N80-11506

(NASA-CR-161334) STATISTICAL ENERGY ANALYSIS RESPONSE PREDICTION METHODS FOR STRUCTURAL SYSTEMS Final Report, 25 Sep. 1978 - 25 Sep. 1979 (McDonnell-Douglas Astronautics Co.) 107 p HC A06/MF A01 Unclas 63/31 46147 MCDONNELL DOUGLAS ASTRONAUTICS COMPANY

MCDONNELL DOUGL

CORPORATION

	STATISTICAL ENERGY ANALYSIS RESPONSE PREDICTION METHODS FOR STRUCTURAL SYSTEMS FINAL REPORT					
CORPORATION	October 1979	MDC 68150				

Prepared by R. F. Davis

Approved by:

ahr

G. E. Kahre, Branch Chief Vibration, Shock & Acoustics Structures & Materials Engineering Division

Prepared under Contract NAS8-33191 for George C. Mrashall Space Flight Center Marshall Space ight Center, Alabama 35812

Period of Performance, 25 September 1978 - 25 September 1979

MCDONNELL DOUGL 4S ASTRONAUTICS COMPANY-HUNTINGTON BEACH 5301 Bolsa Avenue Huntington Beach, California 92647 (714) 896-3311

PREFACE

This document is submitted by the McDonnell Douglas Astronautics Company to the National Aeronautics and Space Administration and was prepared under Contract NAS8-33191, "Statistical Energy Analysis of Complex Structures." The study was directed by R. F. Davis. J. B. Herring of the Vibration Analysis Branch of the Systems Dynamics Laboratory of Marshall Space Flight Center administered and directed the contract.

CONTENTS

	Page
Summary	1
Symbols	3
Introduction	5
Description	8
Summary of Statistical Energy Analysis Limitations and Equations	17
References	19
Appendix I. Derivation of Statistical Energy Analysis Response Equations	20
Appendix II. Guidelines for Application of Statistical Energy Analysis	22
Appendix III. Example Problems	30
Number 1. Space Shuttle External Tank - Unloaded Structure	31
Number 2. Space Shuttle External Tank - Loaded Structure	44
Number 3. Space Shuttle External Tank - Detailed Analysis of Loaded Structure	56
Number 4. Space Shuttle Retrievable Spacecraft	75
Appendix IV. SEA Response Solution Programs for Hewlett-Packard and Texas Instruments Calculators	88

FIGURES

Number		Page
١	Prediction Accuracy of SEA As a Function of Number of Element Modes Participating (from Reference 2)	7
2	Typical Aerospace Equipment Panel Installation	8
3	Typical Aerospace Bulkhead Installation	9
4	Graphical Approximation of Modal Density	13

SUMMARY

The aerodynamic and external acoustic environments of current aerospace vehicles generate very significant high-frequency random vibration structural response. This vibration response has proven to be a primary design consideration for the short life requirements (one flight) of past space vehicles. The effects of this adverse vibration environment will increase for the reusable vehicles that are currently being developed for space exploration.

The most efficient method to achieve optimum vehicle design for this highfrequency vibration environment is to generate meaningful design and test criteria early in the design phase of the system and to periodically update these criteria throughout the various phases of vehicle development. The methods included under the term "statistical energy analysis," or "SEA," provide a means of predicting such high-frequency vibration criteria in systems that do not conform well to other analysis methods. These energy analysis techniques are denoted "statistical" because they involve averaging structural responses over portions of the structure. This averaging is peri /med over time and space and in frequency bands.

Response predictions for a structure are made by modeling the structure as a number of elements, deriving power flow equations for each of these elements (including acoustic or mechanical energy sources), and simultaneously solving the resultant system of equations for the element response levels.

This report presents the results of an effort to document methods for accomplishing such response predictions for commonly encountered aerospace structural configurations. The effort included application of these methods to specified aerospace structure to provide sample analyses. The report has been arranged in the form of an applications manual, with the structural analyses appended as example problems. Comparisons of the response predictions with measured data are provided for three of the example problems. Other appendices provide a derivation of statistical energy analysis response equations, application guidelines, and response solution programs for programmable calculators.

SYMBOLS

A	area
a	acceleration
c/c _c	fraction of critical damping
Cg	group velocity (= 1.07 [ω C _ℓ t] ^{1/2})
C٤	longitudinal wave velocity
CC	speed of sound in air
D	dissipation of damping; bending stiffness
Ε	total energy of an element, modulus of elasticity
f	frequency
G, g	gravitational acceleration
h	thickness
I	moment of inertia
L, l	length
m	mass
N	number of modes
n(ω)	modal density
Ρ	pressure
r	radius of curvature
S	power input
t	thickness
V	volume; velocity
V	velocity
W, w	width, weight
W	weight density
Δ	incremental value
ηa	damping loss factor $\left(=\frac{D}{2\pi E}=2C/C_{C}\right)$
^ŋ a,b	coupling loss factor $\left(=\frac{\phi_{a,b}N_{b}}{\omega}\right)$
к	radius of gyration
ν	Poisson's ratio
π	3.14159

ρ	density
---	---------

•	•	
σ	radiation	efficiency

¢a.b	average mode-to-mode coupling between
.,.	Elements a and b

angular frequency, normally center frequency
 of a frequency band

NOTATION

Element	a set of modes modeled as one unit of a system, all modes in a frequency band having identical energy (on the average)
System	the total structure and associated energy sources under consideration (may be only a portion of an actual structure)
<>	indicates averaging over both time and space

INTRODUCTION

Three methods are in common usage for predicting the vibration response of aerospace structural systems: classical modal techniques, comparative scaling using available data banks, and empirical formulas. Each of these methods is limited in application by inherent characteristics of the method. Although classical dynamic analysis techniques for predicting dynamic response work well in the frequency range of the lower structural resonances, their application to high-frequency regimes is limited by model complexity, computer size capability, and cost, and is not amenable to rapid estimates. Use of data banks is limited to structural configurations which are very similar to the previous designs on which the data bank is based. Likewise, empirical formulas can, in general, be applied validly only to structures of the specific configuration for which they were derived and which match previous designs.

The advent of reusable space vehicles featuring new configurations with unique forcing fields requires extending these techniques beyond the configurations from which they were developed. An alternative and relatively simple approach to nigh-frequency vibration analysis has been developed which is known as statistical energy analysis (SEA).

Statistical energy methods have been developed to consider the distribution and transfer of energy among the modes of a vibrating system. These methods assume that the modes of a system being analyzed contain all the vibratory energy of that system. Therefore, for SEA to have valid application, all significant energy of a system must be "resonant" as opposed to "nonresonant." A parameter for evaluating this condition is examined in Reference 1.

The SEA methods separate the frequency range of interest into frequency bands, which are analyzed independently. The methods assume that the energy in the modes of one frequency band is not transmitted (through coupling) to modes in other frequency bands, either within an element or among the elements of a system. An important factor in validating the space and frequency averaging inherent in SEA is the number of modes included in each frequency band. With many modes excited in one frequency band of an element, the vibratory energy may be expected to be well distributed throughout the element and among the various modes, and averaging will furnish a valid approximation of actual values. This effect is demonstrated in Figure 1 which shows, for a par cular structural system, that predictions made with fewer than 20 modes per element per frequency band exhibit considerably more scatter than predictions with more contributing modes. Since constant percentage bandwidths (such as octave or one-third-octave) are generally utilized to obtain predictions, the narrower bandwidths in the lower frequencies result in fewer contributing modes and therefore less accuracy at these lower frequencies. Accordingly, SEA is generally applied to frequencies of 100 Hz or greater for typical aerospace structure. Also, model elements are chosen as generally gross portions of structure rather than representing fine details in order to maintain a high number of contriguing modes per element. An example of such modeling for a section of skirt structure on a launch vehicle would utilize three elements, one element representing the skin/stringer external shall, another representing an equipment-mounting panel, and the third representing the components on the panel (which are considered to be "smeared" over the panel in an average sense).

The assumptions, then, upon which statistical energy analysis is based are:

- A. The modes of the elements of a system contain all the "bratory energy of the system.
- B. Only modes occurring within the same frequency band are coupled.
- C. The energy in one frequency band of a system element is equally distributed among the modes of that element occurring in the frequency band.
- D. For two coupled elements, all of the modes occurring in one of the elements in one frequency band are equally coupled to each mode occurring in the same frequency band in the other element.

Figure 1. Prediction Accuracy of SEA as a Function of Number of Element Modes Participating (from Reference 2)

DESCRIPTION

The following section will demonstrate the application of SEA methods to a common structural system of interest. While particular systems will require un two adaptations of the methods, the analytical procedure should be fairly general.

Consider a section of airframe of an aerospace vehicle, such as a missile, reentry vehicle, or airplane, consisting of the external shell, an internally mounted equipment panel, and a component mounted on the panel.

Figure 2. Typical Aerospace Equipment Panel Installation

Several reasons may exist for analyzing the noted section of interest without performing an analysis that encompasses the entire vehicle: a local structural change in the section for an operational vehicle, a design evaluation examining several locations and configurations for the panel, or evaluation of an alternate location for the component.

This segment of structure can be represented with an SEA model of three elements as shown below.

Note that this model will reduce to two elements for the ana ysis of a component mounted directly to the shell.

Another common structural configuration of aerospace interest consists of a airframe section containing an internal bulkhead, with a component mounted on the bulkhead.

Figure 3. Typical Aerospace Bulkhead Installation

The corresponding SEA model for this structural system requires three elements and is of identical form to the shell/equipment parel/component model.

The analytical differences between the two structures will appear in the parameter values selected to represent the dynamic properties of the various elements. There is no difference in the configuration of the two models.

The elements of these models are a very straightforward representation of the structures. The only significant decision required is in definition of the amount of external skin to include with the model. Selection of the correct skin area yields a balanced system, with the energy flowing into the model subsystem mechanically from the remainder of the structure equal to the energy transported mechanically out of the subsystem. This situation therefore exhibits a zero net flow of energy across the boundaries of the model. In many cases this ideal condition can be approximately achieved by establishing the model boundaries at points halfway between major structural loading points, i.e., halfway between attach points of two adjacent equipment panels, halfway between the panel attach point and a fuel tank bulkhead, halfway between the panel attach point and a large component, etc. The effect on response predictions of incorrect estimation of the skin area will be in essentially direct proportion to the error: selection of an area too large by 10% will result in predicted levels (g^2/Hz) that are too high by approximately 10%.

Once the structural system has been modeled, the next step is to select the applicable equations for the model. These equations, listed below, were determined by examination (recognizing that the coupling between the skin and component elements is zero) of the SEA system equations listed in the Conclusions section of this report.

 $(\omega \eta_1 + N_2 \phi_{2}) E_1 - N_1 \phi_{12} E_2 = S_1$ -N_2 \phi_{12} E_1 + (\overline{u} \eta_2 + N_1 \phi_{12} + N_3 \phi_{23}) E_2 - N_2 \phi_{23} E_3 = 0 -N_3 \phi_{23} E_2 + (\overline{u} \eta_3 + N_2 \phi_{23}) E_3 = 0

where

 E_a = total energy of Element a S_a = power introduced into Element a from an external source

Each of these equations represents a power flow equation for one of the elements of the model. Together, the equations for an algebraic system for the solution of the E_i , provided the other terms can be evaluated for a structural system. The input term, S_1 , will generally represent an acoustic excitation of the system. A derivation of the SEA response equations is provided in Appendix I.

The next step is to evaluate modal density, damping, and coupling parameters for the system.

Modal Density

The shell element is composed of the cylindrical skin, stringers and ring frames. The modal density of these subelements can be determined with the appropriate equations of Table 1 in Appendix II.

Skin:
$$n_{skin}(\omega) = \frac{A_s}{4\pi\kappa_p c_l} \left(\frac{\omega}{\omega_r}\right)^{2/3}$$

Stringers (assuming plate-type response for high frequencies):

$$n_{str}(\omega) = \frac{A_s}{4\pi\kappa_p c_\ell}$$

Ring frames (assuming beam-type response):

$$n_{rf}(\omega) = \frac{L}{2\pi} \frac{1}{\sqrt{\omega \kappa_{b} c_{\ell}}}$$

where

$$n_a$$
 = modal density of Element a = $\frac{N_a}{\Delta \omega}$
 $\Delta \omega$ = frequency bandwidth selected for analysis
 A_s = surface area
 κ_p = radius of gyration of plate cross section

 c_{ℓ} = longitudinal wave velocity ω_r = structure ring frequency = $\frac{c_{\ell}}{r}$ r = radius of curvature L = length κ_b = radius of gyration of beam

Summing these contributions.

and

$$N_1 = n_1(\Delta \omega)$$

The equipment panel (or alternately, the bulkhead) is a ribbed plate which can be subdivided into plates and beams:

The component can generally also be subdivided into plate-, beam-, or shafttype elements, depending upon specific design. If, however, experimental modal response data are available on similar components, an estimate of the component modal density can be obtained from a plot of mode number versus f.equency. The slope of the approximate line joining the points, as indicated in Figure 4, is the modal density.

Figure 4. Graphical Approximation of Modal Density

Damping

The damping parameter values for the elements should be estimated based on experience with similar structures. References are provided in Appendix II which will assist the user in selection of values.

Coup1 ng

Appendix I. provides coupling factors that apply for a number of structural joints. For the typical structure under consideration, coupling factors are provided for specific skin/equipment panel joint configurations (also for skin/bulkhead joint configurations of the alternate structural system) that are similar to many aerospace installations.

