side-lobe levels. Earlier work by Ruze [1] and Kay [2] discussed the

improvement in gain of antennas with blockage of the obstacle was tapered

to allow incident radiation to propagate around the obstacle rather than

be reflected away by flat surfaces. Their problem was to minimize the

effects of metallic structures supporting a radome. On a comparative

scale, that type of blockage was very small, since on a cross-sectional

basis, the width of the structural members were quite small compared to

the antenna reflector cross section. However, for the case of this

Ku-band antenna, the feed and feed support structure are quite large

compared to the reflector and the microwave wavelengths. Therefore, the

shaping of the obstacle should have a correspondingly larger improvement.

The specific shape to be considered is a pyramid over the feed and

a hexagonal wedge or a variant thereof along the feed support which will

permit some radiation, however distorted, to be collected by the reflector.

Ideally, the hexagonal wedge has long tapers on both sides which behave as

transitions and provide a grazing incidence angle to the incident radiation.

Since the illumination taper is greatest at the center of the dish, the

region where the feed is mounted, this area is intrinsically the most

critical. An easy test to determine the feasibility of this approach con-

sists of a simple substitution whereby a section of heavy-duty aluminum

foil is folded into the appropriate shape and taped onto the breadboard or

engineering model. The result should be readily apparent by the measurement

of sidelobe levels. This shaped reflector along the feed/feed support can

also serve as a thermal shield to reduce the large temperature extremes calcu-

lated to exist at the feed. A fiberglass shell bonded with heavy-duty

aluminum foil over which is painted with white thermal control point will

help to passively maintain the feed at a higher temperature than the

t
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presently calculated -170°F (nonoperational state) and reduce temperature

fluctuations on the phase comparator circuitry which have temperature

sensitive varactor diodes subject to "carrier freeze-out" at low

temperatures.

	

6.6	 Dielectric Plug Design

One design requirement discovered during the early phases of the

Hughes antenna feed development was the control of the illumination taper

which was too uniform and, therefore, resulted in extremely poor sidelobe

levels. After many trial tests, the present dielectric plug shape was

evolved which resulted in a satisfactory primary feed pattern without

the monopulse elements with a 20 dB taper. (The presence of the monopulse

elements, and the mutual coupling, however, reduced it to a 10 dB taper.)

This shape is sketched in Figure 7a, which shows a 0.5 inch diameter

circular teflon plug tapered at the aperture end to simulate a dielectric

rod antenna which concentrates the radiated energy in the dielectric as

though it was a dielectric waveguide. The other end of the plug, facing

into the coaxial probe transducer, is counterbored to form a transition

from the square waveguide to the circular waveguide section. This "concave"

surface is conducive to creating a nonplanar wavefront since the central

portion of the propagating mode travels at a higher velocity than at the

perimeter of the circular waveguide, thereby creating a "bulge" in the

wavefront which might result in a quasi-spherical wave at the aperture

end since the circular waveguide section is relatively short. However,

on the aperture end, the tapered dielectric section used to concentrate

the radiated energy acts to slow the central portion of the propagating

mode, thereby compensating for the concave surface at the opposite end. A

sketch of the probable phase fronts for the present design, which coincides

with that actually measured, is shown in Figure 7b. Since the tapered rod

was experimentally found to be essential to creating a satisfactory illumina-

tion or amplitude taper in the primary pattern, any suggested modifications

to improve the antenna performance must realistically use this baseline design.

P	
6.7	 Modifications to Promote Spherical Wavefronts

Since collimation from paraboloids rely on a spherical wave emanating

from the focus, it would seem logical that an effort would be made to alter

the situation to favor creating at least a semblance of such a spherical wave.

1►
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This nonspherical wavefront effect would be accentuated for lower f/D antenna

systems since a longer focal length geometrically reduces the magnitude of the

deviation from a true spherical wave, measured in fractions of a wavelength.

The optical equivalent of this situation is spherical aberration, where the

degree of distortion corresponds to the sidelobe problem.

A spherical wavefront requires that the central portion of the

radiated energy from the feed be launched into free space earlier than that

planar wavefront within the dielectric-filled circular waveguide. A sketch

of the proposed modifications to the existing teflon plug is illustrated in

Figure a. Note that the present design configuration is generally maintained

since it has successfully evolved by extensive testing to a satisfactory per-

formance level. Since few further modifications to decouple the sum feed from

the monopulse elements are obvious, the spherical wavefronts concept, which

has not been emphasized earlier, is pursued.

