

NASA Contractor Report 159161

NASA-CR-159161

NASA CR- 159,161

LEADING EDGE VORTEX-FLAP EXPERIMENTS ON A 74 DEG. DELTA WING

Dhanvada M. Rao

OLD DOMINION UNIVERSITY RESEARCH FOUNDATION Norfolk, Virginia 23508

NASA Grant NSG-1315 November 1979

LIPARY COPY

NOV 27 1979

LAHGLEY RESEARCH CENTER LIBRARY, NASA HAMPTON, VIRGINIA

NASA

National Aeronautics and Space Administration

Langley Research Center Hampton, Virginia 23665

.

la de la composition Antigen de la composition de la composit Antigen de la composition de la composit

LEADING EDGE VORTEX-FLAP EXPERIMENTS ON A 74 DEG. DELTA WING

Dhanvada M. Rao Old Dominion University Research Foundation

ABSTRACT

Exploratory wind-tunnel tests are reported on a 74 deg. delta wing model to evaluate the potential of a vortex-flap concept in reducing the subsonic lift-dependent drag of highly swept, slender wings. The concept utilizes the suction effect of coiled vortices generated through controlled separation over leading-edge flap surfaces to produce a thrust component. A series of vortex-flap configurations were investigated to explore the effect of some primary geometric variables. The most promising flap arrangement produced drag reductions in excess of 30% relative to the basic wing in the range of lift coefficient 0.4 to 0.8.

* Research supported by NASA Grant No. NSG-1315.

. 5-

+ Research Associate, ODURF and Research Professor, Dept. of Mechanical Engineering and Mechanics, Old Dominion University, Norfolk, Virginia.

N80-110-38#

INTRODUCTION: THE VORTEX-FLAP CONCEPT

Extensive research in recent years on highly swept, slender wings for supersonic cruise aircraft has revealed serious performance, stability and control deficiencies in the subsonic, highlift flight regime. Leading-edge flow separation and the consequent loss of leading-edge suction on such wings is responsible for large increases in drag even at moderate angles of attack, while the resultant formation of concentrated vortices on the wing induces undesirable stability and handling characteristics (for example, see ref. 1).

Leading-edge flaps have commonly been employed on wings of moderate sweep angle in order to maintain attached flow to higher angles of attack. However, on low aspect-ratio wings with leadingedge sweep exceeding 70 deg. as found on typical supersonic cruise planforms (such as the delta and arrow wings), this approach appears to be less practical. The circulation-induced upwash angle at the leadings edges of such wings rapidly attains high values with increasing angle of attack (when viewed in the plane normal to the leading edge), and also varies appreciably in the spanwise direction. In such cases, the large flap deflections needed may only succeed in moving the position of separation from the leading edge to the knee-line which will nullify some of the drag benefit, while the vortex flow will still persist over the wing. (see fig. 1, C).

The leading-edge vortex-flap concept (fig. 1, D) offers an alternative to the conventional attached-flow approach for drag reduction on highly swept wings. Through controlled separation at the flap leading edges, coiled vortices are generated whose suction effect over the forward-sloping flap surfaces provides a thrust component. The high degree of leading-edge sweep enhances the stability and persistence of the vortices along the flap length. For the vortex suction peak to be maintained on the flap, it would intuitively appear necessary for the vortex-induced attachment of the inviscid (dividing) streamline to occur on the flap surface. An adequate flap chord is therefore essential in consideration of the vortex core size and also to accommodate the inboard movement of the core with increasing angle of attack. On a conventional leading-edge flap which essentially forms a part of the main wing surface, moving the hinge-line inboard in order to enlarge the flap chord will be limited by structural as well as aerodynamic considerations, particularly so on slender planforms. Accordingly, auxiliary surfaces that extend out of the basic wing appear to be the most effective means of exploiting the vortex-flap concept.

The most efficient operation of the vortex-flap would be expected to occur when the induced attachment is just at the leading edge, as indicated in fig. 1, D. This condition not only will bring the entire flap chord under vortex suction but also favor a smooth flow entry to the wing. To obtain this optimum flow pattern simultaneously at all spanwise sections will in general require a varying flap angle according to the prevailing upwash distribution. In the interest of retaining the basic simplicity of the vortex-flap concept, however, constant flap deflection and simple chord variation (such as constant taper) only have been considered in this preliminary study.

This report presents the results of an exploratory windtunnel evaluation of the vortex-flap applied to a 74 deg. flat delta wing at a subsonic Mach number. The primary objectives of this study were to improve the aerodynamic efficiency of the basic delta wing by means of simple vortex-flap arrangements in the liftcoefficient range 0.4 to 0.8, and in the process to obtain an insight into the relative importance of some of the primary geometric variables of the vortex-flaps.

rí J

LIST OF SYMBOLS

А	Aspect ratio
ē	Mean aerodynamic chord (m.a.c.) of basic wing
с ^v	Axial force coefficient Lift-dependent drag coefficient (= C _{Dtotal} - C _{Dzero-lift})
C _T	Lift coefficient (on basic wing reference area)
C ^r	Lift coefficient (on total projected plan area, including LEVF)
C _m	Pitching moment coefficient
C _N	Normal force coefficient
C _m	Leading-edge thrust coefficient
d _{H I}	Distance of LEVF hinge line, normal to leading edge
L/D	Lift-to-drag ratio
S	Basic wing area
s'	Total projected plan area, including LEVF
α	Angle of attack
δ _τ	LEVF deflection angle in the plane normal to hinge line
δ _T	Trailing-edge flap deflection
	ABBREVIATIONS USED IN TABULATED DATA
ALPHA	Angle of attack
CD	Drag coefficient
CL	Lift coefficient
CMS	Pitching moment coefficient) (Note: Moments are referred
CRMS	Rolling moment coefficient \rangle to wind axes)
CYMS	Yawing moment coefficient
CYS	Side force coefficient
MACH	Free-stream Mach number
Q	Free-stream dynamic pressure

3

•

,

" _ A " _ " .

. - ²-

~ ~

MODELS AND TEST DETAILS

The basic wing was an existing 74° delta model previously tested with sharp leading edges (ref. 2). For the present investigation, the leading edges were modified to a constantradius (0.635 cm), semi-circular cross section (fig. 2). The flaps were cut from 0.16 cm thick aluminum sheet, bent as required and fastened to the wing lower surface with screws. The model had a fuselage-like integral housing for a six-component strain-gage balance.

The following LEVF configurations were tested (fig. 3): LEVF I - Full-span, constant chord flaps joined ahead of the wing apex. Starting with this initial arrangement, increasing portions of the flap from the apex (25, 50 and 75 percent of the leading-edge length) were successively cut off along a chordwise line to generate the partial-flap series.

LEVF II - Modification of (I) with the 25-percent length removed along a swept-back (rather than chordwise) line. LEVF III - Modification of (II) to generate an inverse-taper flap. LEVF IV - Extended-flap obtained by attaching a flat extension to (III) projecting inboard over the wing.

The dimensions of the various flap configurations are given in fig. 4. The tests were carried out in the NASA Langley 7-by 10-foot high speed tunnel at a nominal Mach number of 0.2 and a Reynolds number of 2.75 x 10^6 based on the mean aerodynamic chord.

DATA PRESENTATION

The emphasis in this study was on the performance potential of the LEVF concept. Accordingly, the graphical presentation of the results in this report consist mainly of L/D plotted versus lift coefficient. Some additional analysis plots are also included as needed to support the discussion of results. The wind-tunnel test schedules and tabulated balance data are included in Appendix at the end of the report.

DISCUSSION OF RESULTS

For a ready evaluation of the LEVF drag-reduction potential, the flaps-on L/D versus C_L characteristics will be compared with the flaps-off (basic wing) data. Noting that the basic wing of the present study had blunt leading edges, a further comparison will be offered by including the sharp leading edge data taken from ref. 2. The relatively large leading-edge radius on the present basic wing (amounting to approximately 1-percent of \overline{c}) is unrepresentative of supersonic wings, and it may therefore be more appropriate to use the sharp leading edge results as the baseline. At lift coefficients greater than about 0.6 the basic wing L/D is virtually the same with either sharp or blunt leading edges (and corresponds to zero leading-edge suction case).

Since the basic wing reference area (S) has been employed in deriving the lift coefficients, a part of the LEVF benefit apparent in the L/D vs. C_L comparisons will be due to the planform area increase from the flaps. It is quite legitimate to take advantage of this effect since area-increase is an essential part of the present LEVF concept (see INTRODUCTION). However, in order to appreciate the relative aerodynamic effectiveness of the various LEVF test configurations with different amounts of flap area, the L/D data have also been plotted against $C'_L = C_L \cdot S/S'$ where S' is the total projected plan area including the LEVF.

Constant Chord, Full Span LEVF I

In a practical installation the LEVF will be hinged some distance behind the leading edge for structural reasons. The hingeline positions investigated are defined in fig. 2. The effect of increasing hinge distance behind the leading edge was found detrimental to LEVF performance (figs. 5A and 6A), even on the areacorrected basis (figs. 5B and 6B). These results suggest that the leading-edge overhang has an adverse influence on the formation and stability of the flap vortex. The effect of varying the flap deflection from 30° to 45° at a constant hinge-line position is shown in fig. 7A. When the corresponding variation in the projected area is taken into consideration, the LEVF performance is found to be virtually identical at the two deflection angles for $C_L > 0.4$ (fig. 7B). The adverse effect noted in the 45° flap data at the lower lift coefficients indicates that in this range the flap is effectively over-deflected, resulting in separation and vortex formation on the lower surface of the flap with a corresponding drag penalty.

Constant-Chord, Part-Span LEVF I

The part-span LEVF configurations were of interest because they appeared to be more practical for aircraft applications where a fuse-lage would be present. Also, it was anticipated that the forward portions of the vortex-flaps would be relatively less effective due to the low upwash angles encountered closer to the wing apex. The effect of progressive flap length cut-off from the apex is shown in fig. 8A. On area-corrected basis, removal of the first 25-percent of the flap was found to produce virtually no loss in performance within the C_L range of interest, while actually showing some improvement at lower lift coefficients (fig. 8B).

Constant Chord, Part Span LEVF II

Removing the first 25-percent of the flap along a swept-back line (as opposed to the chordwise cut of LEVF I) results in a much improved performance as shown in fig. 9, particularly at the lower lift coefficients. Remarkably, this LEVF modification at 30° deflection even raises the $(L/D)_{max}$ above the basic-wing value. Also, the drag penalty at the lower lift coefficients with 45° flap angle (noted in case of LEVF I) is considerably alleviated.