A wide variety of configurations may be encountered for the component/equipment pane! joint. The first approach to evaluating coupling factors for this joint is to check Appendix II and other available sources for a similar joint. When coupling factors for a similar joint cannot be found, this parameter may be determined through an SEA evaluation of response data with a similar joint. The SEA parameter for the similar joint may be evaluated by the following procedure.

The response relationship between a component and mounting panel is, in general, provided by an equation in the form of the third of the set of SEA equations:

$$-N_{c}\phi_{pc}E_{p} + (\omega_{nc} + N_{p}\phi_{pc}) E_{c} = 0$$

This equation provides a means of solving for the coupling factor if the other system parameters can be evaluated and response data are available.

$$\phi_{pc} = \frac{\omega \eta_{c}}{N_{c} \frac{E_{p}}{E_{c}} - N_{p}}$$

The total energy term for an element is provided by

$$E_{i} = m_{i} \langle \overline{v_{i}^{2}} \rangle = m_{i} \frac{\langle \overline{a^{2}}_{i} \rangle}{\omega^{2}}$$

m_i = element i mass
v_i = element i velocity
a_i = element i acceleration
<---> indicates averaging over time and over area

which yields

$$\phi_{pc} = \frac{\omega \eta_c}{N_c \frac{m_p}{m_c} \frac{\langle a_p^2 \rangle}{\langle a_c^2 \rangle} - N_p}$$

This equation defines the coupling factor based on the relative response level, $\frac{\langle a^2 p \rangle}{\langle a^2 c \rangle}$, of the equipment panel to the component for the similar joint configuration. (Similarity to the primary structural system under analysis assists in defining the SEA parameters in the equation, generally reducing the effort required to determine the coupling parameter using response data.)

The final step before obtaining the response solution for the system is to define S_1 , the input term. For the sample structure, excited by a reverberant acoustic field, this term is

$$S_{1} = \frac{2\pi^{2}c_{0}^{2}A_{1} < \overline{P^{2}} > \sigma N_{1}(surface)}{\omega_{0}^{2}(\Delta \omega) m_{1}}$$

- c_0 = speed of sound in fluid medium
- A_i = surface area of Element i
- P = acoustic pressure
- σ = radiation efficiency
- N_i = number of surface modes of Element i (excludes modes of ring frames, stiffeners, etc.)
- m_i = mass of Element i

Appendix II provides radiation efficiency values for both flat panels and circular cylinders.

The parameter values may now be substituted into the system of SEA equations (for each bandwidth of interest) and the response solution for the E_i obtained. The previously noted relation,

$$E_i = m_i \frac{\langle \overline{a^2}_i \rangle}{\omega^2}$$

can then be used to present the element responses in the form of $\frac{\langle \overline{a^2}_i \rangle}{g}$ (for response in g's) or $\frac{\langle \overline{a^2}_i \rangle}{(\Lambda \omega)g^2}$ (in g²/Hz), where g is the gravitational acceleration constant.

SUMMARY OF STATISTICAL ENERGY ANALYSIS LIMITATIONS AND EQUATIONS

The methods presented in this document will provide estimates of the highfrequency vibration environment for structural systems. The user should be aware of the requirements and limitations for the application of these methods. A summary of the principal limitations is provided below.

- Application is more valid in frequency ranges where many modes are excited. Care must be taken in evaluating the lower frequency limit of applicability for a particular structural system.
- Application is valid only for systems containing all their energy in modal resonances, therefore SEA does not apply to heavily damped systems. Reference 1 provides a means of evaluating this requirement for specific systems.
- 3. Response predictions determined with these methods represent averages over generally gross portions of structure. Therefore caution should be taken in applying these average values with nonuniformly configured structural elements such as panels with relatively massive integral stiffeners, where response amplitude of the panel segments may be expected to differ considerably from that on the stiffeners.

A summary of the SEA response prediction equations is provided below. Inspection of the system equations will indicate the terms required to expand the set of equations to accommodate a system with any number of elements. Likewise, the simplification possible for systems which do not have each element connected to every one of the other elements can be determined by setting the appropriate ϕ_{ij} terms to zero.

Guidelines for structural modeling and parameter evaluation are provided in Appendix II.

Statistical Energy Analysis Equations for a Four-Element System

$$(\omega \eta_1 + N_2 \psi_{12} + N_3 \phi_{13} + N_4 \phi_{14}) E_1 - N_1 \phi_{12} E_2 - N_1 \phi_{13} E_3 - N_1 \phi_{14} E_4 = S_1 - N_2 \phi_{12} E_1 + (\omega \eta_2 + N_1 \phi_{12} + N_3 \phi_{23} + N_4 \phi_{24}) E_2 - N_2 \phi_{23} E_3 - N_2 \phi_{24} E_4 = S_2 - N_3 \phi_{13} E_1 - N_3 \phi_{23} E_2 + (\omega \eta_3 + N_1 \phi_{13} + N_2 \phi_{23} + N_4 \phi_{34}) E_3 - N_3 \phi_{34} E_4 = S_3 - N_4 \phi_{14} E_1 - N_4 \phi_{24} E_2 - N_4 \phi_{34} E_3 + (\omega \eta_4 + N_1 \phi_{14} + N_2 \phi_{24} + N_3 \phi_{34}) E_4 = S_4$$

$$\begin{split} & \omega_{i} = \text{angular frequency (center frequency of analysis band)} \\ & n_{i} = \text{element damping factor} \\ & N_{i} = \text{number of modes excited in the element in frequency band of analysis} \\ & \phi_{ij} = \text{element coupling value (symmetric: } \phi_{ij} = \phi_{ji}) \\ & E_{i} = m_{i} \frac{\langle \overline{a^{2}i} \rangle}{\omega^{2}} \\ & a_{i} = \text{angular acceleration} \\ & S_{i} = \text{energy input term} = \frac{2\pi^{2}C_{0}^{2}A_{j} \langle \overline{P_{j}^{2}} \rangle \sigma_{j}}{\omega^{2}_{0} (\Delta \omega) m_{j}} N_{j} \quad (\text{for reverberant acoustic excitation only}) \\ & C_{0} = \text{local speed of sound in surrounding medium} \\ & A_{j} = \text{acoustically excited surface area of element} \\ & P_{j} = \text{acoustic pressure} \\ & \sigma_{j} = \text{radiation efficiency} \\ & m_{j} = \text{mass of element} \end{split}$$

These equations are frequently expressed in an alternate format by combining terms into a coupling loss factor:

REFERENCES

- L. D. Pope. On the Transmission of Sound through Finite, Closed Shells: Statistical Energy Analysis, Modal Coupling, and Nonresonant Transmission. Report 21, University of Houston, August 1970.
- R. F. Davis and D. E. Hines. Final Report Performance of Statistical Energy Analysis. McDonnell Douglas Astronautics Company report MDC G4741, June 1973; also NASA CR-124322, June 1973.

Appendix I

DERIVATION OF STATISTICAL ENERGY ANALYSIS RESPONSE EQUATIONS

Consider a simple structure modeled as the two-element system in the following schematic.

In this schematic of the two elements, a and b, the following nomenclature is used:

 S_a = power introduced into Element a from an external source. D_a = power dissipated within Element a. $P_{a,b}$ = net power transmitted from Element a to Element b (= -P_{b,a}).

These values and the following derivations are for only a single frequency band; solution for the complete spectrum of interest is accomplished by summing the predictions for the contributing frequency bands.

Power flow equations for all of the energy passing through the two elements may b_ expressed as

$$D_a + P_{a,b} = S_a$$

 $D_b - P_{a,b} = S_b$

The energy dissipated per unit time is defined in terms of the element loss factor as

$$D_a = \omega n_a E_a$$

where

 ω = angular frequency (average) of system $n_{\bar{a}}$ = Element a loss factor $\left(\frac{1}{\text{critical damping ratio}}\right)$ E_a = total energy of Element a

The net power transmitted from the resonant modes of Element a \sim_{-} une resonant modes of Element b is

$$P_{a,b} = N_b \phi_{a,b} E_a - N_a \phi_{a,b} E_b$$

= (power transmitted from b to a) - (power transmitted from a to b)

where

 N_a = number of modes resonant in Element a

 $\phi_{a,b}$ = power transfer coefficient for coupling between modes through the structural joint ($\phi_{a,b} = \phi_{b,a}$)

Performing the indicated substitutions, the power flow equations become

$$\omega n_{a}E_{a} + N_{b}\phi_{a,b}E_{a} - N_{a}\phi_{a,b}E_{b} = S_{a}$$
$$\omega n_{b}E_{b} + N_{a}\phi_{a,b}E_{b} - N_{b}\phi_{a,b}E_{a} = S_{b}$$

For systems with the parameters η , N, ϕ defined and the inputs, S, known, the power flow equations form a set of linear, simultaneous equations for the unknowns E_a and E_b at the average frequency ω .

Appendix II

GUIDELINES FOR APPLICATION OF STATISTIC ENERGY ANALYSIS

Definition of Structural Models

Une of the initial steps in the SEA applications procedure will be selection and definition of suitable models. The basic considerations of modeling are to (1) determine the structural definition and detail required, (2) evaluate energy sources, and (3) partition the significant portion of the structure into the actual model elements. The first consideration, requirements for structural definition, is to insure that the model will both provide the information desired and omit useless details. Structural assemblies may be lumped together as a single element if finer definition is not required since SEA uses averaged quantities, and averaging is equally valid for multiple portions of a structure as for a single part. Such lumping of elements also reduces the bockkeeping associated with the analysis.

The second consideration in SEA modeling is evaluation of the energy sources. This consideration assists in limiting the size of a model. Basically, any structural boundary across which the net energy flow is zero represents a limit to the need for modeling.

The final step in modeling is to actually partition the significant structure into elements in line .th the previously stated principles. The elements • represent generally gross, continuous portions of the structure.

Damping

The structural damping must be defined for each element of the models as one of the procedural steps. This parameter is not unique to SEA and must appear in some form in every response analysis. While much investigation of structural damping has been ccomplished, and over a long period of time, selection of appropriate values remains very much a matter of engineering judgement based on past experience. References 1 and 2 provide information useful in defining the damping of structures.

22

Modal Density

Modal density is the parameter which is used to evaluate the number of resonant modes present within a particular frequency band of a given structural subset. Approximation equations are presented in Table II-1 (from Reference 4) which define this parameter for specific structural shapes.

Alternate methods of evaluating the modal densities of specific structural configurations are available. One alternate method makes use of computer programs generally available for analyzing the response of commonly encountered structural shapes such as pinned-end cylinders, liquid-filled cylinders, etc. These programs are utilized to determine the frequency response of the elements, thus yielding directly the number of resonant modes within the frequency band.

A second alternate method has utilized classical low-frequency modal analyses of the structure to evaluate the modal density for model elements. This method, of course, is only practical for structures which have previously received modal analyses, or if a low-frequency modal analysis is being performed in conjunction with the high-frequency SEA prediction. This method, indicated in Figure II-1, involves graphically plotting the response frequencies from the modal analysis versus mode number for the structure which is being represented by an SEA model element. The slope of the plotted points can then be determined which, assuming extension of the curve into the high frequencies to be vaiid, yields the value for modal density of the element.

Structural Coupling

The SEA parameter for the structural coupling between elements is unique to this form of analysis, and its definition represents one of the most significant steps in the procedure. As a consequence of the relative newness and lack of previous application of the SEA methods, very little information has been available concerning appropriate values of this parameter for structural joints in general. The coupling values for two typical joints are shown in Figures II-2 and II

n(w)*# Auxiliary Expressions	c _g = $\sqrt{T/pA}$	$c_{T} = \sqrt{Gk/\rhoJ}$	$c_{l} = \sqrt{E/\rho}$	$^{\prime}b^{c}p = \sqrt{EI/pA}$	$c_{\rm m} = \sqrt{S/\rho h}$	$r_{pc_{l}} = \sqrt{D/\rho h}$	$= \sqrt{Eh^2/12\rho(1-v^2)}$		$r \omega / \omega_r > 1$ $\omega_r = c_\ell / a$	$r \omega / \omega_r < 1$ $np = A_g / 4 \pi \kappa_p c_g$	omplex, , 4
Modal Density,	L/#cS	L/mc _T	L/TC	$\frac{L}{2\pi} \left(\omega x_{b} c_{\ell} \right)^{-1/2}$	A ₈ ω/2πc _m ²	A _s /4π _{kp} c _l		ν _o ² /2 ^{π² c_a³}	f~n p fo	$\left\{ z_n \left(\frac{\omega}{\omega_r} \right)^{2/3} \text{ fo} \right\}$	Expressions are c given in Reference
Motion	Lateral	Torsion	Longitudinal	Flexure	Lateral	Flexure		Sound (Compression)			Flexure
System	String	Shaft, Beam	Shaft, Beam	Beam	Membrane	Plate		Room, (Acoustic Volume)	Cylindrical Shells (Ref. 3)		Doubly Curved Shells

Table II-1 MODAL DENSITIES OF SOME UNIFORM SYSTEMS*

*See next vage for definitions of symbols.

(3) L . 7 = N**

Symbol Definitions for Table II-1

Α	cross-section area
А ₈	surface area
ca	acoustic wave velocity
્	Longitudinal wave velocity
°m	membrane wave velocity
с _в	string wave velocity
°T	torsional wave velocity
D	plate rigidity
E	Young's modulus
G	shear modulus
h	thickness
I	centroidal moment of inertia of A
J	polar moment of inertia of A
к	torsional constant of A
I	length
S	membrane tension force/unit edge length
Т	string tension force
vo	volume
"b	radius of gyration of A
*p	radius of gyration of plate cross section
ν	Poisson's ratio
ω	frequency (radians/time)
ρ	material density

Figure II-1. Approximation of Modal Density by Graphical Nethod (Delta Fairing Modes)

Figure II-2. SEA Coupling Parameter for Small Reentry and Intercept Vehicle Field Joints (Typical, from UpSTAGE Ground Test Data)

Figure II-3. SEA Coupling Parameter for Launch Vehicle Tank/Skirt Joint (Typical, Based on S-II Data)

Reference 6 provides equations for evaluating the coupling values of various beam and plate joints. Two of the most useful of these relations are presented below.