One method to create this desired effect is to drill a small hole

in the center of the teflon plug, thereby creating a propagating mode which

can have a longitudinal component of electric field, creating the "bulge"

that generates the required curvature at the radiating aperture. Since

this perturbation is distributed, the cumulative effect is to cause a

high degree of distortion, with the faster central portion of the mode

"dragging along" the slower edge portion which serves as a slow wave structure.

The depth and diameter of the hole would have to be determined by analysis,

but the concept does permit a degree of control over the shaping of the

launched wavefront which has not been investigated previously. And, if

this hole traverses the entire length of the dielectric plug, it can also

serve as a convenient means of venting the square waveguide section of the

sum feed to relieve the contained atmospheric pressure during the launch.

Another method of creating a quasi-spherical wave is to shape the

dielectric aperture as a lens system. Since a planar propagating wavefront

exists within the circular waveguide, the "bulge" can be encouraged by a

concave surface, such that the aperture appears indented in the center of

the plug. Since the central portion is launched earlier than the edges,

a more exaggerated curved wavefront results. Again, further analysis would

be required for determining the optimum curvature if the concept is pursued,

but a simple experimental verification can be obtained by machining a test

teflon plug and comparing the resulting sidelobe levels.

'+1 ;•
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A sketch of the desired phase fronts resulting from these modi-

fications is shown in Figure 8b. Note that although perfect spherical

waves are not produced, the general wavefront is not as distorted in

terms of the magnitudes of the phase deviations as in Figure 7b,

6.8	 Differential Monopulse Element Nulls

The explanation used in Axiomatix Report R7804-3 for the absence

of a well-defined null in a particular plane difference channel was attrib-

uted to the geometrical relationship of the dipoles to the incoming phase

front on which the monopulse tracking system is based. This phase front

problem would be more apparent for lower f/D ratios of the antenna reflec-

tor systems. The orientation of linear polarization in the plane of

incidence suffers from a lack of phase resolution since it approaches the

dipole at the grazing angle. Because of this grazing angle of incidence,

the phase itself cannot be well characterized by the dipole, which is of

the order of half a wavelength long. An attempt to pictorially describe

this phenomenon is shown in Figure 9a, which shows that the phase front

from the edge of the reflector is incident on the monopulse dipole at

close to a grazing angle. A more detailed description is shown in

Figure 9b. which shows the phase relationship of the incident wave on

the dipole for the ray path designated by A. It is seen that the phase

relationship cannot be well defined for this orientation of polarization

and this particular dipole orientation. This is not true for the ray

path designated B since the electric field vector would be oriented paral-

lel to the dipole, and a prominent null would exist.

One corrective measure would be to use a curved dipole as shown

in Figure 9c. This configuration would most closely resemble the focused

spherical phase front and would thereby avoid the shallow null problem.

The present monopulse design uses slots in a ground plane, and

the same explanation is valid except that now the shallow null is trans-

ferred to the orthogonal plane from the case of the dipole. But since

the orientation of linear polarization has been rotated to the azimuthal

plane, the shallow null is still in the -elevation plane. The grazing

angle for the slot configuration is shown in Figure 9d, where, due to

the -Finite width of the slot, phase resolution can be degraded for a

loaf f/D system unless a complex spheroidal ground plane is used.

0
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F.0	 KU-BAND WIDE BEAM HORN

The Ku-band wide beam horn has two distinct functions. The

first use is to determine main beam acquisition for the rendezvous

radar by establishing a threshold level for comparison with the narrow

beam antenn pi sidelobes. The second function is the wide area acquisition

of the TDRS signal for communications.

Since the TDRS signal is right hand circularly polarized (RHCP) and

the radar is linearly polarized, there has been some compromise in the

radar performance. There is an inherent 3 dB loss when linear polarization

is received with a RHCP horn since the linear polarization is composed

equally of right and left hand circular polarization components.

The purpose of this section is to describe the wide beam horn in

some detail and determine the system trade-offs. Since the horn was initially

designed for linear polarization as a result of a possible Skylab mission,

the antenna pattern measurements with the circular polarization transducer

are not available at this time. However, the earlier linear polarization

measurements indicate reasonable performance parameters.