Comparison of LEVF II and LEVF III

- C

The constant-chord LEVF II is compared with the inverse-taper flap for 30[°] deflection in fig. 10. LEVF III was generated by removing material from LEVF II and as a consequence was about 20percent smaller in area; nevertheless, it produces nearly the same

performance in the C_L range of interest. This improved efficiency of LEVF III is not surprising since the inverse taper was intended to accommodate the spanwise expansion of the flap vortex.

Extended Flap, LEVF IV

A method of increasing the effective chord of the vortex-flap to insure vortex 'capture' at higher at higher angles of attack (but without incurring excessive hinge moments) is illustrated in fig. ll. An additional flap is provided on the upper surface of the wing and deployed such that it forms a virtual extension of the lower flap. The upper-surface flap will necessarily produce a large separated-flow region with a corresponding drag penalty. However, it was surmised that the separation occuring along a highly swept edge would result in a coiled vortex type flow behind the upper flap. The entrainment effect would then energize the lee-side flow on the wing specially at high angles of attack and thus provide compensating benefits such as improved trailing-edge flap effectiveness.

On the test model a flat-plate flap was mounted across either leading edge to simulate a 30° extended flap configuration. The inner edges of the plates were bent up in a 45° lip in an attempt to increase the velocity at separation and thereby intensify the inboard vortices. Smoke visualization at low speed with this model confirmed the presence of these vortices at angles of attack greater than about 5° (fig. 12).

The lift curves of LEVF III and LEVF IV are compared in figs. 13 A and 13 B. Noteworthy is the additional lift on the extended flap configuration over a substantial angle-of-attack range. It seems reasonable to attribute the lift increment to the suction effect of the inboard vortices. The L/D data show the relatively large drag penalty incurred with LEVF IV at the lower lift coefficients (fig. 14). However, between $C_L = 0.5$ and 0.8 the extended flap performs better than LEVF III, or equally well on the area-corrected basis. The performance advantage of LEVF IV at

higher C_L's appears to stem largely from it's better lift characteristics. These results although limited to a single geometry and one deflection angle, appear sufficiently interesting to warrant further study of the extended flap concept, particularly to develop it's unique lift-enhancing capability.

Effect of Trailing-Edge Flaps

Slender wing configurations typically have reduced liftcurve slopes which dictates the use of trailing-edge flaps in order to attain high lift coefficients for take off and landing. As shown in fig. 15, trailing-edge flaps produce L/D improvements on the basic wing by allowing angle-of-attack reduction for a given lift coefficient. Such improvements are found also on the wing with leading-edge vortex-flaps present (fig. 16).

The trailing-edge flap effectiveness at $\delta_{\rm T} = 30^{\circ}$ measured in terms of lift and pitching-moment increments relative to $\delta_{\rm T} = 0^{\circ}$ is shown in fig. 17 for different LEVF configurations over the angle of attack range. A rise in $\Delta C_{\rm L}$ beginning at about 6° angle of attack on the basic wing is attributed to the onset of leadingedge vortices which entrain high dynamic pressure flow on the lee side. By comparison, the LEVF III data suggest that vortex formation over the wing was delayed to a much higher angle of attack. With extended flaps, a significantly higher lift increment due to trailing-edge flap deflection is evident throughout the angle of attack range. This again may be attributed to the entrainment effect of the inboard vortices unique to this flap configuration.

Longitudinal Stability

At a constant LEVF deflection, increasing angle of attack results in a forward movement of the vortex origin along the flaps due to the characteristic spanwise development of the leadingedge upwash. Accordingly, a longitudinal shift of the center of pressure may be anticipated. Pitching-moment data for the three LEVF configurations presented in fig. 18 indicate a reduction in stability compared to the basic wing at angles of attack below about 10° , as expected from the flap area addition forward of the moment center. At higher angles of attack, however, when the whole length of the flap is under vortex flow (as confirmed by oil flow visualizations), there is an increase of the C_m-slope to the same level as on the basic wing. With LEVF III, the pitching moments above 18° angle of attack are nearly identical with the basic-wing data, suggesting that the flap vortices have moved inboard on to the wing.

Vortex-Flap Thrust Characteristics

Although the lift/drag ratio comparisons discussed previously are convenient for the purpose of assessing the relative performance of vortex-flap configurations, the magnitude of L/D are based on the total drag characteristics of an idealised test model at the wind-tunnel test Reynolds number and therefore quite un-representative of the flight vehicle. The drag-reduction due to vortex-flaps may be more directly evaluated by a study of the effective thrust generated by the flaps. This was attempted by using the axial-force balance measurements which provide a sensitive and direct indication of the aerodynamic thrust.

Typical axial-force coefficient data are plotted versus angle of attack for the basic wing as well as the LEVF configurations in fig. 19. With increasing angle of attack the axial force steadily decreases and becomes negative as the leading-edge thrust overcomes the combined axial force due to skin friction, pressure drag from trailing-edge separation, balance-housing drag and base drag. The axial-force coefficient with LEVF on starts with a much higher positive value at zero angle of attack but rapidly attains negative values considerably in excess of those obtained on the basic wing, indicating the powerful thrust effect of the vortex-flaps. Of the three flap configurations compared in fig. 19 the inverse-taper LEVF III alone shows a distinct axial-force break (at approximately 17[°] angle of attack), signalling a sudden

drop in the vortex-induced thrust. It may be inferred that the chord dimension of LEVF III, while adequate within the C_L range of interest, was not sufficient to hold the vortex on the flap at higher angles of attack. The consequent migration of the vortex on to the wing then shows up in the lift and pitching-moment characteristics, already noted in figures 13 and 18 respectively.

Since leading-edge suction in potential flow in proportional to $\sin^2 \alpha$, the C_A data have been re-plotted in this relationship in fig. 20. The early leading-edge separation on the basic wing (around $\alpha = 5^{\circ}$) causes the initial linear portion of the data to be compressed into a very small region on this plot. On the other hand, the LEVF data are notably linear over a substantial angle-of-attack range. From these data, an effective thrust coefficient C_{π} may be derived as follows:

$$C_{T} = - (C_{A} - C_{A_{\alpha=0}})$$

where $C_{A_{\alpha=0}}$ was obtained by linear extrapolation to zero angle of attack, as shown in fig. 20. A thrust parameter $(C_{\rm T} \cos \alpha/C_{\rm N} \sin \alpha)$ may then be obtained (ref. 3) which relates the effective thrust component in the free-stream direction to the drag component from the normal force, where both $C_{\rm T}$ and $C_{\rm N}$ are derived from experiment as a function of angle of attack.

The thrust parameter is related to the lift-dependent drag coefficient as follows:

$$C_{D_{L}} = C_{N} \sin \alpha - C_{T} \cos \alpha$$
$$= C_{L} \tan \alpha (1 - C_{T} \cos \alpha / C_{N} \sin \alpha) --- (1)$$

For zero leading-edge suction ($C_{T} = 0$), eqn. (1) gives the familiar expression for lift-dependent drag

 $C_{D_{L}} = C_{L} \tan \alpha$

whereas with full leading-edge suction, when $C_{D_{L}} = C_{L}^{2}/\pi A$, we get $(C_{T} \cos \alpha/C_{N} \sin \alpha)_{max} = 1 - (C_{L}/\tan \alpha \cdot \pi \cdot A) ---$ (2)

The thrust parameter is plotted versus angle of attack for the basic wing and the three LEVF configurations in fig. 21. Note that the flap-area effect does not appear in this presentation. The rapid decline of basic wing leading-edge suction due to early onset of separation is evident in fig. 21, whereas the vortex-flaps maintain . a significant thrust level over the angle of attack range. The relative effectiveness of the different LEVF geometries is also well exhibited in this presentation, including the advantage of the extended flap configuration at the highest angles of attack.

Translating the effective thrust data to lift-dependent drag using eqn. 1 at 10° angle of attack, as an example, we get

C_D = .053 for basic wing, and = .035 for LEVF III

Thus, a 34-percent lift-dependent drag reduction is obtained by the use of LEVF III. Or, relative to the sharp leading edge basic wing for which $C_{D_{L}} = C_{L} \tan \alpha = .06$, the corresponding drag reduction is 41-percent.

CONCLUDING REMARKS

A preliminary subsonic wind-tunnel evaluation has been conducted of the leading edge vortex-flap (LEVF) concept of a 74° delta wing research model. The emphasis was on reducing the lift-dependent drag in the range of lift coefficient 0.4 to 0.6 appropriate to takeoff, climb and landing phases. Of the various LEVF geometries investigated, the most promising was an inversely-tapered flap starting at 25-percent of the leading-edge length from the apex, having 15-percent of the wing area, a mean chord normal to the hinge-line equal to about 5-percent of wing mean aerodynamic chord, set at 30° deflection. With this vortex-flap, drag reductions exceeding 30-percent relative to the blunt leading-edge basic wing (or 40-percent relative to sharp leading-edge wing) were indicated in the C_L range of interest. No adverse effects in the longitudinal stability characteristics by the use of vortex-flaps were noted.

The results of this exploratory investigation have established that vortex-flaps of a practical size can produce attractive performance improvements on highly swept, supersonic cruise type planforms for subsonic phases of flight. Continuation of the vortex-flap development for application to realistic aircraft configurations, taking into account practical design constraints, appear worth-while.

REFERENCES

- 1. Coe, Paul L., Jr. and Graham, A. B.; Results of Recent NASA Research on Low-Speed Aerodynamic Characteristics of Supersonic Cruise Aircraft. NASA CP-001, pp. 123-136. 1976.
- 2. Davenport, Edwin E. and Huffman, Jarrett K.; Experimental and Analytical Investigation of Subsonic Longitudinal and Lateral Characteristics of Slender Sharp-Edge 74 deg. Swept Wings. NASA TN D-6344, 1971.
- 3. Carlson, Harry W. and Mack, Robert J.; Estimation of Leading-Edge Thrust for Supersonic Wings of Arbitrary Planform. NASA TP 1270, 1978.

APPENDIX

WIND TUNNEL TEST SCHEDULES

<u>Test # 51</u>	<u>+</u>			
Run no.	LEVF config.	$\delta_{\rm L}$ (deg)	d _{H.L.} (cm)	δ_{T} (deg)
3 4 5 6 7 8 9 10 11 12	I (25% cut off) (50% cut off) (75% cut off) (LEVF off)	30 45 45 30 45	1.27 2.54 3.81 0 1.27 2.54 1.27	(TEF off)
<u>Test # 58</u>	3			•
1 2 3 4 5 6 7 8 9 10 11 12 13 (vo 14 15 16 17 18 19 20 21 22 22	I II (LEVF off)	45 30 <u>1</u> 30	1.27 <u>v</u> 2.54 <u>v</u> 1.27 <u>v</u> 1.27	30 (TEF off) 30 30 (TEF off) (TEF off) 30 20 10 0 30 30 30 20 10 10 20 10 10 20 10 30 30 30 30 30 30 30 30 30 30 30 30 30
23 24 25 26	IV IV IV	V		0 0 47 30

. .