Two plates of approximately equal stiffness joined at right angles:

$$\dot{\phi}_{12} = \frac{C_{gL}}{\pi A_{1} N_{2}} \frac{8}{27}$$

$$C_{g} = 1.07 (\omega C_{g} t)^{\frac{1}{2}}$$

$$C_{g} = \sqrt{\frac{E}{\rho(1 - \nu^{2})}}$$

$$L = \text{joint length}$$

$$t = \text{plate thickness}$$

Beam cantilevered to a plate of equal thickness:

$$\phi_{12} = \frac{2\pi f}{N_D} \frac{W}{4\ell}$$

 N_{D} = number of modes in plate

W = width of beam

l = length of beam

Acoustic Coupling

The input term will generally involve a transfer function to couple a fluctuating pressure field to the structural system. A reverberant acoustic field may be coupled to a structure with the relation presented in the Conclusions section of this report. Use of this expression for predicting response from other acoustic fields requires the definition of an "equivalent" reverberant field, or the coupling terms must be modified. The development of the reverberant coupling terms will indicate an approach that could be used in defining coupling terms for other pressure fields.

The radiation efficiency term, σ , appearing in the input relation for reverberant acoustic fields of the Conclusions section may be determined from Figures II-4 and II-5, which are taken from Reference 5.

•-

Figure II-4. Radiation Efficiency σ of a Baffled Panel (from Reference 5)

Figure II-5. Radiation Efficiency σ of a Cylindrical Shell (The peak in the radiation efficiency about the ring frequency f_r is associated with increase in wavespeed due to curvature.) (From Reference 5)

REFERENCES TO APPENDIX II

- B. J. Lazan. Damping of Materials and Members in Structural Machanics. Pergamon Press Inc., 1968.
- L. T. Lee. A Graphical Compilation of Damping Properties of Both Metallic and Non-Metallic Materials. Technical Report No. AFML-TR-66-169, Air Force Materials Laboratory, May 1966.
- 3. M. Heckl. Vibrations of Point Driven Cylindrical Shells. JASA V. 34, pp. 1553-57, October 1962.
- V. V. Bolotin. On the Density of the Distribution of Natural Frequencies of Thin Elastic Shells. J. Appl. Math. and Mech., Vol. 27, No. 2, 1963, pp 538-543.
- 5. R. H. Lyon and G. Maidanik. Statistical Methods in Vibration Analysis. AIAA Journal, Vol. 2, No. 6, June 1964, pp 1015-1024.
- 6. R. H. Lyon. Statistical Energy Analysis of Dynamical Systems: Theory and Applications. The MIT Press, 1975.

Appendix III

EXAMPLE PROBLEMS
Example Problem Number 1 SPACE SHUTTLE EXTERNAL TANK - UNLOADED STRUCTURE

The structure to be analyzed is located in the Space Shuttle Extr. nal Tank intertank area at 270° (-Y) on the station 1034.2 frame. This location corresponds to a vibration measurement location in use during Main Propulsion Test Article (MPTA) testing for the Space Shuttle. The measurement location is indicated in Figure III-1. This location is on a ring frame which is surrounded by skin panels with external stringers. This portion of the structure is not loaded by component installations and can therefore be considered typical of unloaded aerospace shell structures.

Mode1

The unloaded structure can be represented by the simplest of SEA models, consisting of a sill e element excited by the external acoustic field. The model element will include the area 45° to either side of the measurement location (225° to 315°) and halfway to the adjacent frames at staticns 985 and 1082. This element is indicated in Figures III-2 and III-3.

Response Equation

The SEA response equation for the one-element system is

 $\omega \eta_1 E_1 = S_1$

This equation simply equates the energy dissipated by damping within the element to the energy transmitted from the external acoustic field.

Figure III-1. MPTA Vibration Measurement Locations (Station 1034)

Figure III-2. SEA Model Element for Unloaded Structure

Figure III-3. SEA Model Element for Unloaded Structure (Cross Section)

Damping

The damping parameter was evaluated with response data measured during an acoustic fatigue test of Saturn S-IVB/V interstage panels (Reference III-1). These panels feature a skin/stringer construction similar to the current structure and are of similar size. The approximate relation for damping of $n = \frac{(\Delta f)^{\circ}}{f}$, where $(\Delta f)^{\circ}$ represents the bandwidth to the half-power points, was evaluated for a number of response measurements on the test. The resulting values have been plotted in Figure III-4. Straight lines have been faired through these data for a simple graphical approximation to the damping which is used for this analysis. The approximation lines have been positioned on the low side of the obvious mean of the data since low values for damping result in high predicted responses that are conservative for design purposes.

Element Energy

The energy of the model element is represented by

$$E_1 = m_1 < \overline{V_1^2} > = m_1 \frac{\langle \overline{a_1^2} \rangle}{\omega^2}$$

The element mass was estimated from available detail drawings by summing the volume of the element subsections (skin panels, stringers, frame sections, etc.) and multiplying by the material density.

$$m_1 \simeq \frac{310 \text{ lbs}}{\text{g}}$$

Acoustic Power Input

The external acoustic field is assumed to be reverberant, therefore the input term can be represented by

$$S_{1} = \frac{2\pi^{2}c_{0}^{2}A_{1} < \overline{P^{2}} > \sigma N_{1} (surface)}{\omega_{0}^{2} (\Delta \omega) m_{1}}$$

The surface of the subject structure is composed partly of skin panels and partly of stringers. The correct representation of the term $\frac{A_1N_1}{m_1}$ is thus

$$\frac{A_{1p} N_{1p}}{m_{1p}} + \frac{A_{1s} N_{1s}}{m_{1s}}$$

where the subscripts p and s indicate panel and stringer values, respectively. Since the stringers tend to bound the surface into plate areas of relatively small curvature, the approximate relation for high frequency modal density of plates,

$$n(\omega) = \frac{A}{4\pi \kappa_p C_{\ell}}$$

was utilized for both skin and stringer areas.

also

N =
$$n(\Delta \omega)$$

o $m = \frac{\overline{W}}{\overline{g}} V = \frac{\overline{W}}{\overline{g}} At$
 \overline{W} = weight density (7075 Al = .101 lb/in³)
V = volume
t = thickness

1

yielding

$$\frac{AN}{m} = \frac{Ag(\Delta \omega)}{4\pi \overline{w} t \kappa_{D} C_{o}}$$

also:
$$\Delta \omega = 2\pi (\Delta f), \quad \kappa_p C_{\ell} = \sqrt{\frac{E t^2 g}{12 \overline{w} (1 - v^2)}}$$

so
$$\frac{AN}{M} = \frac{A(\Delta f)}{2t^2} \sqrt{\frac{12g(1-v)^2}{WEg}}$$

The surface area of the element is approximately 48.5 in x 259 in, with 36 stringers of the cross-sectional dimensions indicated below.

The effective width of the stringer is approximately 8.5 inches.

$$A_s = 36(8.5 \times 48.5) = 14,841 \text{ in}^2$$

The skin panels are 0.071 inch thick and have an area of

$$h_{\rm p} = 48.5 \text{ x} [259 - 36(4.41)] = 4862 \text{ in}^2$$

Then

$$\frac{AN}{m} = \frac{\Delta f}{2} \sqrt{\frac{12g(1-v^2)}{wE}} \left[\frac{A_p}{t_p^2} + \frac{A_s}{t_s^2} \right]$$
$$= 151,934 \Delta f$$

Acoustic levels me sured during the MPTA test are presented in Figure III-5. The three measurements were averaged for each one-third octave band center frequency and the average value used as the required acoustic pressure input:

$$\langle \overline{P^2} \rangle = 10 \exp\left[\frac{(SPL)_{avg}}{10}\right] \times 8.41 \times 10^{-18}$$

The values for $\langle \overline{P^2} \rangle$ are listed in Table III-1.

Figure III-5. Space Shuttle External Tank Main Propulsion Test Acoustic Data. Three measurements external to intertank area (solid lines); upper, dashed line represents measurement subsequent to analysis (see text).

Table I	II-1
---------	------

<u>f</u>	<u>n,</u>	<u>(d8)</u>	<u>σ</u>
50	0.52	116.5	.000794
63	0.50	117.2	.00100
80	0.48	114.4	.00126
100	0.47	116.6	.00158
125	0.46	116.6	.00200
160	0.45	118.1	. 00251
200	0.44	118.9	.00316
250	0.36	118.9	.00398
315	0.25	120.0	.00631
400	0.20	122.2	.00316
500	0.15	121.7	.00251
630	0.12	121.9	.00251
800	0.090	120.8	. 00251
1000	0.070	118.3	.0100
1250	0.054	116.8	.0200
1600	0.049	115.7	.0316
2000	0.032	114.7	.0631

Radiation efficiency values are taken from Appendix II, based on a coincidence frequency of $f_c = 7683$ Hz (for the 0.063-inch thickness of the stringers since they furnish most of the surface area) and a ring frequency of $f_r = 198$ Hz. These values are also listed in Table III-1.

Response Solution

The response predictions for the element were determined in each one-third octave band from 50 to 2000 Hz. A sample prediction for the 50 Hz octave band is presented below as an example.

$$\omega \eta_{1} E_{1} = S_{1}$$

$$[2\pi \times 50][0.52] \left[\frac{310}{9} \frac{\langle \overline{a_{1}^{2}} \rangle}{(2\pi \times 50)} \right] = \frac{2\pi^{2} [(1116 \times 12)^{2}] \left[(151,934) \frac{50}{4.33} \right] \left[10^{\frac{116.5}{10}} \times 8.41 \times 10^{-18} \right] [.000794]}{[(2\pi \times 50)^{2}] \left[2\pi \times \frac{50}{4.33} \right]}$$

where $\Delta f = \frac{f}{4.33}$ for one-third octave bands.

Dividing by g and solving for the mean squared acceleration:

$$\frac{\langle a_1^2 \rangle}{g^2} = 0.0130$$

The acceleration spectral density level is

$$\frac{\langle a_1^2 \rangle}{g^2(\Delta f)} = \frac{.0130}{\left(\frac{50}{4.33}\right)} = 0.00113$$

and the root-mean-squared acceleration in this one-third octave band is

$$g_{\rm rms} = \sqrt{\frac{\langle \overline{a_1}^2 \rangle}{g^2}} = \sqrt{0.0130} = 0.114$$

The predicted response levels are plotted in Figures III-6 and III-7 for the respective acceleration spectral density and g_{rms} in one-third octave bands.

The increasing levels above 1000 Hz which are most noticeable in Figure III-7 are an unexpected result. Inspection of the input parameter values for the response solution shows this result can be attributed to the radiation efficiency. The value for this parameter is controlled by the coincidence frequency of $f_c = 7683$ Hz for the 0.063-inch-thick stringers. This frequency corresponds to the peak radiation efficiency values and is higher than typically encountered with aerospace structures, thus causing the radiation efficiency to be still increasing at 2000 Hz with the resulting high predicted levels.

Reference III-4 demonstrates that ±3 dB accuracy may be expected for an SEA response prediction when 20 or modes per analysis band are excited in each element or above the ring frequency for cylindrical structure. That result was based on a relatively small, stiff vehicle with an elliptical shape. These requirements correspond to 20 Hz (20 modes) and 200 Hz (ring frequency), respectively. for the current structure. Therefore, the predictions may be expected to demonstrate ±3 dB accuracy at frequencies above 200 Hz, and probably above 20 Hz.

Comparison of Prediction with Measured Test Data

Subsequent to completion of this prediction, MPTA response data were made available for comparison. However, one of the acoustic measurements provided with the response data showed an increase of more than 10 dB throughout the spectrum (see Figure III-5), while another measurement agreed with the previous acoustic data. Further investigation revealed that the initial acoustic data were for a 70% thrust level, and that the high measured levels were probably valid for one side (adjacent to Orbiter engines) of the external tan! at the 100% thrust level with a reduction in acoustic levels around the tank to the opposite side. Because of the resulting

Figure III-6. Measured Test Data (dashed line) vs. Predicted Response for Two Acoustic Input Levels (solid lines) on External Tank Interstage Area - Unloaded Shell Structure

uncertainty in the exact input acoustic levels, the response predictions for the data comparison are presented in Figure III-6 for two input levels the origina!, averaged value and the high measurement level - with the expectation that the correct level actually lies between the two. The vibration response data correspond with this expectation and lie chiefly between the two predictions (SEA response predictions should be compared to <u>average</u> values of the response over one-third octave bands rather than peak response values). At 1000 Hz, the predicted response exhibits a change in slope and begins to increase at higher frequencies, a result determined to be due to an increase in radiation efficiency values near the coincidence frequency of the external stringers. This discrepancy in response with the test data is most likely due to improper definition of damping values about the coincidence frequency. This overprediction of response relative to the measured levels would lead to a conservative result when used for design purposes.

Example Problem Number 2 SPACE SHUTTLE EXTERNAL TANK - LOADED STRUCTURE

The structure to be analyzed is located in the Space Shuttle External Tank intertank area at about 200° on the station 1034.2 frame (refer to Figure III-1). This location corresponds to a vibration measurement location used during Main Propulsion Test Article (MPTA) testing for the Space Shuttle, as for Example Problem 1. The structure is identical to the skin/stringer/ring frame structure of Example Problem Number 1, but is loaded by the 260 pound DFI box installation and can therefore be considered as typ.cal for aerospace shell structure loaded by heavy components.

