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SUMMARY 

Force and surface pressure distributions have been measured 

for the 21% LS(l)-0421 modified airfoil fitted with 20% aileron,25% 

slotted flap and 10% slot-lip spoiler. All tests were conducted 

in the Walter Beech Memorial Wind Tunnel at Wichita State Uni- 

versity at a Reynolds number of 2.2 x lo6 and a Mach number of 

0.13. Results include lift, drag, pitching moments, control sur- 

face normal force and hinge moments, and surface pressure distri- 

butions. The basic airfoil has a ckmax of 1.31 with nearly con- 

stant cR beyond the stall at 2.2 x 106 Reynolds number. Incre- 

mental performance of flap and aileron are similar to that ob- 
tained on the GA(W)-2 airfoil. Spoiler control shows a slight re- 

versal tendency at high ~1, low spoiler deflection angle conditions 

with flap nested. Flap extended spoiler control is non-linear but 

positive. 

iii 



INTRODUCTION 

AS part of NASA's program for developing new airfoil sec- 
tions for general aviation applications (ref. l), Wichita State 
University is conducting flap and control surface research for 
the new airfoils. This report documents two-dimensional wind 
tunnel tests of the 21% thick LS(l)-0421 modified airfoil section 
with: (a) 20% chord aileron, (b) 25% chord slotted flap; and 
(c) 10% chord slot lip spoiler. 

High Reynolds number tests of the LS(l)-0421 modified air- 
foil have been reported in reference 2. All experimental tests 
reported herein were conducted in the Walter Beech Memorial Wind 
Tunnel at Wichita State University. 

SYMBOLS 

The force and moment data have been referred to the .25c 
location on the flap-nested airfoil. Dimensional quantities 
are given in International (SI) Units. Measurements were made 
in U.S. Customary Units. Conversion factors between the various 
units may be found in reference 3. The symbols used in the pre- 
sent report are defined as follows: 

C Airfoil reference chord (flap-nested) 

Cd Airfoil section drag coefficient, section drag/ 
(dynamic pressure x c) 

cf Flap chord 

Ch Control surface hinge moment coefficient, section moment 
about hingeline/(dynamic pressure x control surface 
reference chord2) 

CR Airfoil section lift coefficient, section lift/ 
(dynamic pressure x c) 

cm Airfoil section pitching moment coefficient with respect 
to the .25c location, section moment/(dynamic pressure 
x c2) 

cma Airfoil forward section moment coefficient, moment about 
leading edge/(c2xdynamic pressure) 
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Subscripts: 

a 

f 

P 

S 

OJ 

Flap moment coefficient, moment about leading edge/ 
(c2xdynamic pressure) 

Airfoil or flap normal force coefficient, section 
normal force/(dynamic pressurexc) 

Airfoil forward section normal force coefficient, 
normal force/(cxdynamic pressure) 

Aileron normal force coefficient, normal force/ 
(cxdynamic pressure) 

Flap normal force coefficient, normal force/(cx 
dynamic pressure) 

Coefficient of pressure, (p-pm)/dynamic pressure 

Spoiler projection height normal to local airfoil 
surface 

Static pressure 

Coordinate parallel to airfoil chord 

Coordinate normal to airfoil chord 

Angle of attack, degrees 

Increment 

Rotation of aileron from nested position, degrees 

Rotation of flap from nested position, degrees 

Rotation of spoiler from nested position, degrees 

Aileron 

Flap 

Pivot 

Spoiler 

Remote free-stream value 
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APPARATUS AND TEST METHODS 

Model Description 

The LS(l)-0421 modified airfoil section is a 21% maximum 
thickness airfoil with a design lift coefficient of 0.4, derived 
from the 17% thick LS(l)-0417 (formerly designated GA(W)-1) air- 

foil. The LS(l).-0421 modified section is the result of several 
iterations of testing and theoretical analysis by the NASA Langley 
Airfoil Research Group to develop a highly efficient 21% thick sec- 

tion (ref. 2). For tests in the WSU two-dimensional facility, models 
were sized with 91.4 cm span and 61.0 cm chord. The forward 70% 

of the airfoil was fabricated from laminated mahogany bonded to a 
2.5 cm x 34.8 cm aluminum spar. Trailing edge sections were 

fabricated from solid aluminum for the aileron, flap and spoiler 

configurations. Geometric details are given in figure 1. 