.. 5

Ĩ. ____

, *

•

7 X 10 HIGH SPEED TUNNEL

54	RUN	3								
MACH		Q	ALPHA	CL	CD	CMS	CRMS	CYMS	CYS	L/D
		ΡA	DEG		•					
.200	277	7.5	08	0566	.0210	0076	0003	.0006	.0004	-2.09
.200	2764	4.6	-1.96	1354	.0307	0047	0004	.0004	0007	-2.78
.200	278	4.1	08	0579	.0208	0078	0003	.0006	0003	1.16
.201	2790	0.4	1.83	•0183	.0158	0121	.0001	.0000	.0005	5.84
.201	2793		3.19	+UY3Y 1 E 9 4	.0101	- 0222	.0000	-0002	.0006	7.35
.201	2790	0.4	7 45	•1200	.0210	0225	- 0001	0002	.0017	7.74
.200	277	R.Q	9.63	.2837	.0373	0242	0003	.0003	.0014	7.61
-200	276	9.1	11,58	.3525	.0495	0258	0004	.0006	.0006	7.12
.199	275	3.9	13.61	.4403	.0700	0342	0001	.0000	.0002	6.29
.200	277	3.9	15.68	.5409	.0996	0467	.0001	0000	0005	5.43
.200	277	1.1	17.73	.6499	.1407	0551	.0009	.0003	0030	4.62
.200	276	3.1	19.77	•7569	.1912	0633	.0011	.0005	0051	3.96
.200	277	8.4	21.80	.8677	•2531	0701	.0022	.0014	0100	3.43
.200	277	5.1	24.11	1.0104	.3416	0803	.0035	.0015	0161	2.90
•200	277	1.5	10	0579	.0210	0073	0004	•0005	0001	-2.10
			•							
54	RUN	4								
		•								
MACH		Q	ALPHA	CL	CD ·	CMS	CRMS	CYMS	CYS	L/D
		PA	DEG			_				
.200	2777	• 4	07	0525	.0214	0043	0006	.0001	.0009	-2.45
.201	2788	•3	-1.94	1271	.0310	.0006	0007	0002	.0005	-4.10
.201	2794	••0	07	0551	.0216	0041	0006	0001	.0008	-2.35
.201	2795	•7	1.83	.0178	.0107	0104	- 0001	0002	.00011	5,11
•201	2707	•0	3.10	1520	+01/0		0002	.0002	.0009	6.69
• 201	2193		7 66	.1000	02.50		0002	0003	.0018	6.82
.200	2777	4	.9.57	2842	.0431	0329	.0001	0002	.0009	6.59
.200	2763	.1	11.56	.3466	.0554	0372	0001	0002	.0004	6.26
.200	2760	.6	13.57	.4155	.0719	0444	.0000	0005	.0009	5.78
.199	2752	.7	15.56	.5018	.0976	0592	0003	0002	.0012	5.14
.200	2770	.7	17.67	.6023	.1348	0761	.0000	.0003	0002	4.47
.201	2782	2	19.64	.6902	•1745	0852	.0006	.0011	0026	3.96
.200	2775	•6	21.65	•7781	.2209	0947	.0006	.0008	0028	3.52
.200	2780	.5	23.92	.8915	.2866	1117	.0006	0001	0009	3.11
•201	2781	•1	10	0542	•0214	0041	֥0005	0000	*0010	-2.95
			·			•				
			s .							
							· · · ·			•
						e'				
54	RUN	5								· · · · · ·
MACH		Ω.	ALPHA	CL	CD	CMS	CRMS	C YMS	CYS	L/D
		PA	DEG							
.201	2797	•9	05	0400	.0213	0021	0002	.0004	.0008	-1.88
.200	2791	•4	-1.90	1053	.0299	.0036	0003	•0003	.0010	-3.52
.201	2797	•6	06	0414	,0216	0022	0002	•0003	•0006	-1.92
•201	2807	•Z	1.87	•0255	.0176	0097	0000	.0001	•0009	1.45
• 201	2800	1.0 i 4	3.19	.0971	•0194	0182	.0003	.0003	•0006	5.00
.200	2705	7 * " 5 _ R	2+01 7 67	.1020	0223	0261	.0001	.0007	•0002	6.42
.200	2701	.2	7.607 0.58	• C J I I . 2056	.0500	0404		.0005	.0001	0.31
.200	2770	A	700 11,58	•6790 ,2670	-0204		.0007	.0005	0006	5.87
.200	2777	.3	13.58	4342	.0071		+0008 .0008	.0003	0012	2.3Z
.200	2773	.4	15.60	.5041	.1149	0624	.0012	-0003	0015	7001 4 20
.200	2785	.6	17.63	.5803	.1467	0747	.0002	0004	0019	7.37
.201	2804	.9	19.55	.6678	.1869	0926	.0005	0003	0007	3.57
.200	2787	1.6	21.61	.7565	.2339	1054	.0018	0011	.0008	3.23
201	2806	.4	23.68	.8455	.2897	1187	.0011	0015	.0019	2.92
.200	2787	• 3	10	0435	.0219	0022	0001	.0003	.0003	-1.99

7 X 10 HIGH SPEED TUNNEL

,

-*

ر ب¹¹

- <u>-</u> - -

54	RUN 6								
MACH	Q	ALPHA	CL	CD	CMS	CRMS	CYMS	CYS	1/D
	PA	DEG							
.201	2798.0	12	0717	.0279	0205	.0001	.0003	•0004	-2.57
.200	2785.1	-1.96	1512	.0396	0226	0001	.0001	.0006	-3.81
.201	2801.2	10	0714	•0282	0209	.0001	.0002	.0006	-2.54
.201	2810.7	1.86	•0088	•0205	0184	.0001	•0001	•0005	•43
.201	2793.8	3.80	•0839	.0182	0186	.0005	•0000	.0.003	4.62
.201	2804.2	\$ 5.71	•1479	.0204	0160	•0006	.0001	•0003	7.27
•200	2777.1	7.73	•2177	.0274	0173	.0004	0003	•0007	7.95
.200	2782.1	9.65	•2888	.0380	0155	.0004	.0001	.0005	7.60
.201	2793.7	11.69	.3676	.0529	0136	.0001	.0003	.0008	6.95
.200	2776.7	13.73	•4534	.0731	0135	.0002	.0003	.0003	6.20
.200	2779.9	15.77	.5515	.1018	0154	.0005	.0004	0008	5.42
.200	2769.3	17.88	•6694	•1429	0189	.0011	.0009	0023	4.69
•200	2787.3	19.87	•7882	.1932	0219	.0012	.0002	0029	4.08
.200	2786.1	22.03	•9230	.2601	0214	.0012	.0000	0026	3.55
.199	2760.1	24.14	1.0444	.3352	0149	.0016	+0000	0036	3.12
.200	2780.3	08	0687	.0279	0203	.0002	.0002	0007	-2.46
54	DIN 7								
54									
MACH	Q	ALPHA	CL	CD	CMS	CRMS	CYMS	CYS	L/D
200	2779 O	- 10	- 0680	0202	0104	.0002	. 0000	.0000	-2.36
200	2778.6		- 1429	0403	0063	0001	0002	.0003	-3.54
.200	2786.7	11	0699	.0289	0103	.0001	0002	.0005	-2.41
. 201	2796.5	1.85	.0093	.0225	0156	.0001	0000	.0004	.41
.200	2780.1	3.79	.0856	.0220	0214	.0001	.0002	.0009	3.89
200	2777.4	5.68	.1595	0266	0275	0001	.0003	.0009	6.00
-200	2776.0	7.70	-2320	.0357	0335	0000	.0002	.0010	6.50
.201	2795.3	9,59	.2980	.0470	0359	0001	0004	.0014	6.34
- 200	2784.6	11.65	. 3599	.0590	0362	0001	0011	.0026	6.10
.200	2784.7	13.62	4253	.0738	0377	0008	0011	.0024	5.76
.200	2786.1	15.62	.4970	.0939	0426	0000	0019	.0018	5.30
.200	2772.0	17.72	5945	1260	0579	0015	0011	.0034	4.72
. 200	2784.7	19.64	.6972	.1663	0762	0024	0012	.0052	4.10
.201	2789.7	21.72	.8010	.2147	0900	0022	0022	.0077	3.73
.201	2789.0	23.77	.8951	2684	0971	0035	0040	.0131	3.33
.200	2776.1	12	0660	.0289	0102	.0003	.0002	.0005	-2.28
				/					

54	RUN 8								•	
MACH	Q	ALPHA	CL	CD	CMS	CRMS	CYMS	CYS	L/D	
	PA	DEG	044 3							
.201	2180.5	09	0647	•0292	00/1	0001	0003	0002	-2.21	
.200	2772.6	-1.93	1308	•0395	0021	.0000	0004	0002	-3.31	
.201	2787.8	09	0637	.0292	0071	.0002	0003	0001	-2.18	
.201	2784.2	1.83	.0086	.0231	0138	.0001	0005	0002	.37	
.201	2783.9	3.76	•0826	.0231	0211	.0003	0000	.0006	3.58	
.201	2778.9	5.66	.1543	.0277	0284	.0002	.0000	.0001	5.57	
.200	2771.9	7.67	.2286	.0377	0357	.0001	.0002	.0001	6.06	
.200	2767.7	9.57	.2969	.0517	0413	.0007	0000	0015	5.75	
.200	2751.6	11.58	.3667	.0685	0455	.0010	0008	0016	5.35	
.200	2765.2	13.59	.4352	.0883	0507	.0013	0016	0016	4.93	
.200	2768.8	15.58	.5035	.1098	0563	.0009	0024	.0006	4.59	
·200	2758.0	17.64	.5736	.1361	0637	.0004	0030	.0010	4.21	
.200	2757.6	19.54	.6494	.1677	0763	0008	0033	.0038	3.87	
.201	2776.2	21.61	•7525	.2161	0978	0009	0028	.0042	3.48	
.200	2762.5	23.73	.8539	.2731	1170	0017	0015	.0035	3.13	
.201	2779.4	11	0638	.0293	0072	.0001	0004	0010	-2.18	