Mode1

The configuration to be analyzed represents structure which is loaded by the DFI package. This package mounts on supports between frames. The model for this structure will have two elements, consisting of the external shell and the DFI package with support intercostals. The shell structure to be included will extend halfway to the frames adjacent to those carrying the support structure and a circumferential width identical to twice the support frame width, as indicated by Figures III-8 and III-9.

Response Equations

The SEA response equations for the two-element system with external acoustic excitation are

$$(\omega \eta_1 + N_2 \phi_{12}) E_1 - N_1 \phi_{12} E_2 = S_1$$

- $N_2 \phi_{12} E_1 + (\omega \eta_2 + N_1 \phi_{12}) E_2 = 0$

where the subscript 1 denotes external shell values, and 2 denotes DFI box and intercostal values.

Figure III-8. Structural Configuration for SEA Model of Loaded Structure

Figure III-9. Extent of SEA Model for Loaded Structure

Damping

The damping parameter for the external shell is identical to that of Example Problem 1 in Figure III-4.

Test experience with smaller electronic packages during the Delta program indicates response amplifications of Q = 6 to 10 should be expected for the DFI package. Therefore, a value for the loss factor of n = 0.1 (Q = 10) was adopted for this analysis.

Modal Density

The expression for number of modes, N_j , required in the response equation is determined by

where

 n_i = modal density Δf = bandwidth of analysis

The portion of intertank structure which has been designated as the external shell element is actually composed of several hundred individual parts (skin panels, stringers, stiffeners, ring frame segments, fittings, brackets, etc.). The modeling of all these parts by one element is a feature of the averaging assumptions of the SEA approach and is one of the most attractive aspects of SEA. Almost without exception, the individual parts are plates or are formed with multiple plate sections. Therefore, the shell element modal density was calculated by summing the modal density of the individual plate sections determined by the approximate relation for high frequency modal density of plates,

$$n_{1}(f) = \sum_{k=1}^{A} \frac{A}{2 \kappa_{p} C_{\ell}}$$
$$= \frac{1}{2 \sqrt{\frac{Eg}{12 \overline{W} (1 - v^{2})}}} \sum_{k=1}^{A} \frac{A}{t}$$

= $6.52 \mod Hz$

where $\sum \frac{A}{t}$ represents the summation of values for all parts and their subsections.

The second element is made up of the DFI package plus the supporting intercostal structure. The DFI package consists of a box, whose plate element modal densities can be determined as above, plus a panel loaded with electronic components. Reference 2 indicates that the loaded panel will exhibit a greater stiffness (acl resultant lower modal density) than an identical unloaded panel. An increase in stiffness by a factor of 2 was assumed for the loaded panel. The resulting modal density for the box element is

$$n_{\text{DFI}}(f) = (n_2)_{\text{box}} + (n_2)_{\text{panel}}$$

$$= \frac{1}{2\sqrt{\frac{Eg}{12 \,\overline{w} \,(1 - v^2)}}} \left[\left(\frac{A}{t}\right)_{\text{box}} + \frac{1}{\sqrt{2}} \left(\frac{A}{t}\right)_{\text{panel}} \right]$$

$$= 0.27 + 0.12$$

$$= 0.39 \text{ modes/Hz}$$

The modal density for the supporting intercostals is also determined with the plate equation:

$$n_{I}(f) = \frac{1}{2\sqrt{\frac{Eg}{12\bar{w}(1-v^{2})}}} \sum_{x} \frac{A}{t} = 0.32$$

Therefore the total modal density for this element is

$$n_2(f) = n_{\text{DFI}}(f) + n_{\text{I}}(f) = 0.71$$

Modal Coupling

The model elements are coupled by the joint between the vehicle shell and the DFI support intercostals. This joint is essentially two plates joined at right angles. For the case of equal plate stiffnesses which is approximately satisfied (.071 inch intercostals and .071 inch skin with supplementary stiffeners), Reference 3 gives the relation for coupling loss factor of

$$\Pi_{12} = \frac{CgL}{2\pi^2 f A_1} \left(\frac{8}{27}\right)$$

$$Cg = 1.07 \left(\omega C_{g} t\right)^{\frac{1}{2}}$$

$$C_{\chi} = \sqrt{\frac{Eg}{\overline{w}(1 - \nu^2)}}$$

$$L = Joint length$$

From the basic definition,

$$\eta_{12} = \frac{\phi_{12}N_2}{\omega}$$

so that

$$\phi_{12} = \frac{\omega}{N_2} \frac{C_{qL}}{2\pi^2 f A_1} \left(\frac{8}{27}\right) = \frac{1.20}{\sqrt{f}}$$

which makes use of $\frac{f}{\Delta f}$ = 4.33 for the one-third octave bandwidths to be used for analysis.

Element Energy

The element energy was handled as in Example Problem 1.

$$E_{i} = m_{i} \frac{\langle \overline{a_{i}^{2}} \rangle}{\omega^{2}}$$
$$m_{1} = \frac{484 \text{ lbs}}{g}$$
$$m_{2} = \frac{280 \text{ lbs}}{g}$$

Acoustic Power Input

This term was also handled as in Example Problem 1. The applicable term for $\frac{AN}{m}$ is

$$\left(\frac{A_1N_1}{m_1}\right)_{\text{surface}} = 237,473 \text{ } \Delta f$$

Response Solution

The response predictions for each element were determined in each one-third octave band from 50 to 2000 Hz. A sample prediction for the 50 Hz band is presented below as an example:

$$(\omega \eta_1 + N_2 \phi_{12}) E_1 - N_1 \phi_{12} E_2 = S_1$$

- $N_2 \phi_{12} E_1 + (\omega \eta_2 + N_1 \phi_{12}) E_2 = 0$

Substituting for the parameter values, the expressions become

$$\begin{cases} [2\pi \times 50][0.52] + \left[7.71\left(\frac{50}{4.33}\right)\right] \left[\frac{1.2}{\sqrt{50}}\right] \right\} \left[\frac{484}{9} \frac{\langle \bar{a_1}^2 \rangle}{(2\pi \times 50)}\right] \\ - \left[6.52\left(\frac{50}{4.33}\right)\right] \left[\frac{1.2}{\sqrt{50}}\right] \left[\frac{290}{9} \frac{\langle \bar{a_2}^2 \rangle}{(2\pi \times 50)}\right] \\ = \frac{2\pi^2 \left[(1116 \times 12)^2\right] \left[(237,473) \frac{50}{4.33}\right] \left[10^{\frac{116.5}{10}} \times 8.41 \times 10^{-10}\right] \left[.000794\right]}{\left[(2\pi \times 50)^2\right] \left[2\pi \times \frac{50}{4.33}\right]} \end{cases}$$

and

$$-\left[0.71\left(\frac{50}{4.33}\right)\left[\frac{1.2}{\sqrt{50}}\right]\left[\frac{484}{9} \frac{\langle \overline{a_1^2} \rangle}{(2\pi \times 50)^2}\right] \\ + \left\{ \left[2\pi \times 50\right]\left[0.1\right] + \left[6.52\left(\frac{50}{4.33}\right)\right]\left[\frac{1.2}{\sqrt{50}}\right] \right\} \left[\frac{290}{9} \frac{\langle \overline{a_2^2} \rangle}{(2\pi \times 50)^2}\right] = 0$$

where $\Delta f = \frac{f}{4.33}$ for one-third octave bands.

Dividing by g and solving for the mean squared accelerations:

$$\frac{\langle \overline{a_1}^2 \rangle}{g^2} = 0.0130$$
 $\frac{\overline{a_2}^2}{g^2} = 0.000662$

The acceleration spectral density levels are

$$\frac{\langle \overline{a_1}^2 \rangle}{g^2(\Delta f)} = \frac{0.0130}{\left(\frac{50}{4.33}\right)} = 0.00113, \quad \frac{\overline{a_2}^2}{g^2(\Delta f)} = \frac{0.000662}{\left(\frac{50}{4.33}\right)} = 0.0000572$$

and the root-mean-squared acceleration in this one-third octave band is

$$(g_{rms})_1 = \sqrt{\frac{\langle a_1^2 \rangle}{g^2}} = \sqrt{0.0130} = 0.114$$

 $(g_{rms})_2 = \sqrt{0.000662} = 0.0257$

The predicted response levels are plotted in Figures III-10 through III-12 in acceleration spectral density and g_{rms} in one-third octave band formats.

The criterion of 20 modes per analysis band in each element as a requirement for SEA prediction accuracy is satisfied for the model at 125 Hz, indicating predictions with ± 3 dB accuracy above this frequency.

Figure III-10. Predicted Response (g^2/Hz) for External Tank Interstage Area

Comparison of Prediction with Measured Test Data

The structures analyzed in Example Problems Numbers 1 and 2 were selected to provide an evaluation of SEA methods in application to loaded and unloaded structure. To circumvent i, effect of the uncertainty in the acoustic input levels as noted in Example Problem Number 1, the available test data have been compared to the predicted values in a relative sense between the loaded structure of this example problem and the unloaded structure of Example Problem Number 1. A comparison of the element 1 response in Figure III-10 with the lower predicted curve of Figure III-6 show: the structural loading to have no effect on the predicted values which are essentially identical. Figure III-13 shows the approximate average spectrum values (faired graphically through the data) for the test measurements. These data show the loaded structure to have reduced response relative to the unloaded structure below approximately 800 Hz, and essentially the same average spectrum levels above that frequency. For this case and based on these specific measurement locations, the SEA method furnishes accuracy within 3 dB only above 500 Hz, which corresponds to 80 modes per analysis band in each element.

Prediction of the relative response of the loaded structure through traditional mass scaling would result in a reduction of response by the ratio

$$\frac{484 \text{ lbs}}{484 \text{ lbs} + 280 \text{ lbs}} = 0.630$$

or approximately 2 dB. The SEA method obviously yields more accurate results in the higher frequencies.

Figure III-13. Comparison of Relative Response for Test Measurements on External Tank Interstage Area Unloaded and Loaded Structure -Approximate Average Values

Example Problem Number 3 SPACE SHUTTLE EXTERNAL TANK - DETAILED ANALYSIS OF LOADED STRUCTURE

The structure to be analyzed is identical to that of Example Problem Number 2 and is located in the Space Shuttle External Tank intertank area at about 200° on the station 1034.2 frame (refer to Figure III-1). This location corresponds to vibration measurement locations used during Main Propulsion Test Article (MPTA) testing for the Space Shuttle, as for Example Problems 1 and 2. The structure is identical to the skin/stringer/ring frame structure with DFI box installation of Example Problem Number 2, but will be modeled in more detail, including internal acoustic excitation, to provide a response comparison for a measurement location on an equipment banel inside the DFI box.

Mode 1

The configuration to be analyzed represents structure which is loaded by the DFI package. This package mounts on supports between frames. The model for this structure will have four elements, consinting of external shell, DFI support intercostals, DFI box equipment panel, and DFI box cover. The shell structure to be included will extend halfway to the frames adjacent to those carrying the support structure and a circumferential width identical to twice the support frame width, as indicated by Figures III-14 and III-15.

Response Equations

The SEA response equations for the four-element system with external acoustic excitation are:

$$(\omega \eta_1 + N_2 \phi_{12}) E_1 - N_1 \phi_{12} E_2 = S_1 - N_2 \phi_{12} E_1 + (\omega \eta_2 + N_1 \phi_{12} + N_3 \phi_{23}) E_2 - N_2 \phi_{23} E_3 = O - N_3 \phi_{23} E_2 + (\omega \eta_3 + N_2 \phi_{23} + N_4 \phi_{34}) E_3 = N_3 \phi_{34} E_4 = O - N_4 \phi_{34} E_3 + (\omega \eta_4 + N_3 \phi_{34}) E_4 = S_4$$

Figure III-14. Structural Configuration for SEA Model

Figure III-15. Extent of SEA Model for Loaded Structure

.

·- --

where subscript 1 denotes external shell values, 2 denotes intercostal values, 3 denotes DFI box equipment panel values, and 4 denotes DFI box cover values.

Damping

The damping parameter for the external shell is identical to that of Example Problem 1 in Figure III-4.

The damping parameter for the DFI box/intercostal element of Example Problem 2 was assigned a loss factor value of n = 0.1. This value was also adopted in the current example problem for each of the three elements (panel, cover, intercostals) resulting from subdivision of the previous DFI box/intercostal element.