7.1	 Phvsical Description

The basic conical horn design is a cone with a slope length of 7.7

inches,an aperture diameter of 3.2 inches and a double cone angle of 24°, as

sket0; -'1d in Figure 10. The circular polarization (RHCP) transducer is

located immediately behind the horn and consists of a section of circular

waveguide with four pairs of tuning screws 45 1 to the incident linear

polarization which act as reactive elements to generate the differential

phase shifts required to change the linear polarization to circular polari-

zation.

Some of the general design graphs used to create the differential

phase shifts are shown in Figure 11 E31 to explain the multiple-lumped-

element loading concept of this type of transducer. Instead of a square

waveguide, the linear polarization is introduced into the circular wave-

guide at a 45 0 angle to simulate a power splitter since the equal orthogonal

components parallel and perpendicular to the tuning screws then undergo the

differential phase shifts which result in generating circular polarization.
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7.2	 Pattern Measurements

The,only Ku-band wide beam antenna pattern measurements released

to date have been the linear polarization patterns taken for the proposed

Skylab mission. Since the wide beam antenna is being converted to right

hand circular polarization (RHCP), the patterns themselves can only be

used as a representative sample of what might be expected for the RHCP

case, although the efficiency of the circular polarization transducer

over the broad frequency range will greatly affect the final patterns.

The most noticeable characteristic of this type of conical horn

is the varying beamwidths in the E and H planes at the same frequency,

as shown in Table 1.

Table 1. Ku-Band Wide Beam Horn-Linear Polarization

Freq.	 (GHz) Gain	 (dB)
[at rotary	 oint

M B Beamwidth ( 0 ) - E and H Planes

13.77 18.4 16.6/18.8

13.90 19.0 16.4/19.9

14.00 18.8 16.7/19.0

15.15 19.7 14.4/17.3

This distortion from a "circular" beam causes ellipticity and therefore

RHCP polarization loss off-boresight. If the gain magnitude is important,

then another horn like the corrugated conical horn which has similar E and

H plane beamwidths might be considered as a substitute.

As was mentioned previously for the narrow beam antenna, the

inclusion of calibration curves with an in-line precision attenuator both

before and after a series of pattern measureri, nts is essential to verify

the validity of the beamwidths and gain.

7.3	 Design Comments

The smooth conical horn has the disadvantage of greater ellipticity

off uas due to the different beamwidths in the E and H planes. Corrugated

conical feed horns, on the other hand, are noted for their more equal

If
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beamwidths in both planes, and some thoughts-on considering other types

of horns might be fruitful.

The use of the multiple-lumped-element loading technique by Hughes

for creating circular polarization does optimize the wide bandwidth require-

ment since the frequencies art 13.775 GHz for the communications receive

mode and 15 GHz for the communications transmit mode. It is also easy to

design by using lockable tuning screws for final adjustments.

However, because of the existence of tuning screws, there is

some frequency dependence for the circular polarizer and therefore certain

precautions should be taken. For example, the operation of the circular

polarizer should be measured outside the specified frequency range to

determine the frequency sensitivity characteristic and thereby deduce

the expected temperature sensitivity. Since the tuning screws are locatad

fairly close together and the probe lengths are short, it is not expected

that temperature effects would be significant. Again, as in the case of

the narrow beam Ku-band feed, it is recommended that passive means of

thermal control be employed to protect it against temperature extremes and

resulting thermal gradients from the abrupt operation of the transmitter.



24

... ,

8.0	 WIDE BEAM HORN PERFORMANCE

Two specific cases of wide beam horn performance are of interest:

what is the degradation due to maintaining linear polarization in the com-

munications mode, and what is the effect of going to circular polarization

on radar sidelobe discrimination?

Wi th the back up TDRS acquisition mode, tn(- Orbiter radiates a

CW signal toward TDRS using the widebeam horn. TDRS acquires and autotracks

on this signal, and in turn radiates toward the orbiter, which scans and

acquires the TDRS forward link. TDRS requires a minimum of 30 dBW EIRP

for autotrack. Present data on the linearly polarized horn indicates a

30 dBW EIRP into a circularly polarized receive antenna over a

10 degree cone, exclusive of polarization losses due to the TDRS Ku-band

dish axial ratio (<1 dB ). Uptb 0.5dB additional loss due to the axial

ratio may be possible. Specific effects of linear polarization loss due

to the TDRS axial ratio depend on the current budget allocation of axial

ratio loss between specified antenna gain and polarization loss (0.2 dB ,

JSC estimate). As this data is made available, a more accurate estimate

of the polarization loss due to the linearly polarized horn can be made.