7 X 10 HIGH SPEED TUNNEL

54	RUN	9								
MACH		Q PA	AL PHA DEG	CL	CD	CMS	CRMS	CYMS	CYS	L/D
.200	276	5.5	06	0510	.0188	.0005	0001	.0004	0005	-2.72
.200	276	4.2	-1.91	1233	.0274	.0063	0001	.0006	0005	-4.50
.201	277	7.1	06	0499	.0189	.0005	0001	.0004	0005	-2.65
.201	277	6.8	1.85	.0259	.0141	0067	•0002	.0004	0006	1.83
.201	278	1.9	3.78	.1001	.0144	0150	.0002	.0001	0008	6.96
.200	276	3.5	5.68	.1642	.0206	0213	.0001	.0001	0011	7.96
.200	275	6.8	7.69	.2323	.0289	0239	0000	0001	.0006	8.03
.200	274	4.5	9.59	.2953	.0385	0254	0000	.0001	0012	7.67
.200	275	6.8	11.64	.3691	.0540	0292	.0006	0006	0031	6.84
.200	275	3.8	13.66	.4570	.0773	0384	.0008	0012	0028	5.91
.200	275	4.1	15.68	.5614	.1108	0521	.0014	0018	0048	5.07
.201	277	8.0	17.76	•6668	.1546	0620	.0024	0031	0066	4.31
.200	277	0.0	19.72	.7626	.2042	0674	.0041	0028	0130	3.73
.200	276	1.9	21.86	.9087	.2901	0816	.0019	.0052	0366	3.13
.200	275	8.4	24.05	1.0616	.3899	0928	.0029	.0009	0226	2.72
.201	277	2.8	07	0473	.0186	.0005	.0000	.0005	0020	-2.55
			•							

54	RUN	10	•		•					
MACH		Q	ALPHA	CL	· CD	CMS	CRMS	CYMS	CYS	L/D
		PA	DEG							
.201	2773	3.8	03	0396	.0157	.0061	0007	0003	.0004	-2.53
.200	2759	9.7	-1.90	1075	.0229	.0154	0006	0004	.0010	-4.69
.201	2770	6.9	03	0406	.0157	.0063	0006	0004	.0010	-2.58
.201	2780	0.5	1.87	.0290	.0123	0034	0004	0004	.0009	2.37
.201	2776	6.6	3.79	•0987	.0135	0134	0003	0002	.0002	7.33
.200	277(0.8	5.69	.1665	.0206	0227	.0002	0002	0001	8.08
.200	2760	0.0	7.69	.2334	.0302	0271	.0005	0005	.0015	7.72
.200	2767	7.2	'9.58	.3001	.0428	0312	.0004	.000i	0003	7.01
.200	2757	7.6	11.62	.3766	.0615	0357	.0012	0006	0035	6.13
.200	2757	7.9	13.63	•4536	.0844	0411	.0017	.0002	0085	5.38
.200	2750	6.8	15.66	•5419	.1156	0505	.0024	0010	0091	4.69
.200	276	5.4	17.74	.6402	.1570	0606	.0033	0020	0082	4.08
.200	276	5.0	19.69	.7376	.2073	0688	.0041	.0002	0094	3.56
.200	2770	0.5	21.82	.8765	. 2935	0892	.0031	0007	0083	2.99
.200	2751	1.3	24.00	1.0727	.4165	1260	.0062	0079	.0027	2.58
.200	276.0	0.0	07	0411	.0157	.0063	0007	0003	.0005	-2.61

54	RUN	11								
MACH		Q P A	AL PHA Deg	CL	CD	CMS	CRMS	CYMS	CYS	L/D
.200	279	06.7	02	0262	.0133	.0106	.0001	.0002	0001	-1.98
.200	279	93.3	-1.86	0894	.0183	.0225	0001	.0000	.0005	-4.89
•201	281	3.2	01	0267	.0130	.0106	0002	.0000	.0002	-2.05
.201	281	0.1	1.88	.0357	.0110	0012	.0002	0000	0003	3.25
.200	278	17.5	3.78	•0987	.0127	0127	.0005	0000	0004	7.75
•200	279	93.9	5.69	.171 6	.0213	0258	.0007	.0002	0001	8.04
.200	278	4.4	7.67	.2425	.0332	0364	.0007	.0008	0010	7.30
.200	278	39.0	9.57	.3163	.0497	0450	.0004	.0001	0007	6.37
•200	278	11.6	11.61	•4000	.0736	0540	.0012	0002	0046	5.43
•199	276	7.7	13.64	•4895	.1050	0637	.0018	0009	0057	4.66
.200	279	7.6	15.65	.5783	.1415	0745	.0019	~.0015	0078	4.00
•199	277	0.7	17.74	.6777	.1893	0872	.0016	0021	0092	3.58
.201	281	1.5	19.68	•7748	.2436	0986	.0029	0033	0072	2.18
•200	278	17.4	21.77	.8821	.3136	1131	.0040	0028	0070	2 91
.200	277	9.5	23.88	.9923	.3979	1327	.0049	0058	0052	2.01
.200	278	9.7	03	0277	.0128	.0107	.0001	.0002	0006	-2.16

1.5-

a ~

-

7 X 10 HIGH SPEED TUNNEL

. - ·

· · .

t ...

24	RUN 12									
MACH	Q	ALPHA	CL	CD	CMS	CRMS	CYMS	CYS	L/D	
	PA	DEG								
•201	2803.4	.01	.0081	•0093	0016	0000	0001	.0006	• 88	
.200	2786.8	-1.83	0341	•0097	.0036	.0004	.0000	•0004	-3.52	
.200	2795.4	•00	.0082	.0091	0017	0001	0001	.0004	•91	
.201	2803.4	1.88	•0540	•0098	0078	.0001	0001	.0001	5.53	
.201	2811.0	3.79	.1037	.0125	0150	•0004	0003	.0002	8.27	
.201	2816.9	5.68	•1655	.0211	0258	.0001	.0001	0000	7.84	
.200	2797.5	7.67	.2360	.0347	0355	.0001	0007	•0002	6.81	
•200	2788.1	9.57	.3029	.0516	0444	•0002	.0014	0017	5.87	
•199	2773.6	11.60	•3840	.0771	0560	.0014	•0003	0031	4.98	
.200	2779.5	13.62	.4670	.1095	0657	.0025	0013	0041	4.27	
.199	2774.2	15.63	•5548	•1487	0769	.0031	0023	0065	3.73	
.200	2797.8	17.70	.6410	.1945	0882	.0035	0028	0087	3.29	
.200	2793.1	19.64	.7337	•2493	0992	.0038	0034	0066	2.94	
.200	2791.8	21.71	•8283	.3140	1111	.0039	0039	0051	2.64	
.200	2801.6	23.82	•9286	•3892	1237	.0036	0049	0045	2.39	
.201	2816.1	03	•0088	•0094	0018	•0000	0002	0001	•94	
				End of	Test 5	4)				
						•				
· · · · · · · · · ·	· · · · ·							ندينية المانيين ويترين ومعروب مرافقا فالمعدد		
5.8	DIIN 1									
MACH	Q • •	ALPHA	· CL	CD	CMS	CRMS	CYMS	CYS	L/D	
. 201	2790.5	04	.1530	.0412	1185	.0012	.0003	0004	3.72	
.200	2779.1	-1.86	.0816	.0440	1136	-0012	.0007	0008	1.85	
.200	2784.6	05	.1530	.0414	1190	.0014	.0005	0008	3.69	
•201	2799.7	1.89	.2250	.0426	1236	.0009	0001	0003	5.29	
.200	2786.5	3.80	2987	.0496	-1316	.0011	0003	0002	6.02	
200	2766.4	5.69	.3818	.0652	1460	.0014	0004	.0006	5.85	
200	2781.5	7.69	.4703	.0860	- 1622	.0010		.0015	5.47	
201	2793.6	9.60	5459	1058	1684	0002	0007	-0030	5.16	
.199	2750.6	11.61	•6182	1276	-1704	.0004	0005	.0001	4.85	
200	2769.8	13.69	.7134	1592	1803	.0009	0016	0037	4.48	
199	2759.2	15.66	.8011	1948	1891	.0010	0029	0046	4.11	
198	2727.7	17.78	.9110	2452	- 2051	.0015	0043	0036	3.72	
.201	2796.0	17.78	.9127	.2453	2050	.0027	0045	0057	3.72	
.201	2790.3	19.83	1.0287	3052	- 2217	.0031	0062	0059	3.37	
.201	2807.0	21.86	1.1431	•3778	- 2373	.0041	0061	0110	3.03	
.200	2783.1	23.79	1.2603	• 4636	- 2533	•0033	0037	0158	2.72	
.201	2806.6	07	•1512	.0413	1185	.0012	.0003	0006	3.66	
								• •		
				i.	·					
5.8	RUN 2									ł
					<u>.</u>			• · · •		
MACH	Q - PA	ALPHA DEG	CL	CD	CMS	CRMS	CYMS	CYS	L70	
.201	2791.8	07	0638	• 02 3 3	0004	•0004	.0006	0005	-2.73	
.201	2790.5	-1.91	1385	.0331	.0046	.0003	.0006	0007	-4.19	
.201	2800.8	08	0646	.0229	0004	.0002	.0005	0013	-2.83	
.201	2797.2	1.85	.0116	.0173	0061	.0006	.0003	0016	•67	
.200	2785.2	3.77	.0857	•0167	0130	.0003	0000	0006	· 5.13	
.200	2787.0	5.66	.1644	.0216	0217	.0005	0000	0005	7.62	
.200	2781.0	7.68	•2375	.0312	0284	.0000	.0001	.0007	7.60	
.200	2783.5	9.54	.3077	.0429	0324	0003	0001	.0009	7.18	
.200	2785.9	11.58	.3805	•0574	0335	0004	0004	.0003	6.63	
.200	2767.8	13.61	• 4604	•0777	0372	.0007	0012	0035	5.93	
•201	2794.6	15.63	• 5509	•1058	0447	.0013	0026	0052	5.21	
.200	2782.2	17.72	•6518	•1443	0556	.0026	0034	0060	4.52	
•200	2781.6	19.68	•7441	•1864	0626	.0034	0049	0087	3.99	
.200	2781.5	21.78	•8466	•2444	0696	.0030	0051	0110	3.46	
.201	2792.4	23.72	•9495	•3119	0763	•0045	0044	0182	3.04	
•201	2796.4	09	0626	•0231	0002	•0004	•0005	0009	-2.72	

í <u>-</u> .