Modal Density

The modal density parameters were calculated during Example Problem 2 as

 $n_1(f) = 6.52 \text{ modes/Hz}$ $n_2(f) = 0.32 \text{ modes/Hz}$ $n_3(f) = 0.12 \text{ modes/Hz}$ $n_4(f) = 0.27 \text{ modes/Hz}$

Modal Coupling

Three joints are incluied with the model. The shell/intercostal joint was evaluated during Example Problem 2 and assigned the value

The DFI box is connected to the intercostals by eight flanges which connect to right-angle intercostal brackets. Therefore the joints were considered as two plates jointed at right angles and evaluated following the approach used for the shell/intercostal joint.

$$\phi_{23} = \frac{\omega}{N_3} \frac{C_g L}{2\pi^2 f A_2} \left(\frac{8}{27}\right) = \frac{24.6}{\sqrt{f}}$$

The joint between the DFI box cover and equipment panel is also a right angle connection between two plates and was evaluated as in Example Problem 2.

$$\phi_{34} = \frac{\omega}{N_4} \frac{C_g L}{2\pi^2 f A_3} \left(\frac{8}{27}\right) = \frac{255}{\sqrt{f}}$$

The effective thickness of the laminated aluminum and balsa plates required to evaluate the term

$$C_{g} = 1.07(\omega C_{\ell} t)^{\frac{1}{2}}$$

was determined through evaluation of the bending rigidity, $D = m\kappa^2 C_g^2$, for an equivalent single-layer plate of aluminum

The equivalent laminated all-aluminum plate with the same rigidity has the dimensions

where $L_2 = \frac{E_{balsa}}{E_{Al}} \cdot L_1 = 0.04 L_1$, since in the center laver

$$D_{\text{balsa}} = m_{\text{B}} \kappa^2 C_{\text{LB}}^2 = (\rho_{\text{B}} V_{\text{B}}) \frac{h_2^2}{12} \left(\frac{E_{\text{B}}}{\rho_{\text{B}}}\right) = V_{\text{B}} \frac{h_2^2}{12} E_{\text{B}} = (h_2 \cdot L_1 \cdot 1) \frac{h_2^2}{12} E_{\text{B}}$$

where the volume term, V, is evaluated per unit depth.

For the equivalent center section of aluminum:

$$D_{A\ell} = m_{A\ell} \kappa^2 C_{\ell A\ell}^2 = (\rho_{A\ell} V_{A\ell}) \frac{h_2^2}{12} \left(\frac{E_{A\ell}}{\rho_{A\ell}} \right) = V_{A\ell} \frac{h_2^2}{12} E_{A\ell} = (h_2 \cdot L_2 \cdot 1) \frac{h_2^2}{12} E_{A\ell}$$

Equating the terms

$$D_{\text{balsa}} = D_{A\&} = (h_2 \cdot L_1 \cdot 1) \frac{h_2^2}{12} E_B = (h_2 \cdot L_2 \cdot 1) \frac{h_2^2}{12} E_{A\&}$$

or

$$L_2 = \frac{EB}{EAR} \cdot L_1$$

The effective thickness of a single-layer plate of aluminum with the same rigidity is defined by

$$D_{Al} = D'_{Al}$$

or

$$m_{p} \kappa^{2} C_{g}^{2} = m_{p} (\kappa')^{2} C_{g}^{2}$$
$$\kappa^{2} = (\kappa')^{2}$$

For the equivalent laminated aluminum plate,

$$\kappa^{2} = \frac{h_{1}^{2} - \left(\frac{L_{1} - L_{2}}{L_{1}}\right)h_{2}^{2}}{12} = \frac{h_{1}^{2} - .96h_{2}^{2}}{12}$$

and for a single-layer plate,

$$(\kappa')^2 = \frac{t^2}{12}$$

yielding $t^2 = h_1^2 - .96 h_2^2$

For the DFI box equipment panel, $h_1 = 0.96$ in, $h_2 = 0.92$ in, so

$$t = 0.33$$
 in

is the required effective thickness.

Element Energy

The element energy was handled as in Example Problems 1 and 2:

$$E_{i} = m_{i} \frac{\langle \overline{a_{i}^{2}} \rangle}{\omega^{2}}$$

$$m_{1} = \frac{4\alpha \cdot 1bs}{g}$$

$$m_{2} = \frac{19.7 \ 1bs}{g}$$

$$m_{3} = \frac{215.3 \ 1bs}{g}$$

$$m_{4} = \frac{44.7 \ 1bs}{g}$$

Acoustic Power Input

This term for the external accustic power input is handled as in Example Problems 1 and 2. The applicable term for $\frac{An}{m}$ is

$$\left(\frac{A_1N_1}{m_1}\right)_{surface} = 237,473 \Delta f$$

The internal acoustic field was assumed to be reverberant. Therefore, the internal acoustic excitation was handled in the same manner as the external acoustic excitation. The input term is

$$S_{4} = \frac{2\pi^{2}c_{0}^{2}\Lambda_{4} < P_{I}^{2} > \sigma N_{4}(surface)}{\omega_{0}^{2} (\Delta \omega) m_{4}}$$

All of the modes of this element are surface modes, so

$$n_{+}(surface) = n_{+} = .27 \text{ modes/Hz}$$

The surface weight density for the cover is 0.00603 lb/in². Therefore the $\frac{AN}{m}$ term is

$$\frac{A_{b_1}N_{b_2}}{m_{b_1}} = \frac{386}{.00603} \quad (.27 \ \Delta f) = 17,284 \ \Delta f$$

The internal sound pressure levels were measured during MPTA testing and are listed in Table III-2.

The radiation efficiency values for the DFI box cover are from Appendix II, based on a coincidence frequency of 1434 Hz. This coincidence frequency for the laminated cover is given by

$$f_{c} = \frac{C_{0}^{2}}{2\pi} \left\{ \frac{\left(\frac{W_{h}}{gA_{h}}\right)}{\frac{Et^{3}}{12(1-v^{2})}} \right\}^{\frac{1}{2}} = 1434 \text{ Hz}$$

where the equivalent thickness for the cover was determined, as in the Modal Coupling section of this example problem, to be

The radiation efficiency values are also listed in Table III-2.

Table	111-2
-------	-------

Frequency (Hz)	$\frac{\langle p^2 \rangle}{(dB re 2 \times 10^{-5} N/m^2)}$	σ
50	122.9	0.00316
63	124.4	0.00398
80	125.6	0.00501
100	126.2	0.00631
125	126.5	0.00794
160	126.5	0.0126
200	126.3	0.0158
250	126.0	0.0200
315	125.5	0.0251
400	ì24.7	0.0316
500	123.6	0.0338
630	122.5	0.0501
800	120.8	0.0631
1000	119.5	0.126
1250	117.5	0.501
1600	116.5	3.98
2000	115.5	2.00

Response Solution

The response solutions for each element were determined in each 1/3 octave band from 50 to 2000 Hz. A sample prediction for the <u>50 Hz</u> band is presented below as an example.

$$(\omega \eta_1 + N_2 \phi_{12}) E_1 - N_1 \phi_{12} E_2 = S_1$$

$$\cdot N_2 \phi_{12} E_1 + (\omega \eta_2 + N_1 \phi_{12} + N_3 \phi_{23}) E_2 - N_2 \phi_{23} E_3 = 0$$

$$- N_3 \phi_{23} E_2 + (\omega \eta_3 + N_2 \phi_{23} + N_4 \phi_{34}) E_3 - N_3 \phi_{34} E_4 = 0$$

$$- N_4 \phi_{34} E_3 + (\omega \eta_4 + N_3 \phi_{34}) E_4 = S_4$$

Substituting for the parameter values, the expressions become

$$\begin{cases} \left[2\pi \times 50\right]\left[0.52\right] + \left[.32\left(\frac{50}{4.33}\right)\right] \left[\frac{1.2}{\sqrt{50}}\right] \right] \left[\frac{484}{5} \frac{\langle \overline{a_1^2} \rangle}{(2\pi \times 50)^2}\right] \\ - \left[6.52\left(\frac{5}{4.3}\right)\right] \left[\frac{1.2}{\sqrt{50}}\right] \left[\frac{19.7}{9} \frac{\langle \overline{a_2^2} \rangle}{(2\pi \times 50)^2}\right] \\ = \frac{2\pi^2 \left[(1116 \times 12)^2\right] \left[(237,473) \frac{50}{4.33}\right] \left[10^{\frac{116.5}{10}} \times 8.41 \times 10^{-18}\right] \left[.000794\right]}{\left[(2\pi \times 50)^2\right] \left[2\pi \times \frac{50}{4.33}\right]} \\ - \left[0.32\left(\frac{50}{4.33}\right)\right] \left[\frac{1.2}{\sqrt{50}}\right] \left[\frac{484}{9} \frac{\langle \overline{a_1^2} \rangle}{(2\pi \times 50)^2}\right] \\ + \left\{ \left[2\pi \times 50\right]\left[0.1\right] + \left[6.52\left(\frac{50}{4.33}\right)\right] \left[\frac{1.2}{\sqrt{50}}\right] + \left[0.12\left(\frac{50}{4.33}\right)^2\right] \left[\frac{24.6}{\sqrt{50}}\right] \right\} \\ \left[\frac{19.7}{9} \frac{\langle \overline{a_2^2} \rangle}{(2\pi \times 50)^2}\right] - \left[0.32\left(\frac{50}{4.33}\right)\right] \left[\frac{24.6}{\sqrt{50}}\right] \left[\frac{215.3}{9} \frac{\langle \overline{a_3^2} \rangle}{(2\pi \times 50)^2}\right] = 0 ; \end{cases}$$

$$- \left[0.12 \left(\frac{50}{4.33} \right) \right] \left[\frac{24.6}{\sqrt{50}} \right] \left[\frac{19.7}{9} \frac{\langle \overline{a_{2}} \rangle}{(2\pi \times 50)^{2}} \right] \\ + \left\{ \left[2\pi \times 50 \right] \left[0.1 \right] + \left[0.32 \left(\frac{50}{4.33} \right) \right] \left[\frac{24.6}{\sqrt{50}} \right] + \left[0.27 \left(\frac{50}{4.33} \right) \right] \left[\frac{255}{\sqrt{50}} \right] \right\} \\ \cdot \left[\frac{215.3}{9} \frac{\langle \overline{a_{3}}^{2} \rangle}{(2\pi \times 50)^{2}} \right] - \left[0.12 \left(\frac{50}{4.33} \right) \right] \left[\frac{255}{\sqrt{50}} \right] \left[\frac{44.7}{9} \frac{\langle \overline{a_{4}} \rangle}{(2\pi \times 50)^{2}} \right] = 0 ;$$

and

$$- \left[0.27 \left(\frac{50}{4.33}\right) \right] \left[\frac{255}{\sqrt{50}} \right] \left[\frac{215.3}{9} \frac{\langle a_3^2 \rangle}{(2\pi \times 50)^2} \right] \\
+ \left\{ \left[2\pi \times 50 \right] \left[0.1 \right] + \left[0.12 \left(\frac{50}{4.33}\right) \right] \left[\frac{255}{\sqrt{50}} \right] \right\} \left[\frac{44.7}{9} \frac{\langle a_4^2 \rangle}{(2\pi \times 50)^2} \right] \\
= \frac{2\pi^2 \left[(1116 \times 12)^2 \right] \left[(17,284) \frac{50}{4.33} \right] \left[10^{\frac{12229}{10}} \times 8.41 \times 10^{-19} \right] \left[.07316 \right] \\
= \left[(2\pi \times 50)^2 \right] \left[2\pi \times \frac{50}{7.33} \right]$$

where $\Delta f = \frac{f}{4.33}$ for 1/3 octave bands.

Dividing by g and solving for the mean squared accelerations:

$$\frac{\langle \overline{a_1^2} \rangle}{g^2} = .0135$$

$$\frac{\langle \overline{a_2^2} \rangle}{g^2} = .130$$

$$\frac{\langle \overline{a_2^2} \rangle}{g^2} = .0433$$

$$\frac{\langle \overline{a_4^2} \rangle}{g^2} = .646$$

65

The acceleration spectral density levels are

$$\frac{\langle \overline{a_1^2} \rangle}{g^2 (\Delta f)} = \frac{.0135}{\left(\frac{50}{4.33}\right)} = .00117$$

$$\frac{\langle \overline{a_2^2} \rangle}{g^2 (\Delta f)} = \frac{.130}{\left(\frac{50}{4.33}\right)} = .0112$$

$$\frac{\langle \overline{a_3^2} \rangle}{g^2 (\Delta f)} = \frac{.0433}{\frac{50}{4.33}} = .00375$$

$$\frac{\langle \overline{a_4^2} \rangle}{g^2 (\Delta f)} = \frac{.646}{\frac{50}{4.33}} = .0560$$

and the root-mean-squared acceleration in this 1/3 octave band is

$$(g_{\text{PTRS}})_1 = \sqrt{\frac{\langle \tilde{a}_1^2 \rangle}{g^2}} = \sqrt{.0135} = .116$$

 $(g_{\text{PTRS}})_2 = \sqrt{.130} = .360$
 $(g_{\text{PTRS}})_3 = \sqrt{.0433} = .208$
 $(g_{\text{PTRS}})_4 = \sqrt{.646} = .804$

The predicted response levels are plotted in Figures III-16 through III-21 in acceleration spectral density and g_{rms} in 1/3 octave band formats.

The criterion of 20 modes per analysis band in each element as a requirement for SEA prediction accuracy is satisfied for the model at 800 Hz, indicating predictions with \pm 3 dB accuracy above this frequency.

Figure III-16. Predicted Response (g^2/Hz) for External Tank Interstage Area (Elements 1 and 2)

Figure III-17. Predicted Response (g^2/Hz) for External Tank Interstage Area (Elements 3 and 4)

Figure III-18. Predicted Response for External Tank Interstage Area - Shell Structure (Element 1)

Predicted Response (g_{rus}) for External Tank Interstage Area - DFI Support Intercostals (Element 2)

Figure III-19.

Figure III-21. Predicted Response (g_{rms}) for External Tank Interstage Area - DFI Box Cover (Element 4)

Comparison of Prediction with Measured Test Data

Subsequent to completion of this analysis, MPTA response data were made available for comparison with the predicted responses of elements 1 and 3. The external shell (element 1) prediction is essentially the same as for Example Problem Number 1 and has been previously discussed. The data comparison for the DFI equipment panel (element 3) is presented in Figure III-22. The comparison shows the prediction to furnish a good approximation to the average response at frequencies above 100 Hz. The peak in predicted response at 1600 Hz is due to a coincidence frequency effect of the DFI box cover (element 4), similar to the external shell response peaking discussed in Example Problem Number 1, which was attributed to improper damping definition near the coincidence frequency.