In addition, horn performance is specified as 30 dBW EIRP for a 15 0 cone

rather than a 100 cone. Unless the horn performance (gain) can be improved,

the additional 3 dB obtained by going to circular polarization will be

needed to meet EIRP specifications.

Circular polarization will effect a 3 dB loss in the radar mode

with the high gain antenna transmitting linear and the guard (horn) antenna

receiving circular polarization. Present data indicates that the relative

signal-to-noise ratio with the high gain transmit/receive antenna is 43.8 dB ,

b«t for the high gain transmit/horn receive antenna is 21.2 dB , transmitting

on the main lobe. In contrast, transmitting with the first sidelobe the

High gain transmit/receive SNR is 7.8 dB and high gain transmit/horn receive

is 3.2 dB . Using the "main/guard" test, whereby the ratio of the AGC's for

the main and guard antennas are compared with a threshold, for a mainlobe

hit, the effective AGC ratio is 22.6 dB , while the ratio with a sidelobe

hit is 4.6 dB . This should be adequate margin, assuming the full main/quard

test is indeed used.

f
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9.0	 CONCLUSIONS

The high sidelobe levels of the high gain Ku-band antenna are

a primary influence on the antenna system performance. Several relatively

easily verifiable improvements have been suggested to decrease the side-

lobe levels of the high gain antenna. If effective, these changes may

negate the necessity of alternate, more expensive changes to the Shuttle

radar/communication system. In particular, specific recommendations

have been made to correct the three areas which have been determined to

be contributors to the high sidelobe problem. First, the concept of

leakage radiation shorting elements on the ground plane was introduced to

minimize the parasitic mutual coupling effects between the sum fend and

the monopulse elements. Second, the feed support pods have been identified

as obstacles in the primary sum feed pattern and therefore pod relocation

and shaping and material substitution were suggested as possible remedies

to the illumination taper blockage on the reflector. And finally, some

ideas on encouraging the launching of quasi-spherical wavas from the sum

feed were outlined to minimize phase aberrations for the parabolic system.

Circular polarization for the widebeam horn appears to be the

appropriate choice. The degradation in radar sidelobe avoidance is not

critical, while linear polarization will affect TDRS acquisition performance.

11
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INTRODUCTION

Stability considerations of the deployed assembly (DA) fixed base

_.. the Shuttle may cause the antenna scan overlap to fall below the rec-

ommended value for off-zenith-centered scans. A lower antenna scan over-

lap will cause a lower antenna gain and can lead to shorter target dwell

times. This will cause a corresponding decrease in the probability of

target detection when the worst-case detection scenario is considered,

i.e., detection in the center of the overlap region.

This report will present the relationship between the antenna

overlap, dwell time and antenna gain, and their effects on the received

target signal-to-noise ratio (SNR) and resulting ; probabilities of
detection.

2.0	 TARGET DWELL TIME CONSIDERATIONS

The target dwell time is a function of the total allowed scan

time, the scan frequency and the antenna overlap between consecutive

scans. The spiral scan geometry is shown in Figure 1, including the

antenna overlap region. It should be observed that the overlap region

and, consequently, the chord corresponding to the dwell time are defined

in terms of the null-to-null beamwidth, e n , instead of the half-power

beamwidth, e 6 . This has been done to account for the possibility of over-

lap below the 3 dB point.

Following the procedure outlined in [11, the dwell time, t d , for

a hybrid spiral scan is given by

2
en	 2

TS e n e0 (1-A) + e0 '[Ts e nfs (1-A), - [em - 2 (1-A)]
td =	

e	
2	 (1)

27r lem - 2 (1-A)^

where Ts = total scar, time = 60 sec

O
n 

= null-to-null beamwidth = 2.080

80 = antenna chord sweeping across the target

A = antenna overlap with respect to en

fs = scan frequency = 2 Hz

em maximum scan limit = 300

t,



o = nuii-to-nuii oeamwiath
n

eB = 3 dB beamwidth

A = precentage overlap
t

A-2

Elevation

Azimuth

F

Figure 1. Geometry of Spiral Scan, Including Overlap
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A high target dwell time is desirable since it increases the

received target energy. However, it should be noted that the dwell time

in this case is constrained by the total scan time allowed; too high an

antenna overlap precludes completing the volume to be scanned and is

physically impossible. A graph of the dwell time is given in Figure 2 as

a function of the antenna overlap. As expected, the time on target is

equal to zero when no overlap occurs. Maximization of the dwell time,

ignoring related effects such as antenna gain, is seen at a scan overlap

of 25-30% when measured with respect to the null-to-null beamwidth.