. _=:

T

7 X 10 HIGH SPEED TUNNEL

58	RUN 3								
MACH	0	AL PHA	CL	CD	CMS	CRMS	CYMS	CYS	L/D
200	2776 7	- 04	1850	620E	1105	0005	0002	0002	2 02
-200	2776.9		.0812	-0416		.0002	.0005		1.05
-201	2799.4	05	.1558	-0390	-,1103	-0006	-0001	0008	3.00
.200	2781.2	1.85	2287	.0409	1258	.0008	.0002	0012	5,59
.200	2784.6	3.79	.3056	.0480	- 1347	0008	0004	0008	6.37
.200	2768.8	5.67	.3854	.0624	1473	.0011	0001	0002	6.17
.200	2785.4	7.67	4710	.0818	1617	.0010	.0001	0006	5.76
.200	• 2783.5	9.57	. 5468	.1010	1672	.0001	.0002	.0002	5.42
•199	2760.4	11.62	.6232	.1247	1711	.0002	0003	0004	5.00
.200	2776.6	13.65	.7099	.1542	-,1778	•0004	0018	0031	4.60
•200	2783.5	15.70	•7996	•1906	1872	.0014	0025	0058	4.19
.200	2787.1	17.76	•9133	.2409	2040	.0023	-+0039	0061	3.79
•201	2791.3	19.73	1.0237	•2988	2208	.0023	0054	0070	3.43
•200	2786.8	21.86	1.1447	•3753	-•2364	•0044	0050	0135	3.05
•200	2765.4	23.70	1.2573	•4574	2524	•0050	0025	0196	2.75
•200	2118•1	00	•1247	•0394	1193	•0003	•0004	0007	3.92
58	RUN 4							- i	
MACH	Q P A	AL PHA DEG	CL	CD	CMS	CRMS	คงห์อั	CYS	L/D
.201	2809.5	03	.1630	•0409	1227	.0007	0003	0013	3.98
.200	2807.4	-1.82	.0919	.0427	1154	.0001	0007	.0001	2.16
•201	2813.5	03	•1601	•0408	1221	.0005	0004	0006	3.92
.200	2807.6	1.91	.2375	•0433	1317	•0001	•0001	0012	5.48
•201	2809.6	3.82	• 3105	.0521	1403	.0008	0001	0011	2.90 5.95
.200	2797.7	2 • 7 5	+ 3049 4491		- 1651	-0010	0002		2 € 0 2 5 - 47
. 201	2811.5	0.61	. 4001	-1051	1708	•0007			5.10
.201	2787.2	11.66	- 6079	.1284	-1752	.0011	0011	0007	4.73
199	2778.5	13.62	6790	1540	-1813	-0018	0024	0033	4.41
200	2805.8	15.65	.7612	1881	1930	.0019	0026	0054	4.05
.199	2765.2	17.72	.8537	.2306	2078	.0024	0061	0030	3.70
.200	2783.6	19,73	.9524	.2813	2261	.0031	0073	0059	3.39
.201	2834.3	21.83	1.0736	•3518	2486	.0028	0075	0075	3.05
.200	2797.8	23.72	1.1888	•4279	2679	•0031	0088	0105	2.78
•200	2795.6	04	•1596	•0408	1224	• 0004	0004	0012	3.91
									• •
								·	
58	RUN 5								,
MACH	Q P A	ALPHA DEG	CL	CD	CMS	CRMS	CYMS	CYS	L/D
.200	2799.1	07	0583	.0230	0011	•0005	0001	0016	-2.53
•200	2802.2	-1.87	1288	•0324	.0040	.0004	0003	0011	-3.97
.201	2819.3	05	0592	.0227	0011	.0002	0004	0014	-2.60
•201	2820.6	1.96	.0186	.0179	0089	.0005	0002	0009	1.04
•201	201409	3.79	.0907	•0184	-•016Z	.0004	.0000	0003	4.93
+200	2801 1	2.11	• 1094 2354	•0231	-+0247	0001	•0000	0004	7.16
-200	2787.7	10/U 0.87	. 2000	• V332 . 0450		-0002	• 0002	0002	7 • U 8
201	2819.1	11.66	- 3682	.0501		-0001	0007		0.00
.200	2795.5	13.61	.4311	•0750	0376	-0004	0016	~.0014	0+23 5,74
.201	2808.1	15.63	.5072	.0990	0433	.0009	0029	0038	5,13
.200	2803.9	17.70	.5918	•1307	0529	.0002	0057	.0001	4.53
.201	2808.0	19.64	.6856	.1709	0663	.0010	0064	0022	4.01
•198	2747.3	21.75	•7967	.2264	0831	.0006	0075	0051	3.52
.201	2807.6	23.64	.8851	.2815	0941	.0013	0098	0081	3.14
•201	2807 •7	07	0602	•0232	0012	.0005	0002	0011	-2.60

7 X 10 HIGH SPEED TUNNEL

58	RUN	6								
MACH	F	Q	AL PHA DEG	CL	CD	CMS	CRMS	CYMS	CYS	L/D
.200	2797	. 6	07	0559	.0221	•0007	•0003	.0001	.0002	-2.53
.201	2807	0	-1.90	1231	.0304	.0068	.0004	.0002	0005	-4.04
.201	2824.	5	07	0537	.0216	.0004	.0003	.0002	0004	-2.49
.200	2801.	1	1.87	.0206	.0171	0071	.0005	.0003	0001	1.21
.201	2811.	.4	3.79	.0909	.0176	0152	.0006	.0003	0006	5.15
•200	2791.	8	5.70	.1642	•0229	0238	• • • • • • • • • • • • • • • • • • • •	.0005	0002	7.18
•199	2777.	6	7.66	•2336	•0327	0313	•0004	.0005	.0005	7.14
.201	2816.	3	9.55	.3018	.0451	0360	.0003	•0003	.0010	6.69
•200	2797.	.9	11.59	• 3680	•0593	0376	.0005	0003	•0007	6.21
•200	2786.	8	13.58	• 4330	•0764	0397	8000	0003	0023	5.67
•201	2807.	7	15.61	• 5114	•0998	0453	.0012	0016	0045	5.12
•201	2813.	1	17.67	. 6022	•1352	0567	0002	0031	0008	4.40
•200	21090	2	19.02	+ DYIO	+1/42	- 0082	.0014	0017	- 0035	3.490
.200	2745	5	22 60	+ 8V 20 9700	+C367	- 0019	0020	- 0029	- 00/0	3 10
.200	2786.	8	23.00	•0799	.0220		-0007			-2.51
•200	21000	U			• • • • • • •			•0009		-2001
		•								
58	RUN	7								
MACH		Q	ALPHA	CL.	CD	CMS	CRMS	CYMS	CYS	L/D
	P	P A	DEG							
.200	2793.	.9	03	•1602	•0395	1180	0000	0002	0000	4.06
•200	2799.	8	-1.84	•0922	•0407	1118	.0005	0002	0008	2.20
•201	2808.	8	02	• 1583	•0392	1269	0002	- 0003	+0003	400 547
•200	2001		7 6 4 1	• 2302	0421	-1260 - 1260	.0000	0001	0001	2.91
.200	2808	7	5.74	+ 30 / /	.0455	- 1405	-0010	-0002	-0002	5.80
•200	2700	2 I	7 74	+ 30 20 / 704	0041	- 1467	0010	.0001		5.47
.200	2709	7	0.45	. 6420	.1060	1734	.0010	0002		5.09
.200	2783.	5	11.66	• 27 37	.1293	- 1784	-0015	0007	0021	4.74
.200	2779.	6	13.65	.6865	.1567	1854	.0012	0012	0022	4.38
.200	2784	5	15.70	.7600	1868	1910	.0014	0019	0044	4.07
.201	2820	2	17.74	.8530	.2299	2049	.0016	0029	0041	3.71
.200	2800	0	19.68	•9483	.2805	2205	.0022	0025	0072	3.38
.201	2827.	.7	21.80	1.0616	.3488	2410	.0009	0031	0074	3.04
•200	2801.	2	23.66	1.1549	•4156	2570	0001	0055	0035	2.78
•200	2794.	8	02	•1595	•0389	1180	•0004	0002	0012	4.10
										•
58	RUN	8					·			. •
MACH		۵	ALPHA	CL	CD	CMS	CRMS	CYMS	CYS	L/D
	F	A	DEG			*				
•200	2802	2	05	• 09 70	.0289	0843	.0004	0002	0007	3.36
.200	2794	.7	-1.84	•0304	•0327	0788	•0007	0002	0009	•93
•201	2809.	5	04	• 0955	.0287	0842	•0004	0002	0009	3.33
+200	2798.	.4	1.89	•1662	•0291	0912	•0004	0000	0001	5.71
.200	21930	1	3.84	• 2401	•0355	0990	•0004	0001	•0000	6.76
-200	21704	5 L K	20/1 7 74	• 5122	•0459	1094	.0010	.0003	0006	6.80
201	2820	1	1 • 1U 0 - 4 9	• 3743 . 444E	• 0031	- 1225	•0006	•0001	0001	6.25
201	2811	4	11.40	• 7009 . 6299	.1010		.0000	0001	.0000	5.74
199	2778	0	12.62	. 6093	.1940	-+1301	•0015	- 0008	0002	5.28
.201	2810	4	15-69	+6800	•1526		+0012	0010		4.87
.200	2787	0	17.77	.7779	.1054		.00020		- 0010	4+43
.200	2785	6	19.66	.8741	.2433	-1768	•••••	-+0021		3998
.200	2796	3	21.76	.9872	.3082	-1962	-0017			3+24
.202	2837.	5	23.64	1.0937	.3771	2141	0003		- • <u>NU</u> / D	2 00
•200	2788	3	04	.0967	0289	0841	.0006	0001		2.070

-5 F

-

į.