A supplementary check case was performed to evaluate sensitivity of the panel response prediction to variation in the external acoustic levels. The external acoustic levels were increased by 6 dB for the check case and resulted in essentially no change in the predicted DFI panel response, showing it to be mainly driven by the internal acoustics.

Figure III-22. Comparison of Measured Test Data (dashed line) with Predicted Response (solid line) for DFI Equipment Panel (Element 3)

Example Problem Number 4 SPACE SHUTTLE RETRIEVABLE SPACECRAFT

The structure to be analyzed consists of the fairing for a Delta launch vehicle and a payload spacecraft. The payload attaches directly to the fairing rather than to a lower stage of the Delta launch vehicle. This analysi, makes use of the averaging abilities of SEA to provide a gross estimate of the payload response for evaluation of the attachment configuration. The analysis utilizes information and data obtained duriny a number of previous modal analyses of the Delta launch vehicle and payload spacecraft. Since the fairing response to the flight acoustic environment had been previously measured, the system was treated as having a mechanical input from the fairing to the spacecraft. This treatment assumes no change in fairing average response with the spacecraft connected directly to the fairing. Since this configuration may be expected to attenuate fairing response somewhat due to mass loading, the spacecraft response predictions presented herein are expected to be a conservative estimation.

Mcdel

The model for the structure will have two elements, one for the fairing and a structure will have two elements, one for the payload. These elements are illustrated in Figure III-23.

Response Equations

The SEA response equations for the two-element system with external acoustic excitation are

$$(\omega n_1 + N_2 \phi_{12}) E_1 - N_1 \phi_{12} E_2 = S_1$$

- $N_2 \phi_{12} E_1 + (\omega n_2 + N_1 \phi_{12}) E_2 = 0$

where the subscript 1 denotes external shell values, and 2 denotes DFI box and intercostal values.

Since the response of element 1 is known, the response of element 2 can be determined using only the second equation:

$$E_2 = \frac{N_2 \phi_{12} E_1}{(\omega \eta_2 + N_1 \phi_{12})}$$

Damping

A damping value of 1-1/2% (n=0.03) was used for both of the model elements. This damping value had previously been selected for use with modal analyses of the Delta fairing and payloads.

Modal Density

The modal density of the fairing was calculated by assuming the isogrid structure to be composed of beam and plate elements. Modal densities were then calculated for each of the beam and plate sub-elements, and these sub-element values were summed to give the total modal density of the fairing.

The modal density of a single plate sub-element is:

$$n_{p}(\omega) \approx \frac{A}{4\pi h} \sqrt{\frac{E}{12\rho(1-v^{2})}}$$

and for a beam:

$$n_{b}(\omega) = \frac{L}{2\pi(\omega)^{1/2}(EI/\rho A)^{1/4}}$$

Totalling the modal densities:

$$n(\omega) = n_{5} + n_{p} = \frac{1}{2\pi(\omega)^{1/2} (E/o)^{1/4}} \left[\sum \frac{L}{(1/\hat{h})^{1/4}} \right] + \frac{1}{4\pi} \frac{1}{\sqrt{\frac{E}{12p(1-v^{2})}}} \left[\sum \frac{A}{h} \right]$$

The summations account for all the modal properties of the stiffeners and skin. The values for these sum: used for the fairing were:

$$\sum_{(I/A)}^{L} \frac{1}{1/4} = 133, \text{ so in } \frac{1/2}{1}; \sum_{h=2,181,000}^{A} = 2,181,000 \text{ in}$$

These modal densities were corrected for curvatule effects based on a ring frequency of 650 Hz. rrection factors were obtained from Reference 4. The resulting number of modes for each frequency band of analysis is listed in Table III-3. The plate modal density equation presented is actually for freefree boundary conditions, hul yields a valid approximation for all boundary conditions at high frequencies. However, this technique is expected to overestimate the modal density in the lower frequencies of analysis.

The modal density of a "typical" payload is estimated to be approximately the same as for the fairing. This estimate is based in comparisons of the results of modal analyses for the fairing and for 2000-pound and 4000pound Lelta payloads. The results of the analyses, presented in Figures III-24 and III-25, yield essentially identical estimates for the modal densities of the two elements. Although simple, beam-type models were used for tiese analyses, the relative equality of the modal densities may be expected to remain when the higher frequency modes are considered.

<u>f</u>	<u>N</u>	PSD (g²/Hz)
250	633	3.0
315	990	4.5
406	1500	15.0
500	2320	18.0
630	3960	10.0
800	4780	3.5
1000	5280	0.8
1250	6230	0.5
1600	741 0	0.45
2000	9120	0.45

Table III-3

Figure III-25. Delta Payload Modes (2,0.0 lb or 4,000 lb)

Modal Coupling

In order to estimate the coupling parameter, the structural joint between the Saturn S-II aft skirt and thrust structure assemblies was selected as typical of the fairing/payload joint. The S-II aft skirt/thrust structure wa. modeled as an SEA system of two elements with only the aft skirt externally excited. This model permitted solving for the coupling parameter of the system using the explicit response solution

$$\frac{E_{T}}{E_{A}} = \frac{\frac{1}{\langle a_{T}^{2} \rangle}}{\frac{1}{\langle a_{A}^{2} \rangle}} \frac{M_{T}}{M_{A}} = \frac{N_{T}\phi}{\omega_{T} + N_{A}\phi}$$

where "T" subscripts indicate the thrust structure and "A" subscripts indicate the aft skirt.

Assuming thrust structure damping to be a maximum of 1 percent and that the coupling decreases with frequency at the same rate which MDAC experienced with the UpSTAGE evaluation, the S-II aft skirt/thrust structure SEA coupling parameter was estimated to have the values shown in Figure III-26. These values were used for the coupling parameter of the fairing/payload model.

Element Energy

The element energy was handled as in Example Problem 1.

$$E_i = m_i \frac{\langle a_i^2 \rangle}{\omega^2}$$
$$m_1 = \frac{1348 \text{ lbs}}{9}$$
$$m^2 = \frac{3900 \text{ lbs}}{9}$$

(Based on S-II Data)

The measured response of element 1 is shown in Figure II1-27 in an acceleration spectral density format with units of

$$PSD = \frac{G^2}{Hz} = \frac{\langle a_1^2 \rangle}{g^2 (\Delta f)}$$

Therefore

$$\langle \overline{a} \rangle = g^2 (\Delta f) \cdot PSD$$

can be evaluated from Figure III-27 by using the PSD value for the center frequency as representative over the bandwidth, Δf . The PSD values used for analysis are listed in Table III-3.

Figure III-27. Fairing Skin Response (Radial)

Pesponse Solution

The response predictions for each element were determined in each one-third octave band from 250 to 2000 Hz. A sample prediction for the 250 Hz band is presented below as an example:

$$E_{2} = \frac{N_{2} \phi_{12}}{(\omega n_{2} + N_{1} \phi_{12})} E_{1}$$

Substituting for the parameter values, the expression becomes

$$\frac{3900}{g} \frac{\langle \overline{a}_2^2 \rangle}{(2\pi X 250)^2} = \frac{(6.33)(1.75)}{\left[[2\pi X 250] [0.03] + [(633)(1.75)] \right]} \left\{ \frac{1348}{g} \frac{g^2 \left(\frac{250}{4.33} \right) (3.0)}{(2\pi X 250)^2} \right\}$$

where $\Delta f = \frac{f}{.4.33}$ for one-third octave bands.

The acceleration spectral density level is

$$\frac{a_2^2}{g^2(\Delta f)} = 0.43$$

and the rool-mean-squared acceleration in this one-third octave band is $\int \frac{1}{1-\frac{1}{2}}$

$$(g_{rms})_2 = \sqrt{\frac{\langle a_2^2 \rangle}{g^2}} = \sqrt{24.8} = 4.98$$

The predicted response levels are plotted in Figures III-28 and III-29 in acceleration spectral density and g_{rms} in one-third octave band formats. As previously noted, these levels can be expected to represent a conservative overestimate of the actual response due to an expected attenuation of the fair response in this configuration.

Figure III-28. Predicted Response (g^2/Hz) for Payload Element

3

ñ 8 R 1 8 Ħ Ā 8 2 8

2 2 8

92 83 83

5

8 2

.

2 9

£

\$

5

엄

×

8

•

* ۲

Ð ۰ 19

-

MID-FREQUENCIES OF THIRD-OCTAVE BANDS (CPS)

REFERENCES TO APPENDIX III

- D. N. Roudebush. Design Development Acoustic Fatigue Test of S-IVB/V Structural AFT Interstage Panels. Douglas Report SM-47320, Douglas Missile and Space Systems Division, 15 April 1966.
- R. W. Sevy and D. A. Earls. The Prediction of Internal Vibration Levels of Flight Vehicle Equipments Using Statistical Energy Methods. Technical Report AFFDL-TR-69-54, Air Force Flight Dynamics Laboratory, January 1970.
- 3. R. H. Lyon. Statistical Energy Analysis of Dynamical Systems: Theory and Applications. The MIT Press, 1975.
- R. F. Davis and D. E. Hines. "Final Report Performance of Statistical Energy Analysis." McDonnell Douglas Astronautics Company Report MDC G4741, June 1973; also NASA CR-124322, June 1973.
- L. L. Beranek. The Transmission and Radiation of Acoustic Waves by Structures. Institute of Mechanical Engineers Presentation, 21 November 1958.

Appendix IV

SEA RESPONSE SOLUTION PROGRAMS FOR HEWLETT-PACKARD AND TEXAS INSTRUMENTS CALCULATORS

SOLUTION FOR MODEL RESPONSES

One of the final steps of the SEA applications procedure will be the mathematical solution for the system response. Because of the repetitive nature of the response calculations for the various frequency bands of an analysis (often the 14 one-third octave bands from 100 to 2000 Hz will be included in an analysis), response calculations can be expediently accomplished through the use of preprogrammed solutions. Such programs also eliminate the errors which occur with monotonous, repetitive, hand calculations. The capability of many programmable hand calculators is suitable for solution of the smaller common model sizes. Programs for both Hewlett-Packard and Texas Instruments programmable calculators are provided, thus encompassing the more popular equipment in current use, as well as providing examples in both reverse polish and algebraic notation for modification to additional calculator systems.

HEWLETT-PACKARD (HP-67, HP-97) SEA RESPONSE PROGRAM - TWO ELLMENTS

Description

This program provides the SEA response solution for a system of two elements. The response equations are

 $(\omega \eta_1 + N_2 \phi_{12}) E_1 - N_1 \phi_{12} E_2 = S_1$ - $N_2 \phi_{12} E_1 + (\omega \eta_2 + N_1 \phi_{12}) E_2 = S_2$

The energy input terms may be input directly to the program or can be calculated if a reverberant acr stic field provides the structural excitation. The required inputs to the program are listed below: f - center frequency of analysis band (Hz) $\Delta f - bandwidth (Hz)$ $\eta_1 - element l damping factor (dimensionless)$ $\eta_2 - element 2 damping factor (dimensionless)$ $\phi_{12} - coupling value for elements 1-2 \left(\frac{1}{mod\epsilon \cdot sec}\right)$ $\eta_1 - element 1 modal density (modes/Hz)$ $\eta_2 - element 2 modal dencity (modes/Hz)$ $W_1 - weight of element 1 (lbs)$ $W_2 - weight of element 2 (lbs)$ $S_1 - element 1 energy input \left(\frac{in-lt}{sec}\right)$ $S_2 - element 2 energy input \left(\frac{in-lb}{sec}\right)$

Additional requirements if the S_i are to be calculated for a reverberant acoustic field:

I

$$C_0$$
 - speed of sound in surrounding medium (in/sec)
 $\left(\frac{An}{m}\right)_1$ - element 1 surface mass parameter $\left(\frac{in^3-modes}{1b-sec^2-Hz}\right)$
 $\left(\frac{An}{m}\right)_2$ - element 2 surface mass parameter $\left(\frac{in^3-modes}{1b-sec^2-Hz}\right)$
(SPL)₁ - element 1 sound pressure level (dB)
(SPL)₂ - element 2 sound pressure level (dB)
 σ_2 - element 1 radiation efficiency (dimensionless)
 σ_2 - element 2 radiation efficiency (dimensionless)

Output from the program is the root-mean-squared acceleration of the elements over the input frequency interval:

$$\sqrt{\frac{\langle \mathbf{a}_1^2 \rangle}{\mathbf{g}^2}}$$
 and $\sqrt{\frac{\langle \mathbf{a}_2^2 \rangle}{\mathbf{g}^2}}$