3.0	 CALCULATION OF PEAK ANTENNA LOSS

Since the worst-case detection will occur in the center of the

overlap region at some point down the antenna mainlobe, a loss must be

computed to account for the degraded peak antenna gain illuminating the

target. This is not the same as the beamshape loss, which is incurred as

the beam sweeps across the target and is included in the system loss

budget.

For small values of off-boresight antenna angles and excluding the

sidelobes, the antenna mainlobe weighting function may be approximated by

2

sin t^6/
W(e)	 —e )	 (2)

(Tre
eB)

where a	 angle off-boresight = (1-A)en/2

0  = 3 dB beamwidth = 1.60

en = null-to-null beamwidth = 2.080

For A= 1, corresponding to complete overlap or the on-boresight case, the

weighting function is equal to one and the mainlobe is fully weighted.

As the scan overlap moves away from the center of the beam, the antenna

gain is weighted less. A revised value of the antenna peak can be found

as a function of the scan overlap, A. A plot of this modified peak gain

is given in Figure 3. As noted above, instances when A= 0.7 or higher are

physically unrealizable and are shown as limiting cases only.
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4.0	 PULSEWIDTH AND PULSE REPETITION FREQUENCY (PRF)

The pulse duration, T, of the RF pulse and the PRF are functions

of the designated range to target in the Shuttle Ku-band radar. These

signal parameters are summarized according to range in Table 1.

Table 1. Radar Pulsewidth and PRF as a Function of Target Range

Range to Target, nmi	 T(usec)	 PRF (Hz)

7.2 +	 66.4	 2987

3.8 - 7.2	 33.2	 6970

1.9 - 3.8	 16.6	 6970

0.95 - 1.9	 8.3	 6970

0.42 - 0.95	 4.15	 6970

- 0.42	 0.122	 6970

5.0	 CALCULATION OF AVERAGE S RN

The average SNR, including coherent integration, is found from
k

the radar equation in the following form. The effects of the variable

scan overlap are included implicitly via the target dwell time and 1-he

peak antenna gain loss, LB.

P p T PRF tdG?a2v
SNR =	 (3)

(4,r) 3 R4 kT i LLB

where Pp = peak transmitter power = 60W

G = antenna gain = 38.5 dB

a? = transmitted wavelength = 0.216 m

2a = average target cross section = 1 m

P
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R = range to target

k	 Boltzmann's constant = 1.38 x 10-23 J/oK

T i = system noise temperature = 15000K

L = system losses = 13.88 dB

LB = loss in peak antenna gain

and all other parameters were defined previously.

6.0	 PROBABILITY OF TARGET DETECTION

Frequency agility, using five RF frequencies, has been uses; in

both the search and track modes of the radar to minimize target scint4 1

-lation effects. Therefore, the target is modeled assuming Swerling II

scintillation statistics, i.e., a fast fluctuating target. The single-

scan probability of detection for this case is given by

Yb /(l + SNR)

N-1 -x

Pss	 1 - j	 x N-le ► - dx	 (4)

0

Y

	

= 1- I	
b	 N- 1	 (5)

(1 + SNR)

where Y  is the receiver bias level, 14 is the number of pulses integrated

noncoherently and IC I refers to the incomplete gamma function.

Radar performance is judged by the probability of detection over

two scans. This cumulative probability can be approximated by

P
cum = 1 - (1 - Pss)2 = 2P ss - P ss 2	 (6)

if it is assumed that the target range between scans has not changed

appreciably. Figure 4 shows the cumulative P d for different scan over-

`i'	 laps, measured with respect to the antenna 3 dB beamwidth. For example,

A = 0.3 means that the beam overlap is 30% higher than the half-power beam-

width point, with a probability of detection on one of two scans equal to

0.76 at 10 nmi.

g-
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7.0	 CONCLUSIONS

Maximum target energy is received when the antenna scan overlap

is approximately 45% when measured with respect to the half-power beam-

width. This compares reasonably with the commonly accepted value of 30%

when the approximate nature of the antenna mainlobe model is considered.

Probability of detection decreases with lower values of scan overlap until

zero detection is "achieved" with no overlap. These results should be

considered when deciding which values of scan overlap are tolerable.

r'
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