The 20% chord aileron was designed with a 0.5% leading edge 

clearance gap. The 25% slotted flap and 10% spoiler were designed 

with an airfoil forward section which terminates at 87.5% chord. 
The 10% spoiler was arranged in a slot-lip configuration with 

the 25% slotted flap. The spoiler was fitted with ball bearing 

hinges at three spanwise locations, and strain-gaged cantilever 
beam flexures at each end for hinge moment measurement. 

All components were equipped with 1.07 mm inside diameter 

pressure taps for pressure distribution surveys. Flap and aileron 
positioning was provided through a set of guide rails mounted on 
the end plate disks, external to the test section. The model and 
end plates were mounted on the wind tunnel main balance system by 
means of pivot pins located at the airfoil 50% chord station. 
Foam seals around the circumference of the 1.07 m diameter end 
plates protected against flow leakage. These seals were care- 
fully adjusted during static calibration to avoid interference 
friction forces. 

The model was fitted with 2.5 mm wide transition strips of 
#80 Carborundum grit located at 5% chord on the upper surface, and 
10% chord on the lower surface. 
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Instrumentation 

Three-component force measurements were obtained from the 

tunnel main balance. Spoiler hinge moment measurements were ob- 

tained directly from strain-gage flexures, and aileron hinge 

moments were obtained from integration of surface pressures. 

Pressure measurements were made with 96 pressure tubes multiplexed 

to 4 unbonded pressure transducers through a system of pressure 

switches (see fig. 2). 

Resolution of the various instrumentation systems are 

given in Table 1: 

Table 1 - Instrumentation Resolution 

Item Resolution 

lift f0.9N (f0.2 lb) 

drag (wake survey) f0.06N (f0.014 lb) 
(force balance) +0.2N (to.05 lb) 

pitching moment +O.lN-m (+l in-lb) 

hinge moment 

pressure transducers 

dynamic pressure 

angle of attack 

flap and aileron angles 

+O.O2N-m (to.2 in-lb) 

f4.8N/m2 (kO.1 psf) 

f4.8N/m2 (fO.l psf) 

+o.o5O 

+0.5O 

spoiler angle f0.25O 

flap longitudinal and 
vertical settings 2.001 c 

Experimental data were obtained, stored and processed into 

final corrected form using the WSU wind tunnel on-line mini-computer 

system. This system had a 32 kilo-byte random access memory, two 

110 kilo-byte cassette tape drives for program and raw data storage, 
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a 120 character/set printer, and 28 cm plotter with a 0.4 mm reso- 

lution. With this system, final data which included one-component 

plots were available 6 seconds after data acquisition. Final three- 
component plots were available 3 minutes after end of run. Incre- 
mental control effectiveness and pressure integrations were ob- 
tained by off-line computer runs on the same computing system. 

Test Procedure 

Three-component force measurements were made using the wind 

tunnel main balance system. Flap-nested drag measurements were 
made using the wake survey method. A scanning five tube pressure 

probe was used for this purpose. Surveys were conducted at one 

chord-length downstream from the model trailing edge. The difference 

between force balance drag and wake survey drag is end plate tare 

drag, which depends upon lift coefficient as well as airfoil sec- 

tion. The wake survey method cannot be utilized when separation 

is present. For this reason it was not applied to flap extended 

tests. However under high drag conditions the end plate tare is 

a relatively small portion of total drag. This reasoning has led 

to the following procedure: (a) for flap-nested cases the wake 

survey drag is used directly, (b) for flap, aileron or spoiler 

extended cases the drag as measured by the force balance is cor- 
rected by subtracting the end plate tare. The end plate tare 

curve is extrapolated for high lift-coefficient conditions. De- 

tails of this extrapolation are given in appendix A. 