USER INSTRUCTIONS

<u>Step</u>		Enter	Press	Display
0		-~	RTN	
1	<pre>Input number of elements (N = 2)</pre>	2.0	R/S	2.0
2	Input center frequency	f	R/S	2πf
3	Input bandwidth	Δf	R/S	۵f
4	Input damping of element l	n1	R/S	η
5	Input damping of element 2	η_2	R/S	η ₂
6	Input element coupling	ф 12	R/S	ψ12
7	Input modal density of element l	n 1	R/S	N ₁
8	Input modal density of element 2	nz	R∕S	N ₂
9	Input weight of element l	W ₁	R/S	W1
10	Input weight of element 2	W_2	R/S	W_2
11a	Input "O" if element energy input terms (S_i) are to be input to program; input "1" if reverberant acoustic input is to be calculated by program and see below.	0	R/S	0
12a	Input S1	S1	R/S	<u>S1</u>
13a	Input S_2 , obtain solution	S ₁	R/S	$\sqrt{\frac{<\overline{a_1^2}>}{g^2}}$
14a	Obtain solution for element 2	$\sqrt{\frac{\langle \overline{a_1^2} \rangle}{g^2}}$	R/S	$\sqrt{\frac{\langle \overline{a_2^2} \rangle}{g^2}}$
15a	Check for end of program	- 40	R/S	0
Эlb	Alternate solution with calcula- tions for reverberant acoustics	1	R/S	١
12b	Input speed of sound (in/sec)	Co	R/S	Co
13Б	Input $\left(\frac{An}{m}\right)$ for element 1	$\left(\frac{An}{m}\right)_{1}$	R/S	$\left(\frac{An}{m}\right)_{1}$
14b	Input $\left(\frac{An}{m}\right)$ for element ?	$\left(\frac{An}{m}\right)_2$	R/S	$\left(\frac{An}{m}\right)_2$
15b	Input SPL for element 1	(SPL) ₁	R/S	(S,) ₁
16b	Input SPL for element 2	(SPL)₂	R/S	(SPL)2
17Ь	Input radiation efficiency for element 1	σ	R/S	σ1
186	Input radiation efficiency for element 2, obtain solution	σ ₂	R/S	$\sqrt{\frac{\langle a_1^2 \rangle}{g^2}}$

<u>°t,∟p</u>		Enter	Press	<u>Display</u>
19b	Obtain solution for element 2	$\sqrt{\frac{\langle \overline{a_1^2} \rangle}{g^2}}$	R/S	$\sqrt{\frac{<\overline{a_1^2}>}{g^2}}$
20b	Check for end of program		R/S	0
<u>Data Re</u>	zgiste [,] s			
A	ηι	7	a 12	
В	n ₂	8	g5.	
C	W1	9	a 22	
Э	W ₂	PO		
Ε	nı	P1	Co	
I	$(2\pi f)^2/386$	P2	σ_1	
0	n ₂	P3	σ2	
1	φ12	P4	(SPL)1	
2	S ₁	P5	(St_)2	
3	S ₂	P6	(\underline{An})	
4	N		\m / ₁	
5	2π f	P7	$\left(\frac{An}{m}\right)_2$	
6	a ₁₁	P8	∆f	
		P9		

where the $a_{i\,i}$ represent program-generated matrix elements.

۰. .

PROGRAM LISTING

刻 []

7.

٢ \$

· (2 .4.

Ŀ					~ +					-		
					PROGR	AM LIS	TING	·		\$		
E										. (
1		Program	:		Program			Program				
		Step	Key	•	Step	Key		Step	Key		The second	4
		- C .HI -	ilsia.	-					RCL1		_ ~	Þ.
-		2	ST@4		459	X	~	116	;			
甘		113	£/S		668 361	725 27. 8		117	\$T05 87. 5	•		
-		66- 138	274 5		961 862	Ries X2		110	RideE 81. 1			
E			÷ 2		803			120	X			
H		927	¥		654	Pzi		121	RCLU			
ų	· · ·	0 0 3	376 5		265	STGI		122	X			
•	· .	20 -	<i>R</i> - 5		855	REE		ižš	RCLI			
1	· · ·	241	5136		1 69 323	,A 57: 3		124	- 100			
<u></u>	and a second		R+ 3		000 620	, RL+G ; ¥	• •	125 -	603 2707			
		Ata	\$/5	•	872	RELÀ	•	127	acta.	-		
		214	3765		871	- 1		:29	ŘCLI			
U	~ <u>_</u>	015	R-5		072	. 9		÷ <u>12</u> 5 -	*			
	14	810	.5.44		63	- 4		123	RELL		-	
副	37		Ř- 5		874	104		131	х • э. •		•	
也		ðið að	RLif		0: J 87.*	5+С		132	mil			
		013 D26			010 877	Feg 5162		1:: 174	EHS			
2			2/3		875	Pas		155	STUE			
E	-	822	Rilö		875	RUL:		136	RELE			
	*	823	in		380	RGLT		127	RCLE			
5		624	3700		- 36:	X		138	X			
13	•	015 (11)	- R/S		852 307	RCLJ		139	RCLE			
1		026 - 237	5196		000 004	x 25:5		140 • s t	Kutsi Y			
K-		01: A::	5707		285	RULU		:47	÷			
11		613	R/S		086	_4		143	RCLS	-		
موريمة مريمة	~ `_	030	X=0?	ŕ	867	÷		44	x			
6 7		031	stei		925	10"		145	rcli			
		632	725		889	X 0-6		:46	÷			
-		55 S.	K/\$		07 0 Aqı	5783		147	5107			
1	-	034 A75	3101 8/5		852	5102		149	1/0 RL: 3	•		
-11		835	STUS		853	41011		150	X			
1		637	R:S		934	, R/S		151	ri_7			
-		035	STU:		d95	STC2		152	X			
11		<i>63</i> .7	R S		85 6	R/3		153	CH:			
-		04d	5104		877 000	3103 =: 81 2		134	Kinni			
-		e~. A.:	- 878 - 5775		899	RCLE		156	RELS			
11		643	R/S		100	X2		157	RCij			
Ч	-	ė44	5-62		191	3		158	÷			
		ð:5	Ř/ S		102	8		153	Reli			
		345	3703		195	Ő		160	X			
L		047 046	ri Brit		104 102	т 876°		16:	20.4			
		292 Mag	11177 - 35		: A6	RLL5		174	КЪББ Ф			
Π		056	×		187	RCLH		:64	÷			
LI		<i>ē</i> 5.	8		108	×		: 25	3F .			
•		673	•		105	RCLU		50	576			
Π		5 53	÷		ilē.	RUL!		167	X			
L		054 358	1 22.		***	×		J 38 29	A134			
		912 282	555 :		113	RLL P		1.97 1.7 9	K/3 ∀9			
Π		a5?	à)	114	*		171	AC_8			
Ð			-	C-7		92						
	+					- 4						

Program Step	<u>Key</u>
172	x
173	CHS
· • •	RŨL3
175	+
176	ROLD
	ŧ
178	53
173	PPTA
180	RIS
15:	į.
163	PTN
153	R. 5

TEXAS INSTRUMENTS (TI PROGRAMMABLE 59) SEA RESPONSE PROGRAM - TWO OR THREE ELEMENTS

Description

This program provides the SEA response solution for a system of two or three elements. The response equations are:

 $(\omega \eta_1 + N_2 \phi_{12} + N_3 \phi_{13}) E_1 - N_1 \phi_{12} E_2 - N_1 \phi_{13} E_3 = S_1$

 $-N_2\phi_{12}E_1 + (\omega n_2 + N_1\phi_{12} + N_3\phi_{23}) E_2 - N_2\phi_{23}E_3 = S_2$

 $-N_3\phi_{13}E_1 - N_3\phi_{23}E_2 + (\omega n_3 + N_1\phi_{13} + N_2\phi_{23})E_3 = S_3$

The energy input terms, S₁, may be input directly to the program or can be calculated if a reverberant acoustic field provides the structural excitation. The required inputs to the program are listed below:

f	-	center frequency of analysis band (Hz)
٨f	-	bandwidth (Hz)
nı	-	element 1 damping factor (dimensionless)
Π2	-	element 2 damping factor (dimensionless)
ຐ຺	-	element 3 damping factor (dimensionless)

Additional requirements if the S_j are to be calculated for a reverberant acoustic field:

۲o	-	speed of sound in surrounding medium (in/sec)
$\left(\frac{An}{m}\right)_{1}$	-	element 1 surface mass parameter $\left(\frac{in^3-modes}{1b-sec^2-Hz}\right)$
$\left(\frac{An}{m}\right)_{2}$	-	element 2 surface mass parameter $\left(\frac{in^3-modes}{1b-sec^2-Hz}\right)$
$\left(\frac{An}{m}\right)_{3}$	-	element 3 surface mass parameter $\left(\frac{in^3 - modes}{1b - sec^2 - Hz}\right)$
(SPL)1	-	element 1 sound pressure level (dB)
(SPL)2	-	element 2 sound pressure level (dB)
(SPL)₃	-	element 3 sound pressure level (dB)
σ_1	-	element l radiation efficiency (dimensionless)
σ₂	-	element 2 radiation efficiency (dimensionless)
σ₃	-	element 3 radiation efficiency (dimensionless)

USER INSTRUCTIONS

Step		Enter	Press	Display
0a	Partition memory	ç.	Op 17	639.39
ОЬ	Insert program	••	-	
0c	Initialize program		RST	
1	Input number of elements, N	2	R/S	Previous t-register
2	Input center frequency	· · •	R/S	2 ਸ f
3	Input bandwidth	Δf	R/S	۵f
4	Input damping of element l	η	R/S	η1
-5	Input damping of element 2	<u>12</u>	R/S	2
6	Input element coupling	\$12	R/S	2
- 7	Input modal density of element 1	n 1	R/S	n 1
8	Input modal density of element 2	n ₂	R/S	2
9	Input weight of element 1	W ₁	R/S	W1
10	Input weight of element 2	. W2	R/S	386
11a	Input "O" if element energy input terms are to be input to program; input "1" if reverberant acoustic input is to be calculated by program, and see below	0	R/S	0
12a	Input S ₁	S ₁	R/S	S ₁
13a	Input S_2 , obtain solution	S ₂	R/S	$\sqrt{\frac{\langle \overline{a_1^2} \rangle}{g^2}}$
• 14 a :	Obtain solution for element 2	÷	R/S.	$\sqrt{\frac{\langle a_2^2 \rangle}{g^2}}$
15 a	Check for end of program		R/S	0
116	Alternate solution with calcula- tions for reverberant acoustics	1	R/S	0
12Ь	Input speed of sound (in/sec)	Co	R/S	Co
13b	Input $\left(\frac{An}{m}\right)$ for element 1	$\left(\frac{An}{m}\right)_{1}$	R/S	$\left(\frac{An}{m}\right)_{1}$
14b	Input $\left(\frac{An}{m}\right)$ for element 2	$\left(\frac{\mathrm{An}}{\mathrm{m}}\right)_{\mathrm{2}}$	R/S	2
15b	Input SPL for element 1	(SPL)1	R/S	(SPL) ₁
16b	Input SPL for element ?	(SPL),	R/S	2

<u>Procedure - N = 2</u> (see following procedure for N = 3)

.

.

Step	· · · ·	Enter	Press	Display
17b ⁻	Input radiation efficiency for element 1	σι	R/S	đ1
185	Input radiation efficiency for element 2, obtain solution	σ ₂	R/S	$\frac{\langle a_i^2 \rangle}{g^2}$
195	Obtain solution for element 2		R/S	$\sqrt{\frac{\langle a_2^2 \rangle}{g^2}}$
20b	Check for end of program		R/S	0
Proced	<u>ure - N = 3</u>			
0a	Partition memory	4	Op 17	639.39
Ob	Inse: t program			
0c	Initialize program		RST	
י ר	Input number of elements	3	R/S	Previous t-register
2	Input center frequency	f	R/S	2 π f
3 -	Input bandwidth	. ∆f	R/S	۵f
4	Input damping of element 1	η1	R/S	η 1
5	Input damping of element 2	n ₂	R/S	2
6	Input damping of element 3	η_3	R/S	η _s
7	Input coupling for elements 1-2	Ф12	R/S	2
8	Input coupling for elements 1-3	ф13	R/S	\$ 13
9	Input coupling for elements 2-3	\$23	R/S	\$23
10	Input modal density of element l	n ₁	R/S	n ₁
11	Input modal density of element 2	n ₂	R/S	2
12	Input modal density of element 3	n _s	R/S	n _s
13	Input weight of element l	W ₁	R/S	W1
14	Input weight of element 2	W ₂	R/S	2
15	Input weight of element 3	W ₃	R/S	386
16a	Input "O" if element energy input terms are to be input to program; input "l" if reverberant acoustic input is to be calculated by program and see below	0	R/S	0

Step		<u>Enter</u>	<u>Press</u>	Display
17a	Input S ₁	S,	R/S	S ₁
18a	Input S ₂	S,	R/S	2
19a	Input S_3 , obtain solution	S ₃ ʻ	R/S	$\sqrt{\frac{\langle a_1^2 \rangle}{g^2}}$
20a	Obtain solution for element 2	/	R/S	$\sqrt{\frac{\langle a_g^2 \rangle}{g^2}}$
21a	Obtain solution for element 3		R/S	$\frac{\langle a_{f}^{2} \rangle}{g^{2}}$
22a	Check for end of program		R/S	0
16b	Alternate solution with calcula- tions for reverberant acoustics	1	R/S	0
17ь	Input speed of sound (in/sec)	Co	R/S	Co
18b	Input $\left(\frac{An}{A}\right)$ for element 1	$\left(\frac{An}{m}\right)_{1}$	R/S	$\left(\frac{An}{m}\right)_{1}$
19b	Input $\left(\frac{An}{m}\right)$ for element 2	$\left(\frac{An}{m}\right)_{2}$	R/S	2
20b	Input $\left(\frac{An}{m}\right)$ for element 3	$\left(\frac{An}{m}\right)_{3}$	R/S	$\left(\frac{An}{m}\right)_{s}$
21b	Input SPL for element l	(SPL) 1	R/S	(SPL) ₁
22b	Input SPL for element 2	(SPL) ₂	R/S	2
23b	Input SPL for element 3	(SPL) ₃	R/S	(SPL) 3
24b	Input radiation efficiency for element 1	σ1	R/S	σ1
25b	Input radiation efficiency for element 2	σ2	R/S	2
26b	Input radiation efficiency for element 3, obtain solution	σ₃	R/S	$\sqrt{\frac{\langle a_1^2 \rangle}{g^2}}$
27b	Obtain solution for element 2		R/S	$\sqrt{\frac{\langle a_2^2 \rangle}{g^2}}$
2 8b	Obtain solution for element 3	**	R/S	$\sqrt{\frac{\langle a_3^2 \rangle}{g^2}}$
29b	Check for end of program		R/S	0

Data Dontators	5 : 		
<u>(5</u>)		20	na
- 07 •		21	\$12
02	Co	22	\$18 -
03	σ1	23	\$ \$
04	J2	24	S1
05	J.	25	S ₂
06	(SPL)1	26	, S _B
07	(SPL)2	27	(2nf) ² /386
08	(SPL)3	28	N
09	$\left(\frac{\operatorname{An}}{\operatorname{m}}\right)$	29	۵f
חו	(<u>An</u>)	30	2πf
10	\m /2 /An)	31	ā11
11	(<u>福</u>) ₃	32	ā12
12	η1	33	a 13
13	η2	34	â21
14	រ ាទ	35	a22
15	W1	36	â2 3
16	W ₂	37	đ 31
17	Ws	38	ā ₃₂
18	nı	39	ā., 3
19	n ₂		

where the a₁₁ represent program-generated matrix elements.