7 X 10 HIGH SPEED TUNNEL

58	RUN	9								
MACH		Q ~	ALPHA	CL	CD	CMS	CRMS	CYMS	CYS	L/D
		ΡA	DEG						· • • • •	~ ~ ~
.201	2807	7•4	06	• 02 07	.0240	0421	.0004	•0002	0004	•86
•200	2802	2 • 8	-1.85	0475	.0300	0358	•0004	.0001	0007	-1.58
.200	2797	7.9	04	•0199	•0237	0421	.0003	.0001	0007	• 5 4
.201	2814	• 2	1.89	• • 0918	•0216	0489	•0007	•0003	0010	4024
•200	2800)•1	3.82	•1627	•0247	0556	.0006	.0001	0001	0.00
•200	2786	5.0	5.74	•2337	.0323	0645	•0005	.0002	.0002	(•23
•200	2781	L+0	7.68	• 3127	•0461	0759	.0006	.0006	0008	
•201	2804	+•9	9.65	• 3872	•0619	0841	.0006	•0003		0020
•200	2797	.4	11.62	• 4569	.0795	0883	.0009	0006	•0002	2012
•200	2789	8.6	13.61	•5318	•1012	0954	.0017	0000	0027	2020
.200	2797	1.7	15.63	.6068	.1278	1026	•0013	0020	- 0040	4013
•200	2787	•.0	17.71	• 6995	.1057	1100	.0010	-+0027	0040	7844
.200	2801	L • 8	19.66	.8032	•2134	1319	.0017	0029	- 0070	3.21
•201	2804	••4	-21.77	• 9231	+2780		00017	0042	0042	3-00
•200	2780		23.01	1.0129	• 33 / ¥	- 0672	0004			.97
•201	2004	1 . 7	00	• 02 31	• • • 2 3 0					• • •
•										
58	RUN	11								
MACU				C 1	C D	CHE	COME	CYME	C Y S	1.70
MACH		DA D	ALPHA DEC	·	CD	CH3	CKM3	CTHS		.,,
200	2701	.0	- 07	- 0202	0228	0002	-0006	- 0006	0009	-1.72
•201	2801		-1.86		.0316	0033	•0006	.0008	0005	-3.51
-200	2787	7.7	04	0365	.0225	0089	.0004	+0006	0004	-1.63
.200	2794		1.88	+0360	.0183	0149	.0008	.0005	0004	1.96
.201	2807	7.4	3.79	.1100	.0189	0215	.0006	.0001	.0003	5.83
201	2798	3.3	5.69	.1779	.0243	0278	+0007	.0001	.0004	7.32
.201	2797	.2	7.69	.2570	.0351	0377	.0006	.0000	.0012	7.33
.200	2781	.2	9.59	.3322	.0478	0451	.0003	0003	.0006	6.95
.200	2793	.6	11.63	.4094	.0637	0504	.0004	0003	.0004	6.42
.200	2791	1	13.64	•4873	.0851	0559	.0003	0007	0000	5.73
.201	2799	9.4	15.66	• 5696	.1114	0617	.0007	0015	0028	5.11
•200	2785	5.4	17.75	•6691	.1494	0734	.0006	0021	0041	4.48
•200	2793	3.2	19.75	•7795	.1992	0870	•0021	0006	0097	3.91
• 201	2804	+.7	21.83	.9056	.2670	1051	•0028	0030	0121	3•39
•200	2793	3•2	23.74	1.0151	•3368	1205	.0014	0035	0102	3.01
•200	2784	••4	07	0384	•0227	0090	.0006	•0006	0004	-1.69
					-		*			
				· •						
58	RUN	10								
МАСН		٥	АІ РНА	C1	<u>CD</u>	CMS	CRMS	CYMS	CYS	L/D
		PĂ	DEG				01110	••••	•••	
.200	2792	2.4	05	0302	.0224	0109	.0003	0001	0012	-1.35
.200	2784	4.2	-1.85	0993	.0304	0042	.0002	0000	0003	-3.26
.201	2807	7.6	03	0293	.0224	0109	.0002	0001	0009	-1.31
.201	2802	2.0	1.92	.0421	.0181	0176	.0002	0001	0009	2.33
.201	2808	8.5	3.80	.1085	.0202	0227	.0004	0001	.0003	5.38
•200	2793	3.9	5.69	.1797	.0256	0308	.0003	.0001	0001	7.03
•200	2778	8.7	7.70	•2591	•0375	0418	.0004	.0002	0019	6.91
.200	2781	1.0	. 9.64	• 3334	.0520	0498	.0008	•0000	0014	6.41
•200	2789	9.3	11.62	• 4008	•0669	0543	•0009	0007	0013	5.99
•201	2799	9.7	13.64	•4811	.0884	0614	.0013	0009	0034	5.44
.201	2812	2•1	15.67	• 5534	•1127	0679	•0008	0014	0039	4.91
.200	2772	2.9	17.75	•6485	.1500	0818	•0003	0034	0010	4.32
•200	2786	5.7	19.67	•7406	•1912	0943	0002	0035	0022	3.87
.201	2819	9.1	21.79	.8640	•2557	1160	.0018	0020	0082	3.38
•200	277	7•7	23.62	•9531	•3129	1288	•0003	0048	0061	3.05
•200	2784	4.1	05	-•0311	•0224	0105	•0003	0000	0015	-1.39

58

RUN 12

7 X 10 HIGH SPEED TUNNEL

-____.

<u>,</u>

1.

MACH	Q	à l pha	CL	CD	CMS	CRMS	CYMS	CYS	LZD
	PA	DEG				• · · · •	•••••	•••	
.200	2786.4	04	.1637	.0397	1218	.0006	.0007	0009	4.12
.200	2793.1	-1.84	.0969	.0416	1167	.0007	.0009	0016	2.33
.201	2795.3	00	.1669	.0396	1219	.0007	.0007	0012	4.22
•201	2803.2	1.92	.2375	•0421	-1284	.0009	.0005	0008	5.65
•200	2788.7	3.89	.3188	.0513	1398	.0007	0001	.0001	6.21
.201	2798.3	5.72	.3946	.0656	1518	.0012	.0002	0002	6.01
.200	2793.2	7.73	• 48 0 9	.0858	1664	.0007	.0001	.0005	5.60
•200	2793.2	9.66	.5581	.1056	1738	.0002	0003	.0001	5,20
•201	2804.1	11.66	. 6283	.1282	1771	.0001	0005	0005	4.00
.201	2798.1	13.70	.7087	1558	-1823	-0004	0008		4.55
.200	2762.3	15.70	• 7851	1879	-1867	-0008	0017	0042	4.18
.201	2796.3	17.81	.8896	.2349	- 2000	.0010	0025	0057	3 70
.201	2803.9	19.78	1.0068	2949	- 2180	-0025	0021	0109	3.41
.200	2774.3	21.92	1.1302	.3719	- 2365	-0023	0034	-0127	3.04
•200	2784.6	23.80	1.2446	4539	2538	.0002	0043	0105	2.74
•201	2802.0	04	.1660	.0394	1219	.0005	.0006	0012	4.22

58	RUN	14								
масн		0	AI PHA	· CI	CD.	CMS	CRMS	CYMS	C Y S	170
		PĀ	DEG	01		Chu	U FIID		015	
.200	279	3.9	01	.1708	.0340	1138	.0009	.0008	0023	5.03
•200	279	9.6	-1.81	•1030	•0346	1085	.0009	.0009	0026	2.97
.201	280	8.2	.01	.1748	.0337	1138	.0007	•0006	0028	5.19
.201	280	7•9	1.94	•2471	•0374	1211	.0011	.0004	0022	6.61
.200	279	6.6	3.88	.3207	•0473	1312	.0011	.0000	0015	6.78
•200	278	7.7	5.74	• 3983	•0613	1430	.0012	0003	0009	6.49
•20Û	279	9•4	7.85	• 4889	.0807	1525	•0006	0001	0015	6.05
•200	280	1.5	9.66	• 5559	•0993	1561	0003	.0000	0006	5.60
•20Ű	277	7.4	11.71	•6548	•1289	1640	0001	.0002	0018	5.08
.200	278	9.7	13.91	• 7664	.1710	1763	.0004	.0006	0043	4.48
•200	278	7.1	15.82	.8864	.2234	1919	.0009	.0003	0080	3.97
.200	280	0.4	17.96	1.0231	•2977	2118	.0008	0003	0088	3.44
.199	275	9.7	19.96	1.1841	•3915	2386	0020	.0023	0166	3.02
.200	278	3.1	22.18	1.3553	•5066	2544	.0021	0031	0143	2.68
199	276	8.8	24.08	1.4706	.6022	2614	0018	0056	0067	2.44
•201	280	9.6	00	•1736	.0339	1136	.0012	•0011	0040	5.13

58	RUN	15								
MACH		Q P A	ALPHA DEG	CL	CD	CMS	CRMS	CYMS	CYS	L/D
.201 .200 .201 .201 .201 .200 .201 .201	28] 279 281 282 282 282 281 282 280 278 278 281	6.6.4 5.4.0 9.5.5 9.5.5 10.5.5	05 -1.83 01 1.91 3.81 5.72 7.71 9.63 11.67 13.74 15.77 17.89	0257 1002 0235 .0538 .1225 .1894 .2662 .3436 .4338 .5371 .6547 .7819	•0176 •0245 •0175 •0140 •0160 •0221 •0315 •0452 •0662 •0977 •1415 •2012	0045 $.0022$ 0047 0127 0197 0247 0307 0348 0412 0504 0635 0776	.0002 .0004 .0001 .0001 -0001 -0001 -0001 -0005 .0015 .0010	.0004 .0008 .0004 .0001 .0001 0003 0000 0001 .0001 .0010 .0007 0000	0006 0011 0003 .0006 .0012 .0004 .0008 .0005 0020 0077	-1.45 -4.09 -1.35 3.85 7.64 8.56 8.46 7.60 6.56 5.50 4.63 3.89
•201 •201 •201 •201	281 281 281 280	1.5 1.1 3.8 5.0	19.93 22.07 24.02 05	•9277 1•0846 1•2227 -•0265	•2781 •3740 •4680 •0175	0963 1091 1208 0045	0005 .0002 0019 .0003	•0005 -•0025 -•0052 •0004	0110 0107 0046 0009	3.34 2.90 2.61 -1.51