Wind Tunnel 

The WSU Walter Beech Tunnel is a closed return tunnel with 

atmospheric test section static pressure. The test section with 

two-dimensional inserts is 0.91 m x 2.13 m. Complete description 
of the insert and calibration details are given in reference 4. 

Special corrections for circulation effects on the test secton 
static pressure system have been applied as described in Appendix B. 

RESULTS AND DISCUSSION 

Presentation of Results 

Test results and comparison with theory and other experi- 

mental results are shown in the figures as listed in Table 2. 
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Table 2 - List of Figures 

- 

Configuration 

airfoil, aileron, 
flap and spoiler 

pressure system 
schematic 

basic section 

basic section 

basic section 

20% aileron 

20% aileron 

20% aileron 

25% flap 

25% flap 

25% flap 

25% flap 

25% flap 

25% flap 

10% spoiler 

10% spoiler 

Type Data 

model geometry 

CllfCdrCm 

pressures 

tufts 

CRICdrcm 

AC%, ACdrAc+,r Ch 

pressures 

optimum flap settings 

OR max contours 

CRICdrcm 

flap effectiveness 

experimental pressures 

pressures 

effect of spoilers on 
lift for various flap 
settings 

incremental spoiler 
effectiveness and 
hinge moments 

Comparisons Figure 

m-- 1 

--- 2 

data of ref.2 3 

theory 4 

--- 5 

--- 6 

--- 7 

--- 8 

--- 9 

--- 10 

theory 11 

GA(W)-2 12 

--- 13 

theory 14 -17 

--- 18 

--- 19 

Discussion 

Flap Nested: (figures 3 through 5). The force data show 

that the basic section has a very unusual stalling characteristic. 

Initial stall occurs at a cRmax of 1.31 and an angle of attack of 
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11.3O. This is substantially lower than the 1.54 cRmax of the 

17% thick GA(W)-1 section (ref. 5). The post-stall cLmax curve 

for the 21% section is quite flat, dipping to about 1.26 at 18O 

and subsequently recovering to a higher level above 20'. The 

drag and pitching moment results are similar to the lift, showing 
progressive changes through cRmax with no indication of abrupt 

separation. 
The NASA tests of ref. 2 show similar results for lift and 

moment at 2.0x10 6 Reynolds number, but abrupt stalling character- 

istics at higher Reynolds numbers. The drag measurements from the 

present tests show the same minimum drag level as the NASA tests, 
but somewhat higher drag levels for lift coefficients above 0.4. 

The pressure distributions and tuft studies for the flap nested 

configuration confirm the implications of the force measurements. 
The separation progression is quite slow as angle of attack is in- 
creased. In fact both tuft pattern and pressure distributions in- 
dicate that even at 30° angle of attack, separation has not reached 
the leading edge. Pressure distributions are characterized by very 
modest nose suction peaks and mild gradients. Theoretical results 

using the method of reference 6 show relatively poor agreement with 
experiment for all positive angles of attack. The discrepancies 
become quite large for high angles of attack when massive separa- 

tion is present. 

20% Aileron: (figures 6 through 8). Lift characteristics 

with aileron show that as aileron downward deflection is increased, 
the stalling characteristic becomes progressively more abrupt. 
Aileron drag, pitching moment and incremental control effectiveness 

are similar to the 17% thick GA(W)-1 airfoil (ref. 8). Aileron 

hinge moments are similar to the GA(W)-1, but show considerable 
non-linearity at high angles. Pressure distributions show mild 

peaks and relatively slow progression of separation with angle of 

attack. 
25% Flap: (figures 9 through 17). cRmax contours for flap de- 

flections from loo to 35O show that the optimum flap settings are 
quite similar to other airfoils (for example, ref. 9). cRmax values 
for all flap settings are lower than comparable data for the 13% 
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thick GA(W)-2 section (ref. 9). Theoretical results over-predict 

lift at 30' and 35“ flap deflection at all angles of attack. At 10" 