PROGRAM LISTING

LOC CODE KEY	LOC CC'E KEY	LOC CODE KEY
000 42 STD	055 91 R/S	110 02 2
001 22 29	056 42 STD	111 67 FQ
001 20 20 002 33 VIT	057 20 20	112 24 54
		112 37 10
UU3 91 K/S	038 76 LBL	113 91 R/S
004 65 ×	059 24 CE	114 42 510
005 02 2	060 91 R/S	115 08 08
006 65 ×	061 42 STO	116 76 LBL
007 70 RAD	062 15 15	117 34 IX
008 01 1	063 91 R/S	118 91 R/S
009 94 +/-	064 42 STD	119 42 STD
010 22 INV	065 16 16	120 03 03
011 39 005	066 02 2	121 91 R/S
012 95 =	067 67 FQ	122 42 STD
012 /0 - 012 /2 CTD	068 25 CLP	123 04 04
014 20 20	000 20 CEK	124 02 2
014 30 30	002 21 K23 020 42 CTB	124 02 2
U13 91 K/S		120 07 54
016 42 510		126 35 1/8
017 29 29	0/2 /6 LBL	127 91 R/S
018 91 R/S	073 25 CLR	128 42 510
019 42 STD	074 03 3	129 05 05
020 12 12	075 08 8	130 76 LBL
021 91 R/S	076 06 6	131 35 1/X
022 42 STD	077 42 STD	132 01 1
023 13 13	078 27 27	133 94 +/-
024 02 2	079 91 R/S	134 22 INV
024 02 2 025 47 E0	080 32 XIT	135 39 005
020 01 EQ 006 00 THU		100 00 000 102 25 V
	001 00 0 000 27 E0	100 00 A
UZ7 91 K/S	002 D/ EU 000 00 VIT	137 43 KUL
028 42 510		138 02 02
029 14 14	U84 91 K/S	139 33 X4
030 76 LBL	085 42 510	140 65 ×
031 22 INV	086 02 02	141 08 8
032 91 R/S	087 91 R/S	142 93 .
033 42 STO	088 42 STD	143 04 4
034 21 21	089 09 09	144 01 1
035 02 2	090 91 R/S	145 52 EE
036 67 EQ	091 42 STO	146 01 1
037 23 I NX	092 10 10	147 08 8
038 91 P/S	1193 43 RCI	148 94 +/-
	094 28 28	149 55 -
040 22 22	095 22 VIT	150 42 PCI
040 22 22 041 01 D/C	020 02 741	151 20 20
U41 91 K/S		151 30 30
042 42 510		152 27 INV
043 23 23	U78 33 X4	103 02 EE
044 76 LBL	044 41 KV2	154 33 X4
045 23 LNX	100 42 STD	155 95 =
046 91 R/S	101 11 11	156 42 STO
047 42 STO	102 76 LBL	157 01 01
048 18 13	103 33 X2	158 65 ×
049 91 R/S	104 91 R/S	159 01 1
050 42 STD	105 42 STD	160 00 0
051 19 19	106 06 06	161 45 YX
	107 91 P/S	162 53 (
002 02 2 5 050 2° 50	108 42 STD	162 42 PCL
		100 70 KUL 124 02 02
<u>UD4 24 LE</u>	107 07 07	104 UD UD

+ 1677 Texas instruments incorporated

´ 99

-

LOC CO	DE KEY	LOC CC	DE KEY	LO	C CODE	KEY
165 5	i5 ÷	220	43 RCL	27	5 43	RCL
166 0	1 1	221	05 05	27	6 17	17
167 0	0 0	222	95 =	27	7 55	÷
168 5	i4)	223	42 STD	27	8 43	RCL
169 6	5 x	224	26 26	27	9 27	27
170 4		225	41 CT0	20	0 05	-
171 0		220	42 CTD	20	1 04	
171 0		220	42 310	20	1 74	+/ -
172 6		227	76 LBL	28	2 42	SIL
173 4	13 RUL	228	32 XII	- 28	3 33	33
174 0	13 03	229	91 R/S	28	4 43	RCL
175 9	95 =	230	42 STO	28	5 29	29
176 4	2 STD	231	24 24	28	6 65	x
177 2	24 24	232	91 R/S	28	7 43	RCL
178 4	3 RCL	233	42 STO	28	8 19	19
179 0	1 01	234	25 25	28	9 65	x
ign é	5 x	225	43 PCI	29	n 43	PCI
191 0		224	20 20	29	1 22	22
102 0		200	20 20 22 VIT	20	2 25	~
102 0		237	22 A41	27	2 63	
183 4		238		27	3 43	KUL
184 3		239		29	4 17	17
185 4	13 RUL	240	42 510	29	5 55	÷.
186 C	07 07	241	91 R/S	29	6 43	RCL
187 5	55 ÷	242	42 STO	29	7 27	27
188 C)1 1	243	26 26	29	8 95	8
189 0	0 0	244	76 LBL	29	9 94	+/-
190 5	54)	245	42 STO	30	0 42	STO
191 E	5 ×	246	ŨO 0	30	1 36	36
192 4	3 RCL	247	42 STO	30	2 43	RCL
193 1	0 10	248	31 31	30	3 29	29
194 4	5 x	249	42 GTN	30	4 65	×
105 4		250	72 010	00 NC	5 40	
102 0	13 KUL 14 04	200	30 30 40 DOL	30 20	0 40 7 00	20
170 0	14 U4	201	43 KUL 90 - 90	30	5 2U 7 2E	20
197 9		252	30 30	30	60	X
198 4		253	33 X2	30	8 43	RUL
199 2	25 25	254	55 ÷	30	9 22	22
200 0)2 2	255	43 RCL	31	0 65	×
201 6	57 EQ	256	27 27	31	1 43	RCL
202 4	2 STO	257	95 =	31.	2 15	15
203 4	13 RCL	258	42 STD	31	3 55	÷
204 0	01 01	259	27 27	31	4 43	RCL
205 6	5 X	260	43 RCL	31	5 27	27
206 0	<u>)</u> 1	261	28 28	31	6 95	X
207 0	n n	262	32 XIT	31	7 94	+/-
208 4	IS YX	263	02 2	21	2 42	стп
200 9	52 (200	67 EN	21	0 72 0 77	27
202 3	10 N 10 DCI	207	40 DC1	23	2 J. 2 A.D	
210 9	13 KUL	200	40 KUL 40 DCI	320	U 43 1 30	20
211 U	18 US	200	43 KUL 90 - 90	32	1 27	27
212 0		26	27 27 25	32	< 63	X
213 0		268	60 X	32	5 43	KUL
214 0	0 0	269	43 RCL	32	4 20	20
215 5	54)	270	18 18	, 325	5 65	X
216 6	55 ×	271	65 ×	32	5 43	RCL
217 4	IS RCL	272 •	43 RCL	321	7 23	23
218 1	1 11	273	22 22	32	3 65	×
219 P	55 ×	274	65 ×	32	9 43	RCL

1977 Texas Instruments Incorporated

LOC CODE KEY	LOC CODE KEY	LOC CODE KEY
330 16 16	385 35 35	440 43 RCL
331 55 +	386 76 LBL	441 31 31
333 27 27	387 43 KLL 388 43 PCI	442 Q4 / 442 Q5 =
334 95 =	389 29 29	444 65 ×
335 94 +/-	390 65 ×	445 43 RCL
336 42 STO	391 43 RCL	446 15 15
337 38 38	392 18 18 202 45 X	447 55 ÷
339 30 30	373 63 A 394 43 pri	440 43 KUL 449 27 27
340 65 ×	395 21 21	450 95 =
341 43 RCL	396 65 ×	451 42 STO
342 20 20	397 43 RCL	452 31 31
343 85 + 244 42 PCI	398 16 16	453 43 RCL
345 39 39	377 33 ÷ 400 43 při	434 30 30 455 65 x
346 65 ×	401 27 27	456 43 RCL
347 53 (402 95 =	457 13 13
348 43 RCL	403) 94 +/-	458 85 +
349 18 18	404' 42 STD	459 43 RCL
330 63 × 351 43 pri	400 32 32 406 49 PCI	460 29 29 Aci 25 V
352 22 22	407 29 29	462 53 (
353 85 +	408 65 ×	463 43 RCL
354 43 RCL	409 43 RCL	464 18 18
355 19 19 254 65 V	410 19 19	465 65 ×
357 43 RCI	411 60 X 412 43 PCI	400 43 KUL 467 21 21
358 23 23	413 21 21	468 85 +
359 54 >	414 65 ×	469 43 RCL
360 95 -	415 43 RCL	470 35 35
361 65 × 242 42 BM	416 15 15	471 54) -
363 17 17	417 JJ - 418 43 PCI	472 90 = 473 65 V
364 55 ÷	419 27 27	474 43 RCI
365 43 RCL	420 95 =	475 16 16
366 27 27	421 94 +/-	476 55 ÷
367 95 = 260 40 CTP	422 42 STD	477 43 RCL
369 39 39	423 34 34 424 42 PCI	478 27 27 479 95 =
370 43 RCL	425 30 30	480 42 STD
371 20 20	426 65 ×	481 35 35
372 65 ×	427 43 RCL	482 43 RCL
373 43 RCL	428 12 12	483 28 28
3(4 66 66 375 95 =	427 83 T. 430 43 PC	404 36 FGM 485 02 00
376 42 STD	431 29 29	486 11 A
377 31 31	432 65 ×	487 01 1
378 43 RCL	433 53 (488 36 PGM
379 20 20 200 45 ×	434 43 RCL	489 02 02
381 43 RCI	430 17 17 436 65 x	470 12 B 491 43 PCI
382 23 23	437 43 RCL	492 31 31
383 95 =	438 21 21	493 36 PGM
384 42 STD	<u>439 85 +</u>	494 02 02

+ 1977 Texas Instruments Incorporated

.

٠

LOC	CODE	KEY	 	LOC	CODE	KEY	7
495	91	R/S		 550	76	LBL	ļ
496	43	RCL		551	45	Ϋ́Χ	
497	34	34		552	36	PGM	
498	36	PGM		553	02	02	
499	02	02		554	13	С	
500	91	R/S		555	01	1	
501	43	RCL		556	36	PGM	
502	28	28		557	62	02	
503	32	XIT		558	14	D	
504	02	2		559	43	RCL	
505	67	EQ		560	24	24	
506	44	SUM		561	36	PGM	
507	43	RCL		562	02	02	
508	37	37		563	91	R/S	
509	36	PGM		564	43	RCL	
510	02	02		565	25	25	
511	91	R/S		566	36	FGM	
512	76	LBL		567	02	02	
513	44	SUM		568	91	R/S	
514	43	KUL		569	43	RUL	
515	32	JZ Dom		570	28	28	
210	30	FGH 00		5/1	3≤ 0	241 2	
517	02	02		372 573	UL 27	2 50	
212	71	R/O DCI		575	07 50		
317 500	40	25		0/4 575	32 42	52 501	
521	30 22	PCM		576	90 02	24 NOL	
522	02	02		577	26	PCM	
522	91	R/S		578	02	02	
524	43	RCL	•	579	91	R/S	
525	28	28		580	76	I BL	
526	32	XIT	•	581	52	ĒĒ	
527	02	2		582	36	PGM	
528	67	EQ		583	02	02	
529	45	Υ×		584	25	CLR	
530	43	RCL	Ì	585	36	PGM	
531	38	38		586	02	02	
532	36	PGM		587	15	E	
533	02	02		588	01	1	
534	91	R/S		589	36	PGM	
535	43	RCL		590	- 02	02	
536	33	33		591	- 16	A .	
537	36	PGA		592	36	FGM	
538	- 02	02		593	02	02	
539	31	RZS DOL		394 605	- 21	たべる アワ	
540	- 43 - 32	KUL DZ		570	- 34 - 04	4 A 10 Z C	
341	00 02	00 00M	ļ	070 507	71 02	R O DOM	
342 540	00 02	гып 02		J77 500	00 02	n Gri 112	
544	02 Q1	20 R/S		070 500	91 91	878	
535	21	RCI		600	34	лх ЛХ	
544	30	39		601	Q1	P/S	
547	- 26	PCM		602	4	RE	
5,19	- <u>02</u>	02		602		28	
519	91	$R^{2}S$		604	3	XIT	
i di n teu	s instrumen	is Mcorporale	t				