7 X 10 HIGH SPEED TUNNEL

· · · · · · ·

58	RUN	16								
MACH	4	o	ALPHA	CL	CD	CMS	CRMS	CYMS	CYS	L/D
		PA	DEG			•				4 74
.200	28	04.4	02	.1004	.0236	0762	+0.0.09	.0003	0010	4.20
.200	27	94.0	-1.82	.0307	•0268	0710	.0006	.0005	0010	4.36
.201	L 28	21.0	.02	.1026	.0235	0765	.0004	.0003	- 0004	7.22
•200	28	01.3	1.93	.1776	•0246	0832	+0004	+0001	-0004	7.03
.201	28	07.9	3.84	,2438	•0307		.0003		.0001	7.64
•200) 27	97.9	5+71	.3159	+0414	0985	10005	0004	0003	7 16
.200	27	87.2	7.73	. 3998	•0559	1058	0002	0002	0002	6-46
+200	28	03.8	9.67	. 4772	.0738	1107	-0003	.0000	0004	5.70
.201	1 28	24+1	11+71	. 7708	1002	1202	00005	0001		6.94
•200	28	03.8	13+/8	€ 00 39 7004	1075	- 1450	0017	.0008	0075	4.26
•201	1 25	0/.0	19.03	.1904	91010	- 1410	.0007	-0003	0068	3.66
•142	y 21	11.49	20 02	47204 AA80 1	- 3427	1850	0018	-0015	0131	3.17
1201	L 20 1 30	16 2	20402	1 2603	- 4527	2045	-00020	0028	0160	2.78
- 200	L 60 3 77	80.1	24.05	1.3839	.5473	2136	0012	0066	0080	2,53
- 200	5 27	01.2	02	.1018	▲0236	0761	.0009	0000	0010	4.32
	•		•	·						
			·							
58	RUN	17								
MACH		0	AL PHA	CL	CĐ	CMS	CRMS	CYM 5	C Y S	L/D
- 201	28.07	та 7.5	DEG	. 0278	. 6187	- 0368	0006	0006	0011	1.40
-200	2805	1.6		0469	-0239	0292	.0004	-0008	0019	-1.96
.201	2823	1.1	+03	0304	.0187	0357	.0004	-0006	0011	1.63
.201	2807	7.2	1.92	.1039	.0172	0425	-0002	.0002	0007	6.04
.201	2809	.2	3.83	.1738	.0206	0496	+0003	0000	.0003	8.42
•200	2796	8.1	5.72	.2394	.0281	0559	.0004	0001	0001	8.53
.200	2795	5.0	7.73	.3210	.0399	0625	0001	.0000	.0000	8.04
.201	2810	.2	9.70	.4007	.0557	0675	.0000	.0001	0001	7.19
.201	2808	3.7	11.73	.4949	.0802	0755	0000	.000Z	0002	6.17
•200	2798	3.4	13.75	.6020	.1136	0862	.0009	.0004	0029	5.30
.200	2792	2.9	15.79	.7190	.1598	1003	.0018	.0015	0079	4.50
.200	279().5	17.90	.8426	.2209	1146	+0008	•0007	0077	3+81
•199	2778	• 4	19.91	.9906	.3004	1346	0018	+0014	0128	3.30
• 200	2806	.1	22.12	1.1590	• 4047	1518	+0006	0017	0173	2.86
•201	2822	4.3	24.06	1.3001	.5041	1640	0014	0056	⊷ •0075	2.58
.200	2800	•1	++04	.0281	•0186	-•0354	•0007	+0006	0017	1.51
.:	DUM	10					. ب		- ••••	
	KO14	• 0								1.40
MACH		Q PA	ALPHA Deg	€L	CD	CMS	UKMS	UTM5	L T 2	L/U
.200	2802	-2	00	.0625	.0107	0355	•0003	.0002	.0002	5.87
.200	2798	5 + 0	-1.78	•0168	+0095	0287	.0001	•0002	0002	1.96
.201	2813	9	•05	.0660	.0108	0358	•0003	• 00.02	.0006	6•1Z
.202	2834	8 . 1	1.93	.1138	.0134	0435	.0004	.0001	0002	8,51
.200	2794	•7	3.81	•1687	.0190	0529	.0008	•000Z	.0002	5490
.201	2617	•1	5.67	• 2310	0298	0643	+0006	.0005	0010	7±79 6-69
.200	2789	(• T	7.66	.3000	+U402 - 0675		+0000	+0010	0028	5,40
•201	2013	242	9457 11 EA	* 3037	.0977		.0024	+.0004		4.83
.201	2199	7 • 1 7 - 0	13.60	**{~*	.1374	-1211	-0029	.0005	0064	4.18
.201	2061	1.7	15427	• 07 1 Q	1846	1464	.0025	.0000	0052	3.64
-201	2800	5	17.70	.7674	2394	1618	.0036	0013	0050	3.21
201	2814		19.65	6655	.3005	1777	.0039	0014	0056	2.88
200	2794	.0	21.74	.9660	.3724	1941	.0037	0024	0063	2.59
.200	2794	.0	23.74	1.0643	.4511	-,2105	.0031	0031	0068	2.36
+201	2605	.0	.03	.0640	.0105	0356	.0004	.0004	0004	6.11

-...

. J*

. 75

58

RUN

21

7 X 10 HIGH SPEED TUNNEL

58	RUN 19								
MACH	· Q	ALPHA	CL	CD	CMS	CRMS	CYMS	CYS	L/D
	P A	DEG							
.200	2801.9	.02	•1329	.0169	0754	.0005	.0002	0008	7.87
•201	2810.2	-1.74	• 0899	•0138	0685	.0001	.0004	0006	6.52
•200	2797.1	•04	•1342	•0170	-+0755	•0003	.0004	0007	7.89
.201	2802.3	1.93	•1840	• 02 19	0840	.0006	.0004	0006	8.40
•200	2787•7	3.81	• 2407	.0301	0955	•0009	.0001	0009	8.00
•200	2793.9	5.74	•3111	•0448	1100	•0010	•0007	0018	6.95
•201	2803.5	7.67	•3853	•0635	1257	.0010	•0012	0025	6.06
.201	2804.8	9.56	• 4668	•0887	1431	•0013	.0010	0046	5.26
•200	2799•9	11.59	• 5587	•1231	1628	•0026	0004	0040	4.54
.200	2787.4	13.62	•6526	•1650	1795	•0026	.0005	0065	3.96
.201	2802.9	15.64	•7482	•2146	1947	•0030	0003	0058	3.49
•201	2815.5	17.74	•8576	•2769	2122	•0035	0011	0060	3.10
•200	2801.0	19.68	•9537	•3414	2278	•0039 ·	-+0015	0055	2.79
•201	2826.1	21.77	1.0551	.4177	2446	.0038	0 024	0065	2.53
•200	2792.6	23.77	1.1488	•4988	2595	•0029	0026	0064	2.30
•200	2795.4	.02	•1362	•0168	0759	.0004	•0005	0005	8.13
								• •	
58	RUN 20								
MACH	Q	ALPHA	CL.	CD	CMS	CRMS	CYMS	CYS	L/D
	P A	DEG							
•200	2784.3	•01	•0186	•0088	0072	.0002	.0000	0006	2.12
.200	2791.7	-1.76	0232	•0092	0007	.0005	.0001	0003	-2.52
•200	2790+4	•03	.0197	•0090	0073	.0002	•0000	0002	2.18
.201	2805.8	1.90	•0688	•0103	0150	•0005	•0001	•0002	6.66
•201	2810.0	3.78	•1179	.0140	0220	.0009	0002	.0005	8.42
.200	2788.8	5.66	•1768	÷0227	0309	•0004	•0002	-+0004	7.79
•201	2799.1	7.65	• 2492	•0365	0443	.0009	.0007	0012	6.82
•200	2792.3	9.56	• 3285	.0562	0587	•0009	•0010	0031	5.84
•200	2788.7	11.57	.4145	.0835	0758	.0023	0008	0020	4.97
.200	2779.8	13.57	• 5092	•1196	0933	.0024	•0000	0056	4.26
•200	2792.9	15.60	.6081	.1640	1090	.0023	0007	0045	3.71
•200	2776.4	17.71	•7136	•2196	1253	.0030	0018	0049	3.25
•200	2775.6	19.64	.8096	•2779	1409	.0036	0024	0048	2.91
•201	2811.0	21.76	•9134	• 3495	1577	.0030	0028	0058	2.61
•200	2795+8	23.73	1.0149	•4271	1738	•0030	0036	-•0052	238
•200	2780.1	•01	• 0202	•0088	0073	•0004	0002	0000	2.31
									•

MACH	0	ALPHA	CL	CD	CMS	CRMS	CYMS	CYS	L/D
000	PA	DEG							
.200	2792.0	•02	•1929	•0286	1100	•0003	•0003	0010	6.75
•200	2779.2	-1.76	•1470	.0236	1022	.0001	.0005	0009	6.23
.200	2791.0	•04	•1958	•0286	1103	.0005	.0003	0006	6.86
.201	2797.7	1.93	.2450	.0356	1191	.0011	.0003	0010	6.88
•201	2802.8	3.80	•3106	.0476	1348	.0013	0001	0009	6.53
•200	2787.5	5.69	.3810	.0649	1514	.0016	.0006	0021	5.87
•200	2779.1	7.67	• 4631	.0891	1704	-0015	.0012	0034	5.20
.201	2800.7	9.57	.5473	.1180	1900	-0019	.0000		4.64
•200	2775.4	11.61	.6419	.1566	2103	0028	0007	- 0022	A 1A
.201	2802.1	13.66	.7439	2046	2293	-0030	0001		7010
.201	2804.2	15.64	. 8394	. 2575	2456	0021	- 0001	- 0050	3.04
.201	2805.7	17.74	.9356	.3200		0031		0023	3.20
.201	2815.8	10.71	1 0404	3051	-02010	00034	0010	0003	2.92
.201	2901.9	21 70	1 1 2 2 0	• 3991	2021	.0042	0023	0063	2.66
• C V I	200100	21019	1.1329	.4000	-02925	•0028	0025	0056	2.42
• 201	2001.4	23.11	1.2293	•5538	3087	.0023	0031	0056	2.22
•201	2812.5	•03	•1979	•0286	1110	•0004	.0002	0007	6.92

7 X 10 HIGH SPEED TUNNEL

58	RUN 22								
MACH	Q P A	ALPHA	CL	CD	CMS	CRMS	CYMS	CYS	L/D
.200	2790.9	.01	.1737	.0322	1077	.0003	.0001	0013	5.40
.201	2798.4	-1.81	.1077	.0320	0996	.0002	.0004	0015	3.36
.201	2794.7	•04	.1768	.0325	1084	.0005	.0002	0009	5.45
.201	2812.2	1.92	.2450	•0369	1191	.0007	.0002	0010	6.65
.200	2777.1	3.86	.3170	.0469	1330	.0008	0002	0005	6.76
.200	2780.0	5.70	. 3903	.0607	1476	.0007	0001	0011	6.44
.200	2768.2	7.71	.4676	.0777	1603	•0002	0003	0013	6.02
.201	2807.7	9.6Ò	. 5352	.0962	1680	.0000	0001	0011	5.56
.200	2774.0	11.63	.6103	.1205	1779	.0003	•0003	0020	5.06
.200	2771.1	13.68	.6987	.1515	1916	.0002	.0004	0028	4.61
.201	2798.5	15.68	.7977	.1941	2085	.0011	0010	0045	4.11
.200	2788.7	17.79	.9394	.2693	2389	.0004	0018	0054	3.49
.201	2801.7	19.80	1.1533	.3889	2939	.0009	0052	.0045	2.97
.200	2779.5	22.02	1.3234	.5100	30.81	0034	0018	•0073	2.59
.200	2771.7	24.03	1.4449	.6148	3147	0013	0022	.0000	2.35
.199	2762.7	.02	.1764	.0324	1086	•0005	•0002	0012	5.45

58	RUN 23								
MACH	Q	ALPHA	CL	CD.	CMS	CRMS	CYMS	CYS	L/D
.201	2800.2	02	0162	.0154	0002	.0005	.0002	0000	-1.05
.200	2782.8	-1.84	0898	0209	.0110	.0005	.0004	0004	-4.30
•201	2801.7	.00	0168	.0152	0002	.0005	.0003	0004	-1.11
.200	2774.4	1.88	.0573	.0137	0117	.0005	.0005	0006	4.19
.200	2792.3	3.80	. 1219	.0158	0210	+0002	.0001	•0007	7.73
.200	2787.6	5.67	• 1829	.0213	0290	.0003	.0002	.0007	8.58
.200	2784.1	7.68	.2577	.0307	0389	.0001	•0002	+0008	8.40
•201	2794.8	9.58	•3258	•0429	0470	.0006	.0002	0005	7.60
.200	2784.1	11.59	.4001	•0593	0560	•0009	.0004	0015	6.75
•200	2781.7	13.60	•4885	.0840	0703	•0004	.0011	0009	5.82
•202	2822.3	15.65	• 5971	•1213	0883	•0008	0000	0025	4.92
•200	2767.3	17.72	•7143	.1786	1083	.0010	0005	0048	4.00
.201	2805.9	19.73	.8679	•2614	1397	•0008	0001	0086	3.32
.200	2775.3	21.94	1.0625	.3769	1659	.0022	0024	0058	2.82
.201	2799.6	23.96	1.1933	.4746	1739	.0011	0031	0048	2.51
.201	2794.8	03	0178	•0153	.0002	.0003	.0003	0006	-1.17