and 20' flap settings the theory under-predicts the lift, even at low 

angles of attack. While the under-prediction discrepancies are 

not large, they are consistent with trends observed on other air- 

foil-flap combinations (see ref. 9). Over-prediction of lift has 

been attributed to boundary layer thickness exceeding theoretical 

values. The reasons for under-prediction of theory for low flap 

deflections are not understood. 
The flap effectiveness plot (fig. 12) for the 25% flap indicates 

higher increments in cRmax than in cR @ CL= 0". This is a result 

of increased slope of the cR - CY curve with flap extended, and is 

attributed to improved boundary layer flow ahead of the flap slot 

due to the aspirating effect of the slot. For the 20% plain flap 

(aileron), the increments in cRmax are slightly lower than the 

increments in cL @ (Y= O". All flap effectiveness characteristics 

are very similar to the characteristics observed for the GA(W)-2 

airfoil (ref. 9). 

Pressure distributions with flap extended indicate attached 

flap flow with separation appearing initially at the airfoil trail- 

ing edge and progressing forward very slowly as angle of attack is 
increased. The very modest nose suction pressure peaks associated 
with this section are again observed. Theoretical pressure dis- 

tributions show good agreement with experiment prior to separation, 

and poor agreement for separation locations forward of the 0.90 c 

station. 

A refined analysis technique has been applied to the pre- 

sent experimental pressure data. In earlier research (refs. 9 

and lo), pressure distributions were corrected for tunnel flow 

angularity, but not for wake blockage, (ref. ll), since wake block- 

age depends upon drag, and drag is not measured simultaneously with 

surface pressures. In order to provide more accurate accounting 

for this effect the present data have been corrected in the follow- 

ing manner: The effect of wake blockage as obtained from force 

runs was used to calculate an equivalent increment in angle of 
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attack required to produce the apparent added lift. This increment 

in angle of attack is applied as a correction to the experimental 

data. Details of this correction are given in Appendix C. The 
largest correction occurs at the highest cRmax and amounts to 

0.7O increment in angle of attack. 

10% Slot-Lip Spoiler: (figures 18 and 19). Effects of 

spoiler on lift, drag and pitching moment, and spoiler control 
effectiveness and hinge moment characteristics are generally simi- 

lar to GA(W)-2 spoiler performance (ref. 9). With flap nested, 

however, a slight control reversal is observed at 8' angle of at- 

tack. With flap extended reversal is not present. It is believed 
that the reversal with flap nested is associated with a thick 

boundary layer development near the trailing edge. With the slotted 
flap extended the boundary layer is evidently thinned, and the re- 
versal vanishes. 

Control effectiveness is highly non-linear but positive 

for all spoiler deflections with flap extended. Hinge moments 
change from opening moments for small spoiler deflections to clos- 

ing moments for large spoiler deflections. 

CONCLUSIONS 

1. Force, pressure and surface flow studies have been con- 

ducted for 20% aileron, 25% flap and 10% spoiler applied to the 
21% thick (LS)-0421 modified airfoil section. 

2. Flap nested high-lift performance of this section is 

substantially lower than the 17% thick GA(W)-1 section, but post- 

CR max behavior shows nearly constant cR extending to very high angles. 

3. Incremental performance of flaps applied to this sec- 
tion is comparable to similar flaps applied to the GA(W)-2 airfoil. 

4. Aileron control effectiveness and hinge moments are 
similar to comparable parameters for the GA(W)-2 airfoil section. 

5. At high-a conditions with flap nested the spoiler pro- 
duces control reversal for small deflections. Spoiler effectiveness 
with flap extended is non-linear but positive for all flap and 
spoiler deflections. Spoiler hinge moments are similar to hinge 
moments for a spoiler applied to the GA(W)-2 airfoil. 
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Figure 1 - Geometry. 
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Flap Upper Surface 
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Nose Radius Location 
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Note: Remainder of flap contour 
matches basic airfoil. 

(c) 25% Flap Geometry 

Figure 1 - Continued. 
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Airfoil with Airfoil with 
Pressure Tubes Pressure Tubes 

96 Pressure Tubes 96 Pressure Tubes 

24 Pressure Tubes- 24 Pressure Tubes- 

4 Pressure Switches 4 Pressure Switches 

4 Pressure Tubes >I 
4 Pressure Transducers Tl 

III 

4 Electrical Signals 
>1 

I[ T2 T3 

Model 

I 1 Pressure Data System 

4-Channel #l #2 #3 #4 
Digital Strain Indicate DVM DVM DVM DVM Analog to Digital 

Minicomputer 
I 

I \ 

/ t , pii%zF 
Plotter 

Figure 2 - Pressure Measurement and Computational. 
System Schematic. 
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(b) Moment. 

Figure 3 - Basic Airfoil Data - Comparisons with NASA Data. 
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a--- NASA Langley data (Ref. 2) 
0 WSU data 

Note: With transition strips. 

(c) Drag. 
Figure 3 - Concluded. 
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Note: Theory predicts separation at 
x/c = .91 (lower surface). 

Figure 4 - Pressure Distribution for the Basic Section. 
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-10 1 0 (b) = Experiment a 4.3O. 

-9 4 - Theory (Ref. 6) 

] Note: Theory predicts no separation. 
, 

-5 

"P 

-4 

-3 

-2 

-1 

0 - 

1-d 
Figure 4 - Continued. 
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-10 1 (c) u = 8.4". 

0 Experiment 

-91 - Theory (Ref. 6) 

1 Note: 
Theory predicts separation at 
x/c=. 9 (upper surface). 
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Figure 4 - Continued. 
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-9 j - Theory (Ref. 6) 
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Figure 4 - Concluded. 
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Flow 

a 

Flow 

a 

(a) Low Angles. 

Figure 5 - Tuft Patterns With Aileron O', Sealed Gap. 
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I a = 14” 

(b) High Angles. 

Figure 5 - Concluded. 
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(d) Hinge Moment. 

Figure 7 - Concluded. 
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Figure 8 - Pressure Distributions with 20% Aileron. 
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Figure 8 - Continued. 
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Figure 8 - Concluded. 
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(1) Dashed symbols denote-theoretical 
values using the method of Ref. 6. 

(2) Flagged symbols from method of Ref 

Figure 11 - 25% Slotted Flap Performance. 



Notes: 
(1) Dashed symbols denote theoretical 

values using the method of Ref. 6. 
(2). Flagged symbols from method of Ref. 5. 
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Figure '13 - Pressure Distributions with 25% Slotted Flap. 
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Figure 13 - Continued. 
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Figure 13 - Continued. 
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Figure 13 - Continued. 
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Figure 13 - Continued. 
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Figure 13 - Continued. 
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(h) FLAP .DEFLECTION = 30.0 DEGREES, HIGH CX'S 

MACH NO. = 0.13 

REYNOLDS NO. = 2.2 E 06 

SYMBOL ALPHA Cn cm C C 
a a "f mf 

0 0.2O 1.59 -.59 .46 -.21 

B 12.4O 2.84 -.91 .44 -.20 

14.2O 1.71 -.54 

00 

00 

00 

____ ----.- ._.__ 
T 

----. ----.._,__ --. .____ 
l P==- 

___-*- I- .-.--- ___,__--- - ___---.- 

.49 -.30 

.50 -.32 

i 

I 
? c- 

l - 00 --- 

Figure 13 - Continued. 
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Figure 13 - Concluded. 
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(d) a = 13.2O. 
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Figure 17 - Pressure Distributi0n.s with 25% Slotted Flap, 
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APPENDIX A 

End Plate Dras 

End plate tare drag was evaluated as the difference be- 

tween model plus end plate force measurements and model sec- 

tion drag from centerline wake surveys. Wake surveys were 

made using a scanning five-tube pressure probe described in 

reference Al. Since this probe provided the longitudinal 

component of velocity, dragwas evaluated directly by means 

of the equation: 

+)dz (Al) 

from reference A2, where: 

Cd = section drag coefficient 

% = longitudinal velocity 

U OD = free stream velocity 
..i '7 

z = vertical coordinate .I:< 

c = section chord !w- 

At each angle of attack a preliminary scan was made to 

determine wake limits. These limits were determined by manual 

observation of the total pressure. Then a traverse was per- 

formed utilizing a step size selected to provide at least 20 

readings within the wake. The probe was stopped for a few 

seconds at each measurement point to allow readings to stabilize. 
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The on-line mini-computer system calculated corrected pressures 

and velocities at each point, and recorded results in tabular 

form and on cassette tape. Integration to determine section 

drag coefficient was done later, with the wind tunnel fan-off. 

Limits of integration were determined manually from the tabu- 

lated output velocity data. 

The finite difference form of the section drag coefficient 

equation as used in the computer program is: 

-%)A2 ao (A2 1 

where 

. 1 = the index of the data point 

II = the index of the last data point 

42 = step size 

Figure Al shows the end plate drag obtained from the 

difference between the force measured drag and wake survey 

drag. Lift coefficients are determined from the force 

areasurements. Since the end plate drag includes tare plus 

interference effects, it shows an increasing trend with lift 

coefficient. 

Since the wake survey method cannot be applied to cases 

with flow separation, it is necessary to extrapolate the end 

plate drag curve to the high lift coefficient regime. Fortu- 

nately when separation occurs the airfoil section drag in- 

creases abruptly and end plate drag becomes a smaller propor- 

tion of the total measurement. 
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It is conservative to extrapolate the end plate drag coeffi- 

cient as a constant for lift coefficients above separation. 

Figure Al shows the extrapolation selected for the present 

case. 

Al. Seetharam, H.C., Wentz, W.H., and Walker, J.K.: Measure- 
ment of Post-Separated Flowfields on Airfoils, AIAA 
Journal of Aircraft note, vol. 14, No. 1, January 1977. 

AZ. Pope I A. and Harper, J.J.: Low-Speed Wind Tunnel Testing. 
John Wiley, 1966. 
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APPENDIX B 

Wind Tunnel Wall Corrections 

INTRODUCTION 

This appendix outlines the methods used to correct experi- 

mental force measurements for wind tunnel wall effects. 
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SYMBOLS 

model reference chord 

drag coefficient 

lift coefficient 

pitching moment coefficient 

pressure coefficient 

dynamic pressure 

test section height 

vertical offset of static port 

longitudinal offset of static port 

distance from vortex to static port 

angle of attack 

tunnel upwash angle 

blockage factor, AV/V 

wing circulation 

vortex induced velocity 

free stream velocity 

solid blockage model geometry factor 

solid blockage test section factor 

increment 

Subscripts: 

B buoyancy 

car corrected 
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SB solid blockage 

WB wake blockage 

un uncorrected 

V vertical component 

Corrections to force data: 

The following corrections from ref. Bl have been applied 

to the force data measurements of the present report. 

Tunnel upwash: 1. a =a+ a 
U 

(c1 = +.18" for WSU tunnel) (Ref. B2) 
U 

Solid blockage factor: 2. h = 1.75(t/c) + l.875(t/cJ2 (Ref. Bl, 
fig. 6:8) 

Horizontal buoyancy: dCp 3. AcdB=-+. * C * da (Ref. Bl, 
eq. 6:7) 

(Ref. B2) 

Solid blockage factor: 4. u = 

Solid blockage: 5. ESB = Aa 

Wake blockage: 6. k = &- * Cd,, 
( 1 

Total blockage: 7. E = "SB + 'WB 

Corrected lift: 

Corrected drag: 

CQ = ca. (1-o) 
un (i+ ~)2 

(Ref. Bl, 
eq. 6:8) 

(Ref. Bl, 
eq. 6:lO) 

(Ref. Bl, 
eq. 6:12) 

(Ref. Bl, 
eq. 6:17) 

(Ref. Bl, 
eq. 6:21) 

(Ref. Bl, 
eq. 6:23) 



Corrected moment: cm = cmun(l+u*ck* .25)/(1+ E.) 
2 (Ref. Bl, 

eq. 6:22) 

Corrected : u=u+ (57.3 *cl) (c 
2r e + 4c.m.25c 1 (Ref. Bl, 

eq. 6:20) 

The equations above have been modified to eliminate the re- 

strictions to small E imposed in the theoretical development 

given in reference Bl. 

Corrections to dynamic pressure measuring system: 

The tunnel dynamic pressure measuring system is shown schemat- 

ically in figure Bl. 

Pitot Tubes 

213.4 cm. 

15.2 cm 

Figure Bl - Pitot Tube Locations. 

It consists of two pitot tubes located 15.2 cm 

below the ceiling and 15.2 cm from the vertical walls. Calibrations 
have shown that stagnation pressure measurements at these locations 

are equal to tunnel centerline stagnation pressure, and this is 

as expected since sidewall and ceiling boundary layers are much 

thinner than the 15.2 cm instrument offset. Tunnel static pressure 
measurements for earlier research were obtained from these same 

locations, plus two similar pitot-static tubes located 15.2 cm 

above the tunnel floor. The four total pressures were manifolded 

to a single transducer, and the four static pressures were mani- 

folded together for averaging purposes. At low cQ values this 
method is entirely satisfactory. At very high ca values (ca 2 3), 
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however, the upper and lower static tubes become influenced by sig- 

nificant pressure differences due to circulation and image effects. 

Unfortunately connecting top and bottom pressures together does 

not provide a true average if the pressures are substantially dif- 

ferent and pressure tube lengths are not carefully matched. To 

obviate this problem, a new static pressure sensing station was 

selected for the present tests, just above the tunnel centerline. 
This location minimizes image effects but introduces larger upwash. 

Use of a flush hole for static pressure measurement in place of a 

pitot-static arrangement eliminates difficulties associated with 

flow angularity effects on pitot-static tubes. It is necessary, 

however, to correct the measured or "indicated" sidewall static 

pressure for circulation and image effects. These effects are 

illustrated by figure B2. 

Static Pressure Port 

Figure B2 - Induced Effects on Static Pressure. 
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Vertical Component of Induced Velocity: 

The wing circulation is represented by a single vortex at the 

.25c location, and the first pair of an infinite set of image 

vortices are shown. The wing vortex induces an upwash at the static 

port, and the images induce a downwash (longitudinal components 

cancel). 

From the notation in the sketch, the induced vertical veloc- 

ities are: 

Bound vortex term: r wov = - 2lTa. (upwash) (Bl) 

First image: 
r a 

wlv = w2v = -- 
( 1 2rr Z (downwash) (B2 1 

From geometry: 
r=J?YP (B3) 

From aerodynamic theory: 

Substituting: 

and 

Rearrange: 

r = CA 
2 

wov = & 

wlv = -W,2 : h21 

v wlv = -4n(aJc) l [ 1 1 + (2)‘- 

(B4) 

035) 

(B6) 

(B7) 

For the next set of image vortices, equation (B7) will be 

modified by replacing h with 2h, etc., and the velocity will be 

of opposite sign. Thus the total net upwash will become: 
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"netv= .* 1 - l+2h 2 + 
. [ 0 

l+;ih)2- l = - 1 1-1 

T 

The "2" factor appearing in the second and subsequent terms accounts 

for the fact that the images appear in pairs. For the WSU wind 

tunnel geometry the following dimensions apply: 

a = 79.6 cm 

h= 213.4 cm 
c= 61.0 cm 

Substituting these values into equation (B8) leads to the following 

result: 

or 

Wnetv = l 
0494 * CLV (-1 

(BlO 1 

This correction is applied to the measured dynamic pressure 

as follows: 

Figure B3 - Combined velocities. 

vun 
2 = v2 + WV2 

2 
Vun 
+1+ 

WV 

( ) v 

Dynamic pressure correction: 

-.00244 * ca2 (B13) 

(Bll) 

(I312 1 
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Longitudinal Component of Induced Velocity: 

If the static port and the wing .25 chord do not lie on the 

same horizontal plane, a longitudinal component of velocity will 

be inducedi For the present tests the static port was located 

above the tunnel centerline, and the model was pivoted about a 

point aft of the .25 chord. Image effects are neglected in this 

anal-y&s. Since c amax with flap extended case occurs at about 12O 

angle of attack, the correction is calculated for the 12O case, and 

applied at all angles. Since the correction is relatively small, 

and is dependent upon car this procedure will provide an appropriate 

correct at very largecII values, and will not result in serious 

error at low Al, lower C~ conditions. Figure B4 illustrates the 

geometry: 

f woh 
Static Pressure Port 

Figure BQ - Induced Longitudinal Velocity. 
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In'this figure the dimensions are as follows: 

Ah = vertical offset of static port = 1.91 cm 

"0 = longitudinal Offset of static port = 79.6 cm 

c = wing reference chord = 61D cm 

The horizontal component of induced velocity is: 

WOh = 
I-0 

2r ho2 + Ah2 ,/+ 

Simplifying: 

"Oh = 
rOAh 

2n (ao2 + Ah2) 

Substituting from equation (B4): 

"Oh = 
cQVcAh 

air (to2 + Ah2) 

Rearranging: 

“Oh 1 cAh 
-=4a V 

uo2 + Ah2) c;II 

(B14 1 

(J315) 

(B16) 

(B17 1 

Substituting all values given: 

)I (B18) 

Since this component is in the freestream direction, the correspond- 

ing dynamic pressure correction becomes: 

AQ -2s -= 
Q V 

= -.()02g2 * c II (B19 1 
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Combining this result with equation (B13), the total dynamic 

pressure correction becomes: 

r 1 

iii? =-0 00292 * CR - .00244 * GE2 
Q l 

(B20) 

The negative signs indicate that corrected dynamic pressure is 

lower than indicated dynamic pressure. For an uncorrected C~ 

of 4.0, the first term is a 1.2% correction, and the second is 

a 3.9% correction. These corrections are much smaller at low 

C~ values. 
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APPENDIX C 

Wake Blockage Corrections to Experimental cp Data 

INTRODUCTION 

This appendix outlines the methods used to correct experi- 

mental pressure measurements for wind tunnel wall effects. 

b 

C 

C 

Cd 

CR 

h 

Q 

S 

V 

a 

A 

E 

SYMBOLS 

model span 

test section 

model reference chord 

airfoil drag coefficient 

airfoil lift coefficient 

test section height 

dynamic pressure 

model reference area 

velocity 

angle of attack 

increment 

non-dimensional velocity increment, AV/V 

Subscripts: 

car corrected 

un uncorrected 

WB wake blockage 
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Wake Blockage Corrections to Experimental cp Data 

Pope (ref. Cl) quotes the following wake blockage correction 
to velocity, as developed by Maskell: 

s 
EWB = %? Cd 

For the WSU two-dimensional insert: 

Simplifying, 

For the present 
Substituting: 

S=cxb 

c =hxb 

c*b 
'WB = 2*h*b *Cd 

C 

EWB = 2*h * c d 

tests, c/h = 2/7. 

1 
'WB = T**d 

(C-1) 
(Ref. Cl, p. 313) 

(C-2 1 

(C-3) 

(C-4) 

(C-5) 

(C-6) 

For small E, 

Q car = Qun .(1+ 2E) (C-7) 

cp car = CpuJl-29) (C-8 1 

and ca car = cp, un(l- 2EI (C-9) 

Rather than adjusting all cp values for the corrected static and 
dynamic pressures it is simpler to calculate an equivalent cor- 
rection to angle of attack, as follows: 
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(C-11) 

(Note: An increase in a required is equivalent to a decrease 

in ~2.1 

Substituting: 

+2EC R 
Aa = dc,/da 

Substitute E for the present case: 

Aa = 

For most cases dc,/da 2 O.l/degree. 

Substituting this value: 

(C-12) 

(C-13) 

1 Aa=y*cd-*cg(deg.) 1 (C-14) 

Using this relationship together with cR and cd values from 

force measurements, corrected a values can be calculated for each 

flap setting and angle of attack, The theoretical computer runs 

were made at these corrected angles for comparison with the experi- 

mental cp distributions. 
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