58	RUN 24								
MACH	Q PA	ALPHA DEG	CL	CD	CMS	CRMS	CYMS	CYS	L/D
.200	2810.1	.02	.0129	•0268	.0003	.0001	0000	.0006	•48
.200	2811.7	-1.80	0604	.0292	.0102	.0005	0002	.0002	-2.07
•201	2818.8	.01	•0121	•0264	.0002	.0000	.0000	.0003	•46
.201	2822.0	1.94	.0923	.0271	0113	•0001	•0002	•0006	3.41
•201	2819.3	3.64	.1660	•0320	0218	0003	•0000	.0014	5.19
.200	2813.9	5.75	.2472	.0401	0331	•0003	•0000	•0004	6.16
•200	2807.5	7.75	• 3365	.0539	0453	.0008	0001	•0010	6.25
.200	2815.0	9.71	• 4233	•0709	0558	.0008	0004	•0016	5.97
.201	2819.5	11.72	• 5199	. 0945	0672	.0005	0002	.0015	5,50
.200	2809.6	13.79	•6220	•1261	0794	0003	0008	•0004	4.93
•200	2817.0	15.83	•7262	•1672	0924	.0009	0023	0019	4.34
.200	2798.0	17.88	• 8321	•2191	1049	0004	0047	0006	3,• 80
•200	2799.1	19.86	•9395	.2800	1198	0011	0047	0035	3.36
•200	2798.8	. 22.01	1.0540	•3587	1303	0016	0051	0068	2.94
•200	2806.8	23.77	1.1253	.4270	1372	0072	0082	.0034	2.64
.200	2805.6	• 02	•0127	•0265	0000	0002	0002	•0003	•48

58

RUN

۰.

25

7 X 10 HIGH SPEED TUNNEL

م تا آن. م تا آن

.200 280 .201 281 .201 281 .200 280 .200 278 .201 282 .201 282 .200 279	PA 8.9 7.1 - 6.5 6.5 9.9 9.2 9.7	DEG •05 •04 1.97 3.90 5.79	• 2786 • 2038 • 2796 • 3594 • 4400 • 5256	•0633 •0572 •0634 •0746 •0897	1457 1337 1458 1591 1729	0007 0008 0008 0007 0002	0008 0009 0008 0011 0012	.0016 .0012 .0019 .0025 .0027	4.40 3.56 4.41 4.82
•200 280 •201 281 •201 281 •200 280 •201 281 •200 278 •201 282 •200 279 •200 279	8.9 7.1 - 6.5 6.5 9.9 9.2 9.7	•05 •1•77 •04 1•97 3•90 5•79	2786 2038 2796 3594 4400 5256	.0633 .0572 .0634 .0746 .0897	1457 1337 1458 1591 1729	0007 0008 0008 0007 0002	0008 0009 0008 0011 0012	.0016 .0012 .0019 .0025 .0027	4.40 3.56 4.41 4.82 4.91
.201 281 .201 281 .200 280 .201 281 .200 278 .201 282 .200 279 .200 279	7.1 - 6.5 6.5 9.9 9.2 9.7	1.77 .04 1.97 3.90 5.79	•2038 •2796 •3594 •4400 •5256	•0572 •0634 •0746 •0897	1337 1458 1591 1729	0008 0008 0007 0002	0009 0008 0011 0012	•0012 •0019 •0025 •0027	3.56 4.41 4.82 4.91
.201 281 .200 280 .200 278 .201 282 .200 279 .200 279	6.5 6.5 9.9 9.2 9.7	•04 1•97 3•90 5•79	•2796 •3594 •4400 •5256	•0634 •0746 •0897	1458 1591 1729	0008 0007 0002	0008 0011 0012	•0019 •0025 •0027	4.41 4.82 4.91
.200 280 .200 278 .201 282 .200 279 .200 279	6.5 9.9 9.2 9.7	1.97 3.90 5.79	•3594 •4400 •5256	•0746 •0897	1591 1729	0007 0002	0011 0012	•0025 •0027	4.82
•200 278 •201 282 •200 279 •200 279	9•9 9•2 9•7	3.90 5.79	•4400 •5256	.0897	1729	0002	0012	.0027	4.91
•201 282 •200 279 •200 279	9•2 9•7	5.79	• 5256	1005					
.200 279	9.7			0 I U 7 J	1880	0002	0016	.0032	4.80
200 270		7.80	. 6266	1365	2075	0003	0018	.0034	4.59
+CVV 217	9.0	9.74	.7285	.1680	2258	0007	0014	.0034	4.34
.200 280	5.4 1	1.82	.8342	.2054	2422	0018	0014	.0033	4.06
.201 283	0.1 1	3.83	.9367	.2466	- 2550	0024	0011	.0016	3.80
.201 281	7.2 1	5.87	1.0403	.2975	- 2679	0015	0027	.0002	3.50
.200 279	0.6 1	7.96	1.1472	.3617	- 2826	0037	0046	.0014	3,17
.199 277	5.2 1	9.97	1.2654	.4413	3007	0056	0046	-0004	2.87
.200 280	8.1 2	2.07	1.3696	.5266	3106	0060	0053	0029	2.60
·200 286	9.1 2	3.84	1.4207	.5956	3027	0078	0071	-0002	2.39
.201 281	6.6	.05	.2824	.0632	1462	0009	0007	.0011	4.47

58	RUN	26								
MACH		Q	ALPHA	CL	CD	CMS	CRMS	CYMS	CYS	L/D
		PA	DEG							
•200	280	9.3	•.05	• 2449	•0490	1274	.0001	.0002	•0000	4.99
.201	283	1.1	-1.77	•1694	•0445	1167	•0002	.0000	•0002	3.81
.201	282	1.2	•08	• 2472	•0489	1281	.0000	0001	.0006	5.06
.201	281	9.7	2.01	.3256	.0580	1405	•0006	0001	•0007	5.61
.200	280	7.7	3.93	.4048	.0707	1527	.0004	0006	.0020	5.72
.200	279	7.1	5 • 80	.4907	.0881	1669	.0009	0005	.0021	5.57
•199	278	5.2	7.82	.5910	•1126	1862	.0005	0008	.0025	5.25
.201	281	7.0	9.74	.6837	.1388	1991	0008	0005	.0012	4.92
•201	281	7.4	11.79	•7896	.1728	2138	.0002	0005	.0014	4.57
.200	279	3.3	13.81	.8960	•2152	2299	0007	0006	.0010	4.16
•199	276	5.6	15.87	•9962	•2637	2412	0002	0024	0020	3.78
.200	278	9.7	17.97	1.1100	•3280	2564	0009	0047	0016	3.38
•198	275	8.7	19.93	1.2203	• 4000	2738	0023	0051	0036	3.05
.200	279	8.5	22.07	1.3425	•4913	2889	0037	0058	0040	2.73
.201	282	20.0	23.87	1.4159	.5736	2917	0062	0067	0018	2.47
•201	283	4.0	•04	• 2455	.0493	1277	.0002	.0003	.0010	4.98

(End of Test 58)

(A) ATTACHED FLOW (FULL L.E. SUCTION)

(B) SEPARATION WITH L.E. VORTEX (ZERO SUCTION)

(C) L.E. DROOP OR FLAP FOR ATTACHED FLOW

(D) VORTEX-FLAP

FIG. I LEADING-EDGE FLOWS OVER HIGHLY SWEPT WING (VIEWED IN CROSS-FLOW PLANE)

FIG. 2 TEST MODEL GEOMETRY AND DIMENSIONS (in cms)

FIG.3 LEADING EDGE VORTEX-FLAP TEST CONFIGURATIONS

FIG.4 LEADING EDGE VORTEX-FLAP GEOMETRY AND DIMENSIONS (in cms)

Ser Services

FIG. 5A EFFECT OF HINGE-LINE DISTANCE FROM LEADING-EDGE ON L/D VS. C_L CHARACTERISTICS

FIG. 5 B EFFECT OF HINGE-LINE DISTANCE FROM LEADING-EDGE ON L/D VS. C'_{I} (AREA-CORRECTED) CHARACTERISTICS

a gunda constante a la constante Constante de la constante de la

FIG. 6B EFFECT OF HINGE-LINE DISTANCE FROM LEADING-EDGE ON L/D VS. C'_{L} (AREA-CORRECTED) CHARACTERISTICS

FIG. 7 A EFFECT OF FLAP DEFLECTION ANGLE ON L/D VS. C_L CHARACTERISTICS

FIG. 8 A EFFECT OF PART-SPAN FLAP LENGTH ON L/D VS. C_L CHARACTERISTICS

FIG. 8 B EFFECT OF PART-SPAN FLAP LENGTH ON L/D VS. CL (AREA-CORRECTED) CHARACTERISTICS

FIG. 9 EFFECT OF FLAP DEFLECTION ANGLE (PART-SPAN FLAP) ON L/D VS. C_L CHARACTERISTICS

TAPER FLAP L/D VS. CL CHARACTERISTICS

.

FIG. 13 A COMPARISON OF INVERSE-TAPER AND EXTENDED FLAP LIFT CHARACTERISTICS

COMPARISON OF INVERSE-TAPER AND EXTENDED FLAP AREA-CORRECTED LIFT CHARACTERISTICS

L/D VS. C_L CHARACTERISTICS

FLAP L/D VS. C'_{L} (AREA-CORRECTED) CHARACTERISTICS

L/D VS。C_L CHARACTERISTICS --- LEVF ON

 $d_{H.L.} = 1.27$ $\delta_{L} = 30^{0}$ $\delta_{T} = 30^{0}$

FIG. 17 LIFT AND PITCHING-MOMENT INCREMENTS AT 30⁰ TRAILING-EDGE FLAP DEFLECTION

FIG. 18 COMPARISON OF PITCHING-MOMENT CHARACTER-ISTICS OF VARIOUS LEVE CONFIGURATIONS

•

DO NOT REMOVE SLIP		IAL
Delete your name from this slip to the library.	when returning	g material
NAME	DATE	MS
KNOCEPPI	1223	477
P	alac	201
Pale	10/02	170
A LE CONTRACTOR DE	and the second	
NASA Langley (Rev. Dec. 1991)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	RIAD